
AD-A281 639

RL-TR-94-4
hi-Houe RPoAW

1992 DISE SUMMARY REPORT

Vaughn T. Combs, Dr. Gary L. Craig, Francis A. DILego, Jr.,
Jerry L Dussault, David J. Gray, Patriick M. Hurley,
Scott M. Huse, Anthony M. Newton, Jon B. Valente, -

Robert Vath DT
^ELECTE.

UJUL 14 1944

AI eDR FOR, P11" REL_,. S TNI UNL IMI T.

94-21571111iBM IWIMI 11 lU - DT QuI°rYfISECE

Rome Laboratory
Air Force Materiel Command

Gdffes Air Force Base, New York

94 7 12 252

.s report has been reviewed by the Rome Laboratory Public Affairs Office
0\`ý ati,! i.s releasable to the National Technical Information Service (NTIS). At

> S •i' will be releasable to the general public, including foreign nations.

0.L-TK-94-35 has been reviewed and is approved ror publication.

ANTHONY F. SNYDER, Chief
C2 Systems Division
Command, Control, and Communications Directorate

FOR THE COMMANDER:

JOHN A. GRANIERO
-Chief Scientist

Command, Control, and Communications Directorate

'If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (CAB) GriffLiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific documient require that it be returned.

1. AGENCY UOSE ONLY 0"av BImik) 2 REPORT DAlE I REPORT TYPE AND DATES COVERED

4. TM.E AND 8WTM.E 5FUNJDING NUMBERS
1992 DISE SUMMARY REPORT PE - 62702F

PR - 5581

&AUTHOR(s)Vaugh T. Combs, Dr. Gary L. Craig, Francis A. Di- TA - 28
Lego, Jr., Jerry L. Dussault, David J. Gray, Patrick M. WU - 17
Hurley, Scott M. Huse, Anthony M. Newton, Jon B. Valente,
Robert Vaeth

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8& PERFORMING ORGANIZATION
Rome Laboratory (C3AB) REPORT NUMBER
525 Brooks Road RL-TR-94-3 5
Griffiss AFB NY 13441-4505

9. SPONSORINGJMNITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
Rome Laboratory (C3AB) AGENCY REPORT NUMBER
525 Brooks Road
Griffiss AFB NY 13441-4505

11I. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Patrick M. Hurley/C3AB (315) 330-2925

1 2a. DISTRIBUTIONAVALABIU1Y STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(dUhLm2um"Ill
The 1992 DISE Summary Report is a progress report on the activity of the Rome Laboratory
In-House work in Distributed Processing Systems: In addition to the progress report,
there are six consensed reports on the individual research, development, and application
projects currently under way within the In-House group. The reports included are: Re-
source Management in Support of Application Management, Distributed-Parallel Effort,
Distributed Image Compression in ISIS, Information Exchange using Cooperative Communi-
cating Networks, The Survivable Distributed.Computing Environment, and Weak Consistency
and Recovery in a Command and Control Environment.

i4.SUBJECTTERMS Distributed Operating System, Distributed System, I1tNMMM OF PAWS

Parallel, Consistency, Resource Management, ISIS, CRONUS, Dis- 52
tributed Computing Environment 1t~~O

17. SECURITY CLASSIFICATION 18. EC0WY C1ASFKIA1ION 119.8ECLRW"YC 0SFCATION 20, LMITATION OF ABSTRACT
OF REPORT OF ThIS PAGE OF ABSTRACT

UNCLASSIFIED I UNCLASSIFIED I UNCLASSIFIED U/L
NSN 5041204MStwv~d Form Mi Flo 241

Pv,.bm by ANSI MdZ39-i 9
2MI02

Table of Contents

Forew ord ... 3
Background ... 3
Progress Report ... 3
Resource Management in Support of Application Management 5
Distributed-Parallel Effort .. 11
Distributed Image Compression in ISIS ... 17
Information Exchange using Cooperative Communicating Networks 25
The Survivable Distributed Computing Environment .. 32
Weak Consistency and Recovery in a Command and Control Environment 39

, lt•I GRA&I

VTie TOB 0
U na n cod -1

astifiOstio-

By,

Distributi
Availability Codes

1 1A
V a i l

a n d
/ o r

1/2

Foreword

This report is organized into three major sections. The Background section gives
information on the history and rationalization for this manpower effort. The Progress
Report section details the work performed under the 1992 fiscal year, beginning October
1991 and ending September 1992. The final section exists as a set of associated articles
that describe some of the year's efforts. The articles are done in research paper format.

Background

The Command, Control, and Communications (03) systems that the Air Force (AF)
currently use are a collection of independent and interdependent systems. While
sounding like a contradiction, the systems were usually procured for a particular function
first, then integrated into the Command and Control (C2) structure later. Each system
retains a measure of independence, but the information processed by the collection of
systems is critical to our C2 measures and countermeasures. Our interest and thrust
within this C2 environment are to provide the capability for all of the individual systems
to be integrated into a distributed system (i.e. a system of systems). This entails having a
set of heterogeneous hosts that communicate and manage one another in a timely fashion
with fault tolerance, reliability, survivability, et cetera. This system needs to be capable
of adjustment as new demands, capabilities, and technologies are integrated through
software or hardware additions. Moreover, all of this must be done at a reasonable cost.

After realizing that the current level of research in Distributed Operating Systems (DOS)
had reached a degree of maturity, the Computer Systems Branch of Rome Laboratory
(RL) established an in-house capability called the Distributed Systems evaluation
Environment (DISE) in fiscal year 1987. Within the DISE, we planned to continue the
development of distributed systems technology areas and to provide a demonstration
capability for our customers. The DISE seeks to provide a setting where: researchers can
investigate and demonstrate the issues of concern for DOS technology, developers can
design, create, experiment with, and verify distributed applications, and policy makers
and technology managers can see the benefits of distributed technology.

Progress Report
At the start of our sixth year of operation, we had many ambitious plans. While not all of
these plans materialized, we still managed to complete a major portion of them. This year
we attempted 9 tasks, varying from applications development to research exploration. Of
the 5 major projects, 2 were applications development, 2 were systems development, and
1 was research exploration. The remaining 4 minor projects were used to either complete
tasks carried from the last fiscal year or explore interaction with other groups interested in
distributed processing projects.

As discussed in our previous (1991) report, the Australian experiment is a multi-year
effort to demonstrate the inter-operability of two allied communication networks on a
cooperative basis to enforce national access/usage policies and to perform distributed
command and control functions. Most of the effort during the fiscal year has been
devoted to establishing a primary, demonstrable application and to planning the extension
of that application into an environment partitioned into domains of control. By the end of
the fiscal year, we had established the initial application and were completing the design
of extensions for our new environment. More detail can be found in the paper entitled
Information Exchange using Cooperative Communicating Networks.

3

Our ditributed application instrumentation project, tasked to develop and design a tool
for use within object-oriented distributed systems, was completed this fiscal year. A
technical report on the project was published and should be available by contacting the
address on the report documentation page. An overview of the system was published in
our 1991 report. Unfortunately, we did not get to complete the user interface for the
instrumentation tool.

A distributed-parallel systems task was created to investigate the affect of introducing
parallel computers into a distributed computing environment (DCE) and to measure the
feasibility of using a DCE to perform parallel algorithm tasks. Much of the initial work in
this area has been dedicated to gaining an understanding of the synchronization
relationships necessary to support parallel style algorithms. Synchronization and timing
effects can be well understood when viewed from within a single computing device, but
they become less understood when dealing with a set of independent computing devices
connected within a networked structure. The Distributed-Parallel Effort paper describes
our investigations within this area.

In order to increase the ability of object-oriented command and control (C2) systems to
tolerate nodal and network failures, we established a research task to study consistency
relaxation techniques. While we anticipated this task to develop, experiment, and
demonstrate a new technique in loosening consistency requirements, a Congressional
budget action terminated funding for the project. Before funding was withdrawn, we
managed to finish an initial design for the system. This design is the basis for the paper
entitled Weak Consistency and Recovery in a Command and Control Environment.

We wanted to demonstrate the effectiveness of distributed systems technology for helping
C2 systems survive within hostile environments. So, we established the survivable C2
systems experiment as a multi-year vehicle for demonstrating a distributed information
processing system that could adapt to sporadic and intermittent link and nodal failures
while continuing its assigned C2 functions. After a year of debate, we finally agreed upon
a general design to accomplish our intent. It is expected that a formal design and
implementation will occur during the next fiscal year. The three papers Resource
Management in Support of Application Management, Distributed Image Compression in
ISIS, and The Survivable Distributed Computing Environment describe efforts under this
task to better understand resource management issues, to learn about the ISIS DCE, and
to establish a design for the system.

The Joint Directors of Laboratories (JDL) Tri-Service experiment is an ongoing
application development project started in fiscal year 1989. Working with the
Communications and Electronics Command and the Naval Research and Development
laboratories, we have demonstrated the feasibility of integrating separate service
applications for joint operations. During this fiscal year, we have been improving the
survivability of our data management package along with updates to the X II interfaces
for the experiment.

For fiscal year 1993, we anticipate continuing work in our JDL, survivable experiment,
and Australian experiment technology areas.

4

Resource Management in Support of Application
Management

Dr. Gary L. Craig
Electrical and Computer Engineering Department

Syracuse University
Syracuse, New York 13244-1240

Vaughn T. Combs
Computer Systems Branch (C3AB)

Rome Laboratory
Griffiss AFB, New York 13441-5700

1.0 Introduction requires the resource manager to deal
Large distributed applications require a effectively and efficiently with failures
level of coordination or application and partitions of both an intra- ane. inter-
management [1] to achieve a high degree campus nature.
of survivability and adaptability. This
coordination includes such items as: In a prototype application manager, to be

embedded within a fault-tolerant
*Server group availability policy application, the AMs goals are:
enforcement (for group based replicated
servers) via service availability 1. to maintain system reliability in the
managemen[2], presence of failures (by restarting failed
*Application performance management, managers at operational nodes).
e.g. task or server migration, and 2. detect performance bottlenecks and
*Adaptation policy control. reconfigure the application on the

distributed system accordingly,
In this effort we exploit a system-wide 3. provide a degree of fault-tolerance to
resource management facility to aid in non-replicated components of the
the development and implementation of application via a checkpointing and
efficient distributed application restart approach, and
managers (AMs). Our current interest in 4. coordinate recovery from more global
resource management is in the context of failures such as network partitioning.
very large distributed systems. Such
systems are assumed to be comprised of Such an application manager needs to be
multiple, hierarchical interconnection informed (or needs to determine) when
networks. At the highest level, a system any of the following events occur: 1)
can be viewed as consisting of many resource failure, 2) subsequent resource
"campus" centers or sites. For recovery, and 3) resource performance
generality, it is also assumed that such a transition. These events are normally
distributed system may span multiple detectable system state events logged
policy domains. By its very nature, the and managed by a resource management
system is heterogeneous both in subsystem.
topology and resource type. It is
assumed, however, that except in the This points to a generic interaction
presence of failures, all nodes are between an application manager and a
reachable by all other nodes (the resource management subsystem. Below
network reachability graph is not we specify an AM architecture, the
partitioned). This type of environment Application Level Expert System

5

(ALEX). In section 4, a prototype then uses its rule base to react to the
versi of ALEX (to be used to evaluate event.
this achitecture) is discussed.

I -- J~

2.0ALE desInfere r es
TAhA t Steve EngEee appli ati on

a d aneitectur Eeventt a rp t

which is designed to react to changes designer may also define certain
both in the underlying environment and application level predicates (events) that
within the application being managed. are of interest and specify the

has been designed to be object- appropriate e ruleaaccordingly.

oriented. It encapsulates and maintainsan object state which is representative of ALEX may interact with the application
both the application and operational in one of two ways. The application
environment state. Only state designer may specify probes which
information which is necessary to signal application level events of
support the underlying control "machine" interest. Alternatively, the application
is maintained, designer may export an interface to

application components of interest,
ALEX makes use of a resource permitting ALEX to obtain specific state
management system, see Fig. 1. information. Note, the former
Predicates describing system state organization is preferred. Should the
change "events", which involve resource state information cause a predicate to
state variables are defined and integrated become true, ALEX, once again,
within the resource manager. A consults its rule base in order to make
corresponding operation interface (event the necessary user defined control
handler) is also registered with the decisions. Such an interaction is similar
resource manager. When the predicate to the approach used in [I].
becomes true the RM invokes the
specified operation, i.e., communicates The above capabilities allow ALEX to
the event occurrence to ALEX. ALEX react to changes in distributed system

6corsodn = ,. sintrace (event thie neesr use deine conro

resources (processor failures, overloaded addition, a prototype AM is being
processors, communication failures, etc.) developed for a C31 application, the
and dynamic changes in application Joint Defense Laboratory Tri-Service
parameters. For example, in a test Distributed Technology Experiment,
application (JDL-DTE), ALEX may (JDL-DTE)[4] and is described in
react to failed processors that may be section 4.
running a mission critical replicated
manager by automatically starting 3.0 Prototype Resource Manager
another one up on another node and The following section is a description of
bringing it to a state that is consistent the underlying constituent components
with the other copies. ALEX may react that make up a prototype resource
to an event flagging the over utilization management system. The resource
of a processor running key application management system monitors and
components by requesting a resource collects certain fundamental system data
profile involving all nodes that are and events that may be important for the
currently running the application continued efficient operation of
managers in question. Based on the survivable distributed application
returned data and its rule base, ALEX components. This is essentially the same
may then decide to migrate one or more information which is needed by the
application components to alternative underlying system to facilitate system-
node(s). wide resource management. In these

two roles, an RM must have a highly
Given that ALEX represents a key efficient interface to be effective.
component in an application, it must be a
replicated service. As a distributed The RM must be scalable in order that it
control system, a replicated ALEX must be successfully deployed in our
deal with the problem of distributed distributed system. We have developed
consensus. One possible strategy is to an RM Architecture which we believe is
have each replica responsible for scalable within the framework of our
application control involving only a distributed system model. It seeks to
subset of the resources utilized by the take advantage of locality of service to
distributed application. This hierarchical minimize the effects of information
decomposition is similar to the RM latency. It is the information
architecture and minimizes the volatility management component of a RM which
of mutually consistent data. drives an AM, i.e., triggers events. An

AM may then contract out for
The AM gets additional system state Administration services from either an
information from the RM (via query) to RM, the distributed operating system, or
assist it in making control decisions (this some other applicable server(s). Thus,
interface is organized in this fashion to using the system resource information
preserve encapsulation). The specific and contextual information known only
control actions are performed by the AM within the application, the components
via both application specific mechanisms of the application can be made to adapt
and mechanisms provided by the (controlled by the AM) to underlying
distributed computing environment, changes in the pool of available

resources.
A prototype of a scalable RM
(supporting only the monitoring of 3.1 Architecture Components
individual node performance) has been The design of a prototype resource
implemented on top of the Cronus management system has been
distributed computing environment [3] decomposed into three major
and is described in the next section. In components (Fig. 2.):

7

Rsure e Brokw - The resource broker maintaining knowledge about the status

Fig. 2 Distributed System Model and Resource Manager.

(RB) maintains resource and service and location of resource brokers in the
databases for a single domain (typically system, 2) monitoring the health of
a LAN). Note that the collection of RBs system resources, and 3) maintaining
in the system represent a distributed RM (via the RB peer lists) a mapping of
database. The contents of these global domains currently supporting a given

resource databases can be selectively service.
accessed via query requests made upon alocal RB. A request may be satisfied Resource Reporter - is assigned to each
locally or may result in a request managed resource. The reporter is

forwarding mechanism being invoked responsible for informing the resource
utilizing "peer brokers", broker for that resource when significantchanges in the performance status of the
In our prototype, the components of the resource occur.
distributed application register
themselves with an AM and hence with a 3.2 RB interfaces
RB. Applications make use of the The main module of the resource
information through the use of the AM manager is the Resource Broker. As
(expert system) which makes application such, considering the various interfaces
control decisions based on the data of the RB is essential for understanding
maintained and provided by the RBs. the RM. There are two major oofject
The AM at any time may query to types managed by the RB: Resources

determine any of the system status and Domains. A resource objectinformation being maintained by the encapsulates both the static and dynamic
collection of RBs. Note, this attributes of some physical resource,
information will be used for control e.g., node. A domain (or service) object
(reconfiguration) decisions by the AM. encapsulates attributes of a service. For

each domain there is a list of (local)
Configuration Monitors - The resource resources which support the service and

configuration monitor (RCM) is a list of peer RBs which maintain
hierarchical and is responsible for: 1) mappings for additional resources.

8

Other than administrative interfaces, the handle single manager failures
following are important to our current transparently. However, it is necessary
project: to provide an intelligent controller to
GetTuplesforDomain(domainname, determine when and where to start-up an
flag,*tuplelist); additional "replacement" manager. The

JDL-DTE AM is also responsible for
alterResourceCharacteristic(resourcena improving application throughput by
me, status); migrating managers away from

"bottleneck nodes".
GeffuplesforDomain permits querying
the current status of all resources which The prototype AM manages three
support a given domain. The flag interacting object types: ServiceLevel,
permits restricting the search to local Nodes, and Services. The ServiceLevel
only r e s o u r ce s. T h e database maintains a set of prioritized
alterResourceCharacteristic is the entry application configuration objects, which
point that a resource reporter uses to specify application requirements e.g., the
update the RB resource database. The number of active copies of each
RCM also uses this interface to signal application service. A node object is the
that a resource is suspected to be AM's view of the system state,
unavailable, maintaining the resource's status

(DOWN, LOWWATER,
Because of limitations in Cronus, we HIGHWATER), and its service status
cannot provide a generic predicate (Supported/Unsupported,
registration facility in RB 1 . Thus for Active/Inactive). A service object
prototyping, the RB has a single known performs the mapping of a given service
entry point for a single AM (namely the to supporting nodes and where it is
JDL-DTE AM) to signal a resource: currently active.

1. becoming unavailable, The interface for the RB to register
2. crossing above a high water mark events is:
(performance metric), and
3. falling back below a low water mark. modifyResourceStatus(nodename,

status);

4.0 Prototype Application Manager This interface indicates a change
In Section 2 we described, in very (discrete representation) in a resource's
general terms, an AM that would utilize status. The AM can then infer what
the RM to make distributed applications effect the resource status change has on
more survivable and run more the application. For example, the event
efficiently. The following discussion resource A marked as DOWN implies
describes our prototype AM, being the loss of all services previously active
deployed within the JDL-DTE, in more on that node. The AM must then
detail. determine (based on the ServiceLevel

policies, and system status) what
The JDL-DTE is a distributed target corrective action should be pursued.
tracking scenario which is comprised of
eleven cooperating services (object Other than the policy specification and
managers). In order to provide a degree threshold values, all of the static data
of fault-tolerance (survivability), several values are obtained through interaction
of the services are replicated. Cronus with Cronus services (hostdata and
and replicated services automatically servicedata databases, and each host

database). Likewise, Cronus services are
lCommunication stubs must be linked into the RB currently used to effect application
manager's executable in the Cronus architecture.

9

configuration change (starting and
stopping managers).

An integral part of this prototype
development is likely to be the extension
of the JDL-DTE's status display. The
AM provides an excellent window for
viewing the interaction of the
application's status with the operating
environment. For example, it is possible
to see a node's performance deteriorate
followed by the subsequent application
reconfiguration to adapt to the change.
Further, if desired, it may be possible to
display the particular set of rules used to
affect the application's reconfiguration.

References
[1] K. Marzullo, R. Cooper, M. Wood,
and K. Birman. Tools for Distributed
Application Management. IEEE
Computer, 1991.

[2] F. Cristian, Understanding Fault-
Tolerant Distributed Systems,
Communications of the ACM, 1991.

[3] R. Schantz, R. Thomas, and G. Bono,
The Architecture of the Cronus
Distributed Operating System, 6th Intl.
Conf. on Distributed Computing
Systems, pp. 250--259, May 1986.

[4] M. Gadbois and A. Newton, Tri-
Service Distributed Technology
Experiment, Proceedings. IEEE/JDL
Symposium. on Command and Control
Research, 1 9 9 0

10

Distributed-Parallel Effort

Jon B. Valente Robert Vaeth
Computer Systems Branch (C3AB)

Rome Laboratory
Griffiss AFB, NY 13441-5700

1. Overview Transformation addresses the problem of
This effort is part of an in-house transforming the timing information
program that is looking at some of the from four different clock sources into the
issues that are associated with timing information that would have
incorporating parallel computers into appeared from a single (global) clock
distributed systems and with doing source. This effort became necessary
parallel computing with a distributed after a preliminary analysis into the
system. experiments proposed by the

Distributed-Parallel experiments.
The program is made up of the following
tasks: 3. Distributed-Parallel Experiments

Task A: Communications, The Distributed-Parallel Experiment is
Task B: Program Definition, the main section of the effort. The work
Task C: Homogeneous Systems, activities are broken up into the

and following subsections
Task D: Heterogeneous Systems. 1) Problem Definition,

2) Metrics and Measurements,
This paper describes the results of work 3) Storage and Retrieval System, and
associated with Task C. The work 4) Analysis.
performed is a joint effort between
Rome Laboratory (RL) and the The Problem Definition subsection
Northeast Parallel Architecture Center defines a scope for the experiment, an
(NPAC) at Syracuse University. The implementation strategy, the hardware
two organizations form a two node requirements, and the software
network on which the experiments will requirements. The Metrics and
be performed. NPAC's tasks involve Measurements subsection determines the
working on the application and metrics needed for the analysis
participating in the experiment. RL's subsection and the measurement
tasks involve monitoring the experiment, techniques needed to capture them. The
acquiring the necessary hardware, Storage and Retrieval System handles all
performing the experiment, and the issues that deal with the data storage,
performing the data analysis. backup and retrieval. The Analysis

subsection is where all the data analysis
2. Breakdown of the Effort is performed and the results of the

The Task C work is grouped into two experiment are generated.
primary sections: the Distributed-
Parallel Experiment and the Global Tune 3.1 Problem Definition
Transformation. The work associated Tv;, problem definition section of the
with the Distributed-Parallel Experiment effort actually scopes out the
follows these parameters: define and experiment, develops an implementation
implement a set of experiments, define strategy and defines the hardware and
the metrics for the experiments, take software requirements.
measurements, develop a data storage
and retrieval structure, and develop an The implementation strategy focuses the
analysis capability. Global Time effort, keeping it from pursuing

11

secondary issues. The hardware and 3.1.3 Hardware Requirements
software requirements are derived from The hardware used to run the experiment
the experiment by looking at what is consists of two computers, a network,
required and what is available. An and a pair of network protocol analyzers.
adequate and significant amount of work
is assigned to this section in order to The Encore Multimax was chosen as the
ensure the success of the effort. default computer because of its

availability at RL and NPAC. There is
The majority of the problem definition no additional requirement for computer
work was accomplished in meetings system support since software, internal
between NPAC and Rome Laboratory. to the Multimax, exists to acquire and

store the data.
3.1.1 Scope

This effort studies the effects of a two The hardware needed to record the
node network on the execution of a message passing between the computers
parallel application. The representative on each network consists of the two
C31 application uses networks located at LANPAs (see Figure 1). The LANPA
Syracuse University and Rome selected for use is the HP4972A because
Laboratory. The observations for the it meets the requirement and is already in
experiment are made to characterize the use at RL. The two networks that
nature of application communication. directly connect to the Multimax

computers are, in turn, connected by
3.1.2 Implementation Strategy organizational networks at Syracuse

The experiment executes in a two node University and Rome Laboratory. Both
network environment between RL and Syracuse University and Rome
NPAC (See Figure 1). The two nodes Laboratory connect through subscription
connect through a TI line, with network to T-1 class networking services
monitors at both ends to capture the provided by a local carrier.
messages. Multiple experiments are run
to eliminate any anomalies. 3.1.4 Software Requirements

The software requirements are in seven
The application is implemented in four categories:
different execution profiles: sequential
only, parallel only, distributed 1) the resident operating system,
sequential, and distributed parallel. 2) the distributed operating system,
NPAC is responsible for all work 3) the application software,
associated with the application. 4) the measurement software to be

embedded into the application,
RL is responsible for all the Local Area 5) the control, measurement and
Network Protocol Analyzer (LANPA) support for the LANPA,
programming, the data analysis, and the 6) the software to upload the data
Global Time Transformations. from HP LIF format to the

Multimax UNIX format and
u •rw1~v-k 7) the data analysis software.

0IuI.J) Cronus, a distributed computing
Emmr Encore environment toolkit, is used to distributeMu nimax Muffim ax
Mac) HP72A(,ac) the application. MACH is the operating

H472PA P4A system for the Multimax because the

ROME Cronus implementation for UMAX 4.3,
NPAC LABORATORY the resident operating system, does not

Figure 1 use the concurrent thread package. The
Cronus implementation for MACH does
not have this limitation.

12

Software within each application
The selected application is a concurrent program and LANPA collects the
multiple target tracking program from measurement data. In the application,
the California Institute of Technology at software probes are present at those
Pasadena (see Figure 2). It is better points where frames or messages send
suited to the concurrency model of data to the network. These probes
computing that is supported by Cronus produce the timestamp information.
than other candidates that were
considered. NPAC installs the The LANPAs need both hardware
measurement software for the modifications and new software to
application, record the network activity of interest.

Examples of this software include a new
RL generates the control, measurement set of lists, filters, messages, and control
and support software for the LANPAs, programs. Furthermore, another program
as well as the software to upload the HP converts LIF data (the standard format
LIF files from the LANPAs. The data for LANPAs) into ASCII text.
analysis software is broken up into three
areas, data retrieval, data transformation 3.3 Storage and Retrieval System
(i.e. global time transformation, GTT), The storage and retrieval system is the
and analysis. data link between the experiment and the

analysis. The storage and retrieval
system contains all the data associated

Sensor with the activities of the experiment as
t they occurred in time. This allows us to

Re N •reconstruct, if necessary, the sequence of
events that make up the experiment.

Notwork The storage system consists of the media

Track fack Trak required to store primary and backup
Data DataDat copies of data, and the translation

software that converts LIF format data to
Encore ASCII text. The retrieval software

Mulimax Mu=imax accesses the ASCII text for use in
(Mach) (Mach)anys. analysis.

Tracker Display Tracker 3.4 Analysis

Not ROME The analysis work includes the
NPAC Implemented LABORATORY calculations for speedup, execution time

Figure 2 to communication time, and clock
offsets which are used in the Global
Time Transformations.

3.2 Metrics and Measurements
Three metrics measure the ethernet The analysis software gains access to the
frames: network propagation delays, data by using the storage and retrieval
clock offsets, and arrival/departure system. The most complex problem in
times. Each LANPA monitors, time the analysis is the data merging and data
stamps, and records messages which association. There are four separate data
originate and arrive at each Multimax. sources for eac-h experiment. Many
Clock offsets are calculated in two problems may arise such as
places: between the two Multimax communication system breakdowns, lost
computers, and between a Multimax data entries, and multiple data entries for
computer and its local LANPA. the same message.

13

4. Global Time Transformations observations of the timed values
The experiment does not use a generated by each of the four computer
distributed or global timing system. The systems. Curve fitting programs
two computers and two LANPAs determine the nature of the difference in
generate time stamps based on the local clock time values.
clocks for each device. Without
synchronization, it is difficult to derive 4.2 Clock Drift Coefficients
useful information from the data. The The clock drift coefficients are numeric
Global Time transformations correct this values calculated to adjust the measured
problem by mapping each time stamp time stamps recorded from the internal
into the appropriate clock value of the clocks of the 4 computer systems.
global time clock (see Figure 3). The Experiments determine if the
Global Time transformations involve coefficients are constant values. Project
several components: the derivation of staff then develop a methodology to
appropriate analytical transforms, the measure the clock drift by individually
calculation of drift coefficients, and the determining the drift rate for each clock
measurement of local clock offset in the experiment and then calculating
values, the overall drift rate.

4.3 Clock Offset
CIt is very difficult to align the internal

clock of each computer system at the
start of an experiment, without a
mechanism for global synchronization.
To compensate, a clock offset isI pmeasured and used in the transformation

Clock lob&process.

2 Clock Since the LANPAs are not able to

SData generate dynamic messages, project staff
,nat developed a technique for measuring the

ransformation clock offset that used pr •'-fined
Clock 33messages. The LANPA techniqyie uses

Dat Glbal two sockets to send and receive data.
m One socket receives clock based data at

,Tnsfoati.n predefined time intervals while the other
4 socket measures the propagation delay in

lock 4 Athe network. Calculation of the
propagation delays encountered between
the Multimax computer and the LANPA

Figure 3 is also performed.

4.1 Transformation Definition 4.4 Transformation Verification
As a main objective of the trans- The algorithm used in the Global Time
formation, the work involved in defining Transformation should be verified. This
the transformation derives the process involves two experiments: one to
appropriate analytical function and calculate the input data for the
proves that the derived functions are transformation, the other to provide
valid. comparison time data. The verification

process, therefore, is defined by the
To determine the appropriate analytical following procedures:
transformation, project staff plot the

14

1) define the Global Time a variety of higher-order polynomial
Transformations for the 3 clocks, curve fits. The insignificant second and

2) get a set of drift data that is higher order terms within the
different than the data that was polynomials verify that the graph is
used to derive the Global Time linear.
Transformations,

3) plot both the Global Time 5.2.2 Clock Drift Coefficient
Transformation predictions and the The clock drift coefficient work is
measured drift in order to compare, almost complete. The experiments in
and drift rates lead to the derivation of a set

4) show that the error is insignificant of equations which filter the network ef-
for the amount of time that the fects from the clock drift coefficients.
experiment is running. Using these equations provides a

consistent set of results.

5. Progress 5.2.3 Clock Offset
This report covers all work In calculating the propagation delays
accomplished by 30 Sep 92. Most of the between the Multimax computer and the
work required for the distributed-parallel LANPA, it is necessary to determine the
experiments is complete. Both the response time of the Multimax and the
problem definition and the metrics and LANPA. Work on this topic is
measurements work are finished. The underway.
storage and retrieval systems are
partially complete, with the remaining 5.2.4 Transformation Verification
work to be finished in data retrieval. The The work involving transformation
data analysis is also partially complete. verification is partially done.

5,1 Distributed-Parallel Experiments
All work under the Problem Definition
phase is complete. The metrics and 6.0 Conclusions
measurements work is complete. The data storage part of the system

involved more work than we had
The data analysis software has not been planned due to the increased number of
written, pending completion of the experiments and the volume of data
Global Time transformation work. encountered.
Looking at the behavior of the
application on differing computer We developed an experimental
configurations completes some of the capability along with the appropriate
initial work. procedures for measuring and storing

5.2 Global Time Transformations data.

Most of the work required to perform the The data retrieval system, the data analy-
Global Time transformation is complete. sis and part of the Global Time Trans-
The transformation definition is done. formation will be the only remaining
The calculations for the clock drift work to be completed. When completed,
coefficients and the clock offsets are two reports will be written: one for the
close to completion. The verification Global Time transformation work, and
process is also nearing completion. the second for the Distributed-Parallel

5.2.1 Transformation Definition systems final report.

Plotting the collected time stamp data,
measuring drift, against the global
reference clock yields a set of linear
graphs. The linearity is verified through

15

7.0References [Mill89b] Mills, D. Network Time[Crow90] Crowcrof, J. and Onions, J. Protocol (Version 2) Specification and

Network Time Protocol(NTP) over the Implementation. RFC-o 119, Network
OSI Remote Operations Service. RFC- Working Group, September 1989.
1165, June 1990. [Mil192] Mills, D. Network Time

[Duda87] Duda, A., Harrus, G., Haddad, Protocol (Version 3) Specification and
Y. and Bernard, G. Estimating global Implementation and Analysis. RFC-Y. an Berard,1305, Network Working Group, March
time in distributed systems, Proceeding 1992.

of the 7th International Conference on

Distributed Computing Systems, Sept. [Ofek87] Ofek, Y and Faiman, M.
21-25, 1987, pp. 299-306. Distributed global event synchronization

[Kope87a] Kopetz, H and Ochsenreiter, International Conference on Distributed
W. Clock synchronization in distributed Computing Systems, September 21-25,
real-time systems. IEEE Transaction on 1987, pp. 307-314.
Computers Vol. C-36, No. 8, August [Smar9la] Smari, W. Clock
1987, pp. 933-940. synchronization techniques: a survey.

[Kope87b] Kopetz, H and Ochsenreiter, Final Report AFOSR Summer Facility

W. Interval measurements in distributed Program, August 9, 1991.

real time systems. Proceeding of the 7th
International Conference on Distributed [Smar9b] Smanri, W. An overview ofComputing Systems, September 21-25, clock synchronization techniques.
198,mp.ting 292-2. STechnical Report AFOSR Summer1987, pp. 292-298. Facility Program, August 1991.

[Lamp78] Lamport, L. Time clocks and [Smar87] Srikanth, T. and Toueg, S.
the ordering of events in a distributed [tmar crokanthronizand TouegaSsse.Comm ACM, Vol. 21, No. 7, Optimal clock synchronization. Journal
system. 55m-565. of the ACM, Vol. 34, No. 3, July 1987,
July 1978, pp. 558-565. pp. 626-645.

[Lamp85] Lamport, L and Melliar-Smith
P.M. Synchronizing clocks in the
presence of faults. Journal of the ACM,
Vol. 32, No. 1, January 1985, pp. 52-78.

[Marz83] Marzullo, K. and Owicki, S.
Maintaining the time in a distributed
system. Proceedings of the 2nd ACM
SIGACT-SIGOPS Symposium on the
Principles of Distributed computing
August 1983, pp. 295-305.

[Milh45] Milham, W. Time &
Timekeepers. New York, The
MacMillian Company, 1945. pp 197-
212.

[Mill89a] Mills, D. Internet time
synchronization: the Network Time
Protocol. RFC 1129, Network Working
Group, October 1989.

16

Distributed Image Compression in ISIS
Scott M. Huse

Computer Systems Branch (C3AB)
Rome Laboratory

Griffiss AFB, New York 13441-5700

David J. Gray
Sterling Software, Inc., Intelligence & Military Div., KSC Operations

Beeches Technical Campus. Route 26N
Rome. New York 13440-2067

1.0 Introduction

1.1 Distributed Systems
In a distributed system, processing
activities may be located in more than
one computer, and the computers
communicate over a network in order to
perform joint tasks. At least three
components of a system can be
distributed. These include hardware, --

data, and control [Sloman]. au C

A distributed system must consist of at
least two computers, each with their own Figure 1. Enslow's Model of
local memory and processors. The Distributed System Types
control strategy used to manage the
resources of the system can be There are two key stimuli for the current
centralized, hierarchical, or completely interest in distributed systems:
autonomous at each site. The data can technological change and user needs
be distributed by replication or [LeLann]. First, the growth in
partitioning. microelectronics, VLSI, etc., has altered

the price-performance ratio to favor
Whether it is necessary to distribute all multiple low-performance processors
three components of a system in order rather than single high-performance
for it to be classified as a distributed processors. Also, interconnection and
system remains a debate. While there is communication costs have fallen and
no general agreement on the precise numerous networks are now readily
answer to this question, Enslow's model available and cost effective. Second,
[Enslow] does require that all three there are several potential advantages
aspects be distributed in order for a that distributed systems may offer over
system to be classified as fully conventional computer systems which
distributed. A simplified form of help to meet current user needs. These
Enslow's cube model is provided in potential advantages include resource
Figure 1. The degree of decentralization and information sharing, better
of a system is herein characterized by reliability, flexibility and extendibility,
three dimensions which correspond to modularity, better response and
hardware, control, and data. performance, and reduced incremental

cost.

17

It should be noted that reliability, in occurring everywhere at the same time.
particular, is a complex issue even in ISIS enforces enough order so that the
non-distributed computer systems. In resulting code works correctly, while not
distributed computer systems, issues sacrificing concurrency.
such as correctness, fault-tolerance, and
security become even more complex, ISIS consists of language libraries and
and one must be concerned not only with utility software which use Transmission
the behavior of individual components, Control Protocol/Internet Protocol
but also with their collective behavior in (TCP/IP) and Unreliable Datagram
the overall context of the application. Protocol (UDP) protocols [Coulouris,
While one might expect the correctness 1988] by default, and can be extended to
of a distributed system to follow use other protocols, e.g., MACH IPC.
naturally from the correctness of its ISIS is available on a wide range of
constituent components, this is not UNIX-compatible computers, and it
always the case [Birman, July 1991]. supports application development in C,
The ISIS system addresses this reliability FORTRAN, and Lisp.
concern through the notion of process
groups and group programming tools
which simplify the development of 2.0 Research Overview
reliable distributed software.
The ISIS Distributed Programming 2.1Introduction
Toolkit (version 3.0) is utilized in this In this research project, we have
research project. The ISIS toolkit was distributed the computationally intensive
first released into the public domain in task of image compression using the
1987 and has been distributed to more Huffman coding algorithm. Coding
than 750 sites. ISIS is used in diverse required to reach our project goal
settings including various banking includes implementation of both
applications, value-added centralized and distributed versions of
telecommunication systems, wide-area the same compression algorithm. Two
seismic data collection and analysis, factors necessitate the coding of a
factory floor automation, education, and centralized implementation: first, to test
research [Birman, January 1991]. our algorithm and learn how to

ISIS is a toolkit for distributed manipulate image data; second, to

programming which provides a set of identify the most computationally

problem-oriented tools built around intensive steps in the image compression

process groups and reliable group process.

multicast. The ISIS toolkit provides for From our centralized implementation we
several different styles of process groups are able to decisively conclude that two
and also supports a collection of group steps of our algorithm would be ideal for
communication protocols. In this distributionf counting of pixel
research project, we utilize the frequencies and encoding of the image.
client/server process group model and Figure 2 provides timing results of our
the cbcast (FIFO ordering) group centralized implementation based upon a
communication protocol. That is, the 1,037,012 byte 8 bit image file of
client program interacts with the servers 1152x900 pixels. From this large test
in a request/reply manner by image, we observed that these two
multicasting to the server group. procedures consumed approximately

ISIS implements a powerful model of 94% of the total computation time.

distributed computation known as modelo Timing results are obtained by running

synchrony. Virtual synchrony allows the centralized compression algorithm

a programmer to write code while on a Sun SparcStation. Due to time

thinking of distributed events as constraints, no attempt was made to

18

perform sophisticated performance
measurements; rather, all results are
based on simple 5-run averages.

Ops hph I

.... I me I ft.T
Onbm~bp -WWO

0 0 a In 103 MO 36 3i

Figure 2. Centralized Compression ,w. m. h..

Timing Results by Procedure

By distributing the counting of pixel
frequencies and the image encoding
stages, we are able to achieve a
significant performance speedup.
Details of the speedup obtained are
provided in Section 3.0, Experimental
Results. Figure 3. Flow Chart for the

Centralized Implementation
In addition to the centralized and
distributed implementations of our
compression program, two supporting T
programs were also developed. These
programs perform decompression of
images compressed using the distributed
implementation of our algorithm and
also overcome a library conflict between __.,
ISIS and the SUN pixrect library.
Decoding the image was done to verify
the correctness of the processing
performed.

For additional information on this
research project, refer to Rome T4
Laboratory Technical Report RL-TR-92-
254. All source code developed for this
project is included in this technicalreport. Figure 4. Flow Chart for the

Distributed Implementation
2.2 Approach

Figure 3 provides a flow chart of the
centralized algorithm implementation.
Similarly, figures 4 and 5 provide flow
chart illustrations of the distributed
algorithm implementation.

19

increase; that is, when n servers
performed worse than n-I servers.

Awt Clearly, communication costs place a

practical limit on the extent to which
distributed image compression is

Raw c,..-, beneficial. For our relatively small set
Ii,,.nlh /of test images, the optimal number of

servers varied from three to seven.

Each image's size and number of colors
which it contains is provided with the
image name in the figure captions. All

WdW 1"Unw- I... FW of the plotted data points are based on 5-
run averages.

$5

SleeO

1 2 3 4 5
Number %oSam•

Figure S. Flow Chart for Image
Reforming & Re-displaying Figure 6. 637x436x8, 37 color image

(Kuwait.ras)

35
3.0 Experimental Results 30,

25,

In this section, we examine results -
obtained by experimentation of our
distributed image compression 5

algorithm. Our computing environment 0 ,P _ _,

for all experimentation consists of a 12 3

local cluster of SUN Sparc Workstations Nu.be of Semis

interconnected via an Ethernet LAN at
Syracuse University.

Figures 6 through 13 provide timing Figure 7. 727x436x8, 51 color image

results for eight test images. Each of (Sukhoy27.ras)

these figures clearly shows the speedup
obtained by varying the number of
servers contributing to the image's
compression. For each test image the
number of servers was progressively
increased until finally the number of
servers caused the compression time to

20

Go__ Is -

30 J 12

100
2

Ol I I0 F I I

I Z 3 4 2 3 4

Numbe of Som Nibu.(S WM

Figure 8. 618x435x8, 155 color image Figure 11 345x487x8, 32 color image
(Stealth.ras) (Einstein.ras)

70 9O

so 90

so 70

4 s0 70 -0

30 son

40

10 P
10

00 I I
1 2 3 4

1 2 3 4 S 6
Number o Servm Number of Sero

Figure 9 1152x900x8, 256 color image Figure 12. 512x438x8, 245 color
(Shuttle.ras) image (Fl8s.ras)

160

140-
' 120,..

10 J,
9 0,

0 --.-- --
.... 20'

4 0 _ _ _ _ _ _ _ _ _ _ _ _

3 1 2 3 4 6
2Z

I - - - - -- NemberotSeryer

1 2 34

Nmmber of Som,

Figure 13. 792x538x8, 247 color
image (F6s.ras)

Figure 10 320x200x8, 32 color image
(Billtcat.ras)

We may further demonstrate the speedup
obtained by analyzing our timing results
with the following simple formula:

21

respectively. Image statistics are also
Single Server Time provided in these figures. In Figure 16,

Speedup = ------------- the total time given represents the
Multi-Server Tune processing time at what was found to be

the optimal number of servers.

For example, we may calculate the

speedups obtained for the various
numbers of servers for the test image
"Kuwait.ras" (see Figure 6) as follows. CAM v• l am.

Nmo, " N I 2t 2
hdd27.Zm7 J•id 3 2 I• 3 a

VAN,,m eaMO 31 2 13 i U

27 27 hm 1a0 2X

I S v e . .n 2 S i m .-- - - .-- - 1 .2 9 9. . - .at
34 21 BNOm.WISM no h 2 a 0

Flibar • •V i 13 2 14

27 27 . S 3a 0 L 2 t4 4

3Sevw 1.80 4S v - ------ 1.93

15 14

Figure I. Timing Results for the
27 27 Centralized Implementation

S S "qr= 2.08 6 SerVr- 1.93

13 14 Figure 17 provides processor load

efficiency data. Efficiency is defined to
be the average utilization of the n
processors allocated to execute the

With such calculations for all test distributed program. The efficiency of a
images, we may graph the relative single processor system, when ignoring
speedup obtained through multiple input/output (1/O), can be equal to 1. In
servers compared with an optimal linear general, the relationship between
speedup. Figure 14 provides this graph. speedup S(n) and efficiency E(n) can

therefore be defined as:

E(n) = S(n)/n

,where n is the number of processors.

j .---. . If efficiency remains at 1 as processors
are added, S(n) equals n and linearS........... speedup is achieved. This is an ideal
situation in which incremental

I . improvements in speedup can be made
"without loss of processing efficiency. In
general, linear speedup is not achievable

Figure 14. Multiple Servers vs. because of the contention for sharedOptimal Linear Speedup resources, process communication time,
and so forth [Michaud].

Given the known speedup supplied by Figure 17 provides the processor load

varying the number of processors, we efficiency data for our experiment based

now consider the efficiency gained or upon what was found to be the optimal

lost through image complexity. Figures number of processors. For example:
15 and 16 provide timing results
obtained from both the centralized and EStealth.ras(n) = EStealth.as(3)
distributed implementations,

22

I2')A

3

= .75
_ _ _ _ _ _ Tamiaa R alu) ,

Numbw

Cd1"W a U W pond Glum

Kausium 07a'u4 37 S 13

Sukhoy.rn 727"4•146 St 3 16

Sf m IS 3 2 Figure 19. R elationship Betw een

Shtda.r 113l 2 7 N Distinct Pixel Colors & % Compression

s.k* Ma 1 3 4 Clearly, as the number of distinct pixel
E •mima i M 3 3 a colors increases, compression ability
P11gm M W 5 2, generally decreases accordingly.
F1kmj S32~4lm 246 1 53

Figure 16. Timing Results for the
Distributed Implementation 4.0 Final Remarks

In this research project, Sun raster
b__,_,_ ___ ____ E___y images are successfully compressed
Kuwaiua 2 13 0 ...w A2 using a distributed implementation of the
&Aahi, W 16 o33,.W A3 Huffman encoding algorithm in ISIS 3.0.

steam" U " OS,.,) .75 Compression percentages range from 6%
to 71%. This range reflects the varying

sBUnol 4 4 C3 3 (l-.) A degrees of image complexity (primarily
Rilcain (I • image size and number of distinct pixel

SmiI I , ,) -, colors) for our test images.
FISLk 74 2 5 CSe.- A2

Fl&M 14 53 0s.,=O * Most significantly, we find that by
distributing two key modules of the

Figure 17. Load Efficiency Data algorithm (count pixel frequencies and
encode image), speedup increases of up

Compressions percentages are to 3.42x can be achieved while
summarized in Figure 23. Figure 24 maintaining processor load efficiencies
graphs the relationship between the as great as 75 percent. We also note that
number of distinct pixel colors and the communication costs place a practical
degree of compression. limit on the extent to which distributed

image compression is beneficial. This
Um bS .S-(by-,) limit is found to vary significantly

A- -rc--o depending on the complexity of the
K- ai3 , 7, , particular image. For our relatively
Sakhr.a, ,I 311U, .3, ,, small set of test images, the optimal
sftsw. W W05 " * number of servers varied from 3 to 7.

m 2" 1.0"' NO" 7 Clearly, distributed image compression
II m".t,. " , -" "' algorithms can offer superior

ab~ U SAN "M• , performance over centralized
nm 2, MIN am so implementations, particularly for large
R I -. I -XW I m .3... and complex images.

Figure 18 Image Compression Results
23

References

Birman, Kenneth P., The Process Group
Approach to Reliable Distributed
Computing, Technical Report TR-91-
1216, Cornell University Computer
Science Department, pp. 1-35, July
1991.

Birman, Kenneth P., Robert Cooper, and
Barry Gleeson, Programming with
Process Groups: Group and Multicast
Semantics, Technical Report i7R-91-
1185, Cornell University Computer
Science Department, pp. 1-23, January
1991.

Coulouris, George F., and Jean
Dollimore, Distributed Systems:
Concepts and Design, Addison-Wesley
Publishing Company, p. 101, 1988.

Enslow, Philip H., Jr., What is a
"Distributed" Data Processing System?,
Computer, pp. 13-21, January 1978.

LeLann, G., Motivation, Objectives, and
Characterization of Distributed Systems,
in Lampson, 1981.

Michaud, M. C., and J. B. Goethert, An
Evaluation of Processing Efficiency on
Multiprocessor Architectures: Volume
"2, RADC-TR-90-436, pg. 4, December
1990.

Sloman, Morris, and Jeff Kramer,
Distributed Systems and Computer
Networks, Prentice-Hall International,
pp. 1-7, 1987.

The Isis Distributed Toolkit (version 3.0)
- Users Guide and Reference Manual,
Isis Distributed Systems, 1992.

24

Information Exchange using Cooperative
Communicating Networks

Francis A. DiLego, Jr. Jerry L. Dussault Anthony M. Newton
Computer Systems Branch (C3AB)

Rome Laboratory
Griffiss AFB, NY 13441-5700

1. Overview other government agencies. Cronus is an
The application design discussed within environment for the development and
this paper is a subset of broader work operation of distributed applications. It
produced by the Australian Experiment, provides the applications programmer
an unclassified activity initiated under with a set of tools that teaches a coherent
the auspices of the 1988 Memorandum and integrated systems approach to the
of Understanding (MOU 88/102) development of computer applications
"Cooperative Communicating which will be spread among several
Networks". The United States partially computing resources. Cronus runs on a
funds this activity under the Nunn variety of heterogeneous hardware bases
Amendment. Rome Laboratory (RL), in and operating systems. On eacir
the United States, and the Electronics computer system, Cronus operates as a
Research Laboratory (ERL), in set of user-level processes within the
Australia, are the two participating native operating system. By executing at
agencies. this level, application developers can

utilize both the support facilities of their
The Australian Experiment seeks to: (1) local computing environment and the
establish new networking technology system integration capabilities of
based on policy-based routing [2], (2) Cronus.
implement a distributed application
across multiple networks in the US and By using an object-oriented approach,
Australia, and, (3) experiment with the application components or modules
issues involved in sharing information within the Cronus environment are
and resources in a command, control, highly transportable. Application
and communications environment, components are called managers. Each

manager is a separate self-contained
2. The Environment process, which is responsible for

One of the problems with current, joint maintaining and manipulating the data
allied operations is the (clumsy) way in (a.k.a. object) entrusted to the manager.
which data is exchanged. Differing data Each object has an address (a.k.a. a
formats and classifications make direct unique identifier) through which it can
information transfer difficult at best. be contacted. Managers accept requests
The environment that we are creating by other managers or clients to
would allow for the transparent transfer manipulate objects. The requests trigger
of data among multiple applications operations, a pre-defined sequence of
within a distributed environment, instructions which perform the object

manipulation. Managers can be
2.1 Cronus Distributed Environment relocated or replicated at different

BBN Systems and Technologies computers by recompiling the source
Corporation develops Cronus [1] under code. Once compiled and executed, a
sponsorship of Rome Laboratory and manager can be seen and reached by

25

every other networked computer system network bandwidth. The distributed
that is running the Cronus software computing environment could perform
environment. Managers are also the resource (data) management more
only means of providing access to the efficiently if it has information about the
object. Nothing, other than the manager current sustainable bandwidth between
responsible for an object, can access the sites. This would allow the resource
object directly. Any client or manager manager to migrate data around to
that wishes to access an object must use satisfy the timeliness requirements that
the operation interface defined and applications need. Similarly, network
supported by the object's manager. (link) management could be more

efficient if it has information about the
2.2 Policy - Based Gateways current, and possible future, bandwidth

The policy-based gateway [3] functions demands between sites. This would
as an Internet Protocol (IP) Router for an allow the network manager to
International Military Internetwork reconfigure links between sites to cover
(IMI). Expressed differently, the IMI is the current demand and future growth.
formed by interconnecting national
networks using policy-based gateways. The resultant merger between network
These gateways are physically formed management and distributed computing
by two processors (one connected to tools creates a rich environment. In
each national network), with a data link addition to the standard topology,
between them. Like any typical Internet bandwidth, and congestion control
gateway, their primary function is to issues, the network is controlled by
route IP packets between networks using policy routing gateways. This allows the
a strategy that minimizes the number of network manager to set broad policies"network hops" from source to (control information) which control
destination. The policy-based gateways routing based on parameters such as
are unique in that they implement source-destination pairing, packet
routing algorithms that incorporate a content, networks traversed, and security
dynamic "routing policy" into their levels (these policies will be discussed
routing decisions. Thus, factors such as with further detail in later portions of the
security, priority, classification, paper). The distributed computing
sensitivity, etc., may be combined to environment, having some knowledge of
form a set of constraints (i.e., a policy) the policies in effect, can take action
defining the conditions for transmittal designed to affect performance,
and delivery of information, reliability, and the survivability of the

entire computing environment at both
2.3 DCE-Net Management Interaction system and application layers. Currently,
Existing computer systems use the the distributed computing environment is
traditional layered approach to scheduled to inject content-based
distinguish between application, information, such as data types and
operating system, and network software. security levels, into the packet before it
This layered approach has been limited is transmitted through the network
in scope to the transmission of data from environment. Network policies are
one layer to the next with little, if any, enforced through software mechanisms
control and status information contained within the policy routing
exchanged. With the development of gateways. These mechanisms operate on
intelligent network management and a per-route basis to determine the
distributed computing environments, suitable routing path (hops) through the
information collected by both network networks and domain structures. Some
management and the computing sample mechanisms are contained in the
environment could be shared for mutual following paragraph.
benefit. As an example, consider the
effect of mutual knowledge regarding

26

2.4 Policy Mechanisms: 9. Traffic Type. Similar to the
The following list of candidate policy precedence policy mechanism above, the
mechanisms was developed and refined gateways will make routing/network
during FY92 through a series of access decisions based upon a traffic
discussions among Rome Laboratory type designation within the message
and SRI personnel 1 , header.

1. Source-Destination. Gateways will 10. Security. Similar to the two policies
allow/disallow traffic through a network above, routing and network access will
(administrative domain) based on the be based upon the security classification
source-destination address pair. of the message (indicated in the message

header).
2. Entry/Exit Domains. Gateways will
deny traffic based upon the next (entry) 11. Congestion. Routing and access
administrative domain, or the previous decisions would be based upon the
(exit) administrative domain in the current loading within the administrative
source-destination route, domains. Implementation of these

mechanisms assumes that a method is
3. Domain Traversed. Gateways will developed to detect a congested
deny all traffic that has already traversed condition, and to inform the gateways of
a specific administrative domain, the network status.

4. Domain to be Traversed. Gateways 12. Resource Usage Limits. Routing
will deny service that is destined to and access decisions will be based upon*
traverse a specific administrative a user quota system (e.g., a limited
domain, number of packets per month). Once a

user has reached their allocated quota, no
5. Source-Destination User additional service would be granted.
Identification. This is an extension to
the source-destination policy The purpose for developing this set of
mechanisms discussed above; however, mechanisms was to give network
service will be granted or denied based managers a variety of options and
upon a specific source-destination considerable flexibility in controlling the
process user identification, access to, and utilization of their

networks. While each mechanism could
6. External Conditions. Routing be used individually to implement a
policies may be based upon some network control policy, we anticipate
external input such as a threat condition that the power of these mechanisms will
(THREATCON) level. come from the myriad of combinations

that can be composed to implement very
7. Utilization Schedule. Routing sophisticated and dynamic network
policies may be based on use of a management and control policies.
domain only during specific (e.g., off-
peak) hours. Of the policy mechanisms proposed

above, a limited set was selected for
8. Precedence (priority). Routing implementation in the first release of the
policies may be based on some Cooperative Gateway software. This
precedence level set within the message was primarily due to budget constraints.
header. Based on their relative usefulness and

cost to implement, only four
mechanisms will be realized in the initial
version of the Cooperative Gateway:

1 SRI is under contract to Rome Laboratory for source-destination, external conditions,
the development of the Cooperative Gateway. traffic type, and congestion. These

27

mechanisms are scheduled to be experiments in resource management,
delivered during the first quarter of fault-tolerance and synchronization.
FY93.

Aithough this Demonstration
2.5 Information Domains Application is not intended to be a

Within the networking environment, detailed model of any specific C2
traffic flows around and within system, the components described are
community boundaries. Domains representative of the major functional
operate by placing structure around these components found in many operational
natural boundaries so that interdomain systems. Likewise and most importantly,
and intradomain traffic can be efficiently so too is the information exchange that
managed and controlled. The same must take place between the components
concept of domains can similarly be in order for the system to function
used within the command and control correctly.
environment. As part of this effort, the
command and control application used 3.1 Application Scenario
will experiment with the concept of The scenario depicts a hostile incursion
information domains, and the effects or into the island chain off Australia's
benefits of information domains when northern coast. This would result in a
used to support international force need for increased surveillance of the
(troop) deployments. region. The increased surveillance

would be provided by numerous
While this work is not scheduled to surveillance platforms including
occur until the 1993 fiscal year, its Australia's OTH radar, a US AWACS
impact can be demonstrated by an and a US Intelligence source (e.g.,
example. Using the experiment's satellite). The transparent sharing of
scenario of a cooperative effort between surveillance information between US
the Australian and United States and Australian forces will be
governments, tracking information is demonstrated using the distributed
being kept by both forces in a distributed system and Cooperative
environment where national computing Communications Network. As the
resources are integrated to support the system's performance degrades due to
mission. Clearly, there exist two network overloading or component
domains of information, each aligned failures, the system will be reconfigured
along national boundaries. It is the to maintain adequate performance and
intent of the experiment to utilize the insure continued access to surveillance
resources of the distributed environment, data. The need for more dynamic
communication, and data, to show that interaction between system operators
information flow between the domains and network managers will be
can be controlled and managed in real- investigated.
time to near real-time.

The scenario will demonstrate: (1)
3. Demonstration Application distributed processing, (2) information

The application chosen for this set of access control, (3) transparent access to
experiments will simulate a distributed distributed data, and (4) information
regional surveillance system. To exchange using policy-based networks
represent this environment, each country (i.e., routing enforced by policy-based
will have a distributed set of software gateways) which are subject to dynamic
modules that will simulate a particular change. Both the American (US) and
surveillance platform (e.g., an Over-The- Australian force roles can be reversed.
Horizon radar or AWACS). The
configuration flexibility afforded by 3.2 Networking Topology
Cronus will be used to perform Each site will have an internal set of

networks interconnected by policy-based
28

gateways to simulate an independent (2) Synchronization Manager (SM)
national internet environment The two (3) Sensor Platform Manager (SPM)
internal national environments will be (4) Filter/Correlator Manager (FCM)
connected with a set of policy-based (5) Mission Data Manager(MDM)
gateways to allow communication (6) User Interface Client (UIC)
between the sites. The Cronus
distributed computing environment will It is important to note that neither the
be installed on machines in both TSM nor SM are strictly part of the C2
internets and will be used to create an Application, but are required to drive the

Simulation Cor ne

FCM M&

Figure 1

application across both sites. Traffic demonstration. These two components
injectors will be used to simulate varying provide the SPMs with the dynamic
system and network loads during the scenario activity (e.g., location of
experiments. friendly and enemy units) scripted for

each experiment (see Figure 1).
3.3 Application Components

The application software designed for
this experiment consists of six major The SPMs obtain the scenario time and
components: respective situation data from the TSM

and SM and report on the target tracks
(1) Target Simulator Manager (TSM) they should be able to detect based upon

29

their type. The software structure for a several components of which three are
sensor platform will be configured at the being used here. They consist of DMA
start of the experiment to best represent a data (processed into CMPS Common
given surveillance platform (e.g., OTH Mapping Standard format), the Common
Radar, AWACS). Multiple, independent Mapping Toolkit (CMTK), which is a
sensory modules will report to a set of library of functions to manipulate CMS
cooperating FCMs. data, and a demonstration user interface.

CMP's main goal is to develop a
The FCMs will formulate and identify a standard format and tools for the many
target as being real or noise and calculate different forms of cartographic and
its bearing. Then the FCM will form a imaging data. The incorporation of
consensus with all other reachable FCMs CMP into this experiment is based on the
to reconcile the most up-to-date sensor possible designation of CMP as an Air
hits for any overlapping regions of Force or DOD standard.
coverage. When the most recent target
information is established, the The UI demonstration software and
information is stored in all of the FCM's embedded CMTK calls are implemented
local databases. The information is also through MITs Xl I/R4 and Motif 1.3.
passed on to a Data Management Service During FY92, the UI was constructed
(DMS) wherein the track history of the using a Sparc RISC-based Solbourne
targets acquired by the various sensor series 5 multi-processor. The existing
platforms is maintained in a database UI had to be tailored to the needs of the
repository. experiment. This was done by removing

unnecessary functionality, tailoring
Each database repository will be display of information and adding
constructed with facilities for needed functionality. The added
exchanging information between them. functionality that was most important
These database repositories will be was making the new UI a Cronus client
accessed and manipulated by a Mission and animating the target information.
Data Manager (MDM). For The Cronus object oriented
survivability, the database repositories programming paradigm made the task of
should also be replicated. The MDM's modifying existing, single-system, stand-
will exchange information to ensure alone code easier. The addition of

-replicated up-to-date target information animated targeting information was also
is being stored. Separately, the policy- made easier because of the ease of using
based gateways will arbitrate to see if the the CMTK.
information can actually pass between
sites given the current network topology 4. Future Work
and policy agreement. If the information The most current goal is to complete the
cannot pass through the gateways, the C2 application's components (SPM, SM,
MDM will de-replicate those objects etc.). The next obvious step will be the
within the databases that cannot be integration and testing of these
exchanged. components with the cooperative

gateways and policy-based information
The user interface (UI) in this exchange concepts, allowing us to
application acquires its information from analyze the interaction between the DCE
the DMS. For this application we are and Automated Network Management
using a version of the Common Mapping (ANM) tool [5]. Then, through a series
Program (CMP) [4] demonstration of experiments and demonstrations using
interface, which has been altered to act a representative distributed C2
as a client to the Cronus distributed Application (discussed above), we will
computing environment. The CMP is a begin to assess the performance, utility
development effort being sponsored by
Rome Laboratory. This effort has

30

and pmaticalit of lcy-based routing

and s-pec.fi poliymcai

&. Refereanc

[I] Beres James C., Mucci, Ronald A.,
and Schantz, Richard E., "Cronus: A
Testbed For Developing Distributed
Systems", IEEE Military
Communications Conference, IEEE
Communications Society, October 20 -
23,1985.

[2] Bowns, H., Steenstrup, M.; "Inter-
Domain Policy Routing Configuration
and Usage."; Internet Draft; Internet
Engineering Task Force; July 1991.

[3] Lee, D.S., Merchant, S., Lee, D.Y.,
Denny, B.; "Cooperative Gateway I:
Software Design Document"; ITAD-
2568-TR-92-108R; SRI International;
Menlo Park, CA; October 1992.

[4] "Common Mapping Program: Users
Manual"; Version 1.4.1; Sterling IMD,
Inc; Rome, NY; Sept 1992

[5] Network Services Dept; "ANM:
Advanced Network Management: Users
Guide";BBN Doc #7920; BBN Systems
Technology Center, Cambridge, MA;
1993

31

71 vavb Ditaributed Computig m Env n ent
Paiek M. Hul Sct M. H•w
Computer Systems Branch (C3AB)

Rome Laboatoy
Griffiss AFB, New York 13441-5700

10 IntroductIo, underlying mechanisms to support the
Distributed computer systems support development of highly reliable
several key attributes that are essential distributed C2 applications. In order to
for the development of command and accomplish this goal, a list was
control (C2) applications. The generated describing the requirements
Distributed Systems Environment that should characterize the SDCE.
(DISE) is currently able to demonstrate However, due to time and personnel
and integrate many of these attributes, constraints, the SDCE in-house group
These include heterogeneity, replication, will not be able implement all of these
fault detection/recovery, and limited requirements. At a minimum, however,
adaptive resource management. the SDCE must provide the underlying

mechanisms that are capable of
In order for the development of C2 supporting all the specified
applications to become more survivable, requirements. Included in the list of
more dispersed, and better able to requirements are distribution, fault
quickly adapt to new threats, we are tolerance, real-time, adaptive resource
seeking to provide and demonstrate a management, support for multi-
Survivable, Distributed Computing domained applications, multi-clustered
Environment (SDCE). One of the networks (interconnection of LANs and
primary attributes for the SDCE is fault WANs), and heterogeneity (to include
tolerance. Fault tolerance may be languages, operating systems and
defined as the ability of a system or machine architectures).
component to perform its function,
despite the presence of hardware or The SDCE should support distribution
"software faults. Fault tolerant because it provides many desirable
mechanisms which detect and/or recover attributes. These attributes include high
from hardware and software faults are availability of resources (to include
essential for survivable systems. data), improved reliability and increased

performance (concurrent processing).
In essence, the SDCE will be a base on
which survivable distributed applications The SDCE should also support
can be built. This base will be flexible underlying fault tolerant mechanisms in
enough to incorporate advances in hware software and communication.technology. It will also be tailorable to Numrousrye s soft fut nhrware, adcmuiainthe needs of specific C2 aplctons Numerous types of faults in hardware,

2applications, software, and communication could be
and well-structured for ease of considered. However, due to the
maintenance. Hence, this base will be consity of d ue touthscapale o evlvin wih th neds o C~complexity of dealing with some faults,
capable of evolving wi the needs of C2 the requirements for the SDCE will besystems and their supporting limited to the following candidate list.technesa.

2.0 SDCE Requirements Two classes of hardware faults should be
The Survivable Distributed Computing supported by the SDCE - (1) the

Environment must provide the complete loss of a host/service; and, (2)
degradation in the performance of a

32

host/service due to overload conditions. recent trends in operating systems design
In terms of software faults, the SDCE have led to the use of micro-kernel
should address - (1) algorithmic faults architectures. This approach separates
(perhaps through support of n-version the components of the operating system
programming); (2) software component that control hardware resources from
faults (service loss); and, (3) timing those that determine the flavor of the
faults. Finally, two classes of operating system environment, e.g., a
communication faults should be given file system interface. This allows
considered - (1) loss of connectivity the most complex software layers to be
(local area network or wide area built on top of a relatively simple kernel
network); and, (2) overloaded or (Figure 1).
congested communications.

The SDCE should also provide some Apki=w•
support for real-time applications. It will
enable distributed applications to
incorporate scheduling and resource 9
decisions based on the current conditions
of both system and environment within
some specified time constraint.

A base for adaptive resource
management should be supported to
improve throughput and provide some
level of fault avoidance. This base
should support both static and dynamic Figure 1. Micro-kernel Architecture.
migration of processes and files.

Due to this modular layered approach to
Support for multi-domained applications operating system design, a micro-kernel
is also desirable. This would permit architecture is able to offer a number of
controlled access to resources (e.g., advantages over traditional network and
computers and data) in a flexible and distributed operating systems. Some of
efficient manner. these advantages include : tailorability -

the operating system environments can
Support for these requirements through be customized for specific applications;
services such as processes, IPC, resource portability - the operating system
management, file servers, etc., has environment code is independent of a
typically been provided by network and machine's instruction set, architecture,
distributed operating systems. More and configuration; extensibility -
recently, however, micro-kernel additional operating system
technology provides a new, more environments and versions can be
modular, and adaptable approach incorporated alongside existing systems;
towards meeting these requirements. real-time - support for real-time

applications is possible since the kernel
3.0 Micro-kernels is no longer required to hold long

Traditionally, network and distributed interrupt locks for UNIX system
operating systems have been services; multi-processor support - since
implemented by spreading knowledge the kernel is not required to support
about the system throughout large complex system functions (which may
monolithic kernels. This monolithic limit parallelism), greater parallelism is
design complicates the task of possible for its functions; furthermore,
developing and integrating advances in the micro-kernel's features can be better
technology with respect to both tailored to parallel applications; multi-
hardware and software. Fortunately,

33

cmmpu..r support - since the kernel only refer to in this paper) and it is designed
provides a relatively small number of to integrate the best features of all the
basic .abstractions, it can optimize the previous versions of Chorus. Chorus
mapping of each abstraction onto the was designed with the intention of
distributed hardware; and security - a supporting industrial quality operating
smaller kernel is more easily defined and system environments.
implemented in a secure manner; this
modular, layered architecture is simply The main abstractions implemented by
better suited to trusted systems than that Chorus include actors, threads, and
of traditional monolithic kernels [Black). ports. An actor is a collection of

resources in a Chorus system. An actor
While the current level of maturity for defines a protected address space

micro-kernel technology does vary, supporting the execution of threads that
some systems (e.g., Mach and Chorus) share the resources of the actor. A
are already achieving commercially thread is the unit of execution in the
competitive levels of functionality and Chorus system. A thread is a sequential
performance, flow of control and it is always tied to

exactly one actor which defines the
4.0 Mach and Chorus thread's execution environment. Within

Two candidate micro-kernel an actor, multiple threads can be created
architectures were evaluated in this study and can run concurrently. A port
- Mach [Black] and Chorus [Armand]. represents both an address to which

messages can be sent and an ordered
Some of the key features which each of collection of unconsumed messages.
these architectures have in common When created, a port is attached to a
include: (1) a small kernel; (2) a modular specified actor. Only threads of this
architecture which provides scalability actor may receive messages on that port.
and allows dynamic configuration of the
system and its applications; (3) 4.2 Mach
transparent network access for The Mach 3.0 micro-kernel architecture
interprocess communication; (4) a was developed at Carnegie Mellon
communication-based architecture which University. The history which led up to
implements generic services used by a its development includes RIG (1976-

-set of subsystem servers to extend 1981), which led to Accent (1981-1986),
standard operating system interfaces; (5) which in turn was followed by the Mach
support for concurrency in both the 2.5 operating system (1986 - 1989). The
operating system services and Mach 3.0 micro-kernel (1989 - present)
application programs; (6) support for evolved from the Mach 2.5 operating
large address spaces with flexible system.
memory sharing; (7) integration of
message passing communication with The basic abstractions of Mach are the
virtual memory; (8) real-time support task, thread, and port. A task may be
which is accessible by system viewed as a container to hold references
programmers; and, (9) UNIX support, to resources in the form of a port name

space, a virtual address space, and a set
4.1 Chorus of threads. A thread is an execution

Chorus was a distributed systems point of control. It is the basic
research project that was conducted in computational entity. It belongs to one
France from 1979 - 1986. Three and only one task that defines its virtual
versions were developed. They are address space. A port is a unidirectional
known as Chorus-VO (1980-1982), communication channel between a client
Chorus-V1 (1982-1984), and Chorus-V2 who requests a service and a server who
(1984-1986). Chorus-V3 (1987-present) provides the service.
is the current version (and the one we

34

4.3 Chorus IPC VS Mach IPC the same site as a given UI. Note,
Mach and Chorus abstractions are very however, that receive semantics are
similar with respect to resource limited to one-to-one. That is, a port can
management (Chorus' actor and Mach's only receive messages from a single
task), control (threads), and virtual sender (Figure 2a).
memory. The addressing and
communication abstractions of Mach
and Chorus am, however, quite distinct.

In both Chorus and Mach, messages are
addressed to intermediate entities called Actor Group
ports, not directly to threads or
actors/tasks. It is the port abstraction
that provides the necessary decoupling (a) Chorus
of the interface of a service and its
implementation. This provides a basis
for dynamic reconfiguration.
Consequently, a port can migrate from PortSet •Tas
one actor/task to another.

Addressing in Chorus is accomplished in
a global manner via unique identifiers (b) Mach
(UI). All Chorus objects (e.g., actors,
ports) are referenced in this manner.
The Chorus micro-kernel implements a Figure 2. Send/Receive Semantics.
UI location service which allows the
referencing of Chorus objects without In contrast, Mach provides reliable point
knowledge of their current location. In to point communication. With respect to
contrast, Mach does not support the send semantics, the notion of a multicast
notion of global addressing, i.e., all is not present. The receive semantics, on
port's rights resolve to local ports. A the other hand, permit a task to receive
network server extends Mach IPC across messages from (potentially) multiple
the network via the use of local proxy senders, known as a port set (Figure 2b).
ports to represent remote ports. This
collection of network servers (one on 5.0 Micro-kernel Selection
each node) then maintains the current The SDCE technology base (with its
location of network-wide ports. supporting technologies) must be

capable of meeting all the SDCE
The Chorus inter-process requirements. This base must also be
communicationdtocommunimehnism capable of evolving with the needs and
permits threads to communicate via advancing technologies of C2 systems.unreliable asynchronous point to port Furthermore, since the micro-kernel

group (a port group is an abstraction technology is the foundation for the

which extends message passing SDCE, it must be a relatively mature and

semantics between threads by allowing stable s stem.

messages to be directed to a group of y

threads), or by synchronous reliable Overall, the mechanisms provided by
remote procedure call (RPC). When Chorus and Mach are comparable. The
messages are sent to port groups, it is main difference lies in the IPC
possible to: (1) broadcast to all ports in mechanism, as mentioned previously.
the group; (2) send to any one port in Each of these IPC mechanisms have
the group; (3) send to one port in the their strengths and weaknesses. Clearly,
group located at a given site; and, (4) an ideal solution would be to combine
send to one port in the group located on

35

the strengths of each of these
abstractions. This very concept is GE C3IIOur Application
nearing completion at Cornell University
[Glade]. Work has also been done to " E .. h.a.u%. .n
improve the speed of Mach's IPC
mechanisms [Draves] [Barrera 1111. In
addition, Real-Time Mach and is
Distributed Trusted Mach are maturing
along with the development of the Mach MACH 0 e ratin S tem
micro-kernel. Furthermore, it is clear
that Mach is becoming an industry
standard (e.g., Open Software Figure 3. SDCE Architecture 1.
Foundation). Due to these
considerations, the Mach micro-kernel Unlike the architecture in Figure 3, the
has been selected for the SDCE second architecture design option
foundation. (Figure 4) utilizes the Mach micro-

kernel. This architecture, however,
Of course, the Mach micro-kernel by requires an intermediate UNIX server in
itself does not meet all of the order to integrate the functionality
requirements of the SDCE. Therefore, provided by Isis and Cronus. Although
we now present several different this architecture is micro-kernel based, it
architecture design options that include is not completely faithful to the micro-
supporting technologies (built on Mach kernel design philosophy as illustrated in
or the Mach micro-kernel) which can Figure 1. That is to say, Isis and Cronus
meet the requirements of the SDCE. Isis interact with the Mach micro-kernel
and Cronus are two such supporting through the UNIX server rather than
technologies. They provide support for directly with the Mach micro-kernel
distribution, fault-tolerant mechanisms itself. This level of indirection is due to
(replication, etc.), limited adaptive the fact that Cronus and Isis were
resource management, multi-clustered originally developed in a UNIX
networks, reliable communication, environment.
virtual synchrony, and concurrency.

. 6.0 SDCE Architecture Options GE C3M/Our Application
The first architecture to be considered is
built on the Mach 2.5 operating system
(Figure 3). This architecture is viewed %n%
as the easiest and lowest risk option
because it is based on proven ISCrn
technology. However, it is not a micro-
kernel based design and, therefore, it SUNIX Server
would be more difficult to adapt this
system to the long term, ever-changing MCH Micro-kernel
needs of C2 systems.

Figure 4. SDCE Architecture 2.

The third option, (Figure 5), truly
implements the micro-kernel design
philosophy. Horus (son of Isis) consists
of an Isis Toolkit [Birman] and IPC
enhancements [Glade] to the Mach
micro-kernel. Consequently, the need

36

for an intermediate UNIX server is no
longer required as an interface to the GE C3I/Our Application
Mach micro-kernel. However, the
UNIX server is still utilized by Horus as gii" ieieinis
a development environment by
providing services such as file systems, cro-kerne
editors, compilers, debuggers, and so
forth. This work is nearing completionat Cornell University. S jali Har are

In addition, work is also being planned
to build Cronus directly on top of the Figure 6. SDCE Architecture 4.
Mach micro-kernel. When available,
this capability could easily be The SDCE enhancements in Figures 3 -
incorporated into this architecture. In 6 may include a reliable transaction
the interim, however, Cronus could rest service (e.g., Camelot), a replicated file
on top of the UNIX server as shown in server, and an X.500 server [Weider].
Figure 5. The GE C31 application that is noted in

Figures 3 - 6 refers to an Adaptive Fault
Resistance System (AFRS) effort by

GE C3I/Our Application General Electric that is currently under
development to provide higher degrees
of availability, survivability, and

0 0.1Y 11 " graceful degradation than is currently.
available in non-adaptive systems.

As previously mentioned, the
MAC Mcarchitecture represented in Figure 5 is

more true to the micro-kernel design,
and provides the most versatile base on

Figure S. SDCE Architecture 3. which to build survivable distributed
applications. It is, therefore, the

Figure 6 presents a hardware solution to architecture of choice for supporting the
the fault-tolerant requirements of the SDCE requirements. However, it should
Survivable Distributed Computing be noted that the risk factor at this time
Environment. The Fault Tolerant Multi- may be relatively high for this
processor (FTM) micro-kernel extends architecture option due to the immaturity
Mach by adding mechanisms which of Horus. In the event that Horus is too
allow implementation of fault-tolerance. immature to be used within the allotted
Normal Mach entities can be corrupted time frame, the architecture represented
by a processor failure. The FTM in Figure 4 will be utilized instead. This
architecture can tolerate any single does not preclude the incorporation of
hardware fault. Horus at some future time.

8.0 Acknowledgments
The authors of this paper would like to
acknowledge Dr. Gary L. Craig
(Syracuse University) for his useful
discussions in micro-kernel technology.
We would also like to thank him for his
comments in reviewing this paper.

37

Armand, F., et. a&., Towards a
Distibuted UNIX System - The Chorus
Approach, Proceedings of the European
UNIX Systems User Group Confterence,
September 1986.

Barters, Joseph S. III, A Fast Mach
Network IPC Implementation, Usenix
Associadon,

Birman, Kenneth P., The Process Group
Approach to Reliable Distributed
Computing, Department of Computer
Science, Cornell University, July 1991.

Black, David L., et. al., Micro-kernel
Operating System Architecture and
Mach, Usenix Association, pp. 11-13.

Cooper, Robert C. B., Glade, Bradford,
B., Birman, Kenneth P., and Robbert
van Renesse, Light-Weight Process
Groups, Department of Computer
Science, Cornell University, 1992.

Draves, Richard, A Revised IPC
Interface, Usenix Association.

Glade, Bradford B., Birman, Kenneth P.,
and Robbert van Renesse, Group
Communication in Mach: Kernel
Interface Supplement, Department of
-Computer Science, Cornell University,
November 3, 1992.

Weider, Teynolds, and Heker, Technical
Overview of Directory Services Using
the X.500 Protocol, NIC RFC 1309, 16
pages, March 1992.

38

Weak Consistency and Recovery in a Command and Control
Environment

Anthony M. Newton
Computer Systems Branch (RlJC3AB)

Rome Laboratory
Griffiss AFB, NY 13441-5700

ABSTRACT
In a distributed system, access to resources is considered to be one of the most important
attributes. Availability is most often obtained by replicating resources throughout the
distributed system. Once replicated, resources must be maintained consistently.
Consistency is a measure which attempts to describe the variance in data when accessed
from two (different) replicated sites. Strong consistency is characterized by zero variance
access between copies. Weak consistency is characterized by the possibility of retrieving
a copy which (typically) has not been updated. Inconsistency manifests any time that
copies do not contain the same data. Recovery attempts to bring inconsistent conies back
to a consistent state. Most command and control (C2) applications need the properties of
a distributed system because, in a wartime environment, application survival in the
presence of nodal failures and network partitions is most desirable. The problem with
strong consistency in this environment is that the exercise required to enforce strong
consistency may either: (1) consume more processor cycle resources than are appropriate
for the data or (2) result in delays obtaining the data sufficient to invalidate its use. This
paper svmmarizes a proposed method for building weak consistency policies from
recovery mechanisms in an object-oriented system suitable for the C2 environment. The
full paper was presented at the NATO Workshop of Research symposium on Object
Oriczated Distribled Systems held 12-15 May 1992. The full paper may be obtained
from the author.

INTRODUCTION inconsistent. The change must be
In a distributed system, available access propagated to the other copies before
to stored resources (e.g. data) is access is granted to all copies if a
considered to be one of the most uniform view of the data is desired. The
important attributes. Availability is most level of consistency is defined by the
often obtained by replicating data type of access granted to the data copies
throughout the distributed system. when state changes are en route.
However, replicating (copying) the data
is not sufficient. As data is replicated, Strong consistency is characterized by
maintaining consistency becomes a zero variance access between copies. In
dominant concern. general, systems which employ strong

consistency mechanisms will guarantee
Consistency is a measure which attempts that access to copies is denied until all
to describe the variance in data content copies of the data have been updated of
when accessed from two (different) any change. This may result in data
replicated sites. In a single copy case, the access times that either (1) consume
data accessed is presumed to have no more processor cycle resources than are
variance from the stored data. When appropriate for the data or (2) result in
multiple copies exist, a change to one delays sufficient to invalidate its use.
copy makes the other copies

39

To help relieve this problem, some of the are separated by a network partition.
requirements necessary for strong The base of the system will be
consistency were relaxed (weak comprised of an object-oriented
consistency). Typically, weak distributed system. Object management
consistency is characterized by the mechanisms will be added or altered to
possibility of retrieving a copy which support partitioned operation, recovery
has not been updated, but refusing a mechanisms, and an application interface
write or update request to a copy until to be used in the exchange of
any current changes have been information that should occur during a
distributed to all copies. This gives recovery operation.
greater read availability, yet still restricts The system being proposed rests on the
the write availability, following set of assertions.

Most C2 applications need the properties Partitioned Data Exists without
of a distributed system because, in a Networks
wartime environment, application Organizations partition data and
survival in the presence of nodal failures resources to allow for decentralized
and network partitions is most desirable. control and operation. Thus, most
Enforcing a policy of strong consistency activity occurs within a local area, with
within a distributed command and read/status/update request coming from
control application can have disastrous outside that local span of control. When
effects, because of the time necessary to network partitions occur, the data
guarantee data consistency in either read involved will tend to reflect the
or write modes, or because of deadlocks conditions present on the respective
which may occur and immobilize sides of the partition as local
processing. Traditional weak consistency applications continue to process
mechanisms may improve the read/write information.
performance time and may allow for
operation on one side of a network Old Data and Incorrect Data are
partition, but, C2 applications are likely Distinct
to need operational capability on both Contrary to views that apply to non-
sides of a partitioned environment. In partitioned, quick-access environments,
order to allow such operation, it will be there is a distinction between old data
"necessary to reexamine issues of and incorrect data. Incorrect data will be
serialization and inconsistency. defined as data that has been corrupted

in some manner. In general, this
corruption is detectable and techniques

APPROACH exist for its correction. Old data will be
If multiple copies are presumed, defined as correct data that lies within a
inconsistency manifests any time that the time line, since all current data becomes
copies do not contain the same data. old data over time. The time difference
Thus, a change to one copy results in an does not make the data incorrect but
inconsistent state which is made merely out-of-date.
consistent by propagating the changes to
all other copies. So, recovery can be Applications Tolerate Old Data
defined as the attempt to bring All distributed applications tolerate old
inconsistent copies back to a consistent data to some degree, since networked
state, systems cannot deliver instantaneous

access to data. Moreover, any current
The intent of this paper is to describe a data is likely to change after an
system that is being developed to application completes a successful read
facilitate experimenting with recovery operation.
mechanisms that allow both read and
write operations on copies of data that

40

Communication Failure object data from persistent storage,
When communication is lost with a operating on the data, then returning the
copy, two events could have occurred. modified version to persistent storage.
The computer node containing the copy The procedures that will be defined to
could have failed, or, a network partition handle access, update notification, and
could be isolating the computer node. A recovery of replicated objects exist
network partition is defined as a loss of inside the persistent storage interface.
communication between copies that need
to interact, however, a network partition While not stated, it should be implied
is recognized only when two copies have throughout this paper that appropriate
states that disagree for a specific version. synchronization (locking) of common
Therefore, updates are the trigger resources is provided in cases where true
mechanism for determining network concurrent task execution is permitted
partitions and initiating recovery (e.g. multiprocessors). Applications are
procedures. built from object managers.

CONSISTENCY MANAGEMENT
OBJECT MODEL

The object model is an abstraction used Primary/Secondary Object Technique
by both programmers and system The physical method by which objects
designers to facilitate a view of the data are distributed throughout the system
within a computer system [Jones79]. In uses the idea of a primary copy. This
its most basic description, an object is a asserts that one object is designated as
unit of data. As such, the object is the PrimaryCopyObject. All other
entirely passive in nature. Operations instances of the object will be known as
are code segments that interact with the a SecondaryCopyObject. Any
object to either change or report the state processing required for operations on the
of an object. The binding of an operation PrimaryCopyObject must maintain the
to an object is called an invocation, correct view of an object and update the

other secondary copies. This is enforced
The active components of object- through the requirement that all read and
oriented systems can be represented in write operations must be performed on
several ways. In some cases, active the PrimaryCopyObject. Increased
entities called managers and clients availability could be gained by
interact with the objects to form designating a new PrimaryCopyObject if
application tasks [BMS85], [Vinter89], the original was inaccessible and a
[Honey88]. In other object-oriented majority of the remaining copies were
systems, the active entities are called available. Weakened consistency rules
threads, where threads move through allowed read operations to occur on
objects and constitute a single line of either the primary or secondary object
processing [North88], [GIT89], [David85].
[Pitts88], [Dasgu88], [Tevan87].
The system described in this paper uses For the method proposed within this
the object-manager representation to paper, not only is SecondaryCopyObject
discuss system procedures and data. reading and PrimaryCopyObject election
Objects are passive and are contained used, but an extension has also been
within the manager address space. The added which allows a
manager is comprised of tasks, which PrimaryCopyObject to become
only operate within confines of the established on each side of a partition.
manager's address space. These tasks Having multiple PrimaryCopyObject
can either be long-lived, such as sites gives the system the flexibility of
daemons, or be limited in duration to the operation within partitioned
operation that was assigned to the task. environments but places a greater burden
Tasks relate to objects by copying the on the recovery procedures.

41

When a partntion is recognized during a
write operation, a new

Updates PrimaryCopyObject must be designated
An update log is maintained on the on the side(s) of the partition without
PrimaryCopyObject which details any one. The new PrimaryCopyObject and
changes made to the object. The log is any other SecondaryCopyObjects
written each time a write operation is operate independently within the domain
performed on the PrimaryCopyObject, or created by the partition.
a remove operation for the object is
processed. A flag in the log entry When either part or all of the partition is
determines whether the entry is for an resolved, recovery procedures are
update or a removal. The log entry also activated to merge the copies into a
contains the new or updated contents of consistent object resulting in one
the object data, the identifier for the PrimaryCopyObject. A partition is
object, the locations of resolved if communications are
SecondaryCopyObjects which have not reestablished between object copies. A
been updated, and the originator of the SecondaryCopyObject receiving an
operation request. Periodically, update update notification listing a
operations are issued to PrimaryCopyObject other than the
SecondaryCopyObjects, based on the established one, knows that it has moved
current version of the from one side of a partition to another.
PrimaryCopyObject. Update operations The SecondaryCopyObject moves into a
move SecondaryCopyObjects into a recovery state, where it attempts to
recovery state, where procedures are become consistent with environment of
initiated to bring the the new partition. Any
SecondaryCopyObject consistent with PrimaryCopyObject which receives an
the PrimaryCopyObject. Entries in the update notification, knows that another
update log are normally removed once PrimazyCopyObject exists within the
all copies have been updated or partition. An election procedure is
removed. Any write operation that initiated to resolve the conflict and to
successfully completes will notify the assign the object responsible for carrying
originator of the operation, out the recovery process. During the

recovery process, the version vectors
"Copy Control that are part of each object determine
Another aspect of the consistency whether copies have become
management process is the maintenance inconsistent. The update logs from each
of the number of object copies that exist PrimaryCopyObject serve as a tool
in the system. When an object is which can be used during the recovery
created, the creator determines the process.
maximum number of copies that should
be maintained. If the total number of Recovery
objects, including the One of the views being presented in this
PrimaryCopyObject, is smaller than this paper asserts that consistency is a high-
maximum, the consistency process level goal achieved through recovery
attempts t o create procedures. A change to any one of the
SecondaryCopyObjects to satisfy the object copies results in inconsistency. A
requirement. This process could also be proper way to recover from the
linked with resource management inconsistency is to spread the updates to
processes in order to satisfy higher order the other copies, making them
requirements of availability and consistent. Strong consistency is a policy
performance. that enforces a refusal to read any object

copy until the recovery mechanism (in
Failure this case an update procedure) has made

all of the copies consistent.
42

a nominee is available to be conquered

Level Mechanism Description
Object StoreObjectState Write object state to non-volatile storage
Object RejectObjectState Rushes last object state from memory
Object ObjectStateReplace Replace memory object state
Object ObjectStateCheck Test operation against conditional state
Object ObjectStateMerge Combine two object states into one
Object/System AuthorityObject All operations must pass through this object
System SerialByCopy Apply each set of operations based on object
System SpreadByCopy Apply each set of operations evenly on objects
System CopyElection Replace election algorithm
System VectorDominance Test version vectors

Table 1: Recovery Mechanisms

The system being described is and locked. A PrimaryCopyObject is an
attempting to enforce an object level automatic candidate. Locked objects are
separation between the policies that added to the nominee's list of conquests.
govern a system (e.g. consistency, If the election process attempts to lock
availability, atomicity, etc.) and the another candidate, the winner of the
recovery mechanisms. This will allow contest is the nominee (in order of
both system and application procedures importance): with a special application
to tailor the needs of consistency without designator, who already was the
requiring that all objects in the system PrimaryCopyObject, with the most
adhere to any one policy. During the first locked copies, or with the luck of a coin
level of experimentation, the system will toss. Conquered nominees give up their
provide a set of recovery mechanisms acquired objects to the conqueror and are
used to implement some consistency then locked by the conqueror. The
issues (see Table 1). ultimate winner is determined either by

locking all copies or by time-out value.

ELECTIONS The modified robust protocol used in the
Elections are required whenever the system provides for reliable operation in
system needs to designate a the presence of network partitions, but it
PrimaryCopyObject. While a static does have two weak areas. The protocol
algorithm could be chosen to dictate may require several iterations before
PrimaryCopyObject choices, this electing a PrimaryCopyObject, since the
solution would not be very practical or protocol does not prevent the formation
flexible, since all location sites would of multiple PrimaryCopyObjects if
have to be known in advance (either at network partitions appear during an
compile time or at the start of run time). election and disappear afterward. The
The method of selecting a new management process detects multiple
PrimaryCopy, discussed below, is PrimaryCopyObjects and results in
primarily based upon the robust election another election being held to resolve the
protocol of [Kim88]. problem. The protocol can become

deadlocked if network partitions
The election process begins by continue to appear and disappear during
nominating an object to become the either the election or recovery
PrimaryCopyObject. Once an object has procedures. This is due to the reliance on
been nominated, the election process time-out values. This weakness is not
begins to acquire a set of other objects considered debilitating because network
which are conquered by locking them. failures of this type are considered
Any SecondaryCopyObject which is not unlikely.

43

reads which cannot be satisfied will
This presumption can be defended if the downgrade to reading a
environment is constructed using SecondaryCopyObject. The data
integrated sets of computer resources returned from the read is always tagged
locally connected to each other and SubjectToRecovery due to the
remotely connected through some wide- possibility of an update occurring during
area communications transport. In a transit time. The data received from a
combat situation, it is likely that read operation will not be validated by
partitions will occur. It is also likely that the system as OK at some later time.
those partitions are either planned (with
stable, predictable connect times) or Write operations are always performed
unplanned (probably the result of some on the PrimaryCopyObject. An election
set of resources being destroyed). is held in cases where either failure or
Planned partitions can ensure that the network partition is recognized to
connect times are sufficient to properly designate a SecondaryCopyObject as a
reintegrate the nodes. Unplanned, PrimaryCopyObject. Write operations
catastrophic partitions will not be worth are always considered to be
the effort. SubjectToRecovery unless only one

copy of the object exists. Changes to the
OBJECT STATES object are made to a memory copy until

explicitly requested to be written to non-
Read/Write Access volatile memory. Writes are made
All access to objects can reduce to two permanent, rejected, or refused based
simple operation classes: read and write, upon the decision of the recovery
However, because there are multiple procedure. Anything receiving a
copies of an object, and because the SubjectToRecovery status code for a
actions that result from a consistency write operation will, ultimately, be

FieldName ValueType Description
PrimaryCopy Boolean Am I PrimaryCopyObject
AuthoritarianCopy Boolean Am I an Authoritative Source
ProlifCount Integer Ideal # of copies within system

.UpdateLog List of log entries Current update level
RemoveCopies Boolean Remove object from system
PCLocation Address Location of PrimaryCopy
CopysAvailable List of location Locations of communicating objects
CopyLocations List of (location/update) VersionVectors

Table 2: Object Management Block (OMB)

update procedure are different than a informed of the final status of their write
simple write procedure, three operation after recovery procedures are complete.
classes are used: read, write, and update.

Update operations are only performed on
In general, all read operations will SecondaryCopyObjects. Consistency
complete successfully if the object procedures ensure that changes in
exists. The read operation provides an PrimaryCopyObject state are applied to
optional parameter indicating the quality SecondaryCopyObjects through the
preference of the read. If "high quality" update operation. A network partition is
is preferred, the read will be carried out suspected whenever updates cannot be
on the PrimaryCopyObject, otherwise, a delivered to SecondaryCopyObjects. A
SecondaryCopyObject will be used to network partition is verified whenever an
perform the operation. High quality update operation is applied to the

44

PrimaryCopyObjecL The only way to condition, or from either Locked or
resolve the state of the Genghis states after an election. While
PrimaryCopyObject is to hold an in the Recovery state, the object is
election among the copies so that manipulated according to the conditions

Current Transition Event Next State
State

<null> Object Start Recovery
Normal Notification of Inconsistency Recovery
Normal Election Candidate Genghis
Normal Election Participant Locked
Genghis IAmSuperior Winner <same state>
Genghis IAmSuperior Loser Locked
Genghis Internal State Time-out Recovery
Lockid Internal State Time-out Genghis
Locked Election Complete Recovery
Recovery Recovery Complete Normal
Reco Object Exit or Destruction <null>

Table 3: Object Operation State Table

recovery mechanisms can start. encountered when the object entered this
state. The object transitions out of this

Object Management Information state by the completion of the recovery
To assist in maintaining consistency, a procedures. The only valid state
record is associated with each object that transition from the Recovery state are
contains replication management either to the Normal state or to shutdown
information (see Table 2). (terminate or destroy).

All objects run in one of several states: The GENGHIS state is entered when an
Normal, Genghis, Locked, and Recovery object operation has detected the need to
(see Table 3). Each name implies the elect a new PrimaryCopyObject. This
operational condition of the object. applies under the following conditions:
The NORMAL state is used by the (1) the existence of two
object for general operation. The Normal PrimaryCopyObjects resulting from a
state can only be entered from the partition, (2) a SecondaryCopyObject
Recovery state. Movement from the performing a write operation because the
Normal state can occur as either the PrimaryCopyObject is unreachable, or
result of an election process or through (3) a timeout expiration due to an object
an update directive from the consistency left in the Locked state as a result of a
management process. Elections partition during the election. To the
transition the object into the Genghis or object, being in the Genghis state
Locked state. Update requests move the represents a nomination to
object into a Recovery state. The PrimaryCopyObject status. While within
Normal state is the only state where read the Genghis state, the election process
and write access to the object is granted. adds object locations to the list of

available and locked objects. Movement
The RECOVERY state is used to make a out of the Genghis state occurs either
SecondaryCopyObject consistent with when the election process has
the appropriate PrimaryCopyObject. It is determined that another object is the best
entered through any one of three nominee or when the election process
conditions: an initial condition resulting reaches a time-out value declaring the
from object start/creation, from the current Genghis candidate to be the new
Normal state as a result of an update PrimaryCopyObject. If the election

45

pmoess chooses another candidate, the [Vinter89] Vinter, Ste phen T.,
object is moved from dte Genghis state "Integrated Distributed Computing
to the Locked state. If the object in the Using Heterogeneous Systems",
Genghis state is chosen to be the new SIGNAL, June 1989.
PrimaryCopyObject, it is moved to the
Recovery state. (HONEY88] Badarinath, N, et aL, "Fault

Tolerant Distributed Systems: Final
The LOCKED state is used only in the Technical Report", RADC-TR-88-158,
election process. Objects which are Rome Air Development Center, August
placed in the Locked state durinn an 1988.
election process remain there until either
the election is over or a time-out is [GIT89] LeBlanc, R., et al., "Action
reached. If the new PrimaryCopyObject Based Programming for Embedded
is not chosen within a predetermined Systems", RADC-TR-88-295, Rome Air
amount of time, a daemon process will Development Center, February 1989.
start an election process and move any
objects in the Locked state to the [PD88J Pitts, D., Dasgupta, P., "Object
Genghis state, where they become Memory and Storage Management in the
candidates for PrimaryCopyObject. This Clouds Kernel", Proceedings: Eighth
safeguards against network partitions International Conference on Distributed
causing lock-out during the election Computing Systems, June 1988, pp 10-
process. Objects in the Locked state will 17.
be moved into the Recovery state if the
election was successful. [Pitts88] Pits, D., "Recovery in the

Clouds Kernel", Proceedings: Seventh
Symposium on Reliable Distributed

FINAL COMMENTS Systems, October 1988, pp 167-176.
This paper is intended to provide a
differing perspective and to provoke (Dasgu88] Dasgupta, P., et al., "The
debate on the worthiness of providing Clouds Distributed Operating System",
absolute consistency in a military system Proceedings: Eighth International
where nodal failures and partitioning of Conference on Distributed Computing
resources are real events. The design Systems, June 1988, pp 2-9.
presented herein provides a framework
for experimentation in this area. [Tevan87] Tevanian, A., et a1., "Mach

Threads and the UNIX Kernel: The
Battle for Control", Proceedings: 1987

REFERENCES USENIX Conference, June 1987, pp
[Jones79] Jones, Anita K., et al., "The 185-197.
Object Model: A Conceptual Tool for
Structuring Software", OPERATING [North88] Northcutt, J.D., et al.,
SYSTEMS: An Advanced Course, "Decentralized Computing Technology
Springer-Verlag, New York, 1979, pp 8- for Fault-Tolerant, Survivable C31
16. System: Functional Description", PUN

F30602-85-C-0274, CDRL A004,
[BMS85] Berets, James C., Mucci, Carnegie Mellon University, December
Ronald A., and Schantz, Richard E., 1988.
"Cronus: A Testbed For Developing
Distributed Systems", IEEE Military [David85J Davidson, S., et al.,
Communications Conierence, IEEE "Consistency in Partitioned Networks",
Communications Society, October 20 - ACM Computing Surveys: Volume 17,
23, 1985. Number 3, September 1985, pp 341-370.

46

AOMISON

OF

ROME LABORA TORY

Misein. The mission of Rom Laboratcy is to advance the science and
technologies of commanid, conb~d. communications; and intelligence and to
raii them into systerm to meet customer needs. To achieve this,
Rome Lab:

a. CondLuct vigorous reseach, development and test programs in all

b. Trwan n tenology to current and future systems to improve
operia donl capability, readiness, and supportabity;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;
e. Maintains leading edge technologia expertise in the areas of

survelance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computonnl science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, E romagnetc Technolg,
Photonics and Riablty Sciences.

