
i -- FR

, .. ••,94-29

i-.-ouse Ropoa-
Jue 1994 D,

•HE SURVIVABLE
OItSTRIBUTED COMPUTING
ENVIRONMENT

Patrick M. Hurloy, Scott M. Huse 1994

APPRO9D FR PUM W RRL54AS:,e DA 9 rTRhA V UNWIMITED.

94-21570 QUALM ixanD

Rome Laoratory
Air Force Materiel Command

Griffis Air Force Base, New York
- - 4 , ýI I ? - • 1-ý " o

This report has been reviewed by the Rome Laboratory Public Affairs Office
(04) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-29 has been reviewed and is approved for publication.

APPROVED: 6k41WY
ANTHONY F. SNYDER, Chief
C2 Systems Division
Command, Control, and Communications Directorate

FOR THE COMNANDER: Y6

r, JOHN A. GRANIERO
Chief Scientist

r Command, Control, and Communications Directorate
|Umm•om•eed [

A~vallabilitY Codes

Dlot Spec i1a

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

IForm AprvedREPORT DOCUMENTATION PAGE 0MB o.0704-0188
PA NPO b~ for Ita adman ofWY b .~rmm.twwphpv 1k co I-uSWu. *SU1 e~ W~ w*gubg ocaI.g~hmlmq la' n ,v •,9 Vu' •mua a w• wIn w-dm riowfrgu hi dmu VinwY• ¥Swdn amwwa' .~ig Uw bs• Ymaw w"*' amlw"-, ,-,a -€

-'i koia tM ,,af nmidim-. WW fm-arid WWM*'qml srn m 3v O nmrw bura ml'p ar w auw 1 of5 JWu€Nnd & to "rax' S.QPOWW far Na~m.t to &.#Cw% to Cu1, 0"SmmoVIDW• 0116 far fle oft Opa~lk' "R' r 121 JWWkm'
0b Y &M. l A•V, VA •.42M. w u Oe o Ma, uymwt & .K PWmk anl i Prnlt (W9M4*. wu**V. DnC 2

1. AGENCY USE ONLY (Leave Bink) . FEPORT DA'TE R. REPORT TYPE AND DATES COVERED
June 1994 In-House

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
THE SURVIVABLE DISTRIBUTED COMPUTING ENVIRONMENT PE - 62702F

PR - 5581
TA - 28

&AUTHOR(S) WU - 17
Patrick M. Hurley, Scott M. Huse

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Rome Laboratory (C3AB) REPORT NUMBER

525 Brooks Road RL-TR-94-29
Griffiss AFB NY 13441-4505

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGIMONITORING
Rome Laboratory (C3AB) AGENCY REPORT NUMBER

525 Brooks Road
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Patrick M. Hurley/C3AB (315) 330-2925

12a. DISTRIBuflOWAVAI.ABLIJY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

136 ABSTRACTP - 2o

Distributed computer systems support several key attributes that are essential for the
development and execution of command and control (C2) applications. Since C2 applica-
tions need to become more survivable, more dispersed, and better able to quickly adapt
to new threats, we are seeking to provide an architecture for a survivable Distributed
Computing Environment (SDCE). In essence, the SDCE will be a base upon which surviv-
able distributed applications can be built. This base must be flexible enough to
incorporate advances in technology. It must also be tailorable to the needs of specifi
C2 applications, and well structured for ease of maintenance. Hence, this base must be
capable of evolving with the needs of C2 systems and their supporting technologies. Th,
approach that was used in this effort was to utilize existing technologies such as the
Mach micro kernel, along with the CRONUS and/or ISIS Distributed Computing Environments
to provide many of the SDCE requirements.

14. SUJECTTERMF Distributed Operating Systems, Distributed System, 0.SopPs
ISIS, CRONUS, Mach, Chorus, Survivable, Distributed Computing ,XCOoE
Environment

17. SECURITY CLASS1FICATION 18.SECURFTYCLASSIFICATION 19. SECURITYCLASS1FICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U/L
NSN 754MI.204= Stbd Form (6.12W

prggmg by ANSI Std ZgiI
2WIM

The Survivable Distributed Computing Environment

Patrick M. Hurley Scott M. Huse
Computer Systems Branch (C3AB)

Rome Laboratory
Griffiss AFB, New York 13441-5700

1.0 Introduction Cronus and ISIS that are needed to fulfill
Distributed computer systems support many of the requirements of the SDCE.
several key attributes that are essential for Section 7 takes a closer look at many of the
the development and execution of command attributes provided by Cronus and ISIS. It
and control (C2) applications. Rome also presents an evaluation of Cronus and
Laboratory currently has a distributed ISIS replication mechanisms. Replication
computer systems in-house research and is important because it is one of the best
development laboratory called the ways to detect and/or recover from faults in
Distributed Systems Environment (DISE). a distributed environment.
The DISE is presently able to demonstrate
and integrate many of these attributes.
These include heterogeneity, replication, 2.0 SDCE Requirements
fault detection/recovery, and limited The Survivable Distributed Computing
adaptive resource management. Environment must provide the underlying

mechanisms to support the development
In order for C2 applications to become and execution of highly reliable distributed
more survivable, more dispersed, and better C2 applications. To accomplish this goal
able to quickly adapt to new threats, we are we list the requirements that should
seeking to provide and demonstrate a characterize the SDCE. Included in the list
Survivable Distributed Computing of requirements are distributed computing,
Environment (SDCE) within the DISE. In fault tolerance, real time, adaptive resource
essence, the SDCE will be a base upon management, trusted computing base,
which survivable distributed applications support for multi-domained applications,
can be built. This base will be flexible multi-clustered networks (interconnection
enough to incorporate advances in of LANs and WANs), and heterogeneity (to
technology. It will also be taflorable to the include languages, operating systems and
needs of specific C2 applications, and well machine architectures). Note the SDCE
structured for ease of maintenance. Hence, may not readily provide all of these
this base will be capable of evolving with requirements. However, at a minimum the
the needs of C2 systems and their SDCE must provide the underlying
�s t ng e ologies` mechanisms that are capable of supporting

all the specified requirements.
This paper is anized as follows. In
section 2 the tdo nkments for the SDCE Me Distributed computing may be defined as
[mumed. SewwI 3 discusse the reasons concurrent processes cooperating towards
for using micro-kernel technology as the common goals where each process is likely
base for the SDCE. Section 4 evaluates to have incomplete and/or inconsistent
two candidate micro-kernel architectures global state information. As the name
Mach and Chorus. Section 5 defines the implies the SDCE should support
SDCE a. Section 6 presents distributed computing because it provides
other supporting technologies amely many desirable attributes. These attributes

1

include resource sharing (to include data), Adaptive resource management may be
improved reliability, and increased defined as the ability of a system to change
performance (concurrent processing). its internal state to be consistent with its

external environment. Adaptive resource
Fault tolerance may be defined as the ability management should allow for both the static
of a system or component to perform its mapping of application components within
function, despite the presence of hardware the system as well as the ability to
or software faults. Fault tolerant dynamically react to changes in the runtime
mechanisms that detect and/or recover from requirements that could not possibly be
hardware and software faults are essential anticipated. Therefore, a base for adaptive
for survivable systems. Therefore, the resource management should be supported
SDCE should also support underlying fault to improve throughput and provide some
tolerant mechanisms in hardware, software, level of fault avoidance. This base should
and communication. Numerous types of also support both static and dynamic
faults in hardware, software, and migration of processes and data.
communication could be considered.
However, due to the complexity of dealing The SDCE should also provide support for
with some faults, the requirements for the a trusted computing base. This trusted
SDCE will be limited to the following computing base should provide protection
candidate list. mechanisms within the computing

environment to include hardware,
Two classes of hardware faults should be firmware, and software, which cooperate to
supported by the SDCE - (1) the complete enforce security policies.
loss of a host/service; and (2) degradation
in the performance of a host/service due to Support for multi-domained applications is
overload conditions. In terms of software also desirable. This would permit
faults, the SDCE should address - (1) controlled access to resources (e.g.,
algorithmic faults (perhaps through support computers and data) in a flexible and
of n-version programming); (2) software efficient manner.
component faults (service loss); and (3)
timing faults. Finally, two classes of Typically network and distributed operating
communication faults should be considered systems have provided support for these
- (1) loss of connectivity (local area requirements through services such as
network or wide area network); and (2) processes, IPC, resource management, file
overloaded or congested communications. server(s), etc. More recently, however,

micro-kernel technology provides a new,
The SDCE should also provide some more modular approach towards meeting
support for real-time applications. Real these requirements.
time may be defined as a system or mode of
operation in which computation is
performed during the actual time that an 3.0 Micro-kernels
external process occurs, so that the Traditionally, network and distributed
computation results can be used to control, operating systems have been implemented
monitor or respond in a timely manner to by spreading knowledge about the system
the external process. This would allow the throughout large monolithic kernels. This
SDCE to incorporate scheduling and monolithic design complicates the task of
resource decisions based on the current developing and integrating advances in
conditions of both system and environment technology with respect to both hardware
within some specified time constraint, and software. Fortunately, recent trends in

2

operating systems design have led to the applications; multiconmputer support - since
use of micro-kernel architectures. This the kernel only provides a relatively small
approach separates the components of the number of basic abstractions, it can
operating system that control hardware optimize the mapping of each abstraction
resources from those that determine the onto the distributed hardware; and security -
flavor of the operating system environment, a smaller kernel is more easily defined and
e.g., a given file system interface. This implemented in a secure manner; the
allows the most complex software layers to modular layered architecture is simply better
be built on top of a relatively simple kernel suited to trusted systems than that of
(Figure 1). traditional monolithic kernels [Black].

While the current level of maturity for
A P micro-kernel technology does vary, some

systems (e.g., Mach and Chorus) are
already achieving commercially competitive

S5s levels of functionality and performance.

mO 4.0 Mach and Chorus
SThis study evaluates two candidate micro-

kernel architectures Mach [Black] and
Nkro4erd Chorus [Armand].

Figure 1. Micro-kernel Architecture. Some of the key features which each of
these architecture's have in common include

Due to this modular layered, approach to (1) a small kernel, (2) a modular
operating system design, a micro-kernel architecture which provides scalability and
architecture is able to offer a number of allows dynamic configuration of the system
advantages over traditional network and and its applications, (3) transparent network
distributed operating systems. Some of access for interprocess communication, (4)
these advantages include : tailorability - the a communication-based architecture which
operating system environments can be implements generic services used by a set
customized for specific applications; of subsystem servers to extend standard
portability - the operating system operating system interfaces, (5) support for
environment code is independent of a concurrency in both the operating system
machine's instruction set, architecture, and services and application programs; (6)
configuration; extensibility - additional support for large address spaces with
operating system environments and flexible memory sharing, (7) integration of
versions can be incorporated alongside message passing communication with
existing systems; real-time - support for virtual memory, (8) real-time support that is
real-time applications is possible since the accessible by system programmers, and (9)
kernel is no longer required to hold long UNIX support.
interrupt locks for UNIX system services;
multiprocessor support - since the kernel is
not required to support complex system 4.1 Chorus
functions (which may limit parallelism), Chorus is an ongoing distributed systems
greater parallelism is possible for its research project conducted in France. To
functions; furthermore, the micro-kernel's date, four versions have been developed.
features can be better taiIored to parallel They are Chorus-VO (1980-1982), Chorus-

3

VI (1982-1984), Chorus-V2 (1984-1986), who requests a service and a server who
and Chorus-V3 (1987-present). Chorus- provides the service.
V3 was designed to integrate the best
features of all the previous versions.
Chorus was also designed with the 4.3 Chorus IPC VS Mach IPC
intention of supporting industrial quality Mach and Chorus abstractions are very
operating system environments, similar with respect to resource

management (Chorus' actor and Mach's
The main abstractions implemented by task), control (threads), and virtual
Chorus include actors, threads, and ports. memory. The addressing and
An actor is a collection of resources in a communication abstractions of Mach and
Chorus system. An actor defines a Chorus are, however, quite distinct.
protected address space supporting the
execution of threads that share the resources In both Chorus and Macb, messages are
of the actor. A thread is the unit of addressed to intermediate entities called
execution in the Chorus system. A thread ports, not directly to threads or actors/tasks.
is a sequential flow of control, and, it is It is the port abstraction that provides the
always tied to exactly one actor that defines necessary decoupling of the interface of a
the thread's execution environment. Within service and its implementation. This
an actor, multiple threads can be created and provides a basis for dynamic
can run concurrently. A port represents reconfiguration. Consequently, a port can
both an address to which messages can be migrate from one actor/task to another.
sent and an ordered collection of
unconsumed messages. When created, a Addressing in Chorus is accomplished in a
port is attached to a specified actor. Only global manner via unique identifiers (UI).
threads of this actor may receive messages All Chorus objects (e.g., actors, ports) are
on that port. referenced in this manner. The Chorus

micro-kernel implements a UI location
4.2 Mach service that allows the referencing of

The Mach 3.0 micro-kernel architecture is Chorus objects without knowledge of their
being developed at Carnegie Mellon current location.
University. The history that led up to its
development includes RIG (1976-1981), In contrast, Mach does not support the
which led to Accent (1981-1986), which in notion of global addressing, i.e., all ports'
turn was followed by the Mach 2.5 rights resolve to local ports. A network
operating system (1986 - 1989). The Mach server extends Mach IPC across the
3.0 micro-kernel (1989 - present) evolved network via the use of local proxy ports to
from the Mach 2.5 operating system. represent remote ports. This collection of

network servers (one on each node) then
The basic abstractions of Mach are the task, maintains the current location of network-
thread, and port. A task may be viewed as wide ports.
a container to hold references to resources
in the form of a port name space, a virtual The Chorus inter-process communication
address space, and a set of threads. A (IPC) mechanism permits threads to
thread is an execution point of control. It is communicate through unreliable
the basic computational entity. It belongs to asynchronous point to port group (a port
one and only one task that defines its virtual group is an abstraction that extends
address space. A port is a unidirectional message passing semantics between threads
communication channel between a client by allowing messages to be directed to a

4

group of threads), or by synchronous technology is the foundation for the SDCE,
reliable remote procedure call (RPC). it must be a relatively mature and stable
When messages are sent to port groups, it system.
is possible to: (1) broadcast to all ports in
the group, (2) send to any one port in the Overall, the mechanisms provided by
group, (3) send to one port in the group Chorus and Mach are comparable. The
located at a given site, and (4) send to one main difference lies in the IPC mechanism,
port in the group located on the same site as as mentioned previously. Each of these
a given UI. Note, however, that the receive IPC mechanisms have their strengths and
semantics are limited to one-to-one. That weaknesses. Clearly, an ideal solution
is, a port can only receive messages from a would be to combine the strengths of each
single sender (Figure 2a). of these abstractions. This very concept is

nearing completion at Cornell University
[Glade]. Work has also been done to
improve the speed of Mach's IPC
mechanisms [Draves] [Barrera IHI]. In

Por+ addition, Real-Time Mach, and Distributed
Actor Trusted Mach are maturing along with the

development of the Mach micro-kernel.
Furthermore, it is clear that Mach is

(a) Chorus becoming an industry standard (e.g., Open
Software Foundation). Due to these
considerations we have decided to select the
Mach micro-kernel for the foundation of the

P II5t Task SDCE.
However, the Mach micro-kernel by itself
does not meet all of the requirements of the

(b) Mach SDCE. Therefore, we now present several
different architecture design options that

gure 2Send/Receive Semantics. include supporting technologies (built on
Mach or the Mach micro-kernel) which can

In contrast, Mach provides reliable point to meet the requirements of the SDCE. ISIS

point communication. With respect to the and Cronus are the specific supporting

send semantics, the notion of a multicast is technologies. They provide support for

not present. The receive semantics, on the distributed computing, fault tolerance,

other hand, permit a task to receive limited adaptive resource management,

messages from (potentially) multiple support for multi-domained applications,

nas a port set (igu 2b). multi-clustered networks (interconnection
senders, known pof LANs and WANs), heterogeneity (to

include languages, operating systems and

4.4 Micro-kernel Selection machine architecture's), reliable

The SDCE micro-kernel technology base communication, and concurrency. Note

(along with other supporting technologies) Cronus and ISIS will be discussed in

must be capable of fulfilling all the SDCE greater detail later in this paper.

requirements. This base must also be
capable of evolving with the needs, and 5.0 SDCE Architecture Options
advancing technologies of C2 systems. The first architecture to be considered is
Fugtnour, since the micro-kernel built on the Mach 2.5 operating system

5

(Figure 3). This architecture is viewed as The third option (Figure 5) truly
the easiest and lowest risk option because it implements the micro-kernel design
is based on proven technology. However, philosophy. Horus consists of an ISIS
it is not a micro-kernel based design and Toolkit [Birman] and IPC enhancements
therefore it would be more difficult to adapt [Glade] to the Mach micro-kernel.
this system to the long term, ever-changing Consequently, the need for an intermediate
needs of C2 systems. UNIX server is no longer required. This

work is nearing completion at Cornell
a AUniversity.

S EnhaI. Survivable Application

MMACH 0 erating s stemn Horu UNIX Se-rve~r EnhancemeniFigure 3. SDCE Architecture 1. MAH Mcro-kernel

Figure S. SDCE Architecture 3.
Unlike the architecture in Figure 3, the
second architecture design option (Figure 4)
utilizes the Mach micro-kernel. This In addition, work is also being planned to
architecture, however, requires an build Cronus directly on top of the Mach
intermediate UNIX server to integrate the micro-kernel. When available this
functionality provided by ISIS and Cronus. capability could easily be incorporated into
Although this architecture is micro-kernel this architecture. In the interim, however,
based, it is not completely faithful to the Cronus could rest on top of the UNIX
micro-kernel design philosophy as server.
illustrated in Figure 1. That is to say, ISIS
and Cronus interact with the Mach micro-
kernel through the UNIX server rather than Survivable Application
directly with the Mach micro-kernel itself.

Survivable ApplicationMicro-kernel
%IS n aenfi s.

,,,CEicnin, Specialized Hardware

i CroFigure 6. SDCE Architecture 4.

Server Figure 6 presents a hardware solution to the
fault-tolerant requirements of the Survivable

MACH Micro-kernel Distributed Computing Environment. The
Fault Tolerant Multiprocessor (FTM)

Figure 4. SDCE Architecture 2. micro-kernel extends Mach by adding
mechanisms that allow the implementation

6

of fault-tolerance. Normal Mach entities command and control applications. Present
can be corrupted by a processor failure. versions of Cronus provide support for
The FTM architecture, however, can such diverse systems as Sun workstations
tolerate any single processor failure. running Sun UNIX, DEC machines

running VMS or ULTRIX, HP machines
As previously mentioned, the architecture running HP-UX, and several parallel
represented in Figure 5 is more consistent architectures. Cronus currently supports
with the micro-kernel design, and provides the following languages C, FORTRAN,
the most versatile base upon which to build and Common Lisp.
survivable distributed applications. It is
therefore the architecture of choice, The Cronus distributed computing
although the risk factor at this time may be environment is based on the object model.
relatively high due to the immaturity of An object consists of state information
Horus. In the event that Horus is too maintained in an object database and a
immature to be utilized within our time collection of rules that govern how this state
frame, the architecture represented in Figure information may be examined or changed.
4 will be utilized instead. This does not Each rule represents an operation on the
preclude the incorporation of Horus at some object. Objects and their associated
future time. Note the SDCE enhancements operations are managed by object
in Figures 3 - 6 may include a reliable managers. Operations on objects are
transaction service (e.g., Camelot), a invoked by client programs or by other
replicated file server, or an X.500 server object managers.
[Weider].

Cronus object types define how the objects
are to be used and implemented. Types are

6.0 Supporting Technologies made up of operation code, operation
(Cronus and ISIS) interfaces, and data structures that specify

Cronus and ISIS are included in the SDCE the representation of the various objects.
architecture to provide support for Types are also placed in a hierarchy
distributed computing, fault tolerance, structure that allows new types to be created
limited adaptive resource management, as subtypes of existing ones.
support for multi-domained applications,
multi-clustered networks (interconnection Cronus consists of services, clients, and the
of LANs and WANs), heterogeneity (to Cronus kernel. Services (a service consists
include languages, operating systems and of one or more object managers) implement
machine architectures), reliable both system and application functions.
communication, and concurrency. Current system services provided by
Therefore a brief overview of these two Cronus include an authentication service, a
systems will now be presented. symbolic naming service (global), a

network configuration service, a directory
service, and an object type definition

6.1 Cronus Overview service. Clients within Cronus are
Cronus is a distributed computing processes that use services. The Cronus
environment that supports heterogeneous kernel itself sits on top of the native
computer systems interconnected on a high- operating system and is primarily
speed local area network (LAN) or wide responsible for transmitting synchronous or
area network (WAN). Cronus was funded asynchronous operation invocations from
by the U.S. Air Force (Rome Laboratory) clients to services. The Cronus kernel
and developed by BBN Laboratories makes the network appear transparent. For
Incorporated to support distributed example, a client on one host in a given

7

Cronus configuration can invoke an associated with joining and leaving groups.
operation on an object type whose manager Groups have a hierarchical namespace,
resides on another host in the network much like a file system namespace, and
(Figure 7). permit flexible, location transparent

addressing. Process groups are also
By using an object-oriented approach, capable of spanning across multiple
Cronus is able to provide a variety of higher machines. ISIS provides mechanisms for
level abstractions such as: (1) Management communicating atomically with a group, as
of replicated data (on disk); (2) Parallelism one might do to inform its members of
by splitting a computation among several some event, or to issue them a request of
machines; (3) Monitoring and reporting the some sort. Such a communication takes the
status of a computation; (4) Dynamic form of a "multicast", in which one or all
reconfiguration from failures; (5) Support the members of the group receive the
for multi-domained applications; and (6) message, and zero or more respond
Support for multi-clustered networks. (depending on the needs of the particular

application).

Another major advancement that ISIS
provides is the concept of virtual
synchrony. Virtual synchrony permits the
programmer to design a distributed program
for execution in a simplified environment,
wherein all processes observe events

t" cosimultaneously and therefore in the same
order. Events such as communication with
a group or detection of failures are atomic in
a virtual synchronous setting: all group

-- members receive a message (oi observe a
Figure 7. Cronus Communication. failure) if any does.

Using process groups and virtual
6.2 ISIS Overview synchrony ISIS is able to provide a variety

ISIS is a distributed toolkit that provides of higher level abstractions such as: (1)
high level tools which support the Management of replicated data (in memory
development of fast reliable distributed or on disk); (2) Parallelism by splitting a
applications. ISIS provides mechanisms computation among several machines; (3)
that support heterogeneous computer Coordinate an external action; (4)
systems interconnected on a high-speed Synchronize concurrent actions (such as
local area network (LAN) or wide area when several processes share a resource
network (WAN). ISIS was funded by the that only one can use at a time); (5)
Defense of Advanced Research Projects Monitoring the status of a computation,
Agency (DARPA) and developed at Cornell process or computer, and triggering user-
University, Ithaca, New York. programmed defined actions should the

status change; and (6) Dynamic
The ISIS distributed toolkit is based on the reconfiguration from failures to include the
concept of process groups. Process groups integration of recovered machine into the
are a lightweight programming construct. operational system, restarting of the
A single process can belong to any number services that should run at that locafion and
of groups and there is minimal overhead the ability to bring them up-to-date

concerning the active state of the system.

8

Fault-tolerant mechanisms that detect and/or
The ISIS toolkit currently supports C, recover from hardware and software faults
C++, FORTRAN, ADA and Common are essential for a survivable system.
Lisp. ISIS runs on (and between) SUN, Cronus and ISIS both provide and/or
DEC, HP, GOULD, NEXT, and APOLLO support a limited amount of fault tolerant
equipment, and currently requires the mechanisms. These mechanisms and a
UNIX or MACH operating system. brief description will now be presented.
However, ports to other operating systems
such as AIX and VMS are being Replication - Replication is defined as
considered. multiple copies of a resource maintained on

different hosts to improve availability or
consistency; Triple Modular Redundancy

7.0 A Closer Look at Cronus and (TMR) - TMR is defined as three
ISIS Mechanisms processors running the same code on the

It is now time to take a closer look at some same data and voting on the result to mask
of the mechanisms and/or attributes that out an error by any one processor-, and N-
Cronus and ISIS provide that help fulfill the Version Programming - N-Version
requirements of the SDCE. As stated Programming is defined as N versions of
previously, Cronus and ISIS provide code (Using different algorithms) on the
support for distributed computing, fault- same data and voting on the results. The
tolerance, limited adaptive resource only one of these fault tolerant mechanisms
management, and support for multi- that is directly supported by Cronus and
domained applications. We now break each ISIS is replication. The other mechanisms,
of these capabilities up into the attributes however, can be suppo. -ed but are more
and/or mechanisms they bring to the SDCE. application specific.

Distributed computing provides many Adaptive resource management mechanisms
desirable attributes, some of which are used can be used to automatically adapt to
as a base on which several other capabilities evolving resource availability. Therefore,
or attributes are built. These attributes or in the event of failures the system may
mechanisms include Redundant Processing automatically instantiate or migrate
- several processes performing the same application functionality within and among
task perhaps on different data; Concurrent the surviving system resources. ISIS
Processing- work is divided among several provides some support for adaptive
processes, each of which will contribute to resource management that includes
the final result; Resource Sharing - sharing "recycling idle workstations for remote use
data, memory, CPUs, disks, and other and managing a pool of "compute servers".
physical devices for a common goal, or It can also manage a reliable replicated
because a host is deficient in the resources it service by ensuring that some desired
requires; Reliable Communication - reliable number of copies of the service are always
communication between processes whether running, despite machine failures. Cronus
they are on the same host or on different on the other hand provides no such
hosts connected by LANs and WANs; and mechanisms.
heterogeneity - the inter operability of
languages, operating systems and machine Mechanisms that provide support for multi-
architectures. Cronus and ISIS both domained applications are also desirable.
support the attributes of distributed This would permit controlled access to
computing to some degree. resources (e.g., computers and data) in a

flexible and efficient manner. Cronus
supports multi-domained applications by a

9

mechanism called clusters. A cluster is a availability is used for applications that
set of hosts grouped together into a single require highly available data to function
administrative unit. Each cluster is properly. Replication that stresses
autonomous, and therefore, responsible for consistency is used for applications that
its own administration and control. No maintain replicated data to survive faults.
host is permitted to be a member of more
than one cluster. Clusters allow boundaries
to be erected between organizations, but can 7.2 Cronus Replication Overview
selectively allow or deny foreign clusters Cronus provides a replication mechanism
access to services that they support. This that is based on the object model and
controlled access allows a cluster to provide version vectors, whereas ISIS provides a
remote access to only those services it replication mechanism based on the concept
desires. ISIS process groups, by default, of group programming and virtual
provide a much less sophisticated synchrony. A brief overview of each of
mechanism (compared to Cronus) to these approaches will now follow. This
support multi-domained applications, overview will then be followed by a more
Process groups differ from clusters in that a detailed comparison of these two very
member of one group can join any number different replication mechanisms.
of other groups. Process groups also have
very little access control for joining a Cronus' replication mechanisms start by
group, and once they become a member allowing the application programmer to
they can gain access to all the group select read and write quorums depending on
services, his/her needs for data availability or

consistency. To ensure maximum
As previously stated C2 systems are availability, the application programmer
inherently distributed and must be able to should select read and write quorums of
detect and/or recover from hardware and one; this, however, will sacrifice
software faults. One of the best consistency. To ensure data consistency
mechanisms in a distributed environment the read quorum and write quorum should
for detecting and/or recovering from faults both be set to a majority (N/2+1), where N
is replication. Therefore, lets take a closer is the number of replicated copies. Version
look at the replication mechanism provided vectors are then set up for each replicated
by Cronus and ISIS. As you will see they object. Each of these version vectors
take very different approaches to providing contain a list of hosts that support the same
a replication mechanism. type of replicated object manager and an

associated version number. These version
vectors are updated each time the replicated

7.1 Replication object is accessed in order to reflect the
Replication is defined as multiple copies of current status of each replicated object. For
a resource maintained on different hosts to every operation that is performed on the
improve availability or consistency. replicated object manager Cronus
Availability is achieved by relaxing the replication mechanisms collect the read or
issues involved with keeping all copies write quorums that where specified by the
consistent at all times. Consistency, on the application programmer (note only the
other hand, is achieved by emphasizing the objects whose version vectors are up-to-
issues involved with keeping all copies date are considered) and locks those copies.
consistent at all times. Therefore, a The operation is then perfovoed oi oe of
replication mechanism is capable of the replicated objects, then that object is
providing two different forms of copied to all other accessible copies and the
survivability. Replication that stresses lock is released. If the read or write

10

quorum can not be obtained Cronus will they join the group. This form of
return an error message to the application, replication is called process replication
If a previously inaccessible replicated object because all data will be lost if there is a
manager becomes available it is simultaneous failure involving all the
automatically brought into consistency processes maintaining the replicated data.
using the version vectors. If the state of the data must be maintained

despite this type of failure then persistent
In summary, Cronus supports replicated data is required. Persistent data is
managers with consistency being maintained in ISIS by saving state to stable
maintained on a per operation basis by storage using a logging mechanism. This
update then copy mechanisms. Also, by logging mechanism periodically logs a copy
having a persistent data model as an integral (a checkpoint) of the group state onto stable
part of Cronus managers, both process and storage logging all changes that occur to the
persistent data replication are provided, state. The frequency of the check point can
Finally, the net effect of providing a be controlled by the application
replication mechanism this way is very programmer. Thus the desired degree of
similar to a transaction model. consistency can be achieved.

In summary, ISIS supports replicated
7.3 ISIS Replication Overview service via process groups and virtual

ISIS, on the other hand, provides no synchrony. Unlike Cronus, read and write
special tool for managing replicated data (in quorums are dynamic and based on the
memory), because replication "falls out" current group membership and the
directly when using process groups and particular client/server communication
virtual synchrony. This is because virtual semantics (may be different for different
synchrony guarantees that distributed clients). Consistency is managed via ISIS
events like broadcast message deliveries, communication protocols that support the
notification of group membership changes model of virtual synchrony. Virtual
(even if they are due to failures), and many synchrony is based on the transaction
other kinds of events will occur in exactly model but permits a "looser" coupling
the same order in every process. A between servers (more asynchrony) which
virtually synchronous system "looks provides better concurrency.
synchronous" to every process in the
system, but executes asynchronously when
observed from the outside. More precisely, 7.4 Cronus vs ISIS Replication
virtual synchrony guarantees the following Evaluation
(1) Global event ordering - All processes A test application was built utilizing a client-
observe events in the same order; (2) server model. In this model clients make
Causality - An event E2 that is caused by an calls to a population of servers which can
action occurring after some earlier event El be resident on several nodes in the system.
will be observed everywhere after E 1; and The servers are passive entities waiting for
(3) Atomicity - Event notification is all-or- an invocation from a remote client.
nothing.

Care had to be used to insure fairness when
ISIS replication starts by an application evaluating these two very different
programmer creating a process group that replication mechanisms. This was
manages the same data (in memory). This accomplished by guaranteeing that the two
process group must provide state transfer systems provided exactly the same service.
routines to ensure that new member(s) to This service required the ability to create,
the group receive the current state when delete and update data in stable storage.

11

Note stable storage is important because it workstations with 16 MB of memory.
allows the application to recover from a These workstations were connected on a
total failure, local area network with a bandwidth of 10

MB/sec and were using IEEE 802.3 media
In our test application the server is access protocol. The whole system was
responsible for the implementation of and dedicated to this experiment with no other
execution of creating, deleting and updating load on it.
data in stable storage; whereas the client is
only responsible for invoking the create, Although the Sun OS was used in this
delete and update operations on the evaluation instead of the Mach micro-
server(s). The general flow of processing kernel, as described by the SDCE
in our test application is described as architecture, we believe that the conclusions
follows: (1) The client obtains the local presented in this section are valid when
system time to record the start time of the comparing the supporting technologies.
experiment; (2) The client then invokes "N" We do, however, anticipate proving this
opetIAims on the server. Where "N" can claim in the near future by repeating the
range from 1 - 1000 and is used to obtain replication evaluation on Cronus and ISIS
the average time it takes to complete the supported by the Mach micro-kernel.
specified operation; (3) The replicated
server then executes the operation; (4) The
client waits for a response from the server _ _,~ _m W
that the operation completed successfully; 41 .

(5) the client obtains the local system time M..m D" -O - -D L"

to record the finishing time of the I an me 3, a, MM
experiment. 2 - V- - -

These steps are executed for the create, 3 me _M Aug
delete and update operations to determine
the average time each operation takes. The
number of servers used to perform the Figure 8. Replication Evaluation
creates, deletes, and updates is also varied
from I - 3 to measure the time each
operation takes for different degrees of The results of this evaluation are shown in
replication. This application is executed by Figure 8. In general the data produced
both Cronus and ISIS to determine what from this evaluation did not provide results
replication mechanism provides a better that were too surprising. For example we
service under what conditions. Note that notice that the overhead increases
both test applications (Cronus and ISIS) incrementally as we increased the number
were set up to maximize consistency. The of replicated copies. The only really
results of this evaluation will now be surprising observation was in the Cronus
presented. "update" results. The "update" operation

appered to perform poorly for two reasons
The software configuration consisted of the (1) Every object in the object database must
Sun OS version 4.1 as the constituent be pulled out of stable storage to find the
operating system. Layered on top of this item that is to be updated. (2) Also the
operating system is Cronus 3.0 and ISIS "update" operation makes another operation
3.0.8 which are the distributed invocation to "finditem" which is
environments under evaluation. The eponsible for Bfndmg the item on which to
hardware configuration for the evaluation pefmm the updat. This adds additional
consisted of three Sun SPARC 1+

12

overhead to the "update" operation because In summary, ISIS appears to provide a
the "finditem" operation now has to worry better replication mechanism then Cronus
about the issues involved with maintaining provides. However, the SDCE has many
consistency, such as voting to obtain a read other requirements and much more work
quorum. ISIS does not suffer from these has to be accomplished before a
problems in the "update" operation because determination can be made in regards to
(1) The data does not have to be pulled out those requirements.
of stable storage to search for the item to be
updated. This is because the data is 8.0 Acknowledgments
maintained in memory and the only time The authors of this paper would like to
stable storage is used is when operations acknowledge Dr. Gary L. Craig (Syracuse
are invoked that change the state of the data; University) for his useful discussions in
and (2) Although the ISIS version of the micro-kernel technology. We would also"update" operation also invokes the like to thank him for his comments in
"finditem" operation, ISIS does not have to reviewing this paper.
worry about voting mechanisms to ensure
consistency because virtual synchrony
automatically guarantees consistency. 9.0 References

Armand, F., et. al., Towards a Distributed
The replication mechanisms within ISIS are UNIX System - The Chorus Approach,
more flexible and dynamic then those found Proceedings of the European UNIX
within Cronus. For example ISIS requires Systems User Group Conference,
no pre-defined and pre-compiled read or September 1986.
write quorum as does Cronus. However,
Cronus replication mechanisms are better Barrera, Joseph S. III, A Fast Mach
able to maintain consistency during and Network IPC Implementation, Usenix
after a network partition. This is because Association,
Cronus does have pre-defined read and
write quorums. Cronus allows a network Birman, Kenneth P., The Process Group
partition with a majority of the copies to Approach to Reliable Distributed
continue execution and upon recovery from Computing, Department of Computer
the network partition guarantees that all Science, Cornell University, July 1991.
copies are brought to a consistent state.
ISIS, on the other hand, provides a Black, David L., et. al., Micro-kernel
mechanism where group members Operating System Architecture and Mach,
(replicated copies) can be "weighted" by the Usenix Association, pp. 11-13.
application designer so in the event of a
network partition the side with the largest Cooper, Robert C. B., Glade, Bradford,
"weight" continues as the primary partition, B., Birman, Kenneth P., and Robert van
all the other partitions continue as Renesse, Light-Weight Process Groups,
secondary partitions. Note all partitions Department of Computer Science, Cornell
know if they are in a primary or secondary University, 1992.
role. Upon recovery there may be
inconsistencies that require human Draves, Richard, A Revised IPC Interface,
intervention to resolve. However, the Usenix Association.
application designer could guarantee that no
changes to stable storage occur in a Glade, Bradford B., Birman, Kenneth P.,
secondary partition thus maintaining and Robert van Renesse, Group
consistency. Communication in Mach: Kernel Interface

Supplement, Department of Computer

13

IM.

Sc•n•,, •oil Univerut, November 3,
1992.

Weider, Teynolds, and Heker, Technical
Overview of Directory Services Using the
X.500 Protocol, NIC RFC 1309, 16 pages,
Match 1992.

14

MiSSION

OF

ROMI• ABORA TORY

Mission. The mission of Rome Labor" is to advance the science and
tedchl ogieof command, control, and intellgence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
atechnologies;

b. Transitions technology to current and future systems to improve
operational capabilty, readiness, and supaty;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
snM co, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computatio science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelience, Signal Processing,
Computr Science and Technoklgy, Elect Technology.
Photoni and Relility Sciences.

