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Evolving Recurrent Perceptrons

for Time-Series Modeling
J. R. McDonnell, Member, IEEE, and D. Waagen

Abstract a systemstic muiti-agent
stochastic search Is used to generate recurremt per-

ceptrons (noalinear IIR filters). A hybrid optimization scheme is
the method of Solis and Wets, into the evolutionary program-

information criterion is used to evaluate each recurrent percep-
tron structure as a candidate solution. It is speculated that the
stochastic training method implemented in this study for training
recurrent perceptrons can be used to train perceptron aetworks
that have radically recurrent architectures,

L. INTRODUCTION

RTIFICIAL peural networks with recurrent connections
represent an altemnative to feedforward networks for
noalinear models of time-series data. Feedback connections
allow for the feedforward information to be distributed back
into the network, and may result in increasingly complex
nonlinear manifolds with an increasing order of recurrency.
This work demonstrates the application of the evolutionary
search method in “evolving” simple recurrent perceptrons that
may serve as building blocks for more complicated structures.
Once feasibility is demonstrated for simple recurreat percep-
tron structures, the evolutionary search method can then be
applied to highly recurrent perceptron networks with complex
architectures. Stochastic methods are an attractive training
option for complicated architectures because they are not
constrained to a specific network topology. This feature allows
both the network structure and weights to be determined during
Simultaneously determining both perceptron weights and
structure requires a procedure that is amenable to combina-
torial optimization problems. Successful algorithms for these
types of problems have generally been stochastic search tech-
niques such as simulated annealing [1), genetic algorithms
{2), and evolutionary programming {3]). The evolutionary
programming (EP) paradigm has been shown to have the
desired attributes: combinatorial optimization capabilities (4],
lwmmsl.lm;mumw,lmumm
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Fig. 1. (a) The noglinear IIR filter structure. (b) The paralicl lincar-nonlincar
IR filter structure. Evolutionary programming can adapt any activation func-
tion, and, since the model order is determined during the search, transversal
structures may result,

the ability to determine model structure [S], and the ability to
train neural networks [6].

The “perceptron” in this study refers to a recursive adaptive
filter with an arbitrary output function. Fig. 1(a) shows the
proposed perceptron structure or nonlinear IIR filter. Fig.
1(b) shows a lincar-nonlincar architecture, although, as will
be seen in the later studies, the lincar activation function
could be replaced by one that is nonlinear. This recurrent
perceptron model is inspired by the structure of infinite im-
pulse response (TIR) filters and is postulated for time-series
modeling. This work applies an evolutionary or systematic
multi-agent stochastic search to determine the order of the
recurrent perceptron structure as well as the tapped-delay
line weights. Modifications to the perceptron topology are
accomplished by either increasing or decreasing the number
of tapped delays on the input or feedback lines, respectively.
These structural modifications are limited to a random change
of plus or minus one tapped delay on a randomly selected line.
Since the model is determined during training, a possibility
exists that noalinear finite impulse response (FIR) perceptrons
will result should the feedback order become zero.

Williams (7] characterizes recurrency based on its utiliza-
tion in a connectionist architecture. Conservative recurrence

comresponds to a tapped-delay input signal and is termed a

1045-9227/94804.00 © 1994
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transversal filter network. This approach yields a network that
is sensitive to temporal patterns without directly incorporating
recurrent units. Transversal filter networks have been widely
applied in the field of speech recognition (e.g., Waibel er al.
(8]). Liberal recurrence is the feedback from the output to the
input units and comresponds to a nonlinear multi-input, multi-
output (MIMO) IIR filter. Williams assigns the term recursive
filter to transversal filter networks with tapped-delays on the
output line feeding back as inputs. Radical recurrence refers
to recurrent networks that model systems with strongly hidden
states. By definition, if & system has a weakly visible state,
it can be modeled with either the transversal or recursive
filter networks. The radical approach allows coupling effects
that are not possible with the more traditional transversal
and recursive filter approaches. Both structures shown in
Fig. 1 have liberal recumrence with the potential to reduce
to conservative recurrence during the evolutionary training
process.

Feedforward networks have been successfully used for
both time-series prediction and system modeling, generally
using tapped-delay, or transversal filter, network structures.
However, these networks are not necessarily the typical feed-
forward configuration trained solely by emror backpropaga-
tion. For example, a Connectionist Normalized Linear Spline
Network (CNLS) has been formulated by the Center for
Noalinear Studies at Los Alamos National Laboratory [9-11].
Pruning connections [12-13] or weight sharing [14] can im-
prove generalization capabilities as well as increase processing
throughput, since architecture size is reduced. Using only the
most recent observation, Rao and Ramamurti {15] generate a
radically recurrent network based upon a cascade-correlation
(16) approach.

Saravanan [17) utilizes a purely recurrent structure so that
next-step estimates are only a function of previous estimates.
This network is trained using evolutionary search methods
Recurrent neural network structures have also been success-
fully trained using EP by McDonnell and Waagen (18] and
Angeline et al. [19)]. Other types of recursive structures that
have been evolved include finite state machines [3] and the
order and coefficients of ARMA models [5], [20). While
“optimal prediction can be thought of, quite simply, in terms of
optimal filtering in absence of measurements” (21}, practical
applications make use of recent observations. Li and Haykin
[22} and McDonnell and Waagen [18] utilize both a window of
observations and a window of previous estimates for nonlinear
time-series prediction. If an event occurs which precludes
making an observation, then substitution of the estimate for
past observations may suffice, depending on the accuracy of
the model and noise levels.

The combination of more efficient local search methods
with global techniques is appealing. As Yao [23] states,
“the efficiency of evolutionary training can be improved by
incorporating a local search procedure into the evolution.”
However, this requirement may limit the applicability of the
global search method to specific types of architectures since
Jocal search techniques are somewhat restrictive. To alleviate
this concern and maintain the integrity of the stochastic
search, only direct search methods are considered for being

embedded into EP. This rationale was successfully used in the
developmeut of the stochastic direction algorithm by Waagen
et al. {24].

Before discussing the optimization of recurrent perceptrons,
Section II describes and demonstrates a hybrid optimization
approach that combines the Solis and Wets random optimiza-
tion technique and EP. Variants of both methods are applied
to finding extrema of an unknown function. A hybrid strategy
is subsequently developed that embeds the Solis and Wets
technique within EP. Once the hybrid approach has been
successfully demonstrated, the recurrent perceptron structure
is discussed in Section III. Results are then given in Section
IV for evolving recurrent perceptron next-step predictors for
a variety of time-series data.

II. MULTI-AGENT STOCHASTIC SEARCH

A. Benefits of Stochastic Optimization

As a direct search method, stochastic eptimization does not
require derivatives of the objective function nor continuity
of the response surface [25). The advantages of random
search methods include ease of implementation, insensitivity
to the type of criterion function, efficiency, flexibility, and
the generation of information about the response surface [26].
Efficiency refers to the allocation of resources for evaluating
additional points on the response surface versus deciding
which point to evaluate next. Of course, this can be detrimental
if the criterion function requires an extensive amount of
computation. If it is computationally expensive to evaluate the
objective function, then the information generated during the
course of the stochastic search can be used to direct the search
procedure. Pierre [27] stipulates that the following search
evaluation criteria should be considered before selecting any
particular optimization strategy: “1) How much computational
equipment is required? 2) Has the search technique proved
to be completely successful on similar types of performance
measures? 3) What accuracy is required of the search? 4) What
is a fair measure of the cost of the search? 5) How will the time
spent in evaluating the performance measure and its derivative,
if used, compare with the time spent on other aspects of the
search?”

In response to these issues, some generalizations may be
made with respect to evolutionary search strategies. 1) The
computational resources must provide sufficient memory and
processor power to conduct N separate searches, since evo-
lutionary methods are based on multi-agent search strate-
gies. Most implementations occur on serial platforms even
though multi-agent search strategics are inherently paraileliz-
able. Considerable computational resources may be required
if the problem has an extremely high dimensionality. 2) As
previously discussed, evolutionary search strategies are an
excellent means to solve combinatorial optimization problems
and discover globally optimal solutions. 3) The issue of
accuracy has ramifications with respect to a priori knowledge
of the response surface. If a correct model structure is assumed,
evolutionary search strategies will, in general, tend to be
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slower than traditional optimization schemes. This results
from the inefficiency of not using information about the
gradient (although gradient methods can be incorporated in
parallel with the evolutionary search strategy). However, the
time complexity for evolutionary search does not necessarily
increase dramatically with increased dimensionality (28} or
additional constraints. In sum, cvolutionary search strategics
are robust across a broad spectrum of problem domains. 4)
The number of function evaluations is a useful metric for
comparing evolutionary search strategics. Time complexity or
accuracy may serve as a useful metric for comparisons with
other search methods. 5) The matter of efficiency is discussed
in the previous paragraph.

B. Single-Agent Stochastic Search

Random optimization has traditionally been based on single-
agent stqchastic search (SASS) strategies. Both Rao [25]
and Kamop {26] gencrate a random walk sequence to an
extremum by perturbing the search point with a uniform
random variable. Rao also exploits the directionality of the
randomly generated vectors that continue to yicld lower valued
objective functions. In an algorithmic formulation similar to
that of Rao, Matyas utilizes Gaussian perturbations about the
search point along with a bias term to direct the search [29].
Solis and Wets {30] have enhanced this approach by evaluating
the objective function at z — 6z if evaluation at z + 8z does
not improve the current value of the objective function and by
incorporating a variable perturbation variance. The bias and
additional function evaluation serve as stochastic equivalents
to incorporating momentum and gradient information. Baba
has successfully applied the method of Solis and Wets 10
training feedforward networks to predict SO, concentrations
in air [31].

Algorithm 1 from Solis and Wets [30) was used in the
studies presented here. The variance of the perturbation size
€ is controlled by the repeated number of successes, scnt,
or failures, fcnt, in decreasing the objective function f. The
contraction ct and expansion ex constants, as well as the upper
and lower bounds on standard deviation of the random pertur-
bations o are set by the user. The Algorithm 1 variant gives
the basic Solis and Wets method global optimization capability
by increasing the standard deviation of the perturbation when
it falls below an arbitrary lower bound (see step 2 below). The
formulation is described as follows

1. Initialize the search vector xg and bias vector by = 0.

Set k = 0, scnt=0, fent=0. Fix ex, ct, Scnt, Fent, oy, 0
and initialize o, = 1.
2,

ex-okx—; if scnt> Scnt

ct-ox—y if fent> Fent
ouw if ox1<on
Ok-1 otherwise

Set oy =

3. Generate a multivariate Gaussian random vector £ ~
N(bk ’ GI)
4Qa). If f(xkx+&) < f(xi), then set Xp41 = Xx + & and
br41 = 0.4 + 0.2bg, scat=scne+ 1, font=0.
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4(b). Otherwise, if f(xi - &) < f(xx) < f(xk + &),
then set Xp4) = Xi — €x and by = by — 0.4¢,,
scnt=scat+1, feni=0.

4(c). Otherwise,, X34y = X and by, = 0.5by, fent=font
+1, scnt=0.

5. If k = maximum number of iterations then stop, else

k=k+1 and go 1o Step 2.

The coefficient values 0.4 and 0.2 are n:tamcd from Solis and
Wets® results [30]. Note that the conditions in Step 2 are not
mutually exclusive. The standard deviation o specifies the size
of the sphere that most likely contains the perturbation vector,
and the bias term b locates the center of the sphere based
on directions of past success. Step 4(b) implements a reversal
strategy secking a better solution in the direction opposite to
that of initial perturbation.

Optimization experiments were conducted to find the point
(z1,72,) which minimizes the Bohachevsky [32] function
f(x) = =¥ + 2223 — 0.3c0s(3x2;) — 0.4cos(47z;) + 0.7.
The standard deviation was initialized as 09 = 1.0, and x
was initially sampled in the region x € {—25,25)? for all
the experiments conducted. The transcendental terms generate
many local minima within the region x € [-1,1)? while
the quadratic terms dominate the surface structure outside
this interval. A unique global minimum exists at x = (0,0).
The first set of experiments consisted of using the Solis and
Wets’ algorithm outlined above. The second set of experiments
employed the same algorithm, except that the bias term
was not used. A third set of experiments employed Gauss-
ian perturbations having a standard deviation proportional
to the magnitude of the objective function such that £ ~
N(b, f(x)I). The final set of experiments did not incorporate a
bias term so that £ ~ N(0, f(x)I). The variance modification
parameters are the same as those reported in [30): ex =
2,ct = 0.5,Sent = 5, and Fent = 3. The upper and lower
bounds on the standard deviation were set as o = 1.0
and g = 0.00001, respectively. The average results of
10 trials are shown in Fig. 2. Based on these experiments
of low dimensionality, it appears that the accuracy of the
extremum point may be improved significantly if the standard
deviation of the random perturbations is allowed to expand
and contract independently of the response surface height.
Also, roughly an order of magnitude improvement in the
cost function was observed using a random perturbation £ ~
N(0, /f(x)I) as opposed to £ ~ N(0, f(x)I). Modification
of the perturbation size remains an active area of research, as
exemplified by work in evolution strategies (33} and meta-EP
(34).

As successful as the basic Solis and Wets algorithm ap-
pears, search surfaces may be encountered for which global
optimization is not practical if g4 is continually less than
some critical standard deviation that guarantees one can tunnel
from any point on the search surface to an extremum with
reasonsble likelihood. To reduce the occurrence of entrapment
conditions encountered in SASS strategies, it is suggested that
the Solis and Wets random optimization method be embedded
in a multi-agent stochastic search such as EP. Even if oy, is
not constrained, a multi-agent search technique will provide a
more rigorous search over high-dimensional spaces.




MCDONNELL AND WAAGEN: EVOLVING RECURRENT PERCEPTRONS FOR TIME-SERIES MODELING Yy

— E ~N(bg
- ~N{bJ
Yo e ~N{0J

log()

-10 \ . . N . . N ——
] 10 20 3 40 SO0 60 70 80 90 100
iteration

Fig. 2. A comparison of variants of the Solis and Wets random optimization
method as applied 10 the Bobachevsky function and averaged over tea trials.
R appears that higher acceracy is atiained by allowing the variance of the
random perturbations ¥ expend and contract independent of the respoase
surface heigin.

C. The Evolutionary Programming Paradigm
In 1958, Brooks [35) described a creeping random method
where k points were generated via Gaussian perturbations
about a search point. The best point was kept and the process
repeated. Brooks observed that “there are some rather intrigu-
ing analogies that can be made between the creeping random
method and evolution.” This analogy was also apparent to Fo-
gel et al. {3] who proposed a population-based random search
strategy termed evalutionary programming where, instead of
keeping the single best point, a population of search points is
maintained.
EP is a systematic multi-agent stochastic search (MASS)
paradigm that can be used for finding global extrema on
response surfaces. Although the EP methodology simulates
the evolutionary process found in nature, the mechanisms
incorporated in this framework and resulting characteristics
may also be found in some of the stochastic optimization
techniques previously discussed. Normally distributed pertur-
bations are applied to the j** element z;; in the solution
vector x; according to &§x;; ~ N(0,Sy; - Ji + Bi;) where
Sy.i; is the scale factor, J; is the magnitude of the objective
or criterion function corresponding to x;, and f;; is an offset
vector {5]. The scale factor can be considered as a probabilistic
analog to the step-size used in gradient methods. Similar to
the hillclimbing and tunneling ability of simulated annealing
relaxation methods, EP employs a competition process that
allows less fit organisms (scarch points) to be retained in the
population in a probabilistic fashion. The competition process
is viewed as a competitive annealing mechanism. An EP
optimization algorithm similar to that in (S] is given below:
1. Form an initial population P = [xox)X2---Xan_1]
of size 2N by randomly initializing each n-dimensional
solution vector x;. A user-specified search domain x; €
[Eemins Zonax]™ may be imposed.

2. Assign a cost to each element z; in the population based
on the associated objective function J; = &(x;)s.t.d :
R~ - R

3. Reorder the population in descending order based on the
number of wins generated from a stochastic competition
process. Wins are generated by randomly selecting other
members in the population x; and incrementing the win
counter w; lf Ji < Jj.

4. Generate offspring (xn ---Xan-1) from the N highest
ranked elements (xg - - - Xpy_1 ) in the population by mod-
ifying each element x;; € x; with a random perturbation
ézij ~ N(0,Sy5 - Ji + Bij) such that

TitNG = Zi5 + 63.-,'.

3. Loop to Step 2.

A trajectory of the best population member at each gencration
during a search on the Bohachevsky surface is superimposed
on the Bohachevsky contours as shown in Fig. 3(a). Fig. 3(b)
shows best cost in the population at each generation of the EP
optimization process. The search is stochastic, so it is expected
this trajectory will vary in every trial.

A varicty of other techniques may be employed as alterna-
tives to the methods given above. For example, each additional
offspring can replace the least fit organism in the population,
as is done by [17] and [36]. In a parallel implementation,
Yip and Pao [37] generate a multitude of offspring from each
parent and replace the pareat with the best offspring in a
probabilistic manner using simulated annealing. When the off-
spring are gencrated with structural modification(s), some level
of parameter optimization should occur rapidly to reduce the
occurrence of discarding good structures. One approach might
be to allow these new, higher-cost members of the population
to mature by modification of the objective function according
to J'(z,k) = (1 — e~("*+2)) J(z) where the maturity lcvel
k of a population member could be determined by how
many generatioas it has existed within the population and the
parameters 7 and a are user-specified. A deterministic means
to minimize redundancy might also be employed to delay the
potential dominance of a single member in the population.
After all, only a single solution is required and convergence of
all the members in the population to a single point reduces the
effectiveness of the search process in exploring other portions
of the search space. Retention of higher-cost search points can
be done probabilistically by setting the number of competitions
to an arbitrarily low value, thus allowing a more relaxed
search. As the number of competitions increases, the retention
of the more fit individuals becomes more deterministic. Fogel
{34) discusses other variants of the EP paradigm.

The EP search outlined above was augmented with simple
bisection search capabilities by averaging. or “blending,”
randomly chosen vectors according to xo = 0.5(x; + x;)
where x; and x; are the randomly chosen parent vectors
selected from {xo,---,Xn_1} and X is the offspring vector.
This was done for half the offspring while the other half were
generated using the perturbation approach §z; ~ N(0,J; - I)
where the covariance matrix is an identity matrix scaled by
the value of the objective function. The normal perturbations
complement the averaging or bisection search method since
it is unlikely that the best solution point exists on the line
between two search points. Likewise, blending clements of the
population complements the random walk procedure generated
by the evolutionary search if it is assumed that the population
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evolutionary programming. (a) The trajectory of the best member in the population at each

generation is on the contour plot of the Bohachevsky function with §; = 1, 50 parents, 20 competitions. (b) The
cost of the best member in the population at each generation. Since EP is a stochastic optimization process, the trajectory shown

in (a) will undoubtedly vary for each trial.

points are distributed about an extremum point. The average
results for 10 optimization trials on the Bohachevsky function
are shown in Fig. 4. The next experiment decoupled the cost
function from the perturbation size so that éx; ~ N(0,I).
By decoupling the perturbation variance from the objective
function, roughly an order of magnitude improvement in
the best member of generation 100 was observed as shown
in Fig. 4. Fogel (5] reports requiring an average of 65.5
generations over 20 trials to achieve log;o(f(x)) < —6 using
the same number of parents (50) and offspring (one per parent).
By decoupling the cost function and implementing & simple
bisection search, it took less than 30 generations, as averaged
over 10 trials, to achieve similar results. The bisection search
will not provide an advantage unless the global optimum is
bounded by a portion of the population.

D. A Hybrid Approach

Single-agent stochastic search methods can be easily in-
corporated into EP without sacrificing the integrity of the
evolutionary search procedure. A variant of EP is proposed
to take advantage of the benefits offered by Solis and Wets

- Nf0.1
weeeees NCOS

0 10 20 0 40 S0 60 70 80 90 100
Generation

Fig. 4. Augmenting the EP search strategy with bisection search where the
offspring are geacrated by averaging two randomly selected parent vectors.
Half of the offspring were gencrated by mutation, the other half by averaging
peirs of randomly selected parent vectors. The bisection search is useful when
combined with muiti-agent stochastic. methods that distribute the population
abowt a globel extremum.

and blending methods discussed in the preceding sections. It
is speculated that different random optimization methods will
prevail on different types of response surfaces. Based on its
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Fig. 5. One generation of the hybrid

stochastic search. The first set of offspring is generated by perturbing the parent

. -
vectors with N(0, o) random varisbles. The standard deviation can be: tied to the height of the response surface so thai ¢ = Sy - cost.
The second set of offspring is generated by sn aversging or blending process. The third set of offspring is generated sccording 0
the Solis and Wets algorithm and deterministically replace the parents of a lower cost is achieved. Note that the variances in the
offspring are generated by different methods and are not the same.

- multi-agent search capabilities, EP is an attractive framework
for combining a variety of stochastic search procedures. Al-
though the previous experiments in a two-dimensional search
space are not conclusive, the following propertics appear
potentially beneficial to a hybrid approach: 1) multi-agent
search and variance expansion tend to avoid local minima,
2) information gamered during the search process about the
response surface can be used to direct the search, and 3)
convex optimization and perturbation variance reduction inde-
pendent of the response surface height may improve accuracy.
Making the perturbation variance proportional to the value of
the cost function may not always yield optimal performance.
Decoupling the perturbation variance from the cost function
value may prove beneficial since the shape of the response
surface is often not well known and may even take on
negative values. A similar decoupling strategy was employed
by Waagen er al. [24). If the height of the response surface
is known a priori, then the offset 8 (see Step 4 of the EP
algorithm) in the standard deviation of the perturbations can
be incorporated. Unfortunately, knowledge of the height of
the response surface generally corresponds to determining the
location of the global extrema. If cost functions for which
the optimal value is zero, such as mean-squared error, are
employed, then this issue is less significant.

Figure 5 illustrates a hybrid approach that employs different
methods for offspring generation within EP. While parents are
selected from the whole population in the usual fashion [5),
the manner in which the offspring are generated is variable.
The first set of offspring results from parent search points that
are perturbed by a random vector §x ~ N(0,0 - I) where
o can be fixed [24), proportional to the comresponding height
of the response surface [5), or conditionally based on search
performance [33). The second set of offspring results from
blending the parameters associated with a pair of randomly
chosen parents. This may be as simple as averaging all of the
elements in the search string. If the model structure is part of
the search vector, then both the first and second set of offspring
can casily accommodate changes in the model structure as
well as the weights. The final set of offspring is generated

using the method of Solis and Wets, which acts on the existing
parent structures. Each offspring in this third set will replace
its parent if the offspring has lower objective function than its
predecessor. The type of convex optimization method applied
to the second set of offspring may also be applied to other
parameters, such as the bias vector b. For example, if the
Solis and Wets bias term is included in the search string, then
the first set of offspring is instantiated with b = 0, while
a member of the second set of offspring will have a bias
vector determined using by =0.5*(b.~+b,-),theteby taking
the average of the bias vectors from two randomly selected
parents. The other Solis and Wets parameters are instantiated in
a similar manner, as are the structural parameters (i.c., model
order, in this study). Although the Solis and Wets method
could be repeatedly applied to the offspring, and has been done
s0 with success, it is speculated that the different offspring
strategics offer a more robust search as well as help to maintain
diversity.

The average cost from 10 trials using the hybrid approach
on the Bohachevsky function is shown in Fig. 6. The hybrid
technique achieves an accuracy of 10 orders of magnitude
within 50 generations (this corresponds to a maximum of 7550
function evaluations). In order to ascertain which optimization
procedure was being utilized, a histogram was generated from
two sample optimization runs on the Bohachevsky response
surface as shown in Fig. 7. These runs contained 10 parent
vectors and two sets of 10 offspring vectors generated via
normal perturbations and blending, respectively. One run was
made with fixed variance perturbation vectors £ ~ N(0,I);
the second tria} was conducted with the perturbation variance
proportional to the cost function £ ~ N(0,J - I). When
N(0,J - I) perturbations were incorporated, the perturbation
techuique was the predominant beneficial search mode. When
N(0,I) perturbations were used, the Solis and Wets search
technique provided most of the optimization capability. The
averaging method rarely yielded the lowest cost member in
the population.

Before dismissing the blending approach as inadequate,
some comments should be made regarding these results. It
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Fig. 6. Optimization of the Bohachevsky function using the hybrid scarch
mwﬂ”mmhemﬂaofeﬂqu;haaﬁxed
variance 0 = 1.

Ne. of cosmenen

g
]

o 8
-] T .y

5 10 15 20 25 30

-

Fig. 7. A histogram that shows the frequency of the occumence of the
gencration member with the lowest cost for the Bohachevsky response surface.
The N(0,1) perturbations are generally 100 large for the small global well,
and optimization occurs primarily via the Solis and Wets technique. The
N(0. cost) perturbations are small enough for optimization to occur within
the global well. The bliended or averaged set of offspring rarely occurs.

is expected that the top members (say, vectors 1-5) of the
population will tend to be the best if, only by default, better
solutions are not found. The larger perturbations will generate
points outside the small diameter of the global well as observed
in the £ ~ N(0,I) section of the histogram. This is also true
in some respect to the Solis and Wets optimizaticn procedure,
since it was instantiated with a unit variance and discrete
changes occur to the variance based on the performance of the
search vector. When the Bohachevsky function was artificially
elevated so that the global minimum had the corresponding
cost f(0,0) = 10, the histograms for the two methods
were virtually identical. Since subsequent investigations in
evolving perceptron architecture relied heavily on the blending
approach, the conclusion is drawn that implementing a variety
of stochastic methods within EP provides a robust approach
for the optimization of problems whose response surface is
not well known. Incidentally, both of the runs that generated
the histograms in Fig. 7 yielded nearly identical levels of cost
afier 1000 generations.

The Rosenbrock [38] function f(x) = 100(zx} — z2)? +
(1 — ;) was chosen for comparing the hybrid approach to
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optimization methods using Solis and Wets and the hybrid
approach on the Rosenbrock response surface. Fifty parent points were used
in the hybrid technique. Each generation corresponds %0 a maximum of 150
function evaluations for cach method. The second set of offspring in the hybrid

approach have a fixed perturbation variance of ¢ = 1.

the Solis and Wets random optimization method. This function
has a unique global minimum at x = (1,1) and is referred
10 as a “banana valley” because it contains a steep valley
along z2 = z. Figure 8 shows the average and best results
from 10 trials for both the Solis and Wets technique and the
hybrid approach outlined above. In an effort to compare the
search processes based on an equivalent number of maximum
function evaluations, each generation equals a maximum of
150 function evaluations for the Solis and Wets method and a
maximum of 150 function evaluations for the hybrid approach.
Both average curves show optimization was still occurring
after the maximum number of generations or iterations had
been reached and the experiment was arbitrarily halted. These
results compare favorably with generic EP results {5] where
it is reported that it took an average of 86 generations (over
20 trials) to achieve an accuracy of log,q(f(x)) < -4. It
should be noted that the results generated from the Solis
and Wets method, by itself, are also comparable. Now that
the capabilities of the hybrid stochastic search have been
demonstrated on well-known response surfaces. the next step
is to determine its effectiveness in evolving simple recurrent
perceptron structures similar to those shown in Fig. 1.

IlI. EVOLVING RECURRENT PERCEPTRONS

A. Motivation

The recursive structures shown in Fig. | are referred to as
recurrent perceptrons because they incorporate nonlinearities
on the output of a recursive lincar combiner. The recurrent
perceptron structure is inspired by recursive adaptive filters
and the discrete time equation that models linear time-invariant
(LTI) system dynamics

m-1 n-1
yk+1) =Y ax(k—i)+ Y baylk - )
i=0 =0
where z represents the input to the system and y is the system
output. While much is known about the stability, controllabil-
ity, and observability of LTI systems, as well as methods for
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generating models of such systems, the same cannot be said
for nonlinear systems in general [39). Nonlinear versions of
the identification models (motivated by LTI dynamics) given
in Narendra and Parthasarathy [39] are described by

nonlinear parallel model:

m-—1 n-1
ylk+1) = f(Z Gz(k —i)+ Y bk - i))
1=0 =0

nonlinear series-parallel model:
m—1 n-1
#k+1) = f(z a.-z(k—i)+26.-y(k—=‘))
i=0 i=0

where §j is the estimate of the system output. The nonlinear
series-parallel model is a transversal structure that utilizes
the actual system outputs. Further, its linear counterpart is
preferable for generating stable adaptive laws [39]. As stability
is paramount when generating recursive filters, stable filters
were always evolved using the hybrid stochastic search method
implemented in this investigation.

The recurrent perceptron structures investigated in this study
are characterized by the following difference equations

Class I: y(k+1) =f[z(k),z(k - 1),z(k - 2),---,
z(k — m + 1), y(k),y(k - 1),
y(k-2),---,y(k-n+1)

Class Il: y(k+ 1) =flz(k),z(k - 1), z(k - 2),

. ,I(k -m+ 1)1 y(k)vy(k - 1):

y(k—2),---,y(k —n +1)]
+ glz(k), z(k — 1), z(k - 2).-- -,
z(k — m + 1), y(k). y(k - 1),
y(k-2),---,y(k-n+1)

where f and g are not necessarily the same mapping. The
Class I is similar to the Model IV discrete time plant model
given by Narendra and Parthasarathy [39] for nonlinear system
identification and control, except that the nonlinear transfor-
mation in [39] is implemented with a multi-layer perceptron
and the nonlinearity in this paper is accomplished using a
single perceptron. Class II is similar to the Model III discrete
time plant model given in [39], if the evolutionary search
process yields an f that is dependent only on previous outputs
[w(k),y(k = 1),---,y(k — n + 1)] and a ¢ that is dependent
only on past inputs [z(k),z(k — 1),---,z(k — m + 1)]. The
selection of these models in [39] was “motivated by the models
that have been used in the adaptive systems literature for
the identification and control of linear systems and can be
considered their generalization to nonlinear systems.”

B. Formulation

The recurrent perceptron model structure shown in Fig. 1(a)
is characterized by the Class I difference equation and can be
described by

m-1 n-—-1
glk+1) = 1(2 aiz(k - i)+ Y big(k -i)+a)

i=0 i=0

where the search strategy must determine the order of the
feedforward terms, m, the order of the feedback terms, n,
as well as the feedforward coefficients, a;, the feedback
coefficients, b;, and the bias a. The [[R synapses proposed
by Back and Tsoi [40] and the neurons used by Li and Haykin
{22] have the same structure as this nonlinear parallel model.

Recalling that polynomials can also be used to approximate
any static mapping f : R™ — R™ to an arbitrary degree of
accuracy, and that the sigmoid function can be expressed as
an inverted polynomial series

fX)=(1+e %)= (l + z”: (——:l)
=0 -

leads to the suggestion that other nonlinear mappings that can
also be expressed by polynomial series are equally applicable
for use as activation functions {41}, [42]). The stochastic
scarch method used for training does not explicitly incorporate
knowledge of the activation function (just [/O observations),
$0 any activation function can be implemented without regard
for continuity constraints. By virtue of their smoothness,
continuous activation functions tend to possess good function
approximation properties. The search may even be conducted
over a set of candidate mapping functions F such that f € F -
thereby incorporating the selection of the activation function(s)
in the evolutionary optimization process.

The objective function_for each perceptron is similar to
Akaike’s minimum information theoretical criterion (AIC)
estimate [43) as employed by Preistley [44] for evaluating
autroregressive moving-average (ARMA) models

AIC(m,n) = NIn(62) + 2(m + n + 1)

where N is the effective number of observations. An additional
factor of 1 is added to the number of fitted parameters (m +n)
to account for the bias term a. The MLE of the innovation
variance (44] is determined according to

L N2
2= = Y (k)
N k=0

where the observation error is given by é(k) = y(k) — g(k).
To prevent the search process from driving the number of
parameters to zero and stalling at a large MSE, the mod-
ification to the model order can take one of three states
(-1,0,+1). Approximately 20% of the time, either of the
conditions (-1, +1) existed for a randomly selected tapped-
delay line. Thus, if there are four tapped-delay lines, each line
is being modified about 5% of the time. If a large number of
tapped-delay lines are employed, then the percentage of time
that any of the lines are affected may be increased to maintain
a similar modification ratio.

If direct linear feedthrough [45] capabilities are desired to
be.present in parallel with the nonlinear contributions, then
the perceptron structure can be reformulated as a combination
of linear and nonlinear recurrencies. This combined structure
corresponds to the Class II model where g is a linear functional
as shown in Fig. 1(b) and is expressed by

k+1)=go(k+1)+gn(k+1)




where

m-l n-1

ek +1) =) az(k-i)+ ) bj(k-i) +a
] im0

and
r~1

q-1
in(k+1) = f(zc.-z(k—i)+zd.-ﬁ(k—i)+a)
=0 i=0

If this structure or its variants are used, then the AIC score
becomes

AIC(m,n,p,q) = Nn(62) + 2(m +n+p+q+2)

Once an acceptable model has been determined, the evo-
lutionary model building procedure can be iteratively applied
to the residuals as discussed by Priest.cy [44]. Deterministic
training can also be applied to the evolved model in an effort
to “fine tune” the model coefficients. Deterministic training
was usually not applied to the nonlinear models generated in
this work, cither during or after the training process, and may
potentially have yielded slightly better results.

C. Deterministic Training

More deterministic methods may be used to update the
perceptron weights while the model structure is evolving, or
they may be applied to the results of the stochastic search as a
post-processing check to ensure local optimality. The recurrent
perceptron model corresponding to Fig. 1(2) can be described
by

Y41 = f(wT2)
where
wl =[¢lo G - Gm-1bo by --- bn—la]
2T = [Tk Tkt *** Tkomi1 Yk Yke1 " Yhnt1 1]
If the objective function is given by the instantaneous squared-
emor E, = e} = (2 — yi)? where z; is the desired
output, then a straightforward gradient approach yields the

well-known stochastic approximation weight update equation .

Woew = W + nei f'(wTz)z

Tsoi and Back {40) have derived a multi-layer perceptron
version of this update scheme for nonlinear FIR and IIR
perceptrons. Williams and Zipser [46] have also formulated
a batch update scheme with an arbitrary lag window for
recurrent multi-layer perceptrons.

IV. PREDICTION RESULTS

A. The Simple Pendulum
Coansider the equation for a simple pendulum with a
velocity-squared damping term
JO + BO) + Ksin =1

where J = 1, B = 0.1, and K = 1. For simplicity, the
system was simulated using Euler integration with a stepsize of

:

0 S50 100 150 200 250 300 350 400 450 500
GENERATION
Fig. 9. Evolutionary optimization of the pendulum model. The lowest AIC

score in the population is shown at each generation of the evolutionary search
process.

0.0S. A linear-nonlinear series-parallel model was postulated
according to

m-—1 n-1
Bk +1) =Y air(k—i)+ > bf(k~i)
i=0

=0 —t -
+sin (E ar(k—i)+ ) dib(k - i))
i=0 =0

where the maximum window size was limited to five samples.
A N(0,1) random forcing function was used to generate
50 000 samples, S000 of which were used for training pur-
poses. The search population consisted of 10 parents, each
generating a single offspring using EP perturbations, as well
as another set of 10 offspring by averaging randomly chosen
parents.

The optimization process took place over 500 generations as
shown in Fig. 9. The resulting model does not incorporate the
forcing function, but instead relies only on past observations
of the pendulum displacement as given by

8(k +1) = 0.87220(k) + 0.78588(k ~ 1) — 0.41276(k — 2)
~0.31908(k — 3) + sin(0.06876(k))

Note that this approximation can be reduced to a purely
linear system because of the small coefficient on the sin
argument. The simulated system is almost linear by virtue of
the small displacements and angular velocities. This model has
a MSE=1.54 - 103 for the training data shown in Fig. 10. A
test set was generated using 7(k) = 0.5cos(2xk/1000) with
the resulting MSE=3.69 - 106 on the testing data shown in
Fig. 11.

B. The Sunspot Series

The second set of experiments was conducted on Wolf's
sunspot series for the years 1700-1988. These numbers are
indicative of the average relative number of sunspots observed
each day of the year and serve as a standard benchmark for
time-series modeling {12), {13}, (40] where the objective is
to generate a single-step prediction based on past observa-
tions. Consistent with Weigend et al. [12], the data set was
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Fig. 10. (a). The desired output used in the training set. (b) The eror for

cach point in the training time-serics. The forcing function 7 N(0,1) was
not incorporated in the resulting model.

partitioned into a training set over years 1700-1920 and test
sets for years 1921-1955 and 1956-1979, respectively, as
the latter test set is atypical of the entire time-series [13).
Weigend et al. use 12 inputs to 8 hidden units in a 12-8-1
fully-connected feedforward architecture where the number of
inputs was chosen to allow direct comparison to the threshold
autoregressive (TAR) model of Tong and Lim [47). Weigend
et al. subsequently reduce the 12-8-1 network to a 12-3-
1 network by weight-elimination. Svarer er al. [13] employ
the Optimal Brain Damage method of Le Cun er al. {48] to
generate a pruned network or nonlinear subset model with S
inputs that are not fully-connected to 3 hidden units in a two
layer feedforward network. Priestley [44) describes a variety
of more traditional time-series models for the sunspot data set.
These include autoregressive (AR), ARMA, TAR, and bilincar
models.

Poor results were usually obtained when using simple
structures like that shown in Fig. 1(a), and reasonable results
were usually found using the Class I type models for a
variety of activation functions. Also, nonrecurrent models were
evolved by using the evolutionary search process to determine
the order of just the tapped-delay input lines. The maximum
number of delays was arbitrarily set at Mpay = Nmax =
Pmax = Gmax = 20 for the remaining experiments in this
work. The sunspot data set was normalized by a factor of 200.
The experiments were run with 10 parents, 20 offspring (10
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11. (a). Test data for the pendulum model generated from
7(k) = cos(2xk/1000. (b). The error for the test time series.

Fg.

for the blending process and 10 utilizing normal perturbations
where the standard deviation is proportional to the MSE of
the network), 10 competitions, oy, = 0.0001, and o = 1.0
and Sy = 1. The initial order of the tapped-delay lines was
randomly chosen.

To facilitate comparison with previous work done on the
sunspot series, the average relative variance was determined
for the evolved model. The average relative variance arv is
given by [12]

_ a0\ 1 )
R B Y e

and provides a normalized mean squared error (NMSE) met-
ric for comparing the performance of different models. The
NMSE is independent of the training set size and is unity in
the event that the estimate is equivalent to the mean of the data,
(i.e., £ = 7). In the following text, the arv set {arvl, arv2,
arv3} will refer to the average relative error corresponding to
{training set, test set (1921-56), test set (1957-1979)}.
When constrained as a linear system, a second-order
transversal filter with a bias term as given by fx41 =
1.2605z; — 0.4915zx_; — 0.1321x,_4 + 0.0831 was evolved.
That is, the order of the feedback lines became zero. The
evolved linear model has an arv = {0.1494,0.1732,0.4512},
which compares favorably with the ninth-order AR model
given by Priestley with an arv = {0.1865, 0.2235, 0.4994}. It

arv =
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TABLE 1
WaionT SET *oR THE EVOLVED TRANSVERSAL FiLTen NETWORK
Hidden unit 1 Hidden unit 2 Bias
Output —0.9448 —-1.1872 0.5423
xx Tk-y X2 Ix-3 Ti—q Ti-5 Ty—6 Ti-7 Bias
Hid unitl -1.5332 1.7664 1.3729 0.3080 -0.2951 0.0252 -0.2966 ~0.2740 1.1819
Hid uniQ2 —1.1093 - - - - - - - —0.2191
TABLE II
WEIGHTS FOR THE EVOLVED. RECURSIVE, FILTER NETWORK
Hidden unitl Hidden wnit 2 Input biss Output bias Input bias
Output -0.6550 1.0668 —0.2323 0.3079 —0.2323
Ty Tg-1 T2 Te—-3 Tkt Tk-5 Zk—6
Hid unitl -0.6512 0.5742 0.9500 0.0830 —-0352 —0.0531 0.0065
Hid uni2 1.3000 0.3824 03040 - - - -
Te—7 T8 Vi Vi1 Va2 Ve-3 bias
Hid wnit 1 -0.2252 —0.1251 0.5443 03283 —=0.0391 0.3393 02483
Hid unit2 - - - - - - 0.1042

is interesting to note that the subset model found by Svarer er
al. also includes the first three terms {z(k), z(k~1), z(k-2)}
as well as {z(k — 7),z(k — 10)}. (Neural network subset
models were not investigated in this study but are achievable
using EP as demonstrated in (18].) From this model structure,
a least-squares estimate can be found by forming the normal
cquations from y = Hw or equivalently

-

v3 2 W 1 0
e | | v2 n lllw
2 I A |
k+1 k Yk-1 Ye—2 1] W3

and solving for the weight vector wps = (HTH) 'HTy.
If this is done using the complete data set, a pure follower
strategy results, since wzs = [1000]T. The follower strategy
yields an arv = {0.2903,0.4268,0.9647}. No improvement
was found when a gradient search scheme was applied starting
from the evolved weight coefficients. This yielded a slightly
modified weight coefficient vector w = [1.2612 — 0.4899 -
0.1248 0.0791]T after a small number of iteration

A transversal filter network was purposely evolved by dis-
allowing feedback of the previous estimates into the network.
The resulting network is equivalent to a single hidden layer
network with two hidden units, one of which receives eight
inputs and one of which receives only the last observation.
The weights and biases for this network are given in Table
L. Each node utilizes a tanh activation function. The average
relative variance for this network is given in Table III along
with arv values for deterministically trained models. The better
transversal networks that are known [12], [13] have three
hidden nodes and utilize observations from an eleventh-order
lag that corresponds to the average period of the data. The
best model is ogly partially connected, thereby incorporating
a subset of the actual time-series inputs.

A lincar-nonlinear model incorporating a tank nonlinearity
and a bias term was evolved as given by

Jks1 = 0.5788y; + 0.0176y,_; — 0.1396y,_, + 0.0549y;_3

— 0.0508yx-.4 + 0.1030yx.s — 0.0239%;_¢

+ 0.01997yx_7 — 0.4076§ — 0.2614§x_;

+ 0.0475 + tanh(0.7109y, — 0.0569y:_,

— 0.0375yx.2 — 0.0324y;_3 — 0.0532y;-4

— 0.0630yx-s — 0.0180y,_¢ + 0.0687y_7

+ 0.0964y,-s + 0.086%yx—9 + 0.0768%;

+ 0.1740§x_,)

This single-step sunspot predictor has an erv =
0.1140, 0.3630}.

Using a structure similar to that of the transversal network,
except this time with feedback connections to the hidden
units, a recurrent network was evolved where the search
determined not only the order of the input lines, but of
the feedback lines as well. During the training process, the
number of tapped-delay lines on one feedback loop became
zero, thus resulting in a partially feedforward network and
partially recurrent network. The weights for this structure
are given in Table II. Better results were not obtained on
the sunspot data using this network or any of the other
evolved recursive filter networks. The recurrent networks' arv
values are given in Table III, where the first 20 observations
have been substituted for the estimated values. A plot of the
single-step estimates generated from the recurrent network is
shown in Fig. 12(a), with the error line shown in Fig. 12(b).
Although better transversal networks have been generated,
it is still suspected that recurrency might be appropriate for
this data based upon the results discussed by Priestley. Better
results might be obtained in evolving both the transversal and
recurrent structures if the representation (number of hidden
nodes) is increased and the complexity penalty for the number
of terms is relaxed.

{0.1260,
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TABLE I
COMPARISON OF NORMALIZED Ergor RESULTS OF PREVIOUS WORK ON THE SUNSPOT DATA SET WITH THE SoLuUTION FOUND USING A RECURRENT STRUCTURE
Model Train (1700-1920) Test (1921-1955) Test (1956-1979) Number of parameters
Tong and Lim [44) 0.097 0.097 0.28 16
Weigend {\it et al.} (12] 0.082 0.086 0.35 43
Svarer (\it et al.} {13} 0.090 0.082 0.35 12-16
Transversal Net 0.0987 0.0971 0.3724 14
Recurrent net 0.1006 0.0972 0.4361 22
TABLE [V.
PERFORMANCE OF SINGLE-STEP PREDICTORS ON THE LOGISTIC MAP FOR 100 SAMPLES.
Predictor Zo AIC MSE ISE arv
Bpqr = 02 -316.7 0.0004 0.0004 0.0032
sin(3.1476z; ) +
0.0274
£441 = sin(wxy) 02 -213.7 0.0012 0.0013 0.0091
1-10-1 netwark 02 -117.1 0.0017 - 0.0131
1.15-1 network 0.2 —303.4 0.0002 0.0015
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Fig. 12. (a) The evolved recurrent model for the sunspot data. was
done over years 1700-1920. The test set coasists of years 1921-1988. The
first 10 deta training points were 0ot included in the model evaluation criteria
(this corresponds 10 the maxisum model order) of the evolved filter. (b) The

ervor trace for the evolved recarvent singie-sicp sunspot predictor. The data
was normalized by a factor of 200.

C. The Logistic Map

Weigend et al. [12] use the iterated quadratic or logistic map
Zir41 = 42(1 — z4) on the unit interval as an example of de-
terministic chaos. It can be easily shown that z,, = sin?(2*x0)
is a solution to this equation. A single-step predictor of the

+sin (Ec.z(k ) +Zd.y(k - t)) +a

was postulated. After 5000 generations, the evolutionary
search yielded a predictor of the form ;41 = sin(3.1476z, )+
0.0274, thereby disregarding the cos node and the recurrent
terms (the tapped-delay orders of m,n, and ¢ went to zero).
Fig. 13 shows the results of the evolved solution on 200
points generated from zo = 0.2. Upon inspection of the
evolved solution, it was observed that §jx4) = sin{xz,) might
serve as a suitable estimate. Figure 14 shows the performance
of this estimate on the same 200 points used in Fig. 13.
Figure 15 gives the state space plot for each of the estimates
and the actual quadratic mapping function. Table II contains
representative AIC and MSE values for a 100 point sequence
starting with the given initial condition. The initial error at 7o
was neglected in these calculations because no observations
have been made. For a large number of data points, the
integral-squared error (ISE) represents a closed form solution
to the MSE since

MSE = — Z(zﬂ-x — i) = Z(ztﬂ = Zi01)*Az;

l—l =]

In the limit, the MSE approximation becomes the ISE that is
defined on the unit interval [0, 1] as

1
ISE = / (a1 — Eag1)’dzs
[+]

which is also reported in Table IV.

This example illustrates the potential ability of the search
to find nonrecurrent solutions when recurrent solutions are
unnecessary. Weigend er al. report using three radial-basis
function nodes to achieve this mapping without further elab-
oration. Investigations using backpropagation showed that a
better solution can be found for 10 < N < 15 hidden units in
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Fig. 13. Logistic map test data and the evolved solution of the form
£p41 = 5in(3.1476x4 ) + 0.0274.

a 1-N-1 feedforward network. The AIC values given for these
networks in Table IV were determined according to

AIC(N,,) = Nin(82) + 2(N,,)
where N,, is the number of weights and biases in the network.

D. The Mackey-Glass Equation

The Mackey-Glass equation represents a model for white
blood cell production in leukemia patients [49]. This model is
complicated by the addition of a time delay 7 in the nonlinear
differential equation

az(t — 1)

M) =Tw=n

- bz(t)

where the free parameters are selected ¢ = 0.2, b = 0.1,
c = 10, and 7 = 30 as discussed in Jones er al. [10]. The
training sets consisted of S00 data points, while the test set was
comprised of the subsequent 500 data points. This data was
extracted from a longer run so that the initial transients would
have no effect. The data were normalized by a factor of 1.4 and
observations were made every second that corresponds to the
simulation stepsize. These experiments incorporated a parallel
sin-cos nodal arrangement as used in the logistic equation
example. After 5000 generations of training, the resulting
4-5-2-1 plus bias solution has the form

Y41 = coS(1.2881ys + 0.7920y—; + 1.6431y,_»

— 0.2588yx_3 — 0.7175y;.4 — 0.32399;
1.05199% ) — 0.0572§;-2 — 0.21403;_3
— 0.1310§c—4 — 1.1726;_5) + sin(2.9475y;
+ 0.8605yx—; + 0.006%yx_-

— 1.68004, — 1.00204;—,) — 0.9784

Figure 16(a) shows the results of this model on the training
and test sets, while Fig. 16(b) shows the error on the same
data sets. For the data sample shown in Fig. 16(a), Table
V lists the AIC, MSE, and arv values of the training and
test sets for the evolved single-step predictor. The last 450
points of the training set were used for evaluation purposes
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Fig. 14. Logistic map test data and the estimate £ 4, = sin(xx;) generated
from inspection of the evolved solution.
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Fig. 15. The state-space plot for the logistic map. Observations generated
from x4y = 425(1 — 1) are denoted with an “0,” the evolved solution
estimate T;4; = sin(3.1476x,) + 0.0274 is denoted by an "x," and the
estimate generated by inspection, the evolved solution 14, = sin(xxyx) is
denoted by a “+.”

of the training data to allow the transient effects due to
the perceptron recurrencies to die out. This difference in the
number of observations alters the AIC scores. Nevertheless,
the arv values compare favorably with the results found in the
recurrent network training evaluation done by Logar er al. [50]
for the Mackey-Glass equation with T = 17. The preditor can
be made nonrecursive by letting § — y, which yields a MSE
= 0.00088 and an arv = 0.0232 on the test set. However, if a
transversal filter is desired, it is suspected that better resuits
would be obtained by training the appropriate structure. This
model performs poorly if forward projections are generated
by replacing the observations with previous estimates so that
y « §. A two-step ahead predictor yields a MSE = 0.0070 on
the test set, while a three-step ahead predictor is dramatically
worse with a MSE = 5.1125 on the test set.

V. CONCLUSION

This work has incorporated an efficient single-agent search
strategy, the method of Solis and Wets, into the EP frame-
work and augmented it with the simplest convex optimization
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Fig. 16. (). The evolved solution on the training and test data generated
from the Mackey-Glass cquation. The first 500 points were in the training
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shown in Fig. 14.
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TABLE V
THE PERFORMANCE RESULTS FOR THE NEXT-STEP
AHEAD PREDICTOR ON THE MACKEY-GLASS EQUATION

Data set No. of effective AIC MSE arv
observations
Training 450 —~4406.1 0.00005 0.0014
Test S00 ~4594.4  0.00009 0.0025

capability, bisection search, to yield a hybrid multi-agent
stochastic search technique. This hybrid method can enhance
EP optimization efficiency while alleviating local minima
problems associated with single-agent search techniques. A
myriad of other local methods could also have been easily
incorporated with the multiagent EP search procedure.

The hybrid method was applied to nonlinear [IR filters
for single-step prediction tasks. Since the model structure
was simultaneously determined along with the weighting co-
efficients, the evolved solutions did not always have re-
cumrent structure (i.c., transversal filter structures sometimes
resulted). Good single-step prediction ability was evolved
using nonlincar mappings, even though the resulting models
were dissimilar to the models (if any) that created the original
data. The leamning procedure had the most trouble with the
noisy sunspot data, indicating that the representation may not

be sufficient and/or additional work is warranted for systems
with noisy output. Other types of information-based criteria,
such as the minimum description length (MDL) modeling
principle [51], can be used in lieu of the AIC as an objective
function, and may yield better results, since the AIC is not a
consistent estimator [52).

The simple structures investigated in this work demonstrated
a rcasonable degree of proficiency for the nonlinear time-
series problems studied. Similar AIC values were attained for
a varied assortment of models of the same data sets. From
these results, it is suspected that the joint parameter-function
space of particular data sets may be dense in the number
of acceptable solutions, some of which may be found by
the relaxation scheme employed in this investigation. While
it is evident that the hybrid stochastic optimization scheme
provides an effective lcarning mechanism, the issue of what
types of time-series representations can be effectively modeled
using this approach has not been addressed in this investiga-
tion. By cascading and/or parallelizing recurrent perceptrons
to generate multi-unit networks, as in traditional feedforward
architectures, additional capabilities for more complex time-
series processing tasks may be achieved.
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