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Evolving Recurrent Perceptrons
for Time-Series Modeling

J. P_ McDonneL Member. IEEE, and D. Waagen

Absueg-4voludonary peropwralem&g a systematic ndl~gest y (k+l)
isbcbsc seach technique, IS uged to genera m.t r per%- Zav
cepitrgas (womlhuar Hit Uters). A "Mri aOpthiatis schom Is
Vropume dwtht embeds a dskal-ageft Stochastic avarch tecbique,.
the method- of Sois and Web laob the evolmidamy pera-
of -aadp The -rpoe hyri -phkei - -,

Is tfsrtkr augmeated by "bleading randomly selectud paent
vectors to crawte additional olrsprng. 7he fis paot of this we*rka

avIISates the performance of the suggesed hybrid dstchastic
P"~ method. After demonstration on the Bohachevsky and

Reseabrock eIa s Pe surfaces the hybrid stochastic epdobhaion
apprach is appllied In dewhteing both the model order and
the eaefedesits of recurrent perceptron tim-series modes. An
laformetloncriterio Is ed toevaluateeach recmuret pereep- -
tram sbruch to a candidate solution It ks spctditht the+
stochastic fbtran =metod Implemented In this study for tralinin
rem.r-n percqitrons cam he sued to train perceptron networksY+I
that have radically recurrent architectures.

L INTRODUcnON

allow for the feedforward information to be distributed back saructures may resut.
into the network, and may result in increasingly complex
nonlinear manifolds with an increasing order of recuremcy. the ability to determine model structure [5), and the ability to
lbis work demonstrates the application of the evolutionary tri nera newok [6).
search method in -evolving- simple recurrent pecprosta The "perceptron" in this study refers to a recursive adaptive
may serve as building blocks for momC compicahted ~strcurs filter with an arbitray output function. Fig. 1(a) shows the
Once feasibility is demonistrated for Simple` recurrent proposed perceptro structure or nonlinear hIR filter. Fig.
tron structures. the evolutionary search method can then be b)sosalnr-oierachttuatogaswl

appled o hghl reurrxitperepton ork " P"' be seen in fth late studies, the linear activation function
architectures. Stochastic methods are an attractive trintiing could be replaced by one that is nonlinear. This recurrent

optin fr cmplcatd arlumturs bcaue feyatre niots perceptron model is inspired by the structure of infinite im-
constrained to a specific network topology. This fetr lospulse response (fiR) filters and is postulated for time-series
both the network structure and weights to be determined during modeling. This work applies an evolutionary or systematic
fte training process.mut-gnstcatcsactodtriehererfte

Simultaneously determining both percept=o weights an meult-aent seetrohastiuctusearc tol deeris the oredder o th
struicture requires a procedure thiat is amenabl~e to combiina- rieurengts.Mdfctost h perceptron stutr swlsthetppedogylaye
torial optimization problems. Succesful algorithms for thelie wcmpightseMdicaon to ether pwegoecrceptrong topologybare
types of problems have generally bee sic i serc tech acof upped belys either incresin or fedacreasing rsethvelyube
niques such as Simulated a nealing [11. genetic algorithms ofes stutappdadlay moniictheionpu ore femiedbtac lines, repctivgely
[2], and evolutionary programming (3]. The evolutionary b stutalmdfciosreiiedoarnomhng

M paadim hs bm sownto avethe of plus or minus one tappe delay on a randomly selected line.
"pror ;" : combinatpraighal beenmizahown cqkito e 14 Since the model is detexmined during training, a possibility

desired ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~xit atrbtshoaiaotlotiiaincpaiiis[1 nonlinear finite impulse response (FI) perceptrons

Mammacup rociod March 31. 199; revised July 7.1993 and Augmt 9. will realt should the feedback order become zero.
1993.Williams (7) characterizes recurrency based on its utiliza-

J. R. MeDsowelli s with NCCOSC, RDT&E Ornae., San Die CA. ni oncinitacietr.Cnsraiercrec
D. Ws.is with 1KW, System. Ineratic Growp Ogdeo. UT.to nacnetoitacietr.Cnevtv ewec
MM! Lag Ntumber 9213943. corresponds to a tapped-delay input signal and is Termed a
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transversalfilter network. This approach yields a network that embedded into EP. This rationale was successfully used in the
is sensitive to temporal patterns without directly incorporating development of the stochastic direction algorithm by Waagen
recurrent units. Transversal filter networks have been widely et al. [24].
applied in the field of speech recognition (e.g., Waibel et al. Before discussing the optimization of recurrent perceptrons,
(81). Liberal recurrence is the feedback from the output to the Section II describes and demonstrates a hybrid optimization
input units and corresponds to a nonlinear multi-input, multi- approach that combines the Solis and Wets random optimiza-
output (MIMO) HR filter. Williams assigns the term recursive tion technique and EP. Variants of both methods are applied
filer to transversal filter networks with tapped-delays on the to finding extrema of an unknown function. A hybrid strategy
output line feeding back as inputs. Radical recurrence refers is subsequently developed that embeds the Solis and Wets
to recurrent networks that model systems with strongly hidden technique within EP. Once the hybrid approach has been
states. By definition, if a system has a weakly visible state, successfully demonstrated, the recurrent perceptro1 structure
it can be modeled with either the transversal or recursive is discussed in Section IlL Results are then given in Section
filter networks. The radical approach allows coupling effects IV for evolving recurrent perceptron next-step predictors for
that are not possible with the mome traditional transversal a variety of time-series data.
and recursive filter approaches. Both structures shown in
Fig. 1 have liberal recurrence with the potential to reduce
to conservative recurrence during the evolutionary training H. MULTI-AGENT SC SEARCH

process-
Feedforward networks have been successfully used fo on

both time-series prediction and system modeling, generally
using tapped-delay, or transversal filter, network structures. As a direct search method, stochastic optimization does not
However, these networks are not necessarily the typical feed- require derivatives of the objective function nor continuity
forward configuration trained solely by error backpropaga- of the response surface [25]. The advantages of random
on For example, a Connectionist Normalized Linear Spline search methods include ease of implementation, insensitivity

Network (CNLS) has been formulated by the Center for to the type of criterion function, efficiency, flexibility, and
Nonlinear Studies at Los Alamos National Laboratory [9-11]. the generation of information about the response surface [26]. i
Prmning connections [12-13] or weight sharing (14] can im- Efficiency refers to the allocation of resources for evaluating
prove generalization capabilities as well as increase processing additional points on the response surface versus deciding
throughput, since architecture size is reduced. Using only the which point to evaluate next. Of course, this can be detrimental
most recent observation, Rao and Ramamurti (15] generate a if the criterion function requires an extensive amount of
radically recurrent network based upon a cascade-correlation computation. If it is computationally expensive to evaluate the
(16] approach. objective function, then the information generated during the

Saravanan [17] utilizes a purely recurrent structure so that course of the stochastic search can be used to direct the search
next-step estimates are only a function of previous estimates. procedure. Pierre [27] stipulates that the following search
This network is trained using evolutionary search methods evaluation criteria should be considered before selecting any
Recurrent neural network structures have also been success- particular optimization strategy: "1) How much computational
fully trained using EP by McDonnell and Waagen [18] and equipment is required? 2) Has the search technique proved
Angeline et al. [19]. Other types of recursive structures that to be completely successful on similar types of performance
have been evolved include finite state machines [3] and the measures? 3) What accuracy is required of the search? 4) What
order and coefficients of ARMA models [5], [201. While is a fair measure of the cost of the search? 5) How will the time
"optimal prediction can be thought of, quite simply, in terms of spent in evaluating the performance measure and its derivative,
optimal filtering in absence of measurements" [21], practical if used, compare with the time spent on other aspects of the
applications make use of recent observations. Li and Haykin search?"
[22] and McDonnell and Waagen [18] utilize both a window of In response to these issues, some generalizations may be
observations and a window of previous estimates for nonlinear made with respect to evolutionary search strategies. 1) The
time-series prediction. If an event occurs which precludes computational resources must provide sufficient memory and
making an observation, then substitution of the estimate for processor power to conduct N separate searches, since evo-
past observations may suffice, depending on the accuracy of lutionary methods are based on multi-agent search strate-
the model and noise levels. gies. Most implementations occur on serial platforms even

The combination of more efficient local search methods though multi-agent search strategies are inherently paralleliz-
with global techniques is appealing. As Yao [23] states, able. Considerable computational resources may be required
"the efficiency of evolutionary training can be improved by if the problem has an extremely high dimensionality. 2) As
incorporating a local search procedure into the evolution." previously discussed, evolutionary search strategies are an
However, this requirement may limit the applicability of the excellent means to solve combinatorial optimization problems
global search method to specific types of architectures since and discover globally optimal solutions. 3) The issue of
local search techniques are somewhat restrictive. To alleviate accuracy has ramifications with respect to a priori knowledge
this concern and maintain the integrity of the stochastic of the response surface. If a correct model structure is assumed,
search, only direct search methods are considered for being evolutionary search strategies will, in general, tend to be

]aI
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slower than trditional optimization schemes. This results 4(b). Otherwise. if f(xk - 4) < f(xk) < f(x& + 4),
from the inefficiency of not using information about the then set x&+i = xk - 4k and b&+1 = bl - 0.44,
gradient (although gradient methods can be incorporated in scnt=scnt+ 1. fcnt=O.
parallel with the evolutionary search strategy). However, the 4(c). Otherwise,, xk+4 = xk and b&+i = 0.5b,,fcnt=fcnt
time complexity for evolutionary search does not necessarily + 1, scnt=O.
increase dramatically with increased dimensionality (28] or 5. If k = maximum number of iterations then stop, else
additional constraints. In sum, evolutionary search strategies k = k + 1 and go to Step 2.
are robust across a broad spectrum of problem domains. 4) The coefficient values 0.4 and 0.2 are retained from Solis and
The number of function evaluations is a useful metric for Wets' results [30]. Note that the conditions in Step 2 are not
comparing evolutionary search strategies. Time complexity or mutually exclusive. The standard deviation a specifies the size
accuracy may serve as a useful metric for comparisons with of the sphere that most likely contains the perturbation vector,
other search methods. 5) The matter of efficiency is discussed and the bias term b locates the center of the sphere based
in the previous paragraph. on directions of past success. Step 4(b) implements a reversal

strategy seeking a better solution in the direction opposite to

B. Single-Agent Stochastic Search that of initial perturbation.

Random optimization has traditionally been based on single- Optimization experiments were conducted to find the point

agent stQchastic search (SASS) strategies. Both Rao [25] (zx,"2,) which minimizes the Bohachevsky [32] function
and Karnop (261 genmet a random walk sequence to an 1(x) = z? + 2z: - 0.3co3wzi) - 0.4cos(4iz 2 ) + 0.7.

extrermum by perturbing the search point with a uniform The standard deviation was initialized as ao = 1.0, and x
random variable. RaG also exploits the directionality of t was initially sampled in the region x E f-25,2512 for all

randonmy generated vectors that continue to yield lower valued the e.xpeiments conducted. The transcendental terms generate
objective functions. In an algorithmic formulation similar to many local minima within the region x E [-1,112 while

the quadratic terms dominate the surface structure outside
that of Rao. Matyas utilizes Gaussian perturbations about the quadraticue dominame esf stsuct outsid)a bis tem ~d~ ~~h (9].this interval. A unique global minimum exists at x = (0, 0).
search point along with aThe first set of experiments consisted of using the Solis andSolis and Wets [30] have enhanced this approach by evaluating Wets' algorithm outlined above. The second set of experiments
the objective function at z - 6z if evaluation at T + b6 doe: employed the same algorithm, except that the bias term
not improve the current value of the objective function and by was not used. A third set of experiments employed Gauss-
incorporating a variable perturbation variance. The bias a ian perturbations having a standard deviation proportional
additional function evaluation serve as stochastic equivalents
to incorporating Inomentum and gradient information. Baba to the Tde of eobeive functinchrthat a
has successfully applied the method of Solis and Wets to b (x)I). The final set of experiments did not incorporate a
training feedforward networks to predict SO 2 concentrations basmterm so that a the varin modifcatioin air [31J. parameters are the same as those reported in [301: ex =

Algorithm Ifrom Solis and Wets (30] was used in the 2,ct = 0.5, Scnt = 5, and Fcnt = 3. The upper and lowerAlgoith I romSols ad Wts 30]wasuse inthebounds on the standard deviation were set as a,, = 1.0
studies presented here. The variance of the perturbation size bnd on t standareviation were se a s o1and uoj, = 0.00001, respectively. The average results of
f is controlled by the repeated number of successes, sCft, 10 trials are shown in Fig. 2. Based on these experiments
or failures, fcnt, in decreasing the objective function f. The
contraction ct and expansion ex constants, as well as the upper Of low dimensionality, it appears that the accuracy of the

and lower bounds on standard deviation of the random pertur- extremum point may be improved significantly if the standard
bations a are set by the user. The Algorithm I variant gives deviation of the random perturbations is allowed to expand
the basic Solis and Wets method global optimization capability and contract independently of the response surface height.
by increasing the standard deviation of the perturbation when Also, roughly an order of magnitude improvement in the

it falls below an arbitrary lower bound (see step 2 below). The cost function was observed using a random perturbation t

formulation is described as follows N(0, v/j(jT) as opposed to - N(0, f(x)l). Modification
of the perturbation size remains an active area of research, as

S. Initialize the search vector xo and bias vector b0 = 0. exemplified by work in evolution strategies [331 and meta-EP
Set k = 0, scnt=O(fcnt=O. Fix ex, cr. Scat, Font. a,, aas (34].

2.and initialize o = 1. As successful as the basic Solis and Wets algorithm ap-

pears, search surfaces may be encountered for which global

lex "aak- if scat > Scat optimization is not practical if .6, is continually less than
Set ah d -ca h-1 if fcnt > Fent some critical standard deviation that guarantees one can tunnel

ao'u if Gk-i < oa from any point on the search surface to an extremum with

,olk_ otherwise reasonable likelihood. To reduce the occurrence of entrapment
conditions encountered in SASS strategies, it is suggested that

3. Generate a multivariate Gaussian random vector 4 - the Solis and Wets random optimization method be embedded
N(ba, oI). in a multi-agent stochastic search such as EP. Even if arb is

4(a). If f(xk + ýk) < f(x&), then set Xk+I = Xk + J and not constrained, a multi-agent search technique will provide a
bk+l = 0.4k + 0.2bk, scnt=scnt+l,fcnt=O. more rigorous search over high-dimensional spaces.
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- W - I(b,,) 3. Reorder the population in descending order based on the

- N(bJ) number of wins generated from a stochastic competition
1......... N oJ) process. Wins are generated by randomly selecting other

S ................... . . members in the population x. and incrementing the win
counter Wi if Ji < JJ.

-3- .......... 4. Generate offdspring (XN .- X2N-1) from the N highest
-4" -..........."... .. ranked eements (Xo-. xN - 1X ) in the Population by mod-

--- - ......- - -ri6 g each element xii E Xi with a random perturbation
-5 6xi -, N(O, SI.• J, + A3) such that
-7 , .Zi+N = Zij + 6xij.

5. Loop to Step 2.
""A W of the best population member at each generation

-.. during a ser on the Bobachevsky surface is superimposed0 to ZQ 30 40 50 60 70 60 90 iooit0mue on the Bohachevskycontours as shown in Fig. 3(a). Fig. 3(b)

shows best cost in the population at each generation of the EP
Rg. 2. Acmpuom ua of• e Soud Weansmd mo m optimization process. The search is stochastic, so it is expected
Iiodmia tti I* d ua iuedby f lowionmdd av•nged ri, this trajectory will vary in every trial.It Wppe= dou UNghe a~cumy is auaiwt by Mewing the vuiance of Oe
mudmpss puaresi a espnd mu caum iond L - of tde neso. A variety of other techniques may be employed as altema-
sufa Is tires to the methods given above. For example, each additional

offspring can replace the least fit organism in the population.

C. The Evolutionary Programming Paradigm as is done by [171 and [361. In a parallel implementation,
Yip and Pao [371 generate a multitude of offspring from each

In 1958, Brooks [35] described a creeping random method parent and replace the parent with the best offspring in a
where k points were generated via Gaussian perturbations prmbaiistic mer using simulated annealing. When the off-
about a search poin. The best point was kept and the process spring are generated with structural modification(s), some level
repeated. Brooks observed that "there are som rather incngu- of parameter optimization should occur rapidly to reduce the
ing analogies that cn be made between the creeping random urrence of discarding good structures. One appoach might
method and evolution." This analogy was also apparent to Fo- be to allow these new, higher-cost members of the population
gel et al. [31 who proposed a pop lation-based random search to mature by modification of the objective function according
strategy termed evolutionary programming where, instead of to '(x, k) = (1 - e-(r-k+ )) J(z) where the maturity level
keeping the single best point, a population of search points is k of a population member could be determined by how

a many generations it has existed within the population and the
EP is a systematic multi-agent stochastic search (MASS) parameters r and a are user-specified. A deterministic means

paradigm that can be used for finding global extrema on to minimize redundancy might also be employed to delay the
response surfaces. Although the EP methodogy simulates potential dominance of a single member in the population.
the evolutionary process found in nature, the mechanisms After all, only a single solution is required and convergence of
incrporated in this framework and resulting characteristics all the members in the population to a single point reduces the
may also be found in some of the stochastic optimization effectiveness of the search process in exploring other portions
techniques previously discussed. Normally distributed pertur- of the search space. Retention of higher-cost search points can
bations are applied to the 9th element T,, in the solution be done probabilistically by setting the number of competitions
vector xi according to 6 xi,,, N(O, S1,ij • Ji + ,ij) where to an arbitrarily low value, thus allowing a more relaxed
SIq is the scale factor, Ji is the magnitude of the objective search. As the number of competitions increases, the retention
or criterion function corresponding to xi, and fli3 is an offset of the more fit individuals becomes more deterministic. Fogel
vector [5]. The scale factor can be considered as a probabilistic (34] discusses other variants of the EP paradigm.
analog to the step-size used in gradient methods. Similar to The EP search outlined above was augmented with simple
the hill-climbing and tunneling ability of simulated annealing bisection search capabilities by averaging, or "blending,"
relaxation methods, EP employs a competition process that randomly chosen vectors according to xo = 0.5(x, + x.)
allows less fit organisms (search points) to be retained in the where x. and x. are the randomly chosen parent vectors
population in a probabilistic fashion. The competition process selected from {Xo, -- ,XN•• } and xo is the offspring vector.
is viewed as a competitive annealing mechanism. An EP This was done for half the offspring while the other half were
optimization algorithm similar to that in (51 is given below: generated using the perurbation apWach 6x, - N(O,J 1 -I)

I. Form an initi population P = [xoxIx2 -- -X2N-1] where the covatiance matrix is an identity matrix scaled by
of size 2N by randomly initializing each n-dimensional the value of the objective function. The normal perturbations
solution vector x.. A usr-specified search domain x. E complement the averaging or bisection search method since
[zx.i, x.0 may be imposed. it is unlikely that the best solution point exists on the line

2. Assign a cost to each element zi in the population based between two search points. Likewise. blending elements of the
on the associated objective fiiction Ji = f(xi)s.t.* : population complements the random walk procedure generated
R" --# R. by the evolutionary search if it is assumed that the population
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FIg3 Globa Opittnizatio via evolutionaz pmpgaauning. (a) The uraectory of the bea memnber in the populaton as each
V=Smeinto s suiperkipnqiud on the contour plot of the Dobachevsky futnction with S1 - 1, 50 parents. 20 competitions. (b) The
Cosi of the best membier in the popultio at each gemernion. Since EP is a stacuastic optimiization process. the trajectory shown
in (a) will -u11oubtedly viny for each tria.

points are distributed about an extreunum point. The average
results for 10 optimization trials on the Bohachevsky funrction,
are shown in Fig. 4. The next experiment decoupled dhe cost
function from the perturbation size so that 6xi - N(0,1).
By decoupling the perturbation variance from the objective -

function, roughly an order of magnitude improvement in i-

the best member of generation 100 was observed as shownV-
in Fig. 4. Fogel [5] reports requiring an Average of 65.5 -4 ..

generations over 20 trials to achieve 1og 10(f (x)) < -6 using -5s...........
the same number of parnts (50) and offspring (one per parent). -4.

By decoupling the cost funiction and implementing a simple -71 0 ~ U 0U 5 0

bisection seach, it took less than 30 generations, as averaged Gemutation

over 10 trials, to achieve similar results.'The bisection search FWg 4. Augusetuing die EP seatch Maw"eg with bisectmo weatch where die
will not provride an advantage unless the global optimum is offsprqing am I es by averging two randondy selected parent vector.
bounded by a portion of the population. Half of &ie oft**g wm gemerated by wmenica. die other half by averaging

pais of rI bul selected patent vectoms The bisectia. sarich is useful when
cnIle I ~ Idpn sto * Mq chastic. mfthod dim Isube dite population

D. A Hybrid Approach bwa&

Single-agent stochastic search methods can be easily in-
corpotumed into EP without sacrificing the integrity of the and blending methods discussed in the preceding sections. It
evolutionary 1earch procedure. A variant of EP is proposed is speculatd that different random optimization methiods will
to take Advantage of the benefits offered by Solis and Wets prevail on different types of response sutface. Based on its



MCDONNELL AND WAAOEN: EVOLVING RECURRENT PEIcorRONS FOR 11ME-SERIES MODELN 9

ftg~S. Owe sm aftio btde hybrid imMd~qem udmc womch Ibw Airusat f offsping isgonertedby pertmbiog die pormn
vem h with N(0. a) rdm vaableL M sTmdand devia.i em be. ded to t eig bl odie nwome =fae so dot# = S .cast.
The nd o ofspna s -umrue byM -- - or blnnng proom MWe thid at of affspring is genenwed soconft to
die Solia m %u algodma ad douiisticd* am die paMM of a Ior cot is aebeved. Nole tha the vnamnes mi dIe
affspring SM a ted by differn meeft o d me wt etse.

multi-agent se capabilities, EP is an attractive framework using the method of Solis and Wets, which acts on the existing
for combining a variety of stochastic search procedures. Al- pamt structures. Each offspring in this third set will replace
though the previous experiments in a two-dimensional search its parent if the offspring has lower objective function than its
space ae not conclusive, the following properties appear predecessor. The type of convex optimization method applied
potentially beneficial to a hybrid approach: 1) multi-agent to the second set of offspring may also be applied to other
search and variance expansion tend to avoid local minima, paranmetf such as the bias vector b. For example, if the
2) information gaerneed daing the search process about the Solis and Wets bias term is included in the search string, then
response surface can be used to direct the search, and 3) the first set of offspring is instantiated with b = 0, while
convex oputimizat and perturbation variance reduction inde- a member of the second set of offspring will have a bias
pendent of the respome surface height may improve accuracy. vector determined using bo = 0.5 * (bi + bj), thereby taking
Making the perturbaton variance proportional to the value of the average of the bias vectors from two randomly selected
the cost fruction may not always yield optimal performance, parents. The other Solis and Wets parameters are instantiated in
Decoupling the perturbation variance from the cost function a similar manner, as are the structural parameters (i.e., model
value may prove beneficial since the shape of the response order, in this study). Although the Solis and Wets method
surface is often not well known and may even take on could be repeatedly applied to the offspring, and has been done
negative values. A similar decoupling strategy was employed so with success, it is speculated that the different offspring
by Waagen et at. [241. If the height of the response surface strategies offer a more robust search as well as help to maintain
is known a priori, then the offset 0 (see Step 4 of the EP diversity.
algorithm) in the standard deviation of the perturbations can The average cost from 10 trials using the hybrid approach
be incorporated. Unfortunately, knowledge of the height of on the Bohachevsky function is shown in Fig. 6. The hybrid
the response surface generally corresponds to determining the technique achieves an accuracy of 10 orders of magnitude
location of the global extrema. If cost functions for which within 50 generations (this corresponds to a maximum of 7550
the optimal value is zero, such as mean-squared error, are function evaluations). In order to ascertain which optimization
employed, then this issue is less significant. procedure was being utilized, a histogram was generated from

Figure 5 illustrates a hybrid approach that employs different two sample optimization runs on the Bohachevsky response
methods for offspring generation within EP. While parents are surface as shown in Fig. 7. These runs contained 10 parent
selected from the whole population in the usual fashion [5], vectors and two sets of 10 offspring vectors generated via
the manner in which the offspring are generated is variable, normal perturbations and blending, respectively. One run was
The first set of offspring results from parent search points that made with fixed variance perturbation vectors • N(O, I);
are peturbed by a random vector 6x - N(O,or I) where the second trial was conducted with the perturbation variance
a can be fixed [241, proportional to the coresponding height proportional to the cost function • N(O, J - I). When
of the response surface [5), or conditionally based on search N(O, J I) perturbations were incorporated, the perturbation
performance [331. The second set of offspring results from techuique was the predominant beneficial search mode. When
blending the parameters associated with a pair of randomly N(0, I) perturbations were used, the Solis and Wets search
choen parents. This may be as simple as averaging all of the technique provided most of the optimization capability. The
elements in the search string. If the model structure is part of averaging method rarely yielded the lowest cost member in
the sreah vector, then both the first and second set of offspring the population.
can easily accommodate changes in the model structure as Before dismissing the blending approach as inadequate,
well as the weights. The final set of offspring is generated some comments should be made regarding these results. It

.-
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petibto vu a 1 Fig. 8- Comparinig optiomizatio ethd using Sobis and Webs and the hybrid

aIp-oach on the Rosenbrock response surface. Fifty parent pont wee usied
in the hybrid technique. Each generatio conuepands ton maxnimiout at 150

"Ldewwý function evaluations for each method. T1he second sot o(offspsiog in die hybrid

1000 approach have a Axed perturbation variance of a =1

900..

-. the Sobs and Wets random optuimization method, This functon
7M has a unique global minimum at x = (1, 1) and is referred

am to as a "banana valley" because it contains a steep valley
m alng Z -

2. Figure 8 Shows the average and best results
400 from 10 trials for both the Solis and Wets technique and the

300 hybrid approach outlined above. In an effort to compare the
search processes based on an equivalent number of maximum
function evaluations, each generation equals a maximum of

1, 150 function evaluations for the Solis and Wets method and a
a0 5 10 s~ 15 2 25 3 maximum ofl150 function evaluations for the hybrid approach.

I $.&A" I P 1 um I~umhium - I w Both average curves show optimization was still occurring

Fi. .isogan ha sos hefiecoftecu after the maximum number of generations or iterations had
F~g.7. hiiogrn wat howsthefreuenc ofdieorec or the been reached and the experiment was arbitrarily halted. These

generation mebrwith the lowes cost for the Bohachevsky response surfiacc.
The N(O. 1) perturbations ame generally too large for the small glba wel results compare favorably with generic EP results [51 where
and optimizm=o occurs primarily via the Sobis andl VAts technique. Tie it is reported that it took an average of 86 generations (over
N(Q. Cost) perturbation$ am smnall enough for oput~imizaion to occur within 20 trials) to achieve an accuracy of 1og 10(f(x)) < -4. It
the glo1a well. The blended or averaged set of offspring raely occurs.* should be noted that the results generated from the Solis

is epeced hatthe op embrs say vecors1-5 ofthe and Wets method, by itself, are also comparable. Now that
is epeced hatthe op embrs say vecors1-5 ofthe the capabilities of the hybrid stochastic search have been

population will tend to be the best if, only by default, better demonstrated on well-known response surfaces. the next step
solutions are not found. The larger perturbations will generate is to determine its effectiveness in evolving simple recurrent
points outside the small diameter of the global well as observed perceptron structures similar to those shown in Fig. 1.
in the t .- N(O,I1) section of the histogram. Ibis is also true
in some respect to the Solis and Wets optimization procedure, Ill. EVOLVING R.EcURRFENT PERCEPTRONS
since it was instantiated with a unit variance and discrete
changes occur to the variance based on the performance of the A. Motivation,
search vector. When the Bohachevsky function was artificially ThreuivstcueshwnnFg.Iaeefrdtos
elevated so that the global minimum had the corresponding wreusvstcueshoniFg.Iaeefrdtos
cost f(0, 0) = 10. the histograms for the two methods recurrent perceptrons because they incorporate nonlinearities
were virtually identical. Since subsequent investigations in on the output of a recursive linear combiner. The recurrent
evolving perceptron architecture relied heavily on the blending perceptro structure is inspired by recursive adaptive filters
approach, the conclusion is drawn that implemnenting a variety and the discrete time equation that models linear time-invariant
of stochastic methods within EP provides a robust approach (L11) system dynamics
for the optimization of problems whose response surface is m-1 "-

not well known. Incidentally, both of the runs that generated y(k + 1) = E aix(k - i) + E bjydk - i)
the histograms in Fig. 7 yielded necarly identical levels of cost i=O0=
after 1000 generations, where x represents the input to the system and y is the system

(I e _ oebrc (3]fucio)2x 100z - X2 )+ output. While much is known about the stability. controllabil-
(1-z)was chosen for comparing the hybrid approach to ity. and observability of LTI systems, as well as methods for
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generating models of such systems. the same cannot be said where the search strategy must determine the order of the
for nonlinear systems in general [39). Nonlinear versions of feedforward terms, m, the order of the feedback terms, n,
the identification models (motivated by LTI dynamics) given as well as the feedforward coefficients, ai, the feedback
in Narendra and Parthasarathy [391 are described by coefficients, bj, and the bias a. The IhR synapses proposed

nonlinear parallel model: by Back and Tsoi [40] and the neurons used by Li and Haykin
non-a r[221 have the same structure as this nonlinear parallel model.

'(k +-1) == f -) + Recalling that polynomials can also be used to approximate
Eb(k-2)) any static mapping f : Rm -. R" to an arbitrary degree ofnonlinear series-parallel model: accuracy, and that the sigmoid function can be expressed as,e-i -.- an inverted polynomial series

fjKk + 1) == f( t Z aix(k E i) + k - i)1  n~)(+z1,_f0i _o f W) = (I + e-')- E v

where j is the estimate of the system output. The nonlinear leads to the suggestion that other nonlinear mapp•-gs that can
series-parallel model is a transversal structure that utilizes also be expressed by polynomial series are equally applicaMe
the actual system outputs. Further, its linear counterpart is for use as activation functions [41), [42). The stochastic
preferable for generating stable adaptive laws [391. As stability search method used for training does not explicitly incorporate
is paramount when generating recursive filters, stable filters knowledge of the activation function Oust I/0 obseratim),
were always evolved using the hybrid stochastic search method so any activation function can be implemented without regard

implemented in this investigation, for continuity constraints. By virtue of their smoothness,
The recurrent perceptron structures investigated in this study continuous activation functions tend to possess good function

are characterized by the following difference equations approximation properties. The search may even be conducted

Class i: y(k + 1) =f[x(k), x(k - 1), x(k - 2),---, over a set of candidate mapping functions F such that f E'F

x(k - m + 1), y(k), y(k - 1), thereby incorporating the selection of the activation function(s)

y(k - 2),.- - -, y(k - n + 1)) in the evolutionary optimization process.
The objective function. for each perceptron is similar to

Class l: y(k+ 1)=f[x(k),x(k-1),z(k- 2), Akaike's minimum information theoretical criterion (AIC)

--- ,X(k - m + 1),y(k),y(k - 1). estimate [43) as employed by Preistley [441 for evaluating

y(k - 2),---, y(k - n + 1)] autroregressive moving-average (ARMA) models

+ g[x(k),x(k - 1),x(k - 2),-.-, AIC(m, n) = Nln(&2) + 2(m + n + 1)
x(k - m + 1), y(k), y(k - 1), where N is the effective number of observations. An additional

y(k - 2),--.-, y(k - n + 1)] factor of I is added to the number of fitted parameters (m +n)

where f and g are not necessarily the same mapping. The to account for the bias term a. The MLE of the innovation

Class I is similar to the Model IV discrete time plant model variance [44) is determined according to

given by Narendra and Parthasarathy [391 for nonlinear system &2 N-1

identification and control, except that the nonlinear transfor- e= E 2(k)

mation in [39] is implemented with a multi-layer perceptron k=0

and the nonlinearity in this paper is accomplished using a where the observation error is given by 6(k) = y(k) - ý(k).
single perceptron. Class II is similar to the Model III discrete To prevent the search process from driving the number of
time plant model given in [39], if the evolutionary search parameters to zero and stalling at a large MSE, the mod-
process yields an f that is dependent only on previous outputs ification to the model order can take one of three states
[y(k),y(k - 1),-.. ,y(k - n + 1)] and a g that is dependent (-1,0,+1). Approximately 20% of the time, either of the
only on past inputs [x(k), z(k - 1), --- , x(k - m + 1)]. The conditions (-1, +1) existed for a randomly selected tapped-
selection of these models in [39] was "motivated by the models delay line. Thus, if there are four tapped-delay lines, each line
that have been used in the adaptive systems literature for is being modified about 5% of the time. If a large number of
the identification and control of linear systems and can be tapped-delay lines are employed, then the percentage of time
considered their generalization to nonlinear systems." that any of the lines are affected may be increased to maintain

a similar modification ratio.
B. Formulation If direct linear feedthrough [45] capabilities are desired to

The recurrent perceptron model structure shown in Fig. 1(a) be.present in parallel with the nonlinear contributions, then

is characterized by the Class I difference equation and can be the perceptron structure can be reformulated as a combination

described by of linear and nonlinear recurrencies. This combined structure

(m-I n corresponds to the Class II model where g is a linear functional

i(k+) f =(E az(k- i)+ Ebi( -t)+ as shown in Fig. l(b) and is expressed by

i=O i=0 j(k + 1) = /L(k + 1) + jN(k + 1)
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Oncean ~epab~ modl hs ben dermied ue eo-Fig. 9. Evolutionary oputimiaion of the pentuluei model. Mwe lowest AKC
Orman ccetabe nxle ha beeldwtieteeo s~cr in die population is shown at teh gemeahion of tie evolutionary seaidu

to the residuals as discussed by Priestey [44). Deterministic
training can also be applied to the evolved mdin an effor 0.05. A linear-nonlinear series-parallel model was postulated
to "fine tune" the model coefficients. Deerministic training according to
was usually not applied to the nonlinea models generated in rn-1 u-i
du work. either during or after the trining Proces, an maNy 9(k + 1) E ~ a,'r(k - i) + Z b1G~t - i)
potenially have yielded slrhty better results. *0Oi=

(P-1 q- 1
C. Deweminiutic Training + sin Ecir(k - i) + E d.O(k - i)

More deterministic methods may be used to update the )__
permeparn weights while the wmoel structure is evolving, or
they may be applied to the results of the stochastic search as a where the maximum window size was limited to five samples.

potpocsigcheck to enisure local optimality. Thle reurn A N(0, 1) random forcing function was used to generate
perceptronl model corresponding to Fig. 1(a) can be described 50 000 samples, 5000 of which were used for training pur-

by poses. The search population consisted of 10 parents, each
generating a single offspring using EP perturbations, as wenl

Yk+1 f (W~Z) as another set of 10 offspring by averaging randomly chosen

where parents.
The optimization process took place over 500 gen~erations as

WT = [Go al ... a,,.-I bo b1 ... b~.-.1aJ shown in Fig. 9. The resulting model does not incorporate the
Z T = [ ...- Xk-rn+1 Ak Ik-i . Yk-n+l 1] forcing function, but instead relies only on past observations

If the objective function is given by ofe theatneu peduumdspacmetasgienb
error E& = e2 = (Zk: _ Ik) 2 where zk is the desired O(k +'I) = 0.87220(k) + 0.78580(k - 1) - 0.41278(k - 2)
output, then a straightforward gradient approach yields the -0.31900(k - 3) + sin(0.06870(k))
well-known stochastic approximation weight update equation,

M = W + ,,eJfI(wTz)z Note that this approximation can be reduced to a purely
TsoiandBac [4) hve eried muti-aye pecepronlinear system because of the small coefficient on the sin

version of this update scheme for nonlinear FIR and HR argumn.'eiuae syseisamtlnarbvrueo
perceptrons. Williams and Zipser [461 have also formulated the small displacements and angular velocities. This model has
a batch update scheme with an arbitrary lag window for a MSE--1.54 .10-5 for the training data shown in Fig. 10. A

test set was generated using T(k) = 0.5 cos(21rk/1000) withrecurrent multi-layer perceptrolis. the resulting MSE--3.69 -10-6 on the testing data shown in

~. ~ R~sFig. 11.

A. Thse Simple Pendulum H. Thse Sunspot Series
The second set of experiments was conducted on Wolf's

Cosdrthe equation for a simple pendulum with a sunspot series for the years 1700-1988. These numbers are
velocity-sqared damping ter indicative of the average relative number of sunspots observed

A + BGili+ Ksin = r each day of the year and serve as astandard benchmark for
time-series modeling [12). (13), (40) where the objective is

where J= 1. B = 0.1. and K = 1. For simplicity. the to generate asingle-step prediction based on past observa-
systm was simulated using Euler integration with a stepsize of tions. Consistent with Weigend et al. 112], the data set was
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Fig. 10. (a). The desired output used in the training set. (b) The enor for Fig. I I. (a). Test data for the pendulum model generated frorn
each point in dte training time-series. The forng function 7 N(0, 1) was r(k) = cos(2wk/1000. (b). The error for the test time series.
not incorporated in the resulting modeL

for the blending process and 10 utilizing normal perturbations
partitioned into a training set over years 1700-1920 and test where the standard deviation is proportional to the MSE of
sets for years 1921-1955 and 1956-1979, respectively, as the network), 10 competitions, alb = 0.0001, and o,,b = 1.0
the latter test set is atypical of the entire time-series [13]. and S1 = 1. The initial order of the tapped-delay lines was
Weigend et al. use 12 inputs to 8 hidden units in a 12-8-1 randomly chosen.
fully-connected feedforward architecture where the number of To facilitate comparison with previous work done on the
inputs was chosen to allow direct comparison to the threshold sunspot series, the average relative variance was determined
autoregressive (TAR) model of Tong and Lim [47]. Weigend for the evolved model. The average relative variance arv is
et al. subsequently reduce the 12-8-1 network to a 12-3- given by (121
1 network by weight-elimination. Svarer et al. [13] employ
the Optimal Brain Damage method of Le Cun ei al. [48] to _=_k(_k _-k)2 _

generate a pruned network or nonlinear subset model with 5 ar= k(k - tk) 2 = 12 -

inputs that are not fully-connected to 3 hidden units in a two
layer feedforward network. Priestley [44J describes a variety and provides a normalized mean squared error (NMSE) met-
of more traditional time-series models for the sunspot data set. ric for comparing the performance of different models. The
These include autoregressive (AR), ARMA, TAR, and bilinear NMSE is independent of the training set size and is unity in
models. the event that the estimate is equivalent to the mean of the data,

Poor results were usually obtained when using simple (i.e., t = ±). In the following text, the arv set {arvl, arv2,
strcturtes like that shown in Fig. 1(a), and reasonable results arv3} will refer to the average relative error corresponding to
were usually found using the Class II type models for a (training set, test set (1921-56), test set (1957-1979)1.
variety of activation functions. Also, nonrecurrent models were When constrained as a linear system, a second-order
evolved by using the evolutionary search process to determine transversal filter with a bias term as given by j+1 =
the order of just the tapped-delay input lines. The maximum 1.2605xk -0.4915xA._ 1 -0.1321X.t2 + 0.0831 was evolved.
number of delays was arbitrarily set at mmX = nm, = That is, the order of the feedback lines became zero. The
p.. = 9. = 20 for the remaining experiments in this evolved linear model has an arv = (0.1494,0.1732,0.4512).
work. The sunspot data set was normalized by a factor of 200. which compares favorably with the ninth-order AR model
The experiments were run with 10 parents, 20 offspring (10 given by Priestley with an arv = 10.1865,0.2235,0.4994). It
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TABLE I
Woemr Ser ma rit EvaLveD T"AmvmtsAL Fw.TeR NeTwom

Hidden uni I Hidden unit 2 Bias
Outwtd -0.9448 -1.1872 0.5423

Zk ..__i Sk--2 Z&-- 3  Zk-- 4  Zk--S Zk-j Z,_7 Bias
Hid unitl - I-.332 1.7664 1.3729 0.3060 -0.2951 0.0252 -0.2966 -0.2740 1.1819
Hid unit2 -1.1093 - - - -0.2191

TABLE 1I
Waonrs Foa Ti EvowE.L Rkcuttsv Fnmat NerwoRi

Hidden unatl Hidden wuit 2 Input bias Output bias Ihat bias
OW -0.6550 1.0, -0.2323 0.30"9 -0.2323

Xk Xk--1 Zk--2 Zk--3 Zk-4 Xk--6 zk-6

Hid mitl -0.6512 0.5742 0.9500 0.0630 -0352 -0.0531 0.0065
Hid unit2 13M00 0.3824 0.340 - - -

sh-7 Uk-e i ik-i ik-2 i#&-3 bias
Hid =it 1 -0.2252 -0.1251 0.5443 0.3283 -0.0391 0.3393 0.2483

id mu2 - - - - - 0.1042

is interesting to note that the subset model found by Svarer el A linear-nonlinear model incorporating a tanh nonlinearity
al also includes the first three terms {z(k),z(k-1),z(k-2)) and a bias term was evolved as given by
as well as {x(k - 7),x(k - 10)). (Neural network subset
models were not investigated in this study but are achievable llk+1 0.5788yk + 0.0176yk._i - 0.1396 Yk_2 + 0.0549yk_3
using EP as demonstrated in [18].) From this model structur, - 0.0508yk_4 + O.1030 yi,-s - 0.0239y,_6
a least-squares estimate can be found by forming the normal + 0 .0 1997yk._7- - -0.4076ft - 0.2614jk_.
equations from y = Hw or equivalently + 0.0475 + tanh(0.7109yA - 0.0569yk_•

- 0.0375yk_2 - 0.0324yk_3 - 0.05321yk_4

113 1 Y Yl 11 YOt 11 O - O.O63Ot~k.5 - 0.0180?Jk-6) + 0.068711k...
Y4 = Y3 Y2 I 1 W + 0.0964u,_s + 0.08 6 9yi._9 + 0.0 76 8 ik

: .- .-2 0.1740CN_1)L 1+i Lp lk-i 11k-2 Ji 1Ws

This single-step sunspot predictor has an arv = {0.1260.
0.1140, 0.36301.

and solving for the weight vector wLs = (HTH)-lHTy. Using a structure similar to that of the transversal network,
If this is done using the complete data set, a pure follower except this time with feedback connections to the hidden
strategy results, since wS -:: [10OJT. The follower strategy units, a recurrent network was evolved where the search
yields an art = {0.2903,0.4268,0.9647). No improvement determined not only the order of the input lines, but of
was found when a gradient search scheme was applied starting the feedback lines as well. During the training process, the
from the evolved weight coefficients. This yielded a slightly number of tapped-delay lines on one feedback loop became
modified weight coefficient vector w = [1.2612 - 0.4899 - zero, thus resulting in a partially feedforward network and
0.1248 0.07 9 11T after a small number of iteration partially recurrent network. The weights for this structure

A transversal filter network was purposely evolved by dis- are given in Table 1[. Better results were not obtained on
allowing feedback of the previous estimates into the network. the sunspot data using this network or any of the other
The resulting network is equivalent to a single hidden layer evolved recursive filter networks. The recurrent networks' arv
network with two hidden units, one of which receives eight values are given in Table I11, where the first 20 observations
inputs and one of which receives only the last observation, have been substituted for the estimated values. A plot of the
The weights and biases for this network are given in Table single-step estimates generated from the recurrent network is
I. Each node utilizes a tanh activation function. The average shown in Fig. 12(a), with the error line shown in Fig. 12(b).
relative variance for this network is given in Table MI along Although better transversal networks have been generated,
with arv values for deterministically trained models. The better it is still suspected that recurrency might be appropriate for
transvmrsal networks that are known [121, [13] have three this data based upon the results discussed by Priestley. Better
hidden nodes and utilize observations from an eleventh-order results might be obtained in evolving both the transversal and
lag that corresponds to.the average period of the data. The recurrent structures if the representation (number of hidden
best model is only partially connected, thereby incoqxrating nodes) is increased and the complexity penalty for the number
a subset of the actual time-series inputs, of terms is relaxed.
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TABLE m
Commj w op ?NomAcm• EaRno Resus oF PKtvuous Wom ON THE SUNPOT DATA SETr Wrf THE So0urn FOUND USD40 A Racuir STucTURE

Modml Train (1700-1920) Test (1921-1955) Test (1956-1979) Number of pwarmmctc
Ta% mad LiUn (441 0.097 0.097 0.28 16

(%iu ald ('et al.1 (121 0.062 0.086 0.35 43
Svanr (Nit al.) (131 0.090 0.062 0.35 12-16

Trnsveruul Net 0.0967 0.0971 0.3724 14

Recurrent a 0.1006 0.0972 0.4361 22

TABLE IV.
PIMEMANX OF S0NGLASew frMs oCM TiE LAomMc MA MR 100 SAwnz.

Predicior ar AIC MSE ISE arv
&*+i = 0.2 -316.7 0.004 0.0004 0.0032

,i,,S.1476z•) +
0.0274

4+1 = uaG(wrk) 0.2 -213.7 0.0012 0.0013 0.0091
I-10-1 network 0.2 -- 117.1 0.0017 -0.0131

1.15-1 mtwok 0.2 -303.4 0.0002 0.0015

obmervatens form
- predlctIems

(m-I n-i.E

0.0 iIN(k +1) =CosIaxks+Z i(-

+.sin acix(k - i) + di(k - i) +

"•o.4 was postulated. After 5000 generations, the evolutionary
,4 o~~a search yielded apredictor of the foam •t~ = sin(3.1476z&)+

~0.7

: 20.0274, thereby disregarding the cos node and the recurrent

A.1 terms (the tapped-delay orders of m, n, and q went to zero).
0.0 .. ,_,. Fig. 13 shows the results of the evolved solution on 200

0 30 60 90 1 150 18 210 240 270 No0 points generated from xo = 0.2. Upon inspection of theevolved solution, it was observed that il&+i = sinfrzk) might
(a) serve as a suitable estimate. Figure 14 shows the performance

o.so of this estimate on the same 200 points used in Fig. 13.
0.15 Figure 15 gives the state space plot for each of the estimates
0.40 and the actual quadratic mapping function. Table II contains
o0. representative AIC and MSE values for a 100 point sequence
0.30 starting with the given initial condition. The initial error at xOA0.26 was neglected in these calculations because no observations
020 have been made. For a large number of data points, the
0.16 integral-squared error (ISE) represents a closed form solution
o.10 to the MSE since

.o0 2 0 I MSE = - i+) 2  ( - +)2A0 30 60 9l0 130 160 LBO Mt M 2"V 300n x' E '+"MUM• 1700-19M "-- i=1

(b) In the limit, the MSE approximation becomes the ISE that is
Fig. 12. (a) Me evolved m .'mwnodd for dte smp' dua. raiinh. ,s defined on the unit interval [0, 11 as
darn over yaes 1700-1920. Thw est met coami of yeiks 1921-19t. The
Aim 10 dm. arinn polm were nM achied in di model evaluation aie.
(aiPm P j m A to mmabhi model order) o die evolved fil•er. (b) The ISE= (zX+l - Xk+i) 2 dX&
amw MPee for die evolved mmu sigle-a• ep i 1p4 predictor. The damt
wis mmmaldid by a faor of 2300. which is also reported in Table IV.
C. 77m Log c Map 1This example illsates the potential ability of the search

.gistic to find nomecurrent solutions when recurrent solutions are
Weigend et at. [121 uae the iterated quadratic or logistic map unnecessary. Weigend et at. report using three radial-basis

Zk+1 = 4 zk(I - zk) on the unit interval as an example of de- function nodes to achieve this mapping without further elab-
tenninistic chaos. It can be easily shown that x& = sin2(2irO) oration. Investigations using Iac*pwpagation showed dot a
is a solution to this equation. A single-step predictor of the better solution can be found for 10 < N < 15 hidden units in
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Fig. 13. Logistic map test data and the evolved solution of the form Fig. 14. Logisticmaptestdataandtheestimaxeiak+ 1 = sin(rz&)generated

•*+s = sin(3.1476za) + 0.0274. from inspection of tde evolved solution.

a I-N-I feedforward network. The AIC values given for these observaUons
networks in Table IV were determined according to evolved solution

1. 1 -sin estimate

AIC(N,) = NIn(&.) + 2(N,.) 1.0' "

where N. is the number of weights and biases in the network. 0.9 ,
0.8 ,.

D. The Mackey-Glass Equation V,

The Mackey-Glass equation represents a model for white zos"
blood cell production in leukemia patients (491. This model is 0.4

complicated by the addition of a time delay T in the nonlinear 0.3 1
differential equation 0.2 (

0.1\
_ - ba)o.)y

(t)= l t bx(t) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
1 + Xc(t - T) x(k)

where the free parameters are selected a = 0.2, b = 0.1, Fig. 15. The state-space plot for the logistic map. Observations generated

c = 10, and r = 30 as discussed in Jones et al. [10]. The from rk+1 = 4zk(l - x.r) are denoted with an "o." the evolved solution
estimate ik+1 = sin(3.1476z&) + 0.0274 is denoted by an "x." and the

training sets consisted of 500 data points, while the test set was estimate generated by inspection, the evolved solution f 4+.1 = sin( xzk) is

comprised of the subsequent 500 data points. This data was denoted by a .+."

extracted from a longer run so that the initial transients would
have no effeCt. The data were normalized by a factor of 1.4 and of the training data to allow the transient effects due to
observations were made every second that corresponds to the the perceptron recurrencies to die out. This difference in the
simulation stepsize. These experiments incorporated a parallel number of observations alters the AIC scores. Nevertheless,
sin-cos nodal arrangement as used in the logistic equation the arv values compare favorably with the results found in the
example. After 5000 generations of training, the resulting recurrent network training evaluation done by Logar et al. 1501
4-5-2-1 plus bias solution has the form for the Mackey-Glass equation with T = 17. The preditor can

jk+1 = cos(1.2881y + 0 .79 2 0 yk-I + 1.6 4 3 1Yk-_2 be made nonrecursive by letting j -- y, which yields a MSE
= 0.00088 and an arv = 0.0232 on the test set. However, if a

- 0.2588Yks- 0.71 7 5yk_4 - 0 .3 2 39 ýk transversal filter is desired, it is suspected that better results

- 1.0519ýLl - 0.0 5 7 2 ik-2 - 0.2140ý_k3 would be obtained by training the appropriate structure. This

- 0.1310Wk_4 - 1.17 2 6 Ik_5) + sin(2.9475i,& model performs poorly if forward projections are generated

+ 0 .8 6 0 5 yk 1 + 0 .0 06 9 yk-2 by replacing the observations with previous estimates so that
-/-- j. A two-step ahead predictor yields a MSE = 0.0070 on

- '. 6 8O0 1tk - l.002 O•t,_si) - 0.9784 the test set, while a three-step ahead predictor is dramatically

Figure 16(a) shows the results of this model on the training worse with a MSE = 5.1125 on the test set.

and test sets, while Fig. 16(b) shows the error on the same
data sets. For the data sample shown in Fig. 16(a), Table V. CONCLUSION

V lists the AIC, MSE, and ary values of the training and This work has incorporated an efficient single-agent search
test sets for the evolved single-step predictor. The last 450 strategy, the method of Solis and Wets, into the EP frame-
points of the training set were used for evaluation purposes work and augmented it with the simplest convex optimization
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obseation be sufficient and/or additional work is warranted for systems
p with noisy output. Other types of information-based criteria,

such as the minimum description length (MDL) modeling
0.9 principle [511, can be used in lieu of the AIC as an objective
0.6 function, and may yield better results, since the AIC is not a
0.7 consistent estimator [52].
0.6 The simple structures investigated in this work demonstrated
o.s5 a reasonable degree of proficiency for the nonlinear time-
0.4 series problems studied. Similar AIC values were attained for
0.3 a varied assortment of models of the same data sets. From

these results, it is suspected that the joint parameter-function
space of particular data sets may be dense in the number

0.0 of acceptable solutions, some of which may be found by
0 100 200 300 400 500 600 700 600 O00 1000k the relaxation scheme employed in this investigation. Whtle

(a) it is evident that the hybrid stochastic optimization scheme

0.o5 provides an effective learning mechanism, the issue of what

00 types of time-series representations can be effectively modeled

o.o3 using this approach has not been addressed in this investiga-
.0 tion, By cascading and/or parallelizing recurrent perceptrons0.03

o.01 to generate multi-unit networks, as in traditional feedforward

0.00 architectures, additional capabilities for more complex time-
"00 Wseries processing tasks may be achieved.
-0.01
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