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Abstract

It is known that the exact analytic solutions of wave scattering by a circular cylin-

der, when they exist, are not in a closed form but in infinite series which converges

slowly for high frequency waves. In this paper, we present a fast numerical solution

for the scattering problem in which the Boundary Integral Equations, reformulated

from the Helmholtz equation, are solved using a Fourier spectral method. It is shown

that the special geometry considered here allows the implementation of the spectral

method to be simple and very efficient. The present method differs from previous ap-

proaches in that the singularities of the integral kernels are removed and dealt with

accurately. The proposed method preserves the spectral accuracy and is shown to have

an exponential rate of convergence. Aspects of efficier" implementation using FFT are

discussed. Moreover, the boundary integral equations of combined single and double-

layer representation are used in the present paper. This ensures the uniqueness of the

numerical solution for the scattering problem at all frequencies. Although a strongly

singular kernel is encountered for the Neumann boundary conditions, we show that the

hypersingularity can be handled easily in the spectral method. Numerical examples

that demonstrate the validity of the method are also presented.

This work was supported by the National Aeronautics and Space Administration under NASA Contract
NASI-19480 while the author was in residence at the Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23665, USA.
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INTRODUCTION

The exact analytic solutions of wave scattering by a circular cylinder, obtainable

for simple incident waves, are not in a closed form but in infinite series of Bessel and

Hankel functions of increasing orders. Such solutions converge slowly, especially for

high frequency waves, which render their numerical evaluation inefficient. This paper

presents a fast numerical solution of wave scattering that only requires the computation

of Bessel and Hankel functions of order zero. Furthermore, the numerical solution is

valid for any form of the incident waves of all frequencies.

When developing numerical solutions, wave scattering problems are often conve-

niently formulated in Boundary Integral Equations (BIE)1 . The advantages of the

Boundary Integral Equation Method (BIEM) include reducing the dimension of the

problem and transforming an infinite domain to finite boundaries in which the far field

radiation condition is satisfied automatically. The Boundary Integral Equations are

commonly solved computationally by the Boundary Element Methods (BEM) 2 . In

this method the boundary is divided into finite elements and integrations over each

boundary element are approximated by quadratures, e.g. the linear elements.

In this paper, we develop a Spectral Method of solving the Boundary Integral

Equations, reformulated from the Helmholtz equation, for numerical solutions of wave

scattering by a circular cylinder. Previously, for this special geometry, a "fast numerical

method" based on the Fourier approximations has been formulated by Bojarski3, who

pointed out that the boundary integral equation of wave scattering can be solved easily

and efficiently in the Fourier spectrum domain of the solution. Due to the simplicity

of the geometry, an explicit relation between the Fourier coefficients of the solution 0
0

and those of the boundary condition was found. It was argued that the numerical
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approach was more efficient than directly evaluating the infinite series of the exact

solutions. Indeed, the exact solutions contain Bessel and Hankel functions of higher

orders whose numerical evaluation is more difficult and costly as the order increases.

Recently a similar approach has been used and extended by Schuster 4 for a wave

transmission problem of concentric cylinders.

In the present paper, we point out that the numerical formulations given previously

are not achieving the optimal accuracy of the Fourier spectral methods. It is known

that, although any periodic function can be approximated by a truncated Fourier se-

ries, the rate of convergence of such an approximation depends on its smoothness.

Unfortunately, the integral kernels for the Helmholtz equation are not smooth. In par-

ticular, the 2-D Green's function of the Helmholtz equation, appearing in the integral

equations, possesses a logarithmic singularity. Furthermore, the normal derivative of

the Green's function also contains a term involving the logarithmic function. The non-

smoothness of the integral kernels, however, was not explicitly treated in the previous

formulations. It will be seen that it is critical to remove the non-smoothness of the

integral kernels in order to achieve fast convergence in the Fourier spectral formulation.

By a proper treatment of the singularities, the present numerical formulation yields

accurate solutions with significantly fewer datum points. Moreover, the boundary in-

tegral equations of combined single and double-layer representation are used in the

present paper. This ensures the uniqueness of the numerical solution for the scatter-

ing problem at all frequencies1 ,5. Although a combined layer formulation results in

a strongly singular kernel for the Neumann boundary conditions, we show that the

hypersingularity is handled easily in the spectral method.

In the next section, the formulations of the Boundary Integral Equations for wave

2



scattering problems are given. Then, in sections II and III, the Fourier spectral methods

for the Dirichlet and Neumann boundary conditions are presented. Numerical results

are shown in section IV. Section V contains the conclusions. Some analytic results are

also given in the Appendix.

I. BOUNDARY INTEGRAL EQUATIONS

Let us consider wave scattering by a circular cylinder 1 of radius a. The wave

equation for the scattered function 4, with assumed time dependency of e-'wt is reduced

to the Helmholtz equation

v2o + rJo = o I

where tc = w/c (c is the wave speed) and V 2 is the 2-D Laplace operator V 2 =
02 02
,9 a 2" The boundary condition considered in this paper will be one of the following

types:

Dirichlet(soft) : 0(r) = b(f) On r

or

Neumann(hard): o(r) = b(r') On r
O~n

The Helmholtz equation (1) together with the boundary condition can be refor-

mulated into a Boundary Integral Equation. This can be done in various waysl' . For

scattering problems considered in the present paper, we use a combination of single

and double-layer formulation in which the solution 4, at any point r" in the scattered

field is represented by an integral on the boundary as5

Or(') = Jr (On iqG) f (r (2)
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where 17 is any real number such that

YlRe(K) > 0

The use of a combined formulation ensures the uniqueness of the numerical solution

for exterior problems1 ,'. In (2), f(v') is an unknown layer distribution function and

the Green's function G(F, r"), whose form will be given later, satisfies the following

equation

V2 G + .2G = -6(r- F') (3)

Here the normal derivative 49 is assumed to be taken in the direction outward from

the cylinder.

The Boundary Integral Equation associated with the layer representation (2) is5

+ j 8G _ iilG) f(-)dr = b(91r) (4a)

for Dirichlet boundary conditions and

itfr)2 G ," f±(Fr)d± = b(FrG) (4b)

for Neumann boundary conditions, respectively. In (4a) and (4b), 9r denotes the bound-

ary points. After the layer distribution function f has been solved from the integral

equation (4a) or (4b), the solution of the Helmholtz equation 4 is found by the bound-

ary integral (2).

Now for a circular cylinder of radius a, the boundary contour can be expressed as

fr(0) = (acosO, asinO), 0 < 0 < 21r (5)

The normal vector to be used in (4a) and (4b) is n = (cos 0, sin 0).
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The Green's function and its normal derivative are5'6

G= H,," (Kirr( 0) - frr(0'))= 0) (2ta sin 0 2' 0) (6)

and

-G ir-~ H ')(.r0)_ (0, (Fr(0) - Fr'(01)) " n
4 1n 4 1 I r(r(O) -r(01

= -~l (2c sin2 sin 0 'I(7)

in which we have used the fact that Ir-(0) - r-r(0')l = 2a Isin q-fL-

It is important to note here that G and %G are functions of 0 - 0'. As will be seen

later, this allows the implementation of the Fourier spectral method to take a simple

form.

We thus express the boundary integral equation (4a) for the Dirichlet boundary

conditions as

1 f()" 2j (n (0 -0') - ijG(O- 0')) f(O)adO = b(O') (8a)

and equation (4b) for the Neumann boundary conditions as

2f(,) i. 2w" 02 G 0) d

f(01) + ( (n (O- 0') - i7i (0 --0) f(O)ad = b(O') (8b)
2J1 \ an'an On /

For clarity, the dependencies on 0 and 0' have been expressed explicitly in (8a) and

(8b).

In the next two sections, we give the numerical formulations of solving the inte-

gral equations (8a) and (8b) by a Fourier spectral method. Since different types of

singularities are encountered, the two equations will be dealt with separately.

5



II. SPECTRAL METHOD FOR DIRICHLET BOUNDARY CONDITIONS

A. Formulation

Let the layer distribution function f(O) and the boundary condition b(O) be ap-

proximated by the truncated Fourier series as

N/2-1

f(o)= Z fe'n (9)
n=-N/2

N/2-1

b(O) = . n be" (10)
n=--/2

where b4 are obtained by the FFT from prescribed boundary condition and f, are the

unknown coefficients. In (9) and (10), the particular form of truncated Fourier series

has been taken for the convenience of applying FFT programs.

Substituting (9) and (10) into the boundary integral equation for the Dirichlet

boundary conditions (8a), we get

N12-1 N/2-1 [ 2. f2 G N12-1

1E- fnin+ E (". ( - if) - i'-iG(o - 0') ei-ea do] = (e11)
2n=-NI2 n=-N/ris n=-NI2

For simplicity, let

By equating the coefficients of ei'n', equation (11) is easily reduced to

A + A j2w ((x) - iGrG()) e -nza dx = (12)

for -N/2 < n < N/2 - 1.

It is seen that the integral appearing in (12) are related to the Fourier coefficients

of •(x) and G(x). From (6) and (7), it is also clear that both are periodic functions of
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x, with a period of 2ir. Thus if we let G(x) and 8i•(x) be approximated by truncated

Fourier series as
N/2-1

G(x)= E ge-inz (13)
n=-N/2

a__G N1 •2-1 -n= : hn•'" (14)
"n=-N/2

then, the integral in (12) equals to 27ra(h. - i77g9). It follows that

1
if. + 27raf. (h. - iilg.) = bn (15)

Therefore, the Fourier coefficients of the layer distribution function f(O) are ob-

tained explicitly as

fnbn (16)
2 + 2ira (h, - irign)

The above equation shows that once the Fourier coefficients of G(x) and •(x)

have been found, the layer distribution function f(0) is known immediately.

Actually, the Fourier coefficients of G(x) and 8(X) can be found in exact form

using higher order Bessel and Hankel functions. They are derived in Appendix A.

Nonetheless, the numerical evaluation of the exact expressions becomes more ineffective

and costly as the order of the special functions increases. In what follows we give the

numerical method that computes the Fourier coefficients g, and hn accurately and

efficiently.

B. Computation of gn and hn

In general, the Fourier coefficients of a periodic function can be obtained efficiently

by using a Fast Fourier Transform algorithm (FFT). However, the accuracy of the
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Fourier coefficients computed by the FFT using a given number of datum points de-

pends on the smoothness of the function. Only when the function is infinitely smooth

(i.e. infinitely differentiable), the error of Fourier coefficients computed by FFT de-

cays faster than any power of 1/N, where N is the number of datum points. Such a

convergence is often referred to as an exponential convergence and the method is said

to have spectral accuracyi' 8 . Our aim here is to compute g. and hn by the FFT with

spectral accuracy even though the functions G and Oi are not smooth.

In the numerical approaches proposed previously 3'4 , the Fourier coefficients gn and

hn were computed directly as the FFT of the G(x) and OG (x) respectively. However,

the Green's function G(x) has a logarithmic singularity at x = 0, where 0 = 0', due

to the Hankel function of order zero in (6), and its Fourier series converges at the rate

of 1/N. Thus direct computation of gn from G(x) using FFT yields results whose

accuracy is only comparable to a first order method. Furthermore, the function TnG(x)

also has a non-smooth derivative at x = 0, and its Fourier series converges at the

rate of 1/N 3 . Thus direct computation of hn from -(x) is only comparable to a

third order method. Alternatively, as will be shown below, by properly treating the

non-smoothness of G(x) and Oi (x), g, and h. are computed with spectral accuracy.

To examine the singularity of G(x), we note that

G(x) = ()0 2a jsin 2I) = [Jo (2ca Isin 21) + io (2tca ]sin x)

in which J 0 and Y0 are the zeroth order Bessel functions of the first and second kind,

respectively. Using the asymptotic series for small arguments, we have9

z2 z 4

Jo(z) = 1 - -2 + 4-

2 'Z OZ ) +2 OZ)+ 2

Y0(z)=2In -Jo(z)+- +-....
7r '2 , 27r

8



It follows that, for kxl small,

G(x) = - I~n(,ca sinI x o (2rcasin) + (17)

in which O(x 2) represents a power series in x2, and -y is the Euler's constant, 7 =

0.577215.... To compute the Fourier coefficients of G(x) efficiently and accurately, we

note that the Fourier series of the logarithmic periodic function In (tca Isin LI) in (17)

is 6:

In (() s 2 con (18)
n=1

Thus we can "subtract out" the singularity in G(x) by forming

G(x) = i- )(2ca Isin 2x) + 1 In (ica Isin 2-) Jo (2rca Isin 2[) (19)

and then writing the Green's function as

G(x) = -(x) - ln (ea sin 2 A) Jo (2,cajsin 2J) (19')

It is easy to see that ?(x) is finite for all values of x. Furthermore, both G(x) and

J0 (21ca jsin 11) in (19') are periodic and infinitely differentiable. Thus their Fourier

coefficients can be computed with spectral accuracy using FFT. The Fourier coefficients

of the Green's function G(x), gn, will be computed according to (19') where the term

involving the logarithmic function is computed by using convolution sums.

We now study the non-smoothness of the normal derivative of the Green's function

8G-(x). The asymptotic series of the Bessel functions of first order for small argument

are9  ) z z
Ji(z) = - T6 +

(z) 2 +2 in •(2-y - I
z'z
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Then

n4 \/ 2

=-- [Ji (2ca Isin X 1) +iY, (2pca sin jXI)] Isn

4wa -+ In(Ixa 2in 1 2xa si x j)sin I + 0(x2) (20)

Thus although a is a finite function, due to the logarithmic function appearing in

the second term shown in (20), it does not have a smooth second derivative at x 0.

For this reason, its Fourier approximation will converge only at the rate of 1/N 3 .

The Fourier coefficients of -, however, can be found easily using the relation to

gn given in Appendix A. In particular, we have

jK2 a-•n (gn+l - gn_) n 540, -1, N 1

-C•--(92 -9o) - 19, n =0
h. 4= ~ (21)

Oca N

c2a N_1n T-_2n =

Thus it is only necessary to compute g9, the Fourier coefficients of G(x).

C. Fast Fourier Transforms

The numerical implementation of computing g, by (19') is given in this subsection.

Let us introduce Fourier collocation points

Xi = -- , j =0,1,2,...,N- 1

For convenience of discussion, denote the following Fourier series approximations

N/2-1

E(x)= Z 4Re-i (22a)
n=-N12
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12/-1
Ao (21ca I sin 21 p13e "'i (22b)

n=-N/2

The coefficients of these expansions are computed by FFT (backward in the usual

sense) as follows:

n -= Ni(x)e inz (22a')

i/=0
N-i (2ia si i

pn-= E JO (2a sin e (22b')
j=O 21

in which G(xj) is computed by (19). For the value of G(x) at x = 0, the following

limit, obtained from (17), can be used :

2r

27r 4

In addition, we denote (18) as

00

n=-oo

whereao0=n ea and an- forn50.
( 2 -2 I -n

Then, by (19'), the Fourier coefficients of G(x) is computed as

1= - (23)

where Un is the convolution sum :

N/2-1

U,,,= E pman-m (24)
m=--N/2

We note that the convolution sums in (24) require N multiplications for each un.

Thus the total operations for the convolution sums are of order O(N 2 ). This cost can
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be reduced considerably to O(N log 2 N) by the use of a pseudospectral transformation

method with de-aliasing techniques',s. For completeness, evaluation of (24) with a

"padding" de-aliasing technique is given in Appendix B.

III. SPECTRAL METHOD FOR NEUMANN BOUNDARY CONDITIONS

We now discuss the Fourier spectral method for the Boundary Integral Equation

(8b) of the Neumann boundary conditions. Upon substituting the truncated Fourier

series of the layer distribution function f(0) into (8b), we get

N12-1 N12-1 2w- do N12-1

"1fei + [+ / 02G . a = ),ino.
n=-N/2 n=-N/2 u n=-N/2

(25)

where bn are the Fourier coefficients of the specified Neumann boundary condition.

Again the integral appearing in equation (25) is directly related to the Fourier

coefficients of Gand . It is easy to find that the Fourier coefficients of O- are

the same as those of n, already given in the previous section as h,. The apparent

difficulty here is with the second normal derivative of the Green's function 820 . It can

be shown that this function is strongly singular at x = 0 and, indeed, is not integrable

in the ordinary sense. Fortunately it can also be shown that the integral with the

second normal derivative can be transformed into one involving tangential derivatives

with reduced singularity. In particular, we have10

2w 02 G inO 12r [Ie lOG I K2 nl ]

e ~adO ---57 - - - - + rn'-n G o a dO (26)O -n--nn ao =a 0 a -90'
10 10

where y- and represent tangential derivatives on the boundary.

The right hand side of (26) is now integrable in the sense of Cauchy Principal Value.

To show this, we only need to note that by the expression of the Green's function given

12



in (6) we get

5x Hl!a Isin - = (2-ca sin a sn
= 4 x ( Ii 21) 1 -I 21) 2 S1flTj

SKa H(1) (2xa sin sinfx (27)

=-8 1 i2]) Isin'I

Recalling (20), the asymptotic expression of OG for small x is found as

OaG sinx sin x
-G87r sinsin• 2  4In (Ka sin 2I) J, (2Ka Isin sin x + O(x) (28)

where O(x) denotes smooth terms of order x and higher.

The singular first term shown above is integrable in the sense of the Cauchy Prin-

cipal Value. In fact, we have

2 i 0 when n = 0
I einzdx (29)2,o1.2, 2sign (n) when n 76 0

Upon substituting x = 0 - 0' and equating the coefficients of einO', equation (25)

is reduced to

n+ fn 2Kin O- (x) + 0cos() G(x) - i77-a( W e ixadx = bn (30)
2 in] T2' - n

in which we have used the fact that, for a circular cylinder,

n'. n = cos(0 - 0')

The integral in (30) will now be evaluated through the Fourier coefficients of each term.

For the first term, the Fourier coefficients of 8G are obtained from the relation

OG -8G N/2-1 ingne -inx
-O- (31)

n=-N/2

where gn are the Fourier coefficients of G(x) by (13).

13



The Fourier series approximation of the second term in the integral of (30) can also

be found using g. since we have

N12-1 N12-1

cos(z) G(x) cos(z) E gne-i" s" E gnz (32)
n=-N/2 u=-N/2

where fr g-+ n = -N/2

= (gn-I + gn+) -N12 + 1 < n < N/2 - 2 (33)

• 2g- n = N/2- 1

Hence equation (30) is reduced to the following algebraic equations

2f + 2raf -2 + +2 r - iihn bn (34)

for -N/2 < n < N/2 - 1.

Therefore, the Fourier coefficients of the layer distribution function f(O) for the

Neumann boundary conditions are obtained ezplicitly as

f = iri - -gr n2 2 (35)

S+.22n +a g2n - iilhn
2 2-

where g., §n and hn are computed by (23), (33), and (21), respectively.

We point out, however, that §, as given by (33) and, indeed, hn of (21), are not

exact for n = -N/2 and N/2 - 1, owing to a truncated series of G(z) in the compu-

tation. Whereas it is possible to compute these two coefficients exactly, the resulting

error in the last two coefficients of fn is negligible because bn, in the numerator, de-

cays exponentially as for smooth boundary conditions. That is, fn for n = -N/2 and

N/2 - 1 are necessarily negligibly small if N is sufficiently large. For simplicity and

practicality, (21) and (33) are retained in the numerical calculations.
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IV. NUMERICAL EXAMPLES

In this section, numerical results of a plane wave scattering by a circular cylinder

are presented. The incident wave is assumed to be

Oi = eirz

The scattered wave, 40, satisfies the Helmholtz equation (1). The boundary conditions

considered here are the Dirichlet type • = -• and the Neumann type a = a

The solutions for the scattered field are obtained by the layer representation (2) as

r= j ( - iqG) f(O)a dO

N12-1 f 2 1rOG

The above integral can be easily evaluated directly using FFT, since the Green's func-

tion has no singularity for points lying outside of the boundary. The details are omitted

here.

For plane incident waves, exact solution is given by infinite series of the Bessel and

Hankel functions6 . Our purpose here is to demonstrate the exponential rate of conver-

gence of the numerical solutions. We emphasize again that the numerical formulation

applies to any form of the incident waves. Due to its simplicity, a sample FORTRAN

program is listed in Appendix C.

In numerical calculations, the radius of the cylinder, a, is taken to be 1 and also

Yj= 1. Computations for xa = 1, 10 and 100 have been carried out. In Tables I to

IV, numerical values of the layer distribution function f(0) and the scattered function

4 at far field are given for selected points in space. Exact values at far field are also

shown in the tables. Clearly as the number of Fourier collocation points increases, the
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numerical solution converges exponentially fast. Significant improvements in accuracy

are observed with relatively small increase of the number of datum points. This is

often true for spectral methods in general. The error decreases dramatically when the

number of points is large enough to resolve the basic features of the solution.

The corresponding layer distribution function f(O) is plotted in Figures 1 to 6

for the Dirichlet and Neumann boundary conditions for ia = 1, 10 and 100. These

graphs demonstrate again the remarkable accuracy of the Fourier spectral methods

with relatively small number of datum points.

Far field scattered intensities, computed as IJi42, are plotted in Figure 8 and 9 for

the Dirichlet and Neumann boundary conditions, respectively.

V. CONCLUSIONS

A fast numerical solution of wave scattering by a circular cylinder has been pre-

sented. It is shown that by properly removing the non-smoothness of the integral ker-

nels of the Boundary Integral Equations, Spectrally accurate numerical solutions are

obtained. The numerical error decays exponentially as the number of datum points

increase. This implies that the present method requires significantly fewer points for

achieving a given accuracy in comparison with previous numerical approaches. The

present method is also easy to implement.

Moreover, the combined single and double-layer formulation of the Boundary Inte-

gral Equations ensures the uniqueness of the numerical solution for all frequencies. It

is shown that the hypersingularity of the Boundary Integral Equations can be handled

easily in the spectral method.
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APPENDIX

A. Exact expressions of g. and h.

In this appendix we derive the exact analytic expressions for the Fourier coefficients

of G(x) and O(x).

It can be shown that, e.g. by (7.2.51) of ref. 6,

0o

Hence
(211= G(x)e"n dx

1 2" H(1) (rca sin 4I) ein0 dX

= 4HO)(r+a)Jn(++a)4

Moreover, for n 3 0, using integration by part and (Al),

h. = n 1(x)einz dx

2- Jo O
i+r 0 [2'5i;aJn++~-'n] "d
-- .8- 21 HP (--- a ssin~) sen'" d

ic2ai

= K- (.c, H )asin x 1) Isin xI co--, dxoKI r cl)(xa~ sin~ x'~" sin-xIcsx e"t dx

8wn Jo E
rn=-o0

a, [H()ý(aJjr)-H1jx)njr)
- 16n nl+l(aJ+( R-

K2 a

- -(9n+1 - gn 1-)

where use has been made of the formula9

d [zH("(z)] = zH(')(z)
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For n = 0, further calculations show that

1Ha 2  HI)K)os)ho= ý2"i[(ic(a) J2(ira) - -()x)J~a H;i1 ia)Ji(#ca)16 20 a1

= -1 -(92 -90) - 1

B. Evaluation of convolution sums

An algorithm of computing convolution sums u. with O(N log2 N) operations is

shown below6 .

Let M 2> 3N and

fi =2rj/M, j = 0, 1, 2,...M - 1

Compute the following using FFT for j = 0,1,2, ...M - 1:

M/2-1

Ai = E ane-i'n
m=-M/2

M/2-1

Pi = E
mi=-M/2

where
amn -N <m <N -1

a0 other

Pm -N/2 < m < N/2 - 1

0 other

and form the product

Then the convolution sum un is the (backward) FFT of U, as follows
1M-I

us = -0 (4e"'ui•
j=O

18



for -N12 < ni < N12 - 1.

C. FORTRAN program

A FORTRAN program of implementing the Fourier spectral method is listed below.

(The routines cf tt i, cfttf and cfttb denote initialization, forward and backward FFT

transforms respectively.)

program circle

c n :number of points; isoft=1 :Dirichiet D.C.; isofttO :leumann B.C.

parameter(nu32, ak=10 .0, isoftul , tal.1 0,nl~n-1 ,nhali-na/2,m=-3*n,
> rnifloat (n),pi=3. 1415926S358979324,eulerz0 .5772158890153286)
complex b(0:nl),ln(0:nl),gbar(0:nl),gn(0:nl),bn(0:nl),p(0:nl),

> gtilde(0:nl),aa(0:m-1),p.(0:m-1),wsaw.(2000),wsav.2(2000),ei,phi
ei=(0.0,1.0)
call cffti(n,.uave)
call g~tbc(n~ak,b,ei,pi)
call cfltf(n~b,wsave)
do 10 j=O,n-1

tmWr2.0*ak*abs(sin(pi*IloatQj)/ru))
if(j.eq.0) then
gbar(0)=-*uler/2 .0/pi+ei/4.0
P(0)01.0

else
gbar(j )ei/4.0*(bosjO(tmp)+.i*beuyO(tmp))
>+0. 5*alog'tmp/2. 0).besjO(tmp)/pi
pQi)=beuj0(tmp)

endif
10 continue

call cfftb(n,gbaruua~ve)
call cfftb(n'p ,vsav.)
am(O)=alog(ak/2 .0)
am(2*n)=-1 .0/2.0/rn
do 21 i=1,n-l
am(i)=-1 .0/2.0/float(i)

21 am(2*n+i)=1 .0/2.0/flost(i-n)
do 22 i=0,nhalf-1
pUmUiP(i)

22 pm(6*nhalf+i)=p(nhalf~i)
call cflti(m,wsav*2)
call cf~tl(m,am,vs&Ye2)
call cfftf (m,pm,,save2)
do 23 j=0,m-1

23 pmQj)uamQj)*pmQj)
call cfftb(m,pm,wsave2)
do 31 i=0,ahali-1
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gn(i)-gbar(i)-0. 5epa(i)/iloat(a)/pi
31 gm(nhalf~i)=gbar(nhalt+i)-0. " (5S~nhW I+i)/Iloat(m)/pi

ha(0)uak**2/4.0*(gn(2)-gn(0) )-gn(l)
han~ahaf-1)uaks'e2/4. 0/float (ahali-1)gn(nhali-2)
banahalf)*ak**2/4. O/tloat (ahalf) *gn (nhalt+ 1)
bn(n-1)aak**2/4.0*(gn(0)-gp(n-2))
gtild*(0)*O.5*(pR(1)+gR(ný-1))
gtilds(nhalt-1) -0. 5*gm(uhalf-2)
gtilde(ualfUO .S5Rg(nhalt+1)
gtilde(n-1)=.0.*(ga(0)+gn(n-2))
do 32 ial,n-2

itruemi
if(i.ge.nhalf) itruezi-n
if(i.*q.nhalf-1.or.i.eq.nhalt) go to 32
hn(i)u-ak**2/4.0/float(itrue)e(gn(i+l)-gn(i-1))
gtild*(i)U0.5e(gn(i 1)+pM(i+1))

32 continue
do 40 i=On-1

if(isoit.*q.1) then
fn(i)-b(i)/(0.5*rn42.0*pi*(bn(i)-ei*eta*gn(i)))

else0
itruezi
if(i.ge.nhalf) itruosi-n
fn(i)=b(i)/(0.Eeeioetaoru42.0epi*(-float(itrue)**2*gn(i)
> +ako*2*gtilde(i)-ei*eta*hn(i)))

endit
40 continue

c The following is to find phi at far field r~rO

r0=10.0
npoint=4
do TO iial,npoint

sj=2.0h'piefloat(ii-1)/float(npoint)
do 71 j=0,n-1
theta-2 06'pi*floatQC) /rn
rjusqrt(1 .0+rOerO-2.0orOocos(theta-sj))
djul.0-rOecos(theta-sj)
tnp~akerj
gn(j)aei/4.0*(besjO(tmp)+ei'besyO(tmp))

71 hn(j)=-ei*ak/4.0*(besjl(tup)4ei*besyl(tmp) )*dj/rj
call ciftb(n , guisave)
call cfftb(n,hn ,wsave)
phi=o.0
do 72 i0O,n-1

72 phi~phi+2 Os'piein(i)*(bn(i)-eioetaogn(i) )/rn
70 write(3,100) rO~sj~phi,cabs(phi)
100 format(' r0'I,e15.6,' theta=I.e15.6/' phi=',3e17.10)
999 stop

end
C

subroutine getbc(n~a~k,b,si~pi)
complex si,b(0:n-1),tup
do 10 J0O,n-1
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tmp=ei*ak*cos (2. 0*pi*float (j)/float (a))
10 b(j)=-cexp(tmp)

return
end
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TABLE I
Values of the layer distribution function f(O) at selected points

on the boundary. Dirichlet boundary condition.

N j 0 = 0 0 = 900 0 = 1800 Error

ica = 1

4 1.101447573 1.102982967 !.124378820 10-2

8 1.113205176 1.095419894 1.146430615 10-3

16 1.112753432 1.094877536 1.145739275 10-8

24 1. 112753420 1.094877525 1.145739263 10-12

ica = 10

24 4.590213453 6.904710445 5.180354736 10-2

32 4.546357630 6.901732036 5.132718905 10-3

48 4.545461066 6.901500667 5.132515158 10-8

56 4.545461055 6.901500659 5.132515156 10-12

ica = 100

224 20.64255659 6.841653547 18.93255934 1O-3

256 20.64325731 6.842244857 18.93221646 10-9

512 1_20.64325733 6.842244863 18.93221644 10-12
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TABLE II
Values of the scattered function 0 at selected points

at far field r = 10a. Dirichlet boundary condition.

N 0=0* 0 0=900 0 = 1800 Error

a= 1

4 0.4146449903 0.2787718545 0.1852248716 10-2

8 0.4224209076 0.2612785029 0.2551151985 10-4

16 0.4224153154 0.2613031445 0.2552183381 10-10

Exact 0.4224153154 0.2613031445 0.2552183381

ia= 10

24 0.8255952003 0.1969679200 0.1864749710 10-2

32 0.8285176644 0.1953580665 0.2300067055 10-4

48 0.8285110664 0.1953543814 0.2300939707 10-10

Exact 0.8285110664 0.1953543814 0.2300939707

Ica = 100

224 0.8562228283 0.1881301853 0.2295232548 10-3

256 0.8562289911 0.1881326409 0.2294229274 10-10

Exact 0.8562289911 0.1881326409 0.2294229274
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TABLE III
Values of the layer distribution function f(O) at selected points

on the boundary. Neumann boundary condition.

N 0 = 00 0 = 900 0 = 1800 Error

"ca = 1

4 1.035182633 0.3028073027 0.8616587030 l0-1

8 1.200134116 0.3972281648 0.8518411247 10-2

16 1.199187560 0.3963806796 0.8495643896 10-7

24 1.199187560 0.3963806589 0.8495643587 10-12

Ka 10

24 0.6004486353 0.4814454225 1.362228889 10-1

32 0.6274625969 0.6575899642 1.577833267 10-2

48 0.6302381163 0.6567081358 1.460119442 10-7

56 0.6302381517 0.6567081198 1.460119455 10-12

,ca = 100

224 0.2185547081 1.282490390 2.054272775 10-2

256 0.2157948725 1.283008634 2.057912965 10-7

512 0.2157947803 1.283008643 2.057913072 10-12
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TABLE IV

Values of the scattered function 4 at selected points
at far field r = lOa. Neumann boundary condition.

N 0 = 00 0 = 900 0 = 180° Error

a 1

4 0.1583300606 0.1690204144 0.1619964200 10-1

8 0.1732916160 0.1563414831 0.2312523394 10-4

16 0.1733358919 0.1563260243 0.2313583724 10-10

Exact 0.1733358919 0.1563260243 0.2313583724

,a = 10

24 0.7679584467 0.2167643382 0.1574136977 10-1

32 0.7740714632 0.1956069424 0.2282238894 10-1

48 0.7740874173 0.1955960691 0.2283394143 10-10

Exact 0.7740874173 0.1955960691 0.2283394143

Ka = 100

224 0.7688015277 0.1871656432 0.2295250315 10-3

256 0.7688018590 0.1871717295 0.2293995512 10-10

Exact 0.7688018590 0.1871717295 0.2293995512
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Figure 1. Layer distribution function f(O) for na = 1. Dirichlet boundary condition.
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Figure 2. Layer distribution function f(O) for xa = 10. Dirichlet boundary condition.
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Figure 3. Layer distribution function f(0) for na = 100. Dirichlet boundary condition.
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Figure 7. Directivities of the far filed scattered function, Dirichlet boundary condition.
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