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1 Introduction

The use of adhesives in bonded joint concepts has given rise to a myriad of analytical and numerical treat-
ments to ascertain the state of stress in critical regions of the bond to predict ultimate joint strength and
service life. Analytical approaches have developed since the classic work of Golan and Reissner [1] in which
the elastic response of a single-lap joint is analyzed using simplifying assumptions for the stress state and
strain-displacement relations. Subsequent efforts have involved developing analyses accounting for various
joint parameters such as nonisotropic adherends and bondline thickness effects [2-4], adhesive flexibility
(3,51, geometric and material nonlinearity of the adhesive and adherends [6-10], effect of adhesive spew fillet
[11,12], stress singularities (13-18], environmental effects [19], combined loading [20,21], and various joint
configurations such as double lap, tapered and cylindrical [16,22,23].
For all the success of analytical approaches in elucidating the effect of joint parameters on joint behavior,
an inescapable limitation is the complexity of incorporating all significant parameters in a single analytical
framework for the analysis of general joint cohaiigurations. Such restrictions have limited the applicability of
specialized analytic approaches for the design of practical bonded joint concepts. A preferred approach is
a finite element based methodology which can provide a robust numerical technique to model any bonded
joint configuration while theoretically capable of accounting for all joint variables.
Various finite element formulations specialized for the analysis of adhesive joints have been reported in the
literature. A simple shear-spring element Was developed in [24] which neglected the inclusion of normal
stresses and wa- used to determine stress intensity factors in cracked and uncracked adherends. A spe-
cialized element was developed in [25] yielding a combined normal and shear-spring representation of the
adhesive. Carpenter [26] formulated I-D and 2-D elements to be joined to plate element approximations
of the adherends.which incorporate parameters allowing various simplifying assumptions regarding adhesive
behavior to be represented in the element formulations in order to numerically simulate analytical results.
An extension of Carpenter's approach to 3-D applications is presented in [27] but the element derived is a
rod-type formulation not suited for 3-D elastic continuum representation. A mixed finite element is discussed
in [28] which explicitly enforces interface stress conditions but details of the formulation are not presented
and solutions are limited to butt joint configurations without comparison to reference solutions. In the
present analysis, the aim has been to fully develop a finite element basis for a versatile numerical approach
wherein the complete equations of 2-D and 3-D elasticity are used to accurately represent the elastic con-
tinuum and obtain results for actual adhesive joint configurations with realistic boundary conditions and
applied loading. Of critical importance in the analysis of adhesive joints from a design standpoint are the
accurate prediction of bondline stresses at the ends of the joint which tend to be maximum and, hence, the
initiation sites for adhesive failure. The numerical prediction of stresses in these regions is complicated by
the presence of boundary layer singularities at the joint ends due to the free-edge and material mismatch
effects and by the nonlinear geometric and/or nonlinear material behavior of the joint under normal design
load conditions. The present study has been conducted to evaluate the application of the hybrid stress
element method [29-33] in special layered element configurations to accurately obtain bondline stresses. The
selection of hybrid stress element formulations is motivated by the versatility inherent in the method by
allowing independent assumptions regarding the stress and displacement field to be incorporated into ele-
ment designs. The independence of stresses may be used in layered element configurations to strictly enforce
stress continuity at the layer interfaces which is difficult in displacement-based element formulations. An
additional capability is the modelling of zero traction boundary conditions which may be used to accurately
represent true stress states at the bond ends. The present effort is thus aimed at fully exploring various
modifications to the hybrid stress variational basis while formulating elements with various node configu-
rations, layer combinations, order of interpolants and order of stress expansions to determine the optimum
element design for application to predicting adhesive joint stresses. Numerous multi-layered 2-D and 3-D
elements formulations are detailed herein to assess their relative performance ip the prediction of interface
stresses in adhesive joint configurations. With the emphasis on optimum element formulation, the present
analysis is limited to linear elastic material behavior and a single common adhesive joint configuration is
selected to benchmark element performance. Towards this aim, a single-lap joint configuration is selected
for detailed comparative analysis. Additional enhancements such as the representation of nonlinear material
and geometric behavior in the presence of singular stress fields are suggested for future development. The
performance of the developed adhesive finite elements are compared with reference solutions obtained using a



highly discretized model of common single-lap adhesive joint configurations using higher-order displacement-
based elements and demonstrate greater efficiency and accuracy of the developed hybrid stress elements. All
specialized 'adhesive elements' were run using the ABAQUS commercial finite element program through the
development of a user-defined subroutine. The complete source code and a description of the use of these
elements is presented in [341.

2 Modelling Stresses in Adhesive Joints

In the joining of structural components, mechanical fastening techniques have the undesirable effect of cre-
ating highly complex stress fields and excessive stress intensification in the region of the fastener. As an
alternative, adhesive bonding has been increasingly applied as a joining technique to alleviate the stress
concentration by distributing the load transfer region. Although eliminating the concentration of binding
forces in localized areas, however, adhesive bonding gives rise to a highly complex material system in the
adhesive layer. In the local region of the adhesive-adherend interface exists a critical interphasal region in
which various chemical species formed in the reaction of adhesive and adherend materials, together with
possible reagents used as surface treatments to enhance bonding, create a complex stratification of material
properties. Characterizing the mechanical properties of these transitional zones is important to quantify
possible reductions in stiffness'and strength compared to the bulk properties of the adhesive and adherend
material. The modelling of adhesive layers thereby presents the common problem of scale in representing
physical structures: at a microscopic level the representation of local stresses in the complex material system
of the interface is of interest from the standpoint of fracture and failure; at a higher level, the global response
of an entire adhesively bonded component is needed to determine overall stress distribution under applied
service loads. It is the prediction of macroscopic behavior which is of interest in the current study; global
stress predictions are required to provide an estimate of local stresses to be used in microstructural models
for the.detailed analysis of complex micromechanical response or in ultimate strength criteria for predicting
the initiation of joint failure. The analysis of a structure or component containing an adhesive layer thus
requires that the variation in the microstructure of the joint be neglected and gross mechanical properties
used for a numerical representation. The material property variation in the local interface region are replaced
by the assumption of a homogeneous continuum in order to predict the transfer of normal and shear loads
between the adherends through the adhesive layer. The critical stresses are thus generated as normal and
tangential components along the adhesive/adherend interface, normally in the region of the ends of the joint.
At a structural level of analysis, complications arise in the finite element analysis of adhesive stresses due, in
general, to the inherent mathematical idealizations made in representing an adhesive joint and, in particular,
to the assumption of linear elastic material response. The interaction of free edges and material mismatch
at the bond ends tend to give rise to stress singularities and may be resolved through the incorporation of
assumed singular stress fields in the element formulations or, most simply, the region in the area of the sin-
gularity may be regarded as nonconvergent and material yielding is assumed a priori. Nonlinear viscoelastic
and plastic material behavior of the adhesive under service loads commonly tend to reduce peak stresses at
the joint ends through redistribution of joint loads. A linear analysis of adhesive stres-ses using appropriate
failure prediction methods such as the average stress criteria is, therefore, conservative in predicting joint
strength.
A numerical simulation of critical joint stresses requires an accurate modelling of adhesively bonded sections.
This, in turn, requires an accurate representation of the elastic continuum of the adhesive and adherends
along the bond line. Standard finite element formulations cannot simultaneously model the discontinuous
jump in material properties while maintaining continuity of stresses across the adherend/adhesive interface.
Nonlinear geometric and/or material behavior may be accounted for through a variety of solution proce-
dures accounting for large displacements and viscoelastic/plastic material models. The focus of the current
research is to assess the application of the hybrid stress technique through the development of novel element
configurations to accurately account for material property discontinuity while maintaining stress continu-
ity at the critical adhesive/adherend interfaces in 2-D and 3-D bonded joint configurations. The primary
goal is to rigorously assess possible special element designs involving different orders of assumed displace-
ments, node configuration, number of layers, assumed orders of stress expansions and constraints imposed
on the stress field to determine the optimum element formulation. In order to limit the amount of joint
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variables to discern comparative element behavior, analyses are restricted to a single common adhesive joint
configuration incorporating linear elastic material behavior and small displacement response to applied loads.

3 Variational Basis for Specialized Adhesive Elements

The hybrid stress finite element method is used in the present study to develop specialized layered ele-
ment formulations. The structure of the constituent element matrices are defined by the Hellinger-Reissner
functional in which stresses and displacements are assumed as independent field quantities. Alternative
statements of the basic hybrid stress variational basis may be utilized to optimize element performance
through assumptions made in the selection and treatment of independence of assumed stress fields. Two
basic versions of the variational basis are investigated and are referred to as the 'full' and 'partial' hybrid
stress method which are detailed below.

3.1 Full Hybrid Stress Method

The complete Hellinger-Reissner functional may be stated as

IR = -- [(-1/22)f'TSo" + o.T(Lu)]dv - j1. uTtds (1)

where o" is the assumed stress field, S is the material compliance matrix, u is the assumed displacement
field, L is the differential operator relating strains to displacements, and t are applied surface tractions over
a portion of the element boundary, s.
The assumed stresses for the ith layer may be represented by

a.i = Pi'J (2)
where P' is a matrix of polynomial terms and 0' is a vector of undetermined expansion coefficients.
The displacement field is assumed over the & layer domain as

ui = N'qi (3)

where N' are compatible isoparametric displacement shape functions and q' are nodal displacements. Ne-
glecting applied tractions and substituting (2) and (3) into (1) yields

= j [( - 1/2),,iT Pi T Si P'f3i + ir piT (LN)']q']dv (4)
or

II = (-1/2)0IWT HOf3' + f3G'q' (5)

where

H' = /PSTSiPdv (6)

G= = P' T (LN')dv - j P' T B'dv (7)

Performing local assembly over the N element layers yields

N

IIR - - (- 1/2),OTHO + OTGq (8)

Seeking a stationary value of the functional by taking the first variation with respect to /3 yields

= = H-'Gq (9)

By substituting /3 into (8), the variation with respect to q yields the element stiffness matrix as

K = GTH-IG (10)
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3.2 Partial Hybrid Stress Method

An augmentation of the full hybrid stress variational basis can be made in which not all stress components
are represented by independently assumed stress expansions. The resulting basis, called the partial hybrid
stress method, incorporates independently assumed stresses for selected components while the remaining
components are obtained directly from the assumed displacement functions as in classical displacement-
based element formulations. This gives the total stress field as the sum

0'= ffl +02 (11)

Assumed independent stress components for the it h layer are given by

ff= ViP (12)

while the remaining stress components are derived from assumed displacements in the ith layer and are
expressed as

072 = C'B'q. (13)

where C' is the material stiffness matrix partition relating dependent stresses to strains, 13' is the strain-
displacement matrix and q' is the vector of nodal displacements. The variational statement of the partial
Hellinger-Reissner functional neglecting applied surface tractions may be stated as

RlZ j[(1/2)qiT 'iT C'D'q' +/f T P'T D3'q' - (1/2)10PTpSsPIIP]dv (14)

where the constituent matrices for G' and H' are defined above. Performing local assembly over the element
layers yields

N

IIR = R • = ][(1/2)qT TCI3q + 3TGq - (1/2)fTHO]dv (15)
i=1

Taking variations with respect to the independent field quantities, the contributions to the element stiffness
matrix due to assumed stresses is given by

K, = GTHT-G (16)

and the contribution due to assumed displacements is given by

K 2 = j 13TC]3dv (17)

The total element stiffness matrix is therefore given by the sum

K = K1 + K 2  (18)

This formulation minimizes the computational cost associated with the hybrid method and offers the benefit
of increasing the accuracy of selected stress components while allowing other components to be computed
less accurately from assumed displacements. The partial hybrid formulation is used to assess 2-D element
performance for potential application in 3-D layered element formulations in which the large number of in-
dependent stress modes used for maintaining complete expansions may be minimized while suppressing zero
energy modes. An important aspect of the partial variational statement is that it precludes the enforcement
of all field equilibrium conditions on the element stresses which may limit element performance in specific
applications.

Additional variations to both of the above hybrid variational basis may be made through the selective
relaxation of layer equilibrium and interface stress continuity constraints.
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4 Layered Element Formulations

In using the hybrid approach, the constituent matrices of individual layers are locally assembled and stress
continuity conditions may be explicitly enforced at layer interfaces resulting in novel element formulations
ideally capable of representing the stress state at material interfaces. In the historical development, of the
hybrid stress method, the improvement in element behavior has been offset by an ostensibly greater com-
putational cost in forming element stiffness coefficients. This has resulted in the convention of utilizing
minimum expansions for assumed stress components to minimize additional cost over displacement-based
element formulations. Although the basic assumption that the hybrid stress technique inherently requires
a greater computational cost over displacement-based element formulations has been disputed recently in
References [35,36], the development of specialized elements presupposes a limited use of such elements in
a complete structural finite element model. Thus, the computational efficiency of specialized elements are
regarded as of secondary importance and complete emphasis is placed on developing element formulations
which provide the most accurate stress prediction. An additional aspect of the hybrid method has been the
problem of selecting assumed stress fields which suppress spurious zero energy modes in the resulting element
stiffness matrix. This has been solved by the development of rational procedures for selecting stress expan-
sions based on stresses assumed in mapped or natural coordinates [32,33]. In this approach a contravariant
transformation based on Jacobians computed at the element centroid is used to map natural stresses into
physical coordinates. For the elements developed in the current study, a minor geometric restriction is
imposed which requires that all element layers are rectangular. This requirement simplifies the mapping
function and allows stresses to be assumed in physical coordinates. In the selection of assumed stresses,
complete stress expansions for each layer of various orders are used to assess element characteristics and
performance.

The various treatments of selected stress fields and the performance of 2-D and 3-D specialized layered
elements - or 'adhesive elements' - are presented below.

4.1 2-D Layered Element Configurations

Figure I depicts typical layered element configurations used in the present study to represent a 2-D elastic
continuum. Nodal variables are restricted to u and v translational degrees of freedom. The isoparametric
displacement fields presented below are assumed independently within each element layer; superscripts de-
noting layer designation have been dropped for clarity.

6 9 I0 I1 12 13

LAYER 2 P7 LAYER 2 8 9 LAYER?2 IW

3 4 56 6 7 3

LAYER I p3 LAYER I 4 14 LAYER 1 S5

20 2 1 2 D a 2c

Figure 1. Typical 2-D layered element configurations.
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As shown in Figure 2, a local coordinate system is assumed within each layer with the origin situated
at the layer centroid. For the various element configurations shown in Figure 1, the layer displacement shape
functions are presented below.

i YYTj

K T LAYER K T" LAYER

Figure 2. Local and mapped layer coordinate systems in 2-D and 3-D elements.

For a linear element with 4 nodes per layer, the isoparametric displacement functions n. are given by

u = v = T E"(1 + &OP( + Ili7) u,, = Niq (19)
Vq i=1 Vi

The mapping between physical and natural coordinates is given by

z = ao + ali +-a217+-a3tI7 120)
y = bo +bit+ 2 +b• tq

where Eao bo 1l 1 11 Y
a, b] I1 -1 1 12 Y2 (21)a2 b2 X 1- 3 Y/3

a3  b3 1 -1 -1

For a higher-order element with 8 nodes per layer, the isoparametric displacement functions liq are given by

8Uqi

uq == Ni =(u ) Niq (22)

where

N2  2(1 -_ 2)(1 - q)
N3  (1 - W(-t - I)

Ni N 4  2(1 - t)(1 -_ 2) (23)Ns - 2(1 +- )(1 -_ y2 )
N6  ( 0 + 7)(-1 + 7)
N7  2(1- t 2)(1 + 7)

,NS (0 + )(0 + q)(- I + t + W)

The mapping between physical and natural coordinates is given by

x = ao+a•-+a 2 7-+a 3 &7+a 4t2 + a 5q2 + a 6 t27r + a7 7,1
2

y = bo + bit + b27 + b3t7 + b4t 2 + bs72 + b6t 2 n + b7. 2  (24)
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where
ao bo -1 2 -1 2 2 -1 2 -1 z1 yi
a, b1  0 0 0 -2 2 0 0 0 z 2 Y2
a2 b2  0 -2 0 0 0 0 2 0 z 3 Y3
a363 1 1 0 -1 0 0 -1 0 1 Z4 Y4 (25)
04 64 =-()

44 b 4 1 -2 1 0 0 1 -2 0 X5 YS
a5b5 1 0 1 -2 -2 1 0 1 z6 Y6a6 b6 -1 2 -1 0 0 1 -2 1 z7 Y7a7 b7 -1 0 1 2 -2 -1 0 1 Zs Y8Las b8s

For a mixed-order element with displacements assumed as a linear function of the r coordinate and a quadratic
function of y resulting in 6 nodes per layer, the isoparametric displacement functions uq are given by

Uq = 1 u = Niq (26)

where rN, 1 7 q(- 007- 1)1
N 2  Jq(1 + )(r/- 1)

Ni = N 3  2(1 - ý)(I - q2 ) (27)
N 4  - 2(1 + )(I -_1(2)
N 5  1 )(1 - -00+1)
N 6  +(1 + )(1+ 1).

The mapping between physical and natural coordinates is given by

z = ao +alj +a2 17+a3ý7+ a4772 + agq(2

y = bo + bjý + b2,/+ b3ýq + 6 4T)2 + b65 T2 (28)

where
ao bo 0 0 2 2 0 0 x, yj
at b, 0 0 -2 2 0 0 x2  Y2
a3 b2  1 -1 -1 0 0 1 1 X3 Y3 (29)
a4 63 =b 1 -1 0 0 - 1 1 X4 Y4

a5  b5  1 1 -2 -2 1 1 Z5 A

La b6  - 1 1 2 -2 -1 1 L6 Y6

Stress equilibrium conditions for the ith layer are given by

0: 6 =+ LO, = o (30)

Continuity conditions for stresses at the layer interfaces are given by
• ffi+l

ffY;lo=h, = -- i=-h.+,

(31)
--V 1 8 - i. =_h,+L

In the use of the partial hybrid formulation, only the normal and shear stress components are approximated
through independent expansions. A priori enforcement of layer equilibrium is reduced to the condition

-1 + o = 0 (32)
6z by

while the interface continuity conditions remain those given in (31).
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4.2 3-D Layered Element Configurations

Representative 3-D element configurations incorporating multiple layers are depicted in Figure 3.

Z9111
"9 1

LAYERER2

LAYER 1

1AE 22Z

Figure 3. Typical 3-D layered element configurations.

The isoparametric displacement functions uq for each layer are given by

u--)1 ) Vi Niq (33)
lWq =1 I- ti

The isoparametric mapping between physical and natural coordinates is given by

z = ao"al +a2r"•a3"la44]+ aS•""a6)C+ a7-t7•

y = bo +b 1. +b 2•7 + b3( +b 40q +b 5tC + b6 i +b b70 (34)
z = co + ct + C17 + c3 + C40 + csG + c617C + C7

where

ao bo 1 1 1 1 1 11 1 ziyizl
ab c1  -1 1 -1- 1 -1 Z 2 Y2 Z2
a2 b2 c 2  -1- 1 1-1-11 1 z 3 y 3 z3
a3 b3 c 3  1-1-1-1-1 1 11 1 z 4  4 Z 4  (35)
a4 b 4 C4 8 1-1 1-1 1-11-1 zs zs
a5 bsc 1-1-1 1 -1 11 -1 Z
a6 b c6  1 1-1-1-1-11 1 y 7 Z7
a7 b7 C7-1 1- 1 1-11-1 ZSY Z

8



Stress equilibrium conditions for the :'h layer are given by

6u6-i+'T 6-fr =
S~= 06 b 6 + 6z

La_ +u 6v'ý + =ý 0 (36)
6 6Z y 6Z

~= 0

Continuity conditions of stresses at the layer interfaces are given by

•r:alf=,. = ;1=_.÷

= !(37)

In the partial hybrid approach, only the a=, r,, and ry, components are based on independently assumed
stress expansions. The enforcement of equilibrium throughout the i0' layer domain is limited to

6,-•, 6 -, , 6bar
-'_ + __ + " = 0 (38)
6*, 6y 6z

The continuity conditions of stresses at the layer interfaces remain the same as given in (37).

5 Benchmark Solutions for Adhesive Stresses

A variety of 2-D and 3-D layered element formulations have been derived to assess the effect of element
layers and order of stress expansion on the accuracy of stress prediction. All elements have been supported
for use in the ABAQUS commercial finite element program through a user-defined subroutine [34]. The
developed elements are benchmarked using a 2-D single-lap joint shown in Figure 4 and two 3-D single-lap
joints with a rectangular and tapered pianform configuration as shown in Figures 5 and 6. In order to assess
the accuracy of stress prediction using specialized elements, a reference solution was obtained by using a
highly discretized 2-D finite element model incorporating a large number of higher-order displacement-based
8-node plane-strain elements. Regular meshes were used for each model domain with the discretization
indicated using the notation (n=,n,) to indicate the number of elements used in the z and y directions,
respectively. The boundary conditions and applied loading used in both 2-D and 3-D single-lap models
are depicted in Figure 7. The roller supports at the adherend ends are applied over the first few elements
to enforce a zero curvature condition. The uniform applied load, P, is distributed as a tensile load over
the joint end in the upper adherend while fixity conditions are applied at the opposite end of the lower
adherend. Although numerous analytical approaches have been presented in the literature for the analysis
of single-lap joints, all incorporate simplifying assumptions in order to yield closed-form solutions which
are incompatible with the approximation framework of finite element theory. As an example, governing
differential equations describing a single-lap joint are presented in Reference [15] and were solved to generate
an analytical solution for bondline stresses. Assumptions made in deriving the governing equations include
zero transverse deformation of the adherends, constant stresses through the adhesive thickness and joint
flexibility primarily due to deformation in the adhesive layer. As shown in Figures 8 and 9, the analytical
solution does not match the solution obtained numerically using a finite element based approach - most
notably in the region near the singular point present in the finite element analysis assuming linear elastic
material response - and hence is unsuitable for the present study.

9
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Figure 4. Geometry of a 2-D single-lap joint model and discretization used for the reference solution.

Figure 5. Geometry of a 3-D single-lap joint model with rectangular planform.

Figure 6. Geometry of a 3-D single-lap joint model with a tapered planfform.
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Figure 7. Boundary conditions used to define the single-lap joint model supports.
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Figure 8. Analytic and finite element prediction of oryy stresses along bondline in a single-lap joint.
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Figure 9. Analytic and finite element prediction of r,3 stresses along bondline in a single-lap joint.
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In addition to providing the reference solution for developed 2-D elements, the plane-strain solution is used
directly as a reference solution for the 3-D single-lap joint with rectangular planform assuming negligible
variation of stresses through the joint width. For the tapered 3-D single-lap joint, the bondline stresses in
the reference solution are scaled according to

0= (++z/1)0,

(39)

= (1 +z/X/0,

where z is the axial coordinate and I is to total bond length.

Numerous element formulations and their performance are detailed in the following sections. Different
combinations of element layers, node configuration, element order, stress field selection and the use of 'full'
and 'partial' hybrid stress variational bases are assessed. Due to the significantly greater degree of develop-
mental effort in 3-D element formulations, basic element performance is assessed in 2-D configurations. The
optimum element design is then carried over to the development of a 3-D element. The development of a
generic 3-D element with optimum stress prediction capablilities is the ultimate aim of the current research
to provide a versatile numerical tool for the modelling of any arbitrary 3-D joint configuration.

6 2-D Special Adhesive Elements

Various 2-D elements are formulated and their accuracy in predicting joint stresses is assessed through a
relative comparison with the reference solution. As explained above, a detailed study of 2-D element configu-
rations is performed to ascertain the optimum element configuration based on node configurations, number of
element layers, order of assumedi displacement shape functions, order of assumed stress expansions and vari-
ations in stress field constraints for the development of an optimum 3-D element formulation which involves
a significantly greater degree of complexity in basic formulation. The various 2-D element formulations and
their accuracy in predicting joint stresses in a single-lap configuration are discussed in detail below. In the
discussions of particular element performance, statements regarding the hybrid stress finite element method
are presented which may provide general insight into the use of this variational basis for specialized layered
finite element formulations for other intended applications. To assess the convergence of the derived ele-
ments, four different models utilizing 10, 25, 50 and 100 elements along the bondline, were constructed and
compared to the reference solution. These models were specifically constructed with nonoptimal meshes in
the use of available degrees of freedom in the local region of the adhesive bond to assess element performance
in models with high aspect ratios and significant jumps in the degree of mesh refinement between regions in
the mcdel. The models are depicted in Figure 10 with the discretization indicated in various regions by the
notation (N~xN,) where Ni denotes the number of elements used along the ih coordinate axis. The width
of the joint is assumed to be unity and isotropic material properties are selected as:

Adherend: E = 69000.0 p = 0.32

Adhesive : E = 3000.0 p = 0.36

All stresses are normalized as or- = arij/ere! where are! = P/A in which P is a uniformly applied tensile
load and A is the cross-sectional area of the adherend end.
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Figure 10. Discretization used in the 2-D models to assess solution convergence.

6.1 The H2L6N Element

The H2L6N element is formulated as a 6-node, two layer element as shown in Figure 11. This element
is constructed specifically to provide a more accurate representation of stresses at material interfaces by
explicitly enforcing stress continuity of the arvv and r,, stress components. In modelling the adhesive layer,
two H2L6N elements are used through the adhesive thickness and are joined to displacement-based 4-node
plane strain elements used to model the adherends. The use of the H2L6N element in modelling an adhesive
layer is depicted in Figure 12. 4-node plane-strain displacement-based elements - designated CPE4 - were
obtained from the ABAQUS element library and used to model the adherends.
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Figure 11. The H2L6N element.
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Figure 12. The use of special two-layer elements in modelling adhesive bonds.

Three versions of H2L6N were developed to assess the order of stress expansions on element performance. In
all formulations field equilibrium is enforced a priori together with the interface continuity conditions. The
number of independent strain modes, he, may be computed as

n, = ndof - nrbm (40)
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where nd, are the number of element degrees of freedom and n,&,, are the number of rigid body modes. For
the H2L6N element, the bilinear isoparametric displacement field yields n, = 12 - 3 or 9 independent strain
modes. Version I incorporates complete linear expansions for each layer resulting in a stress field possessing
10 independent stress modes which is sufficient to suppress any zero energy modes in the resultant element
stiffness matrix. The stress expansions are given by:

a = 04+05z-07Y

= O6+ 07Z- 0Y (41)

Version 11 incorporates complete quadratic expansions for the assumed stresses yielding 18 independent stress
modes given by

•rvYY = 07¢ + 2#8[l(h, + h2)X. - Xy] + 09X + 135y(hl - y/2) - Oloy + 011h,.y + 01",2
r.Y = +0136+13?z(y- hj) + 2 oz- h~+ #2y+O#8x2+#4Y2 (42)

2 = 2

Orxx = 01l4 -)915x +,66y - 2017~ZY - 13, x /2+ s"
2 = 7+ 0 5h 2/2x)3 (hi +h 2 +y)+/1t1[hih2+(h2_y2)/2]+ gz-2)szy+ 012

ry= 013 +,6h, /32 i+ /3x15(h, +Y) +11( -h

Version III incorporates complete cubic expansions for the assumed stresses with 28 independent modes
egiven by

a,' =20 •:_z2+Y3- z0 -z•/2 + Y2)/36 - 3zY2#/7 -- yz•2ls _ X3)3913 + y301o

= 23 2+3Y-213Z Z2+13 _Y 3

1 = (-h1/2 + h2 y - /2)s+ (hi -+2h1 3 -y/3)# + (h, + h2 - y)313 +012 +"

h1(y - h+ - h2/2)014 + ho(h- + h12 3 - y)#15 + z ( 2h~y - h2  - y2)(29 + X16 +

2 1

?l = (y -.. hl)02 +} (y2 h2)/• + (y3 h3)#_ -2 h • 2 + •-3 h..2 3 - h, )#5 + (43)

( -- hi2)0 + X)13 - h 23 17 4 + h2 15 y -- h)9 17 - h,

0"•2. = 125 - zX2 2 + 1026 - 2zy#23 -z 2-/14/2 + Y123 - 3.Y 2 1324 - _ X3)31 + a3/#y

2 2 yh h/2ii+~h + 2 /31y1 _ Y2hi h ~Y2)19 +X3#20_ 30

" = 012 + Z#16 + -Y - 2xY1)7 + X2-II - y2 /2,314 + z 2(jS - 11)3y 19 + 3 51/32 ~ 13 + 13X 2z1 + y2x31  + z Y2(y- 1 5)3 + yX/317-h. 2 38 + X3#19
2r• =-+ 021 + -3 + 022 + XY014 017 -23 + y31324

The element behavior in the prediction of a., and r, stresses utilizing the various complete orders of as-
sumed stress expansions are depicted below. The four basic models using 10, 25, 50 and 100 112L6N elements
along the bondline are compared with the reference solution to assess convergence characteristics.

Figures 13 and 14 show the distribution of ay and r., stresses across the bondline using the 112L6N el-
ement incorporating linear stress expansions. Rapid convergence to the reference solution is observed for all
but the highly coarse 10-element model.
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Figure 13. H2L6N Version I prediction of cy, stresses along the bondline.
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Figure 14. H2L6N Version I prediction of r,, stresses along the bondline.

Figures 15 and 16 show the distribution of o,,, and r,, stresses across the bondline using the H2L6N
element incorporating complete quadratic stress expansions.
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Figure 15. H2L6N Version II predictions of fu,, stresses along the bondline.
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Figure 16. H2L6N Version I] prediction of T-,y stresses along the bondline.

Rapid convergence to the reference solution is again observed with improved convergence behavior demon-
strated in the coarse mesh 10-element model.

Figures 17 and 18 show the distribution of o. and r,, stresses across the bondline using the H2L6N
element incorporating complete cubic stress expansions.
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Figure 17. H2L6N Version III predictions of o,, stresses along the bondline.
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Figure 18. H2L6N Version III prediction of r,, stresses along the bondline.

Comparisons of the varioue models show that all element formulations yield excellent predictions for both the
normal and shear stress distributions. The cubic order expansions used in version III provide little improve-
ment over the quadratic fields incorporated in version II which indicates the diminishing return in adopting
stress fields of increasingly higher order. Also demonstrated is the improvement in the coarse 10-element
model with increasing order of assumed expansions for stresses.
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In order to quantify the improvement in the coarse-mesh element behavior in the 10-element model, a
comparison of the eigenvalues of the hybrid element stiffness matrices using complete linear, quadratic and
cubic stress expansions is performed using the element geometry shown in Figure 19. A comparison is also
made to a displacement-based formulation in which two separate 4-node elements where locally assembled
to compare with the layered hybrid elements. The element geometry is selected to show the effect of a high
aspect ratio layer which may be encountered in representing the adherend/ adhesive layers in a coarse model.
The material properties used were E = 1000 and p = 0.25 and the joint width was taken as unity. The
results depicted in Table 1 show that by adopting a higher-order stress representation, 'weak' deformation
modes present in the linear field element are removed which can be related to the improvement in coarse-
mesh behavior.

LAYER 2 1.0

LAYER 1 0.01

Figure 19. Sample configuration of H2L6N containing a high aspect ratio layer.

Table 1. Comparison of eigenvalues obtained in the 112L6N element incorporating complete
linear, quadratic and cubic stress expansions with a displacement-based element.

A Linear expansions Quadratic Expansions Cubic Expansions Displacement-based
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0, 0.0
3 0.0 0.0 0.0 0.0
4 2.389470 59.08495 167.7284 324.0885
5 6.608349 218.5657 257.2027 346.4270
6 250.7947 428.2339 469.4921 644.1404
7 355.4981 464.6144 545.8709 651.8773
8 536.3158 713.2400 853.5973 1219.328
9 642.8778 892.4405 1039.350 13791.84
10 905.2318 930.4139 1125.610 40050.97
11 1233.321 1961.596 2418.629 40289.39
12 1924.831 2324.951 2675.814 120303.3

The conclusion from the above study is that the minimnum stress expansion used in version I is adequate to
suppress zero energy modes yet is deficient as compared to higher orders of stress expansions in terms of
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coarse mesh accuracy. The reason for the significant change in element characteristics with increasing order
of assumed stress fields is due to the constraints imposed in formulating a layered element. These conditions
constrain the element stress field such that the inner product of assumed functions comprising the stress
space with those defining the strain space is highly dependent on the order of stress expansions used. The
increase in the spanning of the strain space is measured by the eigencharacteristics of the resulting element
stiffness matrices and represents the elastic strain energy associated with particular element deformation
modes. Another observation is that the extremely 'stiff' deformation modes evidenced in the displacement-
based 'layered' element formulation due to the high aspect ratio of the bottom element layer is not present in
the hybrid element formulations. The comparison of element performance based on complete quadratic and
cubic stress field expansions - versions II and III - show negligible difference indicating that the quadratic
stress field is optimum for this element configuration.

To compare the H2L6N element predictions with conventional finite elements, figures 20 and 21 show results
using standard displacement-based elements. The elements used are the CPE4 plane-strain quadrilaterals
available in the ABAQUS library. In the displacement-based model, two 4-node plane strain elements were
used to model the adhesive layer through the thickness utilizing the same number of degrees of freedom as in
the layered hybrid elements. Because the displacement-based solution is incapable of representing continuity
of stress components across the interface, stresses were extrapolated from Gauss points and averaged at
nodes for all connected elements. As shown, the solution for bond interface stresses actually converges away
from the reference solution with increasing mesh refinement along the bond line. The improvement in stress
prediction using the layered hybrid stress approach is related to the ability of explicitly imposing the stress
continuity conditions at the interface and equilibrium constraints with each layer domain.

CPE4 (2L AVE.)
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Figure 20. CPE4 prediction of oy, stress distribution along the bondline.
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Figure 21. CPE4 prediction of r.,, stress distribution along the bondline.

Stress recovery at points away from the critical bond interface region show a closer agreement between the
hybrid and displacement-based elements. Figures 22 through 25 show stresses recovered at element centroids
and indicates that the special layered adhesive elements and displacement-based elements converge to the
same solution within material domains while the hybrid elements demonstrate greater efficiency and accu-
racy in stress prediction along critical domain boundaries where material properties are discontinuous such
as along the adhesive/adherend interface.
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Figure 22. H2L6N prediction of oyv stress distribution computed at element centroid.
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Figure 23. 112L6N prediction of rT2 stress distribution computed at element centroid.
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Figure 24. CPE4 prediction of o-y. stress distribution computed at element centroid.
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Figure 25. CPE4 prediction of r,, stress distribution computed at element centroid.

In the hybrid stress method, a limitation principle exists in which, for elements with rectangular geome-

try, the element stiffness coefficients become identical to those obtained from a purely displacement-based

approach if no constraints are imposed on the assumed stress fields. An examination was, therefore, un-

dertaken to qualify the improvement in hybrid element performance over displacement-based elements by

assessing the the relative effect of selectively enforcing layer equilibrium and interface continuity conditions

in element formulations. Figures 26 and 27"show the prediction of a., and r.,, stresses along the bondline

using complete quadratic stress field expansions in which only field equilibrium constraints were enforced in

each layer. The resulting stress field contains 24 independent stress modes given by

1
azz = f01 + z# 2 + y1A + Xy#4 + z 2X3 /2 + y2#6

1r = 0•7 +r 08 +[ Y#9 +t ZYlO +t X 2#11 -- y2 65/2

'r, = #12 - Z#9 - A## + XY#5 - X 2,60 Y#

a.2 = 013 + 014 + AS + zy#16 + X 2#17/2 + y'318 (44)

2 2 + +y2#+1
0 #V 19 +Z#20 + 021 +zYf322 +Z 2

13 7/

r #2 24 -Z# 2 1 -01 4 + ZY#17 -X2 -2 _y
2 014
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Figure 26. H2L6N ayy bondline stress prediction with only equilibrium constraints enforced.
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Figure 27. 112L6N T'hy bondline stress prediction with only equilibrium constraints enforced.

As shown, the normal peel stresses, o,,,, are accurately predicted while the shear stress distribution shows a
convergence away from the reference solution. Although not as pronounced as in the use of CPE4 elements,
this departure from the reference solution demonstrates the importance of enforcing the continuity condi-
tions at the layer interface and qualifies the improved accuracy obtained in the hybrid stresss technique over
displacement-based formulations when equilibrium is enforced pointwise.

Figures 28 and 29 show the stress prediction of the 112L6N element in which complete quadratic stress
fields were constrained only to satisfy interface continuity conditions. The resulting stress field contains 30
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independent stress modes given by

0.9= fts+ Y2 ,13+_ 2#2 + __V3 +Y'64 + Z# 5
4 = -- • + x(y - hl)# + yf+ s + 32 01o - zh2 ,01 1 + z112 + y2 ,1 3

7 = 019 + Y0134 + zsls + z 0 17 + 0l:18 (45)

0,.. = #2o + .2#21 + Z2d2 +ZY#23++ 024 + z02s
220 2)2 + 2#0+ y1

7r' = 09 + (Y - h,)0 26 + (h2 + Y)027 + h1, 8 + z20,0 + zy•ii + Z#12 + hl013
r3, = 19. + (12 - h2)0, + z(y + h2 )0 29 + (h2 + 1)/3o + h 1#14 + hlz#1 5 + z20 + h1#17 + zAs
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Figure 28. H2L6N a., bondline stress prediction with only interface constraints enforced.
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Figure 29. H2LUN r= bondline stress prediction with only interface constraints enforced.

As shown, both the normal stress and the shear stress distribution is shown to converge away from the
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reference solution. The conclusion from the above results indicate that the imposition of both layer equilib-
rium and interface stress continuity constraints is necessary for obtaining optimal element performance in
predicting bondline stresses.

The partial hybrid stress approach is next employed to assess the effect of fully enforcing interface con-
tinuity of stress components while incorporating only partial satisfaction of the layer domain equilibrium
conditions. Two stress fields were developed for or. and rz based on different orders of complete stress
expansion. The normal stress component, o,,, was calculated from the assumed displacement field. Lin-
ear stress expansions are sufficient to suppress any spurious kinematic modes and the resulting stress field
contains 6 independent modes given by

02 = +(hl+)h2-h00+z1 (46)
1", 5• + (Y -- h0)#4 - h2#16 + 01! (46)

fi,= 02 +Z163 -YA

2

Complete quadratic expansions were also developed containing 12 independent stress modes given by

Ir1  = fh+(h•_2hly+Y 2),1+(Y-hl-hh2 10)2 +h2 (2hi+h 2-2y)03 +

z#s + 2z(h, + h2 - y)# + zX2 ,
r,= #10 + (Y _ hl)#S + (Y2 _ h2)#9 -22, h n+(T
41 1 -y-ii~+y h2 1611 ~~h+ h2#12i+ (47)

2z(hi - y)/3I - z#2 + 2h 2z/#3 + 2#6

OF2 = 64+-z6 +ZIi 4 +tsy#2 -2zy#6 + z 2 I + y2 #3

r;,= lio -z#(2 + fI- 2zy/Ja + z23 +Y012

Figures 30 through 33 depict stress predictions using the complete linear and quadratic stress fields for the
two independent stress components o,,, and r,, as presented above.
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Figure 30. H2L6N or., bondline distribution using partial hybrid stress formulation
with linear stress fields.
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Figure 31. H2L6N r., bondline distribution using partial hybrid stress formulation
with linear stress fields.
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Figure 32. 112L6N our, bondline distribution using partial hybrid stress formulation
with quadratic stress fields.
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Figure 33. H2L6N i,, bondline distribution using partial hybrid stress formulation
with quadratic stress fields.

From the above distributions it is evident that the normal stress distribution is predicted with good ac-
curacy. The results for the shear stress distribution converge away from the reference solution indicating
the deficiency of the partial stress method in accurately predicting all independent stress components. The
increase in the order of expansions from linear to quadratic again demonstrate the improvement in coarse
mesh accuracy as shown by the behavior of the 10-element model.

In an actual bonded joint, the ends of the adhesive layer are traction free. Using conventional finite el-
ement models gives rise to the prediction of nonzero shear and inplane tractions in this region. In the hybrid
stress method, the ability to strictly enforce zero traction conditions of the r_., and o,, components at the
free edge is obtained through a priori imposing the following constaints in the assumed stress field

=0 ; - = 0 (48)

where a is the element half-width. Four versions of an assumed quadratic stress field in which zero traction
is specified along a particular face as depicted in Figure 34 are developed. The full hybrid variational basis
is utilized in the element formulation. All stress fields possess 15 independent stress modes resulting in 'end'
elements of correct rank.

F, LAYER 2 F4

3 4

F 2  LAYER I F3

11 2

Figure 34. H2L6N element showing side designations on which zero traction conditions
are explicitly enforced.
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The resulting stress field expansions in which zero traction conditions are enforced on various element sides
are given below.

For zero traction on element side FI:

q,,= 01 - 1#2 + y# 3a - 2zy,04 - z2/65/2 + 9/3d
I = / +(-h2 + 2hty- y2)#s/2 + (y- hi - h2 )0 7 + h2(Y- h1)#9 +

2z(hi - Y)03i0 + 011 - h21212 + Z 2#13 (49)
(Y, = (-h1)2 + (• - h) 4 - (a + Z)# + (Z2 - a2 )#10 _

h2(a +z)#3,+ z(y -hj)13
0,2c = -a(z + a),69 + (z2 - a2)1)14 + y(: + a)0 15

ayy= A3s+ :1ii + 07 + :Y 12 + 
2 6131

r2 = -(z+a))7+(z 2 -a 2 )10 + y(z + a)#9

For zero traction on element side F2:"

9.1 = -a(: + a),69 + (:2 - a2)#1 + y(z + a)015
= 08 + XI Ii +y07 + ?Y1312+ X2 0131

"= -(z +- a)0 7 + (z2 - a2 ),610 + y(:r +a),8 9  (50)

V = 61• - 02 + yA - 2xy4 - ://2 + y3
2 = s-(h2+ 2h 2y+ y2)Or/2+ (hI + h2 + y)7. - h 1(h2 + )09-

2z(h 2 + Y)00IO + 01ii + hIZO1 2 + X 2/13

4r., = (h 2 + y)#2 + (y 2 - h 2)# 4 - (a + Z)#7 + (Z 2 -a 2 )o +

hi(a + Z)#9 + x(h2 + 0,5

For zero traction on element side F3:

a..= 013 - x,02 + y#3~ - 2z3y14 _ X2 05/2 + y1206
I -V = #a- (h 2 - 2h 2 y + Y2)#5/2 + (y - h2 - h 2),07 + h 2(y - h 2 ),39 +

2z(h2 - 010o + 011 - hZ•.132 + Z2 13 (51)
, = (y - h) 2 + (y2 - h)# 4 + (a - x) + ( - a2 )#10 +

h2(a - z)3 + (-hi + y)65
.72.= -a(z - a) 9 -+ (z2 - a 2)13 14 + y(Z - a)015

OY2 y= 08 + 13I I + M* +:11312 + X2 6131

r, = (a - ),67 + (Z2 - a 2)o10 + y(: - a)#3

For zero traction on element side F4:

= a(z - 4#)g + (x' - a )1 4 + y(: - a)0 15

= A3S+ ZJ611 +Y,67 + #132 + X26131
4, = (a - :)/67 + (x2 - a 2)o10 + y(z - a)# 9  (52)

a.. = 01 - x#32 +- y,3 - 2xy)34 - X2 65/2+ y2 16
o,2, = -2 (h+ 2h 2 y + y2+)0s/2 + (h, + h 2 + y)#7 + hl(-h 2 -Y)N 9 -

2z(2h 2 + Y)1IO + 013•I + hlI:1 2 + :2 13

(h = 002 + (y - h)# + (a _ Z)# + (2 2)•,81+
h,(z - a)#3 + :(h2 + 0)5
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The resultling element behavior is demnonstrated in Figures 35 and 3o.
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'o 1.0 6-4o
------ AENT

8

0.6

0.2

O.0.0 1.0 2.:0- a. 
. .Figur 35.112L6 7 DS AN GE ALONG GO0ft01. x 0.

Figure 35* 1 2L6N bondline stress~ distribution enforcing zero tractio n1 conditionsat the bond end.
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behavior is, however, regarded as a particular effect of the models being used in the present study; the singular
nature of the normal stress solution is theoretically unaffected through the imposition of zero tractions of
the shear stresses in linear elastic analysis.

6.2 The H2L10N Element

The H2LiON element is configured as a 2-layered element incorporating higher-order displacement fields in
the bond thickness direction. The H2L1ON element configuration is depicted in Figure 37. The interest in
this element formulation is to assess the increase in the order of assumed displacement fields selectively in the
direction of higher stress gradients. Two versions of this element were derived utilizing complete quadratic
(version 1) and complete cubic (version 11) assumed stress fields. The assumed stress fields are identical to
the quadratic and cubic expansions used in II2L6N and presented in equations (42) and (43). The behavior
of these element formulations are presented in Figures 38 through 41.

D7 LAYER 2 8 21.h2

13 LAYER 1 4 2h1

Figure 37. H2L10N element configuration.
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Figure 38. H2L1ON Version I o,,, stress distribution along the bondline.
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Figure 39. H2LION Version I rv stress distribution along the boudline.
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Figure 40. H2L1ON Version 1I oyy stress distribution along the bondline.
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Figure 41. 12LION Version II r,. stress distribution along the bondline.

The behavior of these elements demonstrates two interesting effects. Regardless of the higher-order strain
representation in the adhesive thickness direction, the normal stress predictions are inferior to the lower-
order H2L6N element in predicting maximum stresses in the singular region of the joint. The shear stress
recovery in the quadratic stress version shows an inherent tendency of the element to approximate a zero
traction condition at the end of the bond. Increasing the order of stress expansion tends to diminish this
behavior and increases the maximum normal and shear stress prediction in the region of the singular point.
Although, once again, increasing the order of assumed stress expansions improves the results compared to
the reference solution, the overall behavior of this element is inferior to the linear-order H2L6N element.

6.3 The H3L8N Element

The H3L8N element is formulated as an 8-node, three layer element as shown in Figure 42. This element is
formulated to model both top and bottom interfaces of the adhesive bond with the inner layer representing
the adhesive domain. The use of the HU3L8N element in adhesive joint modelling is depicted in Figure 43. In
anticipation of the high degree of constraint imposed on the stess field to satisfy equilibrium and continuity
conditions in three layer domains and two interfaces within a single element configuration, two different
assumed stress expansions of increasing order were developed. The two versions of H3L8N were formulated
incorporating complete quadratic and cubic stress fields to assess the effect on element performance. All
assumed stress expansions provide sufficient independent stress modes to span the 13 basic element strain
modes thereby suppressing spurious.kinematic modes. Stress continuity of the oy and r,, stress components
is strictly enforced at each layer interface and equilibrium is enforced within each element layer.
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Figure 42. 113L8N element configuration.
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Figure 43. The use of special 3-layered elements in modeling adhesive bonds.

Version I incorporates complete quadratic expansions for each layer in which equilibrium is enforced a priori
together with the continuity conditions. The resulting stress field possesses 24 independent stress modes
which is sufficient to suppress any zero energy modes in the resultant element stiffness matrix. The stress
expansions are given by
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Oris = 01 +62Z +13v + 04Z: -,05Z2/2+ 3y2
471 = 9 + #loz - P,,z(h, + h2 - y) + 1 2C

2 - Os(h2 - 2hy + Y2 )/2+

1*(y - hl - h2 ) + fsh2(Y - hi - h2 /2)
4•, = •s + 132(h1 - y) + 134 (h• - p)/2 + 0 14h 2 - ,6 5 h2/2 - ,65-(h, - y) -

07'~z - ftsh 2Z - 0131Z2/2

0',2 = 6168 +,614X + ,17Y +)61+S11 - 08az2/2 + #•8y2

OCI = 139 + 10oz + 07Y + 01 z1 + 012z2 - P8y2/2 (53)

4,y = 01313- 07Z - 1314Y +138*Y-31~1Z 12/2 _ 15y32 /2

= 019 + 162oz 0 213 + 22Z 3 2/2 + 124

O = 09 + 07(h 2 + h3 + y) -13sh 2(h3 + h2/2 + y) - 013(h + 2h 3Y + )/2 +

f16oz + 11 iZ(h2 + h)3 + y) + 1312Z 2

-= 13i3-13i 2-1ish2/2 - 2o(h3 + Y) + 22(h3- )/2 -6 7z + sh2Z+

1323zTh3 + Y1) - 0111Z:2/2

Version II is formulated with complete cubic stresses to assess the effect of higher-order stress expansions on
element performance. The resulting stress field contains 38 independent stress modes and is given by

0 =. = 31 +1#2Z +#333 +134z* -_ 3s: /2 +13#63 - 33732 _ -Sy Z2_ - #9X3/3 +/1O3oa

= 121 - 185(h2 - 2h, y + y12)/2 - 138(2h 3 - 3h~y + y3)/3 + 0323(h, + h2 - y) - 0315h(h-h/2+)+
1sh•(h 2 + h2/3 - y) - I3z(h? - 2h22 + 312) +/1322 + 2324x(hi + h. - y) -

0319z[2h2 Y - h2 (2h/ + h2 )] + 33 26Xz 2(h, + h2 - y) + 325Z2 + 027zX

8, = 2s + 0 2(h, - y) + , 4(h? -_y2)/2 - 07 (h3 - Y3) + ,12h2 - 1, 14h2/2 - 0 1 7 h3 - 135 (h, - y) -

flsx(h2 -- 2) + #23* - 0 15h 2Z + 13Sh2z -- 1 9z 2(h, -- Y) + 1243* - 1319h 2 : 2 + 126*3
0",2, = = 11 + 132* + 113Y + 014--Y - )31SZ2/2 + 116Y2 - 3317*y2 _ 0 1SyZ2 -_ 019Z3/3 + 0 2O03

0"7 2 "-= 121 +1322Z -- 23Y -- 2224Zy + 02SZ2 --•1012/2 _- 319*y2 - 31326y*2 + 1327Z3 -- •lsy9/3 (54)

2yr. = 628 + 023Z -- /12Y +,61sXy +,624X2 - 002/2 + 618ZY2 + #19YX2 + +26X3 +,617Y3

3z = 129 + 1330 + 13313 + 332zy - 033z2/2 + #34y2 - 3135Zy2 - 036yZ2 - 0337X3/3 + 13ap3

3g = 121 - 1623(Y + h 2 + h 3 ) - 315h 2 (h 3 + h2 /2 -- y) - 013sh2(h3 + h2 /3 + y) - 033(h3 + 2h 3 y + y12)/2 +
,3,9(2h3 + 3h~y - y3)/3 - 21324*(h 2 + h + ) - 20 19 h2 x(h3 + h2/2 + 31) +

337z(h2 - 2h 2 h3 - 2h 2y - y2) + 122Z +)1325X2 - 30 2 6 :2 (h2 + h3 + y) + 027X3

= -0 12 h2 - 1614h2/2 + 017h3 + s28 - 13o(h3 + Y) + #3 2(h/2 - y2)/2 + 0 3 s(h3/ + Y3) + 123X + 0,15h2- +

13Sh 2Z + 033z(h 3 + Y) - 036 X(h2 - y2) + #24X2 + 1lgh2 X2 + 13 7 :2 (h 3 + Y) + 026X3

Figures 44 through 47 show the stress predictions of interface bond stresses for both versions of the H3L8N
element.
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Figure 44. H3L8N Version I or, stress distribution along the bondline.
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Figure 45. H3L8N Version I -y stress distribution along the bondline.
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stress field required to obtain convergent element behavior must be contrasted with the use of H2L6N which
yields greater accuracy while requiring only lower-order stress field expansions.

An H3L8N element formulation explicitly enforcing zero traction conditions was developed and stress pre-
dictions presented in Figures 48 and 49. A quadratic stress field was selected which contains 21 independent
modes as given below.

For zero tractions enforced on element side Fl

t..= 0131- z#2+ y#3 - 2zyI34 _ 2 #5 + Y2 #

d¢S = 6s + (-h2 + 2yh- 3_ y2)#5/2 + (y- h, - h2)0 7 + h2(y- hj)#9 +

2-(h, - Y),6,o + zB61 - :h 2 112 + Z213

7-, = (y - h/ ) 2 + (y2 - hi) 4 - (a + z)#7 + (z2 -a2 )2)o#-

h2(a + x),69 + z(y - hl)13 5

=- -a(z + a)#9 + ( )2 - a,)6 14 + y(Z + a)# 1522
apy = s + 011 + 017 + ZY112 + Z 013 (55)

72 = -(z + a),67 + (:2 a 2)#10 + y(: + a)#g

0'3ý= 016 - Z,137 + 01831 - :3J19 _ Z21320/2 + 3/2#21

o3 = #a - (h2 + 2h3y + y2 )#2 o/2 + (h2 + h3 + y)0 7 - h2 (h3 +y)1 9 -

2z(h., + Y)010i + 4311i + h2:13 12 + X 2 13g
; - (h.+ 3+)t17 + (y2 _ h2)#g _ (a + Z)#7 + (2 -a2)#310+h 2 (a+:)139+

z(h3 + )o20

For zero tractions enforced on element side F2

a..= 61- z#2~ + y#3. - 2zy#14 _ :2#35 + Y2136

0'Y, = 13s + (-h2 + 2yht - y2)Os/2 - (hi + h2 - y)37 + h2(y - h)139 + 2x(h, - y),1o +

-01, - xh2 ,612 + :2 133

4, = (y- h,)# 2 + (y2 - h2)# 4 + (a - Z)#7. + (2 - a2 ),610 + h.(a - z),9 + :(y - h,)# 5

.2 X= a(z -a),8 9 +(z2 - a2)1314 +Y(- - a)015

'7Y2Y = 08 + 011 + M1 + ZY#12 + X2013 (56)
r.

2
1, = (a _ X)6 + (2 - a2),1 + y(X - a)39

0. = 116 - Z,617 + 013 - Zy19 - :21320/2 + Y2#21
,3Y = -(h 2 + 2h3 ( +)2 /2 s -h(h +(y) - 2(h3 + y)01 o +

-:13 + h2:131 2 + : 2 13.

.3 -= (h3 + Y)P17 + (Y2 - h3)# 19 + (a - :)#7 + (x2 - a 2 )1io0 + h2 (X - a)139 + (h.3 + 0)0320
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6.4 The H2L13N element

The H2LU3N element, as shown in Figure 50, is formulated as a 2-layered element incorporating quadratic
displacement fields resulting in 8 nodes per layer. Of interest in this element formulation is the inherent
improvement in the representation of in-plane bending behavior due to the quadratic isoparametric displace-
ment fields in each layer which is lacking in the linear order elements such as II2L6N and incompletely
represented in H2L10N. Incompatible displacement modes can be added to the linear order elements to
improve bending response but have not been included in the present effort.

N1 1 02 13 0

9 LAYER 2 10 M2

S~7

04 LAYER 1 so 2h1

2 31

ill 2a -. 0

Figure 50. 112L13N element configuration.

An unexpected feature in the development of higher-order layered element configurations is the presence
of spurious zero energy modes in the resultant element stiffness matrix which cannot be controlled by adopt-
ing higher-order stress expansions while enforcing all layer equilibrium and interface continuity conditions.
In order to qualitatively assess this effect, various stress fields were developed. The strain field obtained from
the quadratic isoparametric displacement field yields 23 fundamental strain modes which interact with the
assumed stress fields in generating element stiffness characteristics. In following the procedure for selecting
stress expansions in the linear-order 2-D element, complete cubic and quartic stress fields were developed
which incorporate 28 and 40 independent stress modes, respectively, yet both assumed fields yield spurious
kinematic modes in the resulting element stiffness matrix. The cubic order expansion is identical to that
used in H2L6N and is presented in equation (43). The quartic order expansion is not shown due to the
inadequacy of the assumed field to suppress spurious zero energy modes. Although the individual element
stiffness matrices are rank deficient, sufficient constraints are introduced through the assembly and sup-
port conditions of the complete model to contain the propagation of zero energy modes. Predictions using
H2L13N incorporating the complete cubic order stress field are presented in Figures 51 and 52.
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Figure 51. MU2LM3N o,, stress distributions incorporating complete cubic stress expansions.
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Figure 52. H2L13N r,, stress distributions incorporating complete cubic stress expansions.

As shown, the solution for normal peel stress distribution is accurate but the transverse shear stress pre-

diction is shown to converge slowly to the reference solution. To assess the effect of increasing the order of
assumed stress expansions, predictions using 112L13N incorporating complete quartic order stress field are

presented below in Figures 53 and 54.
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Til no Figure 54. H2Ln3N is stress distributions incorporating complete quartic stress expansions.
TPe normal stress COmponent is again adequately predicted but the shear stress prediction shows a similarly

poor convergence to the reference solution. Tile convergence difficulties may be related to tile presence of

the zero-ener, or weak deformation modes which are ameliorated only in a highly discretized model. The

general conclusion from the above is that formulating the higher-order 1I2L13N element with complete stress

"expansions in which all field constraits are enforced do not yield useful elements due to an unavoidable
presence of spurious kinematic modes.
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In an attempt to improve element behavior, various augmentations of the applied stress constraints were
assessed and are detailed below. A version of 112LI3N was developed in which continuity constraints were
violated in selected higher-order stress terms to obtain the requisite number of rigid body modes. A detailed
analytic approach as presented in Reference [32] was used to precisely identify the strain modes which are
independent of the constrained stress field and suggested particular higher-order terms to be added to the
assumed stress expansions in order to suppress zero energy modes. Continuity is violated by the addition of
two terms - 026x4 and #27rz4 - to the shear stress expansions. The influence of higher-order terms have, in
general, a diminishing influence on recovered stresses yet function to stabilize the element stiffness matrix.
The resulting stress field contains 27 independent stress modes and may be contrasted with the complete
cubic field presented in Equation (43). The developed stress field is given by

I.: = 'la +2Z+ l3Y + )34Z 2 +liszy + #6Y2 +,67Z3 + 3l8z 2Y +39 2

011i=i + 04 (hi - 2hxy + y2) + )s(2hi - 3hly + ia) + 016(Y - h, - h 2 ) + 1h7 h2 (h 2 + 2hi - 2y) +

0 23 h2(3y - h2 - 3hI) + 30iz(h2 - 2hy + Y2 ) + #2o:(y - h, - h2 ) + 302 zh(2hA +h 2 -2y) +

#14Z + 253z 2(y - h, - h 2 ) + ) 18 :_2

4, 012 + 62(h, - y) + 05(h2 - y2)/2 + 09 (h• - Y3 ) + 0 13 h2 - 019h 2/2 + 0.24 h3 +

2864z(hI - y) + / 8z(2h? - 3y 2) - 816X + 28317h 2X - 38.23 h 2 + 3 7 z
2(hI - y) - (57)

620• 2/2 + 3022h 2 __2 -_82sz + 026Xz4

d'.2 010 + /13X +0 1sY + 017Z2 + 819zY + #21Y
2 + 022Z3 + 3823:

2 Y + 30324-"Y
2

0"; = 011 +0l- 14Z + -16Y + 017y 2 + l18s2 + )320xy + 3022:y2 + 023y 3 + 38 2 5z2y

r;V = 1312 - 013Y - 016X - 2017Xy - 1 1 9 Y2/2 - 8 20x/2 - 3022x 2Y - 3823XY
2 

-

)24Y' - 825Xs + 8027Z

Figures 55 and 56 depicts normal and shear stress predictions along the adhesive/adherend interface using
112L13N incorporating the above stress field.
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Figure 55. H2L13N o'• stress distributions with continuity violated in higher-order shear stress terms.
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Figure 56. H2LU3N r,, stress distributions with continuity violated in higher-order shear stress terms.

The eigencharacteristics of the element demonstrate the requisite three rigid body modes and the conver-
gence is improved for both stress components. The peak normal and shear stress predictions at the joint
end - which is a nonconvergent point in the model in linear elastic analysis - shows that this version of

MO2L3N is superior in 'capturing' the singular behavior than even the highly discretized model used for the
reference solution. Although strict continuity is violated in the interface shear stresses, the unconstrained
shear expansion terms are of quartic order which have only a small contribution to the total recovered shear
stresses yet are capable of stabilizing the element by removing spurious zero energy modes.

In order to avoid violating continuity constraints, an alternative formulation was developed in which full
interface continuity is enforced but layer equilibrium conditions are relaxed such that the field equilibrium
equations were satisfied in an integral sense rather than pointwise. This condition is enforced by requiring
that

f[-. + 16 +=]d =o, t-,, + Yjd =v 0(8.•-u av 0(58)

With this formulation, stress field constraints due to enforcing equilibrium are significantly reduced. The

resulting field contains 26 independent stress modes given by

1'' - 3 ~[l" 2/2+Z• 1 • -Z•

O'ji, =- 014+ -h2 +(y-hl)13g+ (y-hl)#g + 2)3o-h2Z#l -h2#12-+

1#1
Z#13 + h2i

r.1 "- 119 + z(y - hl)/hls 8 + y2 )316 - zy/h 11 2 + X 21 17 + y#5 - xyh2/hl#1s
0';x = 120 + Y2 321 + z1320 + zY/323 + Y134 + zX25  (59)

2f 2#t X11 Y2#0'Pio =+314 + + 0p 1 2 + Z#13 + 1P5

rzy = )319 + (y2 - h') 26 - (h2 + y))32 s + h016 - z132 + 2
1 7 + hl3 5 + zy1is
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Figures 57 and 58 depicts the interface stress predictions using 112L13N incorporating the above stress field.
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Figure 57. 112L13N oyy stress (listributions with relaxed equilibrium constraints.
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Figure 58. 112L13N •,• stress distributions with relaxed equilibrium constraints.
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An eigenanalysis of this element demonstrates the presence of two spurious zero energy modes indicating
that the relaxation of equilibrium wi.. the 'weak' form as given above in equation (59) still yields stress
fields which do not span the strain space. The performance of the element is good in the particular single-lap
joint used to provide a comparison between various elements assessed in the current study but is unsuitable
for use as a general element.

To explore in greater detail the effect of imposed constraints, a version of H2LO3N was developed in which all
interface continuity conditions were eliminated and only layer equilibrium constraints were enforced point-
wise. A complete quadratic field yielded three spurious kinematic modes and was discarded. A complete
cubic field was found to span the strain space which yielded only the requisite zero energy modes associated
with rigid body modes. The resulting field contains 36 independent stress modes given by

az = 01o - 3zY2 /i + Y2 ,32 + Y#3, _ : 2Y134 _ :Z3,g5/3 - 2xyor6 _ Z2 07/2 _-'6 x13 )3

a I - 817 - 3z 2y31I -_ y3)4/3 - zy 213s - 2 Zy1312 - y,67/2 -- Y013 + " 3 01 4 + + X 15 16

Yr = 01s8 + y3,01 + X3 . + zY214 + z 2y1,s + y21#: Z2 012+ y37 + y)3s + 013

ff. 026 - X
2Y)139 _ __3#20/ 3 - 2zy/321 + y2)322 _ Z2 623/2 - X)324 + Y)325 - 2--Y2 027 + y3#328 (60)

01 2 135 - y#29 - U 2Y,033) _ Y3 0139/3 - __Y2 #20 + Z 3#31 - 2 :Y63~2 _ Y2 )323/2 + X2#33i + __#34

r,2 163 6 + Y3 ,327 + X~3630 + __Y2 #19 + :'Y1320 + Y2 0321 + £21332 + X'Y123 + 0/124 + X#329

Predictions of bondline stresses are depicted below in Figures 59 and 60.
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Figure 59. H2LO3N or. stress distributions with only layer equilibrium conditions enforced.
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Figure 60. H2Ll3N rTX? stress distributions with only layer eqtilibrium conditions enforced.

As shown, the normal stress predictions show a convergence to the reference solution, but, with the removal
of continuity constraints, the shear stress distribution is incorrectly predicted.

An element utilizing a complete quadratic stress field was formulated in which the enforcement of layer
equilibrium was eliminated and only interface continuity was enforced. As presented below, the resulting
stress field possesses 30 independent stress modes and does not exhibit any spurious zero energy deformation
modes.

1.= 136 + y2)13 + __2 y3~+y)4+£3
ory, = 39 + x(y -hl)/37 + y13 + 31o - xh,,1311 +. X3 12 + Y21313

71 = )319 + y2 014 + xy1315 + X21316 + Y/3 17 + x018

or, = 1320 + y02321 + £'1_2. + Xy13 23 + Y;32.4 + X1325 (61)

=Y /39 + (y2 - h2)/3 26 + (h, + 00127 + 11213s + £21310 + xy13 H + X01 2~ + hl)313

ry = )139 + (y2 - h2)0 2 s + x(y + h,)1329 + (h_) + y)130 + h2/314 + h1x3 15 +

x2 016 + h11317 + X1318

The resulting element stress predictions are presented below in Figures 61 and 62.
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Figure 61. W2L13N oyv stress distributions with only continuity conditions applied.
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Figure 62. H2L13N Th1y stress distributions with only continuity conditions applied.

Rapid convergence to the reference solution is demonstrated which constrasts with the reduced conver-
gence behavior demonstrated in H2L6N with similar stress field constraints applied. This shows that in a
higher-order formulation, the neglect of satisfying layer equilibrium appears to have little influence in accu-
rately predicting stress distributions in the problem under study. It also demonstrates the importance of
enforcing stress continuity at the layer interfaces in realizing greater accuracy in layered hybrid formulations.
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A comparative eigenanalysis is presented in Table 2 below. Isotropic material prbperties were selected with
E = 1000.0 and p = 0.25 for each layer and layer dimensions were chosen to be unity. For a 2-D element, the
three required rigid body modes are depicted in Figure 63 and the two spurious kinematic modes resulting
from the use of cubic and quartic stress fields are depicted in Figure 64. Without performing a detailed
analysis of independent element strain energy contributions, it is apparent that the combined application
of field equilibrium and interface continuity conditions constrain the assumed stress field such that spurious
kinematic modes are unavoidable without selective relaxation or violation of constraints to stabilize the ele-
ment. The continuity constraints link the stress fields in each layer and tend to combine stress modes which
are a function of the thickness coordinate which diminishes their span of the strain space as a function of y.
As can be seen in Figure 64, the deformation modes corresponding to zero strain energy states qualitatively
show that they are exclusively composed of v component deformations which are functions of the thickness
coordinate.

Table 2. Comparison of eigenvalues obtained in the 112L13N element incorporating various stress
fields: complete cubic (Cubic-I), complete quartic (Quart-I), modified cubic (Cubic-II),
quadratic with relaxed equilibrium constraints (Quad-I), cubic with only equilibrium
enforced (Cubic III) and quadratic with only continuity conditions (Quad-Il).

A Cubic-I Quartic-I Cubic-Il Quad-I Cubic-Ill Quad-Il
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 23.69772 0.0 72.43028 60.86598
5 0.0 0.0 34.05380 0.0 163.0501 78.74336
6 75.76981 82.01182 76.953,19 60.53644 225.6264 156.9013
7 126.6998 227.4995 134.2405 81.16368 268.1523 161.8190
8 178.7381 278.2503 196.9742 80.78365 314.8713 331.5214
9 211.6415 337.8555 218.3887 172.7010 388.8823 358.9699
10 293.2313 378.8533 316.7293 173.2961 391.7162 413.1536
11 325.1373 441.0916 341.2829 331.0209 458.1095 557.5755
12 355.5333 480.2937 386.6343 376.4624 553.0599 564.5969
13 371.5992 545.4102 431.6523 424.4714 603.3747 809.1861
14 405.7435 568.8378 530.7245 474.6536 733.2789 920.7719
15 517.5139 602.9718 587.1902 559.7191 753.5590 988.4729
16 587.8730 715.4142 640.0043 577.7691 766.3474 1010.934
17 674.6511 773.2681 768.9178 929.2014 1040.206 1259.228
18 766.4438 152.7025 901.8028 913.4121 1152.900 1403.390
19 819.4111 950.2543 1013.777 1071.387 1221.521 1643.767
20 1044.450 1110.563 1083.736 1211.052 1361.066 1974.218
21 1087.227 1181.065 1123.716 1389.199 1420.998 2549.088
22 1210.914 1288.766 1555.517 1672.933 1537.543 2768.760
23 1469.354 1548.891 1575.495 1726.760 1851.332 3645.037
24 1529.672 1595.397 1580.724 2022.144 1969.350 4235.017
25 1866.629 1871.165 1936.631 2680.260 2462.195 4727.452
26 1950.449 1961.606 2113.241 3173.282 3038.038 7906.456
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Figure 64. Spurious kinematic modes.

The inability to enforce all stress field constraints without giving rise to zero energy modes makes the
general utility of the higher-order H2L13N element questionable. Although accurate stress predictions are
demonstrated in the 'Cubic-If' version in which higher-order expansion terms are introduced which vio-
late continuity and in the 'Quad-lI' version in which only continuity is enforced, element performance may
degrade in the modelling of other general adhesive joint configurations.

6.5 Remarks on 2-D Element Behavior

The detailed study undertaken with various 2-D element formulations has highlighted certain features of the
hybrid stress method in layered element configurations which may provide insight into the use of the hybrid
technique in other similar applications. For the present use in developing layered element formulations
for the analysis of adhesive joints, various observations may be summarized. The study of the linear-
order H2L6N element involving selective enforcement of stress equilibrium and continuity constraints has
demonstrated that the best performing element formulation is one which strictly enforces all constraints.
A related conclusion is drawn from the use of the partial hybrid stress functional as the stress prediction
has been shown to deteriorate due to the mixed nature of the element incorporating both displacement-
based and stress-based element field assumptions. Related to the H2L6N element performance in which field
equilibrium conditions are neglected, the inability of enforcing field equilibrium in each layer with the partial
hybrid functional, leads to inaccuracies in the prediction of bondline stresses. The investigation of selective
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higher-order element formulations such as in H2L10N results in an element which offers no advantage. The
formulation of a fully higher-order layered element configuration as in 12L13N results in an element with
an inherent presence of kinematic modes if all constraint equations are strictly applied to the assumed
stress fields. The performance of various higher-order element formulations over lower-order elements have
not demonstrated significantly improved performance in the prediction of bondline stresses. It is therefore
concluded that the optimum 2-D stress prediction is obtained in linear-order layered element formulations
in which all stress constraints are identically satisfied pointwise.

7 3-D Special Adhesive Elements

Two 3-D adhesive joint problems are analyzed involving a rectangular and a tapered single-lap joint. Nodal
variables are restricted to u, v and w translational degrees of freedom. The joint geometries are depicted
above in Figures 5 and 6. The applied loading and boundary conditions are shown above in Figure 7.
As previously discussed, reference solutions are obtained from a highly discretized 2-D model using 8-node
plane-strain elements shown in Figure 4. For the 3-D single-lap joint with rectangular planform, the 2-D
reference solution is used directly assuming negligible three-dimensional effects through the joint width. In
the 3-D tapered joint, stresses from the 2-D reference solution are linearly scaled to account for the effect of
stress intensification as a function of joint taper. The reference solutions for the 0',, and r,, stress distribu-
tions together with a depiction of the r-y, stress field over the adhesive domain are presented in Figures 65
through 70 for the rectangular and tapered joint configurations. The ry. distribution was obtained using the
developed 3-D hybrid elements discussed below and shows the three-dimensional singular nature of this stress
component at the bond corners. Because all stress components are related through equilibrium constraints,
the presence of this effect causes a slight departure of predicted cr. and r,, stresses from the reference
solution obtained from the 2-D plane-strain model. Stress recovery for the rectangular configuration was
obtained along the lower adhesive/adherend interface while, in the tapered joint, stresses were recovered
along the upper interface.
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Figure 65. Reference o,, stress distribution in the rectangular 3-D single-lap joint.
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Figure 66. Reference r,, stress distribution in the rectangular 3-D single-lap joint.
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Figure 67. Singular ry, stress field in the rectangular 3-D single-lap joint.
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Figure 69. Reference •r, stress distribution in the tapered 3-D single-lap joint.
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Figure 70. Singular r., stress field in the tapered 3-D single-lap joint.

From the detailed study of various 2-D element performance, the optimum element configuration for use in
general 3-D applications is selected as a two-layer formulation incorporating bilinear isoparametric assumed
displacement fields and using the complete liellinger-Reissner functional in which all field equilibrium and
interface continuity conditions are identically satisfied. No convergence studies are performed in the 3-D
case; the degree of discretization is fixed at 100 elements along the bondline with 5 elements through the
width. The lack of mesh refinement through the joint width is due to the assumption of negligible 3-D
stress variations. Results are compared with stress predictions using 8-node C3D8 displacement-based solid
elements available from the ABAQUS library and the reference solution.

7.1 The H2L12N Element

The H2L12N element is formulated as a 12-node, two layer element as shown in Figure 71.

12 11

LAVER 
2

2hl

14LAYER I1 3

2 2b
H 2a -. j

Figure 71. The H2L12N element configuration.
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As a 3-D extension of the H2L6N element, two versio., j were developed in which complete linear and quadratic
order expansions were assumed for each stress con,,•?onent. Equilibrium is enforced within each layer and
continuity of the ca,, rT, and r., stress components imposed at the layer interface. The H2L12N element is
formulated to represent a general planform geometry to provide a robust element for 3-D analysis of arbitrary
adhesive joint configurations.
The linear stress field contains 48 independent stress modes and is given by

0.8= 131 - Z# 2 -z03+ Y.84 + z#5s- Z31 6 - zz17 + ZpS
- 10'l = 139 + Z13Io + YJ611 + Z#312 + --Y13i + Z-1014 - ZY1615

dri = #Is + (hi + h2 -Z)A 6 +(hI +h 2 -z)1 + (hi + h 2 - z)019 + z 20 +

y(h, + h 2 -z46 2 1 + 0j22 +z--Y#23

= - 2 7 + (z - hd)025 - h2#2s + Z(hI - -)013+ 4"0z29 + h 2z•3 + y1i7 +•-zY#19

= 0 3, + (z - hi)#33 - h2 #32 + z#16 + y(z - h1 )136 + y#33 - h2 Y#13 4 + zy1(21 (62)

'r;, = ,241-•4211 -" Z#25•7• 43 Z•32 + -Z#15 + ZY, 7

O'2,. "= 345 -- Z#36 -- Z#328 + 037 + Z#38 - XY#345-ZZ + YZ#,403

OY,= = + Z# + 047 + Z4 + Y# + ZZ + - +Y+4

o'y= /19 + *1320-I +3 •132 -l 21316-41 + *2314 1"231 -" *zY13 -t"YI "313 2 1-Z22

2

O's = 1s- + Z#20 + 213 + -Z61617 + Y --z + + - -z2

.1z = 27 -- Z#29 +" 017 - y4 + Z,68 Y#94 -- 3

r,:2 = 031 + *X16 + 033 + Z#32 + *31321 + + +Zyz34

7-2 = 4 - -047 -12 #28 + Y#36 + Z#4• 4 + *34.5 + Z2 - "939

The quadratic stress field contains 78 independent stress modes and is given by

Oz'/1 = 1•3io#yz1I + ZZ12 + Z#3 + Y2,84 + " __2)35 + ZY66+Y37 +.T#8 + Z2#29

O'V = 1301 + YO-hU + z2 + 2+2#31 + Y2114 + hi 016 + Y)16+3"1317 + "Z318 +" Z2#1320

s= 134 + (z - 2h1)17 21 + 3(z22 + ••. 23 + Z1624 + Y12/025 + • 2•326 + *)327 ±3 + As328 +
z#329 -2zh 21331

= 43. + y(2h3 - 2-)(21 - *2323 - 3yA123 - YZ13 4 - 2h2134 - 2h316 - Z,617 - Y1-641 +

Z*642 - z1336 + h202 3 1 + 221339 + y435 + y21344 - 2zy*45 + *2 646

= 148 -ZY 122 - 21y233 + hZ1 1 4 + Y#47 - Z#33 5 + X#441 + h2/3 - 435 - h#8136 - hz

zZ 21 - A + 3 12•49 - 2*311444 + 21•345

7~1  = J637 - YsZ13 - *z3I I + Z#332 +3121333 - *3#134 + *2#334 + ~1AS + 0136 - 21z1638 - (63)

2*21339 - *y15 + z21340 + Z*T121

2 = + + + Z - + + + + + -

1312, 69 3121361 + ZZ# 6 2 +21363 +3121364 +*2#365 + 11366 31Y#67 +*Z#68 +221370

a 12,= 3o +(-h 2+Z 2 - 2hih 2),03i+ y(h2 +hi +)46 22 + (h2 +hIt,+ z),323 +(h + hi +:Z))324 +
3121325+ *_21326 + *31127 +31132s + *1029 -h2#321

72,= 043(z - h2)077 '+ y(z +h2)1655 - (h2 + z)936 7 + y(h 2 - z)9331 - 1(Z + ha2)#64 - *(z + h2)0366 -

(h2 + z)#373 - 2x(z + h2)0372 - *31123 -31124 - hIY#114 - 2h,.T# 34 - h1*1316 - h1 #317 - Y)341 +
Z#342 - hi#36 + h2#39g + h1311 5 + h1311 21 + 3121344 - 2*31145 + Z2#346

= 34 +( 2-h)0 76 + Y(Z+h 2)060 +*(Z + h2)0364 -*(z + h2)055 -*(z + h2)031 + (h2 + z)#75

*311322 - 2h1311 33 + h1*13 14 + 01147 - h1 #335 + *164j + h2#38s - hjz13s - h13116 - hiz#121 -

hip3s + Y 2139 - 2*31144 + T2#345

T,2 = 7 ZIYZ13 1 + 2137 + Y2 03s - *31164 + *21372 - *3113s + */-73 -1Y#57 + *Y313-

y1#75 - 2312136 - 2*21377 + 2 #78
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The effect of high aspect ratio is examined using the element configuration shown in Figure 72. Isotropic
material properties were selected with E = 1000.0 and p = 0.25. An eigenanalysis of the two versions of
H2L12N compared with a displacement-based formulation is depicted in Table 3 and shows the elimination
of low-energy or 'weak' characteristic deformation modes by incorporating a higher-order expansion for the
stresses. In addition, the hybrid formulation has the desirable feature of relieving the stiff deformation modes
demonstrated in the displacement-based element,

LAYER 21.

LAYER 1 00

Figure 72. The 112L12N element with a high aspect ratio layer.
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Table 3. Comparison of eigenvalues obtained in the 112L12N element incorporating
complete linear and quadratic stress expansions with -displacement-based
element.

A Linear Expansions Quadratic Expansions Dip.oBased
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0
7 1.205410 2.532107 40.09000
8 1.205410 10.11471 50.37687
9 1.419593 10.11471 68.25251
10 4.272703 22.95363 68.25251
11 22.60332 35.13044 84.25569
12 29.99786 45.20570 122.9616
13 42.86800 72.59133 146.6858
14 61.04669 72.59133 146.6858
15 61.04669 77.22080 173.4341
16 67.45520 98.23903 197.0593
17 83.67022 116.6506 231.0399
18 83.67022 116.6506 231.0399
19 137.3086 175.6953 323.4468
20 137.3086 204.7085 326.4697
21 153.5916 204.9439 330.7372
22 157.4737 204.9439 331.6464
23 171.8504 210.0055 331.6464
24 221.2042 235.4628 760.4554
25 223.5920 235.1390 2322.606
26 225.2890 246.5870 2322.606
27 225.2890 246.5870 6683.630
28 295.3580 356.1471 6723.343
29 359.8182 487.7587 6820.932
30 359.8182 487.7587 6827.265
31 416.4106 499.1765 6969.071
32 491.4209 506.5908 20025.89
33 617.3870 679.0603 20025.89
34 681.1891 1077.723 20144.81
35 681.1891 1077.723 20144.81
36 1225.438 1567.056 60153.68

Figures 73 through 78 depict stress predictions over the bond surface and along the centerline for a 3-D
single-lap adhesive joint with a rectangular planform. Solutions are obtained for the normal peel stress
distribution, or,, and the transverse shear stress distribution, _. , across the bond surface. Quadratic stress
fields are assumed in the 112LI2N element and stress predictions are compared to results obtained using
displacement-based elements and the reference solution.
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Figure 73. H2LI2N or,. stress prediction over the bond surface in rectangular 3-D single-lap joint.
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Figure 75. a., stresses along centerline of adhesive bond in rectangular 3-D single-lap joint.
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Figure 77. 03D8 r,, stress prediction aver the bond surface in rectangular 3-D single-lap joint.
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Figure 78. 3 r,, stresses along centerline of adhesive bond in rectangular 3-D single-lap joint.

As shown, the 112L12N element predictions are excellent while the displacement-based element solutions
converge away from the reference solution. The slight departure from the reference solution is attributed to
the deviation from a state of plane-strain due to the three-dimensional nature of the singularities in the r,,
stress field which influences or, and T-,, through the equilibrium constraints.

Stress predictions are obtained for the normal peel stress distribution, a~, and the transverse shear stress
distribution, across the bond surface in a tapered joint and are shown below in Figures 79 through 84
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Figure 80. C3D812 a,, stress prediction over the bond surface in a tapered 3-D single-lap joint.
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Figure 81. a,, stresses along centerline of adhesive bond in a tapered 3-D single-lap joint.
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Figure 82. H2LI2N Tr, stress prediction over the bond surface in a tapered 3-D single-lap joint.
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Figure 83. C3D8 T 2 stress prediction over the bond surface in a tapered 3-D) single-lap joint.
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Figure 84. r,. stresses along centerline of adhesive bond in a tapered 3-1) single-lap joint.

63



7 2 Remarks on 3-D Element Performance

The H2LI2N element demonstrates the same improvement over displacement-based 8-node solid elements
as was shown in the assessment of the 2-D H2L6N element. The 3-D element formulation developed herein
permits a general adhesive joint planform to be modelled and demonstrates ideal flexible behavior in high
aspect ratio element configurations.

8 Closure

Numerous specialized layered element formulations have been derived to fully assess the performance of
the hybrid element technique in the application to improve the computational efficiency and accuracy of
determining critical stresses along the bond interfaces in adhesive joints. The best performing elements have
been the lower-order element formulations due to the difficulty encountered with the zero energy modes
present in the higher-order layered elements. Optimal element performance has been associated with the
strict enforcement of all layer equilibrium and interface continuity constraints. A clear improvement in stress
prediction has been demonstrated over the use of displacement-based element which validates the superior
behavior of the hybrid stress technique in this particular application. For a robust finite element-based
analytical framework for the study of adhesive bond stresses, the optimum element configurations developed
herein are expected to form the basis for further development. Future work is suggested in the incorpora-
tion of incompatible displacement modes in 2-D lower-order elements to enhance the derived elements for
problems involving significant bending stresses. Nonlinear material behavior should be supported in future
efforts to predict the reduction of peak stress due to plastic material yielding at the joint ends together
with the capability to mode' large displacements which occur in various adhesive joint configurations under
peak service loading. Finally, a local failure analysis methodology should be developed, perhaps including a
micromechanical level analysis of the adhesive/adherend interface, to predict the initiation of bond failure.
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