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FOREWORD

The host for the Thirty-Ninth Conference on the Design of
Experiments in Army Research, Development and Testing was the
Department of Statistics in Rice University. Professor James R.
Thompson, Department of Mathematics, invited this conference to be
held at Rice University. He was asked to be Chairperson of this
conference which was held on the 20 - 22, October, 1993. Dr.
Thompson was assisted in this task by Mrs. Diane J. Brown,
Department Coordinator. These individuals are to be commended for
their efforts in coordinating all the details required to conduct
this large successful scientific meeting.

Members of the problem committee were pleased to obtain the
services of the following distinguished scientists to speak on
topics of interest to Army personnel:

Speaker and Affiliation TOit Q.Addrels

Professor Dennis Cox Estimating Parameters in Complex
Rice University Computer Codes: Designing the

Computer Experiments

Professor Katherine B. Ensor Properties of Simulation based
Rice University Estimators of Stochastic

Processes

Professor Wei-Yin Loh Tree-Structured Statistical Methods
University of Wisconsin-
Madison

Professor Emanuel Parzen Beyond Classical Statistical
University Methods: Why and How
Gave the Keynote Address

Professor J. Sethuraman Contamination of Failure Data can
Florida State University Change Nature of Failure Rate and

Explain the Strength of Long Life
Units

Professor Nozer Singurwalla On the Reliability of Emergency
and Jiangxian Chen Diesel Generators at U.S. Nuclear
George Washington University Plants
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This conference was preceded by a two day tutorial entitled
"00Nultivariate Density Estimation and Visual Clustering" presented
by Professor David W. soott of Rice University. The purpose of
these tutorials is to develop, in Army scientists, an interest in
and an appreciation for the statistical methods that are needed to
analyze experimental data.

Dr. Douglas B. Tang, Chief of the Department of Biostatistics at
the Walter Rood Army Institute of Research, was selected to receive
the Twelfth U*s. Army Wilks Award for contributions to statistical
Methodologies in Army Reserve Development and testing. Based on
his diverse research productivity, he has become widely recognized
as an authority on clinioal trials, medical decision making,
bioassay, and laboratory data analysis.

The Program Committee has requested that the proceedings of the
1993 conference be distributed Army-wide so that the information
contaiAed therein can assist scientists with some of their
statistical problems. Finally, committee members would like to
thank the Program Committee for all the work it did in putting
together this scientific meeting.

Program Committeo

Gerald Andersen (ARO) Carl Bates (CAA)
Ksvin Beam (RAND) Barry Bodt CARL)
Robert Burge (WRAIR) Eugene Dutoit (AID)
Jock Grynovicki CARL) Carl Russell (TEXCOM)
Douglas Tang (WRAIR) Malcolm Taylor (ARL)
Deloris Testerman (TEXCOM) Jim Thompson (RICE U.)
Henry Tingey (U. of DE) David Cruess (USUHS)
Francis Dressel (ARO) Jerry Thomas CARL)
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THIRTY-NINTH CONFERENCE ON THE DESIGN OF
EXPERIMENTS

IN ARMY RESEARCH, DEVELOPMENT, AND TESTING

18-22 October 1993

Host: Department of Statistics
Rice University

6100 South Main St.
Houston, Texas

Location: Kyle Morrow Room, Fondren Library

Wednesday. 20 October 19N

0800 - 0915, REGISTRATION: (Kyle Morrow Room Lobby)

0915 - 0930 CALL TO ORDER: Jim Thompson, Rice University

OPENING REMARKS: (Michael M. Carroll, Dean of Engineering,
Rice University)

0930 - 1200 GENERAL SESSION I

Chairperson: Malcolm Taylor, Army Research Laboratory

0930-1030 KEYNOTE ADDRESS: BEYOND AOV STATISTICAL
METHODS
Emanuel Parzen, Texas A&M University

1030-1 100 Break

1100-1200 PROPERTIES OF SIMULATION BASED ESTIMATORS OF STOCHASTIC
PROCESSES
Katherine B. Ensor, Rice University

1200-1330 Lunch

1330- 1500 CONTRIBUTED SESSION I

Chairperson: Linda Moss, Army Research Laboratory

PARTIALLY DUPLICATED FACTORIAL DESIGNS
Peter W. M, John, University of Texas at Austin

AN APPLICATION OF GENERALIZED P-VALUES IN
TANK GUN ACCURACY RESEARCH
David W. Webb, Army Research Laboratory
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A SERIES OF NEW SUPERSATURATED DESIGNS
Margaret G. Ehm, Marc N. Elliott, and Monnie McGee, Rice
University

1500-1530 Break

1530- 1700 CONTRIBUTED SESSION II

Chairperson: Carl Russell, TE(COM

JUDGING STATISTICAL SIGNIFIANCE GRAPHICAL METHODS VS
TRADITIONAL PARAMETRIC METHODS
Jock 0. Grynovicki, Army Research Laboratory

AN EMPIRICAL STUDY OF THE DISTRIBUTION AND PROPERTIES OF
THE SLOPE ESTIMATOR USING THE MINIMUM NORMED DISTANCE
CRITERION
Barbara Wainwright, Salisbury State University and Henry B.
Tingey, University of Delaware

CHARACTERIZATION RESULTS IN PROBABILITY
'Jerry Andersen, Army Research Office

DETERMINATION OF DESIRED DESIGN AND OPERATIONAL
CHARACTERISTICS OF THE SMALL AREA CAMOUFLAGE COVER
(SACC) BY GROUND TROOPS
George Anitole and Ronald L Johnson Belvoire Research
Development and Engineering Center & Christopher J. Neubert,
Army Materiel Command

1830- WILKS AWARD BANQUET (Cohen House/Faculty Club, Rice
University)

1830-1930 Cash Bar

1930- Dinner

Thursday. 21 October 1993

0800 - 0900 GENERAL SESSION II

Chairperson: Deloris Testerman, TFXCOM

TREE-STRUCTURED STATISTICAL METHODS
Wei-Yin Loh, University of Wisconsin-Madison

0900 - 0915 Break
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0915 - 1100 CLINICAL SESSION

Chairperson: W. J. Conover, Texas Technological University
Panelists: Bernard Harris, University of Wisconsin-Madison

Wei-Yin Loh, University of Wisconsin-Madison
J. Sethuraman, Florida State University
Noser Singpurwalla, George Washington University

MOBILITY FACTOR INFERENCE
C. Denise Bullock and Nancy Renfroe Waterways Experiment
Station

COMBINING SIMULATION RESULTS ADDRESSING ARMOR VEHICLE
RESEARCH, DEVELOPMENT AND TESTING
Paul J. Deason, TRADOC Analysis Center-WSMR

P-VULTE (P-VALUE UPPER & LOWER TEST ESTIMATION)

Paul H. Thrasher, Material Test Directorate--WSMR

1100-1115 Break

1115 - 1215 CONTRIBUTED SESSION III

Chairperson: Doug Tang, Walter Reed Army Institute of Research

AUTOMATIC CLASSIFICATION OF DOCUMENTS BY LEXICAL CONTENT
Mel Brown, Army Research Office

AN APPITCATION OF CLASSIFICATION WITH POTENTIAL USE IN
REPRODUCTIVE TOXICOLOGY
Barry A. Bodt, Army Research Laboratory & Ronald J. Young,
Edgewood Research, Development and Engineering Center

1215-1330 Lunch

1330- 1500 CONTRIBUTED SESSION III (CONTINUED)

IMPROVED PERIODOGRAM ESTIMATORS FOR THE COSINOR MODEL
R. John Weaver and Marshall Brunden, The Upjohn Company &
Jonathon Raz, University of Michigan

CONFIDENCE INTERVALS AND TESTS OF HYPOTHESES FOR NORMAL
COEFFICIENTS OF VARIATION
Mark G. Vangel, Army Research Laboratory

ANALYSIS OF GAS FLOW RESISTENCE MEASUREMENT THROUGH
PACKED BEDS.
Malcolm S. Taylor & Csaba K. Soltani, U. S. Army Research
Laboratory

1500 - 1530 Break (POSTER SESSION, Kyle Morrow Room Lobby)

DESKTOP MODELS FOR WEAPONS ANALYSES
Eugene Dutoit and John D'Errico, Infantry School
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1530- 1630 GENERAL SESSION III

Chairperson: Jerry Thomas, Army Research Laboratory

ON THE RELIABILITY OF VEM•RGENCY DIESEL GENERATORS AT U. S.
NUCLEAR POWER PLANTS
Noser Slngpurwalla & Jlangxian Chen, George Washington
University

Vriday. 22 October 1993

0800 - 0900 GENERAL SESSION IV

Chairperson: Bob Burge, Walter Reed Army Insitute of Research

CONTAMINATION OF FAILURE DATA CAN CHANGE NATURE OF
FAILURE RATE AND EXPLAIN THE STRENGHT OF LONG U1FE UNITS
J. Sethuraman, Florida State University

0900-0915 Break

0915 - 1015 CONTRIBUTED SESSION IV

Chairperson: LTC. Ronald Scotka, TEXCOM

IDENTIFYING THE CRITICAL FACTORS IN AN ADAPTIVE NETWORK
Ann E. M. Brodeen, Barbara Broome, George
Hatwilg, and Maria Lopez, Army Research Laboratory

ESTIMATES OF THE NUMBER OF MONTE CARLO TRIALS NECESSARY
FOR MOBILITY SENSITMVTY ANALYSES
Andrew HIarrell, Waterways Experiment Station

1030 - 1200 GENERAL SESSION V

Chairperson: Barry A. Bodt, Army Research
Laboratory, and Chairman of the AMSC
Subcommittee on Probability and Statistics

OPEN ME•TING OF THE PROBABILITY AND STATISTICSSUBCOMMITTEE OF THE ARMY MATHEMATICS STEERING COMMI!rIEE

LS!,.MATING PARAMEMIS IN COMPLEX COMPUTER CODES:DESIGNING THE COMPUTER EXPERIMENT
Dennis Cox, Rice University

ADJOURN

Program Committee
Gerald Andersen (ARO) Carl Bates (CAA)
Kevin Beam (RAND) arry Sodt (ARL)
Robert Burge (WRAIR) Burene Dutoit (AIS)
Jock Grynovicki (ARL) Carl Russell (TEXCOM)Douglas Tang (WRAIR) Malcolm Taylor (ARL)Delris Testerman (TEKCOM) Jim Thompson (RICE U.)Henry Tingey (U. of DE) David Cruess (USUHS)Francis Dreuel (ARO) Jerry Thomas (ARL)



BEYOND CLASSICAL STATISTICAL METHODS: WHY and HOW
by Emanuel Parzen

Department of Statistics, Texas A&M University
College Station, TX 77843-3143

ABSTRACT: This is a philosophical and technical paper about future directions
of statistical theory and practice. It discusses: 1. why and how components of statistical
reasoning, 2. certified professional statisticians, 3. statistical computing, 4. statistical edu-
cation, 5. defingn the problem of statistics as probability modeling, 6. statistical education
analogues to statistica modeling, 7. function representations of data and mathematical lit-
eracy, 8. the P value problems ol statistics, 9. how to use correlation coefficients to develop
beyond statistical methods

0. INTRODUCTION

* This is a philosophical and technical paper about future directions of statistical theory
and practice. We propose that the concept of comparing and combining classical statistical
methods and modern data analysis methods should be called "Beyond Classical Statisti-
cal Methods". This name is inspired by Hirotsu (1993), "Beyond Analysis of Variance
Techniques: Some Applications in Clinical Trials". Hirotsu reports that his new methods
(uch as max chi-squared statistics and average chi-squared statistics) are being accepted in
ap anese statistical guidelines. One goal of %is paper is to present a framework (in section

9) which shows how the statistics introduced by Hirotsu are related to other conventional
statistics.

While combining conventional and modern methods has a history of academic devel-
opment (Daniel (1959), Gnandesikan (1980)), it may not be much practiced as yet because
applied statisticians have a tendency not to use methods which have not been made read-
ily available to them in statistical computing packages. This paper argues that unified
methods can impact applied research and statistical education.

The technical content of this paper is the final section which outlines our research
about HOW to combine non-parametric quantile and Comparison Change Correlation
techniques with classical statistical methods. The first 8 sections discuss from various
philosophical viewpoints WHY this research should be on the agenda of statisticians in
a society whose health and prosperity is increasingly dependent on statistically literateengineers, scientists, managers, and public.

1. WHY AND HOW COMPONENTS OF STATISTICAL REASONING

I believe that courses and talks on statistics should be about both HOW and WHY.

Academic researchers often minimize the WHY component, because a HOW talk often
emphasizes "get to the new material fast without worrying about motivating the results,
since to enhance your reputation impress fellow experts In the short attention span that you
have available that you ve done something new and which works". We say that the HOW
component of statistical reasoning is often "esoteric" in the sense that it is specialized
tednical in a way that appeals mainly to experts.

In contrast, the WHY component of statistical reasoning is intended to be "exoteric"
in the sense that it seeks to be understandable to a more general technical audience by
motivating WHY the methods are applicable and interpretable.

Presented as a, Keynote Address on October 20, 1993 at the 39th Conference on the
Design of Experiments for Army Research, Development, and Testing at Rice University.
Research suppported by the U. S. Army Research Office.
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Statisticians need to be concerned with WHY in order to practice in their work the
Deming inspired

Continuous Improvement Principle

which states that "every action should be judged by how well it positions you for subsequent
actions". Methods should be called simple not by whether their theory is easy but whether
their interpretation can be made easy to comprehend.

To enhance their quality (and competitiveness) many organizations are adopting a
Continuous Improvement Process,

defined as a team approach to Total Quality Management to improve products or services
to exceed the expectations of customers or clients. An understanding and implementation
of statistical concepts of change, variation and measurements is clearly important in this
process which requires that decisions be based on the information in data, not just on
opinions and guesses.

2. CERTIFIED PROFESSIONAL STATISTICIANS

A question of concern to a broad cross-section of applied statisticians, is the question
of professional certification of statisticians. Professors should be interested in this question
because I believe that it raises fundamental questions about

how to continuously improve statistics courses.

Several ideas that I believe deserve to be in the certification discussion are:
(1) Is the best role model for professional certification of statisticians an exam struc-

ture (similar to that of the Society of Actuaries) which is not a single exam but
a series of exams? In this way one can encourage and reward two or more levels
of advanced statistical literacy. Statistical culture is understanding that there are
several levels of professional statistical literacy, involving different aspects of the
practice and theory of statistics.

(2) Should certification require, in addition to passing exams, a lifelong process of
Continuing Education credits? Do we not need to encourage and reward keeping
up with the latest developments through short courses and attendance at profes-
sional meetings? I call this process
"studying the contemporary history of statistics".

(3) Certification of level of statistical literacy should be the goal of exams in each
statistics course. Statistical educators should seek concensus about the content
of the series of continually updated statistics courses that would provide excellent
education in applied classical and modern methods. The courses should have both
HOW and WHY components.

(4) Statistics programs should have courses that focus on problems of communication
and collaboration between statisticians and scientists (how to achieve a collabo-
ratory of statistical science).

3. STATISTICAL COMPUTING

An increasingly urgent question is the role in statistics education of

statistical computing and statistical packages,

especially
(1) how to enable new methods to be quickly made available to applied researchers,
(2) how to enable methods which are complicated (in theory and computation) to be

made simple (in presentation).
A major issue of integrating Statistical Computing into the practice of statistics is:

solving the problem that new methods are considered purely academic unless user friendly

2



software to use them is available.
A major issue of integrnting Statistical Computing with statistical education is: how

to use statistical packages to implement "alternative" (self learning) classroom cultures
that stimulate students to develop statistical reasoning abilities by real life .experience
which expect students to search for patterns, relate contrasting ideas, and give reasons
and arguments for the issues under discussion.

I believe that currently there is a danger in introductory courses that statistical com-
putin$ is taught only from the HOW point of view with no discussion of WHY issues,
especially

how can statistical computing make a statistical method simple,
and the impact of computing (especially graphics) on how statistics is practiced.

4. STATISTICAL EDUCATION
How to change the teaching of statistics is now being frequently discussed at statistics

meetings; Av.tat Newo for October 1993 (p. 13) reports the revolutionary views of David
Moore that we need "new" teaching styles.

The goals of an "alternative" educational philosophy should be to emphasize both
practice and theory using two teaching strategies:

1. "Never tell students what they can find out for themselves."
2. "Tell students about those thhitis which they will find most difficult to

learn by themselves."
Other goals for introductory statistics courses:
1) public respect for statisticians,
2) the recruitment of statisticians,
3) public statistical literacy, awareness that in every activity one should strive to

compare "expectation" with "reality".
I recommend that courses discuss:
the "map" of statistics (its relations to other disciplin-s as the 'glue' of science);
the "contemporary history of statistics" (emphasizing that innovation in methods
and applications are constantly occurring);
its culture (why statisticians are oriented to "continuous improvement" and how they
keep up with new "hammers" (methods) and "nails" (applications)).
We must be pro-active in changing the current attitude among undergraduate students

that statistics is a required and irrelevant course, to be remembered as little as possible.
5. DEFINING THE PROBLEM OF STATISTICS AS PROBABILITY

MODELING
Defining what statistical science ia about has always been regarded as a controversial

act (many statisticians reject the hypothesis that one can be certain about the study of
uncertainty). We should be aware of the various definitions of statistics:

(1) help find scientific truth about probabilities and the fit of observations to theory;
(2) make decisions in the face of uncertainty and lose functions;
(3) model uncertain data by probability models.
I believe that to find truth (and make decisions) one must explore the widest range of

alternatives (what I call "going to the edge"). I regard as most operational the following
definition:

The most Important concepts In statistics are the probability model and
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likelihood; statistical thinking combines data analysis and concepts of proba-
bility.

Introductory statistics courses may not need to include techniques for theoretically
cornputing probabilities but need to stress that probabilities are what statistics is comput-
ing from data.

Guided by the proverb "if your only tool is a hammer, every problem looks like a nail".
I proposed (Parzen (1993)) that the practice of statistics can be regarded as combining
"nails" (fields of applications) and "hammers" (general methods stated mathematically
which are combined to provide a custom made method for each application, not just
reducing each problem to fit the "simple" techniques the statistician knows).

Current important applications of statistics can be defined as analyzing change (ob-
serving and measuring changes taking place in society, industrial processes, medical treat-
ments, the environment, economic indicators, etc.).

Current methods of statistics can be regarded as having a common theme: use prob-
ability models to model and comprehend populations and data, by an Iterative process
of model specification, arameter estimation, and model checking (eloquently de-
scribed by George Box and Gwilym Jenkins in the context of Time Series Analys), That
applied statistics is best practiced by modeling is well described in an article in the Septem-
ber 1993 American Scientist by Gauch.

Bayesians (of the dogmatic type who preach that priors are not just techniques but are
to be believed) imply that statisticians should never use non-Bayesian methods (one should
not analyse data for which one does not have prior beliefs about the model). Modeling
statisticians believe that data can yield patterns and models which provide insights which
were not thought of before the data analysis. The magazine "The Economist' (October
9, 1993 issue) states that principles of "data anallysis without theory" are the basis of
current successful applied research on the mathematics of finance (investing).

6. STATISTICAL EDUCATION ANALOGUES TO STATISTICAL
MODELING

Strategies for solving statistical problems are emphasized in the "new" teaching which
aims to give students a sense of purpose and direction to their statistical learning. My ma-
jor point is that reforms in statistical education and research are linked, because statistical
learning and statistical investigation are analogous, because both require a cycle of model
buildinf, which one usually repeats (iterates) several times before reaching a satisfactory
conclusion.

The SIET cycle of statistical model building consists of four stages:
Stage 1 (S): Specify very general class of models.
Stage 2 (1): Identify tentative parametric model.
Stage 3 (E): Estimate parameters of tentative model.
Stage 4 (T): Test goodness of fit, diagnose improved models.

(The slogan could be: "To SIET (see it) is to understand it.")
The cycle of statistical problem solving consists of four stages:

Stage 1 (P): Pose the question, form expectations.
Stage 2 (C): Collect the data, make observations.
Stage 3 (A): Analyze the data, compare observations and expectation.
Stage 4 (I): Interpret the results, find the best theory or decision that fits the
data.

The PCAI cycle of a statistical investigation should be represented in a diagram as a
circular process (rather than a linear process); see figure from p. 183 A. Graham (1993),
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We prefer to call the cycle EOCI (Expect, Observe, Compare, Interpret).
Reformers of mathematics education take the view that teachers should communicate

the four aspects of learning which cognitive sciences recommend for success:
1. simple recall,
2. algorithmic learning,
3. conceptual learning, and

.4. problem solving strategies.
In statistical teaching we can make these cognitive concepts more concrete by teaching

that statistical concepts (such as the sample mean or sample variance) have three aspects:
1. how to define it (mean of sample distribution);
2. how to compute it (average the values or the quantile function);
3. how to interpret it (estimate location parameter of sample);

The fourth aspect of statistical learning consists of ideas about combining concepts to
conduct an iterative statistical investigation whose output is data models which can be
applied.

When one is a discussant of a technical paper it may be helpful to use the four aspects
of learning as a basis for evaluation.

One reason the definition

"the methods of statistics are modeling"
may be controversial among statisticians is because many introductory statistics courses
adopt approaches which avoid the use of concepts of probability

Statistics and probability need to be linked not only to define probability models but
in order to make judgements (and simulations) about how to interpret the significance of
a set of results, to explain that unusual results do sometimes occur just by chance.

Professors of education report that the dilemma of mathematics education reform
is that it requires teachers to have a deeper understanding of ideas and concepts, which
they are reluctant to study. Teachers prefer "ready to apply" modules rather than profes-
sional development. Now can we overcome these inhibitions to mathematics and statistics
educational reform?

T. FUNCTION REPRESENTATIONS OF DATA AND MATHEMATI-
CAL LITERACY

The philosophy of "Beyond Classical Statistical Methods" proposes that to practice
statistics, one must be aware of the relations between statistics and computing, between
statistics and probability, and between statistics and mathematics.

Early childhood study of statistical data analysis and probability is now regarded
as critical to developing mathematically literate students who can function in a society
driven by technology. Current mathematics educational reform movements believe expers.
ence (with statistical data analysis) is the ideal way to teach and reinforce mathematical
concepts; I propose that statistics can benefit from mathematical tools (such as represen-
tations of data by functions).

My Comparison Change Correlation statistical methods emphasize innovations in
functions that can be used to describe probability relationships and the "shape" of data.
These functions are defined on the unit interval (denoted [0,1] or 0 < u < 1 or 0 < t < 1)
c-nd the uit square (denoted 0 < t, u < 1)- they can be plotted and interpreted by their
shapes, as well as their numerical magnitudes, and yield functional statistics.

"Safe" (best) statistical methods provide two hypotheses between which the researcher
must choose. In the Comparison Change Correlation approach, the null hypothesis of no
relationship is formulated as implying

data representation on [0,1]=white noise

5



while the alternative hypothesis implies

data representation on [O,1]=slgnal+white noise.

Test statistics are "linear detectors"of the form integral over [0,1] of the product of the
data representing function and the signal representing function. Quadratic detectors are
sums of squares of linear detectors. Information theory detectors are entropy measures of
comparison density estimators.

Factoid: The concept of null hypothesis was introduced by R. A. Fisher as a hypothesis
set up for the purpose of being nullified (invalidated). Source: Fisher (1990), p. 322.

8. THE P VALUE PROBLEMS OF STATISTICS

Statistics has as its goals specification and identification of models that fit data, and
aaeigning .•p ialuea" to model. selected by' multiple comparisonm. If we use modeling meth-
ods to decide which of two treatments is better the client wants and expects a p value for
our conclusionl Answering such distributional questions meay be feasible using computer
intensive re-sampling methods which can generate the distribution of the statistics that
we propose to test relationships.

I would like to tell you a&true story that happened to me in Israel in September 1993
on a bus to the Weizmann Institute. When a statistician meets a scientist, one often gets
the reaction:

"All scientists need statisticians (good news).
But we do not need them very much (bad news).
How complicated is it to compute a p value?"

Revising this attitude requires a public relations campaign to educate the scientific
public about "Beyond Classical Statistical Methods."

9. HOW TO USE CORRELATION COEFFICIENTS TO DEVELOP
BEYOND STATISTICAL METHODS

This section is a technical outline, without examples, of Comparison Change Cor-
relation statistical methods, emphasizing HOW conventional statistical methods can be
expressed in terms of diverse correlation coefficients.

SWe start with the multi-sample problem that we reformulate as data analysis of bi-
variate (X, Y). Multi-sample statistical data analysis arises when observe a variable Y
in c cases or samples (correspondin; to c treatments or c populations). The samples are
usually regarded as the value of c variables 1",... Ye with respective true distribution func-
tions Fa (-) .... ,Fc(yt)and quantile functions Ql(u),... Qc(u). The general problem is to
model how the distribution functions Fk vary with the value of the conditioning variable
k = 1,... c, and in particular to test the hypothesis of homogeneity of distributions:

H: F1 = ... = Fe = F

The distribution F to which all the others are equal under Hp is considered to be the
unconditional distribution of Y (which is estimated by the sample distribution of Y in the
pooled sample).

For k = 1,...,c, we observe a random sample Yk(j),j = 1 ,...,nk for k =1.. .c
The pooled sample, of size n = ni + ... + nc, represents observations of the pooied (or
unconditional) variable Y. The c samples are assumed to be independent of each other.

We propose that we regard the data as consisting of bivariate observations (X, Y),
where X represents the population k = 1,..., c observed and Y the response observed. The



observation that is usually denoted Y•(j) is denoted in our notation (X = k, Y = Yk(J)).
While X is a deterministic variable rather than a random variable, the probability notation
we use can be interpreted for both cases. The marginal (unconditional) distribution of X
is specified by the probability mass function

ms=- px(k) = nk/n.

The distribution function of X is defined
FX (-) = :px (k).

k~z

Define the indicator function I(B) of an event B to be 1 or 0 according as the event
B did or did not occur. Thus I(X - k) denotes the indicator function of the event X =-k,
which equals 1 or 0 according as X k or X 0 k. "(Y :5 y) denotes the indicator function
of the event Y 5 V. The distribution function of the values of Y in the k-th sample,
previously denoted Fk, is now described in the notation of conditional distributions of Y- given X:

gieF() = Py1x=k -) = E[I(Y < y)lI(X = k)]

We henceforth use empirical distributions (based on the observed data) rather than

theoretical distributions (based on the unobserved population). Then

FYIX..(Y) = E[I(Y ! O)IX = kJ

= (1/nk) E x = k)r < y)
observations (X,Y)- EtI(X - k,) r(Y" :5 y)]lpx (k).

An important general formula: for function g(Y) and set B of real numbers

E rg(Y)IX is in B] = E[g(Y)I(X is in B)]/P(X is in B]

An important general concept is correlation coefficient. We now show that correlation can
be used to describe a statistic that Is a conditional mean:

R(X is in B,g(Y)) = CORR[I(X is in B),g(Y)J
= E[I(x is in B)(g(Y) - E[g(Y)])!o[g(Y)JlajI(x is in B)]
= (odd-eP[X is in B]) 5 E[(g(Y) - E[g(Y)])/o[g(Y)]jX is in B]

where we define odds(p) = pl(1 - p). Note that P[X is in B]/o[I(X is in B)] =
(oddsP[X is in B])'5 .

The pooled sample has unconditional empirical distribution

Fy(y) = (1/n) E I(Y _< y)
observations (X,Y)

The empirical quantile function of Y is denoted (u), 0 < u < 1, and is piecewise
constant between points u satisfying Fy/(Qy(u)) = u, ca led exact values of u; exact values
u are of the form u = Fy(y) for some y. The quantile function of X is denoted Qx(t),
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0 < t < 1, and is piecewise constant between points t satisfying Fx(Qx(t)) = t, called
exact values of t; exact values of t are of the form t = FX(x) for some z.

To test the null hypothesis HO, three main methods are proposed in introductory
statistics courses, based on comparing (1) means, (2) scored ranks, (3) distribution func-
tions. We propose to unify these methods by expressing the test statistics in terms of basic
types of Indicator correlations.:

R(X - QX(t), scored ranks of Y) -CORR[I(X = Qx(t)), scored ranks of Y],0 <

(3) R(X = Qx(t),Y 5 Qy(u)) = CORR(I(X = Qx(t)), I(Y < Qy(u))],0 < t, < 1.

Additional statistics to be investigated for multi-sample problems are accumulation
correlations:

() R(X _ Qx(t), scored ranks of Y)•R-COR[(X 5 Qx(t)), scored ranks of YJO <
t<1;

(6) R(X < Qx(t),Y < Qy(u)) = CORR[I(X < Qx(t)),I(Y < Qy(u))],O <t,u < 1.
To motivate how the indicator correlations (1) arise in the Analysis of Variance we

introduce the following notation. The sample mean Yk" of the k-th sample is the conditional
mean of Y given X =uk:

, nkE[YIX = k] = ON= (i/) , Yk(j) = px~k)E(YI(X = A)]

J=1

The pooled sample mean io the unconditional mean of Y:

C C

Y- E[Y] - .YPx(k)E[Yx -] - "Pxk)yk,
•al k-=

The unconditional variance of Y, and the conditional variance of Y given X = k, are
respectively denoted

c nk

VAR[Y] o- [Y]= E E(Y(j) - )'/nq
k=lj~l

nk

VAR[YIX k] = ] (Yk(j)- Yk-')nk-
j=l

The common variance a2 of Y under HO is estimated by the pooled variance

Ga
2 = E(VAR(Y IX]I = px(k) VAR[YIX = k]

k=1

Define the multiple correlation

R2[YIX] = VAR[E[YIX]]/ VAR(Y]

8



What may be novel is the observation that one can write

R2[YIX] = J(l - pX(k))(R(X = k, Y))2 ,
k=1

From the important representation

VAR[Y] f E[VAR[YIXU] + VAR[E[YIX]1,

Infer that the pooled variance oa2 can be shown to be related to the original variance
VAR[Y] by ~a2 = VAR[Y](1 - R2 [YIX])

The F statistic used in the Analysis of Variance to s st H0 can be shown to be
(n - c)T 2/(c - 1), defining

T 2 - R2[yIX]/(l - R2 [YlX])

j -(1 -pX(k))T 2(X = k),

defining

T(X = k) = R(X = k,Y)/(1 - R2 [YIX]). 5 = (odds px(k))'5 (Y-k - Y-)/&.

A plot of (n - c)' 6 T(X = Qx(t)), 0 <t < 1, can help determine which sub-samples are
most different from the others. Note (n - c)' 5 T(X = k) has a Student-i distribution with
n-c degrees of freedom under H0 and normality, while (n-c)T2/(c- 1) has F(c- 1,n-c)
distribution.

The foregoing discussion has outlined how a conventional statistical method (one way
Analysis of Variance) can be expressed in terms of correlations. We next state results for
expressing other conventional and beyond methods in terms of correlations.

R(X = x, Y = yi), Contingency Table Analysis
The chi-squared statistic Chi used to test independence in a contingency table of n

observations (X, Y) where X has c possible values and Y has r possible values can be
expressed Chi- nC(X, Y), in terms of a probability concept

0 r
C(X, Y) = Z '(pxy(x,g s)) - px(z)py(Y)) 2/px(X)py(lI),

2=1 Y=1
expressed in terms of (empirical) probabilities, We propose to interpret this formula in
terms of indicator correlations

R(X - X,•Y = v) (Px,(z, V))- Px(X)Py(y))/(Px(w)py(v)(l - Px(x))( 1 -py(y)))5;

then C r

C(X, Y) = E Z(l - pX(x))(1 - py(y))IR(X = x), Y = y)2
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To study the independence of X and Y given data on (X, Y) we propose a "Chi-square
and Indicator Correlation Tableau" consisting of the r by c matrix n'R(X , Y y)
and bordering rows and columns n(X,.), nC(., y), nCav, defining

C(, .) --(r - 1)-i "(1 - py(y))JR(X = x, Y = y)I2

C(.,$ ) = (c - 1)-1 E(1 - px(_))IR(X = My = y)12

"Cav = (c - 1)-1 E(1 - px())C(,.) = (r- 1)-I Z(1 - py(y))C(., )
I It

We assign p value to these statistics as tests of the null hypothesis Ho by using their
known asymptotic or exact distributions under the null hupothesis. The use in practice of
these statistics is beut illustrated by examples which require their own paper to discuss.

Rather than a table of R(X - x, Y - y) we prefer a graphical presentation of

n'5 R(X M QX(),Y - Qy(u))

am either a function on 0 < u < 1 for each exact t fixed, or as a function on 0 < t < 1 for
each exact u fixed. We also plot nC(Qx(t),.),nC(., Qy(u)).

The chi-squared statistic C is a portmanteau or omnibus statistic. When it is sig-
nificant we want to know the cause of the rejection of independence the nature of the
dependence, which can be obtained from the above plots which show which coefficients are
most significant.

Comparison Analysim

The ultimate approach to modelling is to estimate and interpret comparison density
d(u It) and comparison distribution D(u[t):

d(ult) = d(u;FFyIx=Q,(t)),0 < u < 1;

D(ult) =j d(u'lt)du' = D(u; Fy, FyIx=Qx(0))

If u and t are exact values in the sense that they satisfy u = Iý(y), t = Fx(x) for some Y
and x, one can show that

D(ult) = FYIX.Qx(t)(Qy(u))

The joint dependence density d(t, u) is defined as a comparison density

d(t,u) = d(ult) = d(tlu) = d(t; FXFx, y=qy(u)),0 < t < 1;

The joint dependence distribution or copula function is defined by

D(t, u) = j j d(t', u')dt'du' = j D(ult')dt'.

10



The changePP process is defined on 0 < u < 1 for fixed exact t by

CPP(ult) =f cPP(u'lt)du' = (oddj(pxQx(t)))5 (D(ult) - u)

The change distribution is defined on 0 < t < 1 for fixed exact u by

D(tlu) = j d(t'Iu)dt' = d(t',u)dt'.

RýX ; x, Y5 •u•, Multi-Sample Comparison, Accumulation Analysis
R X , Y= yChang~e Analysis ofaResponse

The chi-square statistic, based on correlations R(X = x, Y = y), is most appropriate
to compute when X Is discrete and Y is discrete, Alternative correlations for di4gnosis of
the dependence of discrete X and discrete Y, and essential correlations when one variable
is continuous and the other is discrete, are the accumulation correlaton coefficients

R(X = x, Y : -)= (odds px(x)odd, FV(y))-5 ((Fyinx=(y)/1V(y))- 1)

At exact u

R(X = Qx(t), Y S Qy(u)) =(odds pX(Qx(t))) 5 (D(u; FV, FyIxiX(t))-u)/(u(1-u))'5

We could plot for each exact t a change PP process CPP(uIt), 0 < u < 1, which
comares e onditional and unconditional distributions and is asymptotically a Brownian
Srid~e under H0:

CPP(ult) = (odds px(Qx(t)))5 (D(u! Fy, FYiX.QXQ)) - u)

We always plot for each exact t change test process which is a collection of accumula-
tion correlation coefficients

CT(u It) = CPP(ul t)/(u(1 - u)).5 - R(X Qx(t), Y :5 Qy(u))

Recall that the set of exact u values consists of u -.= Fy(Y), Y = 1,..., r - 1. The
(Hirotsu) maximum chi-square statistic is defined for each treatment t (more precisely,
treatment x with t - FX(t))

R2 accummaa(t) = n max IR(X = Qx(t), y:5 Qy(u))12

R2accumave(t) = n 1 JR(X = QX(t),Y < Qy(u))j2/(r - 1)
ex~act U

By introducing weights W(u), such as W(u) = (u(l - u)), one can define weighted Hirotsu
statistics: RaccummzW(t) = n my W(u)ICT(ult)12 ,

R2accumaveW(t) = n _ W(u)ICT(ult)I 2/(r - 1)
exact u

11



For contingency tables (X discrete, Y discrete) these statistics pruvide alternatives to
the standard Chi-squared statistic to test for independence.

For multi-sample problems (X discrete, Y continuous) they provide goodness of fit
type statistics for testing homogeneity of populations. Modeling rather than testing is
provided by density estimation techniques which estimate cPP(uIt), the change PP density
or derivative of the Change PP process.

One of the accomplishments of our research is to relate the accumulation statistics
introduced by Hirotsu (1993) to conventional statistical methods,

R(X - x, Y), Two sample and Multi-sample tests of homogeneity, Analysis
of Variance (One Way)

The output of the R(X - x, Y) command is a plot of the change test density R(X
Qvt)t Y), 0 < t < 1, and the values of the conventional F test statistics of the Analysis

R(X 5 x, Y), Change Analysis of Multi-Samples

Plot R(X S Q Y), 0 < t < 1, and the corresponding max and ave statistics.
Sz, rank) Non-parametric tests, Wilcoxon, Kruskal-Wallis

R(X X5 , ranks), Non parametric Change analysis of multisamples

We define ranks to be a transformation of Y to .Py(Y), where Py(yj) is the mid
distribution function

Py-() = FýW() - .5py(W)

R(X - x, scored ranks)
R(X < x, scored ranks)

Scored ranks are a transformation of Y to J(P(Y)) where J(u) is a score function, often
chosen to be a Legendre orthogonal polynomial. Their correlations can be used to guide
estimation of comparison densities,

R(scored ranks transformation of Y). Change analysis of data Y trans-
formed by one of tIe transformations I(Y = y), I(Y < y), Y,9 Py(Y), J(Py(Y)),
and guide to estimation of change density (non-parametric regression).

R((X,Y) R(PX(X), Py(Y)), R(XPy(Y)), R(PX(X),Y), Correlations and non-
parametric Spearman correlations

Compute the correlations and plot the functions of which they are diagnostics. The
important formula

R(X, Y) =- (Qx(t) - X-)/o[X])E[(Y - Y-)/[Y])X = Qx(t)] )t

suggests that we plot the two functions on 0 <.t < 1 that are in the integrand, Smoothing
the second function, called the change density, is the problem considered in non-parametric
regression.
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Abstract: Simulation based methods of estimation have proven a usefuL tool for
parameter estimation of complicated stochastic processes. We examine a simulation
ased estimation procedure comparable to the conditional least squares estimates

for parameters of a stochastic process, The simulated conditional least squares
estimates are shown to be consistent and the asymptotic distribution is derived.

KEY WORDS: SIMEST, Conditional Least Squares

1. INTRODUCTION

Ensor, Bridges & Lawera (1093) illustrated the viability of estimation for

stochastic processes through simulation. Their method built on the original work by

Thompson, Brown and Atkinson (1087) in this area. The premise of such estimators

is that a process can be simulated directly from the defining axioms. Parameter

estimates are then obtained by minimizing over the parameter space some measure

of error between the simulated process at a given point in the parameter space and
the observed series. The acronym SIMEST, for simulation based estimation, is used

to describe this general method.

This method of estimation has been successfully applied in the area of market-

ing by Bridges, Ensor and Thompson (1992). They model the number of "types" of

personal computers in the, marketplace at time t, A personal computer is considered
a new type if something about the technology changed, for example the 486 chip

replacing the 386 chip. The proposed stochastic model was not solvable in closed

form. Using SIMEST they were able to use the proposed stochastic model rather

than resulting to the simplifying assumption of a deterministic model plus random

noise. Another example in marketing is presented by Bridges, Ensor and Raman

(1904). They model the number of customers for a particular home inspection firm

in the Los Angeles area as a birth and death process with constant death rate and

a birth rate which is a function of advertising expenditures.



The proximity measure minimized ,determines the type of estimators found via
SIMEST. In this paper, simulation based estimators comparable to conditional least
squares estimators for stochastic processes will be examined.

Let (N(t), t Q O} denote the stochastic process of interest which is observed at
n different time points, ie. N(t1),..., N(trt). For simplicity in notation, we refer to
the observed process at time points l,... I t as Y1/,,,., Y,,. If one can simulate the
E[Yj] or E(Y[ Ij_l] for i = 1,,,,, n in theory a SIMEST estimator can be obtained,
As an example of the use of SIMEST in this setting consider a general birth and
death process.

1.1. Simulation of Birth and Death Processes

Consider the Markov counting process N(t) with parameters A. and #., which
satisfies the following axioms:

i) P(N(t + 61) = n + 1IN(t) = n) = Ah6t + o(8t)
ii) P(N(t + 6t) = n - 1IN(t) = n) = ;,,t + o(61)

iii) The probability of more than one event in (t, t + 6t] = o(6k),

From the above axioms it is simple to derive the distribution of the time of
the next arrival, Fn(t) and the distribution of the time of the next exit from the

system, FD(t) so that

FB(t) = 1- P{O births in (t,t + 6t)} = 1 -s-An'

and
FD(t) 1 - P{O deaths in (t,t + 6t]} = 1 -

Using the inverse c.d,f, transformation we obtain obtain the time until the next
birth, tn, or death, tD, in our process from

- log(Ui) or t - log(U 2 )

where Ul and U2 represent independent random variables from the uniform distri-
bution defined over the unit interval. It is then a simple matter to simulate the
conditional mean of Y1 given the observed value of Y.-. as the following algorithm
illustrates. Let Xi,,(O) denote the j 14 simulated value of the process at time t given
the observed value at ti-, or Yi-I as the starting point of the simulation. The pro-
cess is simulated assuming parameter 6. Also, let ,,() = (1/m) " Xj().
In other words, d,,,,(9) is the simulated conditional mean based on rn realizations
of the process at time tj given the value of the proccss at time t-..,

S.. . . . . . . .. . . . . . .1 6



Siiraple AlYoTithm zo Simulate Xi,,(6)
1. Set k =-Y- i -.

2. Simulate U1 and U2 from U(0,1) distribution.
3. Compute tD and tB.
4. Set t = t + min(ta, tD).

5. If tD <tB then k=k-l else k=k+1.
6. If t < t .- tq-l go to 2 otherwise X.,j(8) = k.
7. Repeat 1-6 m times. Average

Xjj,0(),..., Xj,m(6) to obtain X,,(6).

8. Move to time i + 1, go to 1.

An important consideration is that the computation of tD and tB depends on

the parameter values 0.

2. SIMULATED CONDITIONAL LEAST SQUARES

ESTIMATES OF 0

An often used alternative estimator to the maximum likelihood estimators for

stochastic processes is the conditional least squares estimators discussed by Klimko

& Nelson (1078) (see also Hall & Heyde (1980)). The conditional least squares
estimator, &, is the value of 0 minimizing the conditional least squares equation

QO,,,,(6) =-
It'

i,=1

over the parameter space e, where ps,(9) = E&[[•( Y,..., Yj-]
To obtain the simulated conditional least squares estimator, 9h,, the simulated

conditional mean replaces the conditional mean in the above equation. In other

words, the SIMEST estimator based on the conditional least squares equation is
the value ý which minimizes S,,,,(9) over the parameter space 0 where

s,,,,,(9) = Z(v' - X,,,•

and S,,m(6) is defined in the previotts section.

Since .Z',,,(0) is the average of -m i.i.d. random variables with expectaion Pi(9)
as m, the number of simulations, approaches infinity Xi,,,,(O) .1-84 pi(O). Hence, the

simulated conditional least squares estimator maintains the same properties as the
conditional least squares estimator for large m.
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2.1 Properties of the Simulated Conditional Least Squares Estimator

Under certain regularity conditions, Klimko and Nelson (1978) show that
exists, is a strongly consistent estimator of 0, and is asymptotically normally dis-
tributed. Specifically,

n 1/2(j_ 0) J MVNk(O, V-'WV-')

where
Vk Xk =f lira- ig

V .- x o u n -gg2 T

and gi is a k x 1 vector representing the derivative of the conditional mean Ai(O)
with respect to the parameter vector 0. Also,

W =i lim 1 (9)gg'T .

As the number of simulations, m, goes to infinity, 9nm has the same asymptotic
properties as 4. It can be shown that for large fixed m,

f1/2(^ 9n/( Own - 0)

is approximately distributed as a Multivariate Normal random vector of dimension
k with 0 mean and covariance matrix

v-1(r + 1 I)WV-,.

The regularity conditions of Klimko and Nelson (1978) must be met for the
above resultr on the simulated conditional least squares estimator to hold. It is
important to note, however, that in the SIMEST situation often the regularity con-
ditions can only be checked empirically through simulation since transition proba-
bilities are never explicitly stated. For birth and death processes with a limit on the
population size, the regularity conditions are met if the birth rate is greater than
the death rate. If the regularity conditions are not met then multiple realizations of
the process must be observed before one cai± estimate the parameters. If multiple
realizations tre observed, SIMEST estimators can still be obtained.

18



2.2 Weighted Simulated Conditional Least Squares Estimates

At each stage of our optimization we can easily compute a consistent estimator
of ai2(9) by computing the sample variance of Xi, 1(9),... ,Xi,m(8). Therefore, it is
a simple matter to find the weighted simulated conditional least squares estimator
by minimizing

n

s. ,(0) = (Y - .i
iml

where = & (X',,,() g- X•,m(6))2. For large fixed m, the result-
ing estimator O,0 is approximately normally distributed with mean vector 0 and
covariance matrix

(1- M2V-1.

In practice V is obtained by estimating the gradients via central differences
using a large number of simulations, then computing

ttm
n"

However, using the method of Glynn (1000) in conjunction with a large number
of simulations leads to efficient estimation of the gradients, thereby yielding the
optimal variance estimate.

3. DOES THIS METHOD WORK IN PRACTICE?

A Modest Simulation Study and an Example

Extensive simulation studies were conducted by Ensor, Bridges and Lawera
(1003). Their simulation studies focused on simulated least square estimates instead
of conditional least square estimates but clearly indicated the utility of the STMEST
procedure. To investigate the usefldness of the simulated conditional least squares
estimation procedure, this method of estimation was repeated numerous times and
summary statistics of the replicated estimates obtained, The model used consisted
of a linear death rate p,, = - n (withj i=- .1) and birth rate A,, = (1000 - n)nA (with
A = .1). The Nelder-Meade (1065) optimization routine was used. One thousand
replicates of the simulated weighted conditional least squares estimation described
in Section 2.2 with m = 500, resulted in a mean of .0978 with standard deviation
.006261 for the parameter \ = .1 and a mean of .1047 with a standard deviation of
.03604 for the parameter p4 = .1. The average of S ,,,(9) for the 1,000 replications
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was 12.81 with a standard deviation of 4.09. Comparable results were obtained for
the simulated conditional least squares estimate based on m = 500 and m = 2500.

For this particular model, the conditional variance at each time point is relatively
constant hence the weighted conditional least squares estimate does not provide
significant improvement. Often this will not be the case.

In addition to repeated replications of the various estimators, we examined the
asymptotic properties for one realization. Estimating the gradient for the covari-
ance matrix via central differences based on 10,000 simulated values we obtained a
standard error of .0103 for the parameter estimate of A which for this realization
was 09068 and a standard error of .0517 for the parameter estimate of P which
was .0893 for this realization. The correlation between the two estimates was -.14.

Again, we note that better estimates of the covariance matrix can be obtained using
the method of Glynn (1900).

As mentioned in the introduction, Bridges, Ensor and Raman (1994) model
the number of customers for a particular home inspection firm in the Los Ange-
lea area as a birth and death process. The data consists of annual observations
of the number of customers and information on both direct and indirect adv(,r-
tising costs for the first 13 years of the company's existence, Direct advertising

consists of such costs as yellow pages, brochures, etc. Indirect advertising primar-
ily consists of the cost of networking with the real estate agents in the area. The

marketing model proposed was a birth and death model with constant death rate
j•n = n and birth rate which depended on both types of advertising, namely
An (N - n)(Aj(VN7) + A2(v,/7)), where a0 L and ai represent the direct and in-
direct, respectively, advertising expenditures at the current time. The advertising
expenditures are linearly interpolated between years to yield a continuous function
of time. The maximum number of potential customers N is assumed to be 50,000.

Using the simulated weighted conditional least squares estimator described in Sec-
tion 2.2 we obtain estimates of .0000 (standard error=.0000) for Al, 1934 (standard
error=.003375) for A2 , and 11.83 (standard error--.2205) for p. For this example,
the correlation between the estimate of the indirect advertising coefficient and the
exit coefficient is very high, namely .086. Again the standard errors and correlation
are found from the asymptotic covariance matrix. As hypothesized by the mar-

keting researchers, direct advertising (coefficient A I) does not affect the number of
customers the company obtains.
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4. SUMMARY

We have presented an alternative method of estimating the parameters of a
stochastic process when a closed form representation of the conditional expected
value of the process is not available. This method of estimation is comparable to
conditional least squares estimators of the parameters. Klimko and Nelson (1978)
compare the performance of conditional least squares estimators and maximum
likelihood estimators in similar scenarios.

The simulated conditional least squares estimator is preferred over the pre-
viously proposed simulated least squares estimator (Ensor, Bridges and Lawera
(1993)). To obtain the simulated least squares estimator one must simulate multi-
ple realizations from an initial starting point, This method of simulation can lead
to high variability in the sample mean path, thereby leading to instability in the
least squares criterion function which is minimized. However, the simulated con-
ditional mean is very stable for a moderate number of simulations resulting in a
criterion function with very little noise at a given point in the parameter space.
The gain' in stability is due to the fact that the estimate of the conditic tal mean
at a particular time is independent of the estimate of the conditional mean at any
other time; whereas, the estimate of the mean at a particular time is dependent on
the previous history of the process. This independence also facilitates the proofs of
the asymptotic properties of the simulated conditional least squares estimators.
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A New Series of Supersaturated Designs

Supersaturated designs are factorial designs in which the number of
factors exceeds the number of observations. Such designs preclude the
possibility of complete orthogonality, making near orthogonality the
obvious goal. In the present paper, designs are constructed using a
new and general method. These designs surpass previous designs in
all cues but one, Design matrices are presented In the appendix.

1 Introduction

There are many settings in which, it is desirable to examine the effects of a
large number of factors simultaneously, Plackett and Burman (1946) devised
optimal designs for studying f - n - 1 factors with n observations. These
designs are completely pairwise orthogonal. A natural extension of their
work involves studying a number of factors, f, greater than the number of
observations, n, Such designs may be useful when it is necessary to examine
the influence of many factors, and observations are expensive to collect or
are otherwise limited. When f < n complete orthogonality is achievable, but
when f > n the goal is to obtain a design matrix where the columns are as
nearly orthogonal as possible.

One early approach to this problem was the method of group screening
proposed by Watson (1961). The method Involves combining f factors into
g groups. Each group is then tested as a single factor in a standard design.
If the effect of a grouped factor is significant its component factors are then
tested individually.

Another approach to this problem is the method of supersaturated de-
signs. A supersaturated design is a single design matrix for which f is greater
than n. The first approach to supersaturated designs was that of Satterth-
waits (1959), who suggested randomly selecting the design vectors. Later,
Booth and Cox (1962) devised optimality criteria and a method for generat-
ing supersaturated designs. One of their criteria, near orthogonality, involves
minimizing the maximum absolute value of the dot product of all pairs of
vectors. Of the designs that achieve this criterion, one then selects the design
that minimizes the number of pairs of vectors with this dot product. Booth
and Cox show that a dot product of four is a lower bound for all designs with
f > n. Note that near orthogonality is a minimax procedure and produces
designs such that no pair of vectors is highly correlated. Booth and Cox
proposed a second criterion, denoted E(. 29, which is the mean of the squared
pairwise dot products. E(,92] results in designs with a few highly correlated
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vectors, but most are pairwise orthogonal. For designs in which no pairwise
dot products are larger than 4, near orthogonality and E(s21 are equivalent
criteria in that they yield the same design.

Booth and Cox's method begins with a Plackett and Burman (1946) or.
thogonal design, to which they add f -n+ 1 randomly generated trial vectors,
resulting in an n x f initial design matrix, Next, they determine the pair of
vectors with the greatest dot product, and attempt to replace each of the two
vectors with a new randomly generated vector. A vector is replaced if the re.
suiting design matrix is superior in terms of the near orthogonality criterion.
Booth and Cox continued this process until 30 minutes of clock time on the
University of London Mercury computer passed without an improvement to
the design matrix, Booth and Cox used n - 12, 18, 24 and f as large as 2n.

Rosenberger and Smith (1984) focused on very small designs (f - 4, 5,,.., 9
and n < J). For these designs, they were able select the best design accord-
ing to the near orthogonality criterion by means of an exhaustive search. For
larger designs this approach is computationally untenable, For example, the
number of possible designs when f = 24 and n = 12 is on the order of 1047.

Lin's designs (1993) involve selecting a half fraction of a Placket and Bur.
man design matrix of size 2n, The resulting matrices have n1 observations and
f- 2n - 2 factors, He examined all such half fraction designs resulting from
a given Plackett and Burman design and reported the best design according
to the near orthogonality criterion. To obtain designs with / < 2n - 2, Lin
selected a subset of the columns from his / u 2n - 2 design. Lin used a
variety of n's between 8 and 30.

In the present paper we seek a general method that improves upon ex-
isting supersaturated designs with n = 4k, such that k is a positive integer.
This is the class of designs for which pairwise orthogonality is possible and
for which corresponding Plackett and Burman designs exist,

2 Method
We begin our method by creating a matrix of / randomly generated design
vectors, The next stage involves a series of passes designed to improve the
initial matrix, Each pass examines each of the / vectors in sequential order,
When a vector is examined it is compared to a set of alternative vectors with
respect to the resulting near orthogonality criterion for the entire matrix. If
a superior alternative vector exists, the original vector is replaced by the best
of the alternatives. The series of passes continues until a pass occurs that
fails to improve any of the f vectors. For n = 8, 12, 16, and 20 the set of
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alternative vectors is composed of all possible design vectors. For n > 24,
this is not computationally practical. The set of alternative vectors consists
o.• a randomly sampled subset of all possible design vectors, Note that this
method is sufficiently general to be used with supersaturated designs of any
dimension and with any optimality criterion based on pairwise dot products,
such as E(Oj.

3 Results

Wegenerated designs for n - 8, 12, 16, 20, and 24, and corresponding sets
of f : n .< f 2n, A summary of the designs obtained appears in tables 1-5.
The actual design matrices are given in the appendix. Note that "EEM"
refers to Ehm, Elliott, and McGee and denotes our method. The column
heading "0" refers to the number of pairwise dot products equal to 0, the
column heading "4" refers to the number of pairwise dot products equal in
absolute value to 4, and so forth.

1411631281

Table 1: Designs with n = 8

Table 1 refers to designs with n = 8. In this case, Booth and Cox do not
present a design and Lin's method cannot be used,

In= IEM -n=12Lin n=12B&Cf 01 4 o0 4 O0 4
16 81 39 73 47 67 53
18 94 59 90 63 - -
20 109 81 - - 75 116
22 128 103 132 99 - -
24 141 135 - 101 175

Table 2: Designs with n = 12

Table 2 refers to designs with n = 12. Here, all three methods have been
applied. In Figure 1, we plot the proportion of pairwise orthogonal vectors in
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Proportion of Pairwise Orthogonal Vectors

M

i20 22 24
Number of Factors

Figure 1: Proportions of Pairwise Orthogonal Vectors for the EEM, Lin, and
Booth and Cox Methods

order to compare the designs graphically. Clearly, both our method and Lin's
are superior to Booth and Cox's method. Our method surpasses Lin's in all
cues except when f = 2n - 2, the case for which his method is designed.

Tables 3 and 4 refer to designs where n - 16 and n - 20, respectively, In
these cases, Booth and Cox do not present a design and Lin's method cannot
be used.

Table 5 refers to designs with n - 24. Here, all three methods have been
applied. With f - 30, our design clearly surpasses Booth and Cox's design
according to the near orthogonality criterion. Also, with f = 46 our design is
superior to Lin's in terms of near orthogonality. This case, where / = 2n - 2,
is the case for which his was specifically designed. For designs in which some
pairwise dot products are larger than 4, E[s2] and near orthogonality are no
longer equivalent criteria. As discussed earlier, these criteria produce designs
with different characteristics. In light of this, one could apply our method
using E[ea] as the criterion if one preferred designs having a higher proportion
of pairwise orthogonal vectors, but also having some pairw;se dot products
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equal in absolute value to ,8,
As seen in Figure 2, the proportion of pairwise orthogonal vectors at-

tainable decreases steadily as the number of factors in the design increases.
We suspect this reflects the inherent geometry of the problem. Note in fig-
ure 1, the proportion of pairwise orthogonal vectors in Lin's designs does
not decrease substantially as f increases, This suggests that Lin's method of
selecting subsets of designs where f = 2n - 2 to obtain designs with smaller
f is inadequate. Another observable trend is that, for a given number of
factors, one obtains a slightly better design with larger n, The magnitude of
the effect of f is larger than that of .,

Proportion of Pairwise Orthogonal Vectors (EEM)

\\N"o12

is 20 25 30
Number of Faotors

Figure 2: Decreue in the proportion of attainable pairwise orthogonal vectors
as the number of factors increases

4 Discussion and Conclusions

We will consider our method in comparison to competing methods. First
we will compare our approach to that of Booth and Cox. Both methods are
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large scale search procedures, but ours has a natural stopping criterion where
as theirs is arbitrary. Because both are general algorithms they can be used
for a wide variety of n and f. For comparable designs, our method produces
uniformly superior results.

We suspect the following observations may explain why we obtain better
results than Booth and Cox, We found that starting with an orthogonal
matrix made it difficult to add vectors with small dot products, while starting
with randomly generated design vectors produced superior results. We also
achieved better results when sequentially considering each of the f vectors
for replacement rather than replacing the vectors at random.

We now compare our method to that of Lin. Although computationally
simple, Lin's method is highly specialized and can only be applied to a limited
number of values of n. For given n it only produces designs for f : 2n - 2.
Furthermore, Lin's method for deriving designs for / < 2n - 2 gives poor
results, This is consistent with our own findings. The ideal set of design
vectors changes so dramatically from one level of / to another that even
the beat subsets of larger matrices do not yield good designs. This further
suggests that methods specialized for particular values of n and f are unlikely
to produce good designs for other combinations of n and f. Our method
generates design matrices that exceed Lin's in all cases, but one.

Our designs for n = 16 and / = 32 is the largest supersaturated design
published for which all dot products are less than or equal in absolute value
to the theoretical minimum of 4.

5 Future Work

This research was inspired by a problem posed by the late Dr. Carl Bates.
He needed to estimate the effects of 104 factors using 52 observations, The
104 factors were parameters in a model and the observations were the 52
Sun workstations to which he had access. In order to solve this problem
we hope to thoroughly investigate designs where n Ž_ 20 with respect to the
near orthogonality criterion. We also hope to produce designs in which the
maximum pairwise dot product is 4 for n Ž 20. Finally we will investigate
the class of designs generated by our method when the optimality criterion
is
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n =16 EEM

24 144 132
26 153 172
28 166 212
30 175 260
32 185 311

Table 3: Designs with n = 16

[ 20 EEf 11 O l 4 I8
28 171 207 0
30 170 265 0
32 174 322 0
34 173 385 3
36 176 449 5
38 204 488 11
40 222 542 16

Table 4: Designs with n = 20

n =24 EEM n =24 Lin n =24 B &C0 4 18 0' 4 8' 0 41 8

30 178 257 0 295
32 183 311' 2
34 202 351 8
36 202 416 12
38 223 460 20
40 243 507 30
42 261 560 40
44 273 623 50 - - -

46 309 662 64 414 552 69 - - -

48 337 711 80 1 -..

Table 5: Designs with n = 24
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6 Appendix

The design matrices generated by our method are given below, In each
matrix, the rows correspond to the observations and the columns to the
factors.

S. + + - + - . + + +

÷ - -+.. ++ -. +

+ +. .+ ++.+. .+÷

+. . . . . + + + .

n=8 1=12

- +- * .+* * - +- + -+

- + - .+- . . . .++ - .+-
+ * +++-++....+ -+

+- ++ + + - +++-+++

+ ++- - + -++- -++

n=8 f=14

+ - ++. . -+- .- + . .*

+-+ - -+ ++ + ++-+ +

n=8 f=16
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AN EMPZR.CAL BTUDY OF THE DISTRIBUTION AND PROPERTIES OF

T!H ILOPI ESTIMATOR USING MINIMUM NORMED DISTANCE CRITERION

Barbara A. Wainwright

statement of the Problem

How should one estimate a linear relation between two
variables? It is common to use a regression model and
automatically apply the ordinary least squares method of estimating
parameters. This is sometimes the wrong model and method and thus
one should consider other types because of the variables and the
assumptions in question. This leads in turn to consider various
techniques of estimation. The topic of this paper is the
estimation of linear structural relations when there is measurement
error in both the dependent and independent variables. These
problems are often referred to as Model 1I regression problems

:Graybill, 1961] or measurement error models [Fuller, 1987]. There
are several techniques for estimating the model parameters.
However, the technique that will be investigated is the one that
minimizes the perpendicular distance between the observed points
and the estimated line. While theme estimates have been derived,
there is very little known about the exact distribution of the
slope estimator and some of its properties other than consistency,
some asymptotic properties [Fuller, 1987], and some approximate
tests and confidence limits (Creamy, 19561 Kendall and Stuart,
1973). This paper will investigate the following properties of the
slope estimator:

1. the shape of the density of this estimator for smalJ samples,

2. the expected value,

3. the bias, and

4. the probability of Type I errors for both small and large
samples.

The Minimum Norm Distance Method of Estimation for The Classical
Errors in Variables Case

There aro many techniques for estimating the structural
relation parameters but if one assumes normality and uses maximum
likelihood estimation techniques, then unidentifiability is an
issue. There are ways to alleviate this problem when either ce,,2
the measurement error variance associated with the y values, ac,
the measurement error variance associated with the x values, or t'e
ratio of the two error variances (1) is known (Kendall and Stuart,
1973; Lindley, 1953]. We will examine the one in which we know the
ratio of the variances of the measurement errors, lambda. This
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case is referred to by Fuller [1987] as the classical errors in
variables case. The resulting maximum likelihood estimator
f9gy minimizes the weighted sum of the squared statistical
distances between the observed points and the estimated line. For
the case in which I - 1, it would minimize the perpendicular
distances. This is often referred to as the "minimum norm
distance." The problem of minimizing the norm distance was
discussed as early as 1877 by Adcock, 1879 by Kummel, and 1901 by
Karl Pearson. However, this approach is regularly attributed
(especially in clinical chemistry) to W. Edwards Deming, who
reintroduced it in 1943 [Cornbleet and Gochman, 19791 Goldschmidt
et al., 1981; Lloyd, 1978; Mandel, 1964; Northam, 1981; Schall et
al., 1980; Smith et al., 19801 Vormbrock and Helger; Wakkers
et.al., 1975; Weisbrot, 19851 Westgard and Hunt, 1973; Zucker,
1947]. According to Mandel [1964], Deming minimized the weighted
sum of squares

S - (X -xI) + (yI - YI)

tuch that

£ A AA

,- a + px.

The resulting slope estimator may be expressed as

U,) X Y, A ( 1 )
2 SX,, 2saxy

where

n
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ex (XI-~ (Y -ýY)

Other resulting estimators are

A A

and

@2 (y-) 2
-A T'( 1a x~2I

If lambda is not known, then assuming it is one is possibly
better than ignoring it all together. However, Vormbrock and
Helger suggest the use of duplicates for estimating lambda in
method comparison studies analyzed with Deming's procedure. For
this approach the following sums of squares are calculated

Qx"•(x 2n ÷ -x2n:

(X11 + X12)) 2
( 2~ + X2 ) - 2n

7y5, 
+ yd)2

OY (y~lj +y2,2) - 2.n
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2n

kiVA (xjj - R

(Yii YUg) 2

from which the following are computed

A

A A

2AQW

ay.x ] - 2PQ'. ,

(1 + ,P2) (2n - 2)

According to Feldman et al.[1981] no one knows the exact
sampling distribution of $. It is important to test H": P - 1,
particularly in method comparison studies. If this is taken an a
constraint on principal components and standard principal
components, it is equivalent to saying oz -M2. when X and Y are
dependent. Morgan (1939] transforms these measurements and then
opts for a t-test. Using a similar t-test with a slightly
different transformation, one can test P-P. for any value of Po"
confidence intervals can also be constructed. However, Morgan's
test does not apply if the above constraint can not be imposed.
Kendall and Stuart (1973] as well as Creamy [1956] give
confidence limits an4 tests of hypotheses for the case X - 1
using the fact that i"- tan $, and the fact that the sample
correlation coefficient, r, has a "Student's - t" distribution
with (n-2) degrees of freedom when y is normally distributed and
the correlation coefficient, p, is zero.
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Fro• the literature, it does not appear that the expected value
of 0 is known; especially since the sampling distribution is not
known. Fuller [1987], i1 his exposition of the asymptotic
propertiez, claims that P-• - 0 (n*'). He also gives the variances
of the limiting distribution. These are

A A A A

A 02  8 042 - 1 2  a (3)
V('%)

(n-1) oY4

where

A *

+ P2)C04d2

s - (n-2)

A Min TMX) +mx - -1 + 4
042 2j

and

A (m--••÷ -
02a += X2-(y .'

2.

Sampling Distribution of *
Although the exact sampling distribution of 0 is complex and

there does not seem to be a general closed form solution, by
examining various expressions of 0, and by using various
transformations of variables an Mellin transforms, we can obtain
expressions for the density of for some special cases. For small
samples under some of these situations, we can show that the
density is far from being a t distribution.
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Special Cases n - 2

To investigate the density of the slope estimator, let us
consider the simplest case in which n - 2. When n - 2, the line is
uniquely determined regardless of the intended method of
estimation. The density of the estimator will, however, depend upon
the conditions imposed and the assumptions made. First, we will
assume that the relation between X and Y is given by

S= fix. (4)

That is, we will assume that the intercept, a, is zero.

case Is Z1 measured Without Error

For the first case we will assume that the relation above
holds and that the X are fixed or predetermined values of the
random variable x,. These values are measured without error. This
is therefore an example of a regression situation. We observe

where

e - N(O, a*2)

and thus

y, -X(p X,' 0.2)

The slope of the line in this case is given by

S y 2 -y, Z!

x2 -x1 X"
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In this case

nY' y y- N(13X2 - PXj, 2 *2)

and

x' X2 x2 - x

is constant. Thus

S- N( ,,13- 1 l

Note that in the usual case of least squares,

VarrIp " _____ ' _n(XI -•1

which is the same.

Came 21 Xi a Normally Distributed Random Variable

Let us now assume that the relation defined is a structural
one between unobservable random variables. That is X1 is an
unobservable random variable. Assume the following:

X, - N(p ,&02 )

where we observe

xj - X, + di d- - N(0, ad2 )
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X, + 0

"where

e•-N(0,a* 2 ).

Thus the following distributional theory exists.

x•- N(g•,a 2 * od)

YJ1WN( 1A 0202 + a 2)

For the case in which n - 2,

where

y' - N(O,2(302 2 + 002))

X' - R(O,2(0 2 + ad))

In this case is a ratio of normal random variables, 'aoh having
mean zero. One could attempt to obtain the density of 0 by changing
variables and by using the moment generating function. However,
Maple and Derive could not evaluate these integrals. Through Mellin
transforms, Springer (1979] derives the density for the ratio of
two dependent standard normals (p. 156) and Craig [1942] derives
the density for the ratio of two dependent normal random variables
each with mean zero and any finite variance. Taking the bivariate
normal density of (x*, y*), making a change of variables, and using
the Mellin transform for two dependent random variables [CCaig,
1942; Springer, 1979], it is determined that the density of F for
this case is given by
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7C (01y. - 2pox.aY.IO 4 ax.p2)

...4 (p+ 3 ÷ 020 ) (+ 2) p)

% (p202 ,-.1 - 2py(a' 4,') (P'oR + F.'1 p + (02 + p2

It is also worth noting that if x and y obey a normal bivariate

probability density function, the mean value of y/x does not exist.

Came 3S Xi an Unobservable Mathimaioal Variable

If X1 is a mithematical variable, then the relation Y¥PX is
a functional relation. If we observe

x, X*+d d , - X N(0, ad2)

then

* ,

where

-1 N(O,a*
2 )

and

-- N(p X,, 002)

The slope estimator is computed in the usual manner, but in this
case

y' y- --y1 - N(P X2  XI- , 2 a2)
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S..2 x, -x N (X2 - X, , 2 ol d 2)

Among the various substitutions or change of variables that
Craig [1942] uses is that

a.y
X*

V Z It--l
Oy.

For the case of a ratio of two dependent normal random variables
with nonzero means, Craig [1942] provides an expression for the
density of w as follows:

exp[jyJ-~ (XI - 2r, r 2 + X22)]

-N

where

a 1 -- 2pw2 > 0, P2 < 1

(1 - p2)

b - p: + (z - PzL) W
(1 - pI)

According to Craig,"this can be calculated from existing tables for
particular values of w and of the parameters." No closed form
solution seems to exist particularly for z.

All of this theory above still applies for the case in which
Y - a + PX. The means in each case will be identical since a will
merely subtract out. Therefore the distributions derived for each
of the three cases will be the same regardless of the value of a.
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General Caset Arbitzary u

Various transformationj of variables were made in an attempt
to derive the density of -. Without loss of generality we can
assume that the means are zero and thus we can use the sums of
squares and crosaproduots rather than the sums of squared
deviations from the mean. It is still the case that when I - 1,

A

- w÷+wX -+1 (5)

where

W a - b
2c

but now

a " 1 2

C Xi Yi

We hoped to obtain the density of w through an appropriate
transformation or through Mellin transforms. Once we had the
density of w, then another change of variable based on Equation 5
could possibly yield the density of $. It did not.
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A
Expeoted Value of p and Analysis of the Bias

Through Taylor series expansions an approximate expression is
obtained for the asymptotic expected value of 0. For large n,
under the assumption that A - 1, we may conclude that

X 1 + 1 O02 d + -I + !,P' -a d) +

Recall that A-i implies a• 2 02 and the above expression reduces
to P which is expected of a consistent estimator. However, it can
be shown that use of an incorrect value of A can introduce an
additional bias that does not approach zero in the limit as n goes
to infinity. Note that when A * 1, a similar expression results
and the same situation exists.

simulation Results

Large samples

Computer simulations are performed using SPlus. Cases are
considered for which X is a fixed vector with measurement error and
for X a random variable. For each of these cases various values of
the parameters and various sample sizes are considered. These
simulations see% to support the theories. For large samples the
distribution of p appears normal in most cases. However the use of
an incorrect value of A does introduce bias as Figures 1 through 4
indicate. Note that underestimating X results in underestimation
of P on the average and vice versa.

Table 1 provides the mean, variance, upper and lower tail
probability of rejection of H : P-i for various cases. It should
be noted that for n-100 anc P-1 most simulations result in a
density of Y that is very close to a normal density. However, in
method comparison and bioequivalence studies, we often assume that
A-1 if the error variances are unknown. Doing so can shift the
density to the left or right. The shift or biasing effect can
greatly increase the chance of making a Type I error in testing H.:
P-i. It should be noted that many other simulations were performed
with similar results.

Smaller sample simulations

In smaller samples asymptotics do not always hold and in fact,
extreme values of the statistic often result. Since samples of
sizes 24, 36, and 48 are commonly used for bioequivalence studies
[Snikeris, 1992], these are considered along with still other
sample sizes, only some of which will be addressed here.

Very skewed densities often result, while in other cases the
densities are fairly symmetric. Table 2 shows the results of
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Table 1: Simulation Results: n =100, : = 1, H.4
6 ad X A mean var lower upper total shape

_ -p • prob prob

.5 .25 1:10,10 .5 1.0007 .0010 .0190 .0260 .0450 symmetric
.5 .25 1:10,10 11 1.0157 .0010 .0057 .0750 .0807 symmetric
1 1 N(5.1) 1 1.0130 .0356 .0080 .0397 .0047 slight skew

.25 1 N(5.4) j 1.0010 .0034 .0160 .0320 .0480 symmetric

.25 1 N(5,4) .9105 .0029 .4003 .0003 .4006 symmetric
.0625 .25 N(5.4) 4 .9999 .0008 .0230 .0280 .0510 symmetric
.0625 .25 N(5.4) 1 .9764 .0008 .1383 .0037 .1420 symmetric
.28 .25 N(5,4) 1 .9995 .0013 .0230 .0270 .0500 symmetric
.25 .25 N(5,16) 1 .0996 .0003 .0250 .0230 .0480 symmetric
1 .25 1:10.10 .25 1.0008 .0016 .0230 .0270 .0500 symmetric
1 .25 1:10.10 1 1.0450 .0017 .0013 .0647 .0660 symmetric
4 .25 U:10.10 1 1.2400 .0067 .0000 .8600 .8600 symmetric
4 .25 1:10.10 .0625 .9982 .0054 .0230 .0270 .0500 symmetric
4 .25 1:10.10 16 1.4585 ,0071 ,0000 1.0000 1.0000 symmetric
4 .25 N(3.1) 10 5.2037 2.8979 .0000 .7273 .7273 skewed
4 .25 N(3.1) 1 4.2460 1.6350 .0000 ,7237 .7237 skewed

.25 4 N(3M1) 1 .2505 .0034 1.0000 .0000 1 .00 symmetric
4 4 1:10.10 1 1.0030 .0128 .0150 .0350 .0500 symmetric

.25 ,5 1:10.10 1 .9910 .0000 .0520 .0110 .0630 symmetric
2,25' ,. :..5. 2 .030402 .000 .0210 .000530 symmetric

several simulations when n - 24. Although one hopes that the error
variances are not larger than the variance of X here, a few
simulations indicate the general trend of how these variances
greatly affect the density of 0. From the table we can see that
whenever a2 is smaller than one or both of the error variances (in
the case 0 - 1 it does n t matter) very extreme estimates result
and thus the variance of f is very large (larger than it shoull be
according to Fuller). In fact the sampling distribution of A is
very skewed to the left or right, as Figures 5 and 6 show.
For smaller error variances the sample correlation tends to be
larger, and therefore we do not observe as many large values for
the estimator. Figure 7 displays a more stable density. This
difference is also evident in the probabilities of Table 2.
Simulation results for n - 36 and n i 48 appear in Tables 3 and 4
respectively. Comparing these tables, it is plain to see that for
any given situation, the mean is closer to the true value as the
sample size increases from 24 to 36 to 48. Notice that the
variances become smaller as we would expect. In many cases
densities skewed for n - 24 become less skewed for n - 36, and
still less for n - 48.
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Table 2 : Simulation Results: n - 24, Ho: , 1. H4  !
,j a X A mean var lower upper total shape

used 4 4 prob prob
".25 .25 "N (3,.25) 1 1.2360 ""11.6920 - -skew left
.25 .25 N (3..5) 1 1.0390 .0833 .0013 .0367 .0380 skew rt
.25 .25 N (3,1) 1 1.0156 .0303 .0053 .0340 .0393 symmetric
.25 .25 N(3.1) 1 1.0570 .0206 .00S .0430 .0480 symmetric
.25 .25 N (3.2) 1 1.0270 .0123 .0100 .0360 .0460 symmetric
I. 1 N (3,1) 1 .33.0430 3668933 .0003 .0000 .0003 I skew left
1 .25 N (3.1) .25 1.0142 .0774 .0117 .0303 .0420 symmetric I
"1. .25 N (3,3) I 1 1.5532 .6466 .0007 .0343 .0350 sym peak
1 .25 N (3,4) .25 1.0045 .0160 .0150 .0240 .0300 symmetric
1 .25 N (3.4) !1 1.1080 .0108 .00001 .0060 1 skew leit I

.2 1~ T W~ 08 428 .237 1---000 .2407 l W.25 1 .. N (3.1) 1. .7085 ,02 ... • 04 2s•1skew letel

.25 1 N (3.1)' 4 1.0352 1 1.1002 .0003 .0030 .0033 I skew letI
.25 1 N (3.4) 1 .0180) .0145 .0637 ,0003 0730 Isymmwtric 1
,.5 '1 N, (;.I ) 1 4 1.014 1, _ .'t , .000 1 .0381 1 .0417.. symmetric i

.25 . 4 (3.1) . 2 1.0344 .05(W 1 .0003 1 .03T0 I .0373 skew rt.
23 ....5 N (3.) 1 .0020 .0385 .036o" .0163 1.0530 .SYmmOtric

.25 .3 N (3.4) 1.2 10001 .0000 .0113 1 .0300 .0413 symmetric 1
,2 .5, N (-3,.. ' 1 .0734 1 0008 .0203 1 .0130 .0443 symmetric 1
,.5 .25 N (3..25) i 1 1'.6814 242S.0010 .0001 .0030 .0031 skew left

. .25 N (.,25) 1 .3 .1049 7.6(3T7 .0027 .0060 .0087 svm peak
.2l . 'i 1 i(3, ).1 .06,76 .0003 .0803 .0800 symmetric I

.5 .25 N (3.1), . 1.01]2 . .0408 .0083 .0310 .0303 symmetric,
-6 .25 N (3.4) = 0 001 o 0004 ,0141 .0273 .0420 symmotric

.5 .25 . (3.4) 1 .. 1.032 .0102 .0037 .0517 ..054 1 symmetric

.5 1 N (3.1) 1 .8106 I .1220 .0000 .0117 .0207 sym peak
.5 1 1.1207 2.9510 1 skew rt..a
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Table 3 Simulation Results: n 36, : 1. HA 0:0 1
0 X A mean var lower upper total shape

used / prob prob
.25 .25 N (3,25) 1 1.0690 .2047 .0010 .0200 .0300 sym peak
.25 .25 N (3.1) 1 1.0110 .0175 .0100 .0370 .0470 symmetric

S 1 N (3..) 1 10600 "2047 .0010 .0200 .0300 sym peak
1 1 N (3,.25) 1 ,4436 3318.9860 .0030 .0020 ,0050 peak
1 .25 N (3,1) .25 1.0090 .0483 .0160 .0310 .0470 symmetric
1 .25 N (3.1) 1 1.4000 .1205 0 .2000 .2000 slight skew
1 ,25 N (3.4) 1 1.1046 .0124 .0003 .1313 .1316 symmetric
1 .25 N (3,4) .25 1.0040 .0100 .0100 .0200 .0480 symmetric

.25 t N (3,1) 1 .7063 .0237 .4600 .0010 .4700 slighlt skew

.25 1 N (3,1) 4 1.0470 .0063 0 .0460 .0460 skewed
1.25 1, N (3.-1) 1 .0149 .0082 .1203 .0053 .1340 symmetric

.25 1 N (:).1) 4 L0084 .0106 .0080 ,0383 .0463 symmetric
X5 .25 N (3,.25) 11 1.8740 21.0020 .0060 .0070 .0130 sym peak

.5 .25) 1 .00970 1 1.4640 .0013 .0073 .0080 skew biet

.5 .251 N (13.,) .5 1L0027 .006() .0147 .0200 .0437 symmetric

.5 .25 IN (3.4) 1.0341 .0066 .0037 .0500 .0597 symmetric

.5 .25j N (3,1) .5 110120 .0271 .0103 .0363 .0466 symmetric
,5 .251 N (3.1) 1 "1.1550 .037T .0007 .1000 A007 symmetric

.25 .5 N (3.4) 2 1.00.18 .0005 ,0110 .033V .0443 symmetric

.25 .5 N (3.4) 1 X720 .0060 .0370 .01 3 .0513 symmetric
1 25 N.(3..25) .25 1.1001 1.0390 .0030 .0083 .0113 sym peak

.25 1 N (31.25) 1 2.6050 3979.8870 .0030 .0020 .0050 peL skew eft
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Table 4 : Simulation Results: n 48-Ha8, = :, 1
a.2 ad X A mean var lower upper total shape

used - 0 4 prob prob
.25 .25 N (3..25) 1 1.0406 .1014 .0020 .0330 .0350 skew left
.25 .25 N (3,1) 1I 1.0060 .0125 .0140 .0300 .0440 symmetric
1 I N (3,.25) 1 ! .7050 205.8400 .0047 .0027 I .0074 skew left
1 1 N (3.1) i 1.0406 .1014 .0020 .0330 1.0350 skew right
I I N (3,4) 1 j 1.0056 .0125 .0140 .0300 .0440 symmetric
1 .25 N (3,125) i 2.9860 1735.5600 .0020 .00201 .0040 skew left
1 .25 I ( 2 1.0470 .8"93 .00 17 .0 I0£217 skew left
1 .25 N (3,1) .25 1 1.0070 .0340 .0143 .0257 .0400 symmetric
1 .25 N (3.1) 1 I 1.-1800 .0875 .0000 .2000 .2000 skew right
1 ...25 N (3.4) .25 I1 .0010 .0072 .0180 .0210 .0300 symmetric
1 .25 N (3,.1) 1 1 1.1028 .0090 0 .1670 I .1670 symmetric 1

. ,25 1 1:8U 1 1.0729] .00.56 .0013 .133 .0543 symmetric
1 .25 1 18,6 .25 1.0016 .0051 .0210 .0200 ,0500 symmetric
"I5 I IN (3I.L) 1• 6,i070 .0171 .003 .0003 ,650(6 symmotric I
,3. L) 4 1.0270 .0307 .0010 '.0450 1 .0460 skew Let
,251 L N (3.4) 1 1 .0132 .00(2 1 100 ,00:30 1 .1730 s.mmotric I- . n f l - S a s .

.23 1 N (3.4) 4 I 1.0883 .00. .00.57 .0340 1 .0307 symmetric
.5 .25 I N (3.25) 1 1 1 .7510 134.8,508 ,0007 ,0047 1 .0054 skew Left
.5 .25 I N (1..25) .5 1 1.0344 .1717 .0033 1 .0367 .0400 skew right
.5 .25 . N (3.4) .5 I .0093 .0042 .0153 .02,3 .0416 symmetric
.5 .25 N (3.4) 1 1.0348 .0048 .0033 .06571 .0600 symmetric

.25 .5 N (3.4) 2 I 1.0033 .0044 .0100 .0313 J0413 symmetric
.25 .5 N (3.4) 1 .0697 .0040 .0553 .0093 1 .0646 skew right
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We can see from the simulation results that large values of
often result even when the true value of the parameter is one.
Recalling the expression for p, we can see that a low covariance
(or correlation coefficient in the case of normality) will result
in a large slope estimate. This low sample correlation often
results from introducing large error variances. Another objective
becomes developing a rule based on checking the sample correlation,
and determining what to do with these extremes. An empirical rule
was developed to detect and test for extremes. Once an estimate is
detected as extreme, the correlation coefficient is tested for
significance. If the correlation coefficient is not significantly
different from zero, then the low correlation is the cause for the
extreme estimate and therefore it is an unreliable estimate of P.
Now the problem becomes what to consider extreme. The objective is
to screen those large estimates that are due to low correlation.
Therefore we do not want to detect as extreme an estimate that is
large because P is large. Since we would probably not know the
actual variances in a single sample problem, a conservative
estimate of variance is needed to screen an estimate for
extremeness. It is generally the case that the measurement error
variances will be smaller than the variance of X. When testing He:
3-1, the maximum variance is attained when ao2 - - 02*,. When this Ts

the case a good approximation of the variance is 31n. After much
screening using various estimates, it seems that what works best
for letecting most of the extremes that resulted from low
correlation is ± 5,1(3/n). Thus any estimate that is more than five
standard deviations from the hypothesized value of P will be tested
for significant correlation.

In general, if it is believed that

a* n ad2 a ka2

then the estimate of variance is given by

2k + k2
n

If Pol, then the estimate of variance is

(P2 -1)k + k2

Table 5 provides various simulations when n - 8 and the
scriening rule is used. one can see that in p,-actically all cases
100!: of those detected as extreme were due to low correlation.
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Table 5 : Simulation Results: n = 8, Truncation Results Using ±.5va

0. rj X A Fraction deleted due
I used to low correlation

.25 .25 N (3,1) 1 +ý=1.0000
1 1 N (3). 7- ,=.OOOO
1 ,25 N (3.J.) .25 H=1.0000
1 .25 N (3, 1) 1 __ -ln=.9864____
1 .25 N (3,4) .25 1='0000

1 .25 N (3.4) 1 j= 1.0000
.:23 1 N (3,,1) 1 . . 00•=
.25 1 N (3.) 4 o 1.0000

.25 1 N (3.4) 1 =1.,0000

.25 1 N (3.4) 4 = 1.0000

.25 -, N (3.1) 1 - = 1.00O0
,25 .5 N (3.1) 2 (4= ,0000
25 .5 N (3,4) 2 4=L.0000
. .2 . S (3. 1) ,,1 =1.000o
.5 .25 X (31,1) .3 5 .0000)
5 .25 . N (301) 1 4=Lt.0000()

,.5 25 L (3 .2', ) tL, =-94)"
, .25 N (3.2) .. ,__ _ ,

Application

We have the opportunity to analyze some real data using this
estimation technique. The data come from two systems, called A and
B, being compared for equivalence in handling specimens. Each
system analyzed one hundred specimens, not once but twice
consecutively. Theref.re wo have replicates for estimating lambda.
Figure 8 gives a plot of system A measurements versus system B
measurements. It shows a w.xong linear trend. We are interested,
however, in whether the slope is significantly different from one,
suggesting that the systems are not equivalent.

Analysis of original Data

Normal plots for x and y indicate that the densities of x and
y do not differ drastically from a normal one, and since n-200, we
can assume asymptotics hold. We will analyze the two hundred pairs
assuming that the ratio of error variances is one. The analysis
results in
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-* 1.140371

A
vE ] - .00627

so

z * 1.7724.

This does not suggest that we should reject the hypothesis • - 1.
As We saw from the simulations, we will have large probabilities of
Type I errors if we assume that A - 1 when in fact it is not. Hera
we do not have to worry about a Type I error, but if
underestimation occurs because we let X - 1, we could be making a
Type II error. Therefore, lambda will be estimated using Vormbrock
and Helger's method of duplicates and we will use this estimate in
computing #. Using the duplicates to estimate the error variances,
we find that

ad2 1.840312

as - .463623

so

A

* 3.9694.

Using this estimated ratio in the computation of O yields

p 1.149295

and
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z = 1.88

These results do not differ much from •he previous ones, but when
n - 200 we would expe.it the density of to be approximately normal
and rather stable, particularly when the variance of X is large
relative to the measurement error variances. The sample variances
of x and y are 106.5541 and 138.0568, respectively. Recall that 2
= 02 + 0 and so a2 s 106.5541 - 1.84031.2 - 104.71379. This is very
large relative to the measurement error variance. As we saw from
the theory, the expected value of 0 will shift Ahen I - 1 is
incorrectly assumed. We have only one estimate, yet we still can
sea that this second estimate is slightly larger and this suggests
that when o2 < a2 d and A - 1 is used, there is underestimation on
average. Thfs may suggest in turn, that the true value of 0 is
closer to the second estimate. However, we do not have a
probabilistic statement of this fact since we are using only an
estimate of A and we are comparing only one estimate of P obtained
by each approac4. Although we have not studied the effects of W on
the density of T in this paper, it seems better to estimate lambda
than to assume it is one. Therefore, when we select only one large
sample and estimate P, we should use an estimate of A rather than
an assumption that A - 1.

If we carry out a least squares analysi3 on the entiro set of
observations, the results are as follows:

A

1 1.12217

Sb = 013555

and

z = 9.01.

The standard error of this estimate is smaller than the standard
error of the estimate obtained from the norm distance technique.
The smaller variance (.00018) for least squares results from
ignoring measurement error variability. Mandel takes the
relationship between Deming's estimator and the least squares
estimator to be
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p - LSb,, (1 + 2

This allows us to compare the variance of Deming's estimator with
the least squares estimator by

Var[l A Vaz[LSby.x( I . a

Analysis of Transformed Data

In scanning these data, it seems that the variances tend to
increase as the mQasurement values increase. This can be seen
slightly from the scatterplot. While this may not be large enough
to worry about, we can deal with it by splitting the ranked data
into two equal groups and testing for homogeneity of variance.
While Bartlett's Test suggests a significant difference between the
two variances, this test is often considered too sensitive.
Cochran's test also suggests heterogeneity of variances. In light
of this, we can try to achieve homogeneity of variance with a data
transformation. According to Bartlett [1947], if a2 - k2m where m
is the mean, then /x is a possible transformation. If this works to
correct the variance problem, the variance of the transformed data
will be .25k 2 . For x, System A, the variance is 2.38 times the
mean. The variance of the transformed data is 1.45 and .25(2.38)2
- 1.42. Along with the scatterplot in Figure 9, this suggests that
we now have homogeneity of variance for the transformed data.
Analyzing the transformed data under the assumption that I - 1 we
have the following results:

A

p - 1.1011

AA

V~pJ .0054

so that

z - 1.38.
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Using the previous estimate of ) - 4, the results are:

A

1 " . 1093

A
A

VI13P ] .0054

and hence

Z " 1.49.

Next ye can estimate lambda again for the transformed daka.
This time 7 - 3.2096. If we analyze the transformed data using -
3, the results are:

A

-* , 1.1080

A
-VIP] .0054

and

z 1. 47.

In none of these analyses do we find a significant difference
between the two systems.

If we carry out another least squares analysis on the
transformed data, the results are:

A

P a 1,0855
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A
VI] - .00016

and thus

z * 6.81.

Once again we observe that the variance of the least squares
estimator is smaller than that of the norm distance estimator. As
a result we find significance when in fact there is no significant
difference between the systems and we are led astray by the least
squares method because it does not account for measurement error.

Recommendations

If measurement errors exist, then it is best to use an
appropriate estimation technique making sure to account for these
errors in both variables. As we have seen with the application,
ignorinu measurement error may well result in inacourate
conclusions.

If this technique of estimation is to be used, then it is best
to select a large sample whenever possible. We have seen that when
n - 100 the density of t is approximately normal for practically
all typical situations, and even some less than typical. If smaller
samples are necessary, then it is best to select values of X such
that the spread of X is large relative to a2.and a2d. For samples
of size 36, 48, and larger we have seen how the density reasonably
resembles a normal one for cases when a2 was larger than a2 and ad.
However, for smaller samples there are many cases in wbich the
density is far from resembling a normal or even a t distribution
even when a2 in quite larger than a2. and a2 d For these cases we
have no reliable test statistic.

It is best to sample replicates (repeated measures) whenever
possible in order to estimate lambda. As we have seen, the often
recommended use of X - 1 adds additional bias to the estimate if X
0 1. However, using A - 1 is better than completely disregarding
the measurement error.

If one is testing a hypothesis and obtains an estimate that
seems extremely different from that specified in the hypothesis,
then one should test for a significant correlation. If the
correlation coefficient is not significantly different from zero,
then the estimate of P is an unreliable one. Hence, one should
resample if possible.
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Abstract

The goal of this study was to evaluate the design and
operational characteristics of the Small Area Camouflage
Cover (SACC), when used by ground soldiers in a tactical
environment. The SACC is designed to conceal individuals,
small size equipment and fighting positions. Fifty-nine
reserve soldiers from the 187th Infantry Brigade, Fort
Devens, MA were given the SACC to be incorporated in their
training at the Canadian Forces Training Center, New
Brunswick, Canada. They were given instructions on the use
of the SACC before the start of the maneuvers. Ten days
later, at the conclusion of the exercises, the soldiers were
presented a questionnaire/ survey of twenty-two SACC design
and operational characteristics, from which they made
individual paired comparisons to determine which of the
characteristics were most important. Each characteristic
was independently evaluated by each soldier twenty-one times
for a total of two-hundred-and thirty-one paired
comparisons. A parametric statistical analysis was
conducted upon the results of the questionnaire/survey, and
six statistically significant (a - 0.05) groups of
characteristics were determined, with the groups defining a
continuum from most to least preferred. This study joined
the expertise of an engineer, statistician, and
psychologist, and gave the investigators a unique testing
challenge of obtaining hard empirical data from a subjective
operational field test.

1.0 SECTION 1 - INTRODUCTION

The Small Area Camouflage Cover (SACC) is a
continuation of a program begun in 1986 to develop an
Individual Camouflage Cover (ICC). The original program was
sponsored by FORSCOM and resulted in prototype arctic,
woodland, and desert ICCs. The SACC development sponsored
by the Soldier Enhancement Program, extended the original
design by developing a more effective, durable, and
versatile camouflage capability including a cover for
tropical backgrounds.
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The SACC is designed to provide protection from visual,
near-infrared, and radar observation, and in the arctic
version, also provides protection from ultra-violet
detection. The SACC will conceal individual troops, or can
be attached together for use over weapon emplacements,
fighting positions, and supply caches.

In designing the SACC, certain characteristics, such as
color/texture match with background, lightweight, low shine,
and durability were used as guidelines. In addition, 18
other technical and operational design characteristics have
been determined for the SACC. In order to finalize the
current development and to put emphisis on the most
important requirements in future SACC designs, the design
characteristics needed to be ranked in their order of
importance. To determine the order of importance, a troop
test was conducted using soldiers from the 3rd Bn, 35th Inf,
187th Bde from Fort Devens, MA. The test was conducted
during exercise Nordic Shield II at the Canadian Forces
Combat Training Center near Gagetown, New Brunswick, Canada
in August 1992.

2.0 8NCTZON XU - UP3RININTAL DSIZGN

2.1 Test Target

The test target was a woodland SACC developed at Fort
Belvoir, VA. It is reversible with a two-color green
pattern on one side and a four-color brown pattern on the
reverse. The SACC is made of incised, vinyl coated nylon
scrim, weighs less than 518 grams (18 ounces), and Is small
enough 2.76 x 1.77 meters (4'6" x 7') to be fitted into the
pocket of a soldiers uniform. The SACC also has near-
infrared and radar camouflage characteristics.

2.2 Test Site

The test site was located at the Canadian Forces Combat'
Training Center, New Brunswick Canada. The area represented
a typical north temperate zone woodland environment,
consisting of large open fields of grass land and large
tracks of dense coniferous and deciduous forests.

2.3 Test Subjects

A total of 59 reserve troops from the 3rd Bn, 35th Inf,
187th Inf Bde, Fort Devens, MA participated in the study.
The troops consisted of enlisted personnel, non-commissioned
officers, and commissioned officers.
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2.4 Test Procedure

The troops were issued 25 SACCs to be used during their
tactical exercise. These SACCs were eventually used by 59
soldiers. At the conclusion of the exercise, a
questionnaire/survey Table 1, was given to the troops, in
which they made individual comparisons between 22 technical
and operational design characteristics. The procedure
involved comparing each characteristic to all the others, a
pair at a time, The task was to decide which of each pair
of characteristics was the most important. Each soldier
made a total of 231 paired comparisons, with each
characteristic being evaluated 21 times. The comparison was
made as follows: If the evaluator preferred the column
characteristic over the row characteristic, in Table 1, a
one was placed in the box. If the row characteristic was
preferred over the column characteristic, a zero was placed
in the box. The ones for the row of each characteristic
were added along with to the number of zeros for the
corresponding column to produce a total acceptance score.
The larger the acceptance score the more important the
evaluator felt about the characteristic. The soldier was
instructed not to skip any comparisons.

3.0 83CTZON ZZZ - RNSULTS

The soldiers answering the questionnaire/survey
produced sufficient data to enable a ranking of the subject
design and operational SACC characteristics, from most
desired to least desired. Table 2 shows the descriptive
data with the sample size, mean, standard deviation,
standard error, and the 95 percent confidence interval for
each characteristic. Tt'ble 3 contains the analysis of
variance 1/ 1/, while Table 4 shows the Scheffe's Multiple
Range Procedure which separates the operational
characteristic into statistically different groups. The
higher the mean, the greater the preference the evaluator
had for the characteristic. In all cases, a code letter is
used for the characteristic (see Table 1).
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TABLE 1

SACC DISIGH AND OPERATIONAL CHARACTZRISTICS

CODs

ABCDEPFHIJKLMNOP RSTUV

A.-Woodland, arctic, tropic and desert
SACCe should be reversible (i,e., A
another seasonal or background color on II
"back) L1.

1B -Must not make noise when being handled L
C

C -!Shelf life of 10 years ..... !

D
D -SACC should be no bigger than 4 1/2 by 7

feet

8 -Must be non-flammable .p

F -Weight does not hinder transport

a -Does not interfere with viaiion

H -Must not shine or glare H*-

I
I -Must be easily carried

J -Must be able to be joined with other J
SACC units to place over larger objects
such as HMMWV or gun position

K

K -Must be fungus resistant L
L -Does not interfere with hand mcvement

M -Offers protection against visual M
detection (matcheN background color,
texture, breaks up outline of hull and
tracks) N

N -Must not snag
0

0 -Offers prctection against radar
detection

P -Must not greatly increase the body P

temperature of a soldier under the SACC

Q -Offers protection against thermal
detection

R -Field life (durability, color fading, R
etc.) of 60 days s

S -Must not present. a health hazard
T

T .. Must be easy to use

U -Offers protection against near-infrared U
detection

V
V -Must be easily carried by Ml Tank or

Bradley
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TABLE 2
MEAN PREFERENCE DESCRIPTIVE DATA FOR

THE SACC DESIGN AND OPERATIONAL CHARACTERISTICS

95% CONFIDENCE
CHARAC- SAMPLE STANDARD STANDARD INTERVAL
2TZEXZI AM1 MW D.YZZ21 ER]1ROR LOWER LIMIT UPPER LIMIT

A 1239 .5876 .4925 .0140 .5601 .6150
B 1239 .4931 .5002 .0142 .4653 .5210
C 1239 .5278 .4994 .0142 .5000 .5557
D 1239 .6392 .4804 .0136 .6124 .6660
E 1239 .4560 .4983 .0142 .4282 .4838
F 1239 .5738 .4947 .0141 .5463 .6014
O 1239 .5157 .5000 .0142 .4879 .5436
H 1239 .5343 .4990 .0142 .5065 .5621
I 1239 .5214 .4997 .0142 .4935 .5492
J 1239 .4479 .4975 .0141 .4202 .4757
K 123D .4318 .4955 .0141 .4042 .4594
L 1239 .4019 .4905 .0139 .3746 .4293
M 1239 .6336 .4820 .0137 .6067 .6604
N 1239 .5093 .5001 .0142 .4814 .5372
0 1239 .5609 .4965 .0141 .5333 .5886
P 1239 .4294 .4952 .0141 .4018 .4570
Q 1239 .4512 .4978 .0141 .4234 .4789
R 1239 .5198 .4998 .0142 .4919 .5476
S 1239 .4213 .4940 .0140 .3938 .4488
T 1239 .4044 .4910 .0139 .3770 .4317
U 1239 .5028 .5002 .0142 .4749 .5307
V 1239 .4366 .4962 .0141 .4090 .4643

TABLE 3
ANALYSIS OF VARIANCE FOR DESIGN

AND OPERATIONAL CHARACTERISTICS PREFERENCE

DEGREES OF SUN OF MEAN SIGNIFICANCE
85q1 rRIBRQM SQUARII SE2ARIf Z-RAZO EE
Requirement 21 127.4798 6.0705 24.7248 0.000*
Error 27,236 6687.0202 .2455
TOTALi 27,257 6814.5000

Bartlett's Teot for Homogeneous Variances

Number Degrees of Freedom = 21
F n 0.306 Significance Level a m 0.999
*Significant at x less than 0.001 level.

Table 3 indicates that there were significant
differences in the soldiers preference for the listed design
and operational SACC characteristics. The Bartlett's Test
indicated that the variance of each characteristic is
homogeneous, i.e. not significantly different, so they are
from the same population.
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The Scheffe's Multiple Range Test (Table 4)
was used to determine where these significant differences in
preferences occurred. This test separates a set of
significantly different means into subsets of homogeneous
means.

TABLR 4
SCHUFV'3'S MULTIPLI - RANGN TRST - SACC DESIGN

AND OPERATZONAL CHARACTERZSTZCS PREFERfNCE

WORST BEST

L .4019 S .4213 J .4479 B .4931 R .5198 C .5278
T .4044 P .4294 Q .4512 U .5028 1 .5214 H .5343
S .4213 K .4318 E .4560 N .5093 C .5278 0 .5609
P .4294 V .4366 B .4931 G .5157 H .5343 F .5738
K .4318 J .4479 U .5028 R .5198 0 .5609 A .5876
V .4366 Q .4512 N .5093 I .5214 F .5738 M .6336
J .4479 E .4560 G .5157 C .5278 A .5876 D .6392
Q .4512 B .4931 R .5198 H .5343 H .6336
E .4560 U .5028 I .5214 0 .5609
B .4931 N .5093 C .5278 F .5738
U .5028 G .5157 H .5343 A .5876
N .5093 R .5198 0 .5609
0 .5157 I .5214

C .5278
H .5343

4.0 BSCTZON IV - DZsCUMSBON

The questionnaire was successful in determining which
design and operational characteristics were deemed most
important and least important as judged by the ground troops
(Table 4). The most important characteristics for the SACC
were as follows:

* No larger than 4 1/2 by 7 feet
0 Offer protection against visual detection
* Woodland, arctic, tropic and desert SACCs should be

reversible
• Weight does not hinder transport
• Offers protection against radar detection
0 Must not shine or glare
0 Shelf life of 10 years

Each group of characteristics differs significantly a - 0.05
from each other. The six least important characteristics
were:

"• Does not interfere with hand movement
"* Must be easy to use
* Must not present a health hazard
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* Must not; greatly increase the body temperature of the
soldier under the SACC

* Must be fungus resistant
* Material is durable

Note that most of the characteristics overlap into adjoining
groups. However, there were few surprises among the most
preferred characteristics. As expected the SACC should be
small, lightweight and be able to blend with the background,
hence reversible. The least preferred characteristics of
not being a health hazard, easy to use, durable, and not
interfere with hand movements give an insight into the
soldiers thoughts on camouflage. That is, if it works and
is not to hard to carry the soldier, will put up with
hardships.

The following requirements fell into the middle range
of preference, i.e., groups 3 and 4:

* Must not make a noise when being handled
0 Offers protection against near-infrared detection
• Must not snag
• Does not interfere with vision
a Field life (durability, color, fading, etc.) of 60

days
• Must be easily carried
• Shelf life of 10 years
a Must not shine or glare
0 Offers protection against radar detection
• Weight does riot hinder transport
• Must be able to be joined with other SACC units to

place over larger objects
0 Offers protection against thermal detection
* Must be non-flammable

The proper identification of important and not important
characteristics precludes the possibility of incorrectly
assigning resources to a characteristic which has little
practical importance. A good example of this would possibly
be characteristics . (must not present a health hazard) and
G (does not interfere with vision).

5.0 SNCTION V - SUMMARY AND CONCLUSXONS

A total of 59 soldiers from the 3rd Bn, 35th Inf, 187th
Inf Bde, Fort Devens, MA participated in the study. During
their field training, they used the SACC to conceal
individual troops, weapon emplacements, fighting positions,
and supply caches. Upon completion of the exercises, they
were given a questionnaire/survey in which the soldiers made
individual comparisons between 22 design and operational
characteristics. Their task was to decide which of each
pair of characteristics was the most important. Each
subject made a total of 231 paired comparisons, with each
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characteristic being evaluated 21 times. A review of the
data indicated that the statistical procedures enabled the
investigators to determine the most important and least
important characteristics. Logical decisions on how to
expend resources on the development of new camouflage can
now be determined from what otherwise would be viewed as a
large pool of subjective responses out of which little
objective conclusions could be determined.
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Tree-structured Statistical Methods

Wei-Yln Loh

Department of Statistics
University of Wisconsin

Madison, WI 53706

Abstvast
Recent developments in tree-structured methods are reviewed with

emphasis on extensible and computationally eMaiont strategies.

1 Introduction
Tres-structured methods are compute-intensive statistical procedures that
yield decilon trees as rolutions for classification and regression problems.
Two early methods are the AID and THAID (Morgan and Sonquist, 19683;
Morgan and Messenger, 1973) computer programs for regression and clas-
sification. Thou methods construct binary decision tree by recursively
partitioning a data set. At each stage, all possible splits of the data In the
partition are examined to find one that maximally reduces node Impurity,
where impurity is defined in terms of entropy or mean square error, AID and
THAID were later superceded by CART (Breiman, Friedman, Qishen and
Stone, 1984), whose most important contribution was a method of "prun-
Ing" to get a tree of approximately the right ste. CART, however, adopted
the slow split-finding strategy of Its predecessors.

The FACT (Vanichietakul, 1986; Loh and Vanichestakul, 1988) method
uses standard linear statistical techniques such as linear discriminant analy-
its and analyids of variance tests to find splits. It also uses a direct stopping
rule similar to that In AID and THAID, Instead of pruning. As a result,
although FACT usually performs well In many applications, datasets can be
constructed to fool it. Further, being based on linear discriminant analysis,
FACT does not always give binary splits; It splits each nods into us many
subnodes as there are 0la4ses. On the other hand, the speed of FACT is
usually ton to several hundred times faster than CART's,



2 Main results

"Several new algorithms have been developed recently at the University of
Wisconsin that combine the pruning method of CART with the fast splitting
method of FACT. Thes algorithms share a common philosophy of sacrific.
ing local split optimality for computational speed and ease of extensibility to
Senesallied reression settings. Because of their ability to fit complex models
quickly, the statistical accuracy of these methods Is typically as good u, if
not better than, CART's. ShLh (1993) develops a Ilkellhood-bued method of
split selection for categorical variables and a method of grouping more than
two alusm Into two superclasses to allow binary splits., Chaudhuri, Huang,
Loh and Yao (1904) describe a method of tree-structured regression that
yields, if desired, smooth estimates of the function and its derivatives. Con-
ditions for asymptotic consistency of the estimates are provided., Chaudhurl,
Lo, Loh and Yung (1993), Lo (1993) and Yang (1993) generalise these Ideas
to tree-structured Poison regression and logistic regression models, Ex-
tensions to stratified regression modellnl of censored data using piecewise
parametric and nonparametric models (such u Weibull and proportional
hasards models) are reported In Loh (.991), Ahn (1992) and Ahn and Loh
(1904).

The key Ideas may be summarized as follows.

1, Use of a grouping procedure if necessary to combine classes Into two
superclasses at each node prior to splitting. This ensures binary splits.

2. Use of two-sample t-tests for differences between means and variances
to select the variable to split a node, In the case of univarlate splits.
These tests are also used to detect patterns in residual plots to guide
split selection in regression,

3. Use of linear discriminant analysis to determine the best linear com-
bination split or the best univarlate split on the selected variable,

4. Use of CART's pruning method to determine the final size of the tree.

5. Use of linear projections with dummy variable coding to convert cat.
egorical variables into ordered variables before splitting.

6. Use of maximum likelihood fitting for plecewise generalized regression.,

7. Use of weighted averaging to produce smooth estimates of the function
and Its derivatives,
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The details of the algorithms will be reported elsewhere. The practical
advantages of this strategy over CART are:

1. Computational speed. CART finds linear combination splits on or-
dered variables by global optimization over all coefficients In the linear
combination. Our method is much more efficient because it uses linear
discriminant analysis. In the case of regression, CART fits a model to
each subnode for ever, split considered. Since it examines all possible
splits, this process Is very time consuming. Our approach fits a model
to each subnode only after a split Is selected, Hence model fitting Is
performed only once at each node.

2. Treatment of categorical variables. To find the best split on a categor-
Ical variable, CART searches over all subsets of categories. Because
the number of such splits increua exponentially with the number of
categories, this Is also a very time consuming process. Another prob.
lem Is that this strategy tends to prefer splits on categorical variables
with many categories over splits on ordered variables. Our approach
of converting each categorical variable into an ordered variable avoids
this problem and speeds up split selection,

3. Boolean combination splits on categorical variables. This can be quickly
obtained via linear combinations of transformed categorical variables.
Global optimization strategies are impractical because of the large
number of splits that need to be evaluated.

4. Versatility in model fitting. Because model fitting Is performed af-
ter split selection, models of arbitrary complexity (such as GLIM or
proportional hazards models) may be fitted to each node at little ad-
ditional cost.
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COMBINING SIMULATION RESULTS ADDRESSING ARMOR VEHICLE
SURVIVABILITY

Paul 3. Deason, Ph.D.
U.S. Army TRADOC Analysis Center - WSXR

White Sands Missile Range, N.M. 88002-5502

This is a clinical paper addressing means to combine the results of
a number of studies on two simulation models, the desired result of
which is to identify a balanced cost-effective set of survivability
enhancements for a direct-fire armored weapon system at an
acceptable risk, so that these enhancements may be made a part of
the engineering specifications for the weapons system. Passive
survivability elements consist of ballistic protection measures,
and signature reduction in the areas of RF, visual, and thermal
spectra. Countermeasures considered cover smoke, receivers,
Jammers, and active protection systems. The intent is to maximize
the use of passive measures, avoiding high technology, high risk
solutions, and avoiding highly sophisticated active
countermeasures.

SIMULATION MODELS

Simulation models are used in the study to evaluate the
effectiveness of the system in combat given the enhancements of the
suites of countermeasures, signature reduction, and ballistic
protection. The two models are the GROUNDWARS few-on-few direct
fire and artillery simulation, and the Combined Arms and Support
Task Force Evaluation Model (CASTFOREM), a many-on-many battlefield
simulation.

GROUNDWARS, maintained by the Army Materiel Systems Analysis
Activity (AMSAA) is used primarily to evaluate weapon system
effectiveness by representing land combat between homogeneous
forces, where the total number of combatants cannot exceed twenty,
and whore the systems have a limited representation of sensors and
munitions. A statistical terrain is represented. GROUNDWARS is
stochastic employing Monte Carlo probabU14ty theory as its primary
solution technique; three hundred replications of a case are
normally employed.

CASTFOREM, maintained by the TRADOC Analysis Center - WSMR (TRAC-
WSMR) is a stochastic, event sequenced, force-on-force simulation
of ground combat involving up to a BLUE brigade and opposing RED
forces. It is used for weapon system trade-off analyses,
investigation of alternate tactics, :), -.- etric analyses of selected
weapon system performance parameters, and other similar studies.
CASTFOREM is extremely flexible, and can accommodate any terrain or
weapon system for which data is available. Terrain used is
digitized actual terrain. Weather and ambient light conditions are

129



constant throughout a battle. Battlefield obscuranti, smoke, and
dust are modeled as dynamic clouds. Processes are modeled
probabilistically using Monte Carlo techniques; the model is
stochastic event sequenced, although time-step events are possible.
Normally, 21 replications of a case are employed.

COUNTERMEASURES PLAYED IN GROUNDWARS

In the following table are described the variation of
countermeasures suites for the system examined through the use of
the GROUNDWARS model. Those with a 'Y' in the cell indicates the
suite was examined.

The scenarios used are the following:

SCEN A: This scenario represents a BLUE mechanized infantry
task force in a prepared defense against an overwhelming
modern RED armor attack. The setting is Central Europe,
Winter, with snow on the ground and 7 kilometers visibility.

SCEN B: This scenario represents a meeting engagement between
a BLUE mechanized infantry brigade and a modern RED tank
regirant.. The setting again is Central Europe in Winter with
snow and 7 kilometers visibility.

SCEN C% This scenario is set in late spring in Southwest Asia,
dusty with 14 kilometers visibility. The BLUE force is a
mechanized infantry battalion (+) in a hasty defensive posture
encountering two Threat tank battalions equipped with current
equipment. Threat counter-maneuver artillery is minimal.

The countermeasures described in the table are as follows:

LWR: Laser warning receiver - detects when the system is being
lased by a threat rangefinder or detects a missile guidance
later.

MWS: Missile warning system/muzzle flash detector - detects
the launch of a missile or the flash of a gun.

RWR: Radar warning receiver - indicates when being painted by
radar.

SMK: Signifies the employment of self-protective smoke in the
visual, infrared, and millimeter wave spectra in the direction
of the perceived threat munition.

JAM: Infrared Jammer - disrupts the infrared tracking beacon
on al, incoming missile

SLID: Small, low-cost intercept device - a proposed counter-
missile system.

SHORTSTOP: A prorsad artillery countermeasure device.
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Several suites are not considered for the following reasons:
a. Smoke would not be used in the SCEN A prepared defensive
position, except if the system were on the move and exposed.
Smoke was not used in GROUNDWARS (but was used in CASTPOREM.)
b. In SCEN A, SCEN B and SCEN C the LWR alone would not pick
up the threat missiles to JAM, so the cases were not played.
,c. In SCEN B and SCEN C the MWS alone is unable to detect the
target and cue smoke, so that combination was not played.
d. In SCEN C there was no radar threat portrayed, so RWR was
not oonsidered.
e. In Scan C there was no artillery affecting the system, so
SHORTSTOP was not played.

COUNTERMEASURE SUITES IN CASTFOREM

Using the same chart for the countermeasure suites played in
GROUNDWARS, the suites that were evaluation in CASTFOREM are
denoted with a 'C'.

Table 1: COUNTERMEASURE SUITE COMBINATIONS

GROUNDWARS and CASTFOREM

POSSIBLE SUITE SCEN A SCEN B SCEN C

BASELINE (No CM) YC YC YC

LWR Y Y Y

LWR, SMG ..... ¥ Y

LWR, JAM

LWR, SMK,JAM ... ... .......

MWS Y Y YC
MWS, SMK
MWS,JAM YC Y _ C

MWS, SMU( JAM______ _ _ _ _ __ _ _ _ _ _

RWR Y Y

RWR, SMX Y

RWR, IJAM Y Y .......

RWR, SMK, JAM Y

LWRMWS Y Y Y

LWR,MWS, SMK . .... ... .. Y YC

LWR, MWSIJAM Y Y Y

LWRMSSMKJAM Y _

LWR, RWR Y Y
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LWRW9Sm( __ Y

LWR, RWR, AM Y Y ,,

LWRRWReSMK, JAM Y

4MWO, RWR y Y

MWS, RWR, SMOK ......... Y ....

MWSBRWRJAM Y Y

,,MWS , RW• ISMK _ _JAM Y

IMR, NKS, WR, SM _

LWRXWS,RWR,JAM Y Y

LWReNWSRWRoSM~(,3AM YC YC YC

LWROMWSBRWRB I• •HaRTSTOP YC YC

LWRpWSRWRSLID YC,,, YC .... YC

SIGNAT•ARE REDUCTION IN GROUNDWARS and CASTFOREM

Threat systems employ a variety of means to detect and to bring
fire onto our system of concern. These means are direct view
optics, low-light television systems, thermal imaging systems,
ground surveillance radars, and seekers in "smart" artillery
munitions. If the ability of the system to be detected or to be
accurately pinpointed were reduced, its survivability would be
enhanced. It is possible to reduce the signature of the vehicle
through the use of various iuites of coatings and shaping. The
signature reduction suites are represented on the vehicle by
specifying an average detection range reduction achievable against
the array of threat sensors represented in the scenarios.
Probability of detection by threat seekers as a function of slant
range and target signature were determined using Booz-Allen and
Hamilton's Desktop Radar and Infrared Signature Model. This
reduction is as measured by the NVEOL sensor curves for the threats
of interast; the point where the probability of detect curve is 50%
(PdetmO.5) for the range desired was taken as th. target reduction
criteria. (The Johnson criteria of one cycle was used for
detection.) Five levels of signature reduction were played in both
the GROUNDWARS and CASTFOREM models, and were designated Level A
through Level E.
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Table 2: SIGNATURE REDUCTION IN GROUNDWARS and CASTFOREN

DETECTION RANGE SCEN A SCEN B SCEN C

BASELINE SYSTEM YC YC YC

Level A YC YC YC

Level B YC YC YC

Level C YC YC YC

Level D YC YC YC

Level E YC YC YC

BALLISTIC PROTECTION IN GROUNDWARS AND CASTFOREM

The ballistic protection suites added to the vehicle are in
addition to the base armor package inherent with the system. This
added ballistic protection would be against direct fire kinetic
energy and chemical energy munitions, and indirect fire (artillery)
munitions. Due to the differences inherent in the penetrations from
direct fire rounds and indirect fire munitions cause the ballistic
packages to be considered separately, although there would be a
carry-over effect (synergy) one to the other. Three levels of
ballistic protection were considered, based on the probability of
resisting a system kill (as defined by an analysis using the Army
Research Laboratory CAD and evaluation models) given a hit, of 50%,
75%, or 95% (given the percentage is higher than the standard armor
package.) (an attempt to design a package that would withstand the
impact of large calibre direct fire munitions, or a direct impact
of artillery HE was not considered.) These packages are limited by
the power, weight, and dimensional constraints of the system.

Table 3. BALLISTIC PROTECTION IN GROUNDWARS and CASTFOREM

BALLISTIC PROTECTION SCEN A SCEN B SCEN C

BASELINE SYSTEM YC YC YC

50% DF0 50% IF YC YC YC(DF)

50% DF, 75% IF YC YC _____

50% DF, 95% IF YC YC

75% DF, 50% IF YC YC YC(DF)

75% DF, 75% IF YC YC

75% DF, 95% IF YC YC

95% DF, 50% IF YC YC YC(DF)

95% D F 75% IF - YC YC
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COMBINED RUNS IN CASTFOREM
A number of runs are scheduled in CASTFOREM to evaluate
combinations of signature reduction, countermeasures, and ballistic
prtoection. To date, only cases using the countermeasure suits of
LWR, MWS, RWR, and SMK at reduced signature levels A, B, and C,
using the base level of ballistic protection are scheduled. other
cases will be considered as a result of preliminary analysest
additional combined case runs are welcomed from the panel.

MEASURE S OF EFFECTIVENESS
Common measures of effectiveness output by GROUNDWARS and CASTFOREM
are system kills, system loss, RED force loss, BLUE force loss, the
system exchange ratio (system kills/system loss), force loss
exchange ratio (RED force loss/BLUE force loss), and surviving
maneuver force ratio (RED maneuver force (initial-f inal)/BLUE
maneuver force (initial-final)). In CASTFOREM these measures are
available over time for each replication. A metric which could
handle the synergy of the battle over time, and the contribution
differences ot the system in various parts of the battle by virtue
of its survival is envisioned. In these scenarios, the early
contribution of a system could cause it to expend its ammunition
early, and so not contribute later in the battle. However, because
of its early contribution, more BLUE direct fire systems could
survive and participate strongly. The more survivable system's
contribution could be swamped by the end of the battle due to the
synergy. Therefore, a combined metric is visualized.

Then, once the systems providing the most potential are determined
(ranked?) by their performance in the simulations, additional
factors must be considered, such as the following:

a. Cost
b. Weight and size constraints placed on the system
c. Technological risk and possible fielding date

The intention is to provide the Army with a robust point solution
package to enhance the survivability and performance of the system
and the force.

EPILOGUE

Since the conference in October 1993, the method of analysis used
was to separate GROUNDWARS and CASTFOREM except as the findings
were mutually supporting, and use the results from CASTFOREM as the
principle effectiveness determiner. The final full factorial
CASTFOREM runs matrix consisted of the European Defense and the SWA
Meeting Engagement scenarios, two levels of signature reduction,
three countermeasure suites, three levels of ballistic protection,
which when added to the base level of each factor (no signature
reduction, no countermeasure suite, basic level of ballistic
protection) resulted in a 96-case matrix (2 X 3 X 4 X 4.) The final
product of this analysis, known as the LOSAT Survivability
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Requirements Study, should be available after the First of April,
1994 from the Technical Management Division, LOSAT Project Office,
U.S. Army Missile Command, Attn: SFAX-ASM-LS, Redstone Arsenal,
Huntsville, Alabama 35898-8051
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A REDISCOVERY OF THE HODGES-LEHMANN ESTIMATE

PAUL H. THRASHER
Analysis Branch of Analysis Division

Materiel Test Directorate
White Sands Missile Range, New Mexico 88002-5157

...AJAX . The Hodges-Lehmann estimate was proposed in 1960 to
balance the risks of estimating tuo hIh and too low. It was
recently rediscovered in a considra-ttion of what estimate should be
used after a one-dimensional nall. hypothesis is rejected.

.. ZNTRgfUCTLQ . Use of data to find a point estimate for a
parameter is often requested. if no standard or unacceptable value
±s provided for the parameter, a point estimate is often found to
(1) stand alone or (2) serve as the midpoint of a confidence
interval. If (1) a standard and unacceptable value exist and (2)
the data and agreed upon Type I and Type 11 risks imply rejection
of the null hypothesis that the parameter meets the standard, then
the next question is often "How badly does the parameter miss the
requirement?" Although a p-value and a post-test Type I1 risk can
answer this question, a point estimate is often requested by
managers not versed in statistical language.

SIf a point estimate is needed, an analyst may well want to
present a more statistically justified number than the commonly
used average or sample median. One general technique is to extend
hypothesis testing. This was (1) done in reliability studies at
White Sands Missile Range with arguments described in sections 2-5
of this paper, (2) presented as a clinical paper to the Thirty-
Ninth Conference on the Design of Experiments in Army Research,
Development, and Testing and (3) recognized by one of the panelists
as the Hodges-Lehmann technique.

2. RATIONALE. Any point estimate necessarily has limited
information. It should be made as meaningful as possible.

A point estimate might be too high or too low. An intuitive
approach is to adopt a goal of equal likelihood! that is, try to
equalize the risks of estimating too high and too low.

One way to approach this goal is to think of two hypothesis
tests that (1) share the common null hypothesis of "The Desired
Parameter Equals The Point Estimate" and (2) have the opposing
alternate hypotheses of "The Point Estimate Is Less Than The
Desired Parameter" and "The Point Estimate Is Greater Than The
Desired Parameter" as the upper and lower alternatives to the null.
Since the p-value is the probability of being wrong if the null is
rejected, the goal of equal likelihood can be approached by
adjusting the point estimate in these two thought hypothesis tests
until their p-values from data are as close to each other possible.
This forces both p-values toward one half.
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Clearly each p-value can be forced to exactly one half if the
thought hypotheses tests have p-values that are continuous with the
always continuous point estimate. If such thought hypotheses tests
are not appropriate for the data, an average can be taken of the
two point-estimates that make the two p-values closest to one half.

The resulting estimate can logically be named and described by
the acronym p-vulte (p-value upper & lower test estimate). "P-
Vulte" can be thought of linguistically as a noun; but it is more
informative if it is considered as an adjective in a three word
title. For example, "Gaussian p-vulte mean" or "Wilcoxon
p-vulte median" denote both the distribution that describes the
data and the parameter that is being estimated.

3. NON-INNOVATIVE RESULTS. For data from populations
described by some common distributions, use of the p-vulte
technique yields nothing new. For example, the Student's t
p-vulte mean is simply the sample average.

This result is obtained by considering the two areas, of the
probability density function, that are separated by the desired
estimate. Adjusting these areas until they are equal makes both of
them exactly equal to one half. At this point, the test statistic
t is zero. The well known expression for t,

rSample Average - Population Meanl
[Sample Standard Deviation / Square Root of Sample Size]

immediately yields the p-vulte mean to be the sample average.

4j_. .IASSED RESULTS. Non-symmetric probability density
functions Isad to biassed p-vultes. This bias tends to zero as the
sample size becomes very large. One example is the binomial p-
vulte R w-.ýre R is the reliability (i.e., the probability of one
success J.n one trial).

Calculation of this p-vulte is direct in concept; but in
•ractice it requireG a computer. Equating the two p-values

s the same as equating two sums of b(j;n,p-vulte) where b is
the function for the binomial probability distribution; x is
the number of successes out of n trials; one sum ranges from
J-0 to J-xl and the other sum ranges from j-x to J-n. After
data is taken, the only unknown in the equation is the p-vulte.
Clearly a numerical solution is possible; but the existence of two
sums causes difficulties. Calculation is facilitated by
(1) pulling the term b(x/n,p-vulte) out of both of the two equal
sums, (2) remembering that the sum of b(j;n,R) from j-0 to j-n must
be one for any R, and (3) arriving at the calculation equation of

1 - b(x;n,p-vulte) + TWICE THE SUM OVER b(j;n,p-vulte);

this sum ranges either from j-0 to j-(x-1) or j-(x+l) to j-n.
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The bias may be illustrated with an example. For a sample
size n of 25, different values of x yield the binomial p-vulte R
aand the maximum likelihood estimator (i.e., x/n) to be

xit. x/n

1 .0453 .0400
3 .1247 .1200
7 .2828 .2800

12 .4802 .4800
13 .5198 .5200
18 .7172 .7200

.22 .8753 .8800
24 .9547 .9600

All of theme p-vultes are biassed towards the central possible
value of R (i.e., 0.500). The shifting is greatest for values of
x that are farthest from corresponding tu x/n a 0.500.

As an aside, consider the situation when x-0 or x-n. There
are two possible interpretations for the binomial p-vulte R. Just
looking at the summation equations and plots of the distributions
for different. possible values of R suggest that these p-vulte. are
unbiased (i.e., identically zero and one). However, looking at the
underlying the thought hypothesis tests suggests that these p-
vultes are underined. This occurs because there is no physical
alternative that the estimate should be lower than 0 or higher than
n. Unless a limiting procedure is considered, the binomial p-vulte
R is thus undefined when x-0 or x-n. One philosophical
interpretation is that being undefined is not bad in this
situation; that is, neither perfection nor total failure should be
claimed for the population just because data from any sample fails
to indicate differently.

Finally, another example shows the tendency of the bias to be
removed with large sample sizes. Choosing x's and n's such that
x/n is 1/5 yields

5 .2161
10 .2090
25 .2038
75 .2013

250 .2004
1000 .2001

This table exhibits the tendency of consistency.

5. ROBUST AND SENSITIVE REQULTS. Application of the
p-vulte technique to the Wilcoxon signed ranks T test yields robust
and sensitive results. This should be expected because the
Wilcoxon signed ranks T test is well. know for its high power.
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The Wilcoxon p-vulte median may be calculated without first
calculating actual p-values. This is based on the way that the
Wilcoxon p-value calculation is done using a thought experiments

(1) Consider n chips for the n data of the sample;
(2) Label each chip with

(a) the sample rank of the absolute value of the
difference between the standard & the datum and

(b) a +'sign on top if the standard exceeds the datum
but on the bottom if the datum is the biggest;

(3) Calculate T+ by summing the ranks on the chips where
the standard exceeds the datum (i.e., +'s are up);

(4) Think o2 tossing all chips;
(5) Consider all two to the nth power possible landings;
(6) Count the number of possible landings for which the

sum of the ranks of chips with plus sides up is less
than the T+ result of step 3 (i.e., count possible
results that are as bad or worse than the data);

(7) Find the p-value by dividing the result of step 6
by the result of step S.

[Notei See the appendix for a discussion of handling ties.]

This finds the probability of being wrong in rejecting the null
hypothesis, that the median equals the standard, in favor of the
alternate hypothesis that the median is higher than the standard.
The p-value for the other alternate hypothesis, that the median is
lower than the standard, can be found by changing "less than or
equal to" in step 6 to "greater than or equal to". Obviously, the
counting in step 6 is tedioum and time consuming for even a
computer when n is large and the standard is near the middle of the
data. Fortunately, it is not necessary to find the p-vulte by the
direct approach of guessing "standards" until one is found that
yields equal p-values for the two alternate hypotheses. The
shortcut is based on features of the number line and the p-value:

(A) The upper and lower alternate hypotheses both have zero
p-values if the standards are outside the data's range;

(B) In starting with two trial standards on opposite sides
of the data and moving them inward, neither p-value
changes until the extremea of the data are reached;

(C) Reaching the extreme data values causes (i) the count
in step 6 to increase from zero to one and (ii) the
two p-values to increase; both become one divided by
two raised to the nth power;

(D) The other points on the number line that change the
counting in step 6 are values of "standards" equaling
(i) other data and (ii) pair-wise averages of the data;

(E) The symmetry of the number line and integer intervals
between ranks makes symmetric contributions to the
two p-values as the two "standards" are slid in unison
over pairs of points identified in property D;

(F) Equal p-values are retained by crossing pairs of
property D points simultaneously;

(G) The p-vulte is reached when the two "standards" meet.
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Thus the Wilcoxon p-vulte median is the sample median of all the
pair-wise averages of the data including each datum with itself.
If the sum of the sample size and the number of pair-wise averages
(i.e., n + ni/(21{n-2}I]) is odd, then the p-vulte is unique. If
this sum is even, the p-vulte is somewhere between the innermost
pair of data and pair-wise averages on the number line. Although
there as no justification, a unique estimate may be obtained by
instinctively defining it as the average of the nnermost points;
this will be called the "even estimate".

Although the calculation of the Wilcoxon p-vulte median is
direct in concept, its actual calculation needs a shortcut to be
practical for large data sets. Even a modest sample size generates
a large number of pair-wise averages. Even medium size computers
can have storage difficulties if all n + nl/[21(n-2)1] a n(n+l)/2
averages are stored at once, bubble sorted, and counted off to the
middle value. Fortunately, there is a simple technique to avoid
the handling of this large array of numbers:

1. Bubble sort the data Xl X2 X3 - - - Xn
with the lowest datum
at the low endl

2. Think of a X1 X2 X3 - - - Xn
triangular
array of Xl All A12 A13 - - - Am
pair-wise X2 A22 A23 - - W A2n
averages X3 A33 - - - A3n
of all data - "
including -

each datum - -

with itself; Xn Ann
3. View the diagonall
4. Construct and store the averages on the diagonal and the

row and column numbers needed to find these averages;
5. Bubble sort the diagonal, discard the lowest average,

and replace it with the next largest array average;
(Notet The location of the replacement average from

the discarded average is either (a) immediately
to the right on the same row or (b) immediately
down the diagonal. Clearly, replacement from
the diagonal necessitates another replacement
before proceeding to the iteration of step 6.]

6. Repeat step 5 until the sample median of the triangular
array can be found.
[Note: For odd n(n+l)/2, discarding [n(n+l)/2 - 1] / 2

values makes the smallest value on the remaining
diagonal equal to the Wilcoxon p-vulte median.
For even n(n+l)/2, discarding n(n+l)/4 - 1
values makes the average of the two smallest
values on the remaining diagonal equal to the
even estimate of the Wilcoxon p-vulte median.]

This technique uses storage for the 3n diagonal values and their
row and column sources instead of storage for the r.(n+l)/2 array
values.
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The sensitivity and robustness of the Wilooxon p-vulte median
may be illustrated by simulations. Either graphs or tables may be
used to display the results.

The two graphs display results from a simulation illustration
of (1) how rapidly repeated sampling yields convergence and (2) how
closely the convergence approaches the input parameter. The three
lines are all calculated from the same set of simulations. One
sample of size eleven is simulated to find and plot the average,
sample median, and Wilcoxon p-vulte median at the left (i.e., #-1)
ends of the three lines. Each of the following points to the right
incorporates another simulation of a sample of size eleven; the
three quantities graphed are the average of the averages, the
sample median of the sample medians, arnd the Wilcoxon p-vulte
median of the Wilcoxon p-vulte medians.

Since a uniform population between zero and one is used for
the simulations, the target value for all three lines is exactly
one half. The solid line traces the central limit theorem
prediction that the average of averages from different random
samples will approach the population mean. The line with long
dashes traces the corresponding theorem prediction that the sample
median of sample medians from random samples will approach the
population median. Pinally, the line with short dashes doeo the
analogous process with the Wilcoxon p-vulte median.

The graph from populations with no outliers shows that the
average converges best. The Wilcoxon p-vulte median does almost as
well but the sample median exhibits large excursions. Thus the
average is most sensitive; the Wilcoxon p-vulte median is quite
sensitive; and the sample median is least sensitive.

The graph from populations with outliers shows the sample
median to converge best. The Wilooxon p-vulte median does quite
welll but the average is biased toward the weighted average of
(0.95)(0.5) + (0.05)(2.5) - 0.6. Thus the sample median is most
robust; the average is least robustj and the Wilcoxon p-vulte
median is bracketed by the sample median and the average.

An analyst is never certain if data has outliers. Thus the
Wilcoxon p-vulte median is the best estimate of central tendency.

These graphical results need to be rupeated many times before
they can be generalized. Instead of trying to compare many graphs,
repeated simulations can be reported with tables.

Before preparing tables, the investigation should be broadened
to include populations other than the uniform. After all, a
Gaussian or Student's t probability density function
would be expected to have better convergence than the uniform.

For sensitivity investigation, the sample variance of repeated
simulations is the quantity that is desired to be minimized.
Tabulated results from a set of 200 simulated graphs
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for probability density functions (pdf's) of triangular (t),
uniform (u), and sine (s) with no outliers are:

Number of pdf Sample Sample Sample
samples of variance variance variance
siz 11 in of of sample of Wilcoxon
estimate averages medians p-vulte medians

t 0.038 0.053 0.040
3 u 0.053 0.097 0.059

5 0.005 0.145 0.073

t 0.020 0.029 0.022
10 u 0.029 0.055 0.032

s 0.035 0.085 0.038

t 0.007 0.012 0.008
60 u 0.010 0.023 0.012

S0.03 0.036 0.014

All of the sample variances in the sample median columns are
appreciably larger than those in the other two columns. Thus the
sample median is the least sensitive. The saeaple variances in the
Wilcoxon p-vulte median column are only slightly larger than those
in the average column. Thug the Wilcoxon p-vulte median is almost
as sensitive as the average.

For robustness investigation, the quantity of interest is the
actual measure of central tendency. Talulated results from 200
graphs when the target is 0.5 and 5 percent of the population has
a bias of 2.0 are:

Number of pdf Ceitral Central Central
samples of average average average
size 11 in of of sample of Wilcoxon
estimate averages medians p-vulte medians

t 0.547 0.515 0.520
3 U 0.545 0.533 0.528

s 0.545 0.539 0.531

t 0.546 0.51i 0.518
10 u 0.544 0.526 0.525

s 0.546 0.540 0.530

t 0.549 0.512 0.520
60 u 0.548 0.524 0.528

s 0.548 0.540 0.532

All of the values in the averages columns are appreciably further
from 0.5 than those in the other two columns. Thus the average is
the least robust. The values in the Wilcoxon p-vulte median and
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sample median columns are comparable. Thus the sample median and
Wilcoxon p-vulte median are more robust than the average.

The result of the tabular investigation is thus the same
as that of the less extensive graphical analysis. The Wilcoxon p-
vulte median is the best estimator of central tendency when the
anaJyst does not know- if outliers are present or absent.

j•Q___ IXONAL REVIEW AND ACKNOWLEDGMENTS. All techniques
must be reviewed dnd placed in context with established methods.
This review was provided by the Thirty-Ninth Conference on Design
of Experiments in Army Research, Development, and Testing at Rice
University in October, 1993.

Three important things were recognized at the conference.
First and most important, the p-vulte technique is the same as the
Hodges-Lehmann estimate. This pioneering work was reported with
great mathematical thoroughness in Hodges, J. L. Jr. and Lehmann,
E. (19611: Estimates. of Location Based on Rank Tests, Ann. Math,
Statist. a 34,598-611. Second, Hodges-Lehmann estimation is based
in a philosophy that is not in either mainstream of statistical
methodology. It is neither frequentist nor Bayesian; it may be
most properly described as Fisherian. Third, it has been applied
only to one dimensional data. In the thirty years since Hodges-
Lehmann estimation was introduced, statistical methodology has made
great advances in the more productive area of multidimensional
analysis.

Many people associated with the Conference on the Design of
Experiments in Army Research, Development, and Testing are deeply
appreciated for their valuable contributions. Long before the
conference, the clinical session chairperson, W. J. Conover,
identified the Wilcoxon T test zero percent confidence interval as
the sample median of pair-wise data averages. A]so before the
conference, program committee member Malcolm Taylor encouraged the
presentation of this paper. Another program committee member,
Francis Dressel scheduled this paper in a clinical session where it
eventually received many constructive comments. Panelist Bernard
Harris recognized that the p-vulte has the statistical property of
consistency. Panelist Wei-Yin Loh identified the Wilcoxon p-vulte
median as the Hodges-Lehmann technique. Panelist J. Sethuraman
explaired Loh's identification and also identified the reference to
the original journal article by Hodges and Lehmann. Program
committee member Gerald Andersen specified the section of the Rice
University library, where the conference was physically held, that
had a textbook description showing clear direct equality of the
Wilcoxon p-vwlte median
and the Hodges-Lehmann estimate. Panelist Nozer Singpurwalla
enunciated that the Hodges-Lehmann estimate does not utilize
any prior information in a Bayesian analysis. Many other
conference participants, especially David W. Scott who taught
the tutorial on multivariate density estimation, illustrated that
multidimensional techniques have wider applicability than the
single dimensional Hodges-Lehmann estimate.
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APPENDIX. TIE BREASING. Certain analyses such aa the
Wilcoxon signed ranks T+ test have difficulties associated with
ties. There are two types of ties. First, groups of data may have
one common reported value. Second, the standard may equal the
reported value of a datum or group of data. The first of these is
easily handled by assigning ranks to each group member in a manner
that (1) does not effect the ranks of other data and (2) uses an
average rank within the group. [E.G., Assign ranks of 1, 2.5, 2.5,
4, 5, 7, 7, 7, 9, 10, 11, 12 to the absolute values of the
differences between the standard and data equaling 2.05, 3.3, 3.3,
3.9, 4.5, 5.5, 5.5, 5.5, 6.1, 6.2, 6.3, 14.4.] The second type of
tie is more difficult and is discussed below.

A trivial method of handling a tie of the standard with a
datum or a group of data is to simply discard all zeros in the set
of differences of the standard and the data, Unfortunately, this
causes the p-value to be non-monotonic with the standard.

A more realistic method of handling these zeros is to
recognize, for continuous data, that they really don't exist. They
appear to exist only becauce the data were not measured to a
sufficient number of significant digits. Such, apparent ties can be
removed in a pre-analysis of the data by shifting the data away
from the standard. This is analogous to the introduction of
"jitter" into data for computerized data viewing in multivariate
density estimation. An analytical analysis of this shifted data
calculates an expectation value from all possible shifts.

Obviously a ?robability density function is needed to
calculate expectation values. Two possibilities are the binomial
and the uniform.

A binomial pre-analysis may be used as a first approximation
in breaking of ties. For a single tie, an apparent datum X may be
considered as being above or below the standard in the following
picture

STANDARD + DELTA I x

STANDARD ------------------- APPARENT X

STANDARD - DELTA I- x

PROBABILITY OF SHIFT: 1/2 1/2

with the probability density tabulated under the above picture.
Two values of the p-value are calculated from the two possible
relative locations of the apparent datum. The p-value's
expectation value is the sum of the products of possible p-values
and the probabilities of those p-values. Since the probabilities
are both 1/2 in this binomial pre-analysis for a single tie, this
p-value's expectation value is just the average of the p-values.
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The picture and table of probabilities for two data, X and Y, that
1,),,.:-aparently tie the standard are

STD+ DEL - x, x y

STD ....---------------------- a--------...-.--. . X, Y

-STD DEL - y x xy

"PROBCSHXFT]3 1/4 1/4 1/4 1/4
or
PROB[SHIFT]s 1/4 1/2 1/4

.,,where the second version of the table of probabilities is for
expoctation value calculations. (There is no sense in calculating
both degenerate p-values for the two center shifts..) In the
general case of n data that apparently tie the standard, binomial
.p~e-analysis yields a p-value's expectation value equal to the sum
-[,from J 0 to jnn] of the product of (1) b(j;n,1/2) and (2) the p-
V * alue-calulated from a data set with j data shifted to one side
and n-J shifted to the other of the standard.

The numerical value used in the shift (i.e., delta) does not
Seffect rank analysis results as long as delta is small compared to

Sthe mmallest separation between two data. However, not all ties of... dAt& With itself are broken by binomial pro-analysis when two or
more data are tied with the standard. This does have a effect.
The effect of false ties of measurements of a continuous random
variable can be removed with uniform pre-analysis.

The uniform probability density function is an appropriate
description of data that is taken with digital meters. Any reading
is necessarily rounded off to the number of digits available on the
meter. The meter cannot indicate which way or how far the data
value is off. Thus the analyst knows only that the true
measurement should be somewhere between in the interval bounded by
data plus or minus half the smallest unread digit.

The picture and table of probabilities for uniform pre-
analysis of two apparently tied data X,Y are

STD + 2 DEL' x x

STD + DEL I y y

STD - -------- ---------------------------------- XY

STD - DEL I- y y

STD - 2 DEL '- x x

PROB[SHIFT]: 1/4 1/4 1/4 1/4
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where the stared (i.e., *) non-split absolute values of differences
., between the standard and split data have been deleted from

- x x y y y

x x x y y

----------- ------------------ -M---- MM------- MaxFY

•..'.y .... -y X X X y

r y y X X X

and the degenerate interchanges of x and y have been removed.
Since all four of the probabilities in the table are equal, the p-
value's expeutation value is the average of the four p-value.
calculated from the four sets of data less X and Y plus each of the
completely-split Out non-degenerate x and y. Instead of pictures,
tablescan,.be used. For n-2, the table is

DIFPERENCE
BETWEEN STANDARD SIGNS IN 4
& TOTALtY SPLIT DATTSOf PAIRS

2 DELTA + + - -
I DELTA + - + -

where only the information essential for calculation has been
retained. For n-4, the corresponding table is

DIFFERENCE
BETWEEN STANDARD
&.TOTALLY SPLIT DATA SIGNS IN 16 SETS OF QUADRUPLETS

4 DELTA + - + + + + + - - - +
3 DELTA + + - + 4- + + - - + - - +
2 DELTA + + + - + + - + - + - - + .
i DELTA . . . + - - -- -- - -

where again only the information essential for calculation has been
retained. In the general case of n data that apparently tie the
standard, uniform pre-analysis yields a p-value's expectation value
equal to the sum [over j -0 to j - the total number of ways of
choosing 0, 1, --- , n positive signs for the n differences between
data and the standard] of the product of (1) the reciprocal on two
to the nth power and (2) the p-value calculated from a shifted data
set where all n ties have been broken.

Uniform pre-analysis is obviously more complete and time
consuming than binomial pre-analysis. Both are improvements over
no pre-ana]ysis when rounding off introduces fictitious ties.
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Automatic Classification of Research Projects Based on Lexical Content

by
Mal Brown

Army Researeb Office

Abstract:

To track the scope of industrial and governmental research'in a variety of scientific areas
-of Interest to the Army, ARO has previously assigned scientists to read research reports
""from these organization. and, based on the scientists' knowledge, to classif the research
a ccordin 8 t6 a system ofclassification categories that correspond to Army technologies
and operational functions, To avoid this highly labor Intensive effort, which needs to be
updated annually or bi-annually, an algorithm has been developed that automates this
classification, The algorithm performs the classification based only on the aggregate of
words that are wsed in the research report, as calibrated based on previous classifications
' which, had been performed manually,

Introduction:

As part of its ongoing effbrt to ensure the mission relatedness of its basic research
program, and to provide the Army with guidance in its technical base programs, ARO
attempts to keep track oftresearch in progress in Industry.

A particularly convenient window on Industry has been the industry reports prepared in
connection with the Independent Research And Development (IRAD) program. The
IRAD program provides major DOD contractors with fUnding that they can use to
perfbrm R&D of their owti choosing, In return, the contractors have been required to
provide reports to DOD describing the research. Until recently, contractors have also been
required to provide on-site reviews every 3 years to put portions of their research on
display for interested government representatives,

In past years, ARO scientists have examined the written reports and attended some of the
on-site reviews, and have manually compiled a data base that summarizes and categorizes
the research according to the major Army functions that the research supports. Examples
of such functions are logistics, mobility, vulnerability reduction, NBC protection, target
acquisition, lethality, C31, and ECM/ECCM, and their various subfunctions. ARO has also
tracked research that support major technical areas such as electronics, materials,
manufacturing technology, computers/computer science, and space-related technologies,
also broken down by their various sub areas,

For convenience in organizing the data, ARO has assigned alphnumeric labels, called
descriptors, to designate the various research categories. Previously, the ARO descriptors
have been assigned manually to each of the IRAD projects by ARO scientists through a

149



tedious, labor intensive effort of reviewing all of the IRAD reports generated by the
participating Industrial agencies,

Recently, Congress has mandated a number of changes to the IRAD program, Among
these changes are the reporting requirements for industry, On-site reviews are now
optional on the part of each company, and are less formal, Also, written reports are now
to be compressed to a maximum of 5 pages per research project, and are to be reported
annually to DTIC for inclusion on a CD ROM that DTIC will make available to DOD
agencies,

Details of the. infrmatlon to be included on CD ROM, and formats, for the inibrmation,
are still -in flux, However, these are expected to Include project titles, company/profit
center names, narrative descriptions, and funding levels, Abstracts and keywords may
possibly also be Included, although these are currently among the Items under negotiation
between Industry, DTIC, and other Interested DOD agencies,

In one respect, the new rules make It more difficult to keep track of what industry is doing
"-inits IRAD efforts, as a result of the shortening of the written reports and the sievere

reduction in on-site reviews, On the other hand, the availability through DTIC of
computerized reports promises to enhance ARO's capability to keep track of industry
MAD effbrts, In particular, it opens the possibility of automating the process of
categorizing the IRAD effbrts by Army functions supported, thereby greatly reducing the
highly time consuming demands on ARO scientists who have previously performed this
categorizing manually,

What fbllows is an Interim report on the development of a computerized technique for
automating this categorization based on data supplied by DTIC, and on information
derived from manually generated categorizations performed in previous years,

It should be noted that many of the MRAD projects are inherently structured so as to
support more than one Army function, Categorization by ARO descriptor is therefore in
most cases largely a technical judgement call, and even in principle can be correct only to
within broad tolerances, Moreover, the very definitions of the Army !unctions and,
particularly, of the contributing technologies are Inherently somewhat fuzzy in their
definitions, and constantly changing, Thus, the relationship between ongoing IRAD
projects and Army functions that they tend to support, is at best imprecise and changing,
even in principle, so that any technique for relating project with functions would
necessarily be somewhat imprecise and changing,

Nevertheless, Army managers need basic information as to how the ongoing IRAD
projects and the Army's own RDT&E tech base program tend to support the Army's
functional needs, even if such information may be less than fully precise and/or stable over
time, It would appear, therefore, that categorizing IRAD (and Army tech base) projects
according to ARO descriptors promises to be useful to Army management for addressing
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policy questions relating to funding the Army tech base, even if the categorizations are

performed only to within some residual errors.

Approach: Data

Available data for automating the categorizations consist of two parts,

The first part consists of the sample of data that had been categorized manually in
previous years (ILe., the historic data), This consists of written IMAD reports, supplied by
industry, of which the project titles and industry-supplied keywords are used, together
with AO-generated characterizations by ARO descriptor,

The second part consists of the DTIC-supplled data that represent the current IRAD
projects which are to be classified,

For the purposes of algorithm development, only the historic data is available, DTIC data
fr current projects is being collected from Industry, and Is being loaded and formatted
onto CD-ROMs -by DTIC, but is not yet available,

Approach: Model

The oategorization algorithm is based on a mathematical model, developed as follows:

"Each IRAD report (historic or current) contains several data fields that will be analyzed,
The entries In the data fields will be broken into words, In this way, each project report
will generate an aggregate of words that have been taken from the various data fields, and
the aggregate of words so obtained will be regarded as collectively representing the
project, The words will be used as a basis for categorizing the project and associating it
with an ARO descriptor. To do this, the procedure must first be calibrated based on
historic projects.

Mathematically, the collection of words derived from all of the historic projects (i,e,, those
used to calibrate the model) will define a multi-dimensional mathematical space, In this
space, each word corresponds to one of the dimensions, and vice versa, For convenience,
call this space word space,

Now consider an arbitrary historic project, This project defines a vector in word space, as
follows: Each coordinate has the value I if the corresponding word appears in the word
aggregate for that project, and has the value 0 if it does not appear, That is, the coordinate
indicates whether or not the word appears at least once in the project report (or, more
accurately, in those data fields of the report which are used in the analysis),

Next consider those vectors derived from projects that have a given ARO descriptor
assignment, The average of' those vectors will be used to represent that particular ARO
descriptor, A descriptor vector VD corresponding to an ARO descriptor D therefore has
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the f6liowing simple meaning: its typical component VDW corresponding to a word W in
the calibration word set measures the observed faction of projects with descriptor D in
which word W appears at least once, Each of the VDW will therefore be between 0 and I,

Having completed the calibration using historic data, consider the problem of assigning
ARO descriptors to a set of current projects, To do this, choose an arbitrary project with
vector X where component Xw - I or 0 according to whether word W appears at least
once in the project writeup or not,

Now define a metric in word space, It might seem sufficient to use the metric

HiD - (xW - VDW)I
W

to represent the distance between the vector X and a typical descriptor vector VD-

There is, however, a problem that will cause this metric to need some modification,

As defined above, HD gives equal weight to all words in the calibrated data base,
However, some words clearly, have better discriminating power than others, and this needs
to be reflected in the definition,

To see how this comes about, consider the two ways that words can fWil to discriminate,
One way is for it word to appear in almost all project writeups, Such common words as: a,
the, it, of, with, and, ... would clearly fail to help to identify projects as to their content,
So also would words such as: advanced, novel, ,, and others which seem to find their
way into most project writeups.,

The second way is for i word to appear only once, or at most a very few times, so that the
word is likely random and thus not associated strongly with the project writeup's content,
Typographical errors might fill into this category,

In the first case, the components VDW for the given word W will be close to I, for all
desiriptors D; in the second case, the components will be close to 0 for all D. It follows
that, for word W to be a good distriminator among the D requires that the VDW vary
widely over the DA To reflect this, modify the definition of the metric HD as follows:

HD w II(XW VDw)I'GW
W

where Gw is a weighting function defined as

Gw - max (VDw) - min (VDw)
D D

152



Using this metric, the project is assigned descriptor D for which the metric is smallest,

In fact, one can also keep track of the smallest, second smallest, third smallest, etc, Using
these, there are several possible interpretations, One is the assignment of probabilities that
D is correctly assigned, Another is that the descriptor is to be apportioned (by funding
level, perhaps) according to the various D in some way, Yet another is a fuzzy set
interpretation that assigns partially to each of the D, yet not necessarily requiring partial
assignments to add to 1, The question of how best to perform such an interpretation is at
this point an open question,

Definition of "Word"

Although the foregoing nmodel suffices, In principle, to define an assigmnent procedure
that can be automated, there is yet one more refinement to add,

The refinement has to do with what it is that constitutes a word, In one sense, the matter
is easily settled, A word Is simply any string of characters (not itself containing a space)
between two spaces, The problem, however, is more subtle,

Consider, for example, the words "optic," "optics," "optical," and "optically," These
might appear to be four distinct words, and would according to the above model be
treated as four distinct words, Nevertheless, the words are very similar semantically, and
for maximum reliability in assigning ARO descriptors be treated as one word,

There are, in principle, several ways to do this, One could, at great effort and expense,
compile a table of all English words, augmented by all technical, governmental, and
military terms, and assign them to a subset of "root" words, Another way, at perhaps even
greater expense, would be to develop rules of English by which one could constructively
make the assignments, A much simpler way, though only approximate, is to truncate all
but the first k characters, where k Is a parameter to be determined, This is the only
practical method, as Is the one that will be used,

A problem, though, is how to best choose the truncation length k, If k is large, there is no
truncation and therefore semantically equivalent variants of a single word will tend to be
treated as distinct, as in the example above, If k is too small (e,&g, k - 1) then words that
are semantically very different will tend to be treated as identical, This is also incorrect,
The best value of k will therefore lie between the extrenmes. To find the best value, tests
were run based on a subset of the fill data base,

It turned out that k was essentially flat between k - 4 and k - 7, Outside these valueB, the
assignments became progressively erratic, However, k - 3 was not veiy much less reliable
than k - 4.
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It seems, based on the test runs, that truncating to the first 4 characters produces the best
results, as well as reduces the size of the problem after calibration, and also the
computation times for both calibration and descriptor assignment,

"In Itselt, it seems both a surprising and counterintuitive result that a value as small as k - 4
should Work as well, as it does,

Preliminary . Results

.. Test cases were run using small subsets of historic data to calibrate the algorithm, The
same subsets of data were used as test data, to be assigned to ARO descriptors, Subsets,
rather than the fIll hstoric data set, were used in order keep the test computations within
afaeibli computing time fbr test purposes, This procedure, in which calibration and
assignment dataeare the same, will of course generate test results that may be distinctly
optimistic, As a teSt of tfasibility, however, the procedure serves as a reasonable indicator
in the sense that, if the test results ara poor when generated In this way then it is unlikely
that the algorithm can be made to work under realistic conditionu,

The fl1 historic data base consists of 5915 projects that extend over about 540 AMO
• ddescriptors. Test cases, randomly selected from the &11 data base, have consisted of up to

about 245 projects,

Tentative results, generated in this way, tend to show an assignment reliability of 98% or
greater, This is clearly too optimistic to expect under realistic conditions, but at least
demonstrates the feasibility of the procedure, It is to be understood that the research is
ongoing, and that the results reported here are only a first cut, and are to be regarded as
tentative and, as noted above, biased toward an optimistic outcome,

Computation times for the algorithm have required up to 60 hours on a 486/50 PC, using
a Turbo Pascal implementation of the algorithm, The principal reason for the large
computing time has to do with memory limitations, The calibration matrix V and other
calibration data require too much memory to be kept in RAM, The algorithm was
therefore implemented in such a way that the calibrated data was stored on disk, The
classification procedure therefore required a large number of hard disk accesses, which are
slow and which consumed the overwhelming portion of the total running time,

A production version of the algorithm will attempt to reduce the number of hard disk
accesses that are needed,

Moreover, it has been observed that the definitions of the historic ARO descriptors had
been chosen in a way that can be improved in two important respects: (1) descriptors can
be elimInated or combined where there are found to be few or no project entries; and (2)
descriptors can be re-defined to reduce or remove potential ambiguities in the way that
they are likely to be assigned, A task is currently in progress to re-define the descriptors
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accordingly, and this has largely been done. The revised list contains only 150 ARO
descriptors,, as compared with 540 previously, This is expected to sharply reduce the
memory requirements and computation time, and to significantly improve the reliability of
the results.

Tests are in process but results are not yet available,

"n. L Implementation Problems

Givon, eventually, a successufl test implementation with the fill historic data base, using
the tevised ARO descriptors, there will remain several problems that will still need to be
addressed, These include the following:

Even as revised, the ARO descriptors may not be optimal, In principle, there probably
exists some kind of a natural clustering of the research projects that implies and
corresponds to some optimal set of descriptors, The Identification of such clustering and
the associated descriptors remains to be done,

The assignment procedure depends upon the existence of a number of calibrated vectors
vD that represent the various descriptors D, Amnon the IRAD projects, however, will be a
number which may be of Intereest, to the Navy or to the Air Force, but which are not
applicable to Army functions, Corresponding to these, there will be no ARO descriptor,
except fbr the default that Identifies them as "Not Applicable," or NA Unlike the other
descriptors; each of which represents projects with some common body of technologies
and applications, the NA descriptor represents a broad collection of projects with little in
common, The vector vD that corresponds to descriptor NA will therefbre not be "close" to
typical vectors of NA projects. Typically, then, NA projects will appear to be closer to
other descriptor vectors, and the projects will therefore tend to be misidentified. It may be
possible to filter most of the NA projects by requiring, for a project to be identified with a
descriptor, not only that the descriptor vector be closest to the project vector, but that the
distance between them not exceed some empirically determined threshold,

From one year to the next, technologies change and Army fUnctions (thus ARO
descriptors) also change. The calibration that was valid for last year will therefore not be
fully valid this year, Annual maintenance of tht, calibration, both as to technologies and as
to Armny functions, needs to be addressed,

Other Potential Applications of the Methodology

If successful, the approach used here to classifý IRAD projects with respect to their Army
functional relevance, as measured by ARO descriptors, might also be applied to other and
unrelated problems. Representative examples might include:
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In linguistics, it might be interesting to use this approach to study the semantic content of
words, parts of words, and sequences of words, The empirical observation, alluded to
above, that some significant semantic content is embodied in as few as the first 3
characters of a word, seems relevant,

In a related spirit, one might use this approach to study the psychology of how we humans
organize and perceive and understand language, A simple version of such a study might
take the form of presenting readers with standard English text, with all words truncated to
no longer than k characters, for various k, and to observe the kinds of difficulties that the
readers have in InterpretinS the truncated text,

In literature, forensics, history, and military intelligence, there arise questions of who
wrote what, The approach used here might provide a usefil approach in cases where
literary samples are available from each of the candidates for authorship attribution, and
the question were that of identifying the actual author,
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An Application of Classification with
* Potential Use in Reproductive Toxicology

Barry A. Bodt
Army Research Laboratory

Ronald J. Young
Edgewood Research, Development,

and Engineering Center

ABSTRACT. Mammalian sperm develop distinctive motion patterns
during Capacitation known as hyperactivated motility. Many

S.. studies now point to an association between hyperactivation and
in vitro fertilization. A method for the objective determination
of hyperactivation is sought as a tool for the clinical assess-
ment, of fertility, and as a marker for the investigation of sperm
function. Hyperactivated motility is characterized by a change
from progressive movement to a highly vigorous, nonprogressive
random motion. Historically, the determination of the level of
hihyperactivated -motility has been based on the visual inspection
"of the cell's path as recorded on film--an extremely lengthy
process for a sample containing hundreds of cells. Recent advanc-
es in videomicrography allow the cell locations to be tracked by
computer systems which record many motility characteristics for
each cell (e.g., the straight line velocity). In this presenta-
tion we will discuss the application of statistical classifica-
tion supporting the automated discrimination between hyper-
activated and nonh hyperactivated cells on the basis of their
motility characteristics. We will also preview on-going work
where the proportion of hyperactivated cells determined by the
classification rule is used as a response in assessing the
toxicological effect of certain metals.

1. INTRODUCTION. This work centered on the establishment of
an automated procedure to classify rabbit sperm cells as to their
motility, hyperactivated or non-hyperactivated. In FXigure 1 we
show the digitized representation of the swimming paths or tracks
of several cells. Hyperactivated motion is described as a highly
vigorous, nonprogressive, random motion (e.g., cell tracks 23,
27, 16 and 20 of Figure 1) . Hyperactivation. is the process of
developing from a linear progressive motion (e.g., cell tracks
21, 41, 9, and 12 of Figure 1) to hyperactivated motion. TIhe
interest in hyperactivation is that it has been found to be
strongly associated with capacitation, the biochemical/bio-
physical changes a cell undergoes, enabling it for fertilization
(Teserik et al., 1990). Whereas the components of capacitation
are not easily measured, the cell motions can be. Motility
classification, supported by these measures, has potential as a
marker for capacitation.
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Figure 1. Digitized representation of several cell tracks.
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Great imp:rovements have been made in recent years in quantify-
ing cell motions. Several systems are now on the market to
support computer assisted videomicrography. This technology
provides a VCR tape of the swimming motions of cells, a digitized
record of cell motion, and motility parameter values for each
cell. With this automation, it is much faster to characterize
cells in terms of their motility parameter values--a process once
carried out by hand as film frames were successively projected on
a grid. The task in this study was to take cell tracks
from previously determined hyperactivated or non-hyperactivated
cells and establish a rule for classification based on these, now
easy to establish, motility parameter values.

2. ESTABLISHING MOTILITY PARAMETERS. The motility parameters
of 7ff"hyperactlvated sperm obtained by incubation of sperm from
four rabbits under the capacitation conditions of Bracket and
Elephant (1975), and 899 non-hyperactivated sperm incubated for
one or two hours in T medium were chosen for the statistical
analysis. The hyperactivated sperm population contained the major
types of hyperactivated motion noted in the literature. The
parameters under study were VSL [velocity over a straight-line
path (pm/sec)], VCL [velocity over a curvilinear path (pm/sec)],
VAP (velocity over a smoothed curvilinear path; 5-point moving
average (pm/sec)3, LIN (VSL/VCL), STR (VSL/VAP), WOB (VAP/VCL),
AALH (average amplitude of the lateral head displacement (pm)],
14ALH [maximum amplitude of the lateral head displacement (pm)],
BCF [beat cross frequency (Hz)], Dance [AALH/LIN (.um)], and Dance
Mean [VCL*AALH ( p 2/sec).

3. PREVIOUS CIJZSSIFICATION MODELS. Others have attempted
to use the motility parameter values for classification (e.g.,
Mortimer and Mortimer, 1990; Burkman, 1991) with reasonable
success. A potential for further analysis was suggested
because 1) LIN, a key measure in the decision, would in some
cases be misleading, and 2) there was opportunity to employ
more sophisticated means of statistical classification.

The first issue was the reliance in decision rules on LIN. In
Figure 2, four possible tracks are given with the associated
values for VCL, LIN, WOB, and AALH. From hortimer and Mortimer,
high values (> 0.60) for LIN are indicative of a non-
hyperactivatea or linear progressive motion, and low values
(< 0.60) indicate hyperactivated motion. Figure 2a,b show non-
hyperactivated and hyperactivated motions, respectively, where
the values for LIN are consistent with the rationale for its use
(i.e.., when VSL and VCL are different, departure from linear
progressive motion is present.) Figure 2c,d show non-
hyperactivated motions where, because of the looping path of
the cell, the values of LIN are in the range for hyperactivated
motion. Thus, the measure LIN will in some instances mislead.

A second issue was in the classification methods employed.
No article in the biological literature suggested using tradi-
tional statistical methods for classification. Techniques

159



i,

A 1 B VOL 246 Pm/sC

WOO 0.08

AACL 1263 IrJsVOL' 136 pJmlse4C

• "- •LIN 0.9T
T pm.• WOO 0.A7

c D

VCL 123 pmmsec
LIN 0.21
Woo 0.9 WOB 0.92
AALH. AALH .8 pm

Figure 2. Motility parameter measurements with accompanying cell
path display for motion types; a) non-hyperactivated,
b) hyperactivated, and c-d) non-hyperactivated.
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employed were, for example, comparing the univariate relative
frequency histograms associated with the hyperactivated and non-
hyperact vated cells, using t-tests to test the difference
between mean values from the two groups, and examination of
summary statistics from each group. The actual decision rule
suggested by Mortimer and Mortimer would have required a cell to
satisfy each of three constraints: VCL > 100 pm/sec, LIN < 0.60,
and AALH > 5 pm. Each were determined iidividually.

4. GRAPHICAL ANALYSIS. Classification potential was assessed
graphically by comparing the motility parameter distributions for
hyperactivated and non-hyperactivated cells. Figure 3 shows
unmodified parallel boxplots of the hyperactivated (H) and
non-hyperactivated (N) class distributions for each motility
parameter. Data were normalized to support examination of the
relative classification potential among motility parameters. For
LIN and WOB, at most 25% of the non-hyperactivated cells show
values in the same range as those of the hyperactivated class,
indicating that both have strung potential for classification.
Based on the degree of separation for the inner 50% of the data,
it is likely that AALH, MALM, and VCL*AALH would also be reason-
able classifiers. Note that a classification rule based on VC
alone did not appear promising.

The relative frequency distributions for LIN, VCL, AALH, and
WOB are given for each motility class in Figure 4. LIN, VCL, and
AALH were selected for display because of their prominence in the
literature (2-4), and WOB for its importance in this study.
Hyperactivated cells were absent in the range (0.8 - 1.0) for
both LIN and WOE, and conversel high percentages of non-
hyperactivated cells, LIN, 75.51 and WOB, 94.3% were found over
this range. This strongly suggests good classifying potential for
each. AALH shows only minimal distribution overlap. VCL has
considerably more. The inaividual concomitants of hyperactivation
suggested by Mortimer and Mortimer are reasonably consistent with
these results despite the fact that rabbit sperm, not human
sperm, values are reported here.

As a starting point for improvement, the rules suggested by
Mortimer and Mortimer were implemented on our data. The results
appear as Figure 5. In Fig re 5a it can be seen that cells satis-
fying the VCL and AALH constraints (partitions have been over-
laid) for hyperactivated motion are very likely hyperactivated,
but a good number of cells not satisfying those constraints are
also hyperactivated. VCL and AALH are linearly associated. In
Figure 5b all three conditions are shown. Again, a number of
hyperactivated cells do not meet the decision criteria. Of course
the rules are being implemented on a species for which they
were not intended. Further investigation of rules based on
these parameters and our data was warranted.
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Figure 3, Parallel boxplots of motility parameter measures for
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163



400 A Scatterplot of VCL and AALH

350

300 
H

250

sond 
hyperactivated

0 r~~~iof hype rcige

-2 2 610 14 1

AALH (Am) 1822

a. 8 $•tterPlot of LIN and AALH With Levels Of VCL Indicated

Go 0 VCLý-io andnohyperactivated
0.7VCL 

10 and nomhypera.tlVated
0.5

A A t A

0.3 A"* .0 0~

0.1 A AA, • . - . 0#A A

.2 2 -10 
41

AALH(pm) 22rigure 5. 8catterplots soi
hyperactpvat•..howing 

the association 
between actual

hyperactivated 
motil'•t and predicted hyperactivatd... 

where te quadrant H sigrrf_ 
predicted

hyperactivated 
motility based on VCL and AALH in

a) and based On LIN and AALH with additional VCLinformation in b).

164



5. DISCRIMINANT ANALYSIS. Discriminant analysis and regres-
sion, on a (0,.1) class variable, were used to explore models for
classification. All possible subsets regression was used to
select the best models for each number of independent variables.
BMDP programs supporting stepwise discriminant analysis and
regression were used in the analysis. Table . lists the results
for indiiridtal motility parameters, the best two-parameter
models, and the best three-parameter models. Though many models
perform well, it is clear that WOB is the key motility parameter.
Model 11, based on WOB and VCL, was judged to be the best. It had
the highest efficiency, and included motility parameters which
were not strongly linearly associated, correlation -0.47.
(Interestingly, multiple correlation made the use of AALH, LIN,
and VCL together an undesirable choice from a prediction
standpoint.) The discriminant form of the model was selected but
did not differ markedly from the regression model. Cells were
classified as hyperactivated if

WOB < 0.596 + VCL * (6.76 * 10").

Jackknifed cross validation procedures using BMDP software
reinforced this model selection.

6. CART MODEL. Tree-structured methods were also used in
developing a moal (CARTT, version 1.1, 1985 California
Statistical Software, Inc.) The CART routine offers many options;
only the defaults were used. Generally, CART works as follows for
univariate partitions. Each possible predictor variable (motion
parameter) for class is examined individually. For a specific
variable, the program searches over all the values, resting at
each one to see how efficient it would be to partition the data
into hyperactivated and non-hyperactivated classes based on that
value. (In our data set this requires over 1200 assessments of
efficiency for each variable.) The routine notes the best value
for that variable based on classification efficiency. The vari-
able which partitions the data in the most efficient manner is
selected and its value is used as the first partition of the
data, creating two nodes, one each for hyperactivated and
non-hyperactivated classes. Within each one, some cells may be
misclassified. The routine then searches among the variables
looking to further partition the two nodes to increase efficien-
cy. The routine eventually settles in a decision tree for classi-
fication with maximum efficiency subject tp the constraint that
the tree complexity should not be great. I

In running CART, all the motility parameters considered
earlier as possible predictors were included. The result was that
CART chose only WOB and VCL, with the rule: classify as hyper-
activated if

VCL > 51 and WOB < 0.79.

The decision tree is illustrated as Figure 6. Of the 1221 cases
examined, only 12 non-hyperactivdted cells and 2 hyperactivated
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Table 1. Summary of best models using discriminant (D)/regression (R) analysis

based on 322 hyperactivated (H) and 899 nonhyperactivated (N) cells

Misclassified (No.) Efficiency (%)

Model Variables H (D/R) N (D/R) D/R R",

1 WOB 22 / 31 19 / 15 96.64 / 96.23 0,838

2 UN 21 / 34 63 / 46 93,12 / 93.45 0.702

3 AALH 59/91 5/4 94.76 /92.22 0,639

4 MALH 63/ 109 16/9 93.53 /90.34 0.600

S VCL*AALH 113 / 188 4 / 0 90,42 / 84.60 0.411

6 STR 132 / 171 78 / 36 82.80 / 83.05 0.356

7 VCL 108/209 205/56 74.37 /78.30 0.261

8 VSL 56 / 210 301 / 26 70.76 / 80.67 0.235

9 AALH/IIN 190 / 283 1 / 0 84,36 / 76.82 0.140

10 WOB, AALH 21 / 32 16 / 10 96.97 / 96.56 0,856

11 WOB, VCL 23 / 30 12 / 11 97.13 / 96.64 0,847

12 VCL UIN. 23 / 34 34 / 29 95.33 / 94.84 0.757
AALH

13 VCL UIN. 24 / 38 40 / 30 94.76 / 94.43 0.746
M.ALH

14 VCL LIN. 24 / 40 50 / 36 93.78 / 93.7S 0.729
VCL*AALH
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cells were misclassified for an efficiency of 98.9%. Cross
validation attempts, holding out randomly selected subsets,
consistently identified WOE and VCL as the important motility
parameters. Application of this decision rule to our data appears
as FigUre 7.

The use of LIN, AALH, and VCL was also investigated. CART did
not choose VCL. The tree was slightly more complex, having five
nodes instead of three as above. The classification efficiency
was 96.5%. When a model based on WOE and AALH was attempted, CART
did not choose to use AALH, opting instead for a rule based only
on WOB for an efficiency of 97.0%,. Other runs using linear
combinations of variables were attempted but resulted in more
complex decision trees.

7. MODEL COMPARISON. Figure 8 illustrates decision criteria
delivered by the discriminant and CART models using VCL and WOB.
To understand the model differences we have partitioned the point
set WOB X VCL, where WOE ranges from 0.0 to 1.0 and VCL ranges
from 0 to 350, according to the hyperactivity decision rules for
each model. A cell whose WOB and VCL values locate it in a shaded
region would be classified non-hyperactivated by CART. The
unshaded region corresponds to a hyperactivated classification
delivered by CART. The bold line represents the discriminant
model. Points falling below that line would be classified as
hyperactivated, and above, non-hypetactivatpl. Within each region
we have indicated the true number of hyper, eivated and non-
hyperactivated cells present. From this one can assess their
re lative performance, and will find the CART model to be slightly
better.

8. APPLICATION. An experiment was conducted in which sperm
cells were exposed to metal ions in four concentrations over
four different time periods. This factorial design was run
within blocks (different rabbit donors) . Cells were identified
as hyperactivated or non-hyperactivated by the CART model estab-
lished above. Initial graphical analysis (Figure 9) suggests an
adverse effect induced by increased exposure to lead on the
percentage of motile cells which exhibited hyperactivated motion.
Since lead is known to be a reproductive toxicant, this might
suggest that one impact is in its inhibition of hyperactivation.

9. SUM.ARY. A classification problem in reproductive toxi-
cology was approached using well known statistical procedures.
We found classification criteria involving a different set of
motility parameters then what had been suggested in the litera-
ture. Further, the combination of WOB and VCL performed better
than the popular set of VCL, AALH, and LIN. Application of the
new model is now being made to help uncover potential reproduc-
tive toxicants.
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Figure 8. Comparison of models, where the unshaded region and the
half-plane below the discriminant model denote regions
for predicted hyperactivated motility by CART and
discriminant analysis, respectively, and the actual
counts for hyperactivated (H) and non-hyperactivated
(N) motility are given.
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Figure 9. Smoothed scatterplot showing a possible interaction
effect on the percent of motile cells which are
hyperactivated (PMOTHY) attributable to lead exposure
expressed in terms of time and concentration
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Abstract
This article presents an analysis of the smaillsample distribution of a

class of approximate pivotal quantities for a normal coefficient of variation
which contains the approximations of McKay (1932), David (1949), the 'na•ve'
approximate Interval obtained by dividing the usual confidence interval on the
standa'd deviation by the sample mean, and a new Interval closely related to
McKay (1932). For any approximation in this class, a series is given for e(t),
the difference between the cdfs of the approximate pivot and the reference
distribution. Let & denote the pop ,lation coefficient of variation. For McKay
(1932), David (1949), and the 'naive' Interval e(t) = 0(m2 ), while for the new
procedure e(t) = 0(04 ). Examples involving strength data for a composite
material are discussed.

Key Words: Noncentral t distribution, chi-squired approximation, McKay's
approximation

I Introduction

If X is a normal random variable with mean p and variance a 2, then the parameter

ICE (1)

is called the population coefficient of variation. Let Y, for i = 1, ... ,n be an
independe.at random sample, with Xi ', N(p, a2) for each i. In terms of the usual
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sample estimates of the normal parameters

- Xi/n (2)

and
n

s , = - .)'/(, - 1), (3)
i-1

a point estimate of (1) Is
K S/.X. (4)

This statistic is widely calculated and interp.reted, often for very small n, usually
Without an accompanying confidence interval. An exact method for confidence
Intervals on x based on the noncentral t distribution is available (Lehmann, 1986,
p. 352) but it is computationally cumbersome; hence the need for approximate
Intlrvals. In this article, we will investigate an approximate pivotal quantity which
can be used to easily calculate confidence intervals and perform hypothesis tests on
K which attain very nearly the nominal confidence level or size. These calculations
require only standard tables.

Let. Y%, denote a X2 random variable with v = n - 1 degrees of freedom, and
define W., * Yl,/v. For a E (0,1), let X2,. denote the 100a percentile of the
distrlbu\•ion of 1,, and let t - x8,61v be the corresponding quantile of W,,. Define
the random variable

K2(1 + ,p)Q; = i+ X2) (5)

where 9 = O(Y, a) is a known function. If we choose 9 so that.

Pr(Q _< t) ft Pr(W, _< t) (6)

then, since the distribution of W,, is known and free of x, we can use Q as an
approximate pivot for constructing hypothesis tests and confidence intervals for
K. We define the accwracY of the approximation (6) to be e(t) a p - a, where
ps Pr(Q _< t). Note that p is the actual confidence level of a one-sided confidence
interval for n2, based on Q, having nominal confidence a. In Soction 2, we give
a Taylor series expansion for e(t) in powers of r2', leaving the details to the Ap-
pendix. We then consider four choices for 9: corresponding to the approximations
of McKay (1932) and David (1949), to the 'na've' approximate interval obtained
by dividing the usual confidence interval on the stardard deviation by the sample
rnean, and to a new interval closely related to McKay (1932).
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McKay (1932) proposed that Q and W,, are appruximately equal in distri.
bution when 0 = v/('v.+ 1), but he was unable to investigate the small-sample
distribution of Q. Consequently, Fieller (1932) and Pearson (1932) performed a
simulation study, with satisfactory results. David (1949) proposed McKay's ap-
proximation with 0 = 1; this suggestion has received much less attention than
McKay (1932). Much later, Iglewics and Myers (1970) compared selected quan.
tiles of the approximate distribution for K, obtained from Q with McKay's choice
of 0, with the corresponding exact values obtained using the noncentral t distri-
bution. This numerical investigation demonstrated that McKay's approximation
is very good, at least for n > 10 and 0 < x _5 .3. Instead of examining differences
in quantiles numerically, we will Investigate differences in cdfs analytically, and
thereby develop a deeper understanding of the small-sample properties of these
approximations.

2 A Taylor Series for e(t)

Denote the distribution of W., by H,(.) so that, for 0 < a < 1, H,(t) = a. Since
u(m) = :/(9: + 1) is a monotone function with inverse u- 1(l,) = y/(1 - Oy),

Pr \K2 ) (1+.'0- ) : t- =Pr( K1 ,< ).x2 (7)

- [P ) 1+ (I - t)M2 Iap

For a given choice of 0(v, a), we have defined the accuracy of the corresponding
approximation to be e(t) = p - a. In the Appendix, we show that

(1+ (1-7 )v-4 K1 (8)

+1 -v + lv (I- Ot) + (• -v + ivt) - v + vt)(I - Ot) 2

I +V 2 (1 +P)

+ (2 + v - vt)(1 - 8
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For McKay's approximation, 9 = 9 () - V/(v, + 1), and (8) becomes

ci ft)H() f2r.2 4[2 + 9 P+ 2V2 -3 + 2 V4()
V + 1 +2(1+V)3

+ 3vt + V+tI -+1,4t- _5V(1w - 200 + 94t-1 5&,4t3 + yAt4 K4

2(1 + V)3 J

David (1949) proposed Q with 9 = 0(2) m 1 as an approximate pivot for a normal
coefficient of variation. The accuracy of David's approximation Is

e2(t) is tgt(){ (t -2)IC2" 4.1 [4 + 14 v- 10 v2+v4( + 4,V3 (10)

e2t)tH~ t{Q2f j V + 1 4(1+ v)2 ( 0

+-16-t + 4Pt + 18v 2 t - 14 vst + 6t2 - 15Vt 2 - 6V2t 2 + 18V 3 t2

4(1 + V)2

+ w5 V 4 - 10&3 t.1 + 2 &w2 t + 2 V3 t4 44(1 +V•)2
+ 0(0)

Another reasonable choice for 0 Is $(3) S 1/t. Confidence Intervals are obtained for
this choice of 0 by simply dividing the endpoints of the usual confidence interval
for a by I. The corresponding approximation has accuracy

e3( tH,,(t) ( . Vw(1) 12V +

+ [-6+j11-6V6+W3-3v-t+6V2 t-3V3 t + 3 V3 -t2 V-3 t3 4 +o()

Finally, note that if

0 (4) 2=( )- + V 2 ,+ + i,(12)

then the 0(K2 ) term in (8) is zero, and we have an approximation with accuracy

e4(t) =- t•(t) {[-2 -3v+ 12v 2 - 9V3 + 2V4 +Vt - 15tt +210'(t-- 7v4 t

2 (1 + )3

5 5wIt 2 - 16V3t2+9,V4 t2+4V3t3_5V4t3+V4t4]
4+O()}(16
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We will refer to the approximations corresponding to these four choices of 0 as
Approximations 1.4, or the McKay, David, NaYve, and Modified McKay approxi-
mations, respectively.

3 Discussion

If K is small, as is usually the case in practice, ej(t) will also be small for j
1,..., 4, so any of the above approximations will be satisfactory. For large sam.
ples, 0(j) = 1 for j $ 3; hence the three corresponding methods are asymptotically
equivalent, Investigation of el(t) and e2(t) demonstrates that David's approxima-
tion Is not clearly better than McKay's, and, In any case, McKay's method is much
more often used than David's. Also, Approximation 3, though adequate If I is suf-
ficiently small, Is substantially less accurate than the other three approximations.
We will therefore not consider David's and the Nalve approximation further, and
restrict attention primarily to the McKay and Modified McKay approximations.

Denote *(.) regarded as a function of a by 8(.), that is 1(a) a e[H;1 (a)].
The difference Wo(a) n I1(a,)I - 114 (a)1 will be positive when the Modified McKay
approximation is more accurate than McKay's approximation, and negative oth-
erwise. Hence this difference provides a means for comparing these two methods.
Using the noncentral t distribution, it Is straightforward to evaluate jo(a) exactly,
and this is preferable to using the approximate formulas of the previous section.
In Figure 1, results are displayed of computing Wo(a) numerically, for 20 values of K
between 025 and .5; for sample sizes of 2, 5, 10, and 25; and for a equal to .01, .05,
.95, and .99. Note that the Modified McKay method Is usually more accurate than
McKay's method. What Is not clear from these differences is that, particularly
when P is small, the Modified McKay approximation is often ewtreme1y accurate:
in fact, virtually exact. This point is made by Figure 2, which shows the accura-
cles of these two methods (as determined from the noncentral t distribution), as
functions of a, for a sample size of 5, and for x = .05 and r = .25, respectively.

4 Confidence Intervals and Hypothesis Tests

In this section, we illustrate how the approximate pivot (5) can be used for approx-
imate confidence intervals and one. and two-sample hypothesis tests. We assume
that P is positive. and that the probability of K being negative is negligible.
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A 100(1 - a)% approximate confidence Interval based on (5) is

A. E V T2 G K1).]: (14)VT17173 + 1) - KF' VT2(T# +1 -2'

where tj a X* 2 and t2 B XOn,../IV. One-sided Intervals can be determined
similarly. If we let u, a vi, for i = 1,2, then we can write the McKay and
Modified McKay confidence intervals as

Al = j {1 [-- 1) K2 + i],2 K [(-' 1) K2 +U1]1/

and

A4  {K + - 1) K ] K [(") -- 2
(16)

respectively.
Since (1 +'2)/Ic2 In (5) Is a monotone function of x2, we can also use (5) to test

he null hypothesis H0 : it = nO, for some known no. An endpoint of the Interval
(14) does not exist If t(#K2 + 1) - K2 _ 0, or equivalently,

K2 ý.,• -_, (17)
1 -t

In order for (17) to hold for the choices of 0 considered in this article, either K 2

must be large or t must be small. Neither of these conditions are likely to occur in
practice except possibly when n and t are both very small. If K is small but (17)
holds, then one can either reduce the confidence level, increase the sample size,
or else use the exact method based on the noncen-tral t distribution. Note that If

9(•) = 1/ti for i = 1, 2, then (14) becomes
A3 = (K/•1_, Klv/r),()

which is the usual interval on a, with the endpoints divided by A.
Assume that we are given two Independent random samples of sizes n j and n2,

having population coefficients of variation i. and X2, with sample estimates K1
and Ka, respectively. From (6) we see that

K?•(I + OK2) •;+ ),,•V =_ F,1 I"•K2(1 + OK?) ~ t(1j+K) + p2(
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where Ft,,• denotes an F random variable with v, = n, - 1 numerator and
V = n2 - 1 denominator degrees of freedom. When ic, = X2, 7 = 1, and it is
easy to show that 7 is monotone Increasing in p E P2/ml. In fact, since we are
assuming that both P1 and n2 are small, 7- ; p. Hence, we have an approximate
F test for the equality of two coefficients of variation, analogous to the usual F
test for the equality of variances.

5 Examples

The tensile strength of five specimens of a composite material are a follows (in
1000 Psi): 326, 302, 307, 299, 329. We have 91 = 312.6 and S1 = 13.94, so
that K1 = 045, ul = , 11.14, and u2 = X4.0s - .4844. Equations (15)
and (16) lead to confidence intervals on P. by the McKay and Modified McKay
methods, respectively. For this example the Modified McKay procedure gives the
90% confidence Interval (.0269, .1299), which differs from the McKay interval only
in the fourth decimal place.

Five specimens of the same material are tested in shear, giving shear strengths
as follows (in 1000 Psi): 9.7, 9.6, 9.4, 9.4, 10.9. For these shear data, X2 = 9.8,
S2 = .6285, and K2 = .064. To test the null hypothesis that the population
coefficient of variation for tensile strength equals the corresponding value for shear
strength, we compute (for the McKay method)

KJ[I + "a/( + 1)I] (0.045)[l + ý.8ý .04 A.5(KJ[1 + vl(l+ 1)K2] --.0642(l + (.8)(.04n ) -A .it ,Mo

Since the probability that an F4,4 random variable is less than .495 is .256, there
appears to be Insufficient evidence to reject this null hypothesis. Note that the
Modified McKay method Is not appropriate for this significance test since 0(0) is
a function of a.

6 Conclusion
A class of approximate pivotal quantities for a normal coefficient of variation re.
lated to the approximation of McKay (1932) has been investigated analytically,
with particular emphasis on four special cases. The most important results are
that, if K denotes the population coefficient of variation, then the difference be.
tween the actual and nominal levels of McKay's (1932) confidence interval are of
O(ti), and that a very slight modification of McKay's method leads to an appar.
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ently new 0(X4) method which is usually superior to McKa.y (1932), and which 1I
recommended.

Appendix: Derivation of Equation (8)

For most applications K will be small, so our plan Is to let

q (m) + (21)

and to expand Pr[(K/) 2 <- 1] in a Taylor series In x2, then to expand each term
in this series again In powers of 0, using (21), We assume throughout that q is
nonnegative; this Imposes slight restrictions on a and it which are not important
in practice.

The random variables t and S are equal in distribution to

JA h+ Z/VI (22)

and
S = fw* 14 ' p(23)

respectively; where Z -' N(O, 1), and Z and WL are independent. Hence

()= W (1 + n/IV") 2 = [T,,,] (24)

where T,,g denotes a noncentral.t random variable with degrees of freedom v and
noncent~ality parameter 6 a y//. By conditioning on Z and expanding in a
Taylor series about Z = 0, we have that

P=Pr[() _q] =E {H, [q (1(+ )] =HH(q)+qH.(q).{ (25)

S+ 1 4( + I1)2

+O(Xe)}.

Using (21), the terms in (25) can now be expanded in powers of K2 about K = 0,

giving

N,(q) = H,(i) + t(9t- 1)H'(t)K2  (26)

+ t(at _ 1)2/2 [2H80 ) + tHf,(t)] K4 + 0(K6 ),



H.(q) = H�(t) + t(Ot - l)H,(t)pc)2 + 0(X4 ), (27)

and (l-q)v- =1 (- )v,-1 (Oet-1)(v-i-21O- , +O(t'). (28)

+- l+ L- I + 1+(

Using the identity
to, , (l-t)-1] H?@)l (29)

substituting (26), (27), and (28) into (25), and collecting terms In .2 leads to (8).
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Improved perlodogram.based estimators of frequency for the Couinor model

By R. JOHN WHAVER, MARSHALL N. BRUNDEN and JONATHAN RAZ
I. Th Upjohn CoMpmy, Kalamasoo, Michigan 49001

and tat UnlvuWey of Michigan, Ann Arbor, Michigan 48109

SUW4ARY

This paper discusses the estimation of the parameters of the Cosinor model, The standard
perlodopam-beud approach of Walker (1971) produces blsed estimates of all the parameters, and it will
be shown that the bis in the frequency estimate can be substantial. An alternative periodogram.baaed
estimator of frquency is proposed and Is shown to have minimal bias. )

Somn kAy word* : Couinor model; Frequency estimation; Periodogram; Time series.

1. INThLODUCTION

Suppose we have a tim aris y,, 1 ,2,.. ., n, where y, is the observaton tai at time .
Thi model we consider is

Y," aoco"(0o t) + Po sin(WOo t at÷s.(1

whor the ar s v am asued to be independent with E (a) a 0 and Vr (e) ,, 0 for all t. This model
was I;o -e d for the analysis of biological rhythms by Halberg, Tong and Johnson (1965), who called
It the CoAnor model, Further details have boan given in l-Iberg, et. t. (1972), Nelson, et. a1. (1979) and
Bingham, e. a&. (1982). This model has been extensively used and reported in the chronobiology literature,
and computer prmms for its implementation have been published by Monk and Fort (1983) and Vokac
(1984).

In matrix notation, this model can be expressed as
Y - X0o0o +t

whore y i the a x I vector of the observatons, X is the n X 2 design matrix with cos(cO s) in row
I of the fut column, and sin(w t) row r of the second column. The 2 x 1 vector 4i equals ( ae, 16
)P and 9 Is the n x I vector of error terms. In the conventional Cosinor model, the frequency (or
equivalently the period) is considered to be fixed and known, and the subscript 0 indicates that X* is a
function of the o parameter value ce. In this case, the model is linear in the unknown parameters Q0
and , and the usual least squares estimates of # apply.

Many time, however, we may not know the true frequency and we need a way to esdmate all
the puranoetera simultaneously. A common approach is to use the method of nonlinear least squares
estimation. For the Cosinor model, then methods have problems with converging to local rather than
global minima, and are extremely sensitive to the choice of starting values. Altrnative methodology is
desirable.
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2. STANDARD PBRIODO0RAM 81 IMIATORS FOR THE COSDNOR MODEL

A natural approach to this estimation problem would be to use a method based on theperiodogram, or some function of It. The periouogram has long been used in the hidden periodicityproblem, and ET. Jaynes (1987) has demonstratl that it is a sufficient statistic for inferences about a
single stationary frequency, when the errors are ncrmally distributed.

Periodogram-based estimators for the Cosinor model were proposed by Whittle (1952), and havebeen extensively discussed by Walker (1971), who derived many of their properties, The estimators are

w(6) - at.y'cosa(6t) (2)

-() " ryain((bt) (3)
n j,!

where I Is much that

O(6<)

and

n 1. 2

The expreusion 4,(o)) is one of the usual definitions of the periodogram, and we will refer to it asthe Standard peuiodogram. The estimator & is defined as the value of co that results in the absolutemaximum of /.(c) for 0 < o) < n. This estimate of a) is used in (2) and (3) to get the estimates of %•and 4 These estimators are equal to the least squares estimates when to, is known and n w cPo, and arecalled approximate least squares estimates (Bloomfield, 1976). Walker proved that they are consistent and
asymptotically normal, and gave expressions for their asymptotic variance matrix. Rice and Rosenblau(1988) show that the estimates of % and P. will be consistent only when %o Is estimated with precision
o (n '), and that the asymptotic theory should be used cautiously,

In obtaining the Walker estimates of frequency, Diggle (1990) suggested considering allfrequencies 0 < w < x, not just the Fourier frequencies. The algorithm searches for the ordinate that resultsin a maximum along a grid of specified length, centered on the Fourier frequency that produces themaximum periodogram. This type of approach Is also discussed in Rice and Rosenblatt (1988) and Zhao-
Quo (1988).

The Walker estimators have good asymptotic properties, but can be significantly biased for amoderate length time series. If the model holds and E(y1) = aocos(4 t) + O30sin(4 t), then
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£(Mw) Ito) - C'(0)+Coo) + C'N(coow)]

[S(,o÷,o0 ) 0 ).(0c-co.)]

where

S,,(u)u

sin

C "(u) U Cos(~.. s
sin(.2 )

This expression simplifies to the following if (o - coo

8 (d(o)) I ca) uoý .. 0. ¢,(2tao) ÷•L $.(2o0))

Similar expression$ hold for N.
Any bias or estmatlon error in d) may result In additional bias In the estimates of N and •,

and even If we are able to estimate wo exactly, our estimates of Nh and • will still be biased if n is not
an intair multiple of de true period.

3, BIAS IN THE STANDARD PERIODOURAM ESTIMATOR OF FREQUENCY

There has been little published on the bias of the Walker estimator of o4. The exact bias has not
been determined, but Bloomfield gives an indication of the approximate bias, credited to Whitde (1952),
as

El(0) a *o + ternu invoviLng 2..'I

Rice and Rosenblatt also discuss the bias of the frequency estimate, and show for a moderate
length data series, the bin can be significant. In a simulation with %0 - 8, I0 - 0, oh - 0.5, and n=100,
the bias was shown to be .0013, which is more than twice the standard error indicated by the asymptotic
theory.

An analytic expression for the bias of the frequency estimator cannot be derived. As an
alternative, we will consider an approximation suggested by the work of Rice and Rosenblatt (1988). To
measure the bias in the estimator of co, we will approximate E(0) by the value of co that maximizes
the expected value of the periodogram.

To derive the expectation, the periodogram is reexpressed in matrix notation. As in Section 1,
define the n x 2 matrix
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cos(co) sin(o)

cos(2w) sin(2o))

cos(no,) sin(am)

For simplicity, we will write it as X in the discussion that follows, remembering that It is actually a
function of cw. Again, let us denote X (%c) as Xv. The Walker estimators of N and Ie can then be written
in matrix notation as

w Eli -u X ly
tW) n

and the Standard perlodogram can be expressed as

which is

The periodogram in matrix notation has a familiar form from the study of linear models. The
matrix XX' is square (n x n) and symmetric, making the periodogram a positive semidefinite quadratic
form y 'Ay with matrix A = (21n)XX'.

The expectation is easily derived using properties of quadratic forms. The Cosinor model can
be written asy w s, + e#, for i w 1, 2 .... n, with s, w N cos ( co t ) + N sin ( t). In this form, the
vector y is composed of a signal vector s, with el element s, , and a vector of errors c, For the general
signal plus noise model, the expectation of the corresponding quadratic form is

E(y'Ay) - a 2 trace(A) + s'As

Applying this to the Standard periodogram we have

The first term has no effect on the location of the maximum, so only the second term will need to be
considered.

The expected periodogram is a function of the true parameter values ao, 00, we and the sample
size n. Given values oi these parameters, we can fiiid the w that results in the maximum and obtain an
approximation to the bias. In generai, for given values of q and n, it can be shown that the bias will be
the same for all %• and P30 such that N = kp,. The bias depending on k is equivalent to the bias depending
on the phase 8o = arctan2(-P o/cx), since tan (0,) = -k when a0 = kp0 . We consider 0o equal to 0, n/4, It/2
and 3n/4. The values selected for the true frequency q are the midpoints of each quarter of the interval
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[0,i]. Sample sizes of n ranged from 10 to 500. In order to ensure that we find the global maximum of
the expected periodogram, we use a grid search algorithm. The expected periodogram is first calculated
at the Fourier frequencies, and the Fourier frequency that results in the largest periodogram ordinate is
identified. This frequency is co,,, Using co, as the center of the grid, a refined search with a grid mesh
of 0.0001 is made from ,.i .2 to o ,,. ., representing a range of four Fourier frequencies. Extensive
simulations show that th expected periodogram approach gives excellent estimates of the true bias.

Figure 3.1 gives a graphical picture of the bias in the estimator of frequency for one set of
parameters, 00 = 0 and true frequency co = Wr8. It shows that the bias itself is a periodic function of
sample size, Tbis type of pattern was seen for all combinations of parameter values we looked at, though
the bias was sometimes negative, or alternated from positive to negative with increasing n.

Figure 3.1
Bias in the Standard Periodogram Estimate
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4, IMPROVED ESTIMATORS FOR THE COSINOR MODEL

We note the similarity between Walker's estimators and least squaws istimators in Section 1, For
non-Fourier frequencies, the Walker estimates of aN and 030 are approximately equal to usual least squares
estimates when co is known, and are equal when n n cPo or when co is a Fourier frequency. This
relationship suggests another definition of the periodogram for non-Fourier frequencies, where we replace
the "approximate" Walker estimates by the actual ordinary least squares estimators.

189



The ordinary least squares estimators of ac and Pa are given by

L 8 - (X X)'1X'y
*LS

Define the "least squares" periodogram as

or equivalently as the quadratic form

I:"((o) = y'Ay , A a n(X(X*X)':(XX)-Ix

Since the actual least squares and Walker estimators are equal et the Fourier frequencies, the two
peciodograms me also equal at these frequencies. As we have replaced "approximate" estimators with
"exact" estimators in the new periodogram, we might expect our estimate of frequency to improve also.

Again, the bias of the least squares periodogram estimator of frequency Is approximated by
maxmizing the expected periodogramin. The least squares periodogram Is also a quadratic form with

A a n/2 (X(X 1X)-1 (X 'X)'X 1) . Unlike the Standard periodogram, we initially cannot ignore the
contribution of the error term, since

trace(A) 2 )t
P1 Dq(2C0

where

sin(2.. )
D. (u) =

sln~(.. )

This term has negligible effect unless the signal to noise ratio is very small, n is small or oq is close to
zero or 2n, The calculations of bias are performed for the same values of O0, co and n as for the Standard
periodogram.

The results show that estimation of the frequency based on the least squares periodogram is also
biased and does not really offer an improvement over conventional Walker estimates. This is illustrated
in Figure 4.1, which reveals an interesting and possibly useful relationship. In the cases e~amined, the bias
of the Least Squares periodogram estimate is always of the opposite sign its the bias in the Walker
petiodogram estimate, and of approximate equal magnitude. This suggests using a periodogram that is in
some sense a combination of the two periodogmms.
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Figure 4.1
Bies in the Lea Squrs PFerodogpram Esdmate
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The simplest combination is the arithmetic average of the two perlodograms, a quadrati form
with

A -X[.i +4(XUX)-l(XaX)-, Ix.

Baed on the blase. we have seen with the Standard and Leat Squares perlodograms, the
estimate of frequency based on the average perlodogrum is expected to give an unbiased estimator of 4
, or at leat one with reduced bias. Calculations and simulationm show that the latter is true. The new
average perlodogram estimator has less bias than both the Walker or Least Squares estimators, and the
bias approaches zero faster as n becomes large. See Figure 4.2.

Another approach is to use a geometric average. Let us define the "composite" pernodogram by

Substituting in the matrix representations of the estimates gives

Ic(co) - y'Ay , A .X(X'X)-x'.

The matrix A is the familiar hat matrix from linear regression, and JC(o) has a form sirhiiar to the
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Figre 4.2

Dial in the Averap Periodogram Estimate
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regression sum of squawe in linear models. Again, when c isa Fourier frequency, (X' X )' • 2/n Ij and
the Composite periodogram will be equal to the Standard periodogram.

We will show that the value that maximizes dte expectation of the composite pedodogram is
always €ob Consider the expression

R.(o)) S 8's - s'X(X'X)'-X's

W J'(I-H)s

where s is the signal vector and 1i - X ( XX ) "' V. This is the difference between the total sum of

squares of the signal and the value of the periodgram at o. The following are true

i's>0 so0

sI'HS > 0
$,(I - H)s >! 0

The first statement is immediate since the expression s's is a sum of squares, while the second and third
follow because H and I - H are both idempotent. From these we can also conclude s' s 2 'IHfs This
means that the absolute maximum value s'JHs can possibly attain is s's - 'Hs For the Cosinor model
the signal is s - X0o0 so when X W Xo we have
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s'HS -oXoXo(XoX0)*XoXo0o

- s.

Thus, an absolute maximum occurs when X = X0, i.e. when to - c)o. It can also be shown that the absolute
maximum is unique.

The ikay portion of this proof is that s'(I - H): is idempotent, and thus positive semidefinite. This
does not occur for the other periodograms. In fact, it can be shown by numeric example that s 'As can
exceed s's in all of the other periodograms.

The performance of the Composite Periodogram estimator of frequency was examined by
simulation study. From the Cosinor Model with a. = 8.0, 00 w 0.0 and coo a A5 a total of 1000 data
series, each of length n m 100, were generated with random Gaussian noise of mean 0 and variance 1.
The results of the simulation are reported in Table 4.1. The Standard periodogram produced biased
estimates of frequency, as well as bias in the estimates of the other two parameters. The Composite
periodogram gave an unbiased frequency estimate and the estimates of c and P0 were greatly improved,
but still biased. The biases were expected, since in section 2, we saw that even with wc estimated without
bias or error, we still obtain biased estimates for ao and P.. Using this fact, we construct the bias-corrected
estimates

6 &- C..(2tb)D1 (20) - S.(26))D.(26))

and

1 -. S,(2O&)D*(2&J) C. C(2G)D.(2&)

We will call these the adjusted Composite Periodogram estimators. Simulations, reported in Table 4.2,
indicate that the adjusted estimators are now approximately unbiased.

5. SUMMARY AND CONCLUSIONS

We have considered four definitions of the periodogram, given by

I,(co)) n

These are called the Standard, Least Squares, Average and Composite periodograims. The periodograms
are equal at the Fourier frequencies, differing only in how they approximate the perlodogram between
these frequencies. They may be expressed as quadratic forms in y, allowing us to easily compute their
expectations and to compute the approximate bias in the frequency estimates based on those periodograms.

Based on maximizing the expected periodogram, the Standard and Least Squares periodograms
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produce biased frequency estimators for moderate n. The Average periodogrom estimators are also biased,
but to a less degree than either component. The estimators based on th6 Composite periodognan are,
on the other hand, unbiased for all combinations of true parameter values and all n. The Composite
periodogram also has a familiar intrretation in terms of the least squares problem of fitting Cosine
curves, making it easy to implement.

We also propose bias-adjusted estimators of ve and 00. using the Composite periodogram
estimator of frequency. Simulations show that thes estimators arm approximately unbiased, and that the
Standard and Composite Perlodogram estimators have similar variances. Based on these results, we would
swongly recommend using our new estimators for fitting the Cosinor model to individual data series.
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Meta-Analysis of Gas Flow Resistance. Measurements Through Packed Beds

Malcolm S. Taylor and Csaba IL Zoltanl1

Measurements of the resistance to fl.,bw, YArough packed beds of inert spheres have
been reported by a number of authors through relations expressing the coefficient of drag
as a function of Reynolds number. A meta-analyuis of the data using improved statistical
methods Is undertaken to aggregate the available experimental results. For Reynolds
number in excess of 103 the relation log F, = 0. 49 + 0.90 log Re' Is shown to be a highly
effective representation of all available data.

Nomenclature

!• - spherical particle (bead) diameter
Do - test chamber diameterpF,
f = F , iction factorRe/(Q-O)

F, a AP D2b (1 0 ), coefficient of drag
L Au 1-0

F,, - i-th observed value of the drag coefficient
F,1, - predicted drag coefficient corresponding to

the i-th observed value
L - length scale
Re a Rep 0 w pflI O/p, Reynolds number
Re - Re/(l - )
Rep - Reynolds number based on particle size
a - average gas velocity
Ai, i - 0, 1, 2 - model coefficient
AP - change in pressure
p density

- porosity of the p•irked bed
(1 - 0) - solids loading
# - gas viscosity

1. U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066. This material
also appears in ARL-TR-301, November 1993.
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1. Introduction

Experimental results are cumulative if in aggregate they unify and extend empirical
relations and theoretical stnrctures which may be obscured in individual investigations.
Empirical cumulativeness, which Hedges (1987) describes as "... the degree of agreement
among replicated experiments or the degree to which related experimental results fit into
a simple pattern that makes conceptual sense," is the focus of this paper. Glass (1976)
was among the first to recommend the use of quantitative procedures in integrative re-
search reviews and to introduce the term "meta-analysis" to cover the collection of such
procedures. Meta-analysis claims certain classical statistical procedures, as well as ap-
proaches developed specifically for research synthesis, and has found application in the
social and biological sciences. The unification of experimental results obtained by differ-
ent investigators, operating independently with their own experimental protocol and
sometimes using different methods of analysis, Is the kernel of meta-analysis. A compre-
hensive treatment of this subject is given by Hedges and Olkin (1985).

Measurement in the physical sciences is generally regarded as highly accurate, and
although some variability is inevitable, the variation Itself Is thought to be insignificant
from a practical stardpoint. Counterexamples to this notion are plentiful, even in careful-
ly conducted experiments. Consider, for instance, the situation described by Touloukian
(1975) Involving two sets of measurements taken on the thermal conductivity of gadolini-
um. These data, shown in Figure 1, "... are for the same sample, measured in the same
laboratory two years apart in 1967 and 1969. The accuracy of curve I was stated as with-
in I% and that of curve 2 as 0.5% ... "and yet, the curves differ by more than several hun-
dred percent at higher values of temperature.

5 Sampl• I *

Sample 2

)04 0! ""

- 4•

-" I I " ; '|

Thermal Conductivity. W cm K"

Figure 1. Thermal conductivity of gadolinium.
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Physical scientists normally bring a careful qualitative analysis to their research
studies. If prudently employed, interrogative statistics, which are part of meta-analysis,
have a contribution to make in the physical sciences as well.

After data has been collected according to a carifully constructed experimental de-
sign (e.g., see Montgomery 1991) the main reason for determining a correlation (a regres-
sion analysis) is to examine the effects that some variables exert, or appear to exert, on
others. Even when no intuitive physical relationship is apparent, regression analysis may
provide a convenient summary of the data. The summary can be accomplished in a num-
ber of ways and has been an active area of investigation since the time of A.M. Legendre
(1752-1833), who published the first account of regression by least squares in 1805. Sec-
tion 2 of this paper reviews the correlations that have been advanced for steady flow
through inert spherically packed beds and some of the consequences of the attendant data
analysis. In Section 3, a meta-analysis of the gas flow resistance measurements is under-
taken. Section 4 contains a summary and main conclusions.

2. Regression Analysis of Gas Flow Resistance Measurements

Ergun (1952), Kuo and Nydegger (1978), and Jones and Krler (1983) have pro-
posed models relating coefficient of drag to Reynolds number for steady flow through
packed beds of inert spheres. However, the correlations were developed under different
experimental regimens. Robbins and Gough (1978) also investigated coefficient of drag
at high Reynolds number but presented their results in terms of a frlction factor
f" , R -) which Is the ratio of coefficient of drag FR, and Reynolds number ReRe/(l-0)
scaled by a solids loading factor (1 - 0).

In comparing Ergun's relation

F, = 150 + 1. 75(R -e ())

to that of Kuo and Nydegger

F, = 276.23 + 5.05(1Re ).87, (2)1 -0

or of Jones and Krier

F, = 150 + 3.89(1_e 0 (3)

a slight notational difference portends substantial complications. Equation (1) is a simple
linear model. Equations (2)-(3) are nonlinear in the sense that one or more parameters
appear nonlinearly. Nonlinearity complicates the statistical analysis of the data since de-
termining appropriate choices for the parameters in equations (2)-(3) becomes a computa-
tionally intensive optimization procedure, and inference about the resultant relation and
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parameters becomes much more tentative. Thb, mathematical underpinnings of nonlinear
regression will not support as much in the way of statistica! inference or hypothesis test-
ing as is available for linear regression. In general, nonlinear models should be avoided
unless there is a compelling reason for their use. Draper and Smith (1981) discuss this is-
sue in greater detail.

Standard regression procedures are developed under several assumptions. Funda-
mental among these is that the response (here, F,) is measured with error but the predic-
tor(s) (here, Re and 0) are measured without error. Jones and Krier provide estimates of
error for F,, Re, and 0, confirming that this assumption is not met, and call Into question
the efficacy of the resultant correlations. Sometimes an attempt to circumvent this re-
quirement is undertaken by arguing that the error in predictor measurement is sufficiently
small as to be ignored when compared to the range of the predictor variable. If this claim
is invoked, reliance upon any resultant representation must be tempered accordingly.

Since a correlation provides a convenient representation of the available data, a di-
rect attempt at evaluating the adequacy of a regression equation involves an examination
of the differences between the measurements taken and the values predicted by the equa-
tion. These differences, F,.-F,", I - 1, 2, .,., n, are called residuals; F,, is an experi-
mentally determined value of drag coefficient, and F,," is the corresponding value predict-
ed by the regression equation. A residual plot for equadon (3) is shown in Figure 2.
These plots may serve as a diagnostic too! in addition to assessing the adequacy of a fitted
regression model.

Pawn m I Mi I

Figure 2. Residuals vs. particle diameter Db;
Jones and Krler data with 6 mm beads excluded.

Figure 2 strongly suggests that another crucial regression assumption is not satis-
fied. The variance of the residuals does not appear constant over the range of Re' -
Re/(l - 0); and moreover, the departure from the fitted equation is systematic with bead
diameter, Db. Jones and Krier recommend reverting to the relation (2) proposed by Kuo
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and Nydegger to describe their own measurements taken for 6 mm beads. This recom-
mendation is data specific and is difficult to justify in general. They conjecture that an in-
teraction between bead size and tube diameter may be present, but this requires quantita-
tive substantiation. In general, weighted least squares, or a transformation on the obser-
vations Fv, before regression, are potential corrective procedures suggested by this residu-
al pattern.

2.1 Regression Analysis Revisited

Nonlinear regression algorithms normally seek to minimize the sum of the squared
residuals--as in ordinary linear regression-in attempting to determine the 'best" choice
of parameters to model the data. These procedures have previously been cited as compu-
tationally intensive. More specifically, they are Iterative and may diverge or converge to
local extrema, depending upon the choice of initial conditions. Through a systematic se-
lection of initial conditions, the authors determined that the equation

F, - 61 + 2.7(Reo)°'91 (4)

provides an improved representation of the data reported by Jones and Krier.

The root mean square error (RMSE), an estimate of the standard deviation of the
residuals and a commonly used measure for adequacy of fit, Is reduced by 20% compared
to that corresponding to equation (3). The measurements taken on the 6 mm beads, the
chief contributor to heterogeneity of variance, have been excluded from the regression,
making the comparison with Jones and Krier direct. A reduction of one-fifth in RMSE Is
not by itself a stunning improvement, but it does focus more sharply on the underlying
physical process. The residual plot for equation (4) still exhibits the undesirable. pattern
of under(over) fitting categories of bead diameter, but is an improvement compared to the
display in Figure 2.

The data collected by Robbins and Gough (1978, 1979), which "... correspond to
several tests performed on several occasions" for beds of spheres, right circular cylinders,
and multiperforated cylinders, ma;be transformed into units appropriate for comparison
through the relationship f, Re=/(1 - P)' The authors confined the analysis to data taken

on 1.27 mm diameter lead shot and on 4.76 mm and 7.94 mm diameter steel spheres, and
determined the cquation

Re0 o8 9
F, =-237 + 3, 14(--!),, (5)

for representation of flow through spherically packed beds. Equations (4)-(5) are shown,
along with the previously established correlations (1)-(2), in Figure 3.
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FlIure 3. Proposed modtls for relatinl coefficient of drg
and Reynolds number.

Thanafrting the variables (Re', F,) by taking logarithms, which was suggested by
the residual plot In FIgure 2, effectively linearizes the data. In regression analysis, a mea-
sure of precision of the regression line which Is used In addition to RMSE, Is given by a
statistic denoted as R2. R2 assumes values in the unit Interval [0, 1] and quantifies the
amount of variation in the response accounted for by the regression line. Values close to
one are highly desirable, indicating that the regression has effectively accounted for most
of the variation In the response. The regression line determined after logarithmic traims
formation of the Jones and Krier data has R2 - 0.98. The transformed Robbins and
Gough data have R2 - 0.99. These values are so close to 1.0 that pursuit of a nonlinear
model is difficult to Justify mathematically.

Comparison between linear models and nonlinear models is difficult. RMSE val-
ues cannot be compared across the transformation, and a well-defined R2 statistic for non-
linear models does not exist.

3. MetW-Aalysis of Gas Flow Resistance Measurements

Coiisider in aggregate the correlations that have been advanced for gas flow resis-
tance measurements through spherically packed beds. For the nonlinear models, a statis-
tical resampling plan is applied, whose goal is to extract Information from a set of data
through repeated inspection. The procedure Is called the 'bootstrap," named to convey its
self-help attributes, and it attempts to address an important problem in data reduction-
having computed an estimate of some parameter, what accuracy can be attached to the es-
timate? Accuracy here refers to the "± something" that often accompanies statistical esti-
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mates, and may be conveyed through such devices as variance, RMSB, or confidence in-
terval. For the log-linear model, the available data are directly combined.

The authors are hindered in fully exploiting a meta-analysis approach by the inabil-
ity to obtain all of the pertinent experimental data. It is unfortunate that experimental da-
ta are not routinely archived after collection; otherwise, additional Information that it may
hold is lost to extraction by subsequent investigations and by alternative statistical meth-
ods. The data of Jones and Krier and of Robbins and Cough were accessible. With these
data, this paper proceeds as far as statistical prudence permits.

3.1 Bootstrapping Regression Correlations

Detailed descriptions of the bootstrap and accounts of its successful applications
are amply documented (e.g., Efron (1979, 1982)), Efron and Tlbshirani (1985), LePage
and Billard (1992). The computational contrivance that the bootstrap procedure exploits
Is the generation of perturbed data sets from a single set of data through sampling with re-
placement. Specific to this study, the set of paired observations taken on coefficient of
drag and Reynolds number, <(F,,, Re1 '), ... , (F,., R; ')), that is the basis for a reported
correlation, is sampled with replacement to generate another set
((Fv,*, Re, '*), ... , (Fv.*, Re "'*)) whose elements are copies (with duplication) of the
original measurements. This set As called a bootstrapped data set. Th3 process of sam-
pling with replacement to generate bootstrapped data sets is repeated many times.

If a correlation is determined for each bootstrapped data set and its equation plot-
ted, an indication of the sensitivity of the regression line to perturbation of the original
data comes into focus. In Figure 4, the results of 1000 replications of this process are
pictured. The outermost lines indicate boundaries within which the correlation (5) might
be expected to lie if the original data set were simply perturbed. They were obtained
from the maxima and minima of the drag coefficient predicted for particular values of
Re'. 2 The envelope constructed for correlation (5) contains correlation (4). This suggests
that no significant difference between these empirical relations exists. Similar results are
obtained if we begin with correlation (4); correlation (5) will lie within the corresponding
confidence envelope. Consideration of perturbed data is highly appropriate here, since
experimental results cannot be expected to be reproduced, even if the experiment is repli-
cated under tightly controlled conditions. The theoretical justification for the use of boot-
strapped data is given by Efron (1982).

The relationship of Kuo and Nydegger, for which the experimental data was not ac-
cessible, was determined for a single diameter bead, Db - 0. 83.

2. More precisely, the values represent extreme quantiles after all of the Fs have been ranked; thehi

values are nct essentially different from maxima and minima.
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Figure 4. Bownstppeid confidence envelopes for nonlinear regression
(based, on Robbins-Goug data).

3.2 Log-linear Regression

Figure 5 displays the logarithmic transformed data of Jones and Krier, and Robbins
and Gough, combined. The fitted line for these data Is

log F, w 0. 49 + 0.90 log Re'; (6)

Included in the regression are the data taken on 6 mm beads which were previously ex-
cluded.

Visually, the data appear linear after transformation. Statistically, the R 2-value for
the regression Is 0.99, making the fitted line a highly satisfactory representation of these
data for all practical purposes.
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4. Summary and Conclusions

For Reynolds number exceeding W a more effective representation and data anal-
ysis than presently available can be obtained after logarithmic transformation of the data.
This linearizes the data and removes the necessity for nonlinear regression techniques,
The equation

log F, - 0. 49 + 0.90 log Re' (7)

Is an effective description of the available experimental data.

If a representation of the form

F, - flo + fl, (e/ I - 0•), (8)

is required, then Jones and Krler's results are more effectively reflected through the equa-
tion

F, = 61 + 2.7( Re )0'9, (9)

and Robbins and Gough's data restricted to spherically packed beds provide the relation

Re09
FV -237 + 3. 14(.. ) . ' 0)-69, (10)
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but here again, approximate confidence envelopes constructed with the aid of the boot.
strap suggest that these relations can be combined without loss of underlying physical in-
sight. In total, the statistical analysis supports the combination of the various correla-
tions, for the stated test conditions, into a single relationship.

While it is quite reasonable to suspect an interaction between the geometry of tube
and packing, perhaps reflected through the ratio D0 /Db, more extensive testing is required
to establish this relation. Hopefully this will be done in accordance with z fomal statisti-
cal experimental design to minimize testing and maximize extraction of information.

O.E.P. Box, an important contemporary statistician, has remarked that •No model
is correct, but some are useful." In this spirit these remarks are offered along with the
hope for an incremental move toward a more useful model.
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DESKT.OP MODELS FOR WEAPONS ANALYSIS

JOHN D'ERRICO
EUGENE F. DUTOIT

DISMOUNTED WARF!(WIING VATTLE LAB

A. INTRODUCTION

TMe purpose of this report Is to provide a collotion of simple, deektop computer models for
operations remeach amlysts and othm within the combat deveopme t are.

It was not inteded that any of thes model should replace the morn complex models availablo
to combat developus. There seems to be no lack of complex models, or efforts to produe marn
of h sam. This report, on the other hand, ampts to atack th other ad of the modelft

May operations research naly, authors of new concepts, ation offlie who are developiag
operational requiremmes documats, and oteus, are not well served by h lrse, complex
models which demand much In the way of neources, time, knowedrg, and money, In order to
uiedwa

On the other hand, there has been a substnta void in the number of models available to combat
developments action offlice to help them in their day-to-day wodr. ITis Is the area which this
report attempts to resolve, a least to some extemL

Each model In this reat has been thorouhly mrah developed, dtested. Ample
rehunces to souwc donments have been cite& Me fosmat used to dascribe uch model was
bsed on am of unders ad use.

A 3.5" disk, oonaing all th models, sample data film, and progrms described herein, an be
obtained by senit a blak, DOS-fornttd 3.5" double density or high density disk to:

Comanudant
U.S. Army Infay School
AM: ATSH-WCS (Mr. DISnlco)
Fort Benning, GA 31905-5400
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B. PROBABILITY OF HIT MODEL

1: Introduction.

a. Description. This model, developed by Mr. John D'Errico, calculates the probability of
hit for direct fire, single shot weapons, against a point target. Inputs required are the weapon's
biases and dispersions, the target dimensions, the fier's aimpoint on the target, and the range to
the target. The resulting probability of Wit is displayed on the screen,.

b. LImitations, This program computes the probability of hit based on the measurements
of a two-dimenulonal target. It uses a process similar to the one usd in *my wargame models.

c. Applications. Desktop analytio tool for studying weapon accuracies and caloulating
probabilities of hit based on biases and dispersions provided by AMSAA and JMU3M.

d. Setup, This model runs on a DOS-based computer. Data can be entered into the

model in a few minutes and results are displayed In less than one minute.

2. Guide to Operation,

a, Equipment Required.

(1) IBM compatible PC computer.

(2) 3,5" disk drive.

b. Installation.

,* (1) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the PHCALC model into your computer's disk drive.

(3) From the DOS prompt, enter the command: A:PHCALC (or B:PHCALC if you're
using the B: disk drive).

c. Definitions.

(1) Horizontal shift in aimpoint from target center, in centimeters: If the firer's
intended aimpoint is to the left of the target's center, the user should input the number of
centimeters to the left as a negative number (e.g., -23). If the firers intended aimpoint Is to the
right of the target's center, enter the number of centimeters to the right as a positive number (e.g.,
12).

210

-- -- e l I l l ll i ii III iiI



(2) Vertical shift in aimpoint from target center, in centimeters: If the firer's intended
aimpoint is below the target's center, enter the number of centimeters from the center as a
negative number. If the firer's intended aimpoint is above the target's center, enter the number of
centimeters from the ,enter as a positive number,

d. Operation.

(1) This program determines the probability of ht on a rectangular, two-dimensional
target. If you wish to obtain the probability of hit on a target composed of two rectangles, (a
vehicle consisting of a hull and turret), you merely need to keep in mind the location of the single
aimpoint on the target, and run tids program twice-once for each rectazsle-and manually add
the two resulting probabilities,

(2) For example, ssume you are firing a missile at a tank 300 meters mway Its frontal
m.eaurements are: 300 cm wide by 200 cm high for the hull, and 200 cm wide by 100 am high
for the torwet. Your aimpoint is the junction between the turret and the hull. The missile's blues
and dispersions are shown in Screen 1. Using this program you will determine the separate
probabilities of hit for the turret and the hull, keeping In mind that your aimpoint for both is the
turret ring. When you enter the data for determining the probability of hit against the turret, your
vertical shift in aimpoint from the center of mass is -50cm because your actual aimpoint is 50 cm
below the turret's center of mass. In determining the probability of hit for the hull, you must
indicate an upward shift of+100 cm fom the hull's center of mass. Adding both probabilities will
give you the probability of hit against the target.

(3) Actual prompts and sample inputs for the turret are shown in Screen #1.

Horizontal fixed biu (mbll):? 0
Vertical fixed bias (mile):? 0

Select one of the folowing:
I- Total horizontal & totai vertical dispersions
2 - Sepemte variable & random error dlhuous.

(nteW I or 2 from the k~mbrd)? I

Total horizontal dlspenmons (mils):? 3
Total vertical d~esons (mils):? 3

Tarlet width (centimeters):? 200
Tar" height (osnmam ):? 100
Disancme to targ (motm):? 300
Horzont shift in mpoint om taret center (cm):? 0
Vertcawl shift in alipoint from target center (cm):? .50

Screen #1
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(4) The following result will be displayed on your screen.

The probability of hit, P(R), is .2754702

Screen #2

(5) To run the program spin, enter A:PHCALC or B:PHCALC

Horizontal fixed bin (mils):? 0
Vertial Lfed bia (mils):? 0

Select one of the MoUowing:
I - Total horizontal & total vdadl dispenions
2- Seprate variable & random error disperslons.

(atr I or 2 fmthe ftyboed)? 1

Total hortzontal disperuons (mile):? 3
Total vorfth dlspersions (mdIs):? 3

Targe width (cenmetle):? 300
TWrOe h1141t (Omd)NMA:? 200
Dlgism to tarSK (meras):? 300
Horizontal shift in aimpolt ftom taOet menter (cm):? 0
VertIcal shift In aimpolat fm targe cmar (cm):? 100

Scree #3

(6) The probability of hit for the hull will be displayed as follows:

The probability of hit, P(H), is .4444504

Scree #4

(7) Adding the results for the turret (Screen 2) and the hull (Screen 4) gives the
probability of hit on the tank.

.2754702
,4444504
7199206
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e. Explanation.

(1) This model uses the probability density function for a random variable having a
normal distribution: Ax) - [I/(1'2" )] (exp(-(x-,u) 2/(2o")]), wherep is the population mean and
a is its standard deviation. In calculating probability of hit, the fixed bias is taken as the mean,
and the total variable biases and dispersions are taken as the variance.

(2) Since a rectangular target has two dimensions, width and height, the problem
becomes one of determining the joint probabilities of hitting the target within its horizontal
boundaries and, simultaneously, within its vertical boundaries.

(3) To keep measurements consistent, the biases and dispersons are converted from
mils to centimeters on target at the given range to the target. This conversion is by. the equation

200(Range in meters)tan[(O/2X.0098175)]

where the constant .00098175 is used to convert mils to radians ad e represents the mean or
standard deviation in mils.

(4) Given that the mean and standard deviation in the horizontal direction are
converted to centimeters, and the width of the target is in centimeters, the distane of the
horizontal boundaries of the target are transformed to standard form using the equation
Z - (x-u)/1q. The probability density function of the standard normal variable then becomes

- (1/4W )exp(-./2)

(5) Integation of the probability density fUnction with the z.scores as the limits of
integration yields the probability of hit in the horizontal direction,

(6) The same proes is used to determine the probability of hitting the target within
the vertical boundaries of the target.

(7) ially, the probability of hitt the target within the horizontal boundaries Is
multiplied by the probability of hitting the target within the vertical boundaries, and the result is
the probability of hitting the target.

(8) The trapezoidal method of Integration, with 100 intervals, is used in this model.
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C. PROBABILITY OF HIT PLOTTING MODEL

1. Introduction,

a. Description. This model, developed by Mr. John E)Errico, plots the hits for.dfrect fire,
single shot weapons, against a point tatget. Inputs required are the weapon's biases and
dispersions, the target dimensions, the range to the target, and the number of iterations (i.e., the
number of single shots to be plotted). The results are displayed graphically on the screen.

b. Limitations. This program plots the strike of ch bullet relative to a two-dimensional
target.

m o Applications. Desktop analytic tool for studying weapon accuracies. In effect, this

model Is a graphic, stochastic version of the PHCALC probability of hit model.

d. Setup. This model runs on a DOS-bued PC computer. Data can be entered into the
model In a few minutes, and results are displayed in Ils than one minute.

2. Gulde to Operation.

a. Equipment Required.

(1) IBM compatible PC computer,

(2) 3.5" disk drive.

b. Installation.

(1) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the PHCALC model into your computer's disk drive.

(3) The process for printing the display with a printer depends on the version of DOS
being used, the type keyboard, and the type of printer, but you must prepare for it now.

(a) For DOS 5.0, type the command GRAPHICS GRAPHICS (the word
"graphics," typed twie, separated by a space) from the DOS prompt, before running this
prowan. With an enhanced keyboard, pressing the (Print Screen] key, or the (Sbift] + (Print
Screen] keys, should print the display on your printer.

(b) If your version of DOS Is older than 5.0, you should type the command
GRAPHICS at the DOS prompt before running this program. If you have an unenhanced
keyboard, the keys [Shift] + [Prt Scn] should print the screen on the printer.
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(4) From the DOS prompt, enter the command: A:PHPLOT (or B:PHPLOT if you're

using the B: disk drive).

c. Operation.,

(1) This model places a target on the screen, scaled to the height and width Inputs, and
then displays the impact of each round in the target area, according to the weapon's biases and
dispersions and range to the target.

(2) Program prompts and sample inputs are shown below, in screen #C.

Entar the horiza Axed bia (mils) of the way= ystm? 0

Enter the verti••lfl ed bias (rails) of the weapon sysem? 0

Total ointl wariable Wow & dispersio (mils)? 3

Total vertical variable biaes & dispersions (mils)? 3

Enter the weapon-taret ranp in meters? 300

Enter the height of the tazu't in meters? 2

unter the width of the target in meters? I

Enter the number of slnle rds to be fred? 200

Screen #1

(3) Upon entering the last Input, a result similar to the one shown on the following
page will appear on the screen. The display remains on the screen until any key is pressed, in
case the user wishes to print the display on his printer. Pressing any key (except the print screen
keys) will clear the screen, and return the user to the DOS prompt.

(4) To run the program again, enter A:PHPLOT or B:PHPLOT, whichever is
appropriate.

d. Explanation. Given the biases and dispersions, this model samples from a normal
probability distribution for the accuracy of each round, then determines the impact point based on
the sange to the target. The method used to generate normally distributed (pseudo) random
numbers was proposed by Marsaglia and Bray in 1964. (Reference 8)
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SAMILE PRINTOUT OF PUPLOT PROGRAM

-NHITS: 17

T0 2

. . .. All. a.

4p 0

400
%

% targetw •hit h)
6 o o 2
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D. FORCE EFFECTIVENESS INDICES MODEL

1. Introduction.

a. Description. This model, from the TATAWS ,udy q(eference 7), programmed and
modified by Mr. John DYErrico, determines the value of each weapon system in a wargame, based
on input firom the klier-victim scoreboards. In general, the value of a weapon in a wargame is
based on the values and quantities of opposing forces killed by that weapon.

b. Limitations. Force effectiveness indices are not commonly used, and as such, are not
tfmitar to decision makers.

c. Applications. Desktop analytic tool for evaluating the effectiveness of a weapon within
a wargame,

d. Setup. This model runs on an IBM compatible PC computer. Data can be entered

Into the model in a few minutes, and results are printed in less than one minute.

2. Guide to Operation.

a. Equipment Required.

(1) IBM PC compatible computer.

(2) 3.5" disk drive.

(3) Dot matrix Printer.

b. Installation.

(I) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the FEI2 model into your computer's disk drive.

(3) Turn on your printer, and make sure that it is "on line."

(4) From the DOS prompt, enter the command. A:FEI2 (or B:FEI2 if you're operating
from a B: disk drive).

c. Operation.

(1) Essentially, you will be asked to enter the names of Red and Blue weapon systems,
and data from a killer-victim scoreboard, Whether you are conducting a trial run or

217



not, you should save your data via main menu item #3-it will keep you from being frustrated in
cus you exit the program unintentionally (power interrupt, etc...) and have to enter the data all
over again. Also, if you make a mistake while entering data, continue to enter the remainder of
the data since you vW be able to make any changes when you're done.

(2) The prompts you will see, and sample rosponaes, are shown on the following
flcsimile screems.

(3) The first menu, also called the main menu, is as fbllows

1 -•Enter Data

2.- Change Data

3 - Save Data

4 - Perform Computations & Print Rmu, s

5 - Quit

(Enter one of the above numbers)

Screen #1

(4) Entering the number 1, in Screen #1, leads to the next menu.

I - Enter Data Prom Keyboard

2 - Enter Data From Disk

-- ~ -. Retur to Main Menu

m (Enter one of the above numbers)

? Im

Screen #2
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(5) Havin8 selected the method for entering data, you will next be asked to enter the
title for this case. The response in this example is "Test Case #1, 22 Dec 92, John DBrrico,"

[ENTER TITLE OF GAME. Test Case #1, 22,Dec 92, John D'Brico

Screen #3

(6) You will now be asked to enter the number of Blue weapon types, followed by the
name of each 1lue weapon type. For example, the kidler-victim scoreboard might show three
types of weapon systems: tanks, Bradley Fighting Vehicles, and Improved TOW vehicles.
Therefore, you would enter 3 for the number of Blue types, followed by the name of each type,
When entering the names of the weapon systems, try to use no more tian five or six characters,
such as MIA1 or BFV-1 or TANKI; otherwise, the printout becomes too crowded and difficult
to read.

(7) It is suggested that you enter every weapon system on the Idller-victlm scoreboard,
Later on, this program will allow you to choose those Blue and Red weapons you wish to have
included in the force effectiveness ratios.

F E•TR NO. OF BLUE WEAON TYPES. ? 3

MMTER THE NAME OF BLUE WEAPON # I
? TANK

ENuTHER1 NAME OF aLUE WEAPON N#2
? DFV

ENTER THE NAME OF BLUE WEAN # 3
? HW4WV

Screen #4
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(8) Similarly for the Red weapon types,

mmRNo. OFl RDw•A w To Es,. ? 3

TEM TMz NAM OF RE) WAo1 #. 1
? TANK

DEEra T-m ,Am,• OF RED W•APON # 2
? amp

DETER 11m w~ma or mao W&APO #3

Screen #5

(9) Now you %ill be uked to fill in the daa ftom the Idller.viotim scoreboard. Read
each prompt careMlly, and you should have no trouble entering the correct data, IfMmkL
miatakL. keMr golnq with the correct data You will be able to make corrections later by
selectng the "Change Data" Item from the main menu. Keep In mind that the IaNt input reaueuted
on each creen in the total number of that tZe we,,pon gstem at the start of the warme.-

RDTNE NO. OF M TANK KILED DY BLUE TANK
? 3

mrla NO. OF= M PD lMP UJD DY XIW TAW
? 4

ENTER NO. OF UED 3,DM KILI BY BLUE TANK
? 2

IRTER NO. OF BLE TANK
?6

Screen #6

(10) Similar displays will request the remainder of the Blue vs Red and Red vs Blue
results, as blMows.
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(11) Red vehicles killed by Blue BFV:

ENTIU NO. OF MI TANK K/LM BY BLI•E 9'V

?5
ENTIr NO. OPIf• 9101 KfL.LD DY DIMS DSrV

73

IUNTi NO. OF 90 BIRDM KLL, DY BLUN DFV
71

bDMiu NO. OF ILUN "V

7 12

Screen #7

(12) Red vehicles killed by Blue HNAWV:

3ffTI NO. aF I TAIWKMMD,,IIMMY 3? I2 WV

?0

DliTR NO. OCrk D 3 UILI D By I= OIdWY
72

SI1Til NO. alF 3 DM4 KEIJID m Y LU, AI& G4MY

?0

Uat'n NO. OP IOFuB IBwURAP.

72

Screen #8

(13) Blue vehicles killed by Red tank:

? 2

111MW NO.,O ti= A"LU KP'V B¢• Y IUD TANM
?94

3OM NO. CUWI HIW KJJD BY MI TAMK
70

UlM NO. OF P.10 TAWK

7 12

Screen #9
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(14) Blue vehicles killed by Red BMP:

mUm NO. OF MAU TA.M MMhin BY u1
?3

II4'11. O. OF •IANdVMMR Y MNO?3

IIlIN.11 O. 01EA Wmfl3ill@

7 12

Screen #10

(15) Blue vehicla killed by Red BRDMK

1NIU NO. OF .LUE TAW= IM.ID iY MM
?1

1MHNO.aOEsuawlil a mumiwu
?3

Emlt NO. OF 1mm ImwV KrA= fY wD MM
?0

RIWlR NO. OP w 3mD
?4

Screen #11

(16) The program now return.sto the main menu. (SAVE YOUR DATAI)

I -Btor DXa

2- Cbhop Daft

3 - Save Dfta

4 - Perfomn Computaton. & Prit Rendt

5 - QuI

(Lnsr oas of dIo above anmbm)
?3

Screen #12
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(17) Save the data immediatel) %.her data entry. You could always change it and then
save it again later, .1&n it as soon as possibleq .•eclude having to re-enter all the data in
case ofua mishap, When you select item #3, aboN,, to save the data, you will be prompted for a
drive and filename, You may save the data to any drive and any normal filename (beginning with
an alphabetic letter and havhig no more than eight letters and numerical digits, with no. spaces in
it). Remember, if you want the data saved in a particular directory on the c: drive, you must
specify the entire path in the filename, For example, if you want to save your data on your fixed
disk, in an ORSA\BFV-COEA directory, with a file name of BFV.RUN3.DAT, then your file
name would be C:\OPSA\BFV-COEA\BFV-RUN3.DAT. For saving your data to a floppy disk,
usually something like A:BFV-RUN3.DAT is sufficient, since most people don't create different
directories on their floppy disks, You may want to use a different floppy for data.

Enter Drive:filename

(For example, C:test-j, is drive C: and filename TEST)

? A:FEI-TESTDAT

Screen #13

(18) The data will now be saved, and the main menu wi reappear.

I - Enter Data

2 - Change Data

3 - Save Data

4 - Perform Computations & Print Results

5 - Quit

(Enter one of the above numbers)

72

Screen #14
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(19) Item #2, to change data, was selected in this example simply to display the change
data menu which appears below.

I . IANO BLUE NAM4 .

2 -ciwos: R= NAa

3 -cHwmo BLus mm AT RD DATA

4 - CHAREID W-40 AT BLUE DATA

S.-RTMMNTO MAIN4 LaN

(iNM OWa OF TH ABO VI NUiM4sn)

Screen #IS

(20) Selecting #5 returns you to the main menu,

1 - Enter Data

2 - Change Data

3 - Save Data

4 - Perform Computations & Print Results

5 - Quit

(Enter one of the above nuimbers)

74

Screen # 16

(21) Selecting item #4, above, does not immediately initiate the calculations and
printing of results. The user is first given an opportunity to select whether or not standard force
effecttvenesa ratios should be included in the results (fbrce exchange ratio, Ios exchange ratio,
system exchange ratio, percent system contribution, and percent force remaining, in addition to
this model's force effectiveness indicators. See page 19 for definitions.

224



(22) Select type of results desired.

I - Print Standard Effectiveness Ratios

2 - Do Not Print Standard Effectiveness Ratios

(Enter I or 2)

?I

Screen #17

(23) Before doing the calculations and printinS the results, the user is given the chance
to select the types of forcm to be included in the calculations and force effectiveness ratios.
Consequently, the liMt of Blue forces will be displayed, followed by the list of Red forces, and the
user selct thi fbrces'to be counted In the resultin ratios.I

(24) Select forces to be included in computation of results.

I TANK
2 DFV
3 HWV

BEter the number (one at a tWas, prunui the enter key after eveye selection) you
want included in the standard force ratios.,

Enter -9 when all #elections have been made.
Enter -I to select all the items.

7-.1

Screen #18
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(25) After making the Blue weapon system selections, the list of Red weapon systems
will be displayed, as in Screen #19.

I TANK2 SU~P
3 BRDM

Dater the numbes (on at a tim) you want
included in the Mandard force ratioe.

BtWr -9 when all solectons have been made.
Enter -1 to select all the items.

7-.1

Screen #19

(26) Havng made the Blue force and Red force selections, the program will
automatically pfbrm the caliulatlons and print the resuJts. After the results have been printed,
the main menu will be displayed, Selecting 05" to quit the progrna will also send the neesusay
control codea to your printer to return It to normal (after printin the results in small print),

(27) The following printout Is a result of the inputs used in the above example,
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DESCRUPTON: Tedi Cue # 1. 22 Doe 92. Johun D'Ericoo
FiLEAME: A.FEI.TEST.DAT

KlUjER VICTIM MATRICZS

ARED VICTIM
BLUM
K11EI It UM TANK Bh4? BRDM TOTAL

TANK 6.0 3.0 4.0 2.0 9.0
DiV 12.0 1.0 3.0 110 9.0
I0.OwWV 2.0 0.0 2.0 0.0 210

SLUM VIC'TIM
R&D
KM.LLR MUM TANK SFV JD4MWV TOTAL

TANK 12.0 2.0 4.0 0.0 6,0
amp 12.0 3.0 3.0 1.0 7.0
33DM 4.0 1.0 3.0 0.0 4,0

TOTAL VALU19 OF BUM - 0.7231 ITANDARD LER 0 1.1145 (Pade6 KiWeY(Due Ki1ed
TOTAL VALUEOFPI = 0.77 UTDDLUIPR 0.1100
7003 3fl4FNW 3NIU RATIO (VIA)- 0.12211 3rDRBD FR 0*057
(Thiai Wlu VdYaheWT al ViOaW) 'ITANDARDDIM 0241O

751VALPJI liD Inl VAIUKI fRACflOI4AL PARTICDA71ON INDICRI

WIAPN IYIT1M lEA "C
TANIK 0.0147 TA" 0C024 TAMK I.$=0 0.40 13000 0.0000
LiV 0.02M She 0.0323 A"V 1.2857 0.410 07800o 1.1111
IHMWWY 0.0374 33DM 0.04012 HMWOW 0U500 0.1000 10=0 3.3333

d. Defitions.

llamiewrd Low timabge Ratio (LII)- (Red Loesey(plu. Lawi),

(Red Lomm)XRe Wtial ft$Wh)
feaded rame Eledwang Raio (VI):- (U M YNGW N0%

ILtdiad lpewe lieseag Rad t~o 31) (Red Losses Free Ipeaila Noi Uyteu)~lpedfi SIue lyam Losses)

sumded Pale lyiswe Cesiibudtio (Red Losse Due to Ipealo Olue lysismTalal Red Laee)

fet e Fuse Reaaledhl (FTal Number atBlue IuWviwnK~cusabiWal Number .f Blue Foss)

Lethalliy (Rod Losess by Specific Blue lI1tm)'(Iaial Nuimber of Ipsei Blue lyiewm)

survlbit). ((Blue U)Vin turvivoty(Total Blue lurvivors)A4(jila Blue Aymmy(To InUa Olin Fores)l

TOWa Value of Blue: I=s of the value ofesols Blue wepos s times dolaW mashe ofthat Blue wag=~

ToWa Value of Red: a.. ofib. valus ofud" Rod wespos tklthe lbs nilium ber ofiha Red wesia..

LM 
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E. SINGLE SHOT BURSTING MUNITIONS MODEL

1., Introduction.

a. Description. This computer model was developed by Mr. John DErrico, Dismounted
Warfighting Battle Laboratory, U.S. Army Infantry School, Fort Benning, Georgia. It aisplays
the results of firing one or more bursting (exploding) munitions from a single-shot weapon, such
as the M203 grenade launher, at an area target. Peronnel in the target area may be deployed in
a line, file, column, or wedge formation. Inputs required are: the biases and dispersions of the
weapon; the projectile velocity; the weapon-target range; radius of damrge; num•ber of single
rounds to be fired at the target; and the number, spacing, and formationlof personnel in the target
AreM.

b. Limitations. The targets depicted in this model are stationary, standing, two
dhiensional, personnel targets.

c. Applications. Desktop analyses involving small arms, small arms munitions, and their
effects on personnel area targets.

d. Setup. This model runs on any IBM compatible PC komputer. Run time depends on
the number of iterations desired, with one to fifteen minutes being typical. Each iteration takes
about one second.

2. Guide to Operation.

a. Equipment Required.

(I) IBM compatible PC computer.

(2) 3.5" disk drive.

(3) Printer (optional),

b. Installation.

(1) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.X" disk containing the SSBURST model into your disk drive.

(3) See paragraph C.2.b.(3), Probability of Hit Plotting Model, for printing graphics.

(4) From the DOS prompt, enter the command: A:SSBURST (or B:SSBURST if
you're using the B: disk drive).
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c. Definitions. For this model, one "iteration" refers to firing one set of rounds against the
target. For example, if the number of rounds to be fired at the target is four, then each iteration
will Are four rounds at the target. For trial purposes, five or ten iterations is sufficient to see the
model work. For more accurate results, 200 to 1000 iterations is recommended.

d. Operation.

(1) You will be prompted for Input. The first prompt will ,'k you to enter the
horizontal fixed bias of the weapon system. Entering a zero indicates that the weapon has been
zeroed for the range to the target. Biases and dispersionsare in mils.

(2) The next prompt will ask you to enter the vertical fixed bias of the weapon system.
Entering a zero indicates that the weapon has been zeroed for the range to the tarset.

(3) A total often prompts will appear on the screen, and you must enter a response for
each one. Biases and dispersions are in mils, and distaices are in meters. All ten prompts and
sample responses are shown below.

(4) Keep In mind that the wedge formation was constructed for nine personnel only. If
you plan to select a wed$*, eater a 9 In the elihth prompt below. The other formadons can
accept any number of peronnel.

Enter the horizontal fixed bias of the weapon system? 0
Enter the vertica fixed bias of the weapon system?
Enter the total horizontal variable biases and dispersions? 10
Enter the total vertical variable biases and dispersions? w0
Enter the projectile velocity in meters per see? 60
Enter the weapon-target ranse in metersp 2 t)0
Enter the radius of dama pe in meters? 5
Enter the number of personnel in the tarmet area? t w

for ntn ersonnel only btwe.prsnel

Enter the number of single rds t6 be fired? 4

Sc:reew #1

(5) After you enter the last of these ten responses, the next (and last) set of prompts +
will appear. These prompts, and their sample responses are shown in screen N2.

(6) When selecting the type formation, t•-e,- in mind that the wedge was constructed1

for nine personnel only,
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(7) Select fonriation.

Target formation:
%I-Line

2 - Column
3 - Wedge (9-man squad)
4 - File

(Enter I - 4)? 2

(8)ter you input the number of Iterations, the model will begin to graphically display
eago Iteration's results, one iteration at a time.

(9) Badh Iterations results arm dhoplayed on the screen for 'a brief time. When the lost
Iteration has been completed, the pictur will remain on the screen until you either print the
screen to a printer, or press any other key to return to the MS-DOS prompt.

(10) You Will Automatically get a printout of results, showing how each round did
against each target. The printout will incld theanmber of the roud, the number of thq targo .,
the offect of each round on the target area the average number of targets kWled by each round,
and the average results for the cumulative effect of all rounds. For 1000 Iterations, the results
are highl repetable.

(11) Although you mayselct practically any number of posanl fora line,ocolumnn,
or teflebmtuon, the wedge currntly applies to only nine peownael Keep in mind that the scale
of the display on the screen depends on the nmwber of personnel in the target are and thei
separation distance. Choosing a large mnuber of personnel separated by 10 meters will make the
personnel, Lid possibly the bursting radius, very small or invisible.

.(12) The circle which represents the bursting radius on the screen may appear to
enclose' a target without killing It (killed targets are shown as solid white squares). This Is
because the scram's vertical-to-horizontal scale may not allow a circle to look like a circle.,
Sometimes the bursting raidius circle will appea as an oval, or ellipse. T7he mathematics,
however, are correct, end .ali targets within the bursting radius arn killed.

(13) A complete example, Born prompts and responses to results, follows.
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(14) Opening screen:

This program was authored by:
John D'Errico

Dismounted Warfighting Battle Lab
U.S. Army Infantry School
Fort Benning, GA 31905

(706) 545-7611/7000
DSN 835-7611/7000

(Press the [Enter] key to continue)?

Screen #3.,.

(15) Description of inputs:

This program will require you to enter the following:
Horizontal and vertical fixed biases (zeroes if the
weapon is assumed to be zeroed on the target).
Total horizontal variable biases and dispersions.
Total vertical variable biases and dispersions.
Muzzle or average projectile velocity.
Range to the target area.
Bursting munition's radius of damage.
Number of personnel in the target area.
Separation distance between personnel.
The number of single rounds to be fired.
The target formation: line, column, wedge or file
(not applicable to a single person point target).
Number of iterations (not applicable to point targets.)

The last picture plotted on the screen remains until you
press a key, in case you want to first print it with [PrtSc].

"(PRESS THE ENTER KEY TO BEGIN THE PROGRAM/INPUTS)?

Screen #4
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(16) Select printer option:

Do you want the program results sent to your printer? Y

Turn on your printer and press [Enter] when ready?

Screen #5

(17) Inputs:

Enter the horizontal fixed bias of the weapon system? 0
Enter the vertical fixed bias of the weapon system? 0
Enter the total horizontal variable biases and dispersions? 10
Enter the total vertical variable biases and dispersions? 10
Enter the projectile velocity in meters per sec? 60
Enter the weapon-target range in meters? 250
Enter the radius of damage in meters? 5
Enter the number of personnel in the target area? I I
Enter the space between personnel? 5
Enter the number of single rds to be fired? 4

Screen #6

(18) Target formation:

Target formation:
1 - Line
2 - Column
3 - Wedge (9-man squad)
4 - File

(Enter I - 4)? 2

Screen #7

(19) Since only the last screen will remain on display, until you either print it to the
printer or press an~yother key, only thet last screen in this example is shown on the following
page. On page 26-the results are printed out.
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SAMPLE PRINTOUT OF THE SSBURST PROGRAM

Hias: 0 HILLS: 6-VBias: 0 70

Ueloc: 60
Range: 250
Damage:-,.5

-70 70

Targets killea: 6
Hil1 ratio: ,5454546
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(20) The following results are based on the example above. Since only 10 iterations

were used, you can expect substantially different results if you run the same example.

NUMBER OF ITERATIONS: 10

ROUND TGT NUM KILLED AVG/ITERATION
1 1 4 * 0.400
1 2" 4 0.400
1 3 4 0.400
1 4 3 0.300
1 5 2 0.200
1 6 1 0.100
1 7 0 0.000
1 8 1 0.100
1 9 0 0.000
1 10 0 0.000
1 11 0 0.000
I ALL 19 1.900

2 1 1 0.100
2 2 2 0.200
2 3 1 0.100
2 4 2 0.200
2 5 4 0.400
2 6 4 0.400
2 7 3 0.300
2 8 1 0.100
2 9 0 0.000
2 10 1 0.100
2 11 0 0.000

ALL 19 1.900

3 1 1 0.100
3 2 0 0.000
3 3 1 0.100
3 4 2 0.200
3 5 1 0.100
3 6 5 0.600
3 7 1 0.100
3 8 4 0.400
3 9 1 0.100
3 10 1 0.100
3 11 1 0.100
3 ALL 18 1.800

4 1 0 0.000
4 2 0 0.000
4 3 0 0,000
4 4 0 0.000
4 5 1 0.100
4 6 0 0.000
4 7 3 0.300
4 8 2 0.200
4 9 3 0.300
4 10 3 0.300
4 11 2 0.200
4 ALL 14 1.400

CUMULATIVE 70 7.000
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(21) Positioning of personnel in the various formations Is according to the followingformat, The numbers Indicate the actual number assigned each person in the target area, and
match the numbers referred to in the printout of results.

Line Column

.6 5 4 3 2 1 11
9 10
7 8
5 6
3 4
1 2

Wedge File

8 7
77 6

7 5

4
9 6 3

2
5 1

3

2 4

i
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F. ANALYTIC HIERARCHY PROCESS MODEL

1. Introduction.

a. Description. This program was authored by Mr. John D!Errico, U.S. Army Infantry
School. The Analytic Hierarchy Process (AHP) was developed by Thomas L. Saaty in the early
1970's. It is a method for ranking a set of alternatives based on multiple levels of character-
istics. For example, performance and cost may be two characteristics on one level, and they
might each consist of several other characteristics on a lower level. In turn, each of these
characteristics could be further defined by characteristics on even lower levels. Each character-
istic's value may be based on physical data such as seconds, inches, pounds, dollars, probability of
hit, etc..., or on subjective evaluations. The AHP can also assist the user when developing
subjective values.

b. Limitations. This model is primarily intended for first-time users of SaaWs Analytic
H-ierarchy Process. It is considered more as a tutorial which will enable the user to make an easy
transition to the use of a spreadsheet program such as Lotus 1-2-3. Spreadsheet software would
be much faster and more flexible for a complex AHP analysis.

c. Applications. The AHP hasbeen applied to a large variety of problems in the areas of.
education, management of energy, political candidacy, transportation planning, and others. It has
also been in use at the Pentagon. At the Infantry School the AHP was used in the combat boot
analysis, multipurpose bayonet analysis, and TOW warhead improvement analysis and selection.

d. Setup. Mr. John DErrico has developed two BASIC language programs for the
Analytic Hierarchy Process. These programs will run on any IBM compatible PC. Data sorting
and transformations usually take one or two days. Runs can occur at the rate of one every ten
minutes. Lotus 1-2-3 can also be used to run the AHP, in which case the user gains much
flexibility and speed in sensitivity analyses and run time.

2. Guide to Operation.

a. Equipment Required.

(1) IBM PC compatible computer.

(2) A3.5" disk drive.

(3) A printer.

(4) GWBASIC. This programing language can usually be found on the DOS disks if
you have a DOS version earlier than 5.0. It is also provided on the modeling disk. If using DOS
version 5.0 or more recent, use the GWBASIC on the modeling disk. (A:GWBASIC)
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b. Installation.

(1) Turn on the computer and get to the DOS prompt,

(2) If you are using the a-, drive, enter the command A:GWBASIC

(3) You will know that OWBASIC has been loaded when you see a screen with the
OK prompt at the top and the ten fUnction keys along the bottom.

(4) Enter the command LOAD"A:AHP (You will receive another OK" prompt).

(5) Enter the command RUN

(6) You will now see the prompting messaes, and requests for data, according to the
facsimile screem shown at the end of this section.

o. Example. The fMlowing example shows the meahauios of the ASP proem and It
should help to explain both the process Itself and the terminology associated with It. It will also
serve as a basis fbr describing some of the practical application in which the AHP has been used,
and the varlous ways of setti up the AHP to fit the problem at hand, This example assumes
thst there are three alteatives (ALTI, ALT2, ALT3) and five charactersti•os (CHARI, CHA2,
CHAR3, CHAR4, CHARS) which will be used to vWaluate the alternatives.

(1) STP 1. Compare each characteristic to every other ea sterIstic. Comparative
values or weWit may be basd on either real data such u seconds, pounds, feet, or dollars, or
based vn subjective determinations. A matrix fbr these parwise comparison of characteristics
would No set up a follows.

CHARI CHAR2 CHAR3 CHAR4 CHARS
CHARI 1,00
C 3LAR2 1.00
CI-IAR3 1.00
CHAR4 1.00
CHARS 1.00

(a) The l's on the main diagonal indicate that euh characteristic Is equal to Itself in
importance. To fMin the remainder of the matrix, ask yourself how much more important or
better is the Item In the left column than the item across the top row. For the use of subjective
data, Saaty recommends a scale of one to nine, where the number I indicates equality, and three,
five, seven, and nine indicate that the item on the left is weakly more important, strongly more
Important, demonstrably more important, and absolutely more Important than the Item across the
top. In this txample, we assume that we have physical measurements which we are comparing.
Accordingly, we know that CHARI is five times better than CHAR2, three times better than
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CHAR3, three times better than CHAR4, and nine times better than CHARM. Adding these
comparative values to the matrix results in the following.

CHARI CHAR2 CI-IAR CHAR4 CHARS
CHARI 1.00 5.00 3.00 3.00 9.00
CHAR2 1.00•
CHAR.3 1.00
CHAR4 1.00
CHARS 1.00

(b) After oh row i•isM4 the reciprocal of eachw me in the row is entered in
the symmetrically opposite cell aoros the main diagonal. For eumple, Onoe the intersection of
CHARI and CHAR3 Is a 3, meaning CHARI Is throe times better than CHAR3, then the
Inesection of CH.-l.Q3 and CHARI is 1/3, or 0.33, nmning CHAR3 is one-thrd ua good as
CHARI, as Mblows.

CHARI CHAR2 CHAR3 CHAiA CHARS
CHARI 1.00 5.00 3.00 3.00 9.00
CHAR2 0.20 1.00
CHAR3 0.33 1.00
CHARA 0,33 1.00
CHARS 0.11 1.00

(c) Sin wer not using subjective evaluations, we can ctually fill In all cell based
on the reationships estblished In the first row. Since CHARI is five time better than CHAR2
and thmilme bet than CKAR3, te CHARI must be 3/S as ood as CHAR3. Similarly,
since CHARi Is five tfme better than CHAR2 and nine times better than CHARS, ther CHAR2
must be 9/5 (1.80) times better than CHARS, and so on. Consequently, the matrix will be filled
as follows, based on the relationdsips established in the first row.

CHARI CHAR2 CHAR3 CHAR4 CHARS
CHARI 1.00 5.00 3.00 3.00 9.00
CHAR2 0.20 1.00 0.60 0.60 1.80
CHAR3 0.33 1.67 1.00 1.00 3.00
CHARA 0.33 1.67 1.00 1.00 3.00
CHARS 0.11 0.55 0.33 0.33 1.00

(2) STEP 2. Compute the priority vector. Mathematically, this is roushly equivalent
to normalizing the prinoipl elgenVeotor.

(a) For each row, take the nth root of the product of the n numbers in the row, as
fMllows. This is all done automatically In the model, but to translate this to Lotus 1.2-3 you must
know the process occurring within the model.
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CHARI CHAR2 CHAR3 CHAR4 CHAR5
CHARI 1.00 5.00 3.00 3.00 9.00 405.00 3.32
CIiAR2 0.20 1.00 0.60 0.60 1.80 0.13 0.66
CHAR3 0.33 1.67 1.00 1.00 3.00 1.65 1,11
CHAR4 0.•3 1.67 1.00 1.00 3.00 1.65 1.11
CHARS 0.11 0.55 0.33 0.33 1.00 * 0.007 0.37

(b) Normalize this last vector by dividing each number by the sum of all the
numbers. In this moe, the sum of the numbers Is 3.32 + 0.66 + 1.11 4 1.11 + 0.37 -6.57; so the
normalized numbers would be a follows.

CHARI 3.32/6.57 0.51
CHAR2 0.66/6.57 0.10
CHAR3 1.11/6.57 0.17
CHAR4 1,11/6.57 0.17
CHARS 0.37/6.57 0.06

(a) This priority vector Is really a statement of the weights attributed to each of the
characteristic& according to the pairwise values given in the above matrices. In other words,
CHARI is considered to be the most important characteristic, with a score of.51, and it is five
thn as Important as either CHAR3 or CHAR4, which each have a value of 0.17. Except for the
mathemaalc rounding errors, the oharmteristics have maintained their original relationship. But
this Is because we have not used subjective values, Had we used subjective data, we would not
have taken the first row of data in the initial matrix and automatically formed reiprooals, Instead
we would hav contiued to ewter raw subjective entries tbr each cell, without regard to
previously Implied relationships. When using purely subjective meam to acquire the entries, we
could vay w*ll end up saying that CHAR) Is five times better than CHAR2 and three times
better thin CHAR3 (which Implies that CHAR2 Is 3/5 u good as CHAR3) and then say that
CHAR2 Is halfa good as CHAR3.

(3) STEP 3. Estimate the consistency of the priority vector. This will be our measure
or Indication of how consistently the charmteristics were compared to each other during
development of the original matri of pairwise comparisons. Again, since we have not used
subjective data, our matrix of pairwise oomparisons should be consistent. An example of
inconsistency was tlven at the end of the paragraph above.

(a) Multiply the matrix of comparisons by the priority vector,

PRIORITY
COMNAMSON MATRD( VBCTQR VI

1.00 5.00 3.00 3.00 9.00 0.51 2.57

0.20 1.00 0.60 0.E0 1.80 0.10 0.51
0.33 1.67 1.00 1.00 3.00 0.17 0.86
0.33 1.67 1.00 1.00 3.00 0.17 0,86
0.11 0,55 0.33 0.33 1.00 0.06 0.28
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(b) Obtain a new vector V2 by dividing the first number in V I by the first element
of the priority vector; the second element of VI by the second element of the priority vector; and
so on.. follows.

V2
2.57/.51 5.04
.51/.10 5,10
.86/.17 5.06
.86/.17 5.06
.28/.06 4.67

(o), Add the elements in V2 aid divide this sum by the mtber of elements (i.e.,
average the numbersl In V2). In our example, (5.04 + 5.10 + 5.06 + 5.06 + 4.67Y 5= 4.99;. This
unber, 4.99, Is an approximation of the maximum (or principal) elgenvalue, abbreviated as

ax, and it is used to estimate the consistency of the pairwise comparisons. The closer %max Is
to, the number of rows or oolunns In the matrix of comparisons,.the more consistent the pairwise
comparisons were.

(d) How close is clos? A method of evaluating the consistency follows.

- Obtain the consistency index by dividing (%.max. n) by (n - 1). In our eample,
the consistency index would be (4.99.5)/(.1) - -.01/4 - -.003, SInce were only interted in the
magnitude of the difference, and not its direction, well call It .003,

* Divide the consistency index by the appropriate random index, shown In (3)
below, to obtain the consistency ratio. A consistency ratio of 0. 10 or less is considered
acceptable. In our case, the oonsistency ratio would be .003/1.12 w .003, indicating that we
were consistent in our pairwise comparisons. If we had been using subjeotive judgsents for all
our conparisons, the consistency rtio would help us catch sigknifcant errors in trasitivity,, such
u: A Is asgood as B, B is twice as good as.C,'mnd A Is as ood u C.

R Random indices for comparison matrices of up to 15 rows (or 15 columns).

Number of Rows Random Inda
3 .58
4 .90
5 1.12
6 1.24
7 1.32
a 1.41
9 1.45

10 1.49
11 1.51
12 1.48
13 1.56
14 1.57
15 1.59
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(4) STEP 4. Much of the above work was done to obtain a measure of consistency for
the palrwise comparisons made in the origital matrix. The priotity vector, however, is what we
were'after, Now we have to repeat the process for the matrix of alternatives as shown below.

(a) The set of alternatives must now be evaluated in light of the above
characteristics, In order to do so, pairwise compaUisons must be made with respect to each
characteristic above, This means we will have five sets of matrices, one for each characteristic.
In the first matrix of pairwise comparisons, the question we are uking is: with respect to
CHARI, how much better or more important is ALTI than ALT2, and so on.

(b) These matrices, along with their priority vectors, mulrmum elgenvalues,
consistency indices (CI.), and consistency ratios (CR.), are shown below.

PRIORITY
VECTOR %MAX CA.

CHARi ALTrI ALT2 ALT3
ALTI 1.00 0.50 2,00 0.29 3.00 0.00
ALT2 2.00 1.00 4.00 0.57
ALT3 0.50 0.25 1.00 0.14

CHAR2 ALTI ALT2 ALT3 3.00 0.00
ALTI 1.00 1.00 0.50 0.25
ALT2 1.00 1.00 0.50 0.25
ALT3 2.00 2.00 1.00 0.50

CHAR3 ALTI ALT2 ALT3
ALTI 1.00 2.00 2.00 0.50 3.00 0.00
ALT2 0.50 1.00 1.00 0.25
ALT3 0.50 1.00 1.00 0.25

CHAR4 ALTI ALT2 ALT3
ALTI 1.00 1.00 2.00 0.40 3.00 0.00
ALT2 1.00 1.00 2.00 0.40
ALT3 0.50 0.50 1.00 0.20

CHAR5 ALTI ALT2 ALT3
ALTI 1.00 1.00 1.00 0.33 3.00 0.00
ALT2 1.00 1.00 1.00 0.33
ALT3 1.00 1.00 1.00 0.33
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(5) STEP 5. The matrix of priority vectors from the pairwise comparisons of the
altematives is now multiplied on the right by the priority vector from the characteristics.

0.51
0.29 0.25 0.50 0.40 . 0.33 0.10 0.340 (ALTI)
0.57 0.25 0.25 0.40 0.33 0.17 0.443 (ALT2)
0.14 0,50 0.25 0.20 0.33 0.17 0.217 (ALT3)

0.06

This last vector, the solution vector, shows the final values of alternative I through alternative 3.

d. Additional Notes. In this example, there was only one level of characteristics.
Additional levels may be considered in the same problem by simply repeating the above
process. This is comparatively easy in a complete hierarchy, in which every item on one level is
related to every item on the next higher level. Our example is a three-level, complete hierarchy,
depicted by the following diagrsm. Level one is the solution; level two consists of the set of
characteristics; and level three contains the set of alternatives,

Level I (Goal)

Level 2

Level 3 (Alternatives)

A four-level complete hierarchy might look like the following, containing the solution on level
one, sets of characteristics on levels two and three, and the alternatives on level four.

Level 1 (Goal)

Level 2

Level 3

Level 4 (Alternatives)

242



In any case, the procedure remains the same. You compar- the eternatives with respect to each
of the oharaoteristics in the next higher level; then compare the characteristics with respect to
eacn of the superior characteristics in the next higher level, and so on, developing a set of
priority vectorc at each level. Then you compare the ,11ghest leval of characteristics with respect
to the solution. Finally, you must multiply each set of priority vectors in the correct order, to
obtain the solution vector. The correct order of multiplication is as follows: Put the lowest
level's set of priority vectora on the left (this will be the set of vectors resulting from comparing
the alternatives to each other), and pl 'acc each successively higher set of vectors' o the right.
.Then multiply the matrices and vectors from left to right.

A slightly more complicated hierarchy is an "incomplete" one, where each item on one level is
not necessarily related to every item on the level above, a shown helow.

Level I (Goal)

Level 2

Level 3

Level 4 (Alternatives)

The easiest way to solve this type of hierarchy is tc convert it into a complete hierarchy by
putting zeros in the matrix of comparisons to indioace no relationship betweem characteristics.
After that, the problem is solved as a complete hierarchy.

If any questions or problems arise from the use of this method, %r the AHF program, c'.: ntact
Mr. D'Errico at 3914 Eve Ct, Columbus GA 31909. Office phone (706) 545-7611.

e. Displays. The following facsimile screens display all the prompts, inputs, and menus,
based on the example in the text, above.
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Load CWk3ASIC (assuming it's in the DOS directory).

C:ODOS\GWBASIC

RUN

Load the A-HP -model from disk drive A, and enter 6om and "RUN"

LOAD"A:AHP

Make sure your pinter is on.

Turn on your printer. T16 provam will not run without It.

(Press the (Enter] key when ready)?

Enter three lines to desoribe this run. Press (Enter] to leave a line blank.

DESCRIPTION OR TITLE FORMTIS ANALYSIS (Enter 3 lines for ite)
AHP-Test #1 (Enter]
20 Dec 92 [Enter]
John D'Errico [Enter)
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Select "Enter Data" from the main menu.

MAIN MNU.

.1.- ENTER DATA

2- CHANGE DATA

3 - SAVE DATA (As soon as you have entered all datal)

4 -- PEIWPORM COifPUTATIONS

5- END PROG ,AM

(SELECT ONE OF THE ABOVE NUNMERS)

Enter data from the keyboard (K), unless previously saved on a dlsk(D).

ENTER DATA FROM KEYBOARD OR DISK? (K/D)

? D (Enter "D" and use the sample data provided on the modeling disk)

When retrieving data from a disk, be prepared to enter the dlsk/path/filename.LENTER NAME OF DISK: FILE
? a:ahpltest.dat (This file was included on your modeling disk)
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After the data has been entered or changed, re-save it, and select item 4.

MAIN MvENUJ

I .- "E NR DATA

"2 -CHANGE DATA

3- SAVE DATA

4'4 PERFORM COMPUTATIONS

S- END PROGRAM

(SEm ECT ONE OF THE ABOVE NUMESM)

Printing will stop after the tide, alternatives, and charimerlatics are printed,

in u6 you want to start printing the results on 6 new, pae fbr a cleaner look.

DO YOU WANT TO SKIP TO NEXT PAOE?

(IN"?. y~1~
After the results are Orinted, select "5" to end the program.

MAI MENU

I -ENTER DATA

2 - CHANGE DATA

3 - SAVE DATA

4 - PERFORM C.OMPUTATIONS

5 - END PROGRAM

(SELECT ONE OF THE ABOVE NUMBERS)

?5
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Enter the command "SYSTEM" (without quotation marks) to return to DOS.

MAIN MENU

I - ENTER DATA

2-CANGEDATA

3- SAVE DATA

4 - PERFORM COMPUTATIONS

5 - END PROGRAM

". . (SELECT ONE OF THE ABOVE NNMBERS)
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f. Results. The following results were based on the example given in the text above.

.20 Dw V

ALTNAI1VU EVALUATI:
ALTI

CHARAIIR A IICMD M

CRAM

CHAR

CiIARACT11RZSTIC VAL4.A

CHARS Ci4AR2 CHAOS CHARd CHARS
OHARI 1.00 1.00, 3.00 2,00 9.00
CHA12 0.20 1.00 0.0 0.40 ISgo
CHANS 0.33 1,47 1.00 1.00 3.00
CHARd 0.33 1.67 1.00 1oo 3.00
CHAR 0.11 0,51 0.33 0.32 1.00

-a-vuroaC MAX~ 8RIOUNVAM~ 4." CONIISW4CY RATIO: .002100
0.$1
0.10
0,17
0.17
0106

CHARI g!ORNIVCTOR 910RN VALUE
ALTI ALMS ALT3

ALTI 1.00 0,50 2.00 0.29 3.00
ALTS 2.00 1.00 4.00 0.57
ALl'S 0.50 0U2 1.00 0.14

OON5IXMPCY RATIO 0.0000

CHAR 9IOU4V8CTOR BIOIL4VALLI
ALT! ALMI AL13

ALl'S 1.00 1.00 0,10 0.25 3.00
ALl'S 1.00 1.00 0,50 0.25
AMT 2.00 2.00 1.00 0.50

CONSISTmIc' RATIO: 0.0000
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CA ALTI ALT2 ALT3 lGN MR ZO VAU
'ALT!, 3.00 2.00 2.00 0.50 3.00
ALn2 0,50 1,00 1.00 0.25
&LT3 0.S0 3.00 3-0 0.25

CONIKITECY RATIO: 0.00000

CIIA!$ EIOINVECTOR 3ZOIN VALUE
ALTI ALT2 ALT3

ALT! 3.00 1.00 2.00 0.40 3.00
AL72 1.00 1.00 2.00 0.40
ALl'S 0.50 0.50 3.00 0.20

CONlIZITCY RLAT10O 0.0000

CHARS KONZTR 3ONAU
ALTI ALT23 ALl'SOPA R IONAU

AL'TI 1.00 1.00 1.00 0.33 3.00ALT2 3.00 3.00 1.00 0.33
ALTI 3.00 1.00 1.00 0.33

OONILIUICY RATIO: 0.0000

RANKING OF ALTMRNATIVU:
ALTI a 0,443
ALT! w 0.340
ALT3 a 0,217
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G, DATA RANKING.

i. Introduction.

a. Descriptiom. This program, developed by Mr. John D'Errlco, takes any set oftnumerical
data as input, sorts it into ascending and descending orders, and provides the ranks associated
with each.

b. Limitations. This program can accept a madmum of 1000 data points.

c, Applications. Desktop tool for data analysis.

d. Setup. This model runs on a DOS-basd computer. Data entry consists solely of
entering the numbers to be sorted and ranked. Sorting and ranking will usually take less than a
minute.

2. Guide to Operation.

a. Equipment Required.

(1) IBM compatible PC computer,

(2) 3.5" disk drive.

(3) Printer,

b. Installa.tion.

(1) Turn on the computer and got to the DOS prompt.

(2) Insert the 3,5" disk containing the RANKDATA program into your computer's
disk drive.

(3) From the DOS prompt, enter the command A:RANKDATA (or B:RANKDATA if
you're using the B: disk drive,

c. Definitions.

(1) Rank. After a set of numberb is put into order (ascending order, fbr example) the
rank of each number is simply the number of its position in the ordered list. However, when the
same number Is repeated on the Ust, their rank Is determined by averagIqn the numbers of their
positions. For example, assume that the numbers 12, 3, 17,' 11, 12, 6, 42, 3 must be ranked.
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The first task is to sort the numbers into (for this example) ascending order. The sorted list of
numoers then becomes 3, 3, 6, 11, 12, 12, 17, 42. The number 3 occupies position I and 2, so
each 3 gets a rank of 1.5 since (I + 2)/2 - 3/2 -a 1.5. The number 6 gets a rank of 3 since it holds
position 3; the numb I I gets a rank of 4 since it holds position 4; the numbers 12, occupying
positions 5 and 6, each get a rank of 5,5 since that's the average of position numbers 5 nd 6.
Number 17 gets a rank of 7 since it holds position 7, and the number 42 gets a rank of 8 since it
holds position 8 in the ordered list of eight numbers,

(2) Ascending Order. Numbers in ascending order are listed with the smallest number
at the top of the list and the largest number at the bottom of the list.

(3) Descending Order. Numbers in ascending order are listed with the largest number
at the top of the ist and the smallest number at the bottom of the lst.

d. Operation.

(1). The first display is as fMoows:

This program accepts up to 1000 numbers, then prints
the numbers as entered, followed by the numbers
in ascending and descending orders and their
associated ranks, Ranks are assigned from 1 to n.

Tied scores are assigned the mean of the ranks for
which they are tied.

(Press RETURN to beg4.n the program)

Screen #1

(2) The second display prompts you to enter score (number) #f, score #2, score #3,
etc..., with the instruction to enter the number .99 when you hAve no more numbers to enter.

Enter score # 1 ? 3

(Enter -99 after last score has been entered)

Screen 02
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(3) The final display will prompt you to make sure that your printer is turned on.

Make sure that your printer is on

Press the [Enter) key when ready

Screen #3

(4) The ft-owing Is a sample printing grom this progrm.

DataBntered: 5 3 11 2 7 28 5 2 9 24 35 17 12 7 9
16 12 3 7 9 2 4 6

ASCENDING DESCENDING
DATA RANKS DATA RANKS

2 2 35 1
2 2 28 2
2 2 24 3
3 4.5 17 4
3 4.5. 16 5
4 6 12 6.5
5 7,5 12 6.5
5 7.5 11 8
6 9 9 10
7 11 9 10
7 11 9 10
7 11 7 13
9 14 7 13
9 14 6 15

11 16 5 16,5
12 17.5 5 16.5
12 17.5 4 18
16 19 3 19.5
17 20 3 19.5
24 21 2 22
28 22 2 22
35 23 2 22

(5) At this point the program ends and returns you to the DOS prompt,
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H. LAGRANGE INTERPOLATION.

I: Introduction.

a. Description. This model, developed by Mr. John D'Errico, uses Lagrange polynomlias
to interpolate between two points on a nonlihear curve.

b. Limitations. This method Is subject to errorif using a ilarge number of known data
points as a basis for the interpolation.

c. Applications. Desktop tool for data analysis.

d. Setup. This program runs on an IBM compatible PC computer. It takes approximate-
ly one minute to enter five data points, and less than a minute to display the interpolation.

2, Guide to Operation.

4. Equipment Required.

(1) IMM compatible PC computer,

(2) 3.5" disk drive,

b. Installation.

(1) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the LAGRANGE proSram into your disk drive.

(3) From the DOS prompt enter the command: A:LAORANOE

c. Explanation.

(1) Given a set of data points such u those in Table 1, there Is often a need to
determine a data point which Is not listed in the table. For example, we miSht need to estimate
the probability of hit [P(H)] at a range of 1,2 kilometers, based on the data in Table I

RANOB P(H)
0.1 0.90
0. 0.88
1,0 0.58
2.0 0.18

Table I
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(2) A common practice, due to its simplicity and speed, is to interpolate linearly
between two given data points. Using Table I this would mean interpolating between the
ranges of 1.0 and 2.0 kilometers in order to find the value not given--the P(H) at 1.2 kilometers.
However, when the given data does not fall along a straight line, linear interpolation is subject
to gross errors, particularly if the data points within which the interpolation is done ape not close
together.

(3) The method described herein uses Lagrmnge's form of interpolation polynomials.
This is a widely used form for interpolation within a set of given data points. The given data
points may be equally or unequally spaced, and may line along a nonlipear curve.

(4) This method is also subject to errors, particularly if using a large number of given
data points to make the interpolation. A way to minimize the error is to take a couple of data
points on either side of the value to be interpolated, ignoring the data points which are farther
away.

(5) This method Is presented as an alternative to linear Interpolation, not as a
substitute, and it is to be used when a straight line would be substantially off the true curve of
known data points, u shown in Figure 1.

0.88

0.06

0.7

0,6- 0.358 0.50 by linear
P 0 M interpolatio

0.4-0.4 -'-0.43• ',,

013

0 .2 .. .. . . .. . 0 .1 8

0.1
0 I I i _I I I l . |i

0.1 0.3 0.6 0.7 0.9 1.1 1.3 1.5 1.7 1.9
"N,•OE

VIM"R I I

(6) ThIs method should only be used to interpolate within the range of given data
points. There are better methods for interpolating (or extrapolating) outside the range of the
given data points; namely, Newton's forward and backward differences, among others.
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(7) There is more than one way to derive the approximating interpolative polynomial
used herein, such as the method of undetermined coefficients; however, the method selected here
is straight forward, and was easy to program,

(8) Hquations.

(a) Since the derivations, proofs, and uniqueness theorems are readily available in a
multitude of books on numerical analysis, these are not dupUcated In this paper.

(b) Given a set of n+I data points of the tbrm (x, f(x)), the collocation polynomial
(the nth degree polynomial fitting those points) is

p(x) - Z qy,)L,(x)
where, for eachJ, 0<J < n, ýx) Is the given value along the y-axls assockated with the given x1
value along the x-axis. L,(x) Is the nth degree polynomial defined as

Cx-xJCx-x,) ... (X-xs,)x-Xj,) ... (X-xOj (X.•j

L ) -•1 N-

d. Operation.

(1) Using the data in Table 1, assume that we want to estimate the probability of hit at
1.2 kilometers. Table 1 Is repeated below,

RANGH P(f)
0.1 0,90
0,1 0.88
1.0 0.58
2,0 0.18

Table 1

(2) The LAGRANGE program's first screen asks if you want a program description
and explanation displayed on the screen. For this example we will select Y(es).

If you want a briefprogram deseriptioidexplanaton, enter

|Y or y and press (Enter]; otherwise, simply press (Enter).

Screen #I
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(3) The next •three displays consist of the explanation.

DESCEPWTION

This progprm acepts any number of (xy) coordinates,
dermines td Larnme form of interpolative polynomial
which fits the (xy) data points, and then asks the user to enter any

mbeir at xwiuu ftb which a yavlue mug be
Predicted

It Is recommended tt ti program be used to Inepolate
onlyobehm th I and highedt known x-valuee (don't dr"polat)
and that only 3 to 6 coordinates of known points be used for this

(Press (Enter] to continue)

Screen #2

(4) Continued description:

Whn enteing tho first t of data. simply enter the x-value and y-v'lue,
upaeratd by a comma, and press [Enter) after each psir of coordinates.
For owmie to enrn' the coordinates (1,2), (2,4), ad (3,9) you would
first enter a "3" in response to "w3 tM numter ofbokn (xy) data
points." Then you would enter the three coordinates as follows:
1,2 [Enter]
2,4 (Bnter
3,9 (Enter)

(Pfrs (Bater] to continue)

Screen #3

(5) Final screen of descriptions.

Aft you h entered the known (x,y) conordintes, you will be asked
to eater the nmbmw of x.values for whlih you need predicted y.values.
Simply entr the number of x.values for which you need y-values
interpolated. Finally, you will be asked to enter the x-values, one at a
time, pressing the (Enter] key after eacb x-value enuy.

Screen #4
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(6) Now you will be prompted to enter the number of known data points.

Enter. the number of known (xy) data points.

Screen #5

(7) The next four prompts ask you to enter the data points. Only the first prompt is
shown here, since the renialning three are identical except for the coordinate entered.

Enter XY for Data Point #1

? .9

(Enter the X and Y values, separated by a comma)

Screen #6

(8) The next prompt ass for the number of x-values for which you need a y-value.
Only one y-value is requested in this example-the P(H) at 1.2 kilometers.

Enter the number of x-values for which you need
a y-value predicted.

Screen #7

(9) Now you must enter the single x-value, For this example the response is 1.2,
representing 1.2 kilometers.

Enter X value # 1

?1.2

Screen #8
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(10) The final display Lists the x-values and y-values you entered, followed by the
x-value and y-value you needed interpolated.

x Y
.1 .9
.5 .88
7 .58
2 .18
1.2 A4347836

CA\ >

SCreen #9

(11) An you can see from Screen #9, the progmn has ended and returned you to the
prompt you started with.-in this case, the root directory.
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1, FUNDAMENTAL DUEL

1I. introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing, ilnle shot, direct fire weapon systems, each having an unlimited amount of
ammunition. Inputs required are each weapon's reliability, rate of fire, and probability of kill
given i single shot. The results are displayed in terms of the probability that the Blue weapon
wins the duel and the probability that the Red weapon wins the duel.

rtsof~re and excponentialiy distributed firing times between rounds.,,ratesb,, Limintations. ,This model evaluates the outcome of a simple one-on-one duel, based on

c. Applications, Desktop analytic tool for applying a simple concept to evaluations of
single shot weapon systems.

d. Setup. This model runs on an IBM compatible PC computer equipped with Lotus

"1-2-3. Data- cm be entered into the model and results displayed in less than a minute.

2. Guide to Operation,

a, Equipment Required.

(1) IBM PC compatible computer.

(2) 3.5" disk drive,

(3) Lotus 1.2-3 spreadsheet software.

b. Installation.

(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the FUNDUEL model into your computer's 3.5"
disk drive.

(3) From the Lotus 1-2.3 menu, load the A:FUNDUEL.WKI model (or B:FUNDUEL
if you're workins from the b: drive) by entering /FR, then backspace to erase the default path, and
enter A: and press the (Enter] key. After the Lotus 1-2-3 files are shown, select the FUNDUEL
file.
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o. Operation.

(1) Move tho curbor to the nell you wish to change, This should be cell B2, B3, B4,
B6, B7, BE, B I 0j or E 1.

" (2) As you make a change in ona call, the probabillties of Blue and Red winning (cells
FS and F6 respectively) axre automatically reiaIculated for a practically instantaneoui answer.

1 TH FNAMMOTaL DUEL

PRMT-B 0.6
PR YHB 0.7
PSSK-H 0.42 . ROB-. 0.567,16S
RELhR I
Pit kfT.R 0.8 PROB-R 0.432432
PR ,KMR 0.8
PSSK-R 0.64 CHMCIC 1
LOF-B 2

S, ~Soren" C

d. Definiti~ns.

PL-B3: Reliability of the Blue weapon system,

PR HIT-B: Blue weapon's probability of hitting the Red target.

PR KWH-B: Blue weapon's probability of kill, Siv a hit, on the Red target.

PSSK-B: Blue weapon's probability of kill given a single shot at the Red target. It is the
product of the probability of Wit and the probability of kill given a hit.

REL-R: Reliability of the Red weapon system.

PR HITwR Red weapou's probability of hitting the Blue target.

PR K/H-B: Red weapon's probability of kill, given a hit, on the Blue target.
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PSSK-R: Red weapon's probpb~ity of kill given a single shot at the Blue target. It is the

product of the probability of hit and the probability of kill given a hit,

ROF-B: Blue weipon's rate of fire.

ROF- Red weapon!& rate of fire.

PROBSB: The probability that Blue wins the duel..

PROB-R The probability that Red wins the duel,

CHECIK: Verification of the equations, It is the sum of PROB-B and PROB-Ik which should
be equal to 1.00,

e. Explanation.

(1) Background. In a fundamental duel, it is hypothesized that two duels, Blue (B)
and Red (R.), fire at each other until one I. put out of action. The firing times, or time between
rounds, fbr each duelist is considered to be of a random character with Imown probability density
functions, the parameters fbr which may be different for Blue and Red, At the start of the
engagement, each contestant loads, alms, and fires his first round at his opponent, Thus, in the
fundamental duel, both mrt with unloaded weapons. It is also assumed here that each time Blue
and Red fire at each other they have constant single shot kHil probabilities, although such kidl
probabilities of Blue and Red may be difftrent. Both Blue and Red have unlimited ammunition
supplies, so that a Wdil is certain.

(2) Definitions.
o,- mean rate of fire of Blue (B)

* mean rate of fire ofRed (R)
ps - single shot kidll probability of Blue against Red
A - single shot kill probability of Red against Blue
P(B) -chance that B wins the duel
P(R) cbance that gR win the duel - I- P(B)

(3) The mean rates of fire, a and A are, respectively, the reciprocals of the mean
times between rounds fired by Blue and Red.

(4) The single shot chances of kill, Ph and pk, may be built up or determined by taking
the product of the chance of a hit and the conditional probability that a hit is a Idll; I.e.,

pa -"p.(h) pe(klh) and p1t -P(h) p3 (kh).

(5) Finally, we make an assumption that appears of practical value; namely, that the
time to fire the first round and the times between rounds fired for B and R follow single
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parameter negative exponential distributions. So, for random times t

At) a p exp (-pt), where pw p or k, as needed. Mean time between rounds - I1p.

(6) Since the exponential dIstribution is equivalent to the chi-square distribution with
two degrees of freedom, this means that the time at which the nth round is fired is the sum of n
independent selectons ftom the above equation, or the chi-square distribution with 2n degrees of
fieedom (or the gamma distribution) given by

/(Q w A(t,,wex.p(-, (n.1),

Thn, the ohanoe that Blue wins Is: P(B) =... -
S~Pah. + pPoA

and the chance that Red wins is P(R) = 1. P(B) -
Pah + PPP

(7) Consequently, for exponentially distributed firing times between rounds, the chance
that a side wins is the kill rate for that side divided by the sum of the kill rates for both sides,
which is a rather simple outcome. Hence, the value of kill rate as a key measure of efifbtiveness
is evident, Note that if the single shot kill probabilities of B and R am) equal, then their rates of
fire take over;, and if their rates of fire also are equal, each B and R have a 50% chance of
winning, The chance of a draw, or both being killed, Is zero,
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J. FUNDAMENTAL DUEL WITH LIMITED AMMUNITION FOR BLUE

1. Introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing, single shot, direct fire weapon systems when the Blue weapon system has a limited
"amount of ammunition. Inputs required are each weapon's reliability, rate of fr and probability
of kill given a single shot. The results are displayed in terms of the probability that the Blue
weapon wins the duel and the probability that the Red weapon wins the duel.

b. Limitations. This model evaluates the outcome of a simple ode-on-one duel, based on
rates of fire, probabilities of kill, and exponentially distributed firing times between rounds,

o, Applloations. Desktop analytic tool for applying a simple concept to ealuations of
single shot weapon systems.

d. Setup, This model runs on an IBM compatible PC computer equipped with Lotus

1.2-3. Data can be entered into the model and results displayed in les than a minute.

2. Guide to Operation.

a, Equipment Required.

(1) IBM PC compatible computw.

(2) 3.5" disk drive.

(3) Lotus 1-2-3 spreadsheet software.

b. Installation.

(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the LIMAMMOB model into your computer's 3.5"
disk drive,

(3) From the Lotus 1-2-3 menu, load the A:LIMAMMOB model (or B:LIMAMMOB
if you're working f'om the b: drive) by entering /FR, then backspace to erase the default path, and
enter A: and press the (Enter] key. After the Lotus 1-2-3 files are shown, select the
LIMAMMOB file,
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o. Operation.

(1) Move the cursor to the cell you wish to change. This should be cell B2, B3, B4,
B6, B7, B8, BI0, BI lor B12.

(2) As you make a change in one cell, the probabilities of Blue and Rod winning (cells
M3 and E4 respectively) are automatically recalculated for a practically instantaneous answer.

FUNDAMENTAL DUEL (LIMM AMMO FOR ALUE)
RBL-B I
PRHI'T-B 0.6 PROB-B 0.558272
PR K/H-B 0.7 PROB-R 0.441728
PSSK-B 0.42 CHECK I
REL-RI
PR HIT-R 0.8

R K/H-R 0.8
PSSK.R 0.64
ROP-B, 2
ROP-R I
ROUNDS-B S

Scren #1

d. Definitions,

REL-B: Reliability of the Blue weapon system.

PR HIT-B: Blue weapon's probability of hitting the Red target.

PR K/H-B: Blue weapon's probability of idll, given a hit, on the Red target.

PSSK-B: Blue weapon's probability of dU given a single shot at the Red target. It is the
product of the probability of hit and the probability of Idll given a hit.

REL-,.I Reliability of the Red weapon sy' eam.

PR HIT-R: Red weapon's probability of hitting the Blue target,

PR K/H-B: Red weapon's probability of kill, given a hit, on the Blue target,
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PSSK-R: Red weapon's probability of kill given a single shot at the Blue target. It is the

product of the probability of hit and the probability of kill given a Wit.

ROF-B: Blue weapon's rate of fire.

ROF-R, Red weapon's rate of fre.

PROB-B: The probability that Blue wins the duel,

PROB--. The probability that Red wins the duel.

ROUNDS-B: The number ofrounds available to the Blue weapon system.

CIMCK: Verifloation of the equations, It Is the sum of PROB-B and PROB-1;whlch should
be equal to 1.00.

e, Explanation.

(1) This model uses the same parameters as the ftmdamental duel where both sides
have unlinited amounts of amnmunition, except that now Blue is lUiited by N-rounds.

(2) Whe Blue has a fbed muba of rounds equal to N, and Red bao an unlimited
supply of ammunition, then for the assumption of exponential firing times between rounds, the
chance that Blue wins is given by

and

P(BR) - 0

Note: RqI - 1 -pg -- single shot survival probability for Red when fired on by Blue.

P(BR) - chance of a draw (B and R kill each other).

(3) See paragraph 1.2.e. for additional explanations of the fundamental duel.
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J, FUNDAMENTAL DUEL WITH LIMITED AMMUNITION FOR RED

I. Introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing s e shot, dh fire weapon systems when the Red weapon system has a limited
amount ofamualtlon. Inputs required am eh weapon's reliability, rate of fire, and probability
of kill ivern a ti121e shot. The results are displayed in terms of the probability that the Blue
weapon wins the duel and the probability that the Red weapon wins the duel.

b. LUmitatlons. This model evaluates the outcome of a simple one-on-one duel, based on
rates of fire, probabililtes of kill, and exponentilly distributed firin times between rounds.

o. Applications. Dsktop analytic tool for applying a simple concept to evaluations of
"single shot weapon systems.

d. Setup. This model runs on an IBM compatible PC computer equipped with Lotus
1-2-3. Data can be entered into the model and results displayed in less than a minute.

2. Guide to Operation.

a, Equipment Requird.

(1) IBM PC compatible computer,

(2) 3.5" disk drive.

(3) Lotus 1-2-3 spreadsheet software.

b. Installation.

(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the LIMAMMOR model into your computer's 3.5"
disk drive.

(3) From the Lotus 1-2-3 menu, load the A:LIMAMMOR model (or B:LIMAMMOR
if you're working from the b: drive) by entering /FR, then backspace to erase the deftult path, and
enter A: and press the [Enter] key. After the Lotus 1-2-3 flSes are shown, select the
LIMAMMOR file.
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c. Operation.

(1) Move the cursor to the cell you wish to change. This should be cell B2, B3, B4,
B6, B7, B8, I10, Bit, or B12.

(2) As you make s change in one cell, the probabilities of Blue and Red winning (celis
B3 and 84 respectively) are automatically recalculated for a practioally instantaneous answer.

BASIC DUEL (LIMITED AMMO FOR RED)
RELB I!
PR HIrT- 0.6
PR K/H-B 0.7
PSSK-B 0.42 PROB-B 0.567582
REL-R 1 PROB-R 0.432418
PR HIT-R 0.8 CHECK I
PR K/H-R 0,8
PSSK.R 0.64
ROF-B 2
ROFMR 1
ROUNDS.R 5

Screer "I

d. Definitions.

REL-B: Reliability of the Blue weapon system.

PR HIT-B: Blue weapon's probability of hitting the Red target.

PR K/H-B: Blue weapon's probability of kill, given a hit, on the Red target.

PSSK-B: Blue weapon's probability of kill given a single shot at the Red target. It is the
product of the probability of hit and the probability of kill given a ht.

REL-R: Reliability of the Red weapon system.

PR HIT-R: Red weapons probability of hitting the Blue target.

PR K/H-B: Red weapon's probability of kill, given a hit, on the Blue target.
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PSSK-R: Red weapon's probability of kill given a single shot at the Blue target. It is the

product of the probability of hit and the probability of kill given a hit.

ROF-B: Blue weapon's rate of fire.

ROF-R: Red weapon's rate of fire,

PROB-B: The probability that Blue wins the duel..

PROB-I The probability that Med wins the duel.

ROUNDS-R: The number of rounds available to the Red weapon.

CHEMC Verificatlon of the equations. It is the sum of PROB.B and PROBuR, which should
be equal to 1.00.

e. Sxplanation.

(1) This model uses the same parameters u the fundamental duel where both sides
have unlimited amounts of ammunition, except that now Red is limited byN-rounds.

(2) When Red has a fixed number of rounds equal to M, and Blue has an unlimited
supply of ammunition, then for the assumption of exponential firing times between rounds, the
chance that Blue wins Is given by

P(B)~ ...... . + x.uea X
pPO + p Lýý

and

P(BR)- O.

Note: q. - I .p1 -" sinSle shot survival probability for Blue when fired on by Red.

P(BR) - chance of a draw (B and R kill each other).

(3) See paripaph 1.2.e. for additional explanations of the fundamental duel.
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K. LANCHESTER'S SQUARE LAW AS A FUNCTION OF TIME

1'. Introduction.

a. Description. This model (Reference 4, chapter 28) determines the remainin .Blue
forces and remaining Red forces at any given time during a battle between homogeneous forces.
Inputs required for each side are the total number of weapon systems, and each weapon's
probability of hit, probability of kill given a hit, and rate of fire.

b. Limitations. This model evaluates the outcome of one set of Identical weapon systems
against an opposing set of identical weapon systems, It is based on each weapon's constant kill
rate of opposing forces.

a. Applicatons. Deuktop analytic tool fbr evaluating homogeneous fbrwe effeeveness in
terms of a buic concept.

d, Setup. This model runs on an IBM compatible PC computer equipped with Lotus
1-2-3, Data can be entered into the model and results displayed in less than a minute.

2. Guide to Operation.

a. Equipment Required.

(1) IBM PC compatible computer.

(2) 5,25' disk drive.

(3) Lotus 1-2-3 spreadsheet software.

b, Installation.

(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the LANBASIC model into your computer's 3.5"
disk drive.

(3) From the Lotus 1-2-3 menu, load the A:LANBASIC model (or B:LANlBASIC if
you're working from the b: drive) by entering /FR, then backspace to erase the default path, and
enter A: and press the (Enter] key. After the Lotus 1-2-3 flies are shown, select the LANBASIC
file.
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c. Operation.

(1) The model parameters are shown below.
ki -

BASIC LANCHTBVER EQUATION AS FUNCTION OF TIMEM
BAT=LE BLUE RED

IAL FORCE SiU* 100 56
P(H)* 0.5 0.5
P(KM) 0.25 0.5
RATS OF F1B* 0.4 1. 0.4
CONSTANT ILL RATS 0.03 0.1

ZTiME ELAPSED (V2
STRENOTH AT ThDB T 90.97 40.47
FORCE ADVANTAGE RATIO 2.25 0.44
LE AT TIMT 1.05
TD4E OF ANNMGLATION ERR 12.4645
0.141421 0.141193 1.010017
1.414214 0.707107

Screen #1

(2) Move the cursor to the cl you Wish to change. You may change only the'items in
Scren #1 whih are marked with an asterisk. In Sores#01 an error (ER) Is shown in cell 13
because the given data has the Red force annihilated before the Blue force; consequently, Blue
cannot be annihilated (no forc. remaining).

d, Definitions.

Initial Force Size: Number of identical weapons on the Blue or Red side.

P(H): A weapon's probability of hit against the opposing force target,

P(KIH): Probability of IdU given a hit agnst the opposing fbroe target.

Rate of Fire: The rate of fe in rounds per time unit (usualy minutes).

Constant Kill Rate: The constant rate at whioh a single weapon kills an opposing force
target.

Time Elapsed: The battle time.

Strength at Time T: The number of Blue or Red weapons remaining at the end of
time T.
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Force Advantage Ratio: The number of friendly weapons divided by the number of

opposing force weapons after time T.

LER at Time T: The number of Red losses divided by the number of Blue losses.

Time of Annihilation: The time at which there are no remaining weapons on that side.
An error, indi',ated by "ERR" will be displayed on the side of the force which has weapons
remaining after the opposing force has been annihilated. This is because the winning force cannot
be annihilated after all opposing weapons have been destroyed.

Note: The data appearing in rows 14 and 15 are intermediate calculations.

e. Explanation of Lanchester's square law as a function of time.

(1) Defnitions.

80 u Initial Blue streng

&a nitial•Red stseath

B - Size of the Blue force at any time t

R - Size of the Red force at any time t

p = Constant rate at which a single Blue weapon kil a Red weapon

-- Constant rate at which a single Red weapon kdlls a Blue weapon

(2) The remaining Blue forces B() and remaining Red forces RQ) at any time t are
given by

BQ)'- Bcosh yX I - 1WR- Ainh vX

RQ) "a IcoshW i- V Bsinh V t

(3) The dme at which Red is annibilated (i.e., RQ) O) is given by

I- (W/(2v') lI ((In -r 40•-3 &/ P Bo - PO))

(4) Similarly, If Red wins, then Blue's time of annihilation (i.e., B(t) - 0) is given by

to 1[n/(2 t [ o + ,.!ro (4/ - 80B)]
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L. DUEL WHEN BLUE HAS A WEAPON FAILURE RATE

1. Introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing, single shot, direct fire weapon systems, each having an unlimited amount of
ammunition, as in the fundamental duel, but including the idea of weapon falure times. Inputs
required are: each weapon's probability of hit, probability of kill giveu a hit, round reliability, and
rate of fire; the number of Blue weapons, and the Blue weapon failure rate. Remsdts are displayed
in terms of the probability that Blue wins the duel and the probability thft Red wins the duel.

b. Limitations. Only homogeneous forces are used in this model. Blue and Red have
unlimited anmmunition supplies; Blue has a limited number of weapons, and Red has a failure-free
weapon.

c. Applications. Desktop analytic tool for applying simple /tilure rates to evaluations of
single shot weapon systems.

d. Setup. This model runs on an IBM PC compatible computer equipped with Lotus
1-2-3. Data can be ntered into the model and results displayed in les than a minute.

2. Guide to Operation.

a. Equipment Required.

(1) IBM PC compatible computer.

(2) 5.25' disk drive.

(3) Lotus 1-2-3 spreadsheet software.

b. Installation.

(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the DLFAILB model into your computer's 3.5" disk
drive.

(3) From the Lotus 1-2-3 menu, load the A:DLFAILB model (or B:DLFAXLB if you're
working from the b: drive) by entering MR, then backspace to erase the deiut path, and enter
A: and press the [Enter] key. After the Lotus 1-2-3 flies are shown, select the DLFAILB file.

272



c. Opcration.

(1) The model parameters are shown below.

DUEL WITH WEAPON FALURE RATES FOR BLUE
REL OF BLUE RD$ I
PRODB HIM BLUE RD* 0.6
PROB KYI BLUE RD* 0.7
P88K BLUE RD 0.42
REL OF RED RD* I
PROB MIT RED RD* 0.8
PROB KJH RED RD* 0.8
PSSX RED RD 0.64
ROF BLUE* 2
ROFREDB I
NUM BLUE WI:S* o
BLUM WPN FAIL RAMS 0.02

0.04

PROB BLUE WINS 0.B52632

Screew #1

(2) Move the cursor to the cerl you wish to change, You may chanrge only the ite.s in
Screen #1 which ame marked with an teterink

d. Definitions,

REL OF BLUE RD: Reliability of the Blue round.

PROB HIT BLUE RD: Blue weapon's probability of hitting the Red target.

PROB KIH BLUE RD: Blue round's probability of killing the Red target given a hit.

PSSK BLUE RD: The product of the above three inputs.

REL OF RED RD: Reliabi2ity of7the Red round.

PROB HEM RED RID: Red weapon'sL probability of hitting the Blue target.

PROB Y4 RED RD: Red round'I probability ofkUMing the Blue targset Sime a hit.

PSSK RED RD: The product of the above three inputs.
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ROF BLUE: The Blue weapon's rate of ire.

ROF RED: The Red weapon's rate of fire.

MUM BLUE WPNS: The number of Plue weapons in the Blue force.

BLUE WPN FAIL RATE: Failure rate ofthe Blue weapon.

PROP BLUE WINS: Tih probability that Blue wins the due.

PROB RED WINS: The probability that Red wins the duel.

e. Explanation.

(1) Definitions.

P(B) - Probability that Blue wins the duel.

=- Mean rate of fire for a Blue weapon.

A - Mean rate of fire fbr a Red weapon.

ps - Single shot kill probability of Blue against Red.

- - Single shot kill probability of Red against Blue,

- Mean failure rate for a Blue weapon.

- Mean failure rate for a Red weapon.

(2) Blue's and Red's weapon filure times are assumed to be exponentially distributed,
with mean filure times I/I, and I/v, reqetively, or moa failum rates of p. and gn. If we
flirthe asume that Blue and Red have unlimited ammunition supplies, Blue has a limited number
ofweapons N, sad Red has a liilure-t weapon (ia - 0), then the chaem that Blue and Red
win are

P(B ) - papa.I 
1. .

APB +AIPR i p+pops +p jA
P(R) - I - P(B), P(BR) - P(Draw) - 0
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M. ESTIMATING OPERATIONAL AVAILABILITY

1. Introduction.

a. Description. A method for estimating operational availability based on a conibina- tion
of test data and parameter estimates from other sources. This model was developed by Fred
Bernstein, Eugene Dutolt, and Greg Meyers erenoe 5),

b. Appliations. Deskop model for estimating operational availability. It also gives the
reliability anlyst the opportunity to determine the sensitivity of operational availability to
changes in the parameters that contribute to this measure of readiness. "

a. Setup. This model runs on a DOS-based computer. On-hand data can be entered into
the model and results displayed in a few minutes.

2. Guide to Operation.

a. Equipment Required.

(1) IBM compatible PC computer,

(2) 3.5" disk drive,

(3) Lotus 1-2-3 spreadsheet software.

b. Installation.

(1) Turn on the computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the OPERAO model into your 3,5" disk drive,

(3) From the Lotus 1-2-3 meu, load the A.OPERAO model (or B:OPBRAO ifyou're
workin ftom the b: drive) by entering ^/ then backmpaoe to erase the defiult path. Enter A.
(or B:) and press the (Hater) key. After the Lotus 1-2.3 files are shown, select the OPERAO file.

C. Operation.

(1) The model parameters are shown below.
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(2) Move the cursor to the cell you wish to change. You are allowed to change only

the dala marked by an asterisk--other data represents calculations made by the model.

ESTIWATINO OPERIATIONAL AVAILABILITY

OT 10
TT 30
MR 0.3

K
ALDT 5
MTBOMF 100

0.3
0.05
0.35
0.333333
0,116667

A0  0.883333

Scr'en #1

d. Definitionm for Screen #1.

OT: Operating Time.

TT- Total Time.

MR: Maintenance Ratio,

K: Ratio of Maintenance Manhours to Clock Hours.

ALDT: Administrative Logistic Downtime.

MTBOMF: Mean Time Between Operational Mision Failure.

e. ExplMalon:

(1) Definitions.

At Operational Availability.

ALDT Administrative Logistic Downtime.
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DT Downtime.

K Ratio of Maintenance Manhours to Clock Hours.

MR Maintenance Ratio.

MTBOMF Mean Time Between Operational Mission Failure.

OT Operating Time.

ST Standby Time.

TALDT Total Administrative Logistic Downtime.

TCM Total Corrective Maintenance,

TPM Total Preventive Maintenance,

TT Total Time,

(2) The basic relationship that is used to estimate Operational Availability (A.) is:

A0 - (OT 4, ST)/(OT + ST + TCM + TPM + TALDT (1)

(3) The entire denomninator of equation (1) is Total Time (TT). The last three terms of
the denominator account for all the downtime (DT). The numerator of this equation represents
the total uptime (UT) for the system. An alternate way to express uptime is to subtract the DT
from the TT. Equation (1) can then be written as:

Ao - (TT-DT)TT - I - DT/TT (2)

(4) Equation (2) can be expressed in terms of the "Downtime" components as:

A0 - I - (TCM + TPM + TALDT)/TT (3)

(5) The Maintenance Ratio (MR) is the total number of man-hours of maintenance of
direct labor in some particular time period divided by the total operating time in this same time
period. This can be expressed u:

MR - K * (TCM + TPM)/OT (4)

where K is the ratio of Maintenance Manhours to Maintenance Clock Hours. For example, if
t.wo maintenarnce men work firom 12:00 noon to S:00 PM (10 Maintneance Manhours during a 5
clock hour period of time) then K - 10/5 - 2. Equation (4) can also be written is:
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TCM + TPM - (MR) * (OT)/K. (5)

(6) TALDT can be estimated by considering the total number of failures in some given
time period multiplied'by the average logistical down time for each failure (ALDT). This
relationshlp can be stated as:

TALDT = (OT) * (ALDT)/M OMn. (6)

(7) Equations (5) and (6) can be substituted into equation (3). By fkctorlng (OT) and
(T) as common temni the fbliowing aetimating relationship is obtained:

AG = 1- (OT/T) * ((MRYK + (ALDT/MTBOMF)) (7)

(8) Equation (7) can be used to assess the A0 of a system based on a combination of
test data and parameter estimates from other ources. Us ratio oft(OT/lT) can be obtained
t-om the operational mode summnay and mission profile for the sytem. The estimtes fbr the
MR and MrBOMF can be obtained from testing and engineering analysis. The values for ALDT
and K on be edimated &'om additional logistical analysis, testing and field reports for idsting
but similar systems. Equation (7) also gives the reliability analyst the opportunity to determine
the sensitivity of A.to changes in the parameters that contribute to this measure of readiness.
This an help determine which botors can be traded off against Ao and still have the system meet
the operational requirermnt of reainess.
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N. INDIRECT FIRE EFFECTS

1, Introducton.

a. Desoription. This model was developed by the Joint Munitions Eftectlveness.Manuals,
Surface to Surface, and published under the authority of the Joint Technical Coordinating Group
for Munitions Effectiveness. It cadoulates the efbects of artillery and mortar fires for high
explosive and improved conventional munitions. Inputs required are:, number of volleys; number
of rounds per volley; round reliability; lethal are' submunition reliability, volley pattern
dimensions; target area dimensions; number of submunitions per round;,•nge of fK11 mean point
of impact and precision errors; target location error, and pattern adjustment fkctor. Results are
displayed/printed in terms of ftational damage (amount of target destroyed) for the number of
volleys used, or the number of volleys required to achieve a desired f'ractional damage.

b. Limitations. Eflttiveness estimates for a large number of volleys may be unreliable
due to the methodology used In this model.

c. Applications. Desltop analytic tool for determining artillery and mortar effects on
personnel and mateiel targets

d. Setup. This model runs on an IBM compatible PC computer. Data is redlly available
flrom Joint Technical Coordinating Group publications or the Army Materiel Sysms Analysis
Activity at Aberdmen Proving Ground. Data can be entered and results displayed or printed in a
few minutes.

2. Guide to Operation,

a. Equipment Required.

(1) IBM compatible PC computer.

(2) 3.5" disk drive.

(3) Printer (optional),

b. Installation.

(I) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the SUPERQUICK!E H program into your disk
drive.
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(3) From the DOS prompt, enter the command A: (or B: if you're operating from

the B: disk drive).

(4) Enter the command CD SQ., (to change to the SQ directory on the 3.5" disk)

(5) Enter the command SUPERQ

(6) If you receive the messge, "Enter run time file path," it Is probably because you
are not in the SQ directory of the A: (or B:) drive. You cannot run this progrmmn simply by
entering the name of the executable file and path (AASQ\SUPERQ.XB,).

C. Ope ton.

(1) The first two screens contain publication, destruction, and copywrite intormation.
PMome take the time to read these screens.

2 DECElft (ARMY) FM 10140.17.1
(NAVY) TWS14.AA."MI.010
(WMC rI3P 10-141"14-A
(UMAP) 6112o.17ol

MMI IUPIRQUICKZI 8 P1ROOM (PUP3Q) FOR PIRIONAL COhUUT3

DIITRZUWION 8TATUNT a. Dlrbils uaoiud to U.S. Ornrum
•OEM opawma wK 2 w itol. odbrffqMhr Weds

WMI W.bi.km to Dkedw, AldMIA. Ago AWWY. .. wdm~
Frlaf Ormi, MD 210054071.

DESTRUMTON NOTICL For uaslamiKd UWmk dsmwm dulm by =ny
mstho tibt will p.l dlasltw, or rnsau•m at dsumsm.

REPRODUCTION. Us= may ra Amp "a fldbl. dlii.

PUDLIOHED UNDER THI AUTNORITY OF TH JTCOGA

Pus Tot3 5IPACS 4A8 TO OONTDUUI
UNCLAWIl3D

Screen 1
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(2) Super Quickie H is for use by the Department of Defense only.

UNCLIASSIIBD

"SUERQ
VERSION 1,0

1202/91

TUB PROORAM IS NOT RBIAABABLEI TO ACENCIE1 OUTSIDS THE
D8M1TMIT OF 1D3Il WITOUT TIM PIOR APPROVAL OFlTIS
APPtOPRIAT EM OFT0 'JO15 I' TSCHIICAL. O0OTOINDAT4O
OUIP FOR MUNITION8 11"WWR428 (HOOn

5U1UQ NI COWUILD WITHi TIM MICROSOFT QUICIDASIC COOPUJL
TU COMPIEUR AND T1i 3RUN4.VD FUJI ON T1D DIWISTTE ARE
COPYRIOIflrD BY THE MPtOSOFT CORPORATION.

PREII TiH SPACE BAR TO CONTDNUI

UNCL•SITISD

Screen 2

(3) The next prompt asks you to select the amount of time you want mesages
displayed. "Short" Is recommended.

MISSADUDISPLAY TIME

Screen 3

(4) Next you will be asked If you have a color monitor.

DO YOU HAVE A COLOR MONTMOR - Y/N Y <

Screen 4
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(5) If you have a color monitor, you will be given the opportunity to change colors.

DO YOU WANT TO CHAJoB T1M COLORS. YIN N

Screen 5

(6) The next prompt warns you to make sure that the 3.S' diWs write-protect tab is
disabled. It Is disabled (will allow writing to it) If the write-protect tab 0s covering the small,
retangular hole on your disk. If you on see through the hole, slide tlhtab over the hole.
Additionally, you are asked to enter the drive that has the Super Quiodkt 1 program on it. Do
not enter a colon afer the drive letter (do not enter A:, fr example, Just the letter A, B, or C.)

NOME

OhXKrh MMT NOT HAVE A WaE.gPROTIC TAB uIADA

MIM TM DRME YOU AU WORO ON. A. a. OR C A

Screen 6

(7) The fbllowing notice will be displayed next

1I NOTE II

UNMii OP IGAIU MDMWRRA 35 CONITNTr

PRZU5I TM ZSCAP9 KEY AT ANY TbD TO MOT PROORAM

M TIE SPACE9 BAR TO CONTOI

Screen 7

(8) The next display gives you the options you have with Super Quickie 1I. Basically,
you can choose HE or ICM, and you can choose to input the number of volleys and have Super
Quickie 11 determine the firactional damage to the target area, or you can input the fractional
damage desired and have SuperQuickie El determine the number of volleys required.
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OPIlONS

i [ . DIHM ERJ3 THE o8s r s O I• tWEAPONS WIHERE TtNE EMt OP
VOLL•YW5ALVOS IS D AND TIM iaiVSW FRACTIONAL DAMAOK OR

FCXAISUALTIII 0!1 OUTUT0 .
2 IC4/FD - DMRIU THE ZFFE?(55 OF IOC'8 WHERE THE NUM13R OF VOLLJYS

OR SALVOS 15 1URr AND THE VMC FRATI"ONAL DAMAOEICAMUALTIgU is
Is OWYTPU',

4 IINV - DIKUMIT 1T 75MUINSIm 0f1H WEAPONS WHEREs TIM DU3EroD
FACrIIONALD AMSA UALIM 10 RMN AND W orQUMD NUMBER OF
VOILEYWALVOI 8 9OIIIW,

4 ICUIN *DII)U&n45 TE 53C1VM455 11MW WHISER 1 W DIIDFAUIOtAL
DAMAOV/ASUALTIES TI WMFTAND 7ME RWQJ3RD NUMBER OF VOLLEYS OR
SALVOI 3 OU"rpVr

WUIR TnE NUMBER OP THE OPTION YOU WANT TO RUN I

Scrsee 8

(9 The next of diply quest the inputs rthe option you chose above. Ifyou
decde durin the Inputs thai you have made an error on a previous entry, dont worry; you wilt
get a chance to make corrections later.-just continue with the remainder of the entries. Another
point worth reznembering: some entries will require an additional prompt at the bottom of your
screen, and you could be frustrated if you don't notice It. The prompt may be waiting for a yes or
no response and you'll be trying to enter a regular numerical Input which wont be accepted.

(10) The Mollowlng entries pertain to option #1, selected above in Screen 8. This
option calls for a number oftvolleys of high explosive (HE) rounds, and will obtain a result in
terms of the f&action of the target area destroyed. Fractional damage of a target area is a decimal
number which equates to the fraction of the total number of personnel or materiel targets In the
target area which were destroyed by the indirect fire. For example, if the lethal areas entered
below are for personnel, a result of.23 means that 23% of the personnel in the target area were
killed. It doesn't matter how many personnel are actually in the target area. Similarly for
materiel targets. If the lethal areas entered are for tanks, then a result of.19 meao that 19% of
the tanks in the.target area were destroyed.
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(11) The first input is the number of rounds per volley. Press (Enter] after each input.

HEdFD

NUNhER OF ROUNDS PER VOLLJY/SAL6VO 6
NUMU OF UNIQUE VOLLEY/BALVO MIS1 (MAX S) 0000ROUND RJUlAsaUTY 00SUBMuNMON IUUABI~rY am0
VOUSWYMALVO PATrRN LWINOTH 0UN) (DUL)
VOULY/5A1.VO PATMRN LUE (DRN•O0)
ARIA TAROIrr IDW (IU4O) OR RADIW 000
AEA, TARET 0W (DolL) 00am
NuimpI OF UrMUNxTmON5 P3U ROUND 00000
ANCLS O FALLo 0801U 00M
ItUVMNTION RUANOU.A. FATTN T QMWO) ORAOUM 00000

MUAIU~flTON IOTANOULAR PArTTUN WIrh (D'L) 90000
MR0 RANOI 350OR FR0E O R 0000a
MRl DWE•JflON DWOR MIOBABL 00M0
PUSOICHRANGEOI RRIORPROABDL OR 03? 0000
PFRElMON DIFJLETIr•ON l5 RODAOLI 00000
TARWG LOCATION IRROR (MD) 000M
FATTERN ADAXTM4T FACTOR (I) o00000

Screen 9

(12) The second Input Is fbr the number of unique volley sets. For example, if you
would like to obtain fractional danage results fbr firing 3 volleys and 12 volleys into the target
area, then you have two unique volley sets-one set of 3 volleys and one saetof 12 volley. This
model will automatioally add an additional result for frg one volley. In tbls uAmple we Will
enter two volley sets-3 volleys and 12 volleys-and the model will give us results for three volley
sets: that is, results fbr Ivolley, 3volleys, and 12 volleys. Note that there Is a maxdmum of five
unique volley sets. You can enter five volley sets, and the model will add the sixth result for one
volley,

(13) The second input (the number of unique volley sets) h'one of those inputs which
will produce an almost Inconspicuous prompt at. the bottom of the soreeL This prompt will ask
you to enter the number of volleys you wazit fired fbr each unique volley set. In our cue, we're.
going to enter two unique volley sets, and the prompt at the bottom of the screen will appear,
akldng us to enter the number of volleys fbr volley set 1, and then another prompt will appear In
the same place, a.dng us to enter the number ofvolleys for volley set 2.
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(14) The second entry (number of unique volley sets) and the first prompt at the

bottom of the screen looks like Screen 10.

fE(7D

NUMBER OF ROUNDS PER VOLLEVISALVO 6
I NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX -5) 2
ROUND RELIABILITY 00000
SUBMUNrTION RELIABL•TYr 00000
VOLL,•/SALVO PATTERN LENOTH (RNO) 00000
VOLLEY/SALVO PATTERN WIDTH (1EFL) 00000
AREA TAROGT LIEOTH (RNO) OR RADIUS 00000
AR•A TARGET WIDTH (DElL) 00000
NUMBER OF 5UBMUNTTIONS PER ROUND '00000
ANGLE OF FALL, DiGRESS 00000
SUBDWNTTION RECTANGULAR PATTERN M140T' (RNO) OR RADIUS 00000
SUBMUNITION RECTANOULAR PATTERN WYTI (DIUJ.) 00000
MR RANGE ERROR PROBABLE OR CU 00000
MU DEFLECTION ERROR PROBABL2 00000
PRECSION RANGE ERROR PROBABLE OR CEP 00000
PREC-IION DELECTION ERROR PROBABLB 00000
TARGET LOCATION ERROR (CP) 00000
PATTERN ADJUSTMNT FACTOR (K) 00000

INTR VOUZYMIALVO SI NUMBER I -

Screen 10

(15) The second prompt at the bottom of the scre will ask for the second volley size.
In our example, 12 volleys will be entered for the size of the second volley set, as follows.

H-MFD

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX -5) 2
ROUND RELIABLITY 00000
SUBMUrITION REUABITY 00000
VOLLXY/MLVO PATTERN LAN0TH (RNO) 00000
VOLLEY/SALVO PATTERN WIDTH (DE:L) 00000
AREATAROETLENOTl (RO) OR RADIUs 00000
AREATAR0Xr WDTH (DM4 00000
NUMBER OF SUBMUNITIONS PER ROUND 00000
ANOLE OF FALl, DBGRE 000D
SUBMUNTTON RECTANGULAR PATTERN LENGTH (RNO) OR RADIUS 00000
M 0DUNTON RECTANGULAR PATTERN WIDTH (DEFL) 00000

in RANGE ERROR PROBABLE OR CEP 00000
MP DM•LF.,GON ERROR PROBABLE 00@000
PREIION RANGE ERROR PROBABLE OR CEP O00000
PRECIION DELECT ION ERROR PROBABLE 0000

TAROSTr LOCATION ERR IOR (Mee noo00
PATTERN ADJ=US'MENT FACTrOR (K) 00000

ENT"ER VOLLEY/SALVO SIZE NUMBER 2 12

Screen 11
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(16) The nexct input is for round reliability. Notice at the bottom of the list the volicy
sizes A~re now displayed, including I vol~ley added by the model.

NU-BER OF Rot INI 3 PZIR VOLLEY/SALVO 6

NUMBER OF UN14L id VOUZSY1ALVO SETS (WAX 5)2
ROUND PRUSMUI.Y 0.%
IUBWUNMION RELABUJT 00000
VOLLEYMALVO PAIThUI LAN0TH (RZIG) 00000
VOLLEYMALVO PATTERN WIDrH (DElL) 00000
ARIA ?AIDET LNGTH~(RHO) OR RAIUS O. 000
ARM ATARO1T WnMT CDElL) now0
NUMESUROF SUUMUNYTONI PAR ROUND 100000
ANOLE OF PAUl, DODS 00000
PJDMUJH1NOK RICTANW.lA PATTEN LZ4OT (RM) OR RADIUS 00W0
SUUMUNMTON4RICTANOULAZ PATTrNWWTh (DMl) 00000
MIq RANG ERROR PROBABLE OR CAP 00000
mm DMILCTION ERROR~ PROBAML A0A000
PRECISION RANOK ERROR PROBABLE OR CAP 00000
PRECISOM DZFLECTION ERROR PROLABLE 00W0
TARGETr LOCATION ERROR (CAP) 00W0
PATTERN ADJUSTMENT FACTOR (K) 00000
VOLLBYtUALVO SIZS 1 3.312

Screem 12

(17) The neot item in the list. submunition reliablity, will now display N/A in the
right column because we selected tha HE option. Submwnition reliabiit is used for ICM only.

HMF

NUMBER OF ROUNDS Fli VOLLEMIALVO 6
NULMER OF UNIQUE VOLLEYi3WLVO SIM (hMX -5) 2
ROUND RELIABIITY 0OX
SUBMUNMON RUA5D2U= NIA
VOLLEY/SALVO PATTERN LENGah (RHO) 00000
VOLLSY/SALVO PATTERN WIDT(DIOL) 00M0
AREA TAROP2T LEHOTIE (RNO) OR RADHIUS00
APJATAROIT WIDTH (09ML) W
NUMBE OF SUDSMUNMONIOS PIKE ROUND000
ANOLB OF FALDEORDI 0O0"
3'JflAION R~rNO(JA ]PATTERN LZWH~' (RHO) OR RAPIUS 00W0
SUUDWJNIOt4 RSCTAHOULAR IPATrIRN WIDTH (DElL) 00000
UNWORANGEEROR PROBAPAZOR CS? 00M0
MR DEFLECTION ERROR PROBABLE 0000
PRICUON DM101 ERROR PROSABIOR CO 000M
FUBCUZON DE1LAJ=0N ERROR PROWALS 00000
TABORT LOCATION ERROR (CII) 00000
PAIWRN ADJUUAXThI FACTOR (K) 00000

Screen 13
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(18) The volley/salvo pattern length (in the range direction) and width (in deflection)
are entered next. These are the dimensions of the volley pattern in the impact area.

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOUZY/SALVO Sir (MAX - S) 2
ROUND RILUABITnY 0N
SUBMUNION RII1JABZy WA
VOtLLY4ALVO PATrIRN LENOTH (RNO) 20
VOLL•SYIALVO PATrrZR WIDTH (DEFL) 95
AREA TARGET LENGTH (RUO) OR RADIUS 00000
AREA TARGEr WTH(DEL) 00000
NUMSU OF PSUIDUNMONS PER ROUND '00000
ANOGL OP PALL, DEGREES 00000
SrBWMIrON AREMANLAR. PATtERN LUMG (RMO) OR RADIUS 00000
SUBUM ON RICTANOULAZ PATIEN WIDTi (DlL) 00000
MPI RANMO ERROR PROBABLE OR CEP 00000
MWl DIFLE ON ERROR PROBABLE 00000
PRECIBION RANGE ERROR PROBABLE OR CP 00M00
PRICZION DEFLWIMN ERROR PROBABLE 00M00
TARG• T Lo•CAION ERROR (CEP) 00000
PATr],N ADKJUrTmzr FACTOR (K) 00000
VOLLEY/SALVO SZRS 1,3,12

Screen 14

(19) The next entr Is for the area target length (range directon), or the radius of the
target areaL A prompt at the bottom of the screen aks you if you entered a radius or not.

NU'MBER OF ROUNDS PER VOLLEY/AALVO 6
NUMBER OF UNIQUE VOLLSY/SLVO SETS (MAX -) 2""ROUND RILZABLIXrY 036
SUB•LMTION RALLABUY N/A
"VOLLEY/SALVO PAITFN u ,NO (r (GI) 1 20".
VOLLY•/SALVO PArMRN WWrH (DEFL) 9S
AREA TARGET LDNO"T (RHO) OR RADIVb 106
ARKATARGET WOM (DW.L) 00000
NUMBER OF SUDMUNION8 PEiR ROUND 00000
ANGLE OF FALL, DEGREES 00000
SUB&IUNrMON RU4TNOULAR PATERN ULNOTGH (RNO) OR RADIW 00000
SUD1MUNrflON RtCTAWULAR PAmT N WIDTH (D3lL) 00000
MPI RANOE ERROR PROBABLE OR C? 000W0
MR DL3TO MN ERROR PROBABLE 0000'M
PRIU ON RANGE IRROR PROBABLE OR CE 00000
PRECUISION DEFLE•CON ERROR PROBABLE 00000T•.RONT LOCATION ERROR (CMl' 00M0

PA'IERN ADJUSrHINT FACTOR (K) 00000
VOLLeY/SALVO SZS 1, 3,12

DID YOU ENTER A RADIUS - Y/N N

Screen 15
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(20) The target width (deflection) is 100 meters for this example. As soon as you
enter *this number, th~e next line, for number of submunitions per round wil be shown as N/A.

HMF

NUMER OF ROUNDS PER VOUSY/SALVO 6
NUNWR OF UNIQUJE VOLEY/SALVO SEWS (MAM -5$) 2
ROUND RELABIlMT 036
VUWUNITIO?4 RELIABILITY M/A
VOLLEY/ALVO PATTERN L040TH (RNO) 230
VOLLEY/ALVO PATTERN WIDTH (DMF) 95
ARRATARGET LENGTHI (RNQ) OR RADIUS 100
ARZATARGET W~ID11I(DS) too
N4UMBDER.OF SUBMUNnTIONS PE ROUND MA
ANGLE Of FALL, DWOREES 00
SMUUBMUPfl0 RNMIANOULAR. PATMlRN 1*4GM (R140) OR RADIU/S 00000
IUBMUNMION RECTANOULAR PATTERN WOMfl (DEFL) 00000

PI RAPMJERRORPROB/tILE ORM COw000
MPI DEFLCTON ERROR PROBABLE 000M0
PRCIROM RANGE ERROR PROBABLE OR CEP 00000
PRECUISIO DEFLECTION ERROR PROBABI I 00000
TAROBT LOCATION ERROR (CVP) 00000
PATTUMNADRJUlI[ET FACTOR (K) 00000
VOLLEYISALVO SIMES 1, 3,12

Sawen 16

(2 1) The angle of fall is entered next, and the next two inputs will be shown as N/A.

HMF

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUZR OF UNIQUE VOLLEY/SALVO SETS (MAX-i) 2
ROV~ND RRELDITBfY 0.96
SUBMUNITION REUABILITY MA
VOLLEY/SALVO P'ATTERN LENGTH (RNO) 230
VOLLEY/SALVO PATTERN WIDTH (IDEIM- 95
AREA TARGET LENGTH (RNO) OR RADIUS 100
AREA TARGET WIDTH (DMl) 100
NUMBERIF SUDMUNITONS PER ROUND WIA
AN1OLSOU FALDEGREE 47
SU3MUNMON kWCTANOULAR PATTERN LENGTH (RNO) OR RADIS TV/A
AMIJUUMWN~ RMCTANGULAR PATTERN WIDTI (DEML) N/A
hMt ANGEMROR PROMMABIOR 017 00M0
bIPIDWLUOI10t4RROR PRO3ABUZ 00000
F1JIVIN RANGE ERROR PROBABLE OR CER 000M
"PUISIONDAELCTIONERRORMOPABIADL c*0
TAROBT LOCATION ERROR (CEP) 0000
PATIUM ADIMjTIUNT FACTOR (K) 00000
VOUZYISALVO 3112S 1, 3, 12

Screen 17
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(22) For the mean point of impact (MPI) errors, the first entry will cause a prompt at
the bottom of the screen, asking you if you entered a circular error probable. In this case, yes.

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLEY/SALVO SiTS (MAX - 5) 2
ROUND RIIUJAMTY 0.96
SUB1MUNITION REULIABITY WA
VOU•YMALVO PATTERN LENGTH (RNO) 2I0
VOLLEY/SALVO PAErNM WIDTH (DEFL) 95
ARA TARGET LENGTH (R0UO) OR RADIUS 100
AREA TAROGr WIDTH (DEL) 100
NUMBER OF SUBMUNHITONS PER ROUND WA
ANGLE OF PAL4 DEGREES 47
suDmUTIRsIAJARA PATT=NW laONT (RHO) OR RADIU WA
SUBMUNITION RECTANGULAR PATTERN WIDTH (DEFL) WA
WI RANGE ERROR PROBABLE OR CZI 40
W{I DEL,=CTON ERROR PROBABLE 00000

PRECISION RANGE ERROR PROBABLE OR CEP 00000
PR9CWO DWLCTION ERROR PROBABLE 00000
TARGET LOCATION ERROR (CEP) 00000
PATTrN ADJUhTMWIT FACTOR (K) coc0o
VOLLEY/SALVO SIES , 3, 12

DID YOU ENTER A CEP , YIN Y

Screen 18

(23) Similarly for the precision errors.

NU1ER OF ROUNDS PERI VOL.SYMALkJVO
NbUME OF UNIQUE VOLLEY/SALVO SETS (MAX - )2
ROUND REZIAAiLI'Y 0."
SJUBMUITON RK=4ABILIT NfA
VOLLZY•SALVO PATTERN LENGTH (RNO) 230
VOULEY/SALVO PATTERN WIDTH JDFAL) 95
AREA TARGET LENGTH (RNO) OR RADIUS 100
ARIA TARGET WZDTH (DilL) 100
NUMBERI OF BUDMUNITIONI PER ROUND N/A
AN••L OF FAL4 DEGREES 47
EUBMUNITION RECTANULAR PATRN LENGTH (RNO) OR RADIUS WA
8UtNMON R ANOGAR PATTERN WIDTH (DEFL) WA
UK RANGE IWROR PROBABLE OR CiR 40
MP! DWIZV1ION ERROR PROBABlI 00000
P110100 RANGE ERROR PROBABLE OR CEP 42
PRCUI DEFILCTION ERROR PROBABIE 00000
TAROrISOCATION ERROR (CUP) 00000
PATTERN ADJUUTMBNT FACTOR (K) 00000
VOLLEY/SALVO SIZES 1,3,12

DID YOU ENTER A CEP - YN Y

Screen 19
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(24) The target location error is entered as 0 meters.

HMP

NUMDER OF ROUNDS PER VOUAY/AlbVO 6
NUBROFUNIQUB VOLLY/MLVO SMT (MAX. S) 2

ROUND REJADUJTY 0.96
SUBMUNITION UAUABUJT1 N/A
V,114YMALVO PATTERN LENGTH (340) 250
VOLLIYiALVO PATTERM WUDtH GDEPL) 109S
AREA TARGIT LENGah (310) OR LADIWSto
ARIA TARGET WIDTH (DDIL) 100
NUMBE OF SUDMUNflON8 PER ROUND N/A
ANGLE Of F"~. DIORIM 47
UUDMUNI'flON REOTAJ4OULAZ PATTERII LENGTH (3210)OR RMSIU 1%A
SUBMUNITIOtI RECTANGULAR PATIUN WIDTH (DaIL) N/A
MPI1 RAlIOR ERROR PROBABLB 0RCO 40
UPI DUSPLICflON MDR10 PRONABLE 00000

,?X OAOIR RAOR PRORABIS OR C&P 41,

TARGET LOCATION ERROR (MU) 0
PATTER ADJUSTMENT FACTOR (K) 00000
VOLLEY/SALVO SIZE 1. 3,12

Screew 20

(25) The pattern adjustment factors may be obtaned from the JTCG. In our exmple
the pattern adjustment &hator Is 4.

N"UME OF ROUNDS PM VOLLEY/SALVO 6
NUMBR OILUNQUE VOU.EYiSALVO SIM (MAX. S)2
ROUND RELUADMITY 0.96
SUBMUNITION ULZADITMY NMA
VOLLEY11ALVO PATTERN LMOTH (3110) 210
VOLLIY/SAVO PATTZRN =WNIDEPL
AREA TAROST LNGH(itO) IS 100
AREA TAROE1T WIDTH (OWlL)10
NUMME OF SUDIUNMITItS ME ROMN M/A
ANGLE OFAL"DEORM 47
SUEMUMflMt 111MANOULAR, PATTERN LVMTHl (RNO) OR RADIXW NA
SUEMUNflON RECTAWMULR PATTERN WIDTH (DMl) N/A
IGI RANGE E2101 PROBABLE OR O31 40
MI! DEILR foN RROR PRODAME 00000
PRIUNI0IRANGE EROR PROBA11LE 01011 42
PRECION DEFLCTON ERROR PROBABLE 00M0
TARGEr LOCATION ERROJL (CEP) 0
PATTERN ADJIXTMU11' FACTOR (K) 00000
VOLLEY/SALVO SIZE 1,3,12

Screen 21
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(26) Having filled the first set of prompts, the entries for lethal areas are next. Afer
you enter the lethal areas, you will get a prompt at the bottom of the screen asking if you entered
personnel lethal areas rather than lethal areas for materiel targets.

LETHAL AREAS

LETHAL AREA MUST BE ENTERED IN DECREASINO ORDER

LETHAL AREA OF POSTUJRE I OR MATERIEL TOT 1 530.0.
LETHAL AREA OF OSITURE 2 OR MATERIEL TOT 2 400.0
LETHAL AREA OF POSTURE 3 OR MATERIELTOT 150,0

DID YOU ENTER PERSONNEL LETHAL AREAS . Y/N Y

Screen 22

(27) The last set of entries pertain to the percent of personnel in each of the above
postures during the first and subsequent volleys. For example, in the above screen you might
have entered three lethal areas for personnel who am standing, crouching, and prone. The
scenario might dictate that when the first volley lands, 80% of the personnel in the target area are
standing, 10% are crouching, and 10% are in a prone position. However, for subsequent volleys,
10% of the personnel are still standing (running, moving to a new position, eto...), 50% are
crouchin& and 40% are in a prone position, Entries to match this scenario are as follows.

LETHAL AREAS

LETAL AREAS MUST BE ENTERED IN DECREASING ORDER

LEAAREA OF POSTURE I OR MATERIELTOT I 530.0
LETHAL ARIA OF POSTURE 2 OR MATERIEL TOT 2 400,0
LETHAL AREA OF POSTURE 3 OR MATERIEL TOT 3 150,0

FOR POSTURE SEQUENCING, THE FRACTION OF PERSONNEL IN EACH POSI UhE MUST
LIE BETWEEN 0,0 AND 1,0. THE SUM OF ALL THE POSiURES MUST EQUAT J,0

FA=TION OF PERSONNEL POSTURE I DURING FIRS VOL/SAL 0,80
FRACTION OF PE•SONNEL POSTURt 2 DURING FIRST VOLASAL 0.10
FRACTION OF PIRIONNUL POSUR 3 DURING FIRST VOLSAL 0.10

FRACTION OF PMSONNEL POSTURE I FOR SUBSEQUENT VOL/SAL 0.10
FRACTION OF PERONNEL POSTURE 2 FOR SUBSEQUENT VOIJIAL 0530
FRACTION OF PERUONNEL POSTURE 3 FOR 8UBES1QUT VOL/SAL 0,40

Screen 23
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(28) All inputs will now be displayed, and you are given the opportunity to make

changes in the data prior to calculating the results.

I NUMBER OF RDS PER VOL/SAL 6 15 PRECISION CO 42.00
2 NUM OF UNIQUE VOL/SAL SETS 2 16 PRECISION DIP NIA
3 ROUND RELIABMIUY .96 17 TARGOIT LOCATION ERROR 0.00
4 SUBIUNMON RELIABa.,rY N/A 1 PATrlRN AD; FACTOR (14), 4
$ VOL/SAL PATTERN (R?4O) 250.00 19 POSTURE I LEZTAL AREA 530.00
6 VOLAALPATrERN(DRlL) 95.00 20 POrr¶U32 LETAL AREA 400.00
7 TARGET IENOTH (3NO) 100.00 21 POITURE3 LTHAL AREA 150,00
I TARGET WIDTH (DElL) 100.00 22 FPOsIr•1FIRSTrrVOLAL 0,80
9 NUM OF UBUMUNMTION8IR RD MA 23 FITIUJ52 FIRST VOIdIAL 0,10
10 ANGLE OF FALL 47.00 24P0STUE $1IRUTVOIJIIAL 0.10
II KMMUNMM PAT.TN O3) WA 2ilOTUR3 i AiFM1311TVOLdSAL 0.10.
12 SUBMUNITION PATTERN (DEFL) NIA U PO8STURE 2 AFlhl 13?I VOLSAL 0.50
13 Mi Ci? 40,00 2 YPOVTIU 3 AF MIVT VOL.SAL 0,40
14 MIP DEP N/A 28 VOL/SALSIZES 1 3 12

DO YOU WANT TO MAU A CHANOE • Y/N N

Screen 24

(29) If you had wanted to make a change in the inputs, you would have responded
with a "Y" to the prompt at the bottom of Screen 24. However. assuming that no changes need
to be made, a response of "N", as in Screen 24, will produce the desired results in twrms of
fractional damage.

REJULTS

ECT FRACTIONAL DAMADERA/AUALTIE-

VOLLEY/SALVO Poo I Po82 PO 3 MD=
1 0,0342 0.0281 0.0113 0.0329
3 0,1047 0.0819 0.0335 0.0752

12 0.3570 0,2191 0.1275 0,2401

NOTM 6 ROUND(i PE VOLLEYISALVO

PIUS P TO PXIDT OR PRR8 7M IPAMAO TO 00NTMU

Screen 25
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(30) Whether you press "P" to print the results shown on the screen, or press the
spacebar to continue, the following screen is displayed.

I ENTER ALL NEW INPUT (RETURN TO THE OPTIONS MENU)
2 CHANGE EXISTING INPUT
3 EXIT TO SYSTEM

ENTER THE NUMBER OF THE OPTION YOU WANT" 3

Screen 26

(31) Entering a 3, above, will return you to the a:> prompt after the next screen.

UNCLASSIFIED

RECOWMMDED CHANGES, COMMAENTS OR CORRECTIONS TO
IMROVE THIS PROORAM SHOULD BE ADDRESSED TO:

DIRECTOR
U.S. ARMY MATrERI SYSTEMS ANALYSIS ACTIVITY
ATTN: AMISY -I
ABERDEEN PROVING GROUND, MD 21005-5071

PRESS THE SPACE BAR TO RETURN TO SYSTEM

UNCLASSIFIED

Screen 27

(32) Upon pressing the space bar, you will be returned to the A:\SQ> prompt. If you
need to return to the C: drive and prompt, simply type C: and press the [Enter] key,

2q3
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An Application of Generalized p-Values
in Tank Gun Accuracy Research

David W. Webb

US Army Research Laboratory
Weapons Technology Directorate

Aberdeen Proving Ground, MD 21005

By optimally rotating a tank cannon to counteract gravity
droop and the cannon's dynamic response during firing, the
idea of "dynamic indexing" was believed to be a major step in
the reduction of between-tube variability, 2 r. Using an
indirect approach to compare the between-tube variance
components for dynamically indexed tubes (DIT's) and standard
tubes (ST's), an earlier analysis of the test data failed to
show a difference between 2T.DzT and o2 .sT. Seeking a more
direct comparison of independently obtained between-tube
variance components, Xhou and Mathews proposed a test variable
based on the recently developed concept of generalized
p-values. This paper describes how this generalized test
variable is employed to compare two between-tube variance
components taken from independent mixed models. Finally, a
comparison is made between the conclusions drawn from the
original analysis and a reanalysis of the field test using
Zhou and Mathews' generalized p-value approach.

Introduotion

U.S. Army experiments conducted in the late 1980's showed that
between-tube variability is a significant contributor to the
overall error in the MlAl series tank. In an attempt to reduce
this variability, researchers took advantage of the fact that each
gun tube has its own unique curvature by proposing that gun tubes
be dynamically indexed (Schmidt, et. al., 1988). That is, each gun
tube is rotated about the center boreline so that its curvature
counteracts both the gravitational droop and the whipping motion of
the tube immediately after trigger pull. This whipping motion
(more properly referred to as the dynamic response) is caused by a
vertical difference in the centers-of-gravity of the gun tube and
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the breech block which supports the gun tube. Normally, a gun tube
is only rotated to lessen the effects of the gravitational droop.
This is known as standard indexing.

In 1990, the U.S. Army Ballistic Research Laboratory (now part
of the U.S. Army Research Laboratory) conducted a large-scale field
test whose primary purpose was to determine if dynamic indexing
would reduce the between-tube variability of the MIA1 series tank
(Webb, at. al., 1991). This costly experiment included four types
of ammunition, four tanks, twenty standard tubes (ST's), and twenty
dynamically indexed tubes (DIT's). The response recorded from each
round was its horizontal and vertical jump, where jump is defined
as the distance from the aimpoint to the impact point after all
known corrections (such as wind and muzzle velocity) have been
applied.

A separate and independent analysis of jump was performed for
all eight (2. x 4) combinations of direction and ammunition type.
Table 1 shows an arrangement of the data collected for each subset
of the entire test. In this table, we see that the fixed factor
Tube Type and the random factor Tank were crossed, while the random
factor Tube was nested within Tube Type. Three rounds were fired
per cell.

To obtain an estimate of between-tube variability for both
dynamically indexed and standard tubes, two independent mixed
linear models were applied to Table 1 (one for each tube type).
For each type of tube, the linear model is:

ZijkO~k+CC1+Pj(I,+ek(1j)

where

1) ZIjk is the jump of the kth round from the jth tube on the
ith tank, measured in mils;

2) A is the overall mean;

3) al is the effect of the ith tank for i - 1, 2, 3, 4;

4) Pj(j) is the effect of the jth tube on the ith tank for j -

1, 2, 3, 4, 5;
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Tube Tube
Type Tank ID Jump

1 2 Z ,
2 z z z
3 z z z
4 z z z
5 z z z

6 z z z
7 z z z

2 8 z z z
9 z z z

10 z z z

11 z z z
12 z z z

3 13 z z z
14 z z z
15 z z z

16 z z z
17 z z z

4 18 z z z
19 z z z
20 z z z

21 z z z
22 z z z

1 23 z z z
24 z z z
25 z z z

26 z z z
27 z z z

2 28 z z z
29 z 2 z

2 30 z z z

31 z z z
32 z z z

3 33 z z z
34 z z z
35 z z z

36 z z z
37 z z z

4 38 z z z
39 z z z
40 z z z

Table 1. Data matrix for each combination of direction and
ammunition type. Each "z" represents a jump value.
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5) Pj• ~ N (0, Q'T);

6) k(Ijj) is the error associated with the kbh round from the
jth tube on the ith tank for k - 1, 2, 3, and;

7) e*,Ij ~ N(01, oYR).-

Comparimon of Between-Tube Variabilities: •n Indirect Approach

The goal of the statistical analysis was to conduct a one-
sided hypothesis test comparing the between-tube variabilities,
namely,

H0 2 '9 & vs. 7 H.. 02 " > a2T_ T-Z V-.T_ > T-DITl

or, equivalently,

Ho: - & I vs. H: Ha > 1.
0 T-DZT 0 T-DZT

Superficially, the ratio

' MSTS•'T .___•__

where F follows an F distribution with 16 numerator and
denominator degrees of freedom, may appear to be a proper test
statistic for H,. However, examination of the expected mean
squares for each model shows that F* is actually a test statistic
for

2 + 2 2_0
C T-T+ 3 05 a IO V. H*1CT-S-V3 0R-ST>

Under the assumption that 02 R. nD and a2 R-ST are equal, F* serves
as an indirect test statistic for He, since significantly large
values of F" would be attributable to differences in the between-
tube variabilities and not the between-round variabilities.

The assumption of equal between-round variabilities can be
tested by the statistic
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Ft a MSe-ST a SSa-sr
MSJIDZT SSR..DZT.

where Ft follows an F distribution with 40 degrees of freedom in
both the numerator and denominator. If this assumption is not
rejected, then one may proceed with the computation of F' to test
He.

On the other hand if the assumption of equal between-tube
variance is rejected, then F' is more prone to Type I or Type II
errors. These errors are due to the presence of the nuisance
parameters, a2 A.DXT and a2R-ST1 in the expected value of the test
statistic. How should the analyst proceed if this is the case?

Comparison of Between-Tube Variabilitiest The Generalized p-value
Approach

As described by Tsui and Weerahandi (1989), classical one-
sided hypothesis tests of the form H,: e t 0, versus M.: e > e0,
utilize a test statistic T(X) that is simply a function of the
sample space, X. For the observed response, x, the critical
region, C., is defined as

C'u{x: T(X)kT(x}

The p-.value associated with the hypothesis test is then given as

However, if this probability is dependent upon some nuisance
parameter, vi, then the p-value may not be calculable. This is
exactly the problem that exists with the dynamically indexed tube
experiment.

Tsui and Weerahandi proposed the idea of a generalized p-value
(GPV) for one-sided hypothesis tests when nuisance parameters are
present. In lieu of a test statistic, a generalized test variable
is used, which is not only a function of the sample space, but also
the sample data and the parameters. The generalized test variable,
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T(X; x, e, q), is chosen so that for all fixed values of x, the

following conditions hold:

1) t - T(x; x, e,, q) is free of q;

2) the distribution of T(X; x, 0,, q) is free of i; and

3) for fixed q, Pr(T(X; x, 0, q) x t) is nondecreasing in el

In addition, the critical region is replaced by the
generalized extreme region, C,(e,j), whose domain includes the
nuisance parameter, and is defined to be:

Finally, the GPV is given as:

-Pr (7(x; x, e., n) k t)

With the above definitions, Tsui and wearahandi whowed that
the GPV is independent of the nuisance parameters and can hence be
used as evidence against the null hypothesis.

The construction of generalized test variables is not a
trivial task and unfortunately little guidance is given in the few
papers that have been published on this topic. Zhou and Mathew
(1993) derived a generalized test variable that in used to compare
vurarnce components obtained from4 two independart mixed hierarchial
zodels. This methodology was directly applied to the between-tube
variabJlity comparison. T•:eir generalize4 test variable is given
by : 

22
b:T(X;,x,0,i) T(X;x, • 2 ~xr

2 2
2 0 2-ST

0T-DXT 0 T-DZT ((,2T3~DT T78-DIT 2. S
2 -DXT +A3 SSoz•-ST SSR. ST

. T-DZT

(C12 ST-ST ,12 SSR-DZT(a -87+ cY 3 T•-•) .-. - ,v -• ,,
T ST-.ST 3AR-DIT
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where each SS tcrm is the random variable for the appropriate sums-
of-squares and each as term is the realized value of SS. These ss
values are taken directly from standard analyses of variance of
the field test data.

Although this generalized test variable appears to be very
cumbersome, the calculation of a GPV is straightforward. Under Ho,

2[ RDZTt.(1O2•Z +3(l
03o •X-oz ___ (02 ss 1 'a r 2•s SSR-57

2( DZT÷3 OT-DIl') ÷+ 2 SBR

OR-DXT +3  SST-DXT S5-ST

T(X;x,00 1 Iq)* TDT 8 TD .q 8 -Z

(a SS..T+,.,SS SSTS

2 a3SSRDZT

2 2 + T-I 2N-F 5 .• -D-Z

-. T. 3 a 2-s7,) + 13  
STr- S , -Dn. SSSS-.Z.

(2 ss2IDZ + ...2 SOR.Or
(Ot-,Drr+3 a2 T-Dzr) A-0"

z 2 SaT-DXT _• St-OZ
Aj-87+3 a' - OmT) + 0 o-~

Sk , + I ,

where each k, is an observed sum-of-squares (a constant) and each
01 is a chi-square random variable.

Furthermore, if X - x, then SST-.DT - SS-r-o7, SSRADT " 8ss-D•T. SST..S
" sST.sT, and SST.D.CT - 1ss-Dr, so that,

t-=T(x; x, e., q )

(C2 o2 -T) 2:) o -o ,( )

(R.arT+3ayDT) (1) oI.G•R DT()•

OR -DZT 4 . 3 r-arDIt-~sr
2 -5T_3  +02T

. , (since r -T O2T)
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Finally, the expression for the GPV simplifies to

P~P( kr + k2~

k3 +k 4

that is, the GPV is the relative frequency with which this function
of chi-square random variables exceeds unity.

For known values of the sums-of-squares, this probability can
be determined by simulation. A FORTRAN program simulated 50,000
values of the generalized test variable and counted the number of
times that it exceeded unity to obtain the GPV.

Due to security classification restrictions, the sums of
squares derived from the data cannot be divulged in this report.
However, p-values from both the indirect and GPV approach
hypothesis tests for all combinations of direction and ammunition
type are presented in Table 2.

Indirect Generalized
Direction Ami:unition Test Approach Test Approach

A .993 (.433) .989
Azimuth B .858 (.111) .676

C .017 (.016) .036

D .149 (.373) .122

A .981 (.760) .972
Elevation B .779 (.745) .759

C .253 (.560) .226
D .438 (.873) .453

(p-values for the test of H0 : eR-ST - eA-DIT are in parentheses)

Table 2. P-values for the tests of H0 : r-sl, s a2 T*DT*"
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The two columns of p-values for Hi: Tr-ST S r-O2TDT are quite
similar. This indicates that both analysis approaches arrive at
the same basic conclusion, namely that dynamic indexing fails to
consistently reduce between-tube variability. Only in one case out
of eight (Ammunition C in Azimuth), was 9 T-OZT determined to be
significantly lower than eT-ST.

It is also interesting to note a few differences in the two
columns of p-values for H,: 2 T•ST " OT-DrI. For Ammunition C in
azimuth, the GPV is more than double that of the p-value obtained
via the indirect approach. Also, for Ammunition B in azimuth, the
absolute difference in p-values is rather large. These differences
may be due to the unequal between-round variabilitirj associated
with these data sets (note the low parenthesized p-va..uss in Table
2). Recall that the indirect approach requires that the between-
round variabilities are equal, whereas the GPV approach does not
require this assumption and is therefore an exact hypothesis
testing procedure. Violation of this assumption may result in
unreliable p-values reported via the indirect approach.

summary

For this particular data set, both procedures arrived at the
same conclusions to the dismay of the engineers behind the dynamic
indexing concept. Some minor differences in the p-values
highlighted potential problems in using the indirect approach to
test Ho: 2 'T-S 9 e 2 T-DZT.

The procedures for testing independent between-tube
variabilities presented in this paper each have their particular
advantages and drawbacks. The indirect approach is simple to
apply, an it requires only the use of F ratios based on sums-of-
squares taken directly from independent analyses of variance.
However, this approach relies on assumptions made about the
nuisance parameters, e-2AT and el,-•DT. Failure to meet the
assumptions may increase either the Type I or Type II error
probabilities.

The GPV approach *s independent of the nuisance parameters,
and is therefore an exact test for the null hypothesis. The main
disadvantage to this approach is that there is little guidance in
the statistical literature on the derivation of a proper
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generalized test variable. Furthermore, computation of the GPV
requires computer simulation of the generalized test variable. If
the analyst can obtain a proper generalized test variable, the
exactness of the GPV approach makes it the more desirable of the
two analytical strategies.
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IDENTIFYING THE CRITICAL FACTORS
IN AN

ADAPTIVE NETWORK

Ann E. M. Brodeen, Barbara D. Broome, George W. Hartwig, Jr., and Maria C. Lopez
Advanced Computational and Information Sciences Directorate

Aberdeen Proving Ground, Maryland 21005-5067

ABSTRACT

In the ideal communications network each node would be smart enough to monitor
network performance and, when necessary, adapt itself to better accommodate its work.
load. The adaptive network node would employ a decision algorithm to modify configui aý
tion, routing and protocol parameters based on measured network performance and mys.
tern requirements, This paper describes continuing research into feasible approaches to
developing an adaptive network for use in battlefield command and control systems. The
initial approach entails the collection of message traffic information into a deductive da.
tabue from which network performance is assessed and compared to system require-
ments. Inadequate performance would trigger identification and assessment of alterna-
tives for improvement, The project emphasizes use of actual hardware and controlled
e--periments to explore alternatives for parameter settings. This paper describes an in-.
tial attempt to identify baseline performance data for a prototype communications net-
work and to determine those factors to which the system is most sensitive,

BACKGROUND

Decentralized battlefield command and control requires reliable and timely distribu-
tion of information. At present, information distribution is limited by noisy channels and
protocols that do not meet traffic demands, forcing commanders to make decisions from
out of date or incomplete information. To solve this problem, our research addresses con-
trol of noise and interference on communication channels and construction of network
protocols that will be effective on the modern battlefield.

Currently the civilian sector is experiencing a communications revolution; however,
civilian applications often assume a physical infrastructure, such as towers and high pow.
er bass stations, that is not always feasible in a military environment. Our research takes
into account the special problems of the battlefield: mobility, bandlimited channels, arbi.
trary or intentional interference, multimedia data, and rapid pace of operations. The net-
works that are of particular interest to the Army have nodes with high computing power
but weak, noisy, shared communication links. For this reason, our approach to commu-
nication emphasizes working intelligently at each node to limit or redirect the amount
of information that must be passed along the communication channel, Each node is as-
sumed to act independently to improve the effectiveness of the information exchange be-
tween nodes, Such a system of controls requires that each node be able to: monitor the
network traffic; decide whether performance is inadequate; and if so, make an appropri.
ate adjustment to the protocol.
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Figure 1. An Adaptive 7kctical Network.

OBJECTIVE

Protocol parameters such an packet size, coding technique and channel access algo-
rithm could be adjusted to improve or possibly optimize information transfer. In general,
the objectives are to maximize throughput and minimize delay in the delivery of informa-
tion to the eud user, where throughput and delay are defined am follows:

Network throughput is the average number of bits per second that are successfully
transmitted and acknowledged over a one hour test cell. This does not include such
overhead as acknowledgements, error detection/correction codes, synchronization
characters, or, in the event of collisions, message retransmissions.

Network delay is the average time interval that passes between a message's arrival at
the host's modem and the host's receipt of the message acknowledgement. Messages
that are not completely serviced during the running of the test cell will not be consid-
ered In computing network delay.

The question of how best to adapt to a particular situation is extremely difficult to
address. Research into network protocols and communication channels will provide the
underlying foundation required to identify appropriate network adaptations. However,
because of the complexity of these protocols, theoretical research must be supported with
carefully designed and controlled experiments to determine which network parameters
are most useful in moderating network congestion.
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APPROACH

Based on previous research, several parameters were selected for a sensitivity analy-
sis: retry interval, the time to wait for an acknowledgement before retransmitting; win.
dow size, the number of outstanding messages permitted before transmission is blocked;
message length, the number of characters in each message; and arrival rate, the number
of messages per hour queued for transmission at each node.

A prepilot test has been conducted to determine thresholds for retry interval, window
size, message length and arrival rate. Next a pilot test will be executed to screen each of
the four parameters for possible elimination, Finally an experiment will be designed and
executed to measure throughput and delay under each of the test cell conditions,

EXPERIMENTAL CONFIGURATION

The experimental hardware consists of the equipment shown in Figure 2. The com-
puters are Tadpole SPARCbook I's each with 32 megabytes of memory, These are con-
nected to a Harris Black Box Radio Emulator via Harris Tactical Data Buffers (TDB). The
TDB provides an interface between VHF transceivers and digital computer equipment,

0 0

Figure 2. Experimental Configuration

In providing this service the TDB performs the following tasks: data modulation/demod-
ulation, error detection/correction, and compensation for unequal terminal and radio
link data rates.
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The SPARCbooks are connected to a SUK 4/280 serving as the data storage and data
reduction machine. The software residing on the SUN generates messages, logs message
traffic, and identifies message retries and delay. To minimize blocking and possible er-
rors, input is read from text files in a predefined order. Through the software, the exper-
imenter can interactively select which test cell and iteration to execute next,

PREPILOT RESULTS

The prepilot test was conducted to determine thresholds for retry interval, window
size, message length and arrival rate and to explore limitations of the software, Figure
3 illustrates the various factors explored,

During this period it was found a window size of one resulted in overflow errors that
prevented data transmission. Average message delays were computed over one minute
intervals to insure the sampling was sufficient to identify the warm up period, Software
requires further development to support fully automated execution of an entire replica-
tion and to accommodate more nodes in the network,

FACTOR LEVELS

Retry Timeout (seconds) 10 40

Window Size (messages) 8 50

Message Length (characters) 80 240

Arrival Rate (messages/node) 200 600

Figure 3. Prepilot Study Factors and Levels

FUTURE WORK

When software modifications are completed, the pilot test will be conducted to ex.
plore the need to eliminate or refine the levels of investigation for any of the factors, The
number of replications will be dependent upon the duration of the test cells and the
amount of automation introduced. A full factorial design will be implemented. The pa-
rameters selected for this test are those which can be easily modified. Future experiments
will consider more complex protocol modifications,
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A. The Army Mobility model (AMM) developed, at the
U.S. Army Engineer Waterways Experiment Station, uses the data from
about a hundred factors that describe a vehicle terrain unit, road
unit, or linear feature to predict vehicular speeds. Recently,
Monte Carlo simulations were conducted for several wheeled and
tracked vehicles and different areas, varying some selected groups
of these factors plus and minus 10 percent about their nominal
values. The results of these simulations have been studied to
develop empirical relationships that allow the expression of
confidence measures for the speed predictions on an entire mobility
map. As a first step, programs have been written to test methods to
estimate the value of continuous statistical parameters (the mode
and its standard deviation) of a discrete histogram. This allows
theorems of mathematical statistics to be applied to the confidence
levels around the values of the parameters. The method uses a
variation I made on E. Parzen's formula for the location of the
mode of the continuous distribution associated with a discrete
histogram.' The formula works by estimating the rate of an
associated statistical process by discrete windows (Jth waiting
times). The incomplete gamma function and a maximum liklihood
product is then used to estimate the parameters. 2 This approach
has been tested for a range of Monte Carlo generated discrete
approximations to gamma distributions. It was then applied to the
histograms of possible errors in speed predictions of tactical
vehicles moving across areas on different mapsheets. These
histograms were generated previously in the course of the work by
Lessem and Ahivin and are discussed in reference (6].

'See Parzen, Emanuel, "Stochastic Proceses", Holden Day, 1962,
and Press,W., Flannery, B. et al., "Numerical Recipes in C," 2nd
ed., Cambridge U. Press, 1988.

2 Ibid.
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In trying to determine how to organize the sensitivity trials
in this particular set of programs and data there are several
approachs that can be taken. Because the speed prediction program
uses a series of lookup tables and flow chart, "yes" or "no", go
and no-go cutoff rules, points at which the program computes a no-
go output are natural areas to investigate its sensitivity to
errors in the data. Error measures can be associated with "critical
regions" in the data around these points. Determining the modes and
moments in the discrete non-parameteric histograms generated by the
sensitivity trials gives a way of characterizing and reproducing
the confidence in information contained in the program's output
involving these regions. One approach, which measures the program's
"inherent sensivity" to errors, is terrain-independent and vehicle
dependent. It examines the code in the program to find the 1-factor
critical regions in the outputs of the Monte Carlo trials. It then
adjusts the values of the other factors in a detrimental direction
of the lookup table values until the 2,3 and higher multi-factor
critical regions are identified. Another approach is "project
specific" and is both terrain dependent and vehicle dependent. It
looks at the areas on the speed prediction maps where no-go. occur.
It then goes back to the input files to determine the values of the
data at the terrain units where these no-gos occur. This is the
approach that will be taken in this paper.

After the procedure for conducting the trials is determined it
is important to consider ways to examine confidence levels for the
parameters that are estimated. One approach to this, which recently
has gained popularity, is the technique of bootstrapping. This
technique conducts Monte Carlo trials of the Monte Carlo trials.
The algorithm resamples not from the original data, but from a
smoothed kernel estimate of the data (see MathCad [8] for the
details of the algorithm and Efron, Hall and Tittleman, and Scott
for the theory behind formulas for the variance of the sampled
estimate of the parameter). Smoothed kernel formulas, introduced by
Parzen and others (see Scott [12], Parzen [9]) allow better
resolution of modes and other information in the data using a given
histogram bin size or window. In order to estimate the second
moment or the variance of the kernel estimate, it is necessary to
write programs to compute the second derivative of the frequency
polygon of the histogram (see Scott [12)). Bootstrapping confidence
intervals can then also be computed from this information.

In this paper a somewhat simplified approach is taken. A
leave-one-out maximum liklihood product of smoothed kernels over
different possible bin widths is taken. The product is taken over
a choice of possible bin widths. Once the best bin width is
determined the variance of the kernel associated with this bin
width is computed (see Numerical Recipes in C, 2nd ed. [101) This
aggregrates the data in a one dimensional histogram and does not
give you as much information as in the more complicated multi-
dimensional approach.

Figures 1, 2, 3, and 4 show the results of a series of Monte
Carlo error sensitivity trials run on some vehicle speed
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predictions by Lessem at al. (6]. They display the speeds predicted
for the M998 High Mobility Multi-Purpose Vehicle (HMMV), the M977
10-Ton Heavy Expanded Mobility Tactical Truck (HEMTT), M113
Armoured Personnel Carrier, and the M-I tank. The terrain areas
tested are in Yakima, Washington, Granjean Wells, New Mexico and
Bachelor, Australia. The graphs have predicted speedo plotted on
the horizontal axis. The speeds were computed by varying nine
factors: soil strength, slope, surface roughness, visibility,
vegetation type, and four other attributes dealing with obstacle
characteristics around their nominal values in a certain terrain
unit. The nominal values for that terrain unit were chosen as the
points around which the vehicle's performance on the mapsheet
terrain units changed most noticeably. The points were determined
by referring both to the output that the program computed and to
the tables in the speed computation program where the performance
changed significantly. on the vertical axis is a count of the
number of occurances of a given speed for that vehicle, that
terrain unit, and for the range of Monte Carlo trials used. Both
uniform and normal density functions were used to compute the
randum numbers used in the Monte Carlo sensitivity trials. Thus
the graph displays the areal sensitivity of the speed predictions
for that vehicle in that area. Notice that the results don't appear
to have a common probability density function. The WES technical
reports by Lessem et. al. [6] and [7] contain a more detailed
discussion of the features of the mobility programs which cause the
histograms to assume these shapes.

In general, these histograms will separate into several parts
each with distinct characteristics. In this particular case parts
of the graphs associated to each single mode were separated out.
Let us assume this has already been done. We arrange the results of
the Monte Carlo simulations in a histogram of N bins with the
number of Monte Carlo hits (test items) in the ith bin equal to
histi. In order to estimate the number of Monte Carlo trials
necessary to reproduce the probability density function from which
these results give samples we have to use an unstructured or
nonparametric approach.3 Let us define

hi at1(1.1) p(t+1/2*J) m NhisJ

NV*J

where t - bin number around which estimate is centered
J = integer z 1

X = total number of observations

SKeinosuke Fukunaga, "Introduction to Statistical Pattern
recognition," Academic Press, 2nd ed., 1991.
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According to the reference by Fukunaga [3], this formula gives
the Parzen density estimate for the value of this probability
density function at the point k - t+ J/2.' In this formula we are
using a local region defined by a window of size J around the point
to estimate the number of hits in a counting process in terms of
the histogram values located in this region. This formula gives
estimates for the values of the density function at N-J points.
Sorting these estimates and picking out the middle and highest
values then gives the best prediction of the mode and the mean of
the histogram using windows of size J. On page 261 of this
reference the value of the standard deviation of this estimate is
calculated to be:

t histj(1.2) (t+I2 cJ)

Note that the value of this standard deviation refers to an
interval around a point on the x-axis of the histogram and not
around the height of the histogram or number of Monte Carlo values
in that bin.

These formulas and theorems allow a leave-one-out procedure
along with a maximum liklihood product to be used to estimate
thevalue of the window size which gives the smallest error in
estimating the parameters.'

Using our procedure for computing estimates of the value of
the probability distribution, at the point k defined in equation
1.1 the function p(k) is proportional to the amount the
cumultative distribution function changes in this interval.., so,
the larger it is, the better is the chance for a local maximum of
the probability distribution function at that point. The program
computes estimates of the continuous modes for different window
sizes, where 3 - window size, x, - bin# of largest of these
estimates, p(k) " weighted estimate of mode at this bin - (sum of
# of distribution hits in the bins inside a window of width J
centered at k)/(total # shots)* J. In the case where the

4 Actually, this is the density function of a "renewal counting
process" as defined in Parzen [9].

3 See besides the Numerical Recipes in C reference also the
Introduction to Statistical Pattern Recognition text referred to
above. These same procedures can be used to characterize the
histogram distribution of pixel intensities in digital images. Such
a characterization allows the use of various neural network
learning procedures to be used to identify the images.
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distribution function is suspected to be bimodal, this procedure
will identify at least the top two modes when it is iterated over
different window sizes.

Let 8 (J) athe range of data values around the candidate for mode

calculated using a window size of J.

xJ. Mx
Thus, 8 (J) - • hist1

Then, in this notation, the probability distribution pl(k) of
the smoothed estimate of the original data is given by: 6

p (k) - a8(J)NJ

Let

I -k- '7

I

(2.1) 8,y(k) . ist,

Let H(J)- the hypothesis that the true mode x has been
identified by considering a window of size J. We want to consider
how likely it is that the range around xshould be shorter than it
is observed to be. Let P(a,x) be the incomplete gamma function:

x

P (a, X) yurTfe-tt-dt;

where:

6 See the discussion in Numerical Recipes in C edition 1 and
also the book by Parzen, pages 133-134.
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r'(a)uf-eI-d

Thus, P(ax) is the cumulative Poisson probability distribution
function, Prob(X <- a) for the Poisson probability distribution X.
It is defined as the probability that the number of Poisson random
events oocuring will be between 0 and a - 1. Each of these random
events will have a probability of ocourance of N*pj.

The probability that the range around x, is actually shorter than
observed to be if H(n) is true instead of H(J) is7 :

(A p.1 (n) ) () . edt
0 (n-1)I

If we let:

y MNp,(n) t
a wrn

x - 6"M

in the above equation ,

then it is equal to:

P(n (J)

which is the same as:

P(nJ

Taking the product of all these factors for each mode x.then gives
the likelihood that the range around xshould be shorter than the
range observed around x, for all n other than J.
Thus the likelihood function is defined by Likelihood(H(J)):

7 Parzen, Ibid pp. 133-134.
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(2 .2 ) L n J N , } n J • J / ( )

The program then computes the value of this window size J that
maximizes the likelihood function, given a set of arrayed a
posteriori error sizes.

More precisely, the steps in the computation are:

1) Compute the
8,,(.n)

according to equation (2.1) for the points corresponding to each
bin.

2) Compute the maximum liklihood products according to equation
(2.2) in order to determine the optimal window size.

3) Compute the weighted sums p(k) according to equation (1.1)
and the standard deviations according to equation (1.2) for the
points corresponding to to each bin.

Because of the nonparametrio form of the Parzen density
estimate, the procedures will work for any empirically determined
histogram. A discrete sorting procedure normally gives a pretty
good estimate of the value of the mean and mode (even assuming the
actual distribution is continuous). However, in order to
approximate the size of the standard deviation in the estimation of
the parameters, it is necessary to use the maximum likelihood
estimators. These estimators of the best window sizes will result
in good approximations of the parameters.
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An example of how these parameter estimates work is shown as
it is applied to the results of Monte Carlo sensitivity runs in
Figures 1,2,3,4. The simulations shown in the figures were
conducted for tour vehicles the HMMV, the M997 trailer transporter,
the M113 APC, and the M-1 tank. The top charts show the results for
"a mapsheet Yakima Proving Grounds and the bottom charts those for
"a mapsheet including Batchelor Australia.These figures show the
results of varying the parameter values plus and minus 10 per cent
around their nominal values. Nominal values are defined as the
vehicle parameters plus the specific parameter values in each
terrain unit. For, this analysis, we considered the particular
values for which that .ahicle experiences a go, no-go situation,as
the values around which variations were made.

Data from the M997, M113, and M998 runs were extracted
directly from the top row of histograms in Figures 1,2, and 3
respectively. Programs were written to expand the information into
a 20 bin histogram and to scale the data. This turned out to be a
good range for the incomplete gamma function to discriminate the
maximum likelihood estimates. The results of the program runs are
shown below. First the program calculates a value for the mode by
simply sorting the columns of the histogram. This is called a
discrete estimate. The abscissa of this point is called modei. Then
the program computes the optimal window size for smoothing the data
using the leave-one-out maximum likelihood procedure explained
above and determines a continuous estimate for the mode along with
a standard deviation. Both of these numbers are computed using this
optimal window size.

The results are shown below:

histogram of Monte Carlo error runs
M998 Yakima-15 9-factor-terrain ( mode#l )

x p(x) graph:
4.0000 0.1820 *********
4.5500 0.3275 ****************
5.1000 0.4731 ***********************
5.6500 0.6186 *************************
6.2000 0.3311 ****************
6.7500 0.0437 **
7.2500 0.0218 *
7.7500 0.0000
8.3000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 42.500000

Discrete estimated value of modei- 5.650001

Probability of mode detected at window size 3 is 0.229365
Probability of mode detected at window size 4 is 0.253296
Probability of mode detected at window size 5 is 0.256476
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Probability of mode detected at window size 6 is 0.014268

Probability of mode detected at window size 7 is 0.014372

Most likely window size is 5 value of mode is 32.50000

Continuously estimated value of modei-5.10000

Standard deviation of the continuous estimate (for this window
size) is 0.607092

histogram of Monte Carlo error runs
M998 Yakima-15 9-factor-terrain ( mode#2 )

x p(x) graph:

16.8000 0.0000
17.3500 0.0000
17.9000 0.0000
18.4500 0.0000
19.0000 0.7143 ***********************************
19.5500 1.4286 ************************************************
20.0500 0.9740 ************************************************
20.5500 0.5195 *************************
21.1000 0.4545 **********************
21.6500 0.3896 *******************
22.2000 0.3831 ****************
22.7500 0.3766 ******************
23.2500 0.3766 ******************
23.7500 0.3766 ******************
24.3000 0.2597 ************
24.8500 0.1429 *******

0.0000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 11.0000000

Discrete estimated value of modei-19.549995

Probability of mode detected at window size 3 is 0.204653
Probability of mode detected at window size 4 is 0.039479
Probability of mode detected at window size 5 is 0.116221
Probability of mode detected at window size 6 is 0.065450
Probability of mode detected at window size 7 is 0.129556
Most likely window size is 3 value of mode is 11.0000000
Standard deviation of the continuous estimate (for this window
size) is 0.269430

Continuously estimated value of modei-11.00000

histogram of Monte Carlo error runs
M997 Yakima-15 9-factor-terrain ( mode#1 )

x p(x) graph:
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2.8000 -0.0387
2.9500 0.2062 **********
3.1000 0.4510 **********************
3.2500 0.6959 **********************************
3.3833 0.5956 *****************************
3.5167 0.4954 ************************
3.6500 0.3952 *******************
3.8000 0.2234 ***********
3.9500 0.0515 **
4.0833 0.0344 *
4.2167 0.0172
4.3500 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 40.500000
Discrete estimated value of modei- 3.250000

Probability of mode detected at window size 3 is 0.282627
Probability of mode detected at window size 4 is 0.064773
Probability of mode detected at window size 5 is 0.076770
Probability of mode detected at window size 6 is 0.083600
Probability of mode detected at window size 7 is 0.084213
Most likely window size is 3 value of mode is 40.500000
Standard deviation of the continuous estimate (for this window
size) is 1.253331

Continuously estimated value of modei-3.250000

histogram of Monte Carlo error runs
M977 Yakima-15 9-factor-terrain ( mode#2 )

x p(x) graph:
6.9000 -0.0032
7.0500 0.0000
7.2000 0.0032
7.3500 0.0065
7.4833 0.1775 ********
7.6167 0.3485 *****************
7.7500 0.5195 *************************
7.9000 0.6494 ********************************
8.0500 0.7792 **************************************
8.2000 0.7143 ***********************************
8.3500 0.6494 ********************************
8.4833 0.6061 ***************************
8.6167 0.5628 ****************************
8.7500 0.5195 *************************
8.9000 0.4545 **********************
9.0500 0.3896 *******************
9.1833 0.3030 **********
9.3167 0.2165 **********
9.4500 0.1299 ******
0.0000 0.0000
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Data drawn from a histogram of Monte Carlo sensitivity

to errors in terrain factors

Discrete estimate of mode of data set is 6.000000

Discrete estimated value of modei- 8.049999

Probability of mode detected at window size 3 is 0.007822
Probability of mode detected at window size 4 is 0.023633
Probability of mode detected at window size 5 is 0.082934
Probability of mode detected at window size 6 is 0.183745
Probability of mode detected at window size 7 is 0.298017
Most likely window size is 7 value of mode is 5.500000
Standard deviation of the continuous estimate (for this window
size) is 0.103940

Continuously estimated value of modei-8.199999

histogram of Monte Carlo error runs
M113 Yakima-15 9-factor-terrain ( mode#1

x p(x) graph:
3.0000 -0.0862
3.2000 0.1149 *****
3.4000 0.3161 ***************
3.6000 0.5172 *************************
3.7500 0.6322 *******************************
3.9000 0.7471 *************************************
4.1000 0.7701 **************************************
4.3000 0.7931 ***************************************
4.4500 0.7902 ***************************************
4.6000 0.7874 ***************************************
4.8000 0.7644 **************************************
5.0000 0.7414 *************************************
5.1500 0.6322 *******************************
5.3000 0.5230 **************************
5.5000 0.3563 *****************
5.7000 0.1897 *********
5.8500 0.0977 ****
6.0000 0.0057
0.0000 0.0000
0.0000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data set is 13.799999

Discrete estimated value of modei- 4.300000
standard deviation is 0.283068

Probability of mode detected at window size 3 is 0.003206
Probability of mode detected at window size 4 is 0.020749
Probability of mode detected at window size 5 is 0.114160
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Probability of mode detected at window size 6 is 0.132713
Probability of mode detected at window size 7 is 0.369124
Most likely window size is 7 value of mode is 13.799999
Standard deviation of the continuous estimate (for this window
size) is 0.283068

Continuously estimated value of modei-13.79999

Summary of Mode Estimates for data

Discrete estimate of mode of data set 1 is point 5.650001 at
42.500000
continuous estimate of mode of data set 1 is point 5.100000 with
value 32.500000
A window of size 5 was used to estimate this

Discrete estimate of mode of data set 2 is point 19.549995 at
11.000000
continuous estimate of mode of data rqt 2 is point 19.549995 with
value 11.000000
A window of size 3 was used to estimate this

Discrete estimate of mode of data set 3 is point 3.250000 at
40.500000
continuous estimate of mode of data set 3 is point 3.250000 with
value 40.500000
A window of size 3 was used to estimate this

Discrete estimate of mode of data set 4 is point 8.049999 at
6.000000
continuous estimate of mode of data set 4 is point 8.199999 with
value 5.500000
A window of size 7 was used to estimate this

Discrete estimate of mode of data set 5 is point 4.300000 at
13.799999
continuous estimate of mode of data set 5 is point 4.300000 with
value 13.799999
A window of size 7 was used to estimate this

In summary, using this technique of estimation for finding
modes there is in one case (data set 1) about a 10 percent increase
in the accuracy of the determination of its location. This makes
available a more accurate fix on the NOGO program vehicle speed
values around which to do the sensitivity analyses. Also,
determination of the optimal window size to use in the estimate,
gives a means to non-parametrically estimate the standard deviation
of the sensitivity analyses results. This then tolls us how many
Monte Carlo trials should be used to explore the program's
senstivity to variations in the values in its internal tables and
input data. For example, for the two runs concerring the M977
performance, one mode has a determination with a standard deviation
of 1.253 and the other with a standard deviation of .1039. After
determining this, you could then go back and run 10 times more
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Monte Carlo trials around the first mode. Similarly, althougn it
was not analyzed for this paper, the determination of a mode in
the case of the M-1 tank is much less well defined. Locking at the
Monte Carlo sensitivity histogram in the top part of Figure 4, it
is clear that in this case the predictions will be less accurate.
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