
TEC-0045

AD-A281 594

A Parser for
the ISO 8211
Data Format

Michael McDonnell 'EyVXC

January 1994 (ýýA94-22455

Approved for public release; distribution is unlimited.

94 T7 15075
U.S. Army Corps of Engineers
Topographic Engineering Center
Fort Belvoir, Virginia 22060-5546

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army
position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not
constitute official endorsement or approval of the use of such products.

REPORT DOCUMENTATION PAGE ,o,. 704o-018
of__ _ _ _ _ _ _ _0 No. 0704.01U1

atua aet.m t.dt ed4 Mci'it. e vel.w i thec mldei futfla.A a in. UV it

iOst~Iof enfomtatoe dun W4 1 1tO o tEM r IWt enr~. to *~hghnqto "4fqatM .Wfl iree. 0ff teq0lratma Oa.om Id Remoelt. till jeffeww"omm mg ~w•. Suite s,•rg4. A •1. d-•J. M to the ou. Men0qeuW~t land NWogWt. Paperwot RedutiAOn Ofd4tl a07n44gWn. OC IOU)$41

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I January 1994 Technical Re ort

4. TITnE AND SUBTITLE S. FUNDING NUMBERS

PR 4A161102B52C
A Parser for the ISO 8211 Data Format TA CO

6. AUTHOR(S) WU 014

Michael McDonnell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) I. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Topographic Engineering Center TEC-0045
7701 Telegraph Road
Alexandria, VA 22310-3864

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORINGAGENCY REPORT NUMBER

Office of the Chief of Engineers
Washington, DC 20314-1000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes a library of functions that parse an ISO 8211 file and convert the parsed data into a form
useful to other programs, which can then read user data from the file. The structure of ISO 8211 files will be
defined and then it will be shown how these programs interpret data in those files. Finally, an example program
will be presented that reads an ISO 8211 file by using this library.

14. SUBJECT TERMS IS. NUMBER OF PAGES
ISO 8211, data parsing, data conversion 24

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540)1-220-5S00 Standard Form 298 (Rev. 2-89)

vhwrftd t ow ANSI Std 13J.

PREFACE

This study was conducted under DA Project 4A161102B52C, Artificial Intelligence Concepts for
Terrain Analysis.

The study was conducted under the supervision of Mr. John Benton, Chief, Artificial Intelligence
Division; and Mr. John Hansen, Director, Research Institute Laboratory, U.S. Army Topographic
Engineering Center.

Walter E. Boge was Director, and Lt. Col. Louis R. DeSanzo was the Commander and Deputy
Director of the U.S. Army Topographic Engineering Center at the time of publication of this report.

V

A PARSER FOR THE ISO 8211 DATA FORMAT

The ISO 8211 File Format
T International Standards Organization (ISO) has defined standard 8211 as a "data

descriptive file for information interchange" [ISOS5]. The ISO 8211 format is hierarchical.
Terms referred to in the standard document ISO 8211-1985(E) will be used to refer to the sections
of this hierarchy. Each file starts with a single Data Descriptive Record (DDR), which describes
the formats of the Data Records (DR) that follow. There may be many DR sections. All user
data is contained in the DR sections.

Both the DDR and each of the DR have a similar internal structure. Each is divided into
three sections. Each begins with a 24-byte leader that gives the sizes of the sections that follow.
The leaders are followed by a directory that gives the lengths and positions (offsets) of each of
the data fields to be found in te final section. The final section is divided into field., and each
field is given a mnemonic alphanumeric tag for identification. These tags ae defined in the direc-
tory section. The DDR and each DR have a similar directory section, but the final section of each
of these differs. The final section of the DDR is called the Data Descriptive Area (DDA), and the
final section of each DR is called the User Data Area (UDA). As its name implies, it is in the
UDA that the actual data being transmitted by the ISO 8211 file is stored.

The appendix to this report contains a listing of the C programming language "include" file
iso8211A which defines data structures used in the parser. Refer to this listing for definitions of
structures and constants mentioned in the following discussion.

The DDA

The DDA contains a succession off/dei, which in turn have subfelds. Fields are separated
by afield terminator, which is the hexadecimal ASCII character le. Subfields are separated by a
wilt terminator, which is t hexadecimal ASCII character Uf. lit subfields are, in order, field
controls, data field name, labe, and format contaLi. Not all of these subfields need exist. Miss-
ing subfields are indicated by a pair of consecutive field terminators. lie mnemonic tags from
the DDR directory are assigned to each field in turn, so the number of tags in the directory must
be the same as the number of fields in the DDA. The tags awe then referred to in each DR to con-
nect the data inthe DR with the data in the DDR.

Here is an example of a DDA field, which has been formatted for readability by breaking it
into separate lines:

1600&
TSTPATCHIDENTIFIERFIELD&
PNM!DWVIREF•PUR!PIR!PIG!PIB&
(A(7)J(6),R(5),R(5)J(3)J(3)J(3));

The first line, "1600;&", is the field commtl. The number tells what type of field this refers to
(here a mied vector field) and the characters ";" and "&" tell us that these characters may be used
as printed representations of the field terminator and the unit terminator respectively, as is done in
the listing above. The second line is an identifying nape terminated by a unit terminator, The
third line is a label, which is in this case a vector label consisting of a series of subfield labels for
the DR. Each subfield label is separated from its neighbor by a "!". The fourth and final line has
the format controls subfield which specifies the format of data in the UDA by using a FOR-
TRAN-like syntax. The format controls subfield is delimited by a field terminator. The DDA
field as a whole is also delimited by a field terminator.

1

For a vector label such as this example, each vector subfield tag is associated with one of
the data formats in the format control. Therefore, subfield tag "PNM" refers to an ASCII string
that is seven characters (bytes) long; tag "DWV" refers to an integer that is encoded as a stuing of
six ASCII numeric characters; and tag "REF" refers to a floating point number encoded as a string
of five ASCII numeric characters with floating point characters such as "." also allowed.

The UDA

The final section of each DR is called the User Data Area (UDA). It is here that the useful
data being transmitted by the ISO 8211 file is stored. Following the leader, the directory section
of each DR contains tags that must also appear in the DDR directory. Thse tags then index the
corepdi entry in the DDA, which tells how to read the UDA by supplying formats. A
given tag in the DDR may be referenced any number of times in a DR.

For all te details of ISO 8211, refer to the standards document. Enough of ISO 8211 has
now been presented so that we can understand the important data structures used in this parser.

The Parser

This parser nuns under the UNIX operating system, although it has been written to be
portable to different environment& It works by building lists of structures that can then be inter-
rogated by programs that need the data to read ISO 8211 files. The parser moves forward through
the file being parsed. For example, when the parse of a DR directory is complete the file pointer
is at the beginning of the associated UDA. Every parsing program takes a stream pointer to the
file being read. In the C programming language this is declared as a (FILE *) type, such as

FILE *fp,

The parser turns input data into a set of lists. Lists are formed from C data structures linked
together using a pointer that is part of the stucture. This pointer is always named next. Lists are
always terminated by a NULL pointer. Any type of list may then be traversed using C code such
as the following, which traverses list "foo" by using a user-defined pointer named "foop":

for (foop = foo; foop !- NULL; foop = foop->next)
{

/* do something with elements of list foo */
}

All data structures used by the parser are defined in file so8211JA, which is listed in the
appendix. Data from tie DDR is parsed into a list based on a C structure called dda enry and
data hoam each DR is parsed into a list based on a C structure called uda emny. These two lists
are the things that a user of the library will be concerned with.

7b make the dda-entry list, call the function parse jddrO, which returns a pointer to the
head of the dda_entry list. Similarly, to parse the next DR, call function parse_dr(), which
retumn a pointer to the head of a uda-entry list. Each of these lists will now be discussed in turn.

The Parser: DDR Section

The dda_entry list is only parsed once since there is only one DDR in an ISO 8211 file.
Function parseddur) takes a single argument, a pointer to the open ISO 8211 file being parsed,
ad returns a list of ddaenny structures. This list is then searched for matching tags when pars-
ing each DR. The ddaentry structure is:

2

typedef struct dda-entry
I
int sMMMcturetype; /* ELEMENTARY, VECTOR, ARRAY /
int datajtype; /* INT, FLOAT, EXPLOAT,...
char *name; * long descriptive name 1
char *tag; P' same as in conrsponding ddentry */
int labeLtype; P VECT, CARTESIAN, ARRAY_DESC */
union label *label;
strect format *format;
struct format *eeat; P indicate repeating part of format list /
struct dda.entry *next;

} dda-enu,

The first two members of this structure, stiuctwre type and daa type, hold enumerated types,
which can be found in the Wso8211.h file. The thrd and fourth members, name and tag, refer to
the long name for the entry and the short tag by which it will be referenced. The fifth member,
labeL/Wpe is an enumerated type code for the type of label found in the next member, label. The
label member is a pointer to a union, which stores a type of data indexed by the labeLtype mem-
ber.

typedef union label
{ , a label will be one of three types/
struct vector *Vector-
struct cartesian *caftesian;
struct array-desc *desc;

the label union can contain pointers to structures reprsenting the three types of label supported
under ISO 8211:

typedef stnu vector
{
char *tag-
struct vector *next;

J vector,

typedef struct cartesian

struct vector *rows,
snuhct vector *cols;
st-ict vectors *ve• P higher dimensions if needed */

} caesi

typedef struct array-desc

int length; P length of a dimension */
struct arrayjdesc *next;

} array-desc

3

The cartesiaan structure refers to a list of these structures:

typedef struct vectors
[r/ needed for cartesian labels more than

* 2D /
vector *vec;
struct vectors *next;

} vectors;

The vectors structure allows multidimensional arrays to be stored as lists of vector structures.
Stnrcture array-desc stores an array descriptor, a rather strange label that indicates the dimen-
sions of an array, which will follow in the UDA. See the standard for an explanation of array
descriptors.

The final two members of a dda entry structure are pointers to a list offormat structures:

typedef struct format
I
int type; /" INT, FLOAT, EXPYFLOAT, ...
int length; /* either this or delimiter must be %00M*/
char delimiter,
struct format *next;

} format;

The UDA data may be delimited by either specifying its length or by specifying a delimiter char-
acter, which may not appear in the data itself. The format structure allows for each of these
delimiting techniques, although at least one of the members length or delimiter must be zero (for
this parser, binary zero is therefore not allowed as a delimiter). The 8211 standard says that if
both length and delimiter are zero, the data elements are separated by unit terminators.

There are two format pointers in the dda entry structure because the format is defined to
implicitly repeat the last parenthesized expression at its right end. A repeat pointer is needed to
allow data to be read using this implicit repeating format.

The Parser: DR Sections

As mentioned, them is only one DDR in an ISO 8211 file; so the DDR section only needs to
be parsed once. There may be many DR sections however, so parsing of the DR is done by a sep-
arate program that is called as many times as needed. Program parsedr() has one argument; a
pointer to the file being parsed. Parse d) returnis a list of uda_entry structures:

typedef struct udaentry
{
char *field-tag; / length is up to field terminator*/
char *vectag; /* length is up to next vector item 1
char type; I AJ,RS,C.B, or X*/
union {

char *cp; P CHAR (actually a string) */
inti; pINT*/
double d; P FLOAT, EXPJLOAT */
int *bf, / BITFELD, CHAR_BIT_STRING */
void *ignore; /* IGNORE */

4

Idata; f user data/
struct, uda-entry *next;

) uda.entry;

The fiwe/dtag member corresponds to field tags in the ddaentry stnrcture and is u",ed to find a
corrsponding entry in the dda_.entry list. Member vec_tag is one of the vector subfield tags men-
tioned above in the discussion of the DDA and is used to find the exact match for a format from
the format list associated with each item in the ddasentry list. The type member is a character
indicating the data type, which will be stored in this instance of the udaientry structure. The data
member is a union whose type is indexed by the type member.

Besides the highjevel functions parse ddrO and parse_drO, there ane lower level parsers
available for those cases when more control is needed. These are

extem struct ddrjeader *parse_ddrjeaderO;
extem struct ddt..entry *parse ddr directoryO;
extern stnrct dda-entry *pame-ddaO;

which separately parse the three main sections of the DDR, and

extem sruct drjleader *pase-drJeader0;
extern stnict dr entry *pazse-dr~diretory(;

which parse the first two sections of a DR. See file Lo82.h for definitions of the structures
referred to in these function declarations. The UDA is too variable to support a parser in this
library; the user of the library must define one. The code that follows gives an example of this.

An Example

Here is an example of C code that uses the programs parse_ddrO and parsedr():

include <stdio.h>
#include diso82 1.11>

main(argc, argv)
int argc;
char **argv;

I
struct dda.entry *dda = NULL;
struct dr.entry *dr = NULL, *drp;
FILE *fp;

dda = parseddr(fp);
while (1) /* do until EOF*I
I
dr = parsed r(fp);

/* Do something in here with data from DR, if desired. */

1 last dr element has the seek information we need to go past uda 1
for (drp = dr; drp->next != NULL; drp = drp->next)

S

P for now, seek past the uda /
if(fseek(fp, (longXdrp->pc ion + drp->length), 1) = -1)

exit(O);

P
"* No parse_udaO function is defined her because the
"* user data area (uda) may contain many types of structures and the

"* parse is therefore data-dependent.
./

}
}

A Longer Example

As the last comment in the code above shows, there is no parseudaO function defined in
the library. The library takes care of those parts of ISO 8211 that are not data-dependent. The
user of this library should write UDA parsers, as needed, based upon the information retrieved by
the parsers described here. A final, rather long, example showing such usage is this section of
code from a parser of ARC Digitized Raster Graphics (ADRG), a product of the U.S. Defense
Mapping Agency:

m************ TRANSMrITAL HEADER FILE *

P
"* Transmittal Header File always has the same name, so just open
"* the one in the current directory. From the THF we want filenames
"* and the comers of the Distribution Rectangle in latlon.
./
if ((fp = fopen("TRANSHO1.THF", "r-)) =- NULL)
(
fprintf(stlerr, "File open error %stn", argv[1]);
exit(l);

I
dda = parse.ddr(fp); P/ parse the file directory *1

Pb THF has 4 records. Furst record contains corner coords of image. */
uda = parse-nextjlr(dda, fp);
get-comers(&nw, &se, uda);

/* Next two dr records contain nothing of interest
* (security and test patch respectively).

paeo.nxtjdr(dda, fp);
parsej•extdr(dda, fp);

Pb Next (and last) dr record contains the filenames. Build and
* return a directory tree.

6

,/

uda - parse.next-dr(dda, fp);
root parsedirectory(uda);
fclose(fp);

/' Do similar things with other files */

The library function parse..ddrO is used by this code, but the programmer has encapsulated
the parsedr() function in a function of his own called pars-nextdrO:

1*
* return a uda list associated with current dr.
,/

#include <stdio.h>
#include <iso82l1.h>

uda_.enty *
parsernext-dr(dda, fp)

dda.entuy *dda;
FILE *fp.

(
dr-entry *dr, *drp;
ddaentxy *dap
uda-entry *uda, *temp, *head - NULL;
int c;
extern udaaentry *parse-vec;
extem uda-entry *pase-cartO;
extem uda-entry *parse-descO;

dr = parse-dr(fp); 1 parse leader and dr directory *
for (dip = dr, drp != NULL; drp - drp->next)
{
for (clap = dda; lap != NULL && strcmp(dip->tag, dap->tag) .= 0

dap = dap->next)
/* find match in dda to get format */

if (dap = NULL) /* no match; an error */
I
fprintf(stderr, "No match found for tag %W", dzp->tag);
break;

)
switch (dap->labeLtype)
I
case 0: P* no label; there should be a function... *I
break;

case VECT.
uda = parse..vec(drp, dap, fp);
break;

7I

came CARTESIAN:
uda = parse-cart(dxp, dap, fp);
break.

case ARRAYDESC:
uda = parsejiesc(drp, dap, fp);
break;

default:
fprintf(stderr, "No such label type:%dW'a, dap->labeljtype);
break;

if (head == NULL)

head = uda;
for(temp = uda; temp->next != NULL; temp = temp->next)

else
for(temp->next = uda; temp->next != NULL; temp = temp->ncxt)

while ((c - getc(fp)) == UNrlT_TERM 11 c = FIELD&TEM)K
/* test next char to see if should skip1

uneccf)
return head;

Function parse _next dr() in turn calls application-specific UDA parsers that were written to
conform to the ADRO format. Here is one of them.

uda...entry*
pars~evec(dr, dda, 1f,)
dr-entry dr.
dda..-enty *dda;
FILE *fir

uda...ntry *uda, *tmp, *head =NULL;

vector *vec;
format *fmt;
extern void get-data...valueO;

for (vec = dda->label->vector, fiat = dda->format;
frnt != NULL; fmnt = fmt-,next, vec = vec->next)

temp - (uda-entry *) mdloc(sizeof(uda-entry));
temp->vecjtag = malloc(strlen(vcc->tag) + 1);
strMp(temp->vec-tag, vec->tag);
tep->fleld-tag = malioc(strlen(dda->tag) + 1);
strcpy(temp->fled jag. dda->tag);

temp->next = NULL;
get-data._value(fmt, temp, fp); /* temp and fp changed */
if (head•= NULL)
head = temp;

else
uda->next = temp;

uda = temp;
}
return (head);

}

Function parsevecO builds a list of structures specific to the ADRG format. It uses the lists of
dda.entry and of uda-entry structures from the library functions parse_.ddrO and parse d,() to
help in finding UDA data. Obtaining the UDA data is done by function get data value():

void
geLdata-value(fmt, uda, fp)

format *ftnt;
uda-entry *uda;
FLE *fp;

(
int c;
char *buP,

buf = mafloc(fmt->length + 1);
while ((c = getc(fp)) = UNrrTEP.M 11 c = FIELDTERM)

/* test next char to see if should skip*/
ungetc(c, fp);
if (fread(buf, 1, fmt->length, fp) != fmt->length)
{
fprintf(stdefr, "Read error in getdata.valueWn);
return;

buf[fmt->length] =' ';* for string operations *l
uda->type = fmt->type
switch (fmt->type)

case 'I': /* integer*/
uda->data.i = atoi(bui);
break;

case 'A': P (char*)*/
uda->data.cp = manloc(fmt->Iength + 1);
strcpy(uda->data.cp. buf);
break;

case 'R': real number*/
case 'S': /* exponential real number */

for (c = , butc]!=' ';++c)
if (bu[c] -= 'D') P FORTRAN indicator of exponential */

9

bu[c] - 'W'; / C indicator of exponential /
uda->data.d = atof(buf);
break;

default: /* no other data type legal in adrg*/
fprintf(stderr, "Data type %d illegar-", fmt->type);
break;

This completes the example. Study of this example will show at least one way of using the
basic data stuctures returned by parseddrO and parsedrO) to read the UDA. It is not advisable
to use uda_.entry structures for all user data. Large arrays, for example, should be read directly
once other information has been extracted from the ISO 8211 file.

Discussion

The parser is used by including file iso8211.h in your program and linking the program with
library iso82ll. In a C program, this linking is done by a command such as:

cc -o myprog myprog.c -Iiso8211

The C programs to build the library are available from the author at the internet address of
mike@tec.army.mil, or for anonymous ftp from pooh.tec.armymil as compressed tar file
pub/lso82l1.tar.Z. There is no charge for this code. The programs are all unrestricted and in the
public domain. The code also includes an example parser written using the library. Some of the
programs used in this report are from the example parser.

10

Appendix

This is a listing of the include file iso8211.h. This file defines constants and data structures
used in the parser and declares the functions available to a user in the iso library. The comments
in the file explain each entry.

#ifndef IS0821 1-H
#define IS08211_H

/,

"* This file and associated programs were written by Mike McDonnell

"* of the U.S. Army Topographic Engineering Center (mike@tec.army mil).
"* They are in the public domain. Please retain this comment.

/* ddr and dr leaders are of a fixed length; 24 bytes. /
#define LEADERJ_ ENGTH 24

1,
"* Field and unit terminators are used throughout IS08211 files. The
"* term "unit" means a subfield within a larger field.

#define FIELD-TERM' 36' f* cl-; /
#deflne UNIT-TERM' 37' 1* ctrl-_ *

1*
"* These are mnemonic macros showing what the various ddaentry.controls

"* data types are. Besides these numeric values, the trailing chars '&'

"* and/or ';' indicate that these printable chars may be used as
"* printed representations of UNIT_TERM and FIELD-TERM respectively.

"* The IS08211 document describes numeric data types as "implicit point"
"* for integers, "explicit point" for floats, and "scaled explicit
"* point" for floats in scientific notation. I have used the more
"* mnemonic names of "INT". "FLOAT", and "EXPFLOAT" for these numeric
*types.
,/

P' The first char is the structure type *l
enum stucturejtype
{
ELEMENTARY,
VECrOR,
ARRAY
M,

1. The second char is the basic data type */

11

enum damtype
I
CHAR,
INT,
FLOAT,
EXPFLOAT,
CHAR_BIT_STRING,
BITFIELD,
IGNORE};

t* label types; make numbers big to stay out of way of lex's defaults */
enum label-type
{
VECT = 3,
CARTESIAN =4,
ARRAY_DESC = 5

/*
"* The ISO 8211 file consists of a data descriptive record (ddr)
"* followed by data records (dr). Ibis section describes the structures elf
"* the ddr. The ddr in turn describes the tuctures of the dr.
*1

"* The data definition record (ddr) leader is of fixed format 24 byes
"* long. I use a standard trick (for me) of defining an ascii Luct to
"* overlay the data in the buffer as read and then define a
* corresponding strict in which ascii elements are appropriately
* convened.

typedef struct asciiddr_leader

char recordlength[5]; / total length of ddr induding
* terminamr 0/

char interchangeJevel[l]; 1 3 levels am defined; 1. 2. 3*
char leaderjid[l]; j 'L' for ddr leader*/
char extension.flag[l]; /0 'E' for exeded char sets; else"d
char resl[1]; P reserved;" fornow *1
char applicationjflag[I]; p" reserved;" for now 1
char fieldcontroljength[2]; /* bytes in ddf for type and

"* struct codes; also used in
"* df? *'I

cha dda..bae[5]; P offset of dda in ddr *1
char extended[3]; P specify extended char sets; else'

* ' */
char lengthsize[l]; P see below */

12

char posidon..size[l]; /* see below /
char res2[l]; /* reserved; '0' for now */
char tagsize[l]; P* see below

J ascii-ddrjleader,

typedef struct ddrJeader
{
int recordjength; /* total length of ddr including

* terminator */
int interchangejevel; /* 3 levels are defined; 1, 2, 3 *I
char leaderid[21; /* 'L' for ddr leader */
char extension_flag[2]; /* 'E' for extended char sets; else' */
char resl[2]; f reserved; ''fornow *I
char application-flag[2]; /* reserved;' ' for now */
int fieldcontrol.length; /* bytes in ddf for type and struct

*codes */
int dda-base; /* offset of dda in ddr*/
char extended[4]; I* specify extended char sets; else' *I
int length-size; P see below */
int position-size; IP see below */
int res2; /* reserved; '0' for now */
int tag-size; /* see below*/

} ddrJeader,

p.
"* Notice that many of these stnicts have a "next" pointer and so are
"* designed to make lists. As a convention, I do not store the length
"* of these lists. To find length of lists, just traverse them and
"* count the traversals. This is not a very expensive operation and it
"* keeps the data structures simple.
*/

I.
"* A linked list of these structs constitutes the ddr directory. There
"* is a one-to-one conespondence between the ddr_entry structs and the
"* conesponding dda structs as described below. The ddr region is
"* terminated with a FIELDTERM (ctd-^).

"* Field tags of 0 and 1 are reserved for the filename and the record ID
"* name respectively. 'length' is the total length of the dda field

"* (see below) including terminator characters. 'position' is the offset
"* of the dda field from the start of the dda area.

£ */
typedef struct ddr-enry

char *tag, P length gotten from tag.size in leader *
it length; /* asch length gotten from lengksize

in leader/

13

m position; / ascii length gotten from
position-size in leader */

struct ddrentry *next
} ddr-entry;

* This is the data descriptive area (dda) of the ddr.

* The length of the dda list will be the same as the length of the
* ddr_directory list above.
,/

f,

* Vector label tags are separated from each other by a '!' and formats
* are in parentheses to be able to buid up a tree structure as in

* LISP Format specification is as in FORTRAN with repeat specs like
* 41(7) to specify four integer fields of 7 ascii numeric characters
*each. See the standard for the (messy) details of the format spec.
*/

typedef smruct vector

char *tag.
struct vector *next;

vector,

typedef struct vectors
{ f needed for cartesian labels more than

2D/
vector *vec;
stwct vectors *next;

} vectors;

typedef sauc cartesian

stct vector *rO;
struct vector *cols;
sumt vectors *vCc i* higher dimensions if needed */

typedef swuct arraydesc

kit klth P length of a dimension I
smt aray.desc *next

} array-desc

typedef union label

14

/* a label will be one of three types*/
snact vector *vector,
snuct cartesian *cartesian;
strect rayydesc *desc;

label;

"* lie format list will be circular at its end since it must
"* automatically repeat within the last set of parens. Rather than

"* actually make the list circular, I define a pointer to the repeating
"* part of the list, which always repeats to the end.

"* An interesting twist in formats is found hlre in that data may be
"* delimited as well as of a fixed length. Thus A(G) means a string of
"* ASCII characters delimited by a comma. Data may be either delimited
" or have a fixed length. Therefore at least one of the members
"* "length" or "delimiter" must be zero. They may also both be zero for
"* data delimited by UNITTERM.
*/

typedef stnact format
t
lot type; /' INT, FLOAT, EXPFLOAT,.
int length; f* either this or delimiter must be 00"I
char defimiter
struct format *next;

i format;

typedef Enauct ascii-dda...ntry
I:
char fcontrols; /0 length is gotten from header

* field_controL..length *I
char *name; /* lngth up to terminator*/
char 4label; /4 length up to terminator /
char *format; /* length up to terminator 1
stnict ascii dda-ery *next;

} asciddaemtr,

ypedef Eauct dda-enry

int .wactu type; /* ELEMENARY. VECTOR. ARRAY *I
lot datryp /* INT. FLOAT. EXP_FLOAT, ... 0/
char *une; 1 long descriptive name */
char *UW /* msae as in corresponding ddr-eny *l
ilt labeltype; 1 VECT, CARTESIAN, ARRAYPDESC *1
union label *label;
stnact format *format;
muct format *repeat; indicate repeating pe of format

list/

15

sanwt dda.entry *next;
} dda-entry;

PR
"* The ISO 8211 file consists of a data descriptive record (ddr)
"* followed by data records (dr). This section describes the basic

"* structure of all dr. The ddr describes the detailed structures of
"* each dr region. See above for data structures of the ddr.

* The data record (dr) leader is of fixed format; 24 bytes long.

* Standard trick here; make an aU-ascii stnct to overlay on the input
* buffer and pick up the fields, then have another struct with the same
* field names which are now integrs, etc as appropriate. Note that

* even single-character fields are saved as strings so that strncmp0
* may be used consistently for all comparisons
./

typedef stmruct ascii_dr_leader
I
char recordeng S1i]; /* total length of dr*/
char resl[l]; P reserved;" fornow */
char leaderid(l]; P/ 'D' foronce; 'R' forrepeat /
char res2[5J; P reserved; 5 spaces' 'for now */
char datasbase[5]; P offset of user data area (uda) in dr */
char res3[3]; P reserved; 3 spaces' 'for now */
char lenstjize[l]; P see below */
char posidoniaze[l]; /* see below I/
char res4[l]; P reserved; '0' for now */
ch tagr..size(l]; P see below *I

asci drleader,

typedef ruct drleader

int recordJengdi; P total length of dr*1
char rsl[21; P reserved;' ' for now *1
char leader-id[2]; P' 'D' for once; 'R' for repeat */
char res2[6]; P reserved; 5 spaces' ' for now *1
int datK.baue; P offset of user data area (uda) in dr *I
char res3[4]; P reserved; 3 spaces' 'for now /
tot lenghlze; P see below*l
int positiojize; /* see below */
int fe4; P eerved; 0' for now *
itt sLz p see below 1

I drjeadez

16

* A linked list of these structs constitutes the dr directory. There is
* a correspondence between the dr_entry structs and the
* uda (user data area) stnucts as described below.
* Corresponding structs ame matched by the "key" member in dr-enry
* and the "field-tag" member in uda-enury. The
* directory region is terminated with a FIELDThRM.

"* 'length' is the total length of the uda field (see below) including

"* terminator characters. 'position' is the offset of the uda field from
"* the start of the uda area.

"* This is exactly the same as a ddr..enzry sstnct. I may combine them
"* some day, I just didn't realize that they were the same until I was
"* done with the parser. Keeping them separate makes it easier to
"* keep the names of things separate anyway.
*/

typedef sruct drentry
(
char *tag I" lent gotten from tagLsize in leader 1
im lngth; /* lngth of l-engt is gotten from

* lengt0.size in leader */
int position; Pb length is gotten from position~size

* in leader*/
muct drentry *next;

} dr-enby

"* Ts is the user data area (da) of the dr
"* Te length of the uda list will be the same as the length of the
"* dr.entuy list above. Each entry in the uda is also terminated
"* with a FIELDTERM (ctd-r).

"* The only thing that might have to be
"* handled specially in henr is if arrays are defined by an array
" decripor in the uda; a stump beast that is just like an array
"* descriptor as may be found in the dda label field except that it
"* as its fields separat by UNITJERM (ctl-.) instead of commas.
,/

t- f meo udaentry

char *field jag;, / length is up to field terminator /
char vecag, / length is up to next vector item */
char type; P A,•R,S,C,B, or X*/
union 1

char *qp;r, P CHAR (actually a string) */
int i; IN*/

double d; /0 FLOAT, EXP.FLOAT */

17

kit *bf, j/ BITFIELD, CHAR_BIT_STRING /

void *ignore; 1* IGNORE */
)d"t f*user data. /
amrut udaentry *next;
Iudaentry;

extern char *ma~locO; 1* Have to put this somewhere. .
extern format *formatlist; / global pointer where format list goes ~
extern format *repeaflist; 1 global pointer for format list repeat1

*All the public functions

extern struct ddrJeader sparse ddr-leaderO;

iextr struct dda...entry *parse...ddrO;
extern struct dr-leader *parse..r-jeadero;
extern smnict dr-.entr' *parse-.Ar.irewtryO;
extern struct dr-entry *'Parse-IrQ;

#endif P IS0821 IHI

18

REFERENCE

Information Processing - Specification for a data descriptive file for information inter-
change, International Organization for Standardization publication ISO 8211-1985(E),
15 Doc 1985.

19

