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Abstrad

Checkpointing techniques in parallel systems use dependency tracking and/or message logging to ensure
that a system rolls back to a consistent state. Traditional dependency tracking in distributed shared memory

systems (DSM) is expensive because of high frequency of communication. In this paper we show that,
because of information redundancy, not all message-passing dependences need to be considered to roll
back to a consistent state in DSM systems, resulting in reduced dependency tracking overhead and reduced
potential for rollback propagation. We develop a model of execution where client processes running an
application interact atomically with a set of shared-memory server processes on every access to shared
data. We show that under this model, dependences are significantly reduced over the message-passing
model. We use results from simulations with multiprocessor address traces to demonstrate the reduction in
dependences.
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1 Intrdcin

Checkpointing and rollback recovery techniques are extensively used to allow a computation to make

progress in spite of failures. A large body of research exists on the application of checkpointing and

rollback recovery to message-passing systems with an emphasis on maintaining consistency without allowing

excessive rollback propagation. The problem of maintaining consistency in recoverable shared memory

systems is not as well-understood. Distributed shared memory (DSM) systems use cache coherence

hardware [13] or shared virtual memory software (14] to provide a shared memory image on top of

message passing. In DSM systems, communication frequency is much higher than in pure message-

passing systems. Therefore, using traditional message-passing recovery techniques incurs a high overhead

in tracking dependences between processes. Furthermore, the large number of dependences increase the

likelyhood of the need to propagate rollbacks to maintain consistency.

In this paper, we show that, by considering information redundancies in DSM systems, the number of

dep-e-dcea. and therefore the overhead of maintaining consistency with rollbacks, can be significantly

reduced. We model a DSM system as a set of client processes running an application program that interact

atomically with a set of shared-memory server processes on every access to shared data. We show that,

under this model, many of the messages transmitted during interactions do not result in dependences between

processors, and therefore do not have to be considered when rolling back to a consistent state. We back our

claims with results from simulations using multiprocessor address traces.

Dependences carried by messages have to be considered in any approach to checkpointing and rollback

recovery for distributed systems. Even in fully coordiWated checkpointing [6, 7, 12, 151, where all processes

synchronize to take a global checkpoint, dependences may cause additional overhead by aborting tentative

checkpoints. The coordination algorithm can be improved by adding dependency tracking. Then only

processes that have dependences in the current checkpoint interval need to synchronize checkpointing and

rollback [12]. Due to process indepnec, recovery efficiency, or I/O bandwidth requirements it may not

be desirable to synchronize checkpoints. Independent checkpointing replaces synchronization by depen-

dency tracking and/or message logging, both of which introduce overhead for every dependence-carrying



message [5, 8, 18, 20]. Every dependence-carrying message also introduces a chance of rollback propaga-

ti, wihich cau escalate into the domnmo effect. Some schemes use commniacation-induced checkpointing to

bound rollback propagation where messages can induce checkpoints on other processors. In these schemes,

the large overhead of taking checkpoints is affected by the pattern of dependences.

Vaious distributed system recovery techniques have been applied to shared memory. Communication-

induced cbeckpointig is used in the Sequoia system [4], by Wu et al. in both bus-based multiprocessors [22]

and software DSM systems [231, and by Janssens and Fuchs in DSM systems with relaxed consistency [II].

Ahmed etaL presented three schemes for bus-based systems that use fully coordinated, partially coordinated

and communication-induced checkpointing respectively [2]. Banitre et al. have proposed a scheme that

uses dependency tracking at the shared memory in a bus-based system to implement partially coordinated

checkpointing [3]. Richard and Singlal have proposed using independent checkpointing and logging of all

memory accesses to implement recovery in piecewise deterministic DSM systems [17].

It is obvious that the dependences of message-passing are too strict for shared-memory parallel programs.

For instance, two reads by different processes to a shared variable with no intervening writes do not depend

on each other even though both processes exchange messages with the shared memory element. In the

literature on replay for debugging in shared memory systems, a dependence from memory access a to

memory access b is generally said to exist if a accesses a shared variable that b later accesses, and at least

one of the two accesses is a write [16]. Gunaseelan and LeBlanc have recently argued that a write causes a

two-way dependence with a memory element, while a read only causes a dependence from the memory to

the process [10]. Therefore there is no dependence from a read to a write if the read precedes the write.

A more relaxed dependency model than that for message-passing can be used for rollback recovery

only if there is no possibility of deadlock due to processes waiting for messages that may never arrive. In

bus-based systems, where bounded transmission delay eliminates the need for acknowledgements, deadlock

is avoided. In DSM systems, however, other measures have to be taken to avoid messaging deadlock. In

the bus.mbsed recovery scheme of Banitre et a4 a dependence is recorded between any processor that writes

a data item and another that reads it. A bi-directional dependence is recorded between two processors that
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write a data item consecutively [9]. Wu et aL's recovery scheme takes a checkpoint of the originating

process and of the data item accessed on every data transfer between processing nodes [22,23]. The effect

of both schemes is to conform to the dependence relation described by Gunaseelan and LeBlanc [10]. A

previous paper by us also used simila assumptions about shared-memory dependences to reduce the number

of checkpoint needed to avoid rollback propagation in DSM systems with a relaxed memory consistency

model [11]. In this paper we validate the dependence assumptions made in previous work, by showing how

dependences can be removed in a DSM system without affecting correct execution after rollback.

2 Motivation

To motivate our approach to reducing overhead by decreasing the number of dependence-carrying messages,

we present an example of a read and a write access in a typical DSM system. The system consists of a

number of processing nodes which cache copies of the shared variables they reference. The shared memory

is divided into blocks, each of which has a home node to manage ownership rights. As shown in Figure 1,

the memory block p is managed by node M and accessed by nodes A and B. The example uses Li's fixed

distributed manager algorithm for shared virtual memory to maintain coherence [141. Since their operation

is similar, the example also applies to hardware DSM systems using a distributed directory based coherence

protocol [1, 13).

In our example in Figure 1, memory block p, which contains variable z, is originally cached in a

read-only state by nodes A, B andC. A write to variable z by the user process on node A causes it to send the

new value of z to its local server for block p and wait If this server had write permission, it would update

its state and immediately return an acknowledgement to the user process. Instead, it sends a message asking

for write access to the manager for block p on node M. The manager forwards the request to the owner of

p, in this case node B, and then notes that node A is now the owner of p. The server on node B sets its

access permission to none for block p, and sends a copy of block p, together with a list of all nodes that have

access to it, to node A. Upon receipt of the message, the server on node A knows that C still has access to
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Figure 1: Client-server interactions in distributed shared memory.

the block, so it sends an invalidation message to node C. The server on node C erases its access permission

to p and returns an acknowledgement Once the server on node A receives the acknowledgement, it notifies

the use process, which resumes execution.

When the user process on node B later decides to read variable z, it sends a read request to its server

for block p. Since it does not have read permission, this server asks the manager of p for a readable copy.

Since there is a possibly dirty copy of p on node A, the manager forwards the request to node A. The server

on node A decreases its access permission to read-only, notes that node B now has access to p, and sends a

copy of p to the server of node B. Upon receiving its copy of p, the server on node B returns the value of

variable z to the user process.

One way to ensure that the DSM system in our example rolls back to a consistent state is to treat every

message sent between nodes as a dependence-carrying message. In our example, the system would have to

aurk 8 dependences between 4 processing nodes for the two memory accesses shown. Assume that, after
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completing the read access, node B detected an error, rolled back, and restored its state from a checkpoint it

took before the read access. After node B's rollback, the global state of the system would be that indicated

by the dashed recovery line in Figure 1. Because the resultant global state reflects the receipt of a message

by node M, but not its sending by node B, it is not consistent in terms of message passing. To maintain a

consistent state, both nodes A and M would also have to roll back to a point before the read.

However, in terms of shared memory, there is no reason for the state indicated by the dashed line to

be inconsistent. In fact, nodes A and M only supplied data in response to the request for read access; they

did not change their internal state. Therefore, rolling them back is superfluous. The request messages from

node B to node M and from node M to node A therefore do not carry any permanent dependences. The

reply message supplies a block of data from node A to node B and therefore does carry a dependence. In

the message-passing model, since this message crosses the recovery line, either it has to be retrievable after

rollback (for instance, by logging it), or the dependence has to be considered bi-directional [6, 12, 20].

However, after rollback node B can simply send a new request to for block p when it re-executes the read

access. Therefore the dependence from node A to node B can be considered unidirectional, even if the

message can not be retrieved after rollback

The only permanent dependence in our example is from node A to node B. However, there are temporary

dependences that can cause incorrect execution or deadlock when nodes roll back while a request is being

serviced. Consider the global state indicated by the dotted line in Figure 1. This state corresponds to node A

detecting an error while servicing the read request and rolling back to a checkpoint taken prior to servicing

the read request. In this case the two request messages have to be considered as dependences and nodes B

and M need to roll back. Otherwise node B would wait forever to receive a reply from node A after it sent its

request for read access. However, if node A had rolled back after servicing the read request, node B would

have already received its reply from node A, and there would not be a consistency problem. Therefore the

request messages introduce a temporary but not a permanent dependence.

From the example just discussed, it is clear that not all message-passing dependences need to be

considered for correct rollback in a DSM system. Every message introduces a temporary dependence. But,
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because of the request-reply nature of communication in DSM, some of the temporary dependences disappear

after an interaction between processors is complete. To determine which messages cause permanent

dependeFces1 we need to a model of communication in DSM systems. Such a model is described in the

next section.

3 A Passive Server Model of Distributed Shared Memory

We model program execution in DSM systems as a set of client processes which run the application

program and a set of passive server processes which provide a shared-memory image to the clients. The

servers are considered passive since they only change state due to interaction with a client Processes

communicate via messages sent through reliable channels. We represent the overall program execution by a

pairn P = (E, E8), where E is a set of events and PD is the possible dependence relation defined over E.

Events within a process are ordered by the + (execution order) relation. Every event represents an atomic

action which may change the state in one of the processes. A special checkpoint event can be inserted

between two events to record the current state of the process.

In the clients, events can be either internal events, read events, or write events. Internal events only

depend on and affect the local state of the process. Read events send a read request to a local server, wait

for a reply with the value of a data item and then update their local state with the value. Write events send

a write request with a value to a local server and wait for a reply. Events in servers are always triggered

by the receipt of a request message, either from a client or another server. Request messages are handled

by the servers in FIFO order. After the request message is received, server events may send and receive

additional messages. A write or read event in a client, together with the events it causes in the servers may be

collectively called an interaction. Sends and receives are ordered by the ---__. relation: a -. b means event
PD PD XO M

4 seat a message and event b received it. The + relation is the union of the other two: ---+ = -- U-,.

PDFigure 2 presents the two interactions in the example of Section 2 in terms of the - relation between

events.
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Figure 2: Write and read accesses in the passive server model.

When a process detects an error, it notifies all other processes and rolls back to a checkpoint. Upon

receiving notification of a rollback, a process can either roll back to a checkpoint, or continue operation. If

it continues, we can treat the current volatile state as a virtual checkpoint [211. A global recovery line is

a set of real and virtual checkpoints, one per process. Consider two events a and b, where b occurs in the

execution order before the global recovery line and a occurs in the execution order after the global recovery

line. A global checkpoint is consistent if there are no two such events such that a -M b or b -M. a. A

global checkpoint is also consistent if lost messages can be retrieved during reexecution and there are no

two events such that a -.M b.

To simplify reasoning about consistency of global checkpoints it is useful to treat the A+ relation as

bidirectional. To do this we replace every dependence a -M b, by a causal dependence a -+ b, and a

logging dependence b -* a. Consider again two events a and b, where b occurs in the execution order

before the global recovery line and a occurs in the execution order after the global recovery line. The

requirements for consistency are now that there ae no two such events such that a C_+ b and there are no

two such events such that b - a and the message between a and b is unlogged. As was shown by the

example in the previous section, because of the structure of events and messages, some of the -C_ and L_*

dependences may be eliminated. By examining the various events in a specific DSM system, we can derive
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Ce Vnew _-* and -+ relations that awe subsets of the old.

4 Recovery to a Consistent State in Distributed Shared Memory

We now analyze the fixed distributed manager scheme for implementing DSM systems using the passive

server model. The model requires that all execution by a server done in response to a request constitute one

atomic event. First we show how to satisfy this requirement in a recoverable DSM system. Then we map

all the interactions that occur in the fixed distributed manager scheme into the passive server modeL We

show that redundancies in a DSM system allow eliminating many of the dependences between processing

nodes. We consider two methods of taking advantage of information redundancy which result in different

pattern of dependences. In the volatile ownership method, when ownership information is lost by a block's

manager, it can be reclaimed through a broadcast to all the nodes. In the volatile access rights method,

when information about access rights is lost by a node server, it can be reclaimed by contacting the block

maENge

4.1 Maintaining atomidty of server events

To be able to avoid issues of deadlock caused by partially completed server operations, the passive server

model treats a server's whole response to a request message as an atomic event. To maintain atomicity, a

process should never roll back to a recovery line with partially completed events. Therefore all checkpoints

need to be constrained to occur only outside of interactions. Furthermore, if a process participating in an

interaction rolls back, all other processes currently in the interaction also need to roll back.

Interactions are relatively short-lived events; most of the time clients are executing the application and

servers are waiting to process the next request. A simple and low-overhead scheme to handle the case where

an error does occur in an interaction is to simply roll back every process that is involved in an interaction

when it receives notice that a recovery is necessary.
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Figure 3: Possible interactions during accesses in a fixed distributed manager DSM.

4.2 Node InteraItkos In the passive server model

Figure 3 presents all the events that can occur in the fixed distributed manager scheme during interactions

between the servers on every node. Since a client process always only communicates with a server on its

own node, the read or write event on the client is not shown. The dependences between the events on the

different nodes ae shown in terms of the M relation. Next to the graphical representation of an event, the

state changes of that event are shown.

In addition to the state of the block, a block server on a node maintains three pieces of information.

The access rights determine what kind of accesses a node is permitted to make. A node can either have

read-write access (W), read-only access (R), or no access (I) to a block. The copyset (indicated by "cs" in

the Figure) is used to eliminate the need for broadcasting when all copies of a block need to be invalidated.

It keeps a record of all nodes that might possibly have read-only access to a block. The server on a node

also keeps track of whether or not it is the current owner of a block. The manager for a block only maintains

one piece of information, the identity of the current owner of the block.
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4.3 RDSM

Some of the possible dependences in a DSM system can be eliminated because of redundancies between

nodes in the maintenance of data. There are a few specific attributes of DSM that enable the removal of

dependences. We make several assumptions about the operation of DSM in our model. The first assumption

is that a non-owned read-only block can be spontaneously invalidated. We also assume that write permission

can be spontaneously taken away from a block to make it read-only as long as its contents are backed up

on another node. A third assumption that needs to be made is that the copyset on a node may contain a

superset of all the other nodes that have a read-only copy of a block. When an invalidate request is sent to

a block server that does not have R access, the request is denied. It is not difficult to design a DSM system

that conforms to the above assumptions. In fact, these assumptions need to by made in any DSM system

where cache space on the nodes is limited. In such a system it is necessary to be able to invalidate recently

unused blocks to make room for blocks of new data.

There is further redundancy between the ownership information maintained by the block manager and

the access right information maintained by the block servers. The ownership information maintained by

the block managers need not always be correct for correct operation of the protocol. If the manager routes

a request for access to a block server that does not have ownership, the server denies the request, and

the manager finds the owner through a broadcast to all nodes. Therefore it is possible to allow volatile

ownership of blocks after rollback. Ownership information is not checkpointed, and if a manager needs to

roll back, the ownership field is set to unknown. The first access to the block after the rollback will then

cause the correct owner to be found through broadcast.

Alternatively, one can always maintain correct ownership information in the manager, but allow volatile

access rights. In this case, access rights and ownership information in the block servers need not be restored

after rollback [17, 23]. If a node block server needs access to a block after rollback, it contacts the block

manager. The block manager then forwards the request to the node that it considers the owner of the block.

This will always be the node that had ownership last before the recovery line.
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One final redundancy in the DSM system is the copyset. It is used only to determine which nodes have

valid copies when a block needs to be invalidated on all nodes. If the copyset is not available, an invalidate

request can simply be broadcast to every node. Therefore, in both the volatile ownership and the volatile

access rights cases, the copyset maintained by the block servers can also be considered volatile.

4.4 t dependeces with volatile ownership

Through analysis of the specific interactions in the volatile ownership case, where ownership and copyset

information is lost after rollback, it is possible to eliminate some of the message-passing dependences.

Consider a remote read access to a clean block in the fixed distributed manager protocol ( Figure 3a).

The message-passing dependences between local (L), manager (M), and remote (R) nodes are: L -* M,

M I-I L, M - R, R -+ M, R -C L, and L L R. The state of node R is not affected by the

interaction, except for the addition of a member to the copyset. If node R node rolls back, only the copyset

information is lost and can be recovered through broadcast. So R L M can be eliminated. If nodes L and

M roll back, the state of the recovery line is the same as if all three nodes rolled back, except for the extra

member of the copyset. Since one of our assumptions allows extra members of the copyset, the resulting

state is consistent. So M -•-- R can be eliminated. Since node M does not change state at all during the

interaction, L -c. M and M L L can also be eliminated. The only remaining dependences are between

node R and node L Assume node L rolls back. The recovery line is equivalent to the earlier treated case

where both nodes L and M roll back, so it is consistent. Thus L -L R is eliminated. The final causal

dependence, R _ L, can not be eliminated since a block of data is transmitted from node R to node L.

Now consider a remote read access to a dirty block ( Figure 3b ). Node M merely forwards the request

and does not change state. Therefore the only possible dependences are between nodes L and R. If node L

rolls back, node R has read-only access to a modified block. However, node R is still the owner of the block,

so any further requests for the block will always be routed to and serviced by node R. Therefore R L+ L

can be eliminated. Again, the causal dependence L -+ R has to be maintained.
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Figure 4 shows the dependences on read access in the message-passing model, and with our model.

They have decreased from three causal and three logging dependences between three nodes to just one

causal dependence between two nodes.

Next, we consider a remote write access ( Figure 3c, 3d ). Ignoring invalidations, the message-passing

depet - n e are the same as in the read accesses. In a remote write interaction, node M changes state; it

records the new owner of the block. However, since ownership information in the manager is volatile, we

can again- ignore the dependences to node M. If node L rolls back, the recovery line may have no node

claiming ownership of the block, so -. - ;i wit a broadcast no owner will be found. So the dependence

R - L remains. The causal dependence L -C R also remains since it transmits a block of data,

If the block is readable by more than one remote node when the local node asks for write access, all the

copies in the remote nodes will be invalidated. One of the assumptions we made earlier is that the system

can handle the spontaneous invalidation of a read-only block when it is not owned by the node on which

it resides. Therefore node L can roll back past an interaction in which it invalidated a remote node R'. At

the recovery line, it will simply appear as if node R' has been invalidated spontaneously. Therefore there

is no dependence L ---+ R•. If node R' rolls back, however, there is a possibility that both read-only and

writable copies exist in the system. This is not allowable in the coherence protocol. If the invalidation

message is logged, however, it can be replayed after the remote node rolls back, guaranteeing there exists

12
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our model. The dependences that occur on each invalidation message are shown separately Our model

decreases the dependences on a remote wrte access from three causal and three logging dependences

between three nodes to one dausl and one logging dependence between two nodes. In addition, for any

invalidation that needs to be performed, it decreases the dependences from two causal dependences to one

Senlogging dependence.

4 gu dependeceswith vonire e access ri thts

With mdeTerent assumptions about which information is lost upon rollback s, different dependences exist

between nodes. We now anadyze the volatil e access rights,

ownership, and copyset information upon rollback, but the block managers do retain ownership information.

Upon access to a node that has lost access rights due to rollback, the manager is consulted for information

13



about the ownership of a node. The manager then requests the page from the node it considers the owner.

This node then supplies the page to the requesting node.

Again we have to consider all the cases of remote accesses. On a remote read access to a clean block

(Figure 3a ), the state of manager node M is not affected. Therefore, as in previous cases, the dependences

with node M can be eliminated. When node L rolls back, the state of the recovery line is the same as if

node R also rolled back, except for the extra member of the copyset. Since the copyset is allowed to be

a superset of all the nodes that have readable copies, the recovery line is consistent. So the dependence

L - R can be eliminated. When the remote read access is to a dirty block ( Figure 3b ), a rollback of

node L will cause a situation where node R has lost write permission without guaranteeing that a copy of

the dirty page has been saved on another node. However, the manager still considers node R the owner, so

any further requests will be supplied from its copy of the block. Therefore the dependence L -t_ R can

again be eliminated. So, on a remote read, there remains only the causal dependence, R --c L, from the

remote node to the local node.

On a remote write access ( Figure 3c, 3d ), without the volatile ownership assumption, it is now

necessary to consider the dependences with the manager. If node L rolls back past the interaction, but

node M does not, node M maintains that ownership belongs to node L, even though node L may have

an out-of-date copy of the block. Therefore the dependence, L C M, between the local node and the

manager can not be eliminated. If node M rolls back paste the interaction, but node L does not, node M

maintains that ownership does not belong to node L, even though node L has the latest copy of the block.

So the dependence M L+ L also remains. The dependences between node M and node R are removable.

Since there is already a two-way dependence between events on nodes L and R, and between events on

nodes L and M, the two-way dependence between events on nodes M and R is superfluous. If either node R

or node L rolls back, node M also rolls back because of causal dependences R + L and L - M. If node

M rolls back, the logging dependences M -+ L and L L R assure that the state of node M is restored

correctly.

The only dependences left to consider are those due to invalidations of remote read copies by the

14
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local node L. Node L can roll back past an interaction in which it invalidated a remote node R' since one
of our assumptions allows non-owned read-only nodes to be invalidated spontaneously. Without volatile
ownership, it was not allowable to roll back node R' past an invalidation without replaying the invalidation
message from a log. However, if ownership is not volatile upon rollback, node R' always gets a new copy
from the owner on the firs access to a block. In that case there is no possibility of inconsistency. Therefore
the remaining R' --- L deedec is eliminated, r~wlting in a deedec-free invalidation interaction.

Figure 6 shows the dependences eliminated when using the volatile access rights assumption As before,
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on a remote read access, the three causal and three logging dependences are reduced to just one causal

dependence. On a remote write access, it is not possible to remove all dependences with the manager. But

all dependences on invalidations are eliminated.

4.6 Inplemeuatatl J sunes

A DSM system consists of a number of processing nodes connected by a high-speed network. In a typical

shared virtual memory (software DSM) system [14], all of a node's block servers and block managers are

implemented in a single entity, inside or outside the operating system kernel. Access right and ownershi-

information is maintained transparently to the user, in page tables. In some hardware DSM systems,

block server access rights information is kept in the directories of the processor caches, while centralized

directories at the main memory elements are used to store block manager ownership information [1]. In

an alterative hardware approach, directories at the nodetnetwork interface server both as block servers and

block managers [13]. The detection of an error on a processing node forces the rollback of the node,

including its directories and page tables. Similarly, the forced rollback, due to rollback propagation, of any

block server or block manager on a node forces the rollback of the complete node.

When using the volatile ownership ep ting and rollback method, it is not necessary to checkpoint

ownership intfrmaton maintained by the block managers. Upon rollback, all ownership table entries are

set to unknown, and necessary ownership information is recovered through broadcast. This may simplify

implementation in hardware DSM, because ownership information in the central directories need not be

c-eckpointed. A more important advantage of the volatile ownership method is that the block managers

are not involved in any dependences. Therefore ownership tables do not need to participate in dependency

tracking. Rollback propagation is reduced, because there is no possibility of introducing a dependence with

a node through interaction with its block manager.

The volatile access rights method has the advantage that access right information never needs to be saved

in a checkpoint. Besides the actual computational state of the node processes, only ownership tables need
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Table 1: Address trace chcs.

10 fdata Ninde dafta willis

wIm I !.od~ mqlr 92,178,814 338266M880 12,484,455 6,392.078 251,694
flink foult simulator 149,918,375 150,950,933 39,326,911 3,958,919 999,127

tam ] tes Io 101,264382 1 32,613,809 16,550,450 4,461,889 642,796
We circuitextroa 87,861,165 1123,266,576 1,286,787 7,842,338 348,524

Sph u g8obal router j 132,998231 38,244,233 4,281,207 11,530,981 1,876,400

to be checkpointed. In a shared virtual memory system, where page tables may reside in the system address

space, this simplifies the task of user-level checkpointing of a node. In cache-based systems the cache

directory is usually inaccessible for h ting except through special hardware. The volatile access

rights method avoids the need for such special hardware. Invalidations do not cause any dependences under

the volatile access rights method. Since invalidations usually occur on multiple nodes, this reduces the

chance of excessive rollback propagation to many nodes.

$ Dependence Frequency Measurements

To evaluate the effectiveness in reducing dependences of our schemes, we performed trace-driven

simulatiom with multiprocessor address traces from five parallel scientific programs running on an Encore

Multimax. The traces are from execution on seven processors, and each contain at least 80 million memory

references [19]. Table 1 describes the characteristics of the traces used.

Figure 7 presents the frequency of dependences in the message-passing model, the volatile owner-

ship model, and the volatile access rights model. Both DSM models reduce the number of dependences

significantly. The volatile ownership model slightly outperforms the volatile access rights model. An im-

plemnwtation using the relaxed models therefore incurs less dependency tracking overhead. In addition, the

probability of roilback propagation is reduced. Both causal d and total dependences are plotted

in Figure 8. In both DSM models the causal dependences are in the majority, but logging dependences take

up a IM proportion. An implementation that uses logging will not have to consider logging dependences
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D

daft rollback, fther decreasing the probability of rollback propagation.

6 Smnmry

Since a DSM system is a specialized implementation of a message-passing system, it is possible to use

mmaesaa-pasing dependen tracking in implementing checkpointing and rollback error recovery. However,

we have shown that, by analyzing specific properties of every interation between processors in a DSM

system, it is possible to eliminate some of the message-passing dependencies. Reducing the number of

ependencereduces the overhead of I'kponting methods, and the chance of needing to undo an excessive

anmont of work after a errr due to rollback propagation. Results from trace-driven simulations illustrate

the effectiveness of our methods.
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