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FOREWORD

This report was prepared by The Carborundum Company under USAF Contract
No. AF 33 (616)-6806. This contract was initiated under Project No. 7350,
"Ceramic and Cermet Materials, " Task No. 73500, "Ceramic and Cermet Materi-
als Development. " The work was administered under the direction of the Materials
Central, Directorate of Advanced Systems Technology, Wright Air Development
Division, with Capt. Ray H. Wilson and Mr. K. S. Mazdiyasni acting as project
engineers.

This report covers work conducted from October 1959 to October 1960. The
research will be continued for an additional year.

The research has been conducted by the Applied Research Branch, Research
and Development Division, of The Carborundumn Company under the general
supervision of Dr. W. A. Lambertson and the direct supervision of Mr. C. E.
Shulze.
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ABSTRACT

An investigation of the factors which effect the thermal shock resistance of
polyphase ceramic systems has been conducted using the model system zirconium
carbide-graphite. The research has been divided into two areas:

1. Theoretical calculations of the individual material properties, which
show that the included graphite particles may be regarded as spherical pores.

2. Experimental data, which substantiate the postulate that increased
thermal shock resistance is a result of an increase in the ratio of strength over
Young's modulus, brought about by the addition of the low Young's modulus phase.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

* G Rake
Chief, Ceramics and Graphite Branch
Metals and Ceramics Laboratory
Materials Central
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I. INTRODUCTION

The rapidly increasing demand for materials suitable for use in
the aircraft and missile industries has placed severe limitations on
the high temperature applications of metals and metal alloys. Ceramic
materials although possessing excellent high temperature properties
are limited because of poor thermal shock resistance.

Recently, ceramic materials were developed based on a high
Young's modulus continuous phase and a low Young's modulus
dispersed phase with markedly improved thermal shock resistance. (1)
Simultaneously the high temperature properties of the high Young's
modulus phase such as strength and erosion resistance, were retained.

The purpose of this research project was to determine the fundamen-
tal reasons for the improved thermal shock resistance of these materi-
a I and to extend the concept of high Young's modulus continuous
phase-low Young's modulus dispersed phase ceramic materials to new
classes of refractory material systems.

II. FUNDAMENTAL CONSIDERATIONS

The thermal shock resistance of a ceramic material is defined as
its ability to withstand sudden temperature changes without fracturing.

The factors which will affect the performance of a ceramic mater-i-
Pl undergoing thermal shock can be listed in three groups as follows:

(i) Factors defining the actual thermal shock conditions
such as the temperature difference to which the ceramic
body is subjected and the heat transfer coefficient which
is a measure of the severity of the thermal shock.

(ii) Factors determining the geometry of the ceramic
body such as its size and shape.

(iii) Factors determining the material properties of the
ceramic body. These material factors consist of Young's
modulus, strength, Poisson's ratio and the properties
describing the thermal behavior of the ceramic such as
its linear expansion coefficient, thermal conductivity, and
diffusivity.

Manuscript released by the authors January, 1961 for publication as a
WADD Technical Report.
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Of these three groups the first two determine the conditions and
severity of the thermal shock. The factors of the third group determine
the magnitude of the thermal stresses that will arise due to the thermal
shock and the ability of the ceramic body to withstand these stresses.

These material factors can be combined in so-called thermal stress
resistance factors defined by:

R = St(l-1")
oE

R' = St (l-'V)k

oc.E

R" = St (I-4/)a

where R, R' and R" are the thermal stress resistance factors, their
choice depending on the actual condition of thermal shock. The symbol
St stands for the strength of the ceramic material. As ceramic materials
subjected to thermal shock generally fail in tension rather than in shear
or compression, the tensile strength is generally used as the criterion
for failure rather than the compressive or shear strength. The symbols

IV', o4 and E stand for Poisson's ratio, the coefficient of thermal
expansion and Young's modulus respectively. The factors k and a denote
the thermal conductivity and diffusivity.

As the thermal shock resistance of a ceramic material is governed
mainly by its mechanical and thermal properties, as indicated above,
an improvement of the thermal shock resistance of the high Young's
modulus continuous phase-low Young's modulus dispersed phase
composite material (hereafter referred to as the high E - low E material)
is, therefore, due to a change in one or more of the material properties
such that these changes lead to an increase in the thermal stress
resistance factors.

Since all of the material properties which enter into the thermal shock
resistance factor react simultaneously during exposure of a body to
thermal stress, it will not be possible to isolate and determine which
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single property contributes to the improvement of thermal shock
resistance. Therefore, in order to investigate the fundamental
reason for the improved thermal shock, each material property will
have to be determined individually. This can be done by calculating
the mechanical and thermal properties on the basis of suitable models
or by determining the individual material properties experimentally.

The approach taken in this investigation was to calculate the
mechanical and thermal properties on the basis of suitable mechanical
models. These calculations were then compared with the actual values
obtained experimentally. Thermal shock tests will then be performed
to correlate the individual data with the actual overall thermal shock
resistance.

The model ceramic system selected for this study was the mixture
zirconium carbide-graphite. Zirconium carbide has a Young's
modulus approximately equal to 50 x 106 pounds per square inch,
while Young's modulus of graphite is approximately equal to
1.0 x 106 pounds per square inch. The ratio of the Young's moduli
is, therefore, approximately 0. 02.

IH. THEORETICAL CONSIDERATIONS

A literature survey of the thermal shock behavior of ceramic
materials revealed little or no thermal shock resistance data for
heterogeneous systems as a function of the relative material proper-
ties of the individual components.

Numerous calculations could be found of thermal stresses both
in the steady and transient state fe. Ilomogeneous materials with given
mechanical and thermal properties.

These calculations, however, give the stresses developed, with-
out taking into account the strength of the material. Without knowledge
of the material properties such as strength and Young's modulus, the
rigorous calculation of stresses within a body are of little value in
determining whether a material will survive a thermal shock of given
severity.

Considerable work was done, however, to determine the individual
material properties of heterogeneous systems as a function of volume
fraction and material properties of the individual components. The

WADD TR 60-749 3



calculations are based on the assumption that no reaction occurred
between the components during manufacture and that the heterogeneous
body can be regarded as a mixture of the individual components. One
of the major difficulties in calculating the overall mechanical and
thermal properties of heterogeneous systems is the selection of a
suitable model or models on which these calculations can be based.
The choice of this model will be governed by the individual proper ties
of each component, the way each component is distributed through the
body, and the volume fraction and particle size or shape of each compo-
nent. Also for the calculation of a particular material property one
mechanical model will lend itself more readily than others.

Various models employed in previous investigations of the
properties of heterogeneous systems are to be found in the literature.
One model used in the calculation of the coefficient of thermal expan-
sion and of the thermal conductivity consists of a structure composed
of parallel alternate slabs of the two components. By changing the
relative orientation of the slabs to the applied stress or direction of
heat flow this model lends itself very well to establishing the boundary
values of the material property under consideration. Regardless of
the microstructure of the heterogeneous system the actual values of
the material properties will fall between these boundary values.

Another model widely used, especially in the calculation of such
material properties as the moduli of elasticity and internal stresses,
consists of a single spherical or elliptical particle imbedded in an
infinite matrix. This model most closely represents the actual micro-
structure of the high E - low E material. The high Young's modulus
phase is represented by the infinite matrix, whereas the low Young's
modulus material is represented by the single particle contained
within this matrix.

The material properties which can be calculated most readily on
the basis of these two models are the coefficient of thermal expansion,
the modulus of elasticity and the thermal conductivity. In addition,
these models lend themselves to predicting the strength behavior of
these heterogeneous systems.

The initial approach then towards the solution of the problem of
the improved thermal shock resistance of the high E - low E materials
was to calculate the overall material properties of the heterogeneous
system as a function of the material properties and volume fraction
of the individual components.
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A. Coefficient of Thermal Expansion

The coefficient of thermal expansion of heterogeneous systems
was determined by many investigators including Kingery2 and Coble 3 .
Kingery noted that for the systems W-MgO and Al-SiOz the thermal
expansion data are not simply averages of the values of the individual
components but agree quantitatively with calculations based on the
assumption that substantial residual microstresses result from the
mutual restraints of each phase on cooling. Coble gives the following
equation for the coefficient of thermal expansion, which agrees very
well with expansion data obtained experimentally,

E1Fi

'het. = 1z ( <z -<l) 1 1-• ] (1)
E F1  + EZF21 - Xr 1 4¢z

where -< het. is the coefficient of thermal expansion of the hetero-
geneous system:the subscripts 1 and 2 refer to component 1 and 2
respectively. E is Young's modulus, -( is the coefficient of thermal
expansion, 'V is Poisson's ratio, and F is the volume fraction. This
equation is based on the mechanical model composed of parallel slabs
with the expansion taking place in the plane of the slabs, and will give
the coefficient of expansion of the high E - low E material for all
compositions as long as the material with the high elastic modulus is
the continuous phase.

Assuming Vf1 = t1z, and defining k = E 2 /EV, the ratio of the
Young's moduli, where the subscript I now refers to the high Young's
modulus continuous phase and the subscript 2 to the low Young's
modulus dispersed phase, equation (1) can be simplified to read:

Shet. = 0(2 - ( Kz "°-c1 ) E1 F) (2)
E 1 F 1 + KE 1 F 2

Inspection of this equation reveals that the coefficient of thermal
expansion of the heterogeneous system depends on the coefficients
of thermal expansion of the components, the ratio of the Young's
moduli of the components, and their volume fractions. In the system
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under study k, is approximately equal to 0.02. Substitution of this
value for kI into equation (2) shows that the overall coefficient of
thermal expansion of this heterogeneous system is approximately
equal to the coefficient of expansion of the high Young's modulus
component even at high volume fraction of the low Young's modulus
phase. Only when the volume fraction of the high elastic modulus
phase approaches zero will the calculated value of the overall
coefficient of expansion approach the value of the coefficient of
thermal expansion of the dispersed low elastic modulus phase.

The foregoing discussion, therefore, indicates that for the
heterogeneous system under study with volume fractions of the
low Young's modulus component of less than 0.5 or 0.6, the overall
coefficient of thermal expansion is for all practical purposes equal
to the coefficient of thermal expansion of the high elastic modulus
component. From the point of view of thermal shock resistance,
this independence of the coefficient of thermal expansion with respect
to the volume content of low Young's modulus component cannot
explain the higher thermal shock resistance of the high E - low E
composite material. For the measured values of the coefficient
of thermal expansion see Experimental Results.

B. Young's Modulus

A literature survey revealed that several attempts were made to
calculate the elastic constants of heterogeneous systems as a function
of the Young's moduli and volume fraction of the individual components.

Paul 4 attacked the problem with a "strength of materials"
approach. A careful analysis of his calculations and the assumptions
on which these were based revealed that his equation can be useful to
predict the elastic constants of heterogeneous systems composed of
materials with elastic constants which differ by no more than a factor
of two or three. However, for a heterogeneous system such as the
high E - low E material with a ratio of Young's moduli of approximately
fifty,Paul's equations are no longer valid and his predicted values are
considerably in error especially at high volume fractions of the low E -

component.

An exact solution was given by Jane M. Dewey5 who calculated the
elastic constants of a material containing small volume fractions of

WADD TR 60-749 6



spherical particles. MacKenzie 6 gives equations for the elastic
constants of materials containing spherical holeswhich is a special
case of the equations given by Jane M. Dewey. MacKenzie's equa-
tions, however, are valid for greater volume fractions of spherical
holes than Jane M. Dewey's equations. In the investigation of the
high E - low E material, Dewey's equations are of particular interest
as they lend themselves well to the calculation of relative differences
between the overall elastic constants of a material containing spheri-
cal particles of graphite and the same material containing the same
volume fraction of spherical holes. By substitution of the respective
values into the equation for the effective shear modulus, it can be
shown (Appendix A) that for small volume fractions of low - E
material where k is much less than one that to a first approximation
the following relation holds.

shear modulus of composite with low E material i 1-4 k
shear modulus of composite with spherical pores

where k is the ratio of shear moduli of the components and ý is the
volume fraction of the low Young's modulus phase. For the system
under study k is approximately equal to 0. 02. Therefore at a volume
fraction of graphite of 0.1 the relative difference between shear moduli
is 0.8 percent. It can, therefore, be concluded that from the point of
view of shear modulus, the low E material can be regarded for all
practical purposes as being equivalent to pores of the same shape and
concentration.

For the system under study, therefore, the elastic constants can
be predicted from MacKenzie's equations rather than from Dewey's
equation. Not only is the introduced error smaller but also MacKenzie's
equations are valid for greater volume fractions on the dispersed phase.

The equation for the effective shear modulus as calculated by
MacKenzie is given by:

uO-u = 5,(1-p) (3ko+4 uo) +0 (1- 2

Uo ( 9 ko + 8 uo)

where the subscript refers to the nonporous material. K is the bulk
modulus, u is the shear modulus, 9 is the density of the porous
material relative to the nonporous material. (See Reference 3)
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The term 5 (3 ko + 4 uo) gives the slope of the relative shear
(9 ko + 8 uo)

modulus aainst porosity curve at zero porosity. The additional term
0 ( I - P) is a successive parabolic approximation. Gn this basis 0
can be evaluated by setting u =o and e =o.

The actual value of the term 5 (3 ko + 4 Uo) depends on
(9 ko + 8 uo)

Poisson's ratio but is usually approximately equal to 2.

Although this equation gives the effective shear modulus, it also
predicts correctly the behavior of Young's modulus as verified experi-

mentally by Coble 3 .

The calculated Young's modulus curve versus porosity is presented
graphically in Figure 9.

C. Strength

The material factors discussed so far are those which determine
the magnitude of the thermal stresses which will occur for a given
temperature distribution.

The ability, however, of the ceramic body to withstand these thermal
stresses is dictated by its strength. Since ceramic materials usually
fail in tension, as do most other brittle materials, the magnitude of the

tensile strength determines whether a ceramic body will survive a thermal
shock of given severity.

Many attempts have been made to calculate the strength of materials.
However, the calculated values usually differ from the measured values
by orders of magnitude. This discrepancy is attributed to the presence
of flaws within the material, which seriously affect the overall strength
of the body. Therefore, the strength used in engineering computations
must be determined experimentally.

In order to estimate the tensile strength of a heterogeneous system
such as the high E - low E material on a basis of the strength of the

individual components, use can be made of the strengths of the components
determined experimentally.

Some of the factors to be considered in this estimation of strength are:
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1. The strength of each component

2. The strain at fracture of each component

3. The microstructure of the heterogeneous
system such that a suitable mechanical
model may be selected

4. The distribution of stress through the
high E - low E material, with special
regard to stress concentrations which
may affect strength.

In addition to these factors an estimation should be made of the internal
stresses which arise on cooling due to differences in thermal expansions
of the individual components. In the case of heterogeneous systems the
presence of internal stresses may lower or increase the strength at
room temperature. If the material with the lowest strain at fracture is
under compression, strength may be increased substantially. If,
however, the same material is under tension the tensile strength may
be reduced to a value to make the composite material practically useless.

In order to select a suitable mechanical model, computations were
made to establish the role of the low E component in the high E - low E
material from the point of view of its effect on the stress distribution
through the high E material.

Considerable work was done by other investigators 7 , 8, 9 to calculate
the stress-concentration factors around particles of various shape con-
tained in an infinite medium with elastic constants different from the
elastic constants of the included particle. Analysis of equations for the
stress concentration factors around spherical inclusions calculated by
Goodier 7 showed that for all practical purposes the lowE material
within the continuous high E material can be considered as being equiv-
alent as spherical porosity. A similar conclusion was reached for the
overall elastic constants, as discussed previously.

It can be shown that the following ratio approximately holds:

stress concentrations around spherical particle = 1 -2 K
stress concentrations around spherical pore

where K is the ratio of the shear moduli of the particle and the surround-
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ing matrix, and is very much less than one.

For the system under study with K = 0. 02 the stresses in the
high E material around a spherical low E particle, therefore, differ
by a factor approximately equal to 0.96.

As the low E dispersed particles are approximately equidimen-
sional, the model which most closely represents the actual material
would be a body composed of the high E material containing the same
volume fraction of spherical holes. From the point of view of strength,
a model composed of alternate slabs of the high E material and open
spaces with the stress applied parallel to the slabs would be most con-
venient as the reduction in strength will be proportional to the decrease
in cross-sectional area. This assumption also holds for a material
containing spherical holes if fracture takes place along a cross-
sectional plane. However, in the case of spherical holes, fracture is
more likely to occur along the maximum diameter of the holes. There-
fore, the decrease in strength is governed by the decrease in effective
cross-sectional area determined by the projected cross-sectional area
of the spherical holes intercepted by a unit plane. Using the equations
of Fullman 1 5 it can be shown that the projected cross-sectional area
of spherical holes intercepted by a unit plane is given by 1.5)ý where
is the volume fraction of the holes.

The actual fracture mechanism will fall between these two limit-
ing cases. The strength of the high E - low E material may then be
given by:

S = So (-K$ )

where S is the strength of the high E - low E component, and So is the
strength of the high E component without additions of the low E particles,
K is a constant given by 1.0 4 K < 1.5, and is the volume fraction
of the low E component.

In the equation for the strength of the high E - low E material as
given above the presence of any internal stresses was neglected. As
discussed previously these internal stresses may affect strength ap-
preciably. Various attempts have been made to calculate internal
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stresses on the basis of suitable mechanical models. Exact solutions
for the stresses in a particle embedded in an infinite matrix were given
by Robinson11 and EdwardslZ. To calculate the stresses in a hetero-
geneous system Gurland 1 3 used the model of a single spherical inclusion
embedded in an infinite mass, the latter taking on the properties of the
alloy instead of those of the matrix phase.

The radial stresses C' rl inside the spherical particle as calculated
by Gurland is given by

rl =2 EIEZ (oW 2 -c( l) & T
(I + 4J )E + 2(1-2 41 iE

where the subscript 1 refers to the embedded particle and the subscript
2 refers to the continuous phase.

E is Young's modulus

'IV is Poisson's ratio

o' is the coefficient of thermal expansion

and A T is the temperature difference through which the composite is
cooled. Writing E 1 /E 2 = K, the ratio of the respective Young's moduli,
and rearranging gives for C; rl&

d~rl =ZE, -C< 2- cK 1 T
(r + V 2) KE+ 2 (1 2V•")

fork K < I this becomes

CYr = El (2_-,x1) & T

(1-2. AV )

Substitution of typical values such as:

E 1.0x106 pounds per square inch (c< z "O 1) = 5 x 10-6/°C.,
AT = 1.5 x 103oC. -r= 0.25

yields a value of 15, 000 pounds per square inch for the stresses in the
embedded particle. These stresses in the matrix will be compressive
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if the coefficient of expansion of the embedded particle is smaller
than the coefficient of expansion of the matrix and tensile if greater.

In order to evaluate the average stress in the surrounding medium
it becomes necessary to decide on the effective range of influence of
the embedded particle. An expression developed by Gurland 1 4 is
based on the mean-free path. For spheres of uniform size, the mean-
free path P between particles as given by Fullman: 15 p = 4 (•1 -1 )

where p is the radius of the embedded particles and A the volume
fraction. The radius of influence R of the particle measured from its
center is approximated by R = P + 1/Z P or by the ratio k = R/p
=1 + 2 (l- S). The average radial and tangential stresses in the

medium denoted by 6 rZ and c: c? respectively are then given by

r -= 3 6r 1  l k
k3- 1

and

G'c =3 C5 r, in k

where d: r is the radial stress in the embedded particle. Assuming a
volume frachion of embedded particles with low Young's modulus of 0. 25,
and substitution of the radial stress in the particle as calculated above
gives for the mean values of the radial and tangential stress in the
medium 1,900 and -950 pounds per square inch respectively. It may be
noticed that the radial stresses are of the same sign and the tangential
stresses of opposite sign to the radial stresses.

In the systems under study the low Young's modulus component
usually has the lower coefficient of thermal expansion and is, therefore,
under compression at room temperature. The tangential stresses in
the medium are, therefore, tensile and will be the stresses affecting
the strength of the composite. Comparison of the calculated tangential
stress in the medium with the usual tensile strength of a ceramic
material of approximately 20, 000 pounds per square inch or higher
shows that the internal stresses are expected to affect strength only
slightly and may lower it by a few percent.
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Substitution of a value for Young's modulus into the equation for
the internal stresses in the particle comparable to Young's modulus
of the medium shows that the internal stresses in the high E - low E
material are lower by several orders of magnitude than the internal
stresses in a heterogeneous system composed of two high E compon-
ents, which supports the previous conclusion that the low E dispersed
phase can be regarded as porosity.

For the actual values for the strength of the high E - low E
material see the section Experimental Results.

D. Thermal Conductivity and Thermal Diffusivity

The factors discussed thus far determine the actual thermal
shock resistance of a ceramic for a given temperature distribution
within the ceramic body. This temperature distribution as a func-
tion of time and position is governed by the thermal conductivity and
thermal diffusivity.

In the system under study, additions of the low E dispersed
phase to the high E continuous phase will, in addition to changing the
mechanical properties, also affect the thermal conductivity and
diffusivity.

Various attempts have been made to calculate the thermal
conductivities of heterogeneous systemsl6' 17. The various relations
depend on the actual distribution of the individual components. An
expression developed by Eucken17 describes most accurately the
system under study and gives the overall thermal conductivity of a
continuous phase with spherical inclusions and is given by:

1 + Z i (1-kI/k?)
km = kI (2kI/k 2 +l)

(1 - k1/ka )
1- (2kl/kz+I)

where km is the conductivity of the mixture. k 1 and k 2 are the
conductivities of the continuous and dispersed phases respectively and

1 is the volume fraction of the continuous phase.
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The thermal diffusivity, a, of a material is defined by

a = K
C J

where K is the thermal conductivity, c the specific heat, and JJ
the density.

The change in thermal diffusivity, therefore, is governed by
the simultaneous changes in thermal conductivity, specific heat
and density. The changes in specific heat and density will be a
linear function between the values of the components according to

c = 3 Cl + )z cz

and = < I 'P + ?. '2f?.

where the subscripts refer to the components and the symbols as
defined above.

The thermal diffusivity can then be expressed as follows:

am = Km

P,~ 1 '0 1  + jJ Za(Cl~ 1 +'0 z
where Km is the thermal conductivity as given by Eucken's equation.

E. Thermal Shock Resistance

Discussed so far were the individual material properties which
enter the thermal shock resistance of the high E - low E material.
The relative importance of these individual properties may be
discussed by means of the equation developed by Crandall and Ging18

which gives the maximum temperature difference to which a ceramic
body of simple geometric shape can be subjected without fracturing.
This is given by:

T= A(St(1-if) ) (1 + 2 )
(o<E ) (

where A T is the maximum difference between the two ambient
temperatures between which the ceramic body can be transferred
without fracturing. A is a constant which depends on the shape of the
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ceramic body and is equal to 2. 5 for a sphere, 2 for a cylinder and
1. 5 for a flat plate.

V' is Poisson's ratio

St is the tensile strength

o( is the coefficient of expansion

E is Young's modulus

is Biot's modulus defined by ? = ah

where a is the radius of the ceramic body in the case of a sphere or
cylinder, or half the thickness in the case of a flat plate; h is the
surface heat transfer coefficient and K the thermal conductivity.

It may be noted that this equation is the sum of two terms. The
first term gives the maximum temperature difference within the ce-
ramic body which can be supported without fracture. The second
term gives the additional temperature difference to which the body
can be subjected during the period of heat transfer without having
the internal temperature difference exceed the temperature differ-
ence as given by the first term. This first term is dictated by the
material properties only, whereas the second term depends on the
type of thermal shock, i.e. magnitude of h, and the size of the body.

Examination of the second term shows that the thermal conductivity
of a material is only of secondary importance, and an increase in
thermal conductivity will not necessarily lead to an increase in thermal
shock resistance. Only for a given heat transfer coefficient and body
size such that Biot's modulus is small enough that the term 2/( is
comparable to unity will an increase in thermal conductivity increase
the thermal shock resistance. The answer to the improved thermal
shock resistance of the high E - low E material is, therefore, not
to be found in a possible change in thermal conductivity but in a
change in the term St (1 - r).
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As discussed previously, the coefficient of thermal expansion
of the high E - low E materials will be essentially constant for the
range of volume fractions of low E component for which the high E
component remains continuous. The term 1 - Vf is not expected
to change appreciably. The improvement of the thermal shock
resistance of the high E - low E material can, therefore, only be
due to an increase in the ratio of strength to Young's modulus.

On the basis of spherical porosity the ratio of strength to
Young's modulus for small volume fractions of the low E component
can to a first approximation be given by

S So (I-Ký ) where 1.0 (- K < 1.5.

E Eo (1-256 )

This relation indicates that, regardless of the value of K, addi-
tions of spherical particles of the low E component results in an in-
crease in the ratio of strength over Young's modulus. This in turn
increases the thermal shock resistance.

It may be noted that the temperature difference to which a ce-
ramic body may be subjected is independent of the thermal ditffusLv-
ity. For a given thermal conductivity a difference in thermal
diffusivity only affects the time at which a given temperature or
stress distribution occurs within the specimen.

IV. EXPERIMENTAL

The experimental part of this investigation consisted of measur-
ing the physical properties of several zirconium carbide-graphite
composites, this system being selected as the high E - low E model
ceramic system. The properties measured were the coefficient of
thermal expansion, Young's modulus together with Poisson's ratio,
and modulus of rupture. In addition, some thermal shock tests and
experiments to measure internal stresses were also performed.
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A. Materials

The materials selected for this study were zirconium
carbide and graphite. The zirconium carbide was produced by the
New Products Branch of The Carborundum Company and was in the
form of -325 mesh powder. The spectrographic analysis was as
follows:

0.1 - 0. 5 percent Fe,
0.01 - 0. 05 percent Cr, Ca,
0.005 -0.01 percent B, Si, Ti

The graphite used was manufactured by the International
Graphite and Electrode Company. This graphite was ground and
screened to a particle size between 70 mesh and 100 mesh. Micro-
scopic examination showed the individual graphite particles to be
approximately equidimensional.

B. Preparation of Test Specimens

Mixtures of zirconium carbide and graphite of various
compositions ranging from 0 to 55 volume percent graphite were
intimately mixed in a rotary mill. Bcdies measuring 4-1/Z inches
in diameter by 4 inches high were then hot pressed in graphite molds
at a temperature of Z2500 C. and pressure of 2000 pounds per square
inch. Test specimens of suitable size for the determination of the
various properties were then diamond-sawed from these hot-pressed
bodies and subsequently ground.

For the thermal shock test, spheres of one and two inch
diameter containing similar volume fractions of graphite as in the
hot-pressed pieces described above were hot pressed in suitable
graphite molds. After hot pressing, the spheres were ground to a
roundness of better than 0. 01 inches.

In order to determine the degree of dispersion of the
graphite particles within the zirconium carbide phase, polished
sections were prepared of test specimens and spheres containing
various volume fractions of graphite. Microscopic investigation
of the polished sections revealed that the graphite particles were
evenly distributed throughout the zirconium carbide. Photomicro-
graphs of various compositions are shown in Figure 1.
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C. Equipment

1. Coefficient of Thermal Expansion

Figure 2 shows the apparatus to measure the coefficient
of thermal expansion. It consists of a dense, impervious, closed-
end silicon carbide tube attached to a water-cooled brass flange.
A silicon carbide rod extends from the sample, located in the bottom
of the tube, to an Ames micrometer dial which measures the differ-
ential expansion between the sample and the silicon carbide tube.
The assembly is covered by a glass bell jar which permits atmosphere
control within the tube. The dilatometer may be heated in any
vertical furnace of suitable size and is currently located within an
inductively heated graphite susceptor. Temperatures were measured
with an optical pyrometer sighted on the lower end of the silicon
carbide tube. Provisions were also made for use of thermocouples
located adjacent to the sample when measurements at lower tempera-
tures are desired.

The dilatometer was calibrated to 1350 0 C. by means of a
standard sample in the form of a single crystal of aluminum oxide
obtained from the Linde Company. At higher temperatures the
equipment was calibrated by means of a rod of spectroscop c grade
graphite, obtained from the National Carbon Company, whose
expansion was found to be linear above 10000 C. This enabled the
calibration curve to be extrapolated to Z000 0 C. The experimental
accuracy has been estimated to be better than two percent.

2. Young's Modulus, Shear Modulus, and Poisson's Ratio

The sonic method was selected to determine Young's
modulus of the zirconium carbide - graphite composites. The method
consists of determining the frequency of the first mode of flexural
vibration of a specimen of suitable geometry. By means of equation
given by Pickett19 , Young's modulus was then calculated. By vibrat-
ing the test specimens in the torsional mode the shear modulus was
determined. Poisson's ratio was then calculated by means of the
relationship between Young's modulus and the shear modulus given
by:

E -1

ZG
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where V' is Poisson's ratio and E and G, Young's modulus and
the shear modulus respectively.

The specimens selected consisted of rectangular bars
measuring approximately three by one half by one quarter inches.

For measurements at room temperature the bars were
suspended between elastic bands located at the nodes so as not to
interfere with the vibrations. The bars were driven by a cutting
head driver of type A41-8 manufactured by the Astatic Corporation.
The vibrations were detected by means of a microphone held
directly above the specimen. The correct mode of vibration was
detected by sprinkling the vibrating bars with fine silicon carbide
powder. From the nodal pattern in which the silicon carbide
powder arranged itself the proper mode of vibration could be
determined.

To measure the dependence of Young's modulus on
temperature a Globar@-heated furnace, shown diagrammatically
in Figure 3, will be employed. The test specimens are to be
placed in a graphite specimen holder (Figure 4) which allows
accurate positioning of test specimens within the furnace. Within
the graphite boat the specimen is supported by graphite pins located
at the nodes.

The specimens will be driven by means of a metal or
graphite rod attached to a speaker located outside the furnace.
The vibrations are to be detected by means of another rod connected
to a crystal contact microphone also located outside the furnace and
supported by a spring to reduce the load on the specimen. The
temperature within the furnace will be measured by means of a thermo-
couple and at higher temperatures by means of an optical pyrometer.

3. Modulus of Rupture

The strength of the zirconium carbide-graphite composites
was determined by means of modulus of rupture measurements.
Specimen size was approximately three by one half by one quarter
inches. At room temperature the specimens were subjected to three
point loading on a Riehle testing machine with a span of two and one
half inches at a strain rate of 0.05 inches per minute. The modulus
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of rupture for a particular graphite content was determined by
averaging the modulus of rupture values obtained from eight to ten
separate experiments. The apparatus to determine modulus of rup-
ture values at temperatures to 2400 0 C. is shown in Figure 5. It
consists of two pieces of graphite which fit together along eight bear-
ing surfaces in order to insure correct alignment. The lower piece
supports two graphite pins in oversize holes as does the upper anvil.
The test bar placed within the apparatus is therefore subjected to
four point loading. This graphite assembly is located inside a heavy
wall graphite crucible which is heated inductively, Figure 6. In
order to compare the modulus of rupture values determined at room
temperature under three point loading with those obtained under four
point loading, a number of test bars were broken at room tempera-
ture in the graphite assembly described above. The resulting values
were nearly identical to those obtained under three point loading.

4. Thermal.Conductivity

The apparatus to measure thermal conductivity is a copy
of that devised by Francl and Kingery2 0 at M. I.T. and in use at
Alfred University, Figure 7. It is capable of precise measurements
up to 1200°C. It consists of a heater and a heat sink arrangement
between which are stacked three samples; two standards with the
unknown in between. A temperature gradient is established and an
equivalent gradient is then adjusted in the surrounding ceramic
muffle by means of five separate, independent heaters. This min-
imizes the lateral heat flow between the samples and the protective
muffle. The conductivity is determined by the inverse ratio of the
thermal gradients within the three samples. The standard mater-
ials consisted of Wesgo aluminaproduced by the Western Gold and
Platinum Company, Belmont, California; nickel; and cold-rolled
Inconel,obtained from the International Nickel Company.

D. Thermal Shock Testing

The method selected to measure the actual thermal shock
resistance of the zirconium carbide-graphite system consisted of
subjecting hot-pressed bodies of these materials to a radiation
convection boundary condition. The sphere was selected as the
most convenient body shape. Solutions for the thermal shock
analysis of spherical shapes were given by Crandall and Ging1 8 ,
who showed that the method of thermally shocking a spherical body
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lends itself well to correlating the individual material property
values with the overall thermal shock resistance.

In addition to subjecting the spheres to thermal shock by
sudden heating, quenching experiments were also performed. These
consisted of heating the spheres slowly to the desired temperatures
and suddenly quenching in water at room temperature.

The furnace employed for the thermal shock tests consisted
of a Pereny three inch diameter graphite-tube furnace provided with
argon atmosphere control.

To subject the spheres to thermal shock by heating, the
furnace was brought up to the desired temperature. A sphere was
then placed on a small graphite assembly which insured uniform
heating boundary conditions, and pushed into the tube furnace. The
sphere was continuously observed to determine the mode of fracture.

To determine the temperature difference which will cause a
sphere to fracture the furnace temperature was raised in steps of
100 0 C., and a number of spheres were subjected to thermal shock
at each temperature.

For the quenching experiments the spheres were slowly
pushed into the same tube furnace and, when thermal equilibrium
was reached, pushed out of the furnace and rolled into a container
with water at room temperature.

The temperature difference which would fracture a sphere
by quenching was determined by continuously raising the tempera-
ture of the furnace, thereby increasing the temperature difference
of quenching.

E. Experimental Results

1. Coefficient of Thermal Expansion

The results obtained for the coefficient of expansion of the
zirconium carbide-graphite composites are given in Table I. It may
be noted that the coefficient of expansion does not change with graphite
content, any variation being entirely within the range of experimental
error.
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2. Young's Modulus, Shear Modulus, Poisson's Ratio

Table No. II shows the results obtained for Young's modulus,
shear modulus and Poisson's ratio at room temperature. The test
specimens were cut perpendicularly to the hot-pressing direction.
The values represent the mean of at least ten individual measure-
ments. The maximum deviation was no more than two percent.
The porosities were calculated from the overall density of the com-
posite body and the densities and volume fractions of the compon-
ents, assuming theoretical densities of 6.70 grams per cubic centimeter
and 1.70 grams per cubic centimeter for zirconium carbide and
graphite.

Included also are the elastic constants of graphite perpen-
dicular and parallel to the extrusion direction. Poisson's ratio for
graphite was not calculated, as the relationship between Young's
modulus, shear modulus and Poisson's ratio is valid for isotropic
materials only. Initial measurements on small graphite bars
approximately three by one-half by one-quarter inches showed a
large surface effect. Removal of a layer seven thousandths of an
inch thick from the surface changed the value of Young's modulus
in oxe instance from 1. 107 x 106 pounds per square inch to 1. 338
x 10 pounds per square inch. It is thought that this may be due
to the presence of small surface cracks. The values for graphite
in Table No. I were obtained on large bars measuring approximate-
ly five by one by one inches, to minimize surface effects. Figure 8
shows Young's modulus plotted against volume fraction graphite.
As the graphite can be regarded as additional porosity, as discussed
in the section on strength, Young's modulus was plotted against
volume fraction graphite plus porosity as shown in Figure 9. The
dotted line represents MacKenzie's6 equation for spherical porosity.
It may be noted that agreement is excellent.

Experiments were conducted to determine any orientation
dependence of the elastic constants with respect to the direction of
hot pressing. The elastic constants of a number of bars cut parallel
to the hot-pressing direction were compared with those elastic
constants of bars cut perpendicular to the hot-pressing direction.
No difference was found to exist.
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3. Strength

The results for the modulus of rupture of the zirconium
carbide-graphite bodies as a function of graphite content and temper-
ature are tabulated in Table III and shown graphically in Figures 10
to 17. A plot of modulus of rupture as a function of volume fraction
graphite plus porosity is also included. It may be noted that the
modulus of rupture at room temperature decreases with increasing
graphite content, but that the modulus of rupture at higher tempera-
tures seems to be independent of graphite content. In other words,
the modulus of rupture becomes less dependent on temperature with
higher graphite content. In addition, it may be noticed that an
apparent maximum exists at approximately 1000 0 C. in the modulus
of rupture against temperature curves. In order to determine whether
this was due to the presence of internal stresses, test bars of various
compositions were annealed at 1500 0 C. for two hours. Young's
modulus was then determined at room temperature and modulus of
rupture at room temperature and at 10000 C. No change in either of
these two properties was found.

4. Ratio of Stre.g!th over Young's Modulus

As discussed under "Thermal Shock Resistance", the ratio
of strength over Young's modulus is the major factor in the improved
thermal shock resistance of the high E - low E material compared to
the thermal shock resistance of the high E material alone.

The ratios of modulus of rupture over Young's modulus were
calculated. These calculated values are shown in Table IV. Figures
18 and 19 show the ratio of modulus of rupture to Young's modulus
plotted against volume fraction graphite and against volume fraction
graphite plus porosity. An increase in the ratio of modulus of
rupture over Young's modulus is evident.

5. Thermal Conductivity

No thermal conductivity measurements have been made. The
equipment is now constructed and standard samples are being prepared.
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6. Thermal Shock

Thermal shock tests as described under equipment were
carried out. For the one-inch spheres results were negative insofar
that under no condition of thermal shock could these be fractured.
Even quenching from 1500 0 C. into water at room temperature failed
to cause fracture. This can be explained by the fact that the relative-
ly small size of the sphere causes Biot's modulus to be so small that
the temperature difference necessary to cause fracture is larger than
the temperature difference to which the spheres were subjected.

Spheres of two inch diameter, composed of zirconium
carbide without graphite fractured when subjected to thermal shock
by heating at a furnace temperature of 1350 0 C. The time to frac-
ture was estimated to be 15 seconds. Typical thermal shock
fragments are shown in Figure 20. Spheres containing various
volume fractions of graphite are now being manufactured. The
temperature difference necessary to fracture these will be determined
and compared with the results obtained for the ratio of strength over
Young's modulus.

7. Internal Stresses

Experiments were undertaken to measure the lattice strain
of the graphite in the zirconium carbide-graphite body in order to
determine the magnitude of the stresses present. The lattice pal'a-
meter (c-spacing) of the strained graphite were measured by means of
x-ray diffraction measurements and compared with the c-spacing of
the same graphite in the unstrained state. Preliminary results
indicated that no measurable lattice strains existed, as no changes
in the c-spacings could be detected.

As these lattice strain measurements were limited to
crystallographic planes parallel to the surface, an attachment to the
x-ray goniometer is now being constructed, identical to the attach-
ment used by Fulrath, -1 by means of which the Geiger tube can be
positioned accurately. This will allow measurement of lattice spac-
ings oriented at an angle to the specimen surface.
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8. Poisson's Ratio

Resistance strain gauge experiments are underway to deter-
mine the value of Poisson's ratio by other means. Poisson's ratio
as determined by the sonic method has consistently been found to be
approximately 0.18. The National Bureau of Standards, however,
reports a value of 0.25. A complete check of our method and
accuracy of our calculations indicates that the value of 0.18 is
correct. Determining Poisson's ratio by strain gauge measurement
will provide another independent check.

V. CONCLUSIONS

As was predicted originally, the improvement of thermal shock
resistance by the additions of a low E phase is due to the resulting
increase in the ratio of strength over Young's modulus. This increase
in the ratio of strength to Young's modulus has been demonstrated
experimentally. The coefficient of expansion is independent of
graphite content, if the high E phase remains continuous; Young's
modulus follows the relationship calculated by MacKenzie6; strength
follows the relationship S = So (1-Ks6 ) as derived previously.
From the experimental data available, the constant K can be calcu-
lated to be approximately 1.4, which indicates that strength is con-
trolled mainly by the projected cross-sectional area of the included
low E particles. The overall result is an increase in the ratio S/E
with increasing additions of the low E phase (Table VI).

The hypothesis that the graphite may be regarded as porosity
has been substantiated by experiment. Plotting Young's modulus as
a function of graphite plus porosity content follows the relationship
calculated by MacKenzie 6 . Especially good agreement at high
graphite content shows the graphite to be equivalent to spherical
porosity. However, plotting modulus of rupture against graphite
plus porosity content does not give a smooth relationship, the high
porosity bodies consistently being low in strength. The micro-
structure of the zirconium carbide in bodies of high porosity will
differ from that of bodies containing particles of graphite. The
equidimensional shape of the graphite particles approximates
spherical porosity, while the pores can be any shape ranging from
spherical to tabular. In the case of hot-pressed materials, the
tabular pores are favored; therefore, the high porosity materials
exhibit lower strength than predicted.
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It is concluded that the only role of the low E phase in the
composite material is to control pore shape during densification.
Its role in influencing the mechanical properties of the final product
is equivalent to spherical porosity.

The initial assumption that Young's modulus follows the same
relationship as the shear modulus as calculated by MacKenzie 6 has
been shown to be valid. Poisson's ratio remains nearly constant
with variation in graphite content within experimental limits. The
equation relating Young's modulus to the shear modulus is given by

S= E which for constant V gives dE = d .
2(1 +1 V) E G

The relative increase attainable in the ratio of strength to Young's
modulus at high graphite content is at least fifty percent. The actual
increase in thermal shock resistance expressed in terms of the
additional temperature interval to which a ceramic body can be
subjected will depend on the thermal shock resistance of the starting
material. The additional temperature to which a material with
exceedingly poor thermal shock resistance can be subjected will still
be small. The additional temperature to which a good thermal shock
resistant ceramic can be subjected can raise the total temperature
difference to a value which will exceed the value for a thermal shock
of given severity. This then will cause the body to survive.

Additional temperature differences of orders of magnitude can
be obtained if thermal shock occurs for cases where Biot's modulus
is small enough such that the temperature difference to which the
starting material can be subjected is already high.

It is clear that the starting material to which the low E dispersed
phase is added should have a low coefficient of thermal expansion,
high strength, and as low a Young's modulus as possible.

No conclusions can be drawn concerning the temperature
dependence of the ratio of strength to Young's modulus. No measure-
ments have been made of Young's modulus as a function of tempera-
ture. However, it may be noticed that the strength of the high-
graphite mixtures is nearly independent of temperature as compared
with pure zirconium carbide, which is strongly temperature
dependent. The indication is that additions of graphite not only
improve the ratio of strength over Young's modulus at room tempera-
ture, but also that this ratio remains constant or increases with
temperature.

WADD TR 60-749 26



The maxima which occur in the modulus of rupture vs. temper-
ature curves may be explained by the presence of internal stresses.
As discussed under strength, the zirconium carbide is under tension
due to the differences in coefficients of thermal expansion.

An increase in temperature will relieve these internal stresses
and will result in an apparent increase in bulk strength. The fact
that the increase in strength persisted after annealing indicated that
the mechanism responsible is a permanent one. It may also be ex-
plained in part that the strength and Young's modulus of the included
graphite particles increases with increasing temperatures, thereby
increasing the strength of the composite body.

VI. FUTURE WORK

In order to draw final conclusions in this investigation, the
following measurements are required:

1. Thermal conductivity measurements as a function
of graphite content and temperature.

2. Young's modulus measirements at high temperatures
to determine the dependence of the ratio of strength
to Young's modulvs on temperature.

3. Additional high temperature modulus of rupture
measurements to allow statistical treatment of
the data.

4. Thermal expansion measurements at high graphite
content.

5. Thermal shock tests on two-inch spheres to correlate
the experimental data obtained for the individual
material properties with the actual thermal shock re-
sistance.

When sufficient data are available, a computer program can be
set up to show the effects of each variable, isolated from all others.
For example, curves can be plotted to show the effect of porosity at
a constant graphite content on strength, Young's modulus and con-
ductivity; likewise the effect of graphite content at a constant porosity
as well as at theoretical density.
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Figure 1 - Photomicrographs of polished section of zirconium carbide-

graphite sam~ples (x 50).
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Figure 5 - High Temperature Modulus of Rupture Apparatus
(Cut Away View)
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Figure 11 - Modulus of Rupture of Zirconium Carbide -

Graphite + Porosity (Room Temperature)

WADD TR 60-749 40



20

15-

S00

'5

xQ

IL

w
I-

II. 0
0

o

0

5

00

0-0

0 500 1000 1500 2000
(930) (1830) (2730) (3630)

TEMPERATURE *C (OF)

Figure 12 - Modulus of Rupture of Zirconium Carbide vs. Temperature
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TABLE NO. I

COEFFICIENT OF THERMAL EXPANSION

Material Temperature Range

10000C. - 1500 0 C. 1500 0 C. - 2000 0 C.

(1830 0 F. - 27300 F.) (2730 0 F. - 36300 F.)

ZrC 10.0 x 10-6/°C. 12.4 x 10-6/°C.

ZrC + 10% Graphite 10.2 x I0-6/°C. 12.2 x I0-6/0c.

ZrC + 20% Graphite 10.4 x 10-6/°C. 12.4 x 10 -6i°C.
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TABLE NO. II

Young's Modulus, Shear Modulus, Poisson's Ratio

Young's Shear Poisson's Porosity
Modulus E Modulus G Ratio (%)
p.s.i. p.s.i.

Material (x 10-6) (x 10-6)

ZrC 57.57 24.66 0.167 4.5
ZrC 44.76 - - 9.1
ZrC (foam) 0.80 - - 90.6

ZrC + 10% Graphite 46.40 19.79 0.170 3.2
ZrC + 15% " 34.60 14.64 0.180 8.0
ZrC + 20% " 33.29 14.39 0.166 6.5
ZrC + 25% " 19.90 8.54 0.165 13.3
ZrC + 30% " 17.38 7.33 0.186 12. 3
ZrC + 4016 " 13.16 5.53 0.185 11.3
ZrC + 50% i " 13.00 5.38 0.208 3.2

Graphite perpendicular to plane

0.99 0.45 - 28

Graphite parallel to plane

1.64 0.54 28
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TABLE NO. III

MODULUS OF RUPTURE

Modulus of No. of
Temperature Rupture Specimens

Material 0 C. p.s.i. Tested

ZrC (9. 1% porosity) 25 15,390 4
1250 8,300 1
1500 3,800 1
1750 5,140 1
2000 2,345 3

ZrC (4.5% porosity) 25 17,700 6

ZrC foam (90.6%o porosity) 25 105 1

ZrC + 10% Graphite 25 17,810 8
(3.2% porosity) 880 23,100 1

1000 19,470 3
1150 10,300 1
1250 5,170 2
1750 5,970 2
2000 5,170 1

ZrC + 15% Graphite 25 11,921 11
(8% porosity)

ZrC + 20% Graphite 25 14,410 9
(6. 5% porosity) 1000 16,400 1

1250 11,250 2
1500 10,760 2
1750 9,250 1
2000 4,050 1

ZrC + 2516 Graphite 25 7,670 8
(13.3%6 porosity) 1000 8,552 1

1500 5,428 1
2000 3,375 1
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TABLE NO. III
(Continued)

MODULUS OF RUPTURE

Modulus of No. of
Temperature Rupture Specimens

Material 0 C. p.s. i. Tested

ZrC + 30% Graphite 25 7,430 5
(12.3% porosity) 1000 7,250 1

1500 6,200 1
2000 4,580 1

ZrC + 40% Graphite 25 6,404 4
(11.3% porosity) 1000 8,380 1

1250 6,850 1
1500 6,770 1
2000 5,230 1

ZrC + 50% Graphite 25 7,235 11
(3. 2% porosity) 1000 12,525 1

1500 8,070 1
2000 4,550 1

Graphite 25 2,780 20
(28% porosity) 2000 3,570 1
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TABLE NO. IV

Ratio of Strength to Young's Modulus

Strength/Young' s Porosity
Material Modulus x 104_ _

ZrC 3.07 4.5
ZC 3.44 9.1
ZrC 1.31 90.6

ZrC +10% graphite 3.84 3.2
ZrC + 15% graphite 3.45 8.0
ZrC + 20% graphite 4.33 6.5
ZrC + Z5% graphite 3.85 13.3
ZrC + 307 graphite 4.28 12.3
ZrC + 40o graphite 4.87 11.3
ZrC + 50% graphite 5.57 3.2
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APPENDIX I

Calculation of Relative Difference Between the Shear Mod - .us of a
High Young's Modulus Continuous Phase Material

Containing Spherical Particles of a Low
Young's Modulus Material or

Spherical Holes

The equation for the effective shear modulus ? 2 as calculated
by Jane M. Dewey5 is given by

=• - 15 ( N2 - ) ( 1  + z- ,2 (1)

2N, (3 1 + 8 2) +X, +l14A2 )

where and 1X 12 are Lame's constants of the filler material and

S1 and 2 of the medium, ý 2 is the modulus of rigidity and A I is
defined by

A1 +2/3\z = k-1 (2)

where k is the compressibility. • is the volume fraction of the
dispersed phase.

Equation (1) can be rewritten into: (3)

A 2 • 2  {1+ 1,5(11+2 X)(X1,-X,2)
A2 (9X 1 + 14 A 2)f 1 + 2 >Z 2(3 +8

The factors !59• 114X7) " 1

and 2 (3ý 1 + 8X.)
(9 A 1 + 14/\ 2)

can be calculated, and are approximately equal to 2 and I respectively.
Substitution of these values into the equation (3) and defining ko =

the ratio of the shear moduli of the filler and matrix material yields
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>'z =Nz{ 0 + Ko)(4

By writing 1 1 - Ko for Ko0 .4 1 as is the case for the system
1 + Ko

under study, equation (4) neglecting terms containing K2, becomes
0'

The term 4 Ko 6 gives the relative difference in effective shear
moduli between a material containing spherical particles of a material
with low Young's modulus and the same material containing the same
volume fraction of spherical holes. For the. system under study K.
is approximately equal to 0.02. Therefore, for a volume fraction
of spherical particles of 0. 1 the relative difference in shear moduli
for a material with high Young's modulus containing particles or
pores is 4 x 0.02 x 0. 1 = 0.008 or 0.8 percent. The same relation
will hold for the effective Young's modulus.
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APPENDIX U

Calculation of Relative Difference Between Stress Concentration
Factors For a Low Young's Modulus Spherical

Particle Contained in a High Young's
Modulus Medium, and The Stress

Concentration Factors For
A Spherical Pore

-r The accompanying figure
Sf-' illustrates the coordinate

N system for the spherical
"�"- -particle contained in an

"infinite solid. The center
of the particle is taken as

(5 the origin. The particle
radius is denoted by a. The
stress is applied in the Z-
direction.

0

The maximum tensile and compressive stresses occur at the
boundary of the particle at 6 = 0 7( and 9 = 7I/z and are
given by:

when ( = o,-TT

r= 2/4-,-l _2A2 C +48B Z (55-Ar)C B

O= 2A4,- tA 2&r C C ,4 B
I-aT (I - ) -a +-'T- -a-5

b= 2 A4,-1 A Z( - C Z4B 3 C 4
ADT- (R - T - a--- + 6a-0-5
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At 8 = - these become:
2

The maximum shear stresses ( yre ) occur at e = or 3or '

4 4

At@= 2-

4

Ata G= P1a

IT'A =2 4A4((1 r C +32B

ST 4
•,, -z.'-i (1 -27 ) ay - a5 --
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On the assumption that both materials have the same Poisson's
ratio, the constants can be defined as follows:

A =.T (Aj-I - - 2)
a3  8 1 (7 5 - )/,- 1  + (8 _ 10J )"1"2

x (1 . 2  &r (6 - 5,A" ) 2It.. ._+(3 + 19 -"r - 2zG4r ) -, _(1 -r) Z/C -1L + (1 + 1-)r L 2

+ T (la-lr)fIaA _4-"1
4 ki- G (l.z1) 2M1 + 2

B T _A-
(7 -5,A"),/A 1 + (8 - 10-)/,.

C T 5(1 - 2 Af) (/' 1 -A• 2 )
a-'- 8 A-- (7.5 ,".r 1 + (8_ o- I r), ,/"

In these equations,

4A- 1  is the modulus of rigidity of the solid,

A44? is the modulus of rigidity of the inclusion,

&r is Poisson's ratio

T is the applied tension at infinity

a is the radius of the inclusion.

Examination of the equations for the stresses reveals that
.n order to determine the dependence of the stressas on the ratio
of the elast*.c constants, it -.A 3uffi.cient to examine the dep,:ýndenc--
on the ratio of the elastic properties of the constants A, B and C
only.
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Letting K =/ 114,4., 2, the expressions for A, B and C can be
rewritten, and rearranged to give:

A T (l - K)a-X- 8 (7 - 5,,,.- )/ Lt 1 1 4-7 - 5,tv

(6-5Vy) 1• + (3+19qJf -ZOt' 2) K
x (1 -2 V ) (6 -5f )){ 1 +I+& ) K

T (K-i)

*i(I- 2't)

B _ T (1-K)
a5 Y (7-5T V$~ 1 + (8-l0O'V ) I17- 5• 'L

C T 5 (1 - Z ) (1 -K)
a- 8 (7- 5,Ir )/A, 1 + 8-10 A5 K

The ratios

3 + 191V - 201tr 2 , 1+'1" and 8 -104r
(1 - 2-zr ) (6 - 5,') 2 (1 - 2•.r) 7- 5V7

can be calculated, and are approximately equal to 5, 2 and 1 respectively
for V = 1/3 and approximately 1 1/2, 1 and 1, respectively for vx" = 1/6.
Substitution of the values into the previous equations and using the
relations:
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1 = 1- K forK l< land
1+ K

(I+ -( K)(1(K+ K 1+ (-•+r)Kfor oK, K <

gives for A, B and C:

for -L= 1/3,

A T(6-5"f ) (1+K) T (1-3K)
1 3-- 8/0,- 1 (7 - 5 , ) 8

T (13 - 10 ) T (15 -ION )K
81A,1 (7- 5Af ) 8/ 1 (7-5Ar)

T (1 -K)
41-,1

B T(1 - ZK)
8 (7 -5, )5'4 -

c T 5(1-2' 2) (1-2K)a--- - --•1(7- 5')

For '11 = 1/6

A T (6 - a) (1- 1 1/2K) _T (1 - 2K)
a--- 8,A,1 (7- 5V ) 8A,• I

T (13 - lOAF ) T (23 - 17 1/2 Ar) K
8. 1 (7- 5A 8) 8.- 1 (7- 5A )

T 1-11/2 K}

-B _ T (1-2 K)
8A 1 ( 7 - 5Ar)

c T (1- 2 Af) (1-2K)
a3 8/,1- 1 (7-5VY)
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Putting K = 0 in these expressions gives the values for A, B and C
for the stresses around a spherical cavity (A z 0 ) and agree
with the expressions given by Goodier 7 .

It can be seen from the equations for A, B and C that the depend-
ence of the stresses on K (for K < 4 1) depends somewhat on
Poisson's ratio, but in no case does the factor which gives the rela-
tive change in stress for small K exceed 1-ZK. Therefore, in the
system under study (K - 0. 0Z), the stresses around a spherical
particle of the low E material differs by no more than 4 percent
from the stresses around a spherical cavity. From this it can be
concluded that the dispersed low E material for all practical purposes
can be regarded as spherical porosity.
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