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EDITORIAL

A. Konrad & J.D. Lavers
Guest Editors

We are very pleased to present a special issue of the ACES Journal that focuses on recent advances in the
numerical computation of low frequency electromagnetic fields. At the outset, the goals of this special issue
were threefold: (1) to inform those researchers who normally work in the area of high frequency
computational electromagnetics of advances in the computation of static and low frequency field problems;
(2) to provide examples where methods used in high frequency areas have been successfully adapted to
low frequency problems; and (3) to focus attention on the need for educational tools for the computation
of low frequency electromagnetic flelds. The papers that have been selected for this special issue address
the first two of these goals.

A total of 12 papers, two of which have been invited, appear in this special issue. These papers have been
submitted by authors from Canada, the United States, England, Croatia, Yugoslavia, the Netherlands,
Australia, Japan and China, thus making the issue truly international. Furthermore, there is a relatively
even balance between papers coming from researchers who normally work on low frequency problems and
those whose focus is on high frequency fields. We are particularly pleased that Professor Peter Silvester
accepted our invitation to co-author the lead paper in this issue. It was 25 years ago that pioneering work
on the application of the Finite Element Method to electric machine problems was initiated by Professor
Silvester and his colleagues. Since that time, the Finite Element Method has been developed to the point
where it is the method of choice for many low frequency applications.

To date, there have been relatively few forums where researchers in the low and high frequency areas of
computational electromagnetics could interact with one another. In terms of conferences, the biennial
Conference on Electromagnetic Field Computation (CEFC), sponsored by the Magnetics Society of the
IEEE, was the first international conference to promote this linkage. The aim of bringing together
researchers from the low and high frequency communities has remained a central aim of the CEFC. More
recently, the COMPUMAG Conference has also begun to include high frequency sessions. This special
issue of the ACES Journal is a further, important step in this direction. As editors, we are both strongly
of the opinion that both sides of the computational electromagnetics community should work to establish
mutual linkages since there is a considerable common ground to our research efforts. We hope that the
present special issue is the first of many that will continue this trend.
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Finite elements in electromagnetics:
A jubilee review

J. Brian Davies
University College London

Abstract: This review describes the historical origins
and the present siate of the finite element method in
electromagnetics. The foundation principles of finite
elements are briefly reviewed. Applications are
matnly to two and three dimensional problems of
microwave and oplical structures. The major types
of scalar element are noted, and edge-interpolative
veclor elements are reviewed, firstly for the
waveguide problem and then in three dimensions. An
extensive bibliography is given, particularly stressing
review papers. :

1. The Beginnings

When Courant prepared the text of his winter
address to the American Mathematical Society for
publication in 1943, he added a two-page Appendix
to illustrate how the variational methods first
described by Lord Rayleigh could be put to wider
use in potential theory [1]. Choosing piecewise-linear
approximants on a set of triangles which he called
“elements”, he dashed off a couple of two-
dimensional examples and the finite element method
was born.

Finite element methods remained dormant,
perhaps waiting for computers to be invented, for
more than a decade. They next appeared in the work
of Duffin [2,3] in a form similar to that given by
Courant but relying also on the mathematical ideas
of Synge [4]. A variational approach was retained in
this work, making it relatively hard of access to
engineers, for whom variational methods were not
then a part of the normal mathematical toolkit.
Where variational methods were used at all by
applied field analysts, they were viewed as ways of
generating finite difference formulae [5].

Finite element activity in electrical engineering
began in earnest about 1968-1969. A paper on
waveguide analysis [6] was published in Alla
Fregquenza in early 1969, giving the details of a finite
element formulation of the classical hollow
waveguide problem. It was followed by a rapid
succession of papers on magnetic fields in saturable
materials [7], dielectric loaded waveguides [8], and
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Peter P. Silvester
McGill University, Montreal

other well-known boundaiy value problems of
electromagnetics. The method was quickly applied to
integral operators as well, both in electrostatics {9]
and wire antenna problems [10].

In the decade of the eighties, finite element
methods spread quickly. In several technical areas,
they assumed a dominant role in field problems. An
assessment of the finite element literature, and of its
growth rate, may be obtained by examining the
INSPEC bibliographic data base over the 1968-1992
period. In 1968 the number of extant finite element
papers with electrical engineering content amounted
to a mere handful. By 1993 the total had reached
about 6000, with 600 or more additional papers
published annually. The number of papers added to
the literature each year, as recorded by INSPEC, is
shown in Fig. 1.

700

600 TT
500

400 | -
300 + 1 [H
200 |
100 +

0 . N ,
1970 1975 1980 1985 1990

Fig. 1. Production of finile element papers
in electrical engineering, 1968-1992.

Having initiated the method, mathematicians
at first failed to grasp the significance of finite
elements to practical analysis. Serious attention
began to be paid to this technique about the same
time as it gained a foothold in electrical engineering.
Zlamal [11] published the first mathematical paper

]




explicitly devoted to the finite element method
about the same time as electrical engineers began to
use it seriously. He and Whiteman [12] recognized
the value of this technique at an early date. Other
able mathematicians, such as Ciarlet [13], quickly
followed.

2. Tkeoretical Basis

Over the past 30 years the mathematics of finite
elements has developed into a distinctive field of
study, mainly based on projective and variational
methods. This survey is directed to electromagnetics
80 a detailed treatment of the mathematics would be
inappropriate. However, a brief overview may clarify
what is special about electromagnetics problems.

2.1. Strong and weak solutions

The finite element method as wused in
electromagnetics is a special case of a general
mathematical method [14] in which the differential
or integral equation to be solved

Pu=v (1)

is first replaced by an equivalent weak form, and this
weak-formn equation is subsequently solved by
numerical approximation. The operator P may
represent a boundary value problem (differential
equations plus boundary conditions) or an integral
operator, or a mixed (integrodifferential) operator.

The quantity u is said to be a strong solution
of the operator equation (1). A weak solution U is
obtained if the left and right sides of (1) have equal
inner product projections onto all functions w € W,
where W is some function space whose closure is the
range of the operator ¥,

(Ph,w) = (v,w), (all w e W). (2)
The space W is open to choice so the weak
reformulation permits a variety of approximate
solutions. The general principle is to choose a finite-
dimensional subspace Wy CW and to solve the
finite-dimensional (subspace) version of (2) in Wy, a
subspace which actually cannot contain the range of
%P, and might not even intersect it! Such approxi-
mations are particularly attractive if the inner
product (a,b) is an energy product [15] or a product
integral, as illustrated by the following example.

2.2. Boundary-value problems.

The finite element method was first applied to
boundary-value problems of differential equations, of
a class illustrated by the mixed boundary value
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problem of Fig. 2. Here

Viu=v inf, withu=0 on op,
, ®
u

-a—’-'-=0 on Jy.

The solution u of (3) lies iu a Hilbert space whose
inner product is conveniently defined by the simple
product integral

(a,b) = Inab dg. (4)

Taking inner products on both sides with every
possible w € W in turn,

jnwvzudﬂ = Inwvdﬂ, (all w e W), (5)

and applying Green’s second identity to the left-
hand member, there results

Ingrw w-grad Tdf2

(6)
+I wvdﬂ—-§ wgradu-dS=0.
7 an

(b)

connected two-

Fig. 2.
dimensional region 2. (b) One possible

(a) Simply

subdiviston into

elements.

of 2 triangular finite

A key point to note is that (Pu,w) is well defined by
(6) even if T is only once differentiable, while V% is
not defined! This permits great freedom in choosing
approximations for u. However, to ensure the
boundary conditions are satisfied it is still necessary
to restrict the space W by requiring the boundary
and bulk integrals in (6) to vanish independently,

ad w - a,d'd.Q:—J an 7
Ingr w-grad¥ r)wv 9]

(for all w)




§mwgmm.ds =0, 82=0yUdp.  (8)

Nothing in Green’s second identity enforces the
Dirichlet boundary condition u =0; consequently,
this condition must be explicitly imposed on the
approximate solution. However, the surface integral
(8) corresponding to the Neumann boundary condi-
tion appears naturally in the weak formulation.
Consequently the Neumann boundary condition of
eqn. (3) is termed a natural boundary condition,
while the Dirichlet boundary condition is termed
principal or essential.

Reformulation through Green’s second identity
weakens the continuity requirements on @ but places
stronger demands on w than on v: w must be once
differentiable while v in the original boundary value
problem (3) need rot even be continuous. In fact the
differentiability required by (6) is precisely equal for
% and w. This suggests the weak solution may be
sought in the space W itself. To summarize, W has
three key properties in this problem: (1) its member
functions are once differentiable, (2) they vanish on
dp, (3) the closure of W includes the range of .
This weakened continuity requirement on u (which
incidentally accounts for the strange name weak
form) thus allows twice-differentiable solutions to be
approximated by functions which do not themselves

possess his property.

2.3. Finite element methods.

To obtain an approximate weak solution % =~ %, the
problem region {2 is partitioned into nonoverlapping,
simply connected finite elements §2,,

2= Un,.. 9

A finite set {ap k=1, .., N} of approximating
functions is defined to span Wy, a finite subspace of
W. These functions must possess as high a degree of
continuity as the weak form requires, and must
satisfy all the principal boundary conditions. (In the
example, akGCD, and a;p =0 on dp, suffices). A
large part of the literature of finite elements deals
with systematic methods for partitioning {2 into
elements and generating approximating functions on
them. One popular method is to construct
interpolation functions on an element-by-element
basis so that the function values along the
boundaries of each element will match the function
values along the edges of its adjoining elements.
Ensuring function continuity turns out to be quite

easy, but it is surprisingly difficult to construct
approximating functions with continuous derivatives.

Once the finite element function space Wy, has
been constructed, the weak solution is approximated
by the finite summation

N
%= Z“kak'
k

Equation (7) then yields

(10)

N
- ; Jngradaj-gradakd{)uk = [najvdﬂ. (11)

Since the integrals can be evaluated immediately,
this may be regarded as a matrix equation and
solved by the usual methods of numerical linear
algebra. More generally, boundary-value problems in
the scalar Helmholtz equation

(V4 E)u=v (12)
take the matrix form

(S+ET)u=v (13)
where

Sik=-— Jﬂgradaj-gradakdﬂ,

Ti= Jnajakdf), (14)

U = Jnvakdﬂ.

Most of the computing time is usually expended in
solving the matrix equation, so a good deal of effort
has been devoted to the development of methods
able to exploit the algebraic and topological
peculiarities of S and T. These depend both on the
physical problem class, and on the type of finite
elements used.

3. Element Types

Finite elements used for electromagnetics initially
resembled those used in structural mechanics, but
differences in the underlying physical problems
rapidly led to development of distinctive element
types. It is probably fair to say that almost all work
in electromagnetics has used distinctive elements
since about 1970. The basic differences between
scalar and vector problems, as well as between those
of spatially infinite or finite extent, have led to




several families of fundamentally different elements.

3.1. Scalar Lagrangian simplexes

Scalar potential or wave problems have traditionally
been solved using approximating functions based on
Lagrangian interpolation polynomials. A family of
interpolation polynomials y; on some finite element
2 is associated with a point set P: {P;| P; € 02,
i=1, .., K} such that ¢,(P;)=6] (Kronecker
delta). Aside from their computational advantages,
interpolation polynomials are esthetically pleasing
because all computed numbers represent physically
significant quantities, e.g., local potential values. On
the finite element 2 of Fig. 3(a), for example, the
function ¢ is modeled by

6= _d(P)¥;, (15)

so the coefficient that accompanies ¢; is the value of
¢ at point P,.

Interpolative finite element approximating
functions are defined on an element-by-element basis
so as to satisfy the principal continuity requirements
at element boundaries. Suppose an interelement
boundary is shared by two distinct elements £2, and
2 used to model some scalar function ¢. Function
continuity is assured if the function value at every
interface point is determined entirely by the nodal
values on that interface. For example, along the
(one-dimensional) edge between two-dimensional
elements of Fig. 3(b), the approximated function ¢ is
a cubic polynomial in the distance s along the edge;
the four coefficients of this cubic function are
determined by the four nodal potential values
associated with the edge.

Fig. 3. (a) Triangular finite element with
cubic interpolation node sei. (b) Shared
nodes of two cubic elements allow cubic
interpolation on the interelement boundary.

Interpolation functions for simplex elements
(lines, triangles, and tetrahcdra) are readily derived
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by an extension into d dimensions of the classical
Lagrangian interpolation theory [16]. Interpolation
nodes are placed on the element in a regular array,
as in Fig. 3(a). This procedure is best carried out in
homogeneous coordinates (,, (;, ..., {44, attached
to the simplex. These span the range 0 <(;<1 in
any simplex and allow producing “universal”
matrices that only need to be multiplied by a few
geometric properties to produce the complete matrix
representation of any simplicial finite element.

Establishing finite element matrices involves
extensive algebraic manipulation of polynomials, an
almost embarrassingly obvious application of
computer algebra, which has indeed been used since
the days of the Formac language [17]. By the late
1980s MACSYMA was routinely used for element
generation in applied mechanics but electrical
engineers rarely took any interest in this approach.
Early developments in mechanics were reviewed by
Noor and Andersen [18], and the state of the art in
electromagnetics is covered by a more recent review
paper [19]. Symbolic algebra will probably have a
major impact on finite elements for electrical
engineering applications in years to come.

3.2. Flexible elements

Although simplicial elements permit modeling of
quite complicated geometric shapes, they are
necessarily restricted to rectilinear interfaces and do
not represent curved surfaces very well. The
conventional solution to this problem, due to
Ergatoudis, Irons and Zienkiewicz [20], is based on
the simple observation that any Cartesian space
coordinate, or indeed any linear measure of distance
s, is (trivially) a linear function of the Cartesian
coordinates z,y,z. It may therefore be expressed in
terms of the finite element interpolation functions,

s(P)=Y_s(P)¥{(zpwpszp), (16)

L ]
where zp, yp, zp are the coordinates of the point P.
If the functions ¢; are quadratic or higher
polynomials, then (16) can express coordinate trans-
formations which allow derivation of curvilinear
elements from rectilinear ones. For example, the
triangular element of Fig. 4(a) is mapped into the
curved triangle of Fig. 4(b) by such a transfor-
mation. These elements are known as isoparametric
because the same approximating functions are used
to model the geometric shape and the fields to be
determined. Isoparametric elements were used in
magnetic field problems at an early date [21], and
have remained in use by several working groups.




Their element matrices are obtained by the same
process as previously, However, their evaluation is
computationally more demanding because the
integrations must be carried out numerically.

(a)

P
q

(b) ©

O
NS \w

Fig. 4. Isoparamelric element generation.
(a) Rectilinear (simplicial) parent element.

(b) Isoparametric triangle derived by
coordinate mapping.
Accuracy improvement in finite element

analysis may be sought by refining the mesh.
Alternatively, the analysis may be repeated using
elements of higher order. In this Aierarchal elements
are valuable. Their approximating functions ¢, are
constructed in nested families, so that the functions
of polynomial order n are a proper subset of the
functions of order n+ 1. Such functions were first
pioneered by Roesow and Katz [22] and have
developed considerably since [23]. Because the
approximating functions form nested families, pro-
grams can be organized to compute only the projec-
tion of the weak solution onto the newly added
functions, not to repeat the entire calculation, when
moving to a higher-order approximation.

3.3. Geometrically infinite elements

Electromagnetic fields often extend over infinite
geometric regions. Even static field problems often
lack clearly defined finite boundaries, while an infi-
nite region is the very essence of radiation and pro-
pagation problems. Several methods have according-
ly been developed for handling what might be called
“infinite finite elements”, i.e., elements that
encompass finite energy or power in a geometrically
infinite space. These, and related methods from civil
engineering practice, were reviewed by Emson [24].

Consider the ribbon transmission line of Fig.
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5(a). To find the fields surrounding it, all the
infinite-element methods encase the line in an
artificial delimiting surface that subdivides all space
into a finite interior and an infinite exterior region.
The interior is handled by conventional finite
element techniques. For the exterior region several
techniques are available, of which at least four are
properly convergent: (1) hybrid representations, (2)
recursive growth, (3) inversion mapping, (4) special
boundary conditions. All may be viewed as ways to
find boundary elements which correctly (but
implicitly) represent the effect of the exterior field on
values in the interior region.

Fig. 5. (a) An artificial boundary encases
the region of interest. (b) Space exterior to
the artificial boundary is represented as an
infinilely-eztending element.

The hybrid technique describes the field by
differential equations in the interior portion, integral
equations in the exterior. This means choosing a set
of approximating functions {8;|i=1, ..., M} to
satisfy the field equations exactly in the exterior and
to match the interior element functions «; along the
exterior-interior interface. This procedure [25] was
introduced and implemented around 1970 and has
been extended variously since. For example, the
exterior functions may be chosen to satisfy the field
equations exactly, but match the interior elements
only at the element nodes, not everywhere on the
interface [26]; in this case, they may be expressed as
orthogonal series expansions [27] or (in two
dimensions) circular harmonics. The major difficulty
in element formation is the evaluation of integrals
containing Green’s function singularities. These may
be dealt with by geometric transformations (28] or
by generating special weighted quadrature formulae
[29]; or alternatively, by an ingenious scheme of
using double boundaries {30].




Recursive growth algorithms model the exterior
as a nested sequence of convex shells or annuli. They
alternately add a shell and eliminate unwanted
exterior variables, so that the memory required
during construction of the exterior element with N,
boundary nodes never exceeds 9N g The result is an
extremely large, though still finite, exterior region
[31). Its growth rate in recursion can be doubly
exponential, so that only a few recursion steps suffice
to achieve immensely large exterior regions. The
method is applicable to propagating-wave problems,
provided an approximate radiation condition is
attached to the outermost boundary and the growth
of element size is controlled according to certain
stability rules [32]. It has been used to solve
waveguide problems [33,34] as well as two or three
dimensional propagation.

Inversion mappings first appeared in Maxwell’s
Trealise. A circular or spherical boundary of radius
R is drawn around the interior region and the
exterior is mapped into a finite region by inverting
all radial distances r with respect to this radius:

2
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The differential equation governing the exterior
region is transformed accordingly, and finite
elements are constructed for this transformed
equation. Two coupled boundary-value problems of
the interior type thus result {35]. The restriction on
boundary shape can be removed; non-circular
boundary shapes have been proposed by Imhoff et al.
[36], and a fairly complete theory of alternative
shapes was developed by Stochniol [37].

In propagating-wave problems, the method of
absorbing boundary conditions has recently gained
great popularity. This method was initially
developed by Bayliss and his associates [38,39], and
augmented by other workers [40]. A review of the
available variants of this method was given by
Cooray and Costache [41]. Here a boundary element
is created on which the wave function and its first
derivatives are so related as to minimize the local
reflection coefficient. A normally-directed outgoing
wave is then absorbed by the bowndary, much as a
wave is absorbed by dissipative material in an
anechoic room.

3.4. Vector operators and clements

A difficulty encountered with weak-form equivalents
to boundary-value problems, and apparently peculiar
to electromagnetic field problems, is the existence of
spurious modes. These physically impossible
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solutions arise because weak solutions of the
Helmholtz equation need not satisfy all four Maxwell
equations even though the corresponding strong
solutions do. Koshiba, Hayata and Suzuki [42)
reviewed the literature and methodology of this
problem in the context of waveguides, where this
problem was first observed in the 1960s. It has been
pointed out more recently that deterministic
problems can suffer from the non-physical modes
equally well [43]. This should not be surprising,
given that the matrix representations of the eigen-
value problem of guided waves, and the
deterministic problem of forced fields, involve the
same finite element matrices and therefore have the
same eigenfunction spectra. The spurious mode
problem and its solutions will be dealt with in detail
further below.

4. Applications to Magnetics

Finite elements have been applied to problems of
applied magnetics, to waveguides and resonators, to
antennas and scatterers; there is also a substantial
literature in the area of semiconductor process
modeling. This review concentrates mainly on the
popular area of microwave and optical devices, but it
must include certain parts of magnetics — most
notably the eddy current problem — because they
involve the same mathematical difficulties.

The early papers of Chari and Silvester [9,44)
that dealt with finite element applications to
magnetic field analysis were followed up by other
workers fairly quickly. By 1990 this had become the
dominant numerical method for magnetics problems,
and now accounts for nearly half the finite element
literature in electromagnetics. The central problem
here is to solve the magnetic vector potential
equation

curl(;}—'curlA)— pog%% = pod, (18)

subject to appropriate boundary conditions. Konrad
[45] has reviewed this field well, though in view of
recent rapid growth, that review has now become
dated.

Although the magnetic flux density B due to a
given set of currents is clearly unique, the
accompanying vector potential A is open to choice of
gauge and therefore not unique. Gauge
transformations are introduced by specifying the
divergence of A. Because the curl of A must always
equal the flux density B, these two specifications
define A unequivocally. A typical choice is
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divA = - gV - pely, (19)
where V is the electric scalar potential. Numerous
other choices are possible. However, they all have the
same form in  classical two-dimensional
magnetostatics, where A is time-invariant and
posgsesses only one component. This sitvation
characterizes a large class of useful problems in
electromechanics and the electric machines
community in particular adopted the finite element
method at an early date. It was widely assumed that
three-dimensional problems would be solvable by
straightforward extensions of the techniques that
worked so well in two dimensions, and that it was
merely a matter of waiting for computing machines
to grow large and powerful enough to handle three-
dimensional problems. This supposition, however,
proved false. Initial attempts to solve three-
dimensional problems largely ignored the question of
gauge [46); in other words, they allowed the
computer to choose the gauge through arithmetic
chance and roundoff error. The resulting values of A,
of course, are irreproducible, though B is well
defined. The gauge problem and the associated
choice of potential formulation may now be regarded
as solved [47,48] — so far as any problem in
technology is ever solved — but it has taken almost
a decade to establish what methods are actually
useful and correct.

This area has produced a large number of soft-
ware packages for general use by design engineers
and analysts, experts in magnetics with little know-
ledge of finite element methods. A recent survey of
the available techniques was given by Tsukerman,
Konrad, Bedrosian and Chari [49] while both the
methods and the available software packages were
comprehensively reviewed by Tseng [50].

5. Microwave and Optical Components

Optical and microwave applications of finite
elements are now considered in detail. Microwave
devices were indeed the first class of electromagnetic
field problem solved by finite element methods [6].
Daly [51] analyzed wave propagation in microstrip
lines at an early date, and the hollow waveguide
problem attracted sufficient analysis to merit a
review paper ([62] shortly thereafter. Stome [53]
extended the methodology to acoustic guided waves
and Konrad determined the fields in cavity
resonators [54]. Antenna analysis by finite elements
lay dormant after an early start [55], but has
recently blossomed. The review by Glisson [56]
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indicates much  valuable material, though
unfortunately it is already becoming dated. More
recently, finite elements have had particularly strong
impact in the analysis of optical waveguides [57] and
related devices. Recent texts on finite elements
applied to microwave and optical frequencies are by
Davies [58] and a comprehensive treatment by
Koshiba [59].

The microwave and optical component
problems [60] addressed here include (a) waveguide
that is uniform in z, where a modal approach is
appropriate, (b) resonators and (¢) closed scattering
problems (e.g., finding the scattering matrix for a
transmission filter). Problem (a) is quasi-two-
dimensional while (3) and (c) are very closely related
and genuinely 3-D in nature.

5.1. Uniform waveguide
To consider item (a) of the list above, the following
four examples will be examined:

(i) hollow conducting waveguide (e.g. hollow ridged
waveguide)

(ii) conductors coexisting with ¢(z,y)
microstrip and coplanar waveguide)

(iii) optical waveguide ¢(z,y) (e.g. rib or channel
waveguide)

(iv) nonlinear optical guide ¢(z,y,|E|) where
permittivity ¢ depends on optical power level.

(e.g.

Firstly to clarify the problem being considered
[61,62): it is a uniform optical or microwave guide,
where the structure is strictly uniform in z (as
declared in (i) to (iv) above), and modes are being
looked for, defined by

E(‘:y;zt‘) = e(’;’) expj("’t" ﬂZ)

H(z,y,2,1) = h(z,y) exp j(wt— Bz)

(20)

Finite elements have been applied mostly by using a
variational approach and many formulations have
been used [61], generally in terms of one of the six:
H; E; H and E; H, and E; H; E; or H, and E,.
There is no best choice, but the most common is the
following variational form (with s.v. denoting
“gtationary value of”) [63):

J I I (curl ﬂ)‘n e~ Y(curl H) d2

f“ﬂ’lwnﬂdﬂ

Uz = 8.0

(21)
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A feature of this formula for optics is that, although
¢ is inhomogeneous, u is invariably constant, so that
physically H is continuous everywhere. This eases the
finite element representation, as all three
components of H are now continuous. As the
permittivity enters as a simple multiplying factor in
the numerator, quite arbitrary ¢(z,y) can be
included with negligible additional computing cost.
Anisotropic dielectric has commonly to be modeled
in optics, and this gives no problem with
formulation (21) providing only that the material is
everywhere lossless. To use formulation (21) one
chooses a propagation constant 8 which gives the z-
dependence of all fields. Applying finite elements
across the waveguide cross-section with the Rayleigh-
Rits method gives the following matrix equation:

Av = w?Bv (22)
B is real, symmetric and positive-definite, while A is
Hermitian but can usually be reduced to real,
symmetric. One then has a range of quite excellent
matrix algorithms for numerical solution.

By far the most serious difficulty with a finite
element (or almost any other) procedure based on
(21) is the occurrence of many spurious modes which
come from the numerical procedure. These have
already been referred to, and we will return later to
this difficulty, but the chief trouble is with non-
physical solutions which do not satisfy the
divergence condition [64]. (Another class of ‘spurious
modes’ cluster around zero frequency, but these are
less troublesome, and again will be referred to later.)
Unfortunately the number of spurious modes
increases with finite element mesh density and
matrix order, so that any desire for high accuracy is
accompanied by persistent difficulties. For many
years this failure has been rectified by adding a
penalty term [65] to give [66,67)

w’ = s.0. — (23)

[TTmrmnen
peg ! I I I (div H)*(div H) d.()}
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The penalty parameter p shifts the spectrum of all
modes, but most strongly the spurious modes. The

{ I J I (curl H)* e~ }(curl H) d2

+
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user can therefore ‘filter out’ the unwanted modes.
Theoretically all now seems respectable — the
required constraint has been added in a classic least-
squares sense, with little additional computational
effort. Although the penalty function is widely used
in finite element work, in this context the whole
procedure is neither numerically robust nor
mathematically elegant.

Much effort has gone into the proper removal
of spurious modes from the accurate approaches over
the last decade. One method that retains sparsity,
maintains reasonable computational economy and
preserves a canonical matrix form such as eqn. (22)
is to accept the original variational form of eqn. (21)
but apply a more appropriate choice of basis vector
functions from the armory of finite elements. This is
by taking advantage of the recent introduction of
edge elements [68], tangential vector finite elements
(TVFE’s) [69,70,71] and Whitney forms in general
[72,73,74], which have transformed many
applications of finite elements.

The method seems to have more relevance, and
to be more comfortable, in three dimensions, as
treated in section 6, rather than in two. Briefly,
tangential vector finite elements (of which edge
elements are the simplest subset) are a radical
alternative to the nodal shape functions commonly
used in finite elements. They represent the vector,
not via three separate components, but as a vector
which is arranged to have prescribed tangential, but
not normal, values at the edges of the elements. Lee
[72], Koshiba [75] and Hano [76] have in fact used
tangential vector elements, a family of vector basis
functions of which edge elements are the simplest
and lowest order. It can be seen that their choice
results in much more involved algebra and calculus
(for evaluation of the usual element matrices) than
nodal elements. Also a considerably more
complicated matrix eigenvalue equation emerges,
which arises from their introduction of a field
transformation to obtain a canonical eigenvalue form
in #%. Some of these complications arise because of
the disparity between three-dimensional vectors and
two-dimensional fields.

In 1984 Hano [76] introduced a special set of
finite elements. By using simple Cartesian
rectangular elements, he was able to choose separate
shape functions for the z, y and z components that
achieved the basic aim of tangential vector elements.
This was, in essence, a precursor of the edge element
approach, but limited strictly to rectangular
elements. Covariant projection elements were applied
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to 3-D problems in 1988 [77] and applied to the
waveguide problem in 1991 [78]. All eliminate the
troublesome spurious modes, but leave a countable
cluster of (strictly) spurious modes around zero
frequency.

5.2. Uniform waveguide with nonlinear material

To illustrate the almost limitless versatility of finite
elements, a more complicated problem is now taken
up. In all of the above, it has been presumed that
there can be a transversely varying permittivity
¢(z,y). But nonlinear material, as described by
€(z,y, |E|), is of considerable interest [79] and can
similarly be solved ([80,81] by using the above
methods within an iterative loop, which seeks
consistency between the linear solver and the
specified nonlinear law for ¢. A typical structure
would have constant (with respect to field) ¢ over
part of the cross-section, but a finite region would
have a law such as [82]

€= €1in + A(.a‘{l - exu( - %Icg—lz)}. (24)

sat

Clearly for any two specified values of w, 3 and total
power in the mode, the third parameter is an
unknown eigenvalue, necessitating some iterative
scheme for its solution. Finite element solutions are
now being routinely produced for fairly arbitrary
nonlinear laws as well as two-dimensional profiles of
permittivity.

6. Three-Dimensional Structures

We now consider resonators and closed scattering
problems. If we focus discussion here on the
resonator, it is with the understanding that most of
the aspects of finite element implementation are
identical for the two classes of problem [60,83]. For
any solution approach to the resonator, an analogous
approach exists for the scattering problem. The main
difference is that part of the resonator walls have to
be removed and replaced by resistive boundary
conditions (simulating a matched port) and/or by
reactive impedances and/or by stipulating at the
removed walls (say) the magnetic field and
evaluating the consistent electric field — and so
evaluating the scattering matrix. Though these
considerations are not trivial, we by-pass them to
consider the more fundamental issues of the finite
element formulation and choice of basis functions.

The other major difference between the
resonator and the evaluation of a scattering matrix
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is that the former leads inevitably to an eigenvalue
problem — best couched into a canonical matrix
equation with relevant eigenvalues. The scattering
problem is essentially a deterministic, rather than
eigenvalue, problem and so inevitably leads, instead
of eqn. (22), to a matrix for solution of the usual
deterministic form Ax=y. This is, of course, a
fundamentally easier matrix equation to solve than
the eigenvalue equation (22).

We therefore concentrate on solution of the
typical resonator which consists of an enclosing
conducting wall, with an interior of permittivity
Hel(z,y,z) and possibly (most likely at microwaves)
permeability | u|(z,y,2). Optical resonators can
similarly be studied without metal walls, but some
mathematical artifact (such as a magnetic or electric
wall, if physically realistic, or an ‘evanescent’ infinite
element [57]), is best used to avoid treatment of a
lossy resonator, which loses the Hermitian
formulation. As with the waveguide problem of
section 5.1, finite elements have been implemented
by generalized Galerkin [84,85] and variational
[86,87] approaches. Unless some special requirement
forces the issue, it is generally possible and advisable
to use a variational approach. The same variational
form of eqn. (21) can be used, or its dual form, with
H replaced by E, and ¢ and p exchanged.

Again if inhomogeneity of material is purely
dielectric, then the form in terms of H is easier by
orthodox nodal elements, as the 3-vector H is
continuous everywhere. By contrast any form using
E would need extra care for continuity of
appropriate fields and flux densities between
elements However, separate use of each formulation
has the advantage of bounding the true solution
[70,87) and/or providing information for error
signatures, relevant to the important matter of
adaptive mesh generation [70].

Resonators have been studied for many years
using 3-D versions of the traditional nodal elements.
Just as in 2-D, where the simplest first degree
elements are popular for their ultimate simplicity
and ultimate sparsity of resulting matrix, so can first
degree tetrahedral elements be used. Again, whether
in 2-D or 3-D, first order elements fit very
conveniently into a Delaunay-generated mesh of
elements, especially with adaptive mesh-generators
(70]. Higher order elements are also used [88],
including their attractive subset, hierarchal elements,
where extra nodes are added to elements, as one
proceeds to higher order, without abandoning any
nodes from the low orders.




Spurious modes have commonly been reported
(64,89,90] with 3-D resonators just as with (quasi-)2-
D problems. Clearly less work has been reported on
3-D numerical work than on 2-D, because of the
heavier computing demands of the former. Spurious
solutions can be avoided or alleviated by the use of
edge elements, which will be briefly described next.

6.1. Edge and tangential vs. nodal elements

So far in the vast majority of finite element work,
nodal or scalar shape functions have been used [85],
as already described. For a vector field, whether H,
E, B, D, A or J, the conventional scheme has been
to represent the vector as three separate scalars in
the standard nodal manner. Analytically exact and
conventional as this procedure is, it grates — it is
uneasy in this context. In contrast, there are
alternative schemes for directly expanding vectors in
terms of vector forms.

Whitney forms [70,74,75] span the relevant
possibilities of continuity between elements related
to the grad, curl and div operators. W° forms are
spaces of scalar basis functions that are continuous,
without continuous derivatives, between elements.
W! forms are spaces of vector functions that have
continuity of tangential components, but not normal
components, between elements. W2 forms are vector
functions having continuity of their normal
components only between elements. W3 forms are of
scalar functions without continuity between
elements. Working with tetrahedral elements, as we
progress through the forms W0, W1, W2, W3 we go
through W° which is nodal-based, W! which is edge-
based, W? which is facet-based, and W? which is
volume-based. Their intimate connection also comes
from the fact that the gradient of a 0-Whitney form
is a (combination of) 1-Whitney forms, the curl of a
W?! form is a W2 form, and the divergence of a W?
form is a W3 form.

We illustrate with just one particular Whitney
form W? called the edge element. It is a first degree
polynomial form. The objective is to develop a
vector representation that assures that across any
face between adjacent finite elements, the tangential
part (only) of the vector is continuous. This will be
perfectly appropriate for representing H or E.

Consider a tetrahedron as in Fig. 6 with
vertices 1 to 4 and edges 1 to 6. For node ¢, we first
use the so-called barycentric coordinate {; which has
value 1 at node i, is zero over all tetrahedra not
containing node i, and varies linearly over tetrahedra
that contain node i. These are the local or ‘volume’
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coordinates within the tetrahedron, so that {; has
unit value at node i, and varies linearly to zero at
the three other vertices. To introduce the edge
elements, we focus on edge 1, denoted as e,, which
joins vertices 1 and 2; associated with ¢; we
introduce the vector basis function w, defined over
the tetrahedron by:

w, =, grad(; — (,grad (; (25)
wy, W3, w,, w, and wg, are similarly defined, each
associated with one of the other five edges. Although
w, is a first degree polynomial vector field, it turns
out that at all points along edge 1, the projection
onto edge ¢, of vector w,has constant value. The
projections onto e, of vectors w,, w;, w,, w; and wg
are all zero. Equation (25) therefore gives a vector
substitute for the interpolatory shape functions of
nodal elements,

V(¢11¢2:$3:84) = Z vw, (26)

3:(0,0,1,0)
ﬂ

1:(1,0,0,0) 2:(0,1,0,0)

Fig. 6. Tetrahedron vertices (with local
coordinates (,,(5,(3,(y) and directed edges.

On any edge ¢; V will assume a value that varies;
but the component (or projection) along e; will
remain constant and equal to v;u;, where u; is the
unit vector directed along edge ¢ with the sense of
the arrow in Fig. 6. Clearly if we use the same
specifications of the v, (called the edge values) of
eqn. (26) for different tetrahedra sharing the same
edge, the overall vector field will have a continuous
tangential component of vector across edges, and
similarly across faces. The normal components will




have no such enforced continuity. A special property
of edge elements is that their divergence is
identically zero within the tetrahedra, though not
across inter-element faces.

In this section we have concentrated on edge
elements in 3-D. Their extension to 2-D is
straightforward, although the fact that the physical
quantities are fundamentally 3-vectors makes the
situation less comfortable in 2-D than 3-D. For
instance it is commonly found necessary [77] to use
both edge and nodal elements because of the lack of
parity between transverse and longitudinal
components of field. Readers are referred to the
literature ({71,73,77,89,90,91] for details of these
Whitney and related forms.

6.2. Tangential, edge and nodal elements for
resonators

A number of workers have reported successful use of
edge elements for the solution of resonators [84-89).
Motives have included belief in their superiority to
nodal elements because of their lack of divergence-
free related spurious modes, and their more efficient
representation, via their fewer free variables and/or
sparsity of global matrices. If one compares edge
elements (with their built-in divergence-free vector)
with nodal representation of the three Cartesian
components of field, there can surely, be no arguing
that the component version has a fundamental
redundancy and therefore inefficiency. If they also
give solutions free of a serious class of spurious
modes, then the edge elements have very much in
their favor. Recent evidence supports their
fundamental advantage.

In electromagnetics, the use of edge elements
was firstly with low frequency applications,
especially concerning eddy currents [92]. With
resonators, use with magnetic vector field
formulations, eqn. (21) or its dual form in terms of
E, has recently led to more satisfactory results [84-
89]. Universally it is reported that the spurious
modes associated with non-zero divergence are
totally removed. However, as mentioned earlier with
the waveguide problem, when the formulation used
has frequency as the resulting spectrum (as in eqn.
(21) and its matrix version (22)), other spurious
modes appear clustered around zero frequency.
Curiously, these non-physical solutions are ignored
by many workers as not being serious — as not
being worthy of the title of “spurious”™ They are
indeed less troublesome, as their location in the
spectrum is very confined and away from the usual
region of interest.
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7. Conclusions

Finite elements in electrical engineering have had a
varied and interesting history. At an early stage of
development, several difficult problems were
encountered, such as the determination of gauge in
vector potential problems and the appearance of
spurious modes in solutions of the Helmholtz
equation. It has taken nearly twenty years to master
these difficulties, and their solutions point the way
for other, still more valuable, methods.

Incompletely solved problems of considerable
importance now include general methods for (1)
orthospectral elements, (2) field singularities, (3)
boundary integrals, including abeorbing boundaries.
Several particular element types free of spurious
modes are known and used, but the generation of
families of such elements has still eluded analysts.
Much the same can be said for singular elements. In
the formation of boundary integrals, similar
difficulties of integration are encountered as with
field singularities. All three areas should prove fertile
ground for the application of symbolic algebra.
Given the current near-ubiquity of computer algebra
systems, there appears to be every reason for
optimism for their further development for finite
element methods in electromagnetics.

In the use of finite elements for computation of
high-frequency waveguides and 3-D structures there
have been both major achievements and serious
difficulties. As computing power has increased it has
made more important the robustness of methods
used, so that human intervention is eliminated from
the inner shells of the computation. In this context it
is believed that the introduction of vector finite
element forms (or allied forms) will improve the
performance of many codes when, as in elec-
tromagnetics, vector fields are inevitably involved.
The case is more powerful in three dimensions than
in two-dimensional problems. There are eloquent
arguments for Whitney or equivalent vector forms
with their basis in differential forms. Computational
results have only appeared in the last three years or
so, but hopefully the practical impact will soon be
assessed, then these issues will be clarified or
simplified, as were similar issues with nodal finite
elements when they first appeared.
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Abstract - When computing an electromagnetic
field using a numerical method, e. g. the fi-
nite element method, it is possible that, although
Maxwell’s equations are discretised accurately,
highly inaccurate computational results are ob-
tained. In those cases it can easily be shown
that (some of) the electromagnetic compatibil-
ity relations (field properties that follow from:
Maxwell’s equations) are not satisfied. The diver-
gence condition on the fluxes, for instance, follows
directly from the field equations but not necessar-
ily from their discretised counterparts. This ne-
cessitates inclusion of the compatibility relations
in the finite-element formulation of the field prob-
lem. First a survey is given of all electromagnetic
compatibility relations for the time-domain elec-
tromagnetic field equations. Subsequently the
compatibility relations for the static field equa-
tions are discussed.

I. INTRODUCTION

Beccuse of its flexibility, the finite-element method
seems to be the most suitable method for computing elec-
tromagnetic fields in inhomogeneous media and/or com-
plicated geometries. In the finite-element formulation of
an electromagnetic field problem the field equations can
only be satisfied approximately. As a consequence of this,
field properties that follow from Maxwell's electromag-
netic field equations, the electromagnetic compatibility
relations [1], may not be reflected accurately in a numer-
ical solution. In earlier papers {2, 3] Mur presented meth-
ods for computing the electric and/or the magnetic field
directly, using a combination of linear edge and linear
nodal expansion functions for obtaining optimum com-
putational efficiency. In these papers the importance of
including the divergence condition, which is one of the
compatibility relations, in the formulation of the problem
was discussed. The equations applying to the divergence
of the electric and magnetic flux densities follow directly
from the electromagnetic field equations. They are satis-
fied whenever the field equations are satisfied exactly.
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In the present paper the use of the divergence condi-
tion will be generalised to the use of the compatibility
relations for electromagnetic fields. It will also be shown
that the use of divergence-free edge elements, which is
advocated by some authors (see [4] and the references
contained in it) for satisfying some of these compatibil-
ity relations, as well as the use of face elements, intro-
duces the possibility of violating additional relations of
the compatibility type. The importance of including the
electromagnetic compatibility relations explicitly in the
finite-element formulation of the problem is stressed.

The analysis of the compatibility relations is carried
out first for methods for computing time-domain (tran-
sient) electromagnetic fields. The analysis of methods
for time-harmonic electromagnetic field problems runs
along similar lines and leads to similar conclusions. It
can be shown (and verified experimentally) that the im-
portance of the compatibility relations increases with de-
creasing frequencies (slower variations of the solution in
time) and, consequently, the compatibility relations are
of the utmost importance for the numerical computation
of static electric and magnetic fields. These cases will
be discussed separately showing the connections between
the compatibility relations for transient fields and these
for static fields.

11. THE BASIC EQUATIONS
As the point of departure for our analysis we use the

time-domain electromagnetic field equations

oD
B

+J -V x H=-J™, (1)

+V x E = -K**¢, (2)

where J*' and K°** are sources of electric and mag-
netic current that are known, throughout the domain of
computation D (see Fig. 1), as a function of the time
coordinate ¢t. In (2) we have included the magnetic cur-
rent K for symmetry reasons. J°** and K** may also
represent contrast sources used in a contrast-source for-
mulation that replaces a transparent obstacle in a known




external field by equivalent sources. The field equations
are supplemented by the interface conditions

v x E continuous across sourcefree interfaces, (3)

v x H continuous across sourcefree interfaces, (4)

and the boundary conditions

vx E=vxE™ on 8Dg, (5)
vx H=vx H®* on 8Dy, (6)

where » is the unit vector along the normal to either
the interface I or the outer boundary 3D = 8Dg U 8Dy
(with 8Dg N 8Dy = 8) of the domain of computation D,
and where » x E*** and v x H®® are known, along the
relevant parts of this outer boundary, as a function of t.

8Dy

v

Dg

0D = 0D U 8Dy

Fig. 1. The domain of computation D.

Together with the constitutive equations and the initial
conditions at ¢t = tp, (1)-(6) define an electromagnetic-
field problem with a unique solution [5]. Note that the
source terms in (1) and (2) are not related to the bound-
ary conditions in (5) and (6).

III. THE COMPATIBILITY RELATIONS

Compatibility relations [1] are properties of a field that
are direct consequences of the field equations and that
must be satisfied to allow them to have a solution. For
the electromagnetic field equations they are discussed be-
low.

A. Interior

Applying the divergence operator V- to (1) and (2) it
follows that

V. (D +J)=-V.J*, )
aV-B=-V. K™ (8)
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The electromagnetic compatibility (divergence) relations
(7) and (8) apply to subdomains of the domain of com-
putation in which the electromagnetic field vectors are
continuously differentiable functions of the spatial coor-
dinates.

B. Interfaces

The field vectors are not differentiable with respect to
the spatial coordinates at the interfaces between regions
with different medium properties. In that case (7) and
(8) are replaced by

v- (0D +J)+v-J** continuous across interface, (9)

(10)

v-9B +v- K% continuous across interface,

where v is the unit vector normal to the interface.

Note that (9) and (10) express the continuity condi-
tion applying to the normal components of the electric
and the magnetic flux densities across an interface be-
tween different media.

C. Outer boundary

A third type of compatibility relation is found when
studying the behavior of the field near the outer bound-
ary of the domain of computation. Applying the operator
v-, where v denotes the unit vector along the normal to
the outer boundary, to (1) and (2) we obtain, using (5)
and (6), the relations

v-(D+J)=v-(Vx H™ - J*)on 8Dy, (11)

v-dB=—v-(VxE™ +K)ondDg. (12)

These equations express the fact that prescribing the
tangential components of the electric (magnetic) field
strength at a given part 3Dg (9Dy) of the outer bound-
ary 8D implies a related behavior of the normal compo-
nents of the magnetic (electric) flux densities at that part
of the boundary.

Note that these equations have the form of additional
boundary conditions applying at the outer boundary of
the domain of computation. They follow, however, di-
rectly from the fact that the field inside the domain of
computation should satisfy Maxwell’s equations.

D. Compatibility relations and edge elements
Some authors use divergence-free edge elements (e.g.

Whitney 1) for imposing the divergence conditions ex-
actly. Edge elements cause the tangential components of




the fields to be continuous, they leave the normal compo-
nents free to jump. Apart from the fact that divergence-
ftee edge elements can only be used in the simple case
where the compatibility relations (7) and (8) reduce to
V:-D=0(orV.J=0)and V-B =0, respectively, the
resulting freedom of the normal component of the field at
the interface between two adjoining tetrahedra to jump,
even when it should be continuous, is unwanted. Con-
sequently, the continuity of the normal flux has to be
added to our list of compatibility relations to be imposed
upon the solution. Failing to do so may be the cause
of undesired surface charge distributions in between edge
elements. When adjoining finite elements contain identi-
cal materials, and assuming that the external sources of
current are continuous between those finite elements, the
following relations hold

v - E continucus between edge elements, (13)

v+ H continuous between edge elements. (14)

In the alternative cases, (9) and (10) still apply. Imposing
these relations results in an increase of the connectivity
of the system matrices. Note that the need for impos-
ing the continuity relations (13) and (14) is caused solely
by the use of edge expansion functions and not by the
electromagnetic field problem or the finite-element for-
mulation used.

E. Compatibility relations and face elements

Some authors propose the use of face (also called facet)
elements for modeling flux distributions. Face elements
cause the normal fluxes between tetrahedra to be con-
tinuous, they have the disadvantage of leaving tangential
components free to jump, even when they should be con-
tinuous. Assuming that no surface sources of current are
present at the interface between those finite elements, the
following continuity relations should hold

v x E continuous between face elements, (15)

v x H continuous between face elements, (16)

otherwise the proper jump condition should be imple-
mented. Imposing these relations results in an increase
of the connectivity of the system matrix (matrices). Note
that the need for imposing the continuity relations (15)
and (16) is caused solely by the use of face expansion
functions that do not automatically satisfy the continu-
ity conditions (3) and (4).
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F. In summary

Equations (7)-(12) are a set of six electromagnetic
compatibility relations that are direct consequences of
Maxwell’s equations. In exact methods for solving the
electromagnetic field equations they are automatically
accounted for. In numerical methods, for instance in
the finite-element method, for solving the electromag-
netic field equations they should be taken into account
explicitly whenever the method used does not automati-
cally account for them.

Equations (13)-(16) are additional compatibility rela-
tions the need for which is caused by the use of either
edge or face elements in homogeneous domains. In those
domains edge and face elements allow unphysical discon-
tinuities in the solution and compatibility relations have
to be added to the formulation of the field problem for
restricting those discontinuities to acceptable values.

Note that (7)-(16) do not contain any extra informa-
tion that is not contained in the field equations. However,
failing to include them in the finite-element formulation
of an electromagnetic-field problem, either exactly or nu-
merically, may be the cause of highly inaccurate results.
Errors of this type are often referred to as "spurious so-
lutions” or "vector parasites”.

IV. APPLICATION to STATIC ELECTRIC FIELDS

For static electric fields the basic equations (1) - (6)
reduce to

V x E = -K*™, (17)

together with the interface condition

v x E continuous across sourcefree interfaces, (18)
and the boundary condition

vx E =v x E™ on 8Dg. (19)

Note that we have lost the boundary condition on 8Dy
which has to be replaced by the compatibility relation
applying to this part of the outer boundary.

A. Interior compatibility
In case of a conducting medium (7) reduces to

V.J=-V.J% (20)

In case of a non-conducting (dielectric) medium (7) re-
duces to




v . D = pe.exl, (21)

where p%°* denotes the known external electric volume
charge density.
B. Interface compatibility

In case of a conducting medium (9) reduces to

v-J +v-J** continuous across interface,  (22)
in case of & non-conducting (dielectric) medium (9) re-
duces to

v- Dif = 0%, (23)

where D|} denotes the jump in D across the interface and
where 0%°* denotes the known external electric surface
charge density. In case of an interface between a conduct-
ing and a non-conducting (dielectric) medium (9) reduces
to

v-J=v-Jo| (24)
at the conducting side of the interface.
C. Outer boundary compatibility
In case of a conducting medium (11) reduces to
v-J=v-(Vx H™ -J*)on 8Du.  (25)

Recall that H®** and J*** are not related. In case of a
non-conducting (dielectric) medium (11) reduces to

v-D = d“*** on 8Dy, (26)

where 0*°** denotes the known external electric surface
charge density at the outer boundary.
D. Compatibility relations and edge elements

In case adjoining tetrahedra contain identical materials
as regards their electric properties (13) applies, otherwise

(22)-(24) apply.
E. Compatibility relations and face elements

In case no surface souces of magnetic current are
present at the interface between adjoining face elements

(15) applies, otherwise the proper jump condition should
be implemented.
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V. APPLICATION to STATIC MAGNETIC FIELDS

For static magnetic fields the basic equations (1) - (6)
reduce to

Vx H=J™, (27)
together with the interface condition
v x H continuous across sourcefree interfaces, (28)
and the boundary condition
vx H=vx H™ on 8Dy. (29)

Note that we have lost the boundary condition on 9Dg
which has to be replaced by the compatibility relation
applying to this part of the outer boundary.

A. Interior compatibility
For static magnetic fields equation (8) reduces to

V.B=p™ (30)

where p™** denotes the known external magnetic vol-
ume charge density.

B. Interface compatibility

For static magnetic fields equation (10) reduces to

(31)

where o™* denotes the known external magnetic sur-
face charge density at the interface.

v BI? = vm.ext,

C. Outer boundary compatibility

For static magnetic fields the continuity of the normal
flux (12) reduces to

v-B=—¢c™ on 8Dg. (32)

where ™%t denotes the known external magnetic sur-
face charge density at the outer boundary.

D. Compatibility relations and edge elements

In case adjoining tetrahedra contain identical materials
as regards their magnetic properties (14) applies, other-
wise (31) applies.
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E. Compatibility relations and face elements

In case no surface sources of electric current are present
at the interface between adjoining face elements (16) ap-
plies, otherwise the proper jump condition should be im-

plemented.

V1. CONCLUSIONS

When the electromagnetic field equations are solved
numerically using expansions that do not themselves ex-
actly satisfy these equations, which is the case in the
finite-element method, it is necessary to include the com-
patibility relations in the formulation in order to obtain
correct results. Attempts to solve this difficulty by using
edge elements merely complicate the situation by intro-
ducing the need to impose additional compatibility rela-
tions. In our analysis we have first presented the com-
patibility relations applying to time-domain (transient)
fields and, subsequently, those for static fields. In doing
so, the relation between those two cases is clarified and
a better understanding is obtained of the function of the
compatibility relations and their application in the entire
range from static to high frequency applications.

In summary, we conclude that we have presented the
electromagnetic field compatibility relations. To obtain
reliable computational results from finite-element meth-
ods for solving the electromagnetic field equations, these
relations should be made a part of the formulation of the
problem.
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ABSTRACT. The classical approach to design of electric
motors is based on the concept of simplified magnetic
circuit analysis. This approach fails in today's design
situation due to utilization of new materials and new
designs. Application of sophisticated numerical methods
becomes inevitable. Some problems arising in the
application of the finite element method in design of
electric motors are discussed in this paper.

Electric motors are always part of a system and their
behaviour within the system, which is characterized by
integral parameters (torques and reaciances), should be
known at the design stage. Computation of these
parameters from a finite element magnetic field solution
is described here.

The computation of torquelangle characteristics from

finite element field solution by application of two basic

approaches:

- global virtual work method and cubic spline
interpolation technique,

- Maxwell stress tensor integration,

is described. The applicability of both approaches is

illustrated by computation of the torque in a switched

reluctance motor and the advantages of virtual work

approach are emphasised.

The main problem in application of the finite element
method to compuwtation of magnetic fields in electric
motors is that the field sources (currents) and load angle
are unknown. External environment (terminal voltage and
mechanical load) are known, and the magnetic field
solution is iterated until the external constraints are
satisfied. To avoid finite element mesh rotation an
iterative process was implemented in which only the
Jundamental harmonic of the lumped stator winding
distribution is taken into consideration instead of the
tiree-phase winding excitation. The direct and quadrature
reactances are computed from the finite element magnetic
field solution utilizing flux linkage and siored energy
approaches. The procedure is illusirated by computation
of the reactances of a permanent magnet synchronous
electric motor.

1. INTRODUCTION

Design of electric motors is a process of synthesis based
on geometrical modelling and analysis. The traditional
approach to analysis in the design of electric motors was
based on the concept of magnetic circuit analysis resulting
with simple analytical models. These models incorporate
equivalent circuits postulated on the basis of experience
and intuition. Results of such an approach are
qualitatively correct but quantitatively inaccurate and have
to be corrected with empirically introduced correction
parameters based on previous experience and
measurements on prototypes. These parameters are usually
valid for very narrow classes of motors significantly
similar to those which were produced and measured
before the new design. From the designers point of view
the main advantage of this approach is its simplicity and
ease of application.

This traditional approach to design of electric motors fails
in new situations. Utilization of new magnetic materials
enables developing of new designs. Precise prediction of
motor characteristics before a motor is manufactured is
one of the essential prerequisites for good, concurrent
design and cost-effective production. Accordingly, more
sophisticated methods of analysis based on
electromagnetic field theory which enable more accurate
modelling of electric motors are required to be
implemented in the design procedures. Numerical field
analysis is the only available tool capable of dealing with
problems which arise in the design of the new generation
of electric motors. The most widely spread numerical
method for electromagnetic field analysis in electric
motors is the finite element method (FEM). Its application
to the calculation of two main integral characteristics of
electric motors: torques and reactances is described here.

2 CALCULATION OF TORQUES

One of the most important characteristics of electric
motors is torque as a function of rotor position. It can be
derived from the FEM solution of the magnetic field
in the electric motor. Two distinct approaches for directly
calculating the torque from the FEM solution are Maxwell




stress tensor integration and the virtual work approach.
21 Maxwell Stresses

The torque on a rigid body enclosed by a surface S via
Maxwell’s magnetic stress tensor integration can be
obtained by calculating the surface integral [1]:

T-f(rx?)a 1
3

where n is an unit vector normal to the integration surface
S, r is a distance vector, and t is Maxwell stress tensor
defined by:

1=8-(B)- %(ﬁ-ﬁ) 7 @

In the case of the exact solution the integral in (1) is
independent of the chosen integration surface.
Approximate and discrete nature of the FEM solution
introduces dependency of the accuracy of torque
calculation upon the accuracy of the calculation of the
local flux densities and upon the choice of the integration
surface (3D models) or integration contour (2D models).
High accuracy of the calculation of the local flux
densities, which are obtained from potential solutions
(scalar or vector) by differentiation, can be assured by
increasing the FEM mesh density. The most convenient
choice for the integration surface (contour) in the FEM
models of electrical motors is in the airgap between the
stator and the rotor. In a practical applications of this
approach it is advisable to evaluate the torque using
several surfaces (contours) and to average the results, or
to apply relatively complicated iterative methods for
selection of the best surface (contour) [2].The application
of this approach in normal design practice is very
complicated.

The main advantage of the Maxwell stress tensor
integration approach to torque calculations is that it
requires only one field solution to obtain the torque for
one position. If it is necessary to obtain a complete
torque-angle characteristics this advantage becomes
obsolete.

22 Virtual Work

Since the extremization solution procedure used in the
finite element method optimizes the calculation of stored
energy, the virtual work method seems to be more stable
and accurate approach to torque calculation. The torque
can be calculated from the coenergy of a system by [3,4]:
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where W_ is the total coenergy of a system and « is the
angular displacement. Total coenergy of a system can be
calculated from the FEM solution by:

W=y {[HBav'- [ [}H'dB‘]dV‘ @
N y\ o

The main disadvantage of this approach is the calculation
of the coenergy derivatives with respect to a small
perturbation of the rotor position. The  numerical
realisation of this method can give rise to a
significant  round-off error in computing a finite
difference approximation of the required derivative
because of near identical coenergies for small
displacements. On the other hand wusing increased
displacements of the rotor in order to achieve
greater differences in the system coenergy decreases the
accuracy of the finite difference approximation.

In order to overcome those difficulties, a cubic spline
interpolation of the coenergy function through points
calculated in several rotor positions is introduced [5].
The interpolation of the coenergy on the i-th segment is
defined by [6]:
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where:
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Y=W.(x) ; aclea,_,a] ; i=l,.n

h=a,-a, ; m=

The unknown coefficients of the interpolation m; are
derived from the condition of smooth joints (equal first
derivatives) at points ¢ (i=1,..n-1). The first derivatives
at the first point (i=0) and the last point (i=n) of
interpolation are set to the zero, which is natural for this
problem. The torque is calculated by derivation of the




cubic spline interpolation of the coenergy function with
respect to displacement a.

2.3 Example: Torque in a Switched Reluctance Motor

The usage of switched reluctance motors (SRM) has
increased in recent years due to their simplicity and
controllability. As a variable speed driver they are much
more efficient compared to variable speed induction
motors. The motor has salient poles on both the stator and
the rotor, the windings on the stator are of simple form
and there are no windings on the rotor. This results in a
relatively simple construction of such motors. The
currents in the stator circuits are switched on and off in
accordance with the rotor position and with simple control
the motor develops the torque-speed characteristics typical
for series-connected d.c. motors. The main characteristics
of the magnetic field analysis in SRM are:
- complex geometry and very small airgap between
stator and rotor,
- deep saturation of magnetic material in normal
operation,
- eddy currents can be neglected.
- the influence of edge effects must be taken into
account.

Figure 2.1 Cross-section of SRM motor

Taking into consideration the aforesaid one can conclude
that a 3D nonlinear static model of SRM is sufficient for
design analysis. The importance of 3D calculation is
emphasized in the case of deep saturation of magnetic
material and/or in the case of rotor-stator position with
maximum reluctance. In those cases the magnetic field is
leaked out of iron parts of the motor.
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Because of the static model, a total scalar potential

approach to the numerical field calculation is chosen. The

main advantages of this approach are [7]:

- one unknown per node,

- current regions are not
discretization,

- the influence of current sources is taken into
account by applying the Biot-Savart law.

The finite element discretization of the SRM model is

based on the application of twenty-node isoparametric

brick elements. This ensures good approximation of the

motor geometry as well as giving a good approximation

to the field values (gradients of the potentials). The space

around the active part of the SRM must be included in the

finite element mesh.

included in the

The above mentioned approach was applied to the
computation of the torque/angle characteristics of the
SRM shown in Figure 2.1. The surface for Maxwell stress
tensor integration was chosen to be a cylinder through the
middle of the airgap. The airgap was discretized by three
layers of finile elements. Total coenergy of the system
was calculated from the same FEM solution. The resulting
curves showing the comparison of the virtual work
approach and the Maxwell stress tensor integration with
the measurements are shown in Figure 2.2,

3. INDUCTANCE CALCULATIONS

The main objective of inductance calculations in electric
motor design is the computation of the reactances in the
direct and quadrature axis system (X, and X,). The two-
axis system was introduced into classical theory of electric
machines as a mean of facilitating analysis of salient pole
machines [8]. Reactances X, and X, are the basis for
further representation of the motor in system studies.
Two fundamental approaches to inductance calculations
are:
- calculation of inductance from flux linkage,
- calculation of inductance from stored magnetic
energy.
Both approaches can be applied in the case of the FEM
magnetic field solution.

31 FEM Modelling of Electric Motors

A specific problem in applying the FEM to the design of
electric motors is that in most cases the source (currents
in stator slots) and load angle (relative position rotor-
stator) are not specified. Under normal operating
conditions for electric motors the state of the system is
defined by the external quantities (terminal voltage and

mechanical load) while source currents and load angle
which are necessary for the FEM problem formulation are
unknown. Solving a problem under these new constraints
requires an iterative application of the FEM solution. The
iterative scheme starts with the initial estimate of the load
angle and field source currents which can be obtained by
the classical design approach. The FEM solution is then
applied and a first estimate for problem external sources
can be determined. The derived terminal voltage is then
compared with the specified conditions and the inputs to
the FEM solution are iterated until a solution which
agrees with the load point specification is obtained.

One way of forming the FEM models of electric motors
is to specify source currents densities in stator slots which
comrespond to phase currents determined from the three
phase excitatiom current system. Utilization using that
approach requires rotating the FEM mesh as load angle
varies, which complicates the iterative scheme of the FEM
application. In most electric motors the fundamental
component of excitation is dominant, while higher
harmonics can be neglected. It enables decomposition of
the lumped stator winding distribution into Fourier
components and only the fundamental component of the
current sheet is retained [9]). Stator currents in the FEM
model of the motor are then assigned to the stator slots
proportional to the arca under the current sheet density
distribution associated with each slot. The three phase
sum of the fundamental components rotates in
synchronism with the rotor, which means that changing
load angle can be simulated by changes in the
fundamental current sheet distribution while the FEM
mesh remains the same.

32 Definition of Reactances

The quantities obtainable from the FEM magnetic field
solution are direct and quadrature axis flux linkages and
energies. In order to find them, taking into account
saturation of magnetic material, a three step procedure for
FEM solution is given in [10]:

Step 1. Nonlinear solution of the FEM problem where
the sources are excitation current together with
total armature current (both d and q components)

Step 2. The permeability for each element achieved in
nonlinear iteration procedure (step 1.) is fixed.

Step 3. Two linear solutions of the FEM problem with
separately applied d and q components of
armature current while excitation current is set to
zero. Permeabilities in the FEM mesh for this
step are the ones fixed in step 2.

Direct axis flux linkage y, and stored magnetic energy W,

are calculated from the FEM solution in step 3 when the



direct axis component of armature curmrent is applied,
while quadrature axis flux linkage y, and stored magnetic
energy W, are calculated from the FEM solution in step
3 when the quadrature axis component of armature current
is applied. The reactances are then defined as:

X =2mW‘

X, = 3 7
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where 1, and I, are the direct and quadrature axis
components of armature current respectively.

33 Example: Synchronous Permanent Magnet
Motor (SPMM)

The high energy density of rare earth permanent magnets
and relatively low costs of their utilization has permitted
them to replace classical DC excitation systems of electric
motors. The elimination of the excitation winding (copper
losses, brushes...) results in more reliable and
mechanically simpler motor. The rare earth permanent
magnets have near linear characteristics over normal
operating conditions. This fact greatly simplifies their
modelling in the FEM. They can be replaced with simple
current sheets surrounding a material having a
permeability equal to the recoil permeability of the
permanent magnet material which is, in the case of rare
earth materials, slightly greater than the one of free space.
The geometry of such motors enables utilization of a two-
dimensional model. FEM approach based on magnetic
vector potential is applied in the solution procedure. The
cross-section of the analyzed motor can be seen in Figures
3.2 to 3.4. The fundamental component of decomposition
of lumped stator winding into Fourier component is given
as [9):

n(®) =2 N, V21, sil§ -e) ©)

where:

- I, is the root mean square value of the armature
current,

- N, is the number of turns in the stator winding
per pole and per phase,

- € is the electrical angle with respect to the d
axis,

- a is the electrical angle between the phasor of
the armature current and the d axis.
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Current [; associated with i-th slot of the stator winding is:

1=2 N, /21, sin(E-a) A€ (10)
T

A set of equations which define the external environment
in steady state operation of a permanent magnet electric
motors can be deduced from the d-q theory by adopting
the Park transformation in rotor reference frame. The
equations are [11]:
= +

V=R, +0 ¢, an

Vi=Rl;~0 ¢,

V, and V, are q and d components of the terminal
voltage, I, and 1, are the corresponding current
components, R is ohmic resistance of the winding, © is
steady state frequency and @, and @, are the
corresponding flux linkages. These equations can be
expressed in phasor form and combined to obtain the
phase stator voltage V, in phasor form:
V,=R+jX )I,+j(X;~X,)1,+E, (12)
E, is the open circuit voltage (1,=1,=0) resulting only from
permanent magnets (excitation) and can be considered as
a constant. This voltage is computed from the FEM
solution of the model excited only by permanent magnets.
A phasor diagram derived from (12) is presented in
Figure 3.1.

q

v, -]Xan E,

1\
Xdla Eo

I,
)
;
?
d

Figure 3.1 Phasor diagram of SPMM

Unknown reactances X, and X, are obtained from the
FEM field solution using the idea of distributed turns in
the flux linkage calculations as described in [10]:
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Stored magnetic energy is calculated from the FEM
solution by:

LADY f(}ﬂ'w')a' as)
€ g0 0

The iterative procedure described in section 3.1 was
performed and after three iterations an agreeable solution
( successive solutions for X, and X, differed by less than
3.5%) was obtained. FEM field solutions for step 1 and
step 3 in the third iteration are illustrated in Figures 3.2 to

Figure 3.2 Nonlinear FEM magnetic field solution
(third iteration, step 1)
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Figure 3.3 Linear FEM solution in q axis
(third iteration, step 3)
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Figure 3.4 Linear FEM solution in d axis
(third iteration, step 3)

The results of the computation of the reactances calculated
from flux linkages as well as the reactances calculated
from stored energy are given in Table 1,




Flux Linkage
X, X,
5342 | 78.88
42.80 | 89.82 {
4160 | 92.15

Iteration 1

Iteration 2

Iteration 3

Table 1. Reactances through iterations 1 to 3
4. CONCLUSIONS

The application of the finite element method in
computation of integral parameters of clectric motors
cannot be avoided in today’s design practice. The problem
in applying of the method is that a certain level of
specialist’s knowledge is required from a designer. Some
aspects of that knowledge are clarified in this paper. The
most important parameters of electric motors are torques
and reactances. In order to calculate them additional
computations must be performed after the FEM solution.

The torques can be computed by the application of
Maxwell stress tensor integration or by the virtual work
approach. The virtual work approach is improved by the
introduction of cubic spline interpolation of coener-
gy/angle dependence. This results in the smooth
approximation of the coenergy/angle curve and well
defined differentiation with respect to rotor/stator position.
The method is based on computation of the total coenergy
of a system and thus less sensitive to meshing of the
model. The described approach was applied on a test
example and compared with the Maxwell stress method
and measurements.

Computation ot reactances of electric motors requires
iterative application of FEM magnetic field solution
because the field sources and load angle are unknown.
The iterative procedure is simplified because only the
fundamental component of the lumped stator winding
distribution is taken into consideration instead of three-
phase winding excitation. Three phase sum of the
fundamental components rotates in synchronism with the
rotor and rotating of rotor the FEM mesh is unnecessary.
Direct and quadrature axis reactances are computed from
the FEM solution by flux linkage and stored energy
approaches. The method was tested on a synchronous
permanent magnet motor.

The final conclusion is that the stored energy approach to
torque and inductance calculations is better for use in
traditional design procedures because of the nature the
FEM (minimization of energy functional) and weak
dependence on local errors due to bad meshing of the
model.
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COMPUTATION OF STATIC AND QUASISTATIC ELECTROMAGNETIC
FIELDS USING ASYMPTOTIC BOUNDARY CONDITIONS
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Abstract — This paper presents the computation of
static and quasistatic electromagnetic fields using asymp-
totic boundary conditions (ABC). Asymptotic boundary
conditions for eddy current problems due to external field
excitations are derived. For electrostatic fields, ABC-s
are used in conjunction with Laplace’s equation while for
quasistatic magnetic fields, ABC-s are employed in con-
junction with the integrodifferential finite element
method. The effect of outer locations on the
accuracy of the simulation results is examined. This study
shows that in these cases, ABC-s can improve the compu-
tation accuracy compared to the usual truncation of outer
boundaries,

1. INTRODUCTION

The finite element method (FEM) is a powerful method for
the computation of electromagnetic fields. However, special
techniques must be used when the solution domain is infinite,
since the exterior region must be properly represented.
Researchers sometimes use a simple approach in which the
outer boundary is truncated with a Dirichlet or Neumann
boundary condition. In addition, there are a number of well-
known techniques to modify the finite element method to
accommodate the open regions [1]. Examples of such
modifications are ballooning [2], infinitesimal scaling [3],
spatial transformations [4], infinite elements [5] and others.
Unfortunately, these modifications are limited by various
shortcomings. An alternative approach is to combine the
finite element method with the integral equation method or
Green'’s function approach to account for the open region.
Good examples of such combination are the hybrid finite ele-
ment - boundary integral equation method [6] and the
integrodifferential finite element - Green’s function method

The subject matter of this paper under the same title was ori-
ginally presented at the Progress in Electromagnetics

Research Symp., Jet Propulsion Laboratory, Pasadena, CA,
U.S.A,, July 12-16, 1993.
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{7]. Usually, hybrid approaches destroy the sparsity of the
finite element matrices. The measured equation of invariance
(MEI) method, which was presented in [8), uses the assumed
charge distributions on the conductors to determine the rela-
tionships of the unknown potentials around outer boundaries.
The relationships thus obtained are subsequently employed in
the finite element or finite difference simulations. The MEI
method can preserve the sparsity of the finite element or finite
difference matrices. However, the proof of convergence for
this method has yet to be found in the published papers.

Recently, absorbing and asymptotic boundary conditions
have been used in conjunction with the finite element method
[9]-[12]. The sudden popularity of the ABC is due to the fact
that it is local as compared to hybrid approaches. This local-
ity preserves the sparsity of finite element matrices. How-
ever, most of the studies are focussed on wave problems.
This paper applies the asymptotic boundary conditions to the
study of static and quasistatic problems. Although there are
sdies using the ABC for static or quasistatic problems
{13])-[16], there are still unanswered questions such as the
effects of outer boundary locations on the solution accuracy.
In addition, the use of asymptotic boundary conditions for
eddy current problems due to external field excitations has
not been reported.

This paper investigates the employment of asymptotic boun-
dary conditions in conjunction with finite elements for the
computation of static electric and quasistatic magnetic field
problems. For the electrostatic problem, the electric scalar
poteatial and stored energy of two parallel infinitely long, cir-
cular cylindrical conductors are calculated. For the quasis-
tatic magnetic field problem, the ABC-s due to external field
excitations are derived and used for the calculation of the
induced eddy current power losses of an infinitely long, cir-
cular cylindrical conductor, excited by a uniform transverse
magnetic (TM) field.

The accuracy of ABC-s are compared with analytical and
known numerical results, where applicable, as well as brute
force truncations. The objective of this study is to evaluate
the usefulness and limitations of asymptotic boundary condi-
tions.




2. FORMULATION OF ASYMPTOTIC
BOUNDARY CONDITIONS

The essence of using the finite element method for the solu-
tion of unbounded field problems is the proper representation
of the exterior region. The spectrum of the various tech-
niques for such solutions are not without shortcomings. The
recent flurry of work on absorbing and asymptotic boundary
conditions underscores the need for and importance of an
efficient technique suitable for the finite element implementa-
tion. The ABC-s resolve the difficulties associated with an
infinite boundary by emulating the field behaviour at infinity
on the finite boundary. The absorbing boundary conditions
are used for wave propagation and scattering. In this paper,
we are only concerned with asymptotic boundary conditions
which are derived for static or quasistatic fields.

The outer boundary used in the asymptotic boundary condi-
tions serves as an impedance junction to connect the region
internal to it with the region external to it. Such a connection
is facilitated by the surface integrals of the nonnal derivatives
of the unknowns which represent the flux continuity condi-
tions. As a result, the derivation of asympioiic boundary con-
ditions centres on the representation of the normal derivatives
of the unknown scalar potentials.

For a source-free static field, the potential ¢, subject to suit-
able boundary conditions, is governed by Lapiace’s equation

V2¢=0 (¢))

For a two-dimensional problem, if the potential is zero at
infinity, the solution in the infinite exterior region in the polar
coordinates can be expressed as the following harmonic
expansions:

¢= 2 — cos (n6+ay,) (03}

a=17

where g, and o, are the coefficient and phase angle of the
nth harmonic, respectively.

Differenﬁaﬁonof(Z)withmpecttorleadsto

ﬁ =- Zn e cos (n6+ar,) 3)
The division of (2) by 7 yields
-;z— zx — cos (n+a,) ()]
Summation of (3) and (4) ptodwes
ﬁ 1 =- zn .+1 cos (n6+a1,)
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ay
+ z ru+l

a=1

ﬁ i 2(1_,,)

a=2

cos (n6+a,) 6)]

pr +1 cos (n8+a,) ©)

If we omit the third and higher harmonics, the dominant error
will be determined by the second harmonic and we have

2,2 =% cos26+02) @

Equation (7) can be subsequently rewritien as

2,206 ®

The first order asymptotic boundary operator is therefore
Jd . 1
By=5+— ®

Consequently, the first order asymptotic boundary condition
is

B, (=0 (10)
If we let u=B ¢, then

4= 3 (1-n)—
=2 r

cos (né+a,) (11)
The derivative of u with respect to  is

g—“ =— i(l—n)(l-m) o (n6+a,)

(12)

The ratio of u to r is given by

z(l—n) +2 cos (n6+o,)

(13)

Therefore,

gr—u + 22 = i(n-—2)(n—l)

e cos(nb+a,) (14)

It is obvious that the dominant error is due to the third har-
monic. Thus,

g‘: —= 2—— cos (56+0s) (15)
Equation (15) can be represented by
au 3“ = -5
5+ =0¢") (16)




The second order asympiotic boundary operator is therefore
=(9 .39 1 oS
Bz-(ar+ r)(ar+ r)—O(r ) an

Due to the presence of the second order radial derivative
9*¢var? in (17), the second order asymptotic boundary opera-
tor cannot be used directly for the finite clement implementa-
tion. To overcome this difficulty, we rewrite (17) as

Po 400 20

>? +  or + 2 0 (18)
To eliminate the second order radial derivative, we substitute
(18) back into the Laplace’s equation in the polar coordi-
nates. The resultant second order asymptotic boundary
expression is

1 ¢

% __2, .1
¥ 3r 202

F (19
As a result, the first and second order asymptotic boundary
conditions can ¢ subsequently expressed as

]

% -a(r)¢+b(r)aez

3

(20)

where a(r) and b (r) cre given as foilows:

a(r):-;‘T b(r)=0 for first order A3C

r

a(r)= __2__; for second order ABC

=1
3r btry= 3r

3. FINITE ELEMENT IMPLEMENTATION

For a generalized Helmholtz equation of the form

V-(pVd) + k2q9=0 1)

we can use Galerkin’s criterion to transform it into

jr [PYW-Vo - k2qWoldv = jr pw%ds

+ jl_ pW%‘:-ds (22)

where p and q are related to material properties and angular
frequencies, W is the weighting function which is the same as
the interpolation function of the finite elements, T; is the reg-
ular Neumann boundary and I, is the asymptotic boundary.

In the case of static electric fields, (21) is reduced to
Laplace’s equation.

In the case of time-harmonic quasistatic magnetic fields, (21)
can be transformed into the integrodifferential equation in the
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conductors (17] and Laplace’s equation outside the conduc-
tors with p corresponding to the reluctivity of the medium
and k? representing jo. These transformed equations are
amenable to the use of asymptotic boundary conditions by the
substitution of the appropriate asymptotic boundary expres-
sions into the surface integrals involving the asymptotic
boundaries.

4. APPLICATIONS

To illustrate the application of ABC-s, we study an electro-
static potential problem and a quasistatic magnetic field prob-
lem.

4.1 Electrostatic Problem

The electrostatic problem consists of two paralle! infinitely
long circular cylindrical conductors as shown in Fig. 1. The
two conductors are at potentials of 1 and -1 volt, respectively.
The potential distribution and stored energy are calculated
and compared with analytic and published results [13]. Due
to symmetry, only the upper region (above the line CB) is
fiscretized

4m J

Fig. 1 Two circular cylindrical conductors with
different potentials.

Figures 2 and 3 depict the potential distributions along the
lines AOB and CD, respectively. Table 1 shows the stored
electric energy. It is noted that the ABC improves the calcu-
lated results. While the homogeneous Neumann boundary
condition (no-ABC FEM) can yield very accurate potentials
along the line AOB (see Fig. 3), it produces much larger
errors along the line CD. The asymptotic boundary condi-
tion, however, renders accurate solutions at both AOB and
CD. The asymptotic boundary is at a radius of 6m in Ref.
[13). In this paper, the asymptotic and the homogeneous
Neumann boundaries are both half circles with a radius of Sm
and centred at O.

Table 1 Stored Electric Energy ( x1071°J)

ABC FEM
0.3855

NO-ABC FEM
0.3631

Ref. [12]
0.3946




Fig. 3 Potential distribution along the line CD.

4.2 Quasistatic Magnetic Field Problem

The quasistatic magnetic field problem consists of an
infinitely long circular cylindrical conductor excited by a uni-
form transverse magnetic field as shown in Fig. 4. The
induced power loss in the conductor is calculated and com-
pared with analytic results [17] and results obtained with the
hybrid integrodifferential finite element - Green’s function
method [18].

Bo=0.707T &§_6,00356m

Fig. 4 A circular cylindrical conductor
excited by a TM field.

It should be noted that in this eddy current problem, the z-
component of the magnetic vector potential A is composed of
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two terms; one is the source term and the other is the reaction
term. It is the reaction term, not the source term, that satisfies
the ABC-s. Therefore, it is necessary (o make appropriate
transformations to accommodate this. In this 2D problem,
the zcomponent of the magnetic vector potential A is
denoted by A hereafter.

The integrodifferential equation governing eddy currents in
the conductor is givea in {7] as

[oA ds
foas

%vu - jOGA + jOO 0 (23)

Let A be the total magnetic vector potential, it can be
expressed as

A=A +A, (24
where A, is the reaction magnetic vector potential and A, is
the source magnetic vector potential. A, satisfies the asymp-
totic boundary conditions. If the asymptotic boundary is cir-
cular, we have

A _ 4, 2,
or " ar T or 25)
From (20), we have
oA, oA,
3 =a(r)A, +b(r) 302 (26)

Substituting for A, and %A, from (24) and (25) into (26)

or
leads to
oA _ PA A, 04,
5 a(r(A-A,) + b(')[-a—ez— 262 1t ¥4))
Rearranging of (27) produces the following expression
% =a(r)+b(r)g%':— + M, (28)
where M, is given by
M,=-a(r)A, - b(r) 22:2‘ +%‘:‘- 29)

Substituting (28) and (29) into the integrodifferential finite
element equation accomplishes the asymptotic boundary for-
mulation for eddy current problems due to external field exci-
tations.

If the outer boundary is at a sufficiently large distance from
the eddy current conductor, the normal derivative of the reac-
tion magnetic vector potential can be assumed to be zero.

—




Therefore, (25) can be rewritten as
0A A,
o "o 30)

Substitution of (30) into (22) leads to the inhomogeneous
Neumann boundary condition integrodifferential finite ele-
meants.

In this eddy current problem, the uniform transverse mag-
netic field can be represented by the source magnetic vector
potential as follows [19]:

A,=-Borcose @30
where B, is the source flux density and 9 is as shown in Fig.
4,

Fig. 5 shows calculated power loss errors using first and
second order ABC integrodifferential finite elements. Fig. 6
illustrates the loss errors employing the inhomogeneous Neu-
mann boundary condition integrodifferential finite elements.
The power loss error using the hybrid integrodifferential
finite element - Green's function method is 0.12% (19]. In
these plots, the abscissa is the ratio of the radius R of the
outer boundary and the conductor skin depth 8.

06
05|

0.4

Loss emor () 3
% 02

0.1

0

4 6 8 10

~——— 2nd order
- = - - 1storder

-——— o=
- -
- - —

12 RS

Fig. 5 Power loss exrors using first and second order
ABC integrodifferential finite elements as a
function of the locations of the outer boundary.

It is noted that ABC-s using integrodifferential finite ele-
ments, like the hybrid integrodifferential finite element -
Green'’s function method, can provide very accurate results.
On the other hand, inhomogeneous Neumann boundary con-
dition can only yield accurate solutions when the outer boun-
dary is sufficiently far away from the conductors (R/S is
greater than 45). It is also observed that the second order
ABC is generally better than the first order ABC and the
ABC boundary need not be placed far from the conductor to
obtain accurate results. It is sufficient to place the outer
boundary half a skin depth away from the conductor surface.
The mesh generation of the outer region also bears impact on
the solution accuracy. The meshes should not be severely

41

25

20

Losserror (5|
% 10—
sl

oll
10 20 30 40 50 O60ORA

Fig. 6 Power loss errors with the inhomogeneous
Neumann boundary condition as a function of the
locations of the outer boundary.

unequilateral.

Since ABC with finite elements preserves the sparsity of the
finite element matrices, it is a better choice compared to
hybrid approaches in terms of computer memory and pro-
gramming complexities.

5. CONCLUSIONS

This paper presents a study of the computation of static and
quasistatic electromagnetic fields using finite elements with
conditions for eddy cumrent problems due to external field
excitations are also derived. The effect of outer boundary
locations on the solution accuracy is investigated. The study
reveals that the employment of asymptotic boundary condi-
tions improves the cakulation results compared to the use of
homogeneous and inhomogeneous Neumann boundary condi-
tions. The accuracy of finite elements with ABC-s, like
hybrid approaches, is very satisfactory. For eddy current
problems, it is sufficient to place the outer boundary half a
skin depth away from the conductor surface.
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THREE METHODS FOR EVALUATION OF
FREQUENCY-DEPENDENT RESISTANCES AND INDUCTANCES
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Abgtract. Three methods for the analysis of frequency-dependent
resistances and inductances of multiconductor transmission lines are outlined
and compared. The first method comes from power-engineering applications, and
it 1s based on a numerical solution of an integral equation for the
distribution of the conductor volume currents. The second method 1s based on
the perturbation technique. The third method comes from high-frequency
applications, and it is based on the principle of equivalent surface electric
and magnetic currents. '

1. INTRODUCTION

We consider a multiconductor transmission line, consisting of (N+1) infinitely
long cylindrical conductors of arbitrary cross sections (Figure 1). In the
circuit-theory analysis of the response of such a line, usually the quasi-TEM
approach is applied [Djordjevié et al., 1987]. Thereby, one of the conductors
is assumed to be the reference conductor ("ground"), for example conductor
#(N+1), and the other N conductors are referred to as the signal conductors.
In the circuit theory, the state of the line is represented in terms of
currents of the signal conductors and voltages between the signal conductors
and the reference conductor.

The circuit-theory analysis starts from the primary parameters of the line.
For a multiconductor 1line, these parameters are the matrix [B’] of
electrostatic-induction coefficients per wunit length (often 1improperly
referred to as the the capacitance matrix), the matrix [G’] of conductances
per unit length, the matrix [L’] of inductances per unit length and the matrix
[R’] of resistances per unit length. The dimensions of all these four matrices
are N by N. Following the quasi-TEM approach, these matrices are evaluated
from quasi-static analyses. More precisely, the matrices [B’] and [G’] are
evaluated simultaneously from one electrostatic analysis of a two-dimensional
system, 1n which the dlelectric permittivity is taken to be complex
[Djordjevié et al., 1989]. The dielectric permittivities vary with frequency,
and so do the matrices [B’] and [G’]. In most practical cases, the relative
variations of the matrix [B’] are very small, but they must be included in
order to obtain a causal response in the time domain [Arabi et al., 1991].

43




0-3’/1'0

021“0

_V €,Mo |

Figure 1. Sketch of a multiconductor transmission line (N=2).

The matrices [L’] and [R’] are evaluated from another analysis. In many cases,
the results are required only for high frequencies, when the skin effect is
fully developed. In those cases, the matrix (L’] is computed by inverting the
matrix [B;] which is evaluated when the transmission line dielectrics are

replaced by vacuum, and the matrix {[R’] 1is thereby evaluated by the
perturbation method. The resulting matrix [L‘] is frequency independent, while
the matrix [R’] is proportional to Vvf, where f is the operating frequency.
However, even !n this case, a correction to the matrix [L‘’] is required in
order to obtaln a causal response, which consists in adding [R’]/w (where
w=2nf 1s the angular frequency) to the matrix [L‘].

However, 1f a broader frequency range is of interest, the frequency variations
of the matrices [L‘] and [R’] are more complicated [Djordjevié and Sarkar,
1994]). At the low-frequency end (towards the d.c. case), the current is
practically uniformly distributed over a conductor cross section, there exist
effects of the internal inductance, and the resistance tends to the d.c.
value. In the intermediate region between the low and high frequencies, the
edge and proximity effects take part in addition to the skin effect. These
variations may be Iimportant not only for broadband signals in ordinary
transmission lines, but also for Iintegrated circuits, where the conductor
thickness can be very small (e.g., thin-films), so that the skin effect need
not be developed even in the gigahertz region.

The variations of the matrices [L’] and [R’] in a broad frequency range can be
evaluated using several numerical techniques. We will concentrate our
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attention to three of them. All of them treat the multiconductor transmission
line of Figure 1 as a two-dimensional system, in which only axial currents are
excited. For simplicity, we will assume the medium to be nonmagnetic
everywhere.

The first technique¢ 1s based on formulating an integral equation for the
volume current distribution within the conductors, and it will be referred to
as the volume-current method. This method has been successfully used for quite
some time in solution of various power-engineering problems involving eddy
currents [Popovié¢ and Popovié, 1972). The second method is a high-frequency
approximation based on an electrostatic analysis with the perturbation
technique [Djordjevi¢ et al., 1989], and it will be referred to as the
perturbation method. The third method is a high-frequency technique, which is
based on the equivalence theorems and the concept of equivalent surface
currents, and it will be referred to as the surface-current method [Djordjevi¢
et al., 1985, Djordjevi¢ and Sarkar, 1986]. These three methods are briefly
presented in Sections 2, 3 and 4, respectively, and in Section 5 a comparison
between these techniques is given and illustrated by numerical examples.
Thereby, the accuracy, ease of programming, cpu time and applicable frequency
range of each method are evaluated. Of course, in addition to the three
presented techniques there exist a variety of other methods for the analysis
of multiconductor transmission 1lines which include the conductor losses
(Faraji-Dana and Chow, 1990, Kiang, 1991]). The most sophisticated of these
methods even take into account the dispersion effects of inhomogeneous
dielectrics.

For all three techniques, each conductor of Figure 1 is assumed to be made of
a linear homogeneous nonmagnetic material of a finite conductivity
(cl....,c"ﬂ). A time-harmonic regime is assumed, of an angular frequency w.

For each conductor the condition c»wec is assumed to be fulfilled (where ec is

the conductor permittivity), so that each conductor can be characterized by
its complex permittivity ee--Jo'/w. The conductors are placed in a linear

homogeneous dielectric, of parameters £ and B, A Cartesian coordinate system

is assoclated with the transmission line, where the z-axis is parallel to the
conductor axis.

2. VOLUME~CURRENT METHOD

This technique has been applied in the solution of power-engineering problems
of analyzing various buses [Popovié¢ and Popovié¢, 1972]. It is based on
formulating an integral equation for the distribution of the current within
the conductor volume, and solving this equation using the method of moments
[Harrington, 1993].

We assume that the excitation of the i?'ste- of Figure 1 1s modeled by an
impressed (known) axial electric field (E, =E H - where u, is the unit vector

of the z-direction), which is unifor- over the cross section of each
conductor, as well as in the z-direction. This field actually replaces the
axial component of the electric fleld produced by the transmission-line
charges, as these charges are not included into the model [Djordjevié et al.,
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1985]. As a response to this figld. axial volume currents are induced in the

conductors. Their density ( -Jzuz) depends only on the transverse coordinates,

and not on z (two-dimensional case), and there are no charges associated with
this current. At each point of a conductor, the current density is related to
the electric fleld by

:’-c(t'rtl) , (1)

where B 1s the electric field produced by the conductor currents, and it can
be expressed in terms of the magnetic vector-potential (1) as

B=-jud. (2)

Assumning the medium to be nonmagnetic everywhere (i.e., p=p ), and neglecting
o

retardation in the dielectric in which the array of conductors is located
(which 1s a valid assumption in power-engineering problems), the magnetic
vector-potential is related to the currents, in the two-dimensional case, as

A=- j J log(r) ds , (3)
S

where r is the distance between the source and the field points, and S denotes
the cross section of all conductors, subject to the condition that the total
current of the (N+1) conductors is zero,

I?-dgso . (4)
s

Equations (1-3) result in an integral equation for the z-component of the
volume-current density vector (Jz).
B, Jz(x.y)
- — ] ’ [} ’
Jo % I Jz(x »¥’) log(r) dx‘dy’ +
S

which is valid for any point within any conductor of the line, where x and y
are transverse coordinates. For convenlence, the coordinates of the source
point are denoted by primes, and

= Eiz(x.y) , (5)

rs= 4?&-:')z+(y-y')2 . (6)

Equation (S5) can be solved numerically, using the method of moments. The
simplest choice is the pulse approximation for the current distribution. (More
sophisticated approximations can involve entire-domain expansion functions, or
even inclusion of skin-effect terms.) To that purpose, we divide the cross
section of each conductor in a number of rectangular cells, and assume the
current to be uniforaly distributed over each cell. We utilize here equal-size
cells, but a better policy would be to take cells to be progressively smaller
going towards the conductor surfaces in order to obtain results valid in a
broader frequency range [Dinh et al., 1990]). The simplest choice for testing
is the point-matching method, with the matching points located at the cell
centroids. The resulting integrals can be solved analytically. Having solved
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for the current distribution, the total current of each conductor can be
easlly found.

The matrices [R’] and [L’] can be evaluated in the following way [Djordjevi¢
and Sarkar, 1986]. In order to properly model a TEM transmission line, the
condition (4) must be fulfilled, which can be rewritten as

N+l
1 =0, (7)
]
=]
where the reference directions for conductor currents (I .) coincide with the
z-axis of Figure 1. The voltage drop per unit length between the signal
conductor #a and the reference conductor is

Wawe1) _
— dz

(Eilz - Ei(llﬂ)z) . (8)
From telegraphers’ equations we have
A« iz 1) = (R 1egelL D) 11D, (9)

where (V] 1s the vector of voltages between the signal conductors and the
reference conductor, [I]) is the vector of signal conductor currents, and [(Z’]
is the matrix of line impedances per unit length. We introduce the augmented

vector of currents of currents of all (N+1) conductors, [Ia]. and the vector
[Eil of impressed electric fields in the (N+1) conductors. The system being

linear, the following relation must be valid:
(%1 = (T1E,) , (10)

where [T] 1s a square matrix ((N+1) by (N+1)). The matrix element T-n
numerically equals the current I. when Emz-l V/m, and all the other impressed

fields are zero. We now take n=1,...,(N+1), solve equation (5) and hence
evaluate the elements of the matrix ([T]. Note that this procedure has no
physical interpretation if the volume-current method 1s used, because each
time the currents are evaluated, equation (4) is viclated. Nevertheless, this
numerical procedure ylelds correct flnal results for the matrices [R’] and
[L’]. From (10) we have

[E,] = 12*111°] , (11)
where [2%/] = ['l‘]”1 is the augmented matrix of impedances per unit length.

From equations (7-9) and (11) we can express the elements of the matrix [Z2’]
in terms of the elements of the matrix [2%/] as

2 = oA

an ~ “m(N+1) (N+1)n *

(h"l)("*l) ’ n.ml'_..'u . (12)

47




3. PERTURBATION METHOD

This is a well-known high~frequency approximation ([Harrington, 1961], valid
when the skin-effect is fully pronounced. In the analysis, the conductors are
first assumed to perfect, and the tangential magnetic fleld at the
conductor surface ( tan) is evaluated. Then the conductors are assumed to have

small losses, so that the magnetic flield at the surface is negliglibly affected
by the presence of losses. The surface density of the power loss in the
conductors 1s evaluated as

dpP

where

Rs = /!uoflc (14)

is the surface reslistance of the conductor. In the quasi-static analysis of
transmission lines, the presence of inhomogeneous (nonmagnetic) dielectrics is
assumed to have no influence on the distribution of the currents and magnetic
fleld. Hence, the magnetic fleld is evaluated for the case when the dielectric
igs taken to be vacuum everywhere [Djordjevié et al., 1989], which is reduced
to solving a two-dimensional electrostatic problem. This solution is based on
substituting the conductors by their surface free charges (of density ps).

located in vacuum. The current density can be expressed in terms of the charge
density as J=c°ps, where cozllfeouo. Setting the electric scalar-potential V

at a conductor surface equal to the corresponding conductor potential, the
following integral equation is obtained for the charge density

- -2%_— I pg log(r) ds =V, (15)
o
s
where s denotes the contours of all conductors. Similarly to equation (3),
equation (15) is valid only if the total charge of the system is zero, i.e.,

I Pg ds =0 . (16)
s

The integral equation (16) is solved numerically, using the method of moments.
The simplest approximation for the charge distribution are pulses (i.e., a
piecewlse-constant approximation), with the point-matching technique. The
condition (16) can be forced if the last point-matching equation is subtracted
from all the previous equations, and substituted by (16). The numerical
accuracy is improved if the pulses are of nonuniform widths, being smaller in
the regions where the charge density varies rapidly (such as near edges or
wedges). Another improvement can be achieved by using Galerkin’'s technique
(Harrington, 1993] instead of the point-matching. In any case, the resulting
integrals can be evaluated explicitly, resulting in a very efficient technique
for the analysis of arbitrary structures [Djordjevié¢ et al., 1989].

Having evaluated the conductor charge densities for a set of independent
driving conditions, the matrix of electrostatic induction coefficients [B;]

48




can be calculated, and the external inductance matrix of the multiconductor
transmission line is related to this matrix by

P T |
[Lel :2- lBol . (17)
o

The matrix [R’] is calculated from the power loss per unit length of the line,
evaluated for varlious driving conditions of the line. From the boundary
conditions for a perfect conductor, the density of the surface currents ( s)

has the same magnitude as the intensity of the tangential magnetic field, so
that the loss power per unit length of the transmission line is

Pé-jksu. (18)
S

The elements of the matrix [R’] are evaluated from the power Pé when one

signal conductor carries a current at a time, and when two signal conductors
carry currents at a time, while the currents of other conductors is zero. The
matrix [R’] varies with frequency as Vf due to equation (14). (In many
practical cases, due to the surface roughness of the conductors, the measured
conductor losses can be substantially higher than theoretically predicted for
a smooth surface.) A more careful insight into the perturbation approach
results in a reactive power in the conductors, in addition to the loss power
(these two powers are equal in magnitude). This amounts to the internal
inductance of the conductors which can be evaluated as

[L;] = [R']/w , (19)

and which should be added to [L;] to obtain [L’].

3. SURFACE-CURRENT METHOD

The basic idea of this method 1s to use equivalence theorems [Harrington,
1961] to break the system under considerations into a number of subsystems,
each of them being filled with a homogeneous medium. To achlieve thls, a layer
of surface electric currents (of density 35, which are in our case axial), and

a layer of surface magnetic currents (of density ﬁs’ which are in our case

transverse) must be placed on the conductor surfaces, with the objective to
produce a zero total fleld in a region. The first subsystem consists of the
region external to the conductors, with zero fields in the regions occupied by
the conductors (external subsystem). The medium in the latter regions can be
substituted by that of the external region, thus homogenizing the medium. The
second subsystem (the first internal subsystem) consist of the internal region
of the conductor #1, with zero field in the remaining space, which can be
filled by the same medium of which conductor #1 is made, etc. [Djordjevié et
al., 1985]. For a transmission line of (N+1) conductors, the number of
internal subsystems is (N+1). The homogenization of the medium is required in
order to use 2 simple form of Green’s functions in the equations for the
potentials. For this technique we use retarded potentials, where Green’s
function for the two-dimensional case for the external subsystem is
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g0) = - 4 1P (20)

22) is Hankel’'s function of the second kind and order zero, and k=w/eu.

In the limiting quasi-static case Green's function (20) tends to - %; log(kr),
thus ylelding the kernels of equations (5) and (15). For an internal subsystem
Green’s function is

where H

gr) = 3 tker(|z|r) + ) kei(|7|0)] , (21)

where ker and kei are Kelvin’s functions, and y=Yjwuc is the propagation
coefficient in the conductor.

The fields can be expressed in terms of the potentials as
2 = -Juz - % curl P + Ei , (22)

R= -Jd? - grad V. + % curl 4 + 31 R (23)

where P is the electric vector-potential, Vm the magnetic scalar-potential,
and 31 and 31 impressed fields. (The -grad V term is missing in (22) because

we agaln assume the electric currents to be z-directed, with no z-variation.)
The potentials are given by

IauI%gu)u. (24)
8
P=c¢ I ﬁs g(r) ds , (25)
8§
1
g=;jﬁwgu)u, (26)
s
where
=3
Pas = 5 div, ils (27)

is the density of surface magnetic charges. In our case K=y everywhere.

In order to have a zero fleld within a region, we impose the boundary
conditions that the tangential component of the electric fleld for the
external subsystem 1s zero, l.e.,

3tan =0, (28)

which leads to an electric-field integral equation (EFIE) for the equivalent
surface currents. We also impose the boundary condition that the tangential
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component of the magnetic field for each internal subsystem is zero, i.e.,

B, =0, (29)
which leads to magnetic-field integral equations (MFIE). As in the volume-
current method, the impressed electric field, 31. is taken to be uniform over

the cross section of each conductor, and this fleld replaces the field
actually produces by the electric charges. This field 1s present only in the
external subsystem. When the fields are expressed in terms of the potentials,
and the potentials in terms of the equivalent surface sources, using equations
(20-27), a set of coupled integral equations is obtained for g and s

An approximate solution of these equations is obtained using the simplest
combination of pulse expansion functions and point-matching. Line magnetic
charges are assoclated with this approximation of the magnetic currents. The
pulses are taken to have nonuniform widths (narrower near wedges), and the
matching points are located at the pulse midpoints, at the appropriate faces
of the boundary surfaces (within regions occupied by conductors for the
external subsystem, and outside the conductors for the internal subsystems).
Taking into account

grad g(r) = g‘-; I (30)

where ﬁr is the unit vector in the radial direction, for the external

subsystem we have for the fleld components produced by an expansion function
(carrying uniform surface currents of densities 7; and ¥ ),

S
e e 3y o(2)
Joi = -3¢ 3sf (- 3y 12 ter) atks) (31)
S
- % curl P = A_ J' % Hgm(ér) b dxs) , (32)
S

where {=Vu/e¢ 1s the wave impedance of the dielectric. For an internal
subsystem we have simllarly

-Juf = - 2 I %; [ker(|7|r) + J kei(}7|r)] d(|7]s) , (33)
s
1 1 s ’ A
-geurl A =-3 «x I o= Lker’ (Ja|r) + § ket’ (|7]r)] 8 d(]a]s) , (34)
s
J A 152
-grad V. = -|A_| [ — l[ker’ (|7|r) + J kei’(|7|r) u ] . (35)
m s r
2n|g| r=r,
where ry and r, are distances between the end polints of a pulse and the field

point, and {=Vjwu/o is the wave conductor impedance.
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The above system is solved for a set of independent driving conditlions,
following a simlilar procedure as for the volume-current method. Hereby, the
urrent of a conductor is obtalned by integrating the surface-current density
s around the conductor circumference. The matrices [R’] and [L’] can now be

evaluated from equations (9-12).
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Figure 2. Sketch of a microstrip line.

S. EXAMPLES

The first example 1s the microstrip line, sketched in Figure 2, of dimenslons
w=0.2 mm, h=0.1 mm, g=2 mm, and t=0.01 mm. The conductors are made of copper,
of conductivity =556 MS/m. Shown in Table 1 are the resistance per unit length
and the inductance per unit length of thils line, versus frequency, obtained by
the three techniques presented in this paper. For the volume-current method,
the conductors were uniformly divided into pulses (rectangles): nw=10 along w,

qg=40 along g and nt=3 along t, resulting in the total of 150 unknowns. For

the perturbation technique, the numbers of nonuniformly distributed pulses
were nw=25, nt=3 and n8=85 along the corresponding lengths, resulting in a

total of 141 unknowns (the thickness of the ground plane was taken to be
zero). For the surface-current method, the number of nonuniformly distributed
pulses were nw=25, ng=50 and nt=3, respectively, resulting in a total of 324

unknowns (for electric and magnetic currents).

Table 1 illustrates some features of the three techniques. The volume-current
method ylelds excellent results at low frequencies. For example, for f=10 kHz,
the numerical results are L‘=440.5 nH/m and R’=9.821 Q/m, while the
analytically calculated values [Djordjevié and Sarkar, 1993] are
L‘=439.27 nH/m and R‘’=9.821 m. The surface-current methcd ylelds a smaller
accuracy, especlally as the frequency becomes very low. The accuracy can be
improved at the expense of taking more pulses. The results of the perturbation
method for low frequencies are a large underestimate of R’ and an overestimate
of L’, and they are practically useless.
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In the medium-frequency region (30C kHz-50 MHz) the agreement between the
volume-current and surface-current methods 1s excellent, while the results of
the perturbation method are still poor. Above about 100 MHz, in the
high-frequency (skin-effect) region, the results for R’ obtained by the
volume-current method tend to saturate, instead of increasing as vf. This is
due to the pulse approximation for the current distribution, as there must
always be a current In the outermost layer of pulses. In the real systenm,
however, the thickness of the current layer constantly decreases with
increasing the frequency. The results for R’ obtained by the surface-current
method follow very well the vf behavior and they are faceln a good agreement
with the perturbation method. However, at very high frequencies {above about
10 GHz) R’ obtained by the surface-current method starts increasing much
q faster. This 1s a consequence of radiation. Namely, the structure behaves like

a two-dimensional magnetic dipole, the radiation resistance of which 1is

proportional to f3 [Djordjevi¢ et al., 1985]. There would be no radiation

effects in the numerical model 1if the quasi-static kernel of equation (5) were
used instead of (20).

Table 1. Primary parameters of microstrip line sketched in Figure 2.

Volume-current Perturbation |[Surface-current
method method method

f [Hz] R T Iy T Y T
[/m] |(nH/m]| [Q/m] [[nH/m]l| [Q/m] |[nH/m]
10.00 k 9.821[ 440.5 0. 131(2365. 9.630] 431.9
17.78 k 9.822( 440.5 0.174]1845. 9.630| 433.1
31.62 k 9.822] 440.5 0.232]1456. 9.630[ 433.2
56.23 k 9.823] 440.1 0.310[1163.0 9.631| 435.3
[100.0 k 9.826| 440.2 0.413] 943.8 9.633| 436.1
(177.8 k 9.835( 439.3 0.551| 779.3 9.642] 436.2
316.2 k 9.862| 436.7 0.735| 656.0 9.669| 434.4
562.3 k 9.942| 429.3 0.980| 563.6 9.749| 427.4
1.000 M| 10.14 | 411.6 1.306| 494.2 9.946| 409.6
1.778 M| 10.48 | 382.5 1.742] 442.2| 10.29 | 380.2
3.162 M| 10.87 | 353.3 2.323| 403.2| 10.68 | 350.6
5.623 M| 11.23 [ 333.7] 3.098] 374.0| 11.05 | 330.9]
10.00 M 11.59 | 322.9 4131 352.0[ 11.43 | 320.2
17.78 M 12.07 | 316.3 5.509] 335.6] 11.94 | 313.6
31.62 M 12.67 | 311.8 7.346| 333.3| 12.69 | 308.8
56.23 M 13.40 | 308.7 9.796| 314.0| 13.80 | 305.1
100.0 M 14.42 | 306.7| 13.06 | 307.1| 15.61 | 302.4
[177.8 M 16.13 | 305.1| 17.42 | 301.9| 18.70 | 299.7
316.2 M 18.72 | 303.5] 23.23 | 298.0| 23.54 | 297.2
562.3 M 22.14 | 302.3] 30.98 | 295.1| 30.80 | 294.9
1.000 G| 26.42 | 301.3] 41.31 | 292.9| 41.54 | 293.0
1.778 G| 30.27 | 300.5] 55.09 | 291.2| 55.64 | 291.3
[ 3.162 G| 32.38 | 300.1| 73.46 | 290.0] 73.73 | 290.1
5.623 G| 33.24 | 300.0[ 97.96 | 289.1| 98.1 289. 3
10.00 G 33.52 [ 299.9] 130.6 288.4| 133.7 288.7
17.78 G 33.61 | 299.9] 174.2 287.9| 199.2 288.7
31.62 G 33.64 | 299.9| 232.3 287.5| 387.5 289.5

The second example are two coupled microstrip lines, sketched in Figure 3, of |
dimensions w=0.6 mm, s=0.02 mm, g=2 mm, h=0.1 mm, ¢=0.02 mm, and the !
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conductors are made of copper. Given in Table 2 are the elements of the
matrices [R’] and [L‘’] for several frequencies, as computed by the three
techniques. For comparison, the exact d.c. values for the elements of the

matrix [R’] are Ril- '2=1.935 /m and Rizs '1=0.446 f/m. This example confirms

the conclusions drawn from the previous example about the behavior of the
results of the three methods.

W S W

e
¢
}
)
#

Figure 3. Sketch of two coupled microstrip lines.

Table 2. Primary parameters of coupled microstrip lines sketched in Figure 3.

Volume~-current Perturbation |[Surface-current
_Eehod mehod mehod

D7 7T =77 T =R’ 7 7 7 ;'l 7T =77
£zl |[R11™R22|l117L22|R11™Ra2 | L11=L22 [R11=Ro2 [ L1715
’ - s ’ ’ ’ ’ ’ ’ ' r' -l
127R21 | L127L21 |R12™R21 | L127L21 | R12=R2 | L2712y

[Q/m] |[nH/m) [/m] | [nH/m) (/m] | [nH/m]

16.00 Kk 1.935 | 253.9 | 0.074 [1309. 1.898 | 247.8
: 0.446 | -26.4 |-0.008 | -90.7 | 0.459 | -24.3
100.0 Kk 1.945 | 250.7 | 0.235 | 501.7 | 1.908 | 247.9
: 0.440 | -23.9 |-0.025 -3.7 | 0.451 | -23.1
1.000 M| 2-183 187.1 | 0.742 | 246.3 | 2.149 | 184.8
: 0.316 15.6 |-0.080 23.9 | 0.327 16.5
10.00 M 2.576 | 156.2 | 2.347 | 165.6 | 2.694 | 152.8
. 0.161 30.2 |-0.253 32.6 | 0.075 11.9
100.0 M 4.653 | 149.1 | 7.422 | 140.0 | 6.829 | 139.7
’ 0.912 29.9 |-0.800 35.3 |-0.263 35.4
1.000 G 7.576 | 146.0 |23.47 131.9 [23.28 131.9
: 1.437 29.0 |-2.53 36.2 |1-2.25 36.1
10.00 G | 7-748 [ 1859 74.22 129.4 [77.19 122.9
’ 1.457 29.0 |-8.00 36.5 |-1.80 36.4

Regarding the complexity of the programing, the volume-current method 1is
simplest, the perturbation method 1s somewhat more complicated, and the
surface-current method is much more complicated than the other two methods.
Regarding the c.p.u. time, the perturbation technique is faster than the other
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two methods even if only one frequency ls consldered, because for a given
accuracy (in the high-frequency region, where this method is valid) it usually
requires much less unknowns than the other two methods, and it involves only
real arithmetics. In addition, results for varlous frequencies can thereafter
be obtained even by hand calculations. The c.p.u. times of the volume-current
and surface-current methods are comparable in most cases.

6. CONCLUSION

Three numerical methods for analysis the frequency-dependent matrices of
resistances and inductances per unit length of multiconductor transmission
lines are presented and compared. The overall performance of the
volume-current method is best at low and medium frequencies (when the skin
effect 1s not yet developed), but 1t can be extended into the skin effect
region using nonuniform segmentation, adapted to the skin depth at the highest
operating frequency. For the frequencies deep in the skin-effect region, the
perturbation technique is superior. The surface-current method is the only one
that covers the full frequency range, at the expense of a more complex
programing than the other two techniques, and a somewhat reduced accuracy at
very low frequencies. Therefore, a combination of the volume-current method
and the perturbation method seems to be the best cholce for most applications,
with a particular caution taken to obtaln a good overlap of results at the
beginning of the high-frequency region (when the skin depth is of the order of
the conductor thickness). However, the surface-current method is indispensable
for an independent check of the results in this transition region.
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ABSTRACT: A numerical model is proposed for
application to dispersive transmission lines.
Numerical results are compared with the analytical
solution of the dispersive wave equation based on the
wave propagation solved by means of finite element
method in one dimension case and Newmark-
method in the time domain. This comparison between
numerical and analytical solutions validates this
numerical method as a suitable method to study wave
propagation in dispersive transmission lines. Several
practical applications including electromagnetic
propagation in a plasma and the transient response of
a surge wave in high-voltage transformer windings are
presented in this paper.

1 INTRODUCTION

Transmission lines can be used to model a large
variety of important applications in addition to the
transmission of a signal from one point to another [1].
Physical phenomena such as the propagation of
solitons [2]; breakdown process of an avalanche diode
[3.4]; high-voltage resistance divider [5]); various
plasma physics phenomena [6,7); propagation in
multi-layered earth media [8] bave practical
applications which have been modeled by transmission
lines. While most of these problems can be solved
analytically some of them are extremely difficult or
impossible to solve by purely analytical methods.

Since the computational power of even quite small
computlers has rapidly developed, numerical methods
are playing an increasingly important role in solving
tie mathematical equations[9,10]. Such numerical
techniques have made wave propagation problems
easy (o solve using numerical models and results can
be represented graphically for rapid understanding
[11].
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In this research, a one¢ dimensional finite element
model is employed for a variety of dispersive
transmission lines with a variety of boundary
conditions. The emphasis taken in this paper is that
the calculation technique itself is very important if
accurate and convergent solutions are to be obtained.
Calibration factors such as the ratio of lumped
capacitors (see fig. 1), velocity of traveling wave, the
clement size and time step have dependent
relationships which can not be ignored. The numerical
emmors can be coantrolled by sufficiendy fine
discretization. Initially the method is validated by
comparing numerical solutions with the analytical
solutions for the case of the dispersive wave equation
for a linear, homogeneous transmission line. In the
case of inhomogeneous and nonlinear problems the
most suitable method is often a numerical method.
Appropriate models for nonlinear dispersive
transmission lines are the subject of this paper.

2. A BASIC EQUATION FOR DISPERSIVE
TRANSMISSION LINES

Typical transmission lines with dispersive properties
can be categorized into linear and nonlinear
transmission lines. Fig. 1. shows generalized
dispersive transmission lines with both loss and
nonlinear characteristics.

5 Z
B G
LT

Z

a. Linear parameter




Z;

b. Nonlinear parameter

Fig. 1. Typical sections of transmission lines with
linear and nonlinear parameters

As a start in the numerical formulation of a number of
simple cases, the basic analytical solutions of
dispersive wave equations for a linear transmission
line must be obtained and compared with numerical
solutions. In this section the basic solutions of
dispersive wave equations are discussed:

21 Lossless dispersive transmission line
"I'he lossless dispersive transmission line in Fig. 2 can

be described by a set of partial differential equations in
instantaneous voltage u and current i as follows [2):

LAx
i —f‘ﬂ‘T\T-
—_——] i _1__0
I
CkgA‘ TCOAx
O . -C
I-: Aax _.'
Fig.2. A section of lossless dispersive
transmission line
o _ . du_ o’u a
ax "o tox )
du oi'
x o @
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Eif

where C, and C, are the series and parallel
capacitances per unit length and L is the series
inductance per unit length; i is the total instantaneous
current, i’ is the current in the inductive branch, « is
the instantaneous voltage and x is the direction of the
transmission line. From (1) and (2), we can derive a
dispersive wave equation for the voltage u

d*u du o'u
-Cl—-N =0 3

ot Sar Porax @
where

C? =1/ LC, )

A, =C,/C, ©)
The dispersion relation is obtained by assuming a
solution of the form  u~u,exp (jotijkx).

22
l+ kZXZD (6)

where @ is the angular frequency and k is the wave
number of propagation. The dispersion relation is
shown schematically in Fig. 3 [13].

L7 @lk=Cs(Ci=0)
7/

r_..___/_._ —_—

P4
/ (Cr0)

Cs/AD

Fig. 3. Dispersion relation of wave equation,
where C is the velocity of the wave.

In the case of C;—0, Ay in the third term of eq.(3)
tends to zero. The lossless wave equation is retrieved,
there is no dispersion, and the initial waveform does
not change during propagation. It is the well known
wave equation [12]. However, when Ap (which is
called Debye shielding length in plasma physics) is




larger than zero, the wave is significantly dispersive
and the waveform changes as the wave progresses.

Since eq. (3) is a linear dispersive wave equation, the
analytical solutions are obtained using the method of
Laplace transformation. Consider the transient
response for which the initial conditions of
transmission line and its derivative are

u(x,0)=0, {M} =0 Y)]
a‘ =0

and the boundary conditions for the open circuit at
terminal N are

u(0,8) =1, {a“—(a’:'—)}m =0 @)

where [ is the total length of transmission line.

With the inverse Laplace transformation of solution
using Heaviside's expansion theorem, the exact
solution of Eq.(3) for the open boundary condition is
given by

% 16£2 sin{(2m—1)nx / 2¢)
u(x,)=1 E{“z+(2m-1)’x’pu2}(2m-l)ﬂ

-cos(W,,, M

9)
where
o = Qem-1)x _
" a1t +2m-n2nt 2}
(10)

In the case of the boundary conditions for the terminal

short-circuited, the spatial initial conditions are the

same and the boundary conditions are given by
u(0,)=1, u(,t)=0 an

The exact solution obtained using the same procedure
as above, can be written
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X
ulx,t)=(1 —7)

_§; 2¢%sinfmx / €
S +m*Ain?imr

-cos(w,, )t

(12)
where

mrC,

On = GRS EE

(13)

For both cases,.as Ap tends to zero, the solutions (9)
and (12) reach the well-known solutions of the non
dispersive wave equation [12]. The details of the
procedure of solving eq. (3) by using the method of
Laplace transformation can be found in [14].

22 Dispersive transmission line with loss

A natural extension of the dispersive transmission line
approach is the inclusion of resistance. The
transmission line with loss is shown in Fig. 4, in
which linear and homogeneous parameters are
assumed [15].

. LAX RAX
4 ——g 24
foSinanmammalll {
i l
I\
C, /0x -I— Coarx
!- Ax J

Fig.4. A section of linear dispersive
transmission line with loss

The equivalent circuit corresponding to the following
partial differential equation for the voltage u is
obtained as

Fu o Pu g B D

ta >

S e T 0

(14)




where a =(R/L)12. The dispersion relation for this

oquation is derived as follows:
. Cik? .2
“Trow, Hee as

We consider the transient response for which the
initial conditions and the boundary conditions for the
open circuited terminal are the same as (7) and (8)
respectively. With the inverse Laplace transformation
of solution using Heaviside's expansion theorem, we
derive the exact solution of Eq.(14).

u(x,t)=l—2A_e"‘ i (g-m——lnx)
m=l 2‘

-cos(m, )t

(16)

where / is the total length of the transmission line, A,
is

2j
14{R+ (=51 jo,)L)(-8 ¢ jo,)C, ]"’

A=

“tjety [ R+(-52 jo,)LI(-8% jo, )C,

1
Co{R+2L(-8% jw )}
{1+C, (-8 £ jo )R+ L))

an
8 and @, are expressed as follows:
3=R/2L (18)

w: =
° " 4LLC,+(2m-1y’n’LC, 4D

The case of the boundary conditions for the short-
circuited terminal must be considered here, when the
initial conditions are the same as that of eq. (11).
Using the same procedure as before, the exact solution
is

X
u(x,t)-(l-7)

-zA_e"’ sm(—zﬂ
our 2¢

20)
nx)- cos(w, )t

where

2
11+ {R+(81 jo )LY=52 jw,)C,
bt t [ IR+ (3% jo,) L}(-5 % jw,)C,

A.z

1
G IR+ IL(BE o))
(1+C, (=52 jm, )R+ L))

@n
g is expressed as

o = (m)z _ R’

For both cases, as R tends to zero, the solutions of
(16) and (20) will be the same as that the solutions of
(9) and (12) which are the dispersive transmission
lines without loss.

3. NUMERICAL MODEL OF DISPERSIVE
TRANSMISSION LINE

The wave propagation of an arbitrary waveform on a
dispersive transmission line is a time-dependent
problem. Such problems can usually be simplified and
solved as a unidimensional problem in time and space.
The finite element method requires that the spatial
field can be divided into a number of elements and
discretized by means of the Variational method or
Galerkin approach [16]. The system matrix equations
obtained can be then solved by Newmark-$ method or
the Runge-Kutta method. If the problems are related to
nonlinear properties, then the Newton-Raphson or
Relaxation methods can be used to solve the nonlinear
system matrix equations.

3.1 Lossless dispersive transmission line

Using the Galerkin method, equation (3) for the one
dimensional case can be written as

[4
G=( -2 )Ndx 0
i ! Saz Daza

(23)

where N; is a shape function, the matrix equation for a
single element is obtained as




[MT (i@)* + CIISY (u)* + A [S)" (i) = {0}
(24)

where () indicates the derivative with respect to time.
(M] and [S] are

w=2 o
[]—612 29
seoLf1

BF=2l-1 1 @8

where [ is the length of element. Then we use the
Newmark-f§ method to solve for increasing time steps
(17]). The system matrix equation will be written as
for the Newmark-p method.

ADIS1+IMD{iE}+ CIISKu} = {0} @D

A comparison between numerical solutions and
analytical solutions is given in Fig. 5 where the
element number is 20 and the number of nodes is 21.
The initial voltage at all i nodes u(i)=0 at t=0, and the
boundary condition at terminal u(27)=0 for the short-
circuited case and ou/dx=0 for the open circuit. To
simplify the problem the mutual inductance is not
considered. Clearly, the numerical solution is in good
agreement with the analytical solution. In addition, it
was found that A, the time step At and the element
length Ax must be related by the conditions to ensure a
stable solution.

Ax/ Af)C, (283)

A (Ax(3A, (28b)
where At is the time step size, Ax is the element length
and C; is wave propagation velocity. Ap, is the Debye
shielding length [13] or ratio of lumped capacitors in
the section of dispersive transmission line.

The error control of time-dependent problems has been
discussed in many numerical method books and
articles, but the numerical solution of a dispersive
wave cquation does not appear in those books and
articles. To obtain a convergent solution with
mipimum error, we found that the normal wave
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equation only n :d< condition (28a). For the
dispersive wave equ.iz , the numerical solution must
not only satisfy (28a,, but (28b) as well. The physical
meaning of Eq. (28a) is that the wave must not
propagate more than one subdivision in space during
one time step. Eq. (28b) means that the element
length must be chosen between Ay, and 3Aq, [14). Since
this transmission line is a bomogeneous problem, to
gain minimum efror from (28a) and (28b) the element
number was found to be 20 elements.

Applied potential

0.19 0.8 0.28 on 0.9%

-20_00 20
o

NODE=~0

0.19 0.8 0.58 .77 0.96

POTENTIAL
U]

=2,0_ 00
o

NODE=I  mime x10 " sec

(a) Terminal is open

Applied potential

Q
e
(-
©lo 0.19 0.8 0.8 [ %] 0.%6
(-}
~
1)

NODE=0

POTENTIAL
0_ 2,0

°« NODE=11 Time x |0-~sec

(b) Terminal is short circuited

Fig. 5. Comparison of numerical solutions
with step wave excitation. The
continuous line is the analytical
results and the dashed line indicates
the numerical resuits.

The parameters used in calculation are the clement
number = 20, Cg = 5.68 cm/sec, Ap=3.29cm, and
1=95.2cm.

32 Dispersive transmission line with loss
Using the same procedure, the single element matrix

equation for a dispersive transmission line with loss is
obtained as follows:




(M) (i) + CH ST {u)* +A%[S]° (i)
+a? [M)* {af + AL [S) {a}* ={0)
29
where (M] and {S] have the same details as (25) and
(26). Thus, the system matrix equations can be written

as ¢q. (30). The same numerical procedure as above is
used to solve the system matrix equations.

AM)+ 2 [SH{id} + (@ [M]+ oA [S]{u}
+C3[SHu} = {0}

(30)

POTENTLAL
=308
—y
*
]

(a) Terminal is open, the continuous line is
for no loss, the dashed line is the loss case.

—————

POTENTIAL

>
"
2

!-ll ‘-‘ .32 8 40 -4 [ 3 1]
TIME x10 " (sec)

(b) Terminal is short circuited, the continuous
line is for no loss, the dashed line is the loss
case.

Fig. 6. Dispersive transmission line with loss.
element number=20, Cs=5.68cm/sec,

Ap=52.91cm, o= 175.25sec, and /=95.2cm.
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Fig. 6 shows the results of eq.(30) solved by Newmark-
B method. The results indicate that the wave is not
damped significantly during propagation, even at the
present value of parameter ( o= 175.25sec) used in
the calculation.

33 Inhomogenous dispersive transmission line

Sometimes it is of interest to consider inhomogenous
problems in a continuous transmission line with finite
length. The distributed parameters of the transmission
line for each section may be different, but this does not
result in a significant difference in the solution. The
matrix equation for inhomogenous problems can be
written as

(M (i)’ +[—§,‘—§"—;[sr ){u}‘
ol @1
1 e cre
+(L_(;t)—q,_(n—)lsl ){u} = {0}

where the parameters of Cy(n)-Al, L(n)/Al, and Cy(n)/
Al are dependent on each section, and »n is the section
number of an inhomogenous transmission line.

4. NUMERICAL MODEL OF NONLINEAR
DISPERSIVE TRANSMISSION LINE

Nonlinear dispersive transmission lines have been
used for describing various physical phenomena. In
particular, the soliton wave propagating in a plasma is
governed by the well studied Kortewg-de Vries (KdV)
equation has been investigated [18,19], and the
numerical solution of the KdV equation has been
proposed by Tadahiko Kawai etc. [20]). In other
practical applications in which L(i) and Cy(«) have
various characteristics, the KdV equation can no
longer be used. One must then find a numerical model
which can be used with various nonlinear parameters.
The matrix equations of nonlinear dispersive
transmission lines for each element are proposed as
follows:

41 Dispersive transmission line with nonlinear
inductarice
For simplifying the problem, the lossless dispersive

transmission line shown in fig. 7 is considered, where
L(i") is a nonlinear inductor dependent on the current




or the voltage difference between two points of each
section.

L Ax
i XN
4’ N
k
C, Ax == Codx
O- O
!- Ax J

Fig. 7. A section of dispersive transmission
line with nonlinear parameter L

The matrix equation for the dispersive transmission
line with nonlinear inductance problem can be written
as

[M]° @) +[%[s1‘ ){u}'

0

(L( 1)C. (ST )(ii}‘ ={0}

where L(i") is a nonlinear inductance related to current

o

(32)

42 Dispersive transmission line with nonlinear
capacitance

In the same consideration, the lossless dispersive
transmission line can be described as fig.8, where
Co(u) is a nonlinear capacitor dependent on the
voltage u. The matrix equation for the dispersive
transmission line with nonlinear capacitance problem
can be written as

efre k e e
[M]* {i} +(-—-—-—Co(u)[S] ){u}

Te o sT ){izr ={0}

LAx
i
o —0
i
C,Ax F Cox
o— )
.L Ax —J

Fig. 8 A section of dispersive transmission
line with nonlinear parameter Cy(u)

Equations (32) and (33) can be solved by using the
Newton-Raphson method or the decelerating
relaxation method which has been often used in the
nonlinear electromagnetic fields analysis [21,22).

S. APPLICATIONS OF DISPERSIVE
TRANSMISSION LINE

As we discussed in the introduction, the dispersive
transmission line can be used for modeling various
physical phenomena and practical application
problems. In this section, dispersive transmission lines
are used to investigate wave propagation in a plasma
and the transient response of a surge in transformer
windings.

51 Dispersive wave propagation in plasma

It is well known that the electron plasma waves and
ion-acoustic waves are electromagnetic waves which
propagate in nonmagnetized plasmas. Since the
characteristic frequency of the ion-acoustic wave is
lower than the ion-plasma frequency (flpj), both
electrons and ions participate in this wave motion. The
ion-acoustic wave is not strongly damped only when
the ion temperature T; is much lower than the electron
temperature T,. The ion-acoustic wave equation for
the perturbed ion density n is defined as follows [23]:

Phy_ 2 e VR,

At S ox? =0

° atzax (34)

where C, and Ay, are the ion-acoustic wave velocity
and Debye shielding length respectively.

C, =(T, I M)"? (35)




p =(T,/4xrnye’)? (36)

T, M and n, are the electron temperature, mass of ion
and sieady component of the ion density respectively.

Assuming u = i,, the dispersive transmission line can

be used 0 describe the ion-acoustic wave in the
plasma. Hence, the C, and Ay, can be replaced as

C, =(T, I M) =(1/ LC,)"? <))
p =(T, 1 4nn,e*)"* =(C, /1 C,)"* (38)

where Cy=I/T,, L=M and Cjp=1/4xnge?.

e Applied potential
& z
Pl
= e ————
»oto 0.16 s.32 g.48 0.64 0.80
TINEw 104 gac
' o18TARCE 0.0 ¢cn
o
ANALYTICAL SOLUTION
:ﬂ /\rv
580 0.18 0.32 9.48 0.64 0.80
& TINL ™ 1074 sec
' 01STANCE 3.04 cn
-4
4 NURERICAL SOLUTION
S 4 —
veg.o 0.16 0.32 (X1} 0.64 0.50
TINE ®10™¢sac
' 01STANCE 3.04 o

Fig. 9 Step wave response. kD-4x10‘2cm,

Cs=2x10*5cm/sec, i=40cm, element
number=500.

G

~ ] Aﬁglud potential

-

Slo 0.16 0.32 0.48 0.64 5.80

2 ] TIME *10 43ec

o DISTANCE 0.0 cu

ol A

%lo " 0.6 0.32 0.48 o4 0.60

e TIME #10 Ysec

¢ DISTANCE 1.04 ¢M

i

o .

Bio 0,18 0.32 oW 0.6 5280

Q TIME *10" "gec

b DISTANCE 3.04 cM

Fig. 10. Pulse response, 3\1,-4x10‘2<:m

Ce=2x10*5cm/sec, I=40cm, element
number=500.

Using the same numerical approach of the previous
section, the ion-acoustic wave of the plasma with
different input pulses can be obtained {14). These are
illustrated in Fig. 9 and Fig. 10. From Fig9, we
found that the numerical solution has a good
agreement with the analytical solution from (12).
There are some phase shift between them after several
oscillations, which can be considered as a computer
processing error. Fig. 10 shows the pulse response in
plasma. The comparison between numerical and
experimental results has made for the pulse response
in plasma [14).

52 Dispersive wave propagation in high-
voltage (HV) transformer windings

In order to choose a proper winding arrangement and
insulation structures in the design of HV transformer
windings, the transient voltage stresses to all sub-
compounents of the structure must be known. To
investigate voltage oscillations and impulse-voltage
stresses in HV transformer windings during impulse
test and design reliable insulation structure for the HV
transformer windings which can withstand various
kinds of transient over voltage, the most convenient
and lowest cost method of acquiring transient voltage
response data is using a numerical model of the
transformer windings and solving for the time
function response to applied voltage pulses by means
of a suitable numerical analysis. Normally, the
impulse response and produced higher transient
voltage in the transformer windings can be calculated
by using the distributed equivalent circuit of
transformer windings as a transmission line has been
used as shown in Fig. 11 [24,25]. To simplify the
problems the case of the mutual and nonlinear
inductance is not considered in this calculation.

L.V winding

) U’!I[WIET!HTHHITHHHHHHHHIIJ

S hise coil HY wihnding

(@) Cross-section of a typical 2-winding
H.V. transformer




®) Distributed equivalent circuit of
transformer winding

Fig.11 Numerical model of H.V. transformer
windings, Element number=20, 1.=4.5SmH/Al,
C,=67.5pF-Al, C,=383.5pF/Al, and
1=95.2cm.

The impulse voltage oscillations caused by resonant
circuit which is excited by any impulse can be
calculated by numerical or analytical method. The
voltage oscillations in the transformer windings is a
kind of dispersive wave propagation and the
frequency of oscillations and amplitude of transient
voltages can be calculated by eq. (9) and (12) where
the applied impulse is a step wave.

For the other different shapes of impulse voltage
(including the IEC standard lightning impulse
voltage waveform [26] ) and the inhomogenous
distributed equivalent circuit of transformer winding,
the calculation can be easily done by numerical
methods. The numerical results for transient responses
from various applied impulses are shown in Fig. 12
[15].
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Fig. 12. Standard lightning impulse voltage
response, element number=20,
L=4.5mH/a1, C=67.5pF Al

Cy=383.5pF/Al, and [=95.2cm.

The effect of dispersion is an oscillating voltage which
is up to 1.5 times the input impulse voltage in the case
of shorted-circuit and the oscillating voltage will be
larger than 2.0 times the input impulse voltage at the
opened terminal, if the initial voltage is not zero.
Aliematively, for the chopped waveform, there is no
significant transient overvoltage along the transformer
windings [15].

6. CONCLUSIONS

In this paper, dispersive wave propagation in various
transmission line configurations is discussed. Basic
analytical solutions with step wave excitation were
found and compared to finite element solutions. The
results show good agreement. The error control of
numerical solution can be worked out by using eq.
(28a) and (28b). The numerical model has advantages
in dealing with some practical systems excited by
different excitation waveforms, especially for
inhomogenous, lossy and nonlinear problems.
Appropriate numerical models have been proposed.
Although while only two applications were modelled
by dispersive transmission lines, there are many more
interesting phenomena which can be modeled using
these techniques.
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Equivalent electric circuits approach for the modeling of non-linear
electromagnetic fields
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Dip. di Sistemi Elettrici ed Automazione, Universita di Pisa, Via Diotisalvi 2, 56100 Pisa.

Abstract- In this paper a method for the analysis of
non-linear three dimensional electromagnetic fleld is
presented.

The conductive and magnetic regions of the examined
system are subdivided in elementary volume elements in
which a uniform current density J and magnetization M is
assumed. By integrating Ohm's law inside the conductive
regions, a set of equations representing the equilibrium
equations of an equivalent electric network is obtained.

The knowledge of the currents in the conductive regions
allows the evaluation of the electromagnetic flelds and the
determination of the forces among different bodies.

Applications of the method to the solution of
benchmark problems of time varying linear systems, and
pon-linear static cases are presented.

I. INTRODUCTION

The historical concepts of the electromagnetic theory,
characterized by the fields as the quantities that are
physically significant, have been recently discussed by
John Carpenter in a series of papers [1-3], where he
investigated the consequences of a change of approach to
clectromagnetism. In his view the electric potential V
and the magnetic vector potential A become the principal
quantities respectively defining a measure of the
potential and kinetic energy of a system of charges, while
the field vectors E and B are no more than symbols
denoting derivatives. Therefore, in this charge based
approach, the energy density w = (pV + J-A)/2 represents
the kinetic energy and potential energy of the source
charges, while in field theory it is considered as a
mathematical equivalent. Even though the two
approaches to electromagnetism lead to the same
equations in terms of the potentials V and A, they differ
substantially from the physical viewpoint. The essence of
the V, A treatment is that there is no concern about how
the actions are conveyed through space, since V and A
quantify all possible interactions between any groups of
charges. The potentials V and A at the considered
frequencies, can be obtained from the source q's and J's :

S U [R0) oiy g b [ o
ver) 4m£|r_,.| aAr % Ar) =1 ‘_[ A

where the charge density p and current density J in the
integrals are due to the actual charge and current density
distributions plus the a priori unknown distributions of
the equivalent charges and currents due to the presence
of dielectric and magnetic materials.

The approach makes no direct use of the concept of
flux, although it provides convenient means of
introducing it, therefore for several purposes the field-
based and charge-based approaches are equivalent.
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Hence most of the numerical methods in terms of the
potentials V and A can use the same basic equations.
Nevertheless the integral formulation presented here can
be considered as the logical outcome of the charge-based
view of eleciromagnetism, and its inherent logic differs
from other differential and integral methods relating to
low frequency electromagnetic fields [4-7].

Since the sources are limited to the q's and J's, the
proposed scheme makes no use of magnetic poles, thus
the concept of magnetic circuit has no part in this model
and the field equations are modelled by electric circuits
only. Therefore the presented model bas the advantage of
a natural and easy linkage of circuit and field equations.
Furthermore, it is not affected by numerical instabilities
when it takes into account the relative motion among
conducting bodies. As an integral formulation, it needs
the modelling of conductive regions only, and do not
require the specification of boundary conditions.
Furthermore the proposed procedure has ihe
characteristic of an easy data input for the definition of
the arrangement of the ferromagnetic and
non-ferromagnetic regions. By utilizing the symmetries
of the examined system it is possible to reduce both the
computational time and the required memory workspace.

II. MODEL

The whole volume Q of conductive and magnetic
regions is subdivided in N elementary volume elements,
that can have several shapes ( tetrahedrons, bricks,
cylinder sectors ), as shown in the 2-D decomposition of
figure 1. Consequently, the vector potential A can be
evaluated from the eq. (1), considering instantaneous
propagation for the application of interest, adding the
iniegrals relating to every elementary volume.

Fig. 1 First decomposition

Connecting the centres of nearby elements by means
of segments parallel to the coordinate system unit
vectors, we obtain a 3-D grid as shown in the figure 2.




1
10V N
Lo 4N

Fig. 2 Grid (solid lines)

Then we associate to every segment of the grid a new
elementary volume element having four edges parallel to
the segment, and the faces normal to the segment with
their centres placed at nodes of the grid, see fig. 3. We
assume that, inside every volume element, only the
current density and magnetization component parallel to
the segment associated to the volume element exists.

Fig. 3 Association between volume elements (solid lines)
and segments (dashed lines)

The vector potential in the generic k-th element is:

x,x

ZH ”’,Z‘ "f’,“’dsz ZHI ";’ el
F==] Fe=sT 7]

i=l vj

where V; is the j-th elementary volume, Jg are the
current sources, Jj; the induced currents, Jy; the volume
magnetization currents, M; the magnetization of the j-th
volume element and n; is the normal to the j-th element
surface.

Assuming an uniform distribution of the
magnetization M; inside each volume, we have no
volume current densities Jpy,:= curl(M = 0. Furthermore
assuming an uniform dlsmf:uuon of Lhe current density
J; (t,x) = J, (1) and Jg(t,x) = Jg(t) we obtain that the
magneuc vector potential A, and consequently the flux
density B are proportional to the currents I;; ij and I and
to the magnetizations M;. In this way, we can denve the
coefficients a, § and A o{‘ eq. (2a), (2b), (2c) by means of
analytical expressions [8,9] developed in previous works,
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thus obtaining a quick and accurate evaluation of the
electric parameters of the equivalent circuit. The flux
density B(P,t) = VXA(P,t) or By = VxAy is equal to:

3N
By=Bpy +By +By (2 B =@, M; (2)

=
R 3N

By =) B;-Iy @b); By =) Al ().
j=1 j=l

The Bgy, field, due to the current sources, is obtained
by subdividing the current sources in R elementary
elements (slabs or rings). The B;y field ,due w0 the
induced currents, is obtained by adding the contributions
of all volume elements, while the B,y field, due to the
magnetizing currents, is obtained by taking the curl of
the surface integrals, shown in eq. (l1a), on the
boundaries among every volume element. Considering
isotropic materials, we can write the relations between
the magnetic field H, the magnetic flux B and the
magnetization M inside the material as:

Hy =Hpy +Hy +Hy (3); Hpy ='EM'M& (3a);
0
B B;
H., ==k @3b); Hy =% 3c).
* U, * " ho

Then, substituting the equation groups (2) and (3) in
the characteristic of the material Hy=H(By) we obtain
the equation:

M, = F[B)= F{M),..May I....Jan Ts1.. I ) (4)
Then we write Ohm's law inside every volume
element:

9 A (1)

Jp (1) =-VV, (1) - —=—=
Prli (1) () P )
where Ay is the magnetic vector potential in the k-th
elementary parallelepiped, VVy is the irrotational
component of the electric field Ey and Jy is the current
density in the k-th volume.

We combine equations (la) and (4) in order o
express the derivative of the vector potential with respect
o time as a function of the currents inside volume
elements.

a:(’ 41;[81 (‘)HI x,‘—xl
J(I)IHH-AW ZE)M (t)Hlxk 7% }

dM/dt can be expressed as a function of dl;;/dt and dIg/dt
in the volume elements by differentiating the constitutive
eq. (4) inside every volume element:
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of:
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dF/dI and dF/dM constitute the elements of the matrix
Dy that gives the relation between dM/dt and dl/dt.
These terms are functions of the currents Ij; and I; and of
the magnetizations M, that are known at every time
instant. Integrating eq. (5) in each volume element I'y
and meaning the result on the surface Sy we obtain:

R,‘I,+2L,q Z +2Lbj Y L=y, ®
j-l I’l j=l

where Uy, is the electric potential difference between the
centres of two nearby parallelepipeds, Ry is the electric
resistance of the volume I'y, /} is the current in I'y , the
Ly are the mutual inductances between I'y and T and
Lj;j are the mutual inductances between the volume e
and the current sources volumes rs_| Substituting (7) in
(8) we obtam the equauon

Rk +3 (g +DM”)—'L ZLm =L =Uy

= )
where Dy is the element of position k j in the matrix
Dys. This equauon represents the electric equilibrium
equation of a branch of a network where resistive and
inductive elements, corresponding to the physical
resistances, self and mutual inductances of the
elementary volume elements are present.

=\

fp—
n

L“ -« LI

Fig. 4 Branches of the equivalent network

Each of the NO nodes of the network is the center of
a star of six branches. Every branch is inductively
coupled with all the other branches of the network.
Therefore we can consider the segments composing the
grid obtained in fig. 1 as branches of an equivalent
electric network, and we can write the mesh equations
for the loop currents in the network, then obtaining a
system of 3N-NO+1 equations. Minimum path meshes
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are selected in order t0 have a diagonally dominant
matrix. If external voitage generators, capacitor banks,
inductances or resistances are electrically connected to
the conductive regions, their circuital branches are
connected to nodes of the grid. These nodes correspond
to the volume elements that are physically in contact
with the electrical cables that coanect the external
elements to the conductive regions. Then their electrical
branches are added to the equivalent network of the
conductive regions, and the equilibrium of the network is
examined.

The solution of the equilibrium equations of the
equivalent network, by means of a single-step time-
marching method [10], allows the evaluation of the
currents in the elementary volumes, and therefore the
evaluation of the eddy curmrent distribution in the
conductive regions. In order to reduce the computational
times the matrix Dy and the magnetizations M are
considered constant during every step, being updated
only at the beginning of each time interval integration
The complete procedure is constituted by the following
steps:

Initialise the currents in the branches of the network;
=0

for i := 1 to n (last instant) repeat

1e Find the M(t,) by solving (4)

2¢ Update the matrix Dy, (that express dM/dt as a

function of dlI/dt at the instant ; ) by means of (7)
3¢ Make the time marching step by solving (9)

4o t:=t+ At
end for

The computational cost of the method, due to the
presence of dense matrixes, is similar to other integral
formulations [11]. Nevertheless, the presence of a
diagonally dominant matrix and the analytical evaluation
of its elements, can significantly reduce the
computational times. Furthermore, the impact of parallel
processing and the use of iterative algorithms [12]
should significantly enhance the numerically efficiency
of the method.

IT1. MOVING ELEMENTS.

We consider a system with a fixed body and a moving
one having a velocity v(t). In order to take into account
the presence of a moving element, we have to modify eq.
(6), that becomes:

QA1) _ uo[al mIH] ldv+
Xy — X

Tt 4n

N3
+J, “).mﬁlx__[ Z 3 “)m |x,—x|
oM;
;0 mg_l_l_[dvz 4,0 I!Jhnl-*'l“s’
+M; (t)“y%ml_jldsj

(10)




When the point xy belongs to the fixed body eq. (10)
is equal t0 eq. (6), when the point xy belongs to the
moving body, we have that

v(t)
n-xf

_a_ 1 = 1 Bx,
3t| |x—x| |x,‘-x'|3 ot
and

Jy(r)j‘{jg;[ml_—ri]d% ~; (x)v(:)j‘j;jl—x:——sd"
Mi(‘)‘[!jj'aa';l:]'x—ki_x.[]ﬁj =M; (veo| sj;‘[—x‘t_‘—x,;ds,

then we can obtain analytical expressions for the volume
and surface integrals. These terms modify eq. (9) which
beoomw

R,l,,+z(1_~ +Dy, ) L/ L+l + VKM,
Jj=

+Z Lb, =U

j=1 a2

an

Therefore we can repeat the procedure described in
the previous paragraph, substituting eq. (9) with eq. (12)
in the step 4.

IV. LINEAR SYSTEMS

When we deal with linear characteristics, eq. (4)
becomes:

(1——12[5, Isj +2~ I +2w M;}
(13)

Jj=1 ]=l Jj=1

therefore we obtain a linear relation between the
magnetizations inside the elementary volumes, and the
source and induced currents I and ;.

Consequently dF/dI and dF/dM in the eq.(7) are no
more functions of the cumrents I, Ig and of the
magnetization M, but are constant values. Therefore the
relation between dM/dt and dl/dt is constant in time and
the matrix Dy does not have to be updated during the
time stepping. Then we can substitute these expressions
in the eq. (9) and eliminate the step 3.

The energy of a conductor can be obtained from the
equation:

V-]l

then the force on the conductor can be obtained by:

_z_‘:’_ilﬂ A-JdQ

Substituting eq. (2) for A in eq. (15) we have:

(14)

(15)

70

e ey S ey
D (Eeer

j=ls;
then carrying out the integral with respect to the volume
Q, summing the contribution of every volume element V;
and taking the derivative with respect to x similarly as in
the eq. (10) we have:

S [ ey
_UII Ji (t) J Zﬂm XM; (t)

ka—xl (]6)

that can be evaluated by means of analytical expressions
[13]. The evaluation of the electromagnetic force on the
moving body allows the determination of its law of
motion by means of the mechanical equilibrium
equation:

Ty dQ

V. RESULTS

The method has been tested against benchmarks for
linear and non-linear ferromagnetic systems.

The first one is a magnetostatic problem proposed by
the Institute of Electrical Engineers of Japan [14,15].
The geometry is shown in fig. 5, where the permeability
of the iron core is 1000 and the coil was energised with
3000 AT.

Ié fo0 | 200
——

Unit: mm

Fig.5. Geometry of the standard IEEJ problem

Fig. 6 displays the z component of the magnetic
induction along the x direction at a distance of 10mm
from the top of the iron element with y = 45mm.

One cighth of the system was discretized in 250
clementary cubes with good agreement between
calculated and experimental results.




Fig.6. Magnetic induction on the line B-B’

The second problem also proposed by the Institute of
Electrical Engineers of Japan [16], featured a time-
varying sinusoidal excitation relating to linear
ferromagnetic  characteristic. The  experimental
arrangement shown in fig. 7, is composed by a coil
energised with 1000 AT, two aluminium plates and a
ferrite block, the relative permeability of the ferrite is
assumed to be 3000 and the frequency is 50 Hz.
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Fig.7. Geometry of the standard [EEJ problem

Figures 8 and 9 show that a good agreement between
calculated and experimental results was obtained with
370 elements.
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Fig.8. Magnetic flux density at z=57.5mm, y=0.0
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Fig. 9. Magnetic flux density at z=57.5mm, x=0.0

Experimental measurements are given also when a
hole in the aluminium block is present. Figures 10 and
11 show a good agreement between calculated and
experimental results with the same discretization.

Rux donalty (mT)

Fig. 10. Magnetic flux density at z=57.5mm, y=0.0
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Fig. 11. Magnetic flux density at z=57.5mm, x=0.0




Furthermore, the method was tested by comparing
calculated and experimental results relating to the
TEAM problem 13 [17) as shown in fig. 12.
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Fig.12. TEAM Problem 13 geometry.

The calculated results shown in the figures 13 and 14
agree with the experimental results and with results
obtained with other models.
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Fig.13. Comparison of average flux densities in iron

Only one fourth of the system was discretized, by
using 430 elements. A modified Newton-Raphson
algorithm [17] with a relaxation factor r = 0.5 was used
for the solution of the non-linear system, the linear
solution was taken as starting value for the calculation,
and convergence was reached in 10 steps .
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Fig.14. Comparison of flux densitics in air
V1. CONCLUSIONS

An integral formulation for 3-D non-linear
electromagnetic ficlds analysis has been presented. The
method was formulated for the analysis of non-linear
systems including the presence of moving bodies.

The method allows an easy modeling of homogenous
and inhomogenous materials, can simply take into
account the relative motion and the electromagnetic
forces among conducting bodies, and allows an easy
linkage between circuit and field equations.

The method has been tested on standard problems
both for linear time varying systems and non-linear static
systems and has given a good agreement with
experimental results. Work is in progress for the
implementation and validation of the non-linear time-
varying case, and for the inclusion of the motion of
bodies.
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AN IMPROVED NETWORK MODEL FOR EDDY CURRENT PROBLEMS

Chi-Chung WONG
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ABSTRACT. This  paper  describes
improvements in modelling Maxwell’s equations
in two dimensions using the electrical network
analogue. Two network models are described
with major emphasis placed on diffusion
dominated problems. The first one is the
combined fine-coarse mesh approach which
was initially developed for the method of
transmission-line modelling (TLM). The
combined fine-coarse mesh technique is then
modified by introducing controlled sources at
the interfacing between the fine and the coarse
mesh. Several numerical experiments,
including one with both a conducting region
and free space, are used to study the two
models. They are also compared with the
standard network analogue using a regular
meshing. Numerical results are compared with
analytical or published data. In all cases,
SPICE ( or PSPICE) has been used to solve the
resulting network analogues.

1. INTRODUCTION

In 1944 Kron [1] derived an electrical circuit
equivalent of Maxwell's equations and
subsequently many researchers had used
electrical analogues to simulate Maxwell's
equations [2-4]. In general, the electrical
analogue is built around R, L and C
components and the appropriate electrical
quantities measured experimentally. With the
advent of digital computers, numerical methods
such as the finite-difference and finite-element
[5] became popular and the use of experimental
methods became unattractive. However, it is
sometimes desirable to have a physical
electrical network analogue for the field region
to be modelled and in addition, standard
network solver can be used to solve the
resultant network analogue without the need of
a special finite-element program. for example.
Solutions can be sought without the prior
knowledge of numerical analysis/methods. In

this paper, SPICE! (or PSPICE2) which is now
a de facto standard circuit simulator in
electronic engineering, is used to solve the
resulting network analogue. Another advantage
of the network analogue is that it can be used to
develop another class of numerical routine,
namely the method of transmission-line
modelling (TLM) [6]. In principle, SPICE can
also be used to implement the transmission-line
equivalent of Maxwell's equations, however,
this will not be discussed here, because the
routine used in SPICE is relatively inefficient
for solving transmission-line problems.

The electrical analogue with lumped passive
elements is in fact a variant of the finite-
difference scheme (in particular with the
method of lines) where the space is discretized
with a mesh of finite mesh size and the time is
left continuous. One major problem associated
with this method (and the finite-difference) is
that a large number of cells are needed if a
regular meshing is used to cover the entire field
region. To reduce the number of cells, an
irregular meshing can be used [7] as shown in
Fig. 1. This approach cannot drastically reduce
the total number of cells since some regions
outside the area of interest (or where the field
gradient is not very steep) still need fine
spacings. Another disadvantage of using an
irregular meshing is that it is less
straightforward to implement and is inherently
less accurate [8]. To overcome these problems,
the multigrid algorithm has been introduced.
This method has been used in finite-difference
(9,10] and been successfully applied to the
method of TLM for transient diffusion
problems [11]. This technique solves two (or
more) networks; one with a coarse-mesh grid
and the other with a fine-mesh grid. The coarse

ISPICE stands for Simulation Program with
Integrated Circuit Emphasis.

2A registered trademark of MicroSim
Corporation.




grid overlaps the fine grid (Fig. 2). The coarse
grid network is first solved and the appropriate
information transferred to the fine grid network
and vice versa. Regular cells are commonly
used although irregular cells can also be used.
In order to reduce the memory requirement,
computing time and the interpolation process
needed in the multigrid technique, a combined
fine-coarse mesh method has been proposed
[12]. This arrangement is shown in Fig. 3,
where it can be seen that the field region is
covered with a combination of fine and coarse
but regular cells. The interface between the
fine and coarse cell is connected by a "busbar”
(Fig. 3a). Therefore, it is only necessary to
solve one network and the need to store (and
transfer) different sets of information is

eliminated. The major drawback of this
approach is that accuracy is sacrificed because
positions "a”, "b" and "c" of Fig. 3a are forced
to have the same potential. In this paper a new
network model is proposed. The new model is
based on the combined fine-coarse mesh
technique but the disadvantage associated with
this method is eliminated. This is achieved by
breaking the "busbar” and use controlled
sources at the interface (Fig. 3b). The
performance of the original fine-coarse mesh
approach and the proposed topology is studied
in detail and compared with the standard
technique which utilises cells of equal mesh
size.

y

Z\Lx

A - area of interest

Standard regular meshing

Fig. 1 Typical mesh arrangements.

irregular meshing

Level 2 Level 1
y
4
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A - area of interest

Multigrid arrangement (more levels are possible].

Fig. 2 A multigrid arrangement with two levels shown.
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2. THE IMPROVED NETWORK MODEL
FOR MAXWELL'S EQUATIONS

2.1 Equivalence between field and network
quantities

Consider a typical regular network cell shown
in Fig. 4a, the describing equations are

diy Qix _ dvz_

3;+8x_ ot gva

ovz Oix

— ....l_

. M
ovz ., Oly

& i1

A

where 1, r, g and ¢ are the inductance,
resistance, conductance and capacitance in per
unit length respectively.

Maxwell's equations in two dimensions are
(assuming that there is only one component of
the H-field)

_9E: 3By _ 9B OH:
9y  ax oH o

aHz__ _ 212)1
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where o, £ and dB/dH are the conductivity,
permittivity and differential permeability of the
medium respectively; all units are in per unit
length. Comparing egs. (1) and (2), the
following equivalence can be drawn

H:=v: ; Ex=-iy ; Ey=ix and
oB 3)

o=r ; €=l ; —=c ; g=0
H o

Therefore, an interconnected network of Fig. 4a
forms a space discrete model of Maxwell's
equations. The resulting network may be
solved by various methods. For example, SOR
(successive overrelaxation) can be used for
steady-state problems. For transient problems,
a set of first order ordinary differential
equations can be derived and the solution
obtained by integration using schemes such as
the Runge-Kutta, Alternatively, the time can be
further discretized using finite-difference; this
is similar to the finite-difference time-domain
method. More conveniently, the network may
be solved by standard circuit simulators, such
as PSPICE which is used in the paper. In this

case, it is a simple matter to generate an input
file describing the interconnections of the cells
shown in Fig. 4a.

2.2 The improved network topology

One major drawback of the network equivalent
(and the finite-difference method) is that a large
number of cells are needed for typical problems
if regular fine cells are used to cover the entire
field region. In many cases, fine cells are used
in regions where the field variation is less steep.
A number of modifications have been proposed
as reviewed in the Introduction. Among the
various methods, the fine-coarse mesh
approach, which has been proven to be a viable
alternative to the multigrid technique, is the
most straightforward to implement. It is only
necessary to provide a number of subcircuits
(each representing a regular network cell of a
given mesh size) for PSPICE. However, this
method assumes that the potentials (=H-field) at
"a", "b" and "c" are identical (see Fig. 3a). This
assumption may be unacceptable at high
frequencies, during the initial transient phase or
for some special cases. This problem is
eliminated by breaking the busbar and replace it
by three controlled sources as shown in Fig. 3b.
Parameters associated with each of these
sources may be determined as shown below.

Using Taylor series expansion and with
reference to Fig. 3b, v(z) can be determined in
terms of v(z-1) and v(z+1):

_ P+ 1) +qz=1) 1, v

1 3
v(2) pta > K¢ a2y)+0(h )
@)
where
K= pah? ana 202 = B o Fvey ()
P4 2y oH a ok

If p=gq = 0.5 and the region is diffusion
dominated, eq. (4) becomes

v(2)=0.5(v(z=1)+v(z+1]))
0B _dv:

OB _odv: 4
(aHG al)+0(h ) (6)

-0.125h2

££q. (6) has a better error term. Therefore, it is
recommended that the coarser mesh size should
double the preceding one. Likewise, equations
(similar to eq. (4)) can be derived for v(z-1) and
v(z+1).
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Fig. 3 The combined fine-coarse mesh model and the improved model.
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Fig. 4 Typical irregular and regular cells.
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The first term of eq. (6) can be easily
implemented in PSPICE with controlled
sources, however, an additional subcircuit built
from a pure inductor (or capacitor) circuit is
required to model the second term. This is
illustrated in Fig. 5 where the inductor value
(L) equals 0.125h2a(9B/H).

L 3"6'-:7'
i=

viz) )

Fig. 5 A subcircuit model for the second term
of eq. (6).

The accuracy of eq. (6) may be improved if
v(x-1) and v(x+1) are included in the
interpolation. Eq. (6) becomes:

v(2)=0.333(w(z-1)+v(z+1))+0.222v(x - 1)
B _ov:

- 2 ——— e——
+0.111v(x+1)~0.0833A (3”0 a‘) (6a)

However, initial results show that the
improvement gained in using eq. (6a) is
marginal for the examples discussed in the
following section and therefore only eq. (6) is
used for the improved model.

3. RESULTS

3.1 Flux penetration into a long bar due to
an axial H-fleld

Figure 6 shows the cross-section of a long
square bar subjected to the excitation of an
axial H-field (H,). The rise of the magnetic
field is determined at two representative
positions ("a" and "b1") when H, is an impact
excitation. Due to symmetry, only one-cighth
of the region (for example, OAB) is solved. In
the fine mesh region, the mesh size, h, is set to
W/8, whereas h = W/4 for the coarse mesh
region. For convenience, normalised units and
all default settings of PSPICE have been used.

Figure 7 shows the results from the different
network models, and they are compared with
the exact solution. Both fine-coarse mesh
models provide results which are very close to
the regular fine mesh model (within 1% for the
period shown) but the computing time is cut by
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at least 50%. The improvement in efficiency is
dependent on the "size" of the problem and a
better gain can be achieved for larger problems.

° Hz Preblems 10 2y
=+Ho

TWM!

|- Fing grid reglen
% o, e problems 18 2)

Fig. 6 A long square bar subjected to external
H-field excitation.

Accuracy of the network models is best
assessed by their corresponding frequency
responses. PSPICE provides an efficient way
to generate the frequency response curves of
the various models. The results are shown in
Figures 8a and 8b. The problem is similar to
the first case, except that the excitation is
sinusoidal and that only steady-state solutions
are sought.

It can be seen that the response curves of the
new model and the regular fine mesh model are
all very close for position "a". The original
combined fine-coarse mesh result trails slightly
behind. At position "by", all three frequency
response curves are similar with the original
combined fine-coarse model stands out
marginally. It should be noted that for the latter
case, h = 1/4. A further error analysis is shown
in Table 1 where the rms error for the different
models are calculated. (Note that the default
tolerance of PSPICE is 0.1% and therefore, the
errors calculated below are mainly due to the
modelling process.)

Table 1 shows that the new model improves the
accuracy by approximately 50% (or better)
when compared with the original fine-coarse
mesh arrangement at position "a". No
advantage is observed at the other position,
however, both show an improvement over the
regular mesh model since fine-mesh
information are available to the coarse mesh.
The relatively poor accuracy at position "by” is
not reflected in the transient curves (Fig. 7)
because the high frequency components are
highly attenuated at this position. This shows
that fine cells are not essential at this region for
transient studies.
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Figure 7 Flux penetration into a long square bar under an impact excitation (position
"bll = “bl").
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(a) Position "a" (h=W/8 and W = 1).
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(b) Position "b;" (h=W/4 and W = 1) and position "by" (h = W/8).

Figure 8 Frequency responses for the different network models at two representative positions. The
horizontal axis can be converted to the dimensionless parameter (h/8)2 by multiplying the factor Th2,

where & is the skin depth.

rms error, (Position a)
Freq. range new model combined standard, with fine
(h/3) fine-coarse mesh
1Hzto20Hz 1.88% 3.96% 2.30%
(0.222-0.992)
1Hzto 10Hz 0.29% 1.13% 0.84%
(0.222-0.702)

rms error, (Position by)
Freq. range new model combined standard, with coarse
/5) fine-coarse mesh
1Hzto 20Hz 19.47% 17.78% 24.44%
(0.443-1.984)
1Hzto 10Hz 9.12% 6.45% 12.88%
(0.443-1.403)

Table 1 Accuracy of various network models

3.2 Eddy current loss in a long square bar
subjected to a transverse field

The third problem determines the eddy current
loss in a long square bar excited by a transverse
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magnetic field. In this case, the electric field
has one component (E,) whereas the magnetic
field has two (Hy and H
equations are:

y)- Maxwell's

—_




——aa’;—’+%=e%l€5 ok:

oE: 0B JHx

2 H & ™
3E: _ 3B 3Hy

ox OH ot

The equivalence between network and field
quantities is:

vi=Ez ; ix=-Hy ; iy=Hx ;
JoB

l=— ; ¢c=¢ and g=¢ 8
3H g 8)

The field in the vicinity of the bar is unknown
and consequently the air region has to be
solved. It is assumed that the field is unaffected
by the presence of the bar in regions 2W from
it. Other parameters used are:

0B
—=U0 ; €= €0 ; W=1cm
aH "
and 6=10"S/m (in conductor)
=0 (in free space) 9)

For the frequency range used, the reactance of
the shunt capacitor (C = ¢h) is at least 10 orders

of magnitude larger than 1/(gh) or the reactance
of /h. Therefore, the capacitors are assumed to
be open-circuited. Due to symmetry, only one-
quarter of the region is solved. In this case, the
bar is covered with fine cells with h = 1/6 cm
and the outer part of free space is covered with
coarse cells. The power losses in per unit
volume are determined in terms of P, (power
loss when 6 = W/2 = 0.5 cm). The results are
plotted in Figure 9. This problem involves two
domains and is relatively large when compared
with the previous two. The memory
requirement recorded was approximately 130 k
and the computing time was about 7.3 seconds
on a standard 486 machine for 8 frequencies.
As a comparison, results using a larger air
region (4Wx4W) and results from reference 13
are included in Figure 9. SPICE3 running on a
SUN workstation has been used for the former
case. The interfacing busbar of the original
combined fine-coarse mesh topology will force
local potentials (= E;) to be identical. In
regions close to the boundary, where H, is
assumed constant, this assumption (JE,/dx =
0), along the x-direction, is unacceptable (see
eq. (7)) and may produce erroneous results.

P/Po
10
1E
—— New model (A) -
< Reference 13 a
O New model (B) i
0.1
0.01
0

500

1000 1500 2000 2500 3000
Frequency (Hz)

Fig. 9 Eddy current loss in a square bar due to a transverse magnetic field.
(A) - air region = 2Wx2W,; (B) - air region = 4Wx4W,
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The validity of this approach may be assessed
by comparing adjacent node potentials around
the interface between the fine- and coarse-cell.
Consequently, the use of the original model
must be exercised with care.  On the other
hand, the new model does not have this
limitation.

4. CONCLUSIONS

This paper describes two network models for
Maxwell's equations in two dimensions. The
first model, which is based on the original
combined fine-coarse mesh technique, is very
straightforward to implement. However, it
uses "busbars” at the fine- and coarse-cell
interface and the resulting error may be
unacceptable in some cases. In the new model
the "busbars" are replaced by controlled sources
and this problem is eliminated. Both models
allow a reduction in the total number of cells
within a field region to be modelled without
compromising accuracy (this may be problem
dependent for the original combined fine-coarse
mesh technique) and can be easily solved by
PSPICE, SPICE or other circuit simulators.
Based on the new network analogues, field
modellers can solve most two-dimensional field
problems without the prior knowledge of
numerical methods or the need of a dedicated
software package.
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ON THE USE OF PLANAR SCATTERING PROBLEM TECHNIQUES
TO ANALYZE THIN PLANAR QUASI-MAGNETO-STATIC SHIELDING

by
Charles D. Hechtman,t Erik H. Lenzing,t and Barry S. Perlman $

ABSTRACT
A metallic screen scattering technique developed for microwave and millimeter wave applications is
adapted, using the principle of duality to a quasi-magnetostatic shielding problem. In the limiting case of
low frequency (0.01 Hz) the results compare favorably with the static solution. Moreover, this adaptation is
expanded to treat finite permeability shields.

1. INTRODUCTION

In the past there has been numerous examples of borrowing and adapting methods and techniques
across disciplines, for example Harrington’s adaptation of the method of moments!" for electromagnetics
or the use of electrostatics for specialized wire-routing problems.!! In this work a scattering technique,
usually applied to conductive screens at high frequency and the principle of duality, is applied to quasi-
static and static magnetic field shielding problems.

Magnetic ficlds emanating from static and quasi-static sources such as power lines or permanent
magnets are often considered undesirable and require mitigation. Attenuation may be provided locally by
shields designed for quasi-static and static fields. These shield designs rely upon material properties, e.g.,
high permeability, and geometric configuration, e.g., thin inhomogeneous sheeting, to satisfy engineering
and economic requirements. The large number of possible shield designs warrants simulation and
modeling to optimize shield efficacy and provide manufacturing cost control.

Traditionally, shield geometries are analyzed at zero frequency with an assortment of techniques
that solve Laplace’s equation. Analytic solutions, which provide the most insight, are most tractable in 2
dimensions, where conformal mapping is available. Moreover, geometries found in most magnetostatic
problems do not have analytic solutions. Therefore, most static field solutions are found numerically in
terms of a scalar potential using techniques such as a finite difference!® or finite element method™ or in
terms of a boundary charge distribution using techniques such as a static moment method™ or a static
spectral domain method.)

For the limiting case of thin shields with finite permeability in free space, the methods identified
above are problematic. Using the finite difference or finite element techniques would require an enormous
numbers of grids or elements in and around the regions of the shield. Such conditions spawn an inefficient,
huge set of equations and other problems are associated with their solutions. In addition, the static moment
method or the static spectral domain method are only effective for infinite permeability. In contrast, the
quasi-magneto-static problem could be posed as a scattering problem for both infinite and finite
permeability where the resulting magnetic field integral equation (MFIE) is solved with a moment
method in the spatial domain (most effective for non-periodic structures) or in the spectral domain'™
(effective for periodic and non-periodic structures). Both of these methods would be useful for planar
shields and could be modified for truncated cylindrical shields.

In the next sections the shielding problem is recast into a quasi-static scattering problem with
infinite permeability. The results are compared with the static solution and the result is generalized to finite

permeability.

t Stevens Instituie of Technology, Casile Point on the Hudson, Hoboken, New Jersey 07030
%+ U.S. Amy Research Lab, EPSD, Microwave and Photonics Division, Ft. Monmouth, New Jersey




2. A scattering problem with infinite permeability

Scattering problems commonly have feature sizes on the order of a wavelength. In this example
we consider feature sizes (several meters) that are a small fraction of the wavelength (A approximately
3,000 miles). This is still a scattering problem, given the proviso of non-zero frequency, where phase
retardation exists between the shield and source. An illustrative example appears in figure 1 for the 2
dimensional version. The left hand side consists of a typical scattering problem, where an electric field is
incident on a perfectly conducting strip. An electric surface cumrent is induced on the strip with a resulting
scattered electric field that nulls the incident electric field on the surface.

(E"™* +E*)xn=0 (H™ +H*)xn=0
Electric surface current Magnetic surface current
Je I
on shields (perfect conductor) on shields
n n
4 P
Eiu.‘ Hilt
/oN o\
Magnetic Current Electric Current
on sources on sources

Figure 1. Two dimensional scattering, Electric and Magnetic Duality

On the right hand side similar field behavior exists for the magnetic field. The electric and magnetic field
scattering problems are equivalent and are related by the principle of duality.”® In what follows the
formulation is developed in terms of the electric field.

Initially, for the case of infinite conductivity (infinite permeability) the sum of the tangential
incident electric field, £, and the scattered electric field, E**, must be zero.

(E™ +E**)xn=0. 1

The electric field integral equation (EFIE) corresponding to the special case of two dimension strips on the
y = 0 plane (geometry and coordinates shown in Figure 2) and an incident electric field that contains only
an x component is given by

EX+ | J.()g(xx)dx'=0, @
strip

where x is a coordinate on the shields,

s=-Bl i 1+ HP (1131 ®

is a 2-D modified Green's function that describes the scattered electric field on the strip, H® is a Hankel

function of second kind, and P is the wave number. This EFIE may be found in Balanis!”! with a detailed

dervation presented in the Appendix of this paper. Determining the correct current density on the strips,
J.(x), for the integral equation (2) is the key task in this problem. This may be accomplished in a number
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of ways with various levels of approximation. The scattered electric field may then be determined for all
space by,

E*“(r)= [ J.("g(r.r)dr, @)
strip

where r is a position vector and E*(r) is the incident electric field.
2.1 Point Collocation Method®

The point collocation method is a familiar technique®! that satisfies the boundary condition (1) at
discrete points only. Boundary segments off these points may not be satisfied. Hence, the resulting current
density distribution and the scattered field are only an approximation. The current expansion is in terms of
pulse functions.

The following test case will demonstrate the efficacy of this technique. While applying the point
collocation method, the Green'’s function was approximated as follows:

2

s@=-B i pc )+ nP(pr =Bl s BX j Zin ALy 2oy ©)
n 2 nx

where 1} is the free space impedance and In(y=1.781) is Euler’s constant. Referring to figure 2, two

infinitesimally thin shields lie on the abscissa, each of length L=1 separated by a distance W=0 (i.c., a
single shield of length 2 centered about the origin).

Shields

(D Current source

Figure 2. Test case shield geometry

The shields are of infinite permeability and an electric current source is located -5 meters beneath the
origin. An analytic solution found by conformal mapping exists for this geometry and is compared with the
collocation point matching solution, in figure 3.
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Figure 3, Comparison of H, variation with x when y=0.5,1.0,2.0, where dashed lines represent
conformal mapping solution and the solid lines represent the point collocation method

The x component of the magnetic field for the analytic solution (dashed lines) and the point matching
solution (solid lines) using 20 points are plotted as a function of x for y=0.5, 1.0,2.0. The case where
y=0.5 shows the largest error, S 15%, and as y increases the deviation decreases. This is expected since the
20 discrete boundary points appear to smear with larger distance. Increasing the number of points
improves the result marginally but the spectral domain method outlined in the next section is a better
choice. Figures 4,5, and 6 are three dimensional plots of the variation of the x component of the electric
field for shiclds separated by W=0.5,0.1,0.0 meters and length, L =1 meters, centered at the origin.
Figures 4 and 5 show the magnetic field leaking through the shield gap. These pictures clearly illustrate the
shielding futility in using long strips perpendicular to the magnetic field lines.




FIGURE 4. MAGNETIC FIELD VARIATION WITH POSITION FOR THE CASE OF TWO SHIELDS
1 METER WIDE SEPARATED BY 0.5 METERS WITH A SOURCE AT -§ METERS

XX

0.00”

FIGURE 5. MAGNETIC FIELD VARIATION WITH POSITION FOR THE CASE OF TWO SHIELDS
1 METER WIDE SEPARATED BY 0.1 METERS WITH A SOURCE AT -5 METERS
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FIGURE 6. MAGNETIC FIELD VARIATION WITH POSITION FOR THE CASE OF TWO SHIELDS
1 METER WIDE SEPARATED BY 0.0 METERS WITH A SOURCE AT -5 METERS
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2.2 Spec:ral Domain Method”! and finite permeability

Whereas the point collocation method seeks to satisfy the boundary condition at discrete points on
the boundary, the Spectral Domain Method seeks to force uniform convergence of the boundary condition
in the fourier transform domain. The Fourier transform of the EFIE yields

- 3 ~ - ~ mtal
E™(@0)+],(@F@=E"" (@) ©)
where the tilde represents the fourier transform of the function and the Fourier transform pair is defined as

E(o)= [E(x)e/™dx )
and
E(x)=% I E(@)ei™da . @®)

‘The Fourier transform of the Green’s function (equation (3)) is given by

ito)=- [ ELHP B+ BP U= e de=— " . ©

See Appendix A of C. Scott™ for derivation. The current may be represented as a sum of aperture-limited
basis functions with unknown coefficients and appropriate edge condition,! where for the strip above

- N

Ja(u)= Zau‘l’u(a) (10)
A=l

and

v..(x)=a.ﬁ‘-\é,'—""__l—’21 : an

Multiplication and integration of equation (6) with \Tt,.(a) yields the following:

[¥a@E™ @da+ [y 3, a..v.,(ax--;l B —a%)da= 12

m=]

[Wu@E ™ (@da n=12,..N ,

where for the case of infinite conductivity (or infinite permeability) i:md(a)=0. Therefore there are N
equations in N unknowns where the values of a,, are the constants to be determined. This determines the
current on the shield where N is chosen for the desired degree of accuracy. Of course, the choice of basis
functions is critical for rapid convergence.

The following plot (figure 7) revisits the two dimensional example of the last section where the
magnetic field is computed above a shield 2 meters wide with a line source -5 meters beneath the thin high
permeability shield. This plot illustrates the use of one well chosen basis function, namely N=1, from
equation (12) for the determination of the field 0.5 meters above the shield and is compared with the

carresponding conformal mapping solution.

1. Apertre with infinitely sharp edges require that the curreat densily vector follow specific behavior near the edge. This is known as
the edge condition.




X component
H field Alm
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Figure 7. Comparison of single term moment method with conformal mapping solu.tion.

Even with only a single term the approximation is quite good. Figure 8 is a three dimensional plot of the
variation of the x component of the magnetic field for a distance 0.5 to 2 meters above the shield. In this
example we consider a single basis function, N=1, to illustrate the effectiveness of a well chosen function.
Moreover, it most be pointed out that using more terms of the basis functions (Equation 11), e.g., N=2 and
N=3, improves the accuracy of the solution much like it does in the high frequency analog.

Figure 8. Magnetic field variation with position for a shield 2 meters wide with a source at -5 meters
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Finally, consider the case of a thin strip of finite conductivity (or permeability). Using Parseval’s
theorem on the last term in equation (12),

- 1

[ Wa(@E " (@) da= [y (-x)E*“ x)dx , 13)
— ~1

allows the replacement of the total electric field in the space domain by

N
2 Gutm(x)
i 4

for metal surfaces or

N

Y aulu(x)

m=l

BErs— (15
Japu : )

for high permeability surfaces, where o, €, |, and ¢ are the surface conductivity, the permittivity, the

permeability, and the sheet thickness. In the next figure the strip example is again considered with finite

permeability. The graphs show that as the permeability thickness product decreases the degree of shielding

decreases.
X component
H field Alm
0.3
= oo H
0.2 //""\ A\ s
IP\ pt=1.36x10"5H
we=3.16x10"7H

0.1 \ /

0.0

-2 -1 0 1 2 m

——

Shield width

Figure 9. Field lines for source at -5 m. and shield 2 m. wide centered at the origin with it = oo, 1.36x107%,
2.79x107%,3.16x1077 H
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3. Conclusions

It is shown that the moment method and the spectral domain techniques developed for high
frequency applications may be successfully adapted for low frequency applications. The low frequency
solutions found with the point collocation method and the spectral domain technique agree very well with
the conformal mapping analytic solution and that unlike the static case, the finite permeability may be
accounted for with relative ease. These are viable techniques for exploring cost effective high permeability
inhomogeneous thin shields. The techniques may easily be extended to 3 dimensions for the analysis and
design of thin inhomogeneous high permeability shields.

4. Appendix
Given the definition of the magnetic vector potential

[~V

A= 74%{] _L IJ(X'.y'.Z')e\fﬁ-dx'd)'dz' (AD)
and the current density
J(x.y.2)=J u(x)30) (A2)
where p=x—x")2+(—y)* and & is the Dirac delta function, the vector potential becomes

[-lbm

A= I IJ (x')_\/-r—_:—'rz__r—dxdz ' (A3)
where p=+(x—x’)*+y* has been re-defined and z is assumed to be finite. Equation A3 may be recast as

follows
- [+

==l £ dvdz . 4
iyl e L (A4)
The following substitutions
BNp*+272 =Ppcosht (AS)
_—jdr =dt A6
g (K0
transforms Equation A4 into
A,:lf- i —;-L _j; J,,(x')e['f""“""]dx'dz (A7)

Equation A7 in conjunction with the integral definitions of the Bessel functions of the first and second kind,
yields the desired vector potential.

A= [1a6OHD Bp)ax (A8)
The x component of the electric field may be found from the vector potential as follows:

Er*= —L[—+B’] (A9)

- J.:(x')[ +B’}H9’(Bp)dx'

where @ is temperal angular frequency. Evaluation of A9 and Bessel function identities yields
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Ef'=-;§ [T HS BoyeHP Bp)ldx’ 10)
where 1 is the free space impedance.
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ABSTRACT

Finite difference techniques are widely used in the
solution of electromagnetic boundary value problems, but
seldom employed with static or quasi-static field problems.
Historically this departure was warranted by (1) the relative
ease by which problem geometries can be modeled using the
finite element counterpart, and (2) the lack of symmetrical
properties and large banding in the governing matrices.
Presented here are some methods for generalizing the finite
difference approach so that problem definition is easily
modeled and Hermitian matrices result. The technique uses
a conventional finite difference grid placed in the work area
irrespective of the problem geometry. Finite difference
equations are written in their simplest form across the
problem work space. Boundary conditions are then
introduced after the bulk equations are in place. The
problem is solved using a non square governing matrix in a
least square sense. This is accomplished most easily by pre-
multiplying the matrix equation by its transpose. An
alternative to the preconditioned conjugate gradient technique
for solving the resultant matrix equation is to seek the
cigenvalues for the system and express the answer as a sum
of the cigenvectors. Results are shown for a salient pole
motor. The technique is very useful in handling rotating or
transiating problems where congiderable attention must be
given to the proper connection and re-connection of the grid
points.

BACKGROUND

Finite difference methods are often used to soive
complex electromagnetic interaction problems. Because of
the way in which the defining equations are represented, the
banding of the resulting matrix equations can be quite large.
It is also difficult to maintain symmetry in the matrix in
order to speed up the solution. Many techniques have been
proposed using equivalent circuit models and successive over
relaxation techniques to address some of these
problems[1], but odd geometries continue to present
difficulties in representation of the constitutive equations. On
the positive side, finite diff hods are inwitively
appealing; goveming equations are easily expanded and
represented on a point by point basis in space. With
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homogeneous grids containing equally spaced points, the
problem setup is quite straightforward [2].

At issue in this paper is how to apply the attractive
features of the finite difference technique in problems with
problems are invoked with the generalized geometry :

a. Representing the first and second-order derivatives in a
nonnmfoumgnd.mewhich’ﬁu'mcpmbhmbmm

Among other things, they point out
benefits of using not 4 but 5 points to represent the
dmmmall.aphcmopumufarudleﬁeedan
affords in placement of points. The present
that point and applies the idea not only to the internal

Consider a problem where the H field is represented
as cither a total or reduced scalar potential For the latter,
we use

B=T-vo @
where T is the magaetic intensity source term and is found
in the curent carrying region using the Biot-Savart law.
The problem reduces to solving Laplace’s equation for the
unknown @,

VAuV®) =V VO +p V2@ =0, @

The simplest discretization for a multi-region

problem is to continue a homogeneous grid through the

problem space as indicated in Figure 1. The Laplacian

operator is easily represented in either 2 or 3 dimensions for
such a grid.

Referring o Figure 2, the 2-D expansion about
point 0 is




~ax |- Pinio Diffocence Geid Choico
|
| L..,.Ll
Ay //""‘"‘
T { 2
/

Continue grid into the object; metch BC after setup

Figure 1. Grid continuation through the boundary
of & dissimil 5

0, +0,-20, . D,+9,-20,

3
Ax? Ay? B ?

where Ax, Ay refer to the grid distance between points in the
x and y directions. The problem setup proceeds by writing
the Laplacian operator for @ in all regions. It is assumed
the material inhomogeneities are at least piecewise
homogeneous, i.c., that the Vp terms are negligible within
precaution to be taken is to use points from a common
region when using a finite difference representation of the
problem operator such as (3). In close proximity to the
boundary interface, the one-sided second-order derivative
should be used to represent the Laplacian. The second-order
horizontal derivative represented in terms of the potential at
adjacent horizontal positions b and ¢ in Figure 1 is

it _ 0."20:4’0‘. +an’) (4)

The final term in (4) indicates the error terms are correct to
order Ax3.

The one sided expansion is the same regardless of
which side of the boundary the derivative is taken. After
writing (2) for all the grid points in the problem, the result
is 8 N by N matrix for N unknowns. Over the bulk region of
ﬂnpobhm,ﬁsmdudﬁnmdnffmmenmtwnof
the Laplacian is employed because of its ease of
implementation. This is, in fact, the motivation for using the
finite difference method as opposed to the finite element
method. The contribution of this paper is to show that it is
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possible to set up an evenly spaced finite difference grid
irrespective of boundaries, and masch boundary conditions
after the bulk system equations are modeled. Furthermare, in
a standard grid, 4 surrounding points (or 6 in 3D) are used
to represent the Laplacian. Here it is shown that using five
neighboring points (or 9 points in 3D) provides flexibility in
modeling a variety of shapes while preserving the numerical
accuracy to order A® where A represents the largest
distance to any one of the neighboring points. Indeed, the
technique aliows one to place points on the interface
randomly. The only penalty is the requirement of solving a
6 by 6 matrix for each interfacial point. The technique is
also uscful for increasing accuracy where the field has a
high gradient, i.c., adding points randomly within a certain
region of the problem.

This is made clear by the alternative representation
of the second derivatives on x and y at point 0 in Figure 2,

obtained by the set of equations
o0, o0
=0+ Az, +—a-y!Ay,~
159, a'o,, 1 ?00
g2 A3 y+&84%)
®

wlmlnuhj-isbcmd'temml&nlej, Ay,
refer respectively to the x and y differences from the point
j to the field point at ®,. When (5) is repeated for each of
ﬂwSmtneishhoa,duemuluamwixequﬁonfor
the unknown partial derivatives of @ at point 0 in terms of
the potential values at the nearest neighboring points and the
self point &,

an ay, 85 &1 axan) e,
177 72 2 2 &
Ax, Ay, FY
2 2 2 o.-0
Ax; Ay, AxjAy, e, Qz-oo ©®
Ax, Ay, - — a2 |19 Cop
-2,
RO IR KA L
Ax, Ay Ax; Ay; Ax;Ay, _a’°°
| 2 2 2 | &y

It is straightforward to invert this 5 by 5 matrix to arrive at
the result




Typical non-intesface paints

Figure 2. Typical points used for evaluating the
Laplacian operator in the bulk and for interpolation
near interfaces.

9%
ax
% ©,-0,]
20| [®%
B - g
&3 - c 0’ 00'
a’o .4'00
| oo
Fe,

| Sxdy|
Cis the 5 by 5 inverse of the left hand side of (6). Thus, the
Lq:hchneqnﬁncouldbemitmuﬂnpoint o, as

E Cy®, +2 C® 2 (Cy*CP%0. @

points B in terms of the potential values on one
side of the boundary only. As the boundary is approached
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from a given region, this interpolation must be realized using
potentials located in the same region. If the points lie on a
line in 2-D this interpolation requires 6 points, 10 in 3-D.
The 6 conditions come from the Taylor expansion of the
sought after boundary potential in terms of 6 nearest
neighbors (points 6-11).

o I“ .+%M,¢%Ayl+
A 1 &e 1o
e e T L

®

Equation (5) is repeated for all 6 nearest neighbors;
it is understood that all the derivatives are evaluated at the
boundary point B, and that Ax,, Ay, refer, respectively,
to the x and y differences from the point j to the boundary
point B. The solution of this 6 by 5§ matrix equation is very
fast, and yields not only the desired @, 0®/0x, and 3%/dy,
but the higher-order derivatives as well. Any Dirichlet or
Neuman condition can be matched with these derivative
values.

It should be mentioned in passing that when the
points lic oa a line collinear with the local normal as the
points 12-14 do in Figure 2, the first-order derivative at
location 12 with respect to the local normal (x direction) is
computed from 2 Taylor expansions about the point 12;
since

” 30 sz
©,,=0 +—2Ax+——1 - (10)
is F iPw R T
and
a® 8'0 4&2
®,,=0,,+ 2 a:’n ' 1)
it follows that

“u = 4’3_0“"3’3
& 2Ax )
This conventional alternative for enforcing the boundary

condmonswnllbcemployedbywayofmahngacompmm
in the results section.

MATRIX SOLUTION

12)

Suppose there are a total of N unknown potential
points $. Also consider that (2) is implemented at every one
of these N points yielding N equations. Suppose that the
boundary conditions, that tangential H and normal B be
continuous, are imposed at P boundary points yielding an
additional 2P constraints. The sotal number of equations is
now 2P+N with only N unknowns. It is best to solve this
non-square matrix in a least square sense using eigenvalues.




The resulting matrix for the N unknowns could be written as

AS=b a3

where & is the vector of unknown potentials, A contains all
the geometry, and the right hand side b contains the source
terms. Pro-multiplying by the transpose of A yiclds the
positive definite matrix H in the equation

BE =AB =2 a4
Although this new matrix H is more ill conditioned than the
original matrix A, it is positive definite and can be treated
by some valuable techniques {5]. In particular, one can
use the cigenvalues A and cigenvectors @ directly to get an
accurate solution. Becsuse the ecigenvectors of H are
orthogonal, both sides of (14) can be multiplied by each of
the ecigenvectors to obtain the solution vector & as a
weighted sum of the cigenvectors. That is, assuming

N
¢ =Y ad,

=1

15)

where we express $ as a weighted sum of all eigenvectors
d,, it then follows that

4z
A,.

(16)

G"

GRID REFINEMENT

Adding points to refine the grid is usually quite
desirable when solution accuracy is suspect in a given region
or where the field is varying considerably. Adding extra
points would normally mean preprocessing from scraich to
set all the bulk constitutive equations since the counting
soquence on unknowns would be all wrong. Using the
Taylor's expansion in (S) obviates the need to redo the
preprocessing of the problem; one simply acis a number of
additional equations for each of the additional points added
to the grid. With this approach the designer has the libesty
of literally placing the grid points anywhere. It i3 necessary
to keep a table of each point’s coordinates and material
region. The program must in tumn identify the 5§ @ for 3D)
nearest neighbors still within its own region. Points could
be placed on the boundary itself if desired to increase
accuracy in these regions.

RESULTS

The motor of Figure 3 was analyzed in attempting
to assess the accuracy of this method. The stator is doubled
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Figure 3. Double sided motor with permanent
magnet shell rotor.

sided. Sandwiched in between is a permanent magnet rotor
comprising the bulk of the air gap.

Midline of the double sided mowor

/ Scaler potential $=0 along this fine.

ane pale pitch _____.l
90/ = 0 along this line

Figure 4. Section of the motor to be analyzed in o
linear geometry.

Due to symmetry, only one pole pitch of the motor
has been analyzed. The problem is divided down the center
of a stator tooth and spans a complete pole pitch. Since no
flux exits the lower portion of the stator, a Neuman
condition Z€ =0 xists there. Also at the midline inside the
shell rotor of this double sided motor, no tangential B field
exists. Thus the potential ® can be set to zero along this
line as shown in Figure 4. A polar grid would necessarily be
used for this inherently cylindrical problem if the radius is
small. In practice, very little error was found in examining




one pole pitch in this quasi-linear grid and then multiplying
by the number of such poles to get the total torque.

The problem is analyzed by two methods, first
using a conventional reluctance grid as suggested in [6];
this approach is delineated "normal” in the figures. Here an
equal grid distribution is employed and the spacing chosen
to force the unknown potentials to have a spacing wherein
some of the potentials naturally fell on the interfaces.
Second, the boundary constituted by the iron - air interface
is modeled using the method detailed above (except at
comers where for convenience the reluctances were kept).
The bulk equations were altered to be one sided as in (4) in
close proximity to the teeth. Purthermore, the potential
derivatives needed to insure continuity of field density B
derivative expressed in (12).

The x directed ficld was predicted in both cases
along the air gap, midway between the stator teeth and rotor

X directed B Field

A.

/
/

Lagend
1 Post B0 Muteh

[ho=
H e ;
xoa-pulm(m)

Figure 8§ X directed B along the air gap.

magnets. The results are shown in Figure S. The number of
unknowns was 128. With the post boundary condition
technique, an additional 20 equations were added to insure
continuity of the normal component of the magnetic field
density. The post boundary condition match has good
agreement with the normal field approach.

The additional prediction of the y directed B fields
is shown in Figure 6.
CONCLUSIONS

A method is presented for predicting magnetic
fields wing a umiform grid placed incognizant of the
imposed after the bulk equations are in place and the non-
square system is solved for the least square solution. The
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Y directed B Field
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xum(um)
Figure 6 Y directed B field along the air gap.

primary advantage of the method is the flexibility afforded
in the arbitrary placement of modeling points and in the
improvement of accuracy by the ease of adding additional
points. The fact that the resulting matrices are always non-
square having more rows than columns does not appear to
author has found in parallel that the non-square matrix
solution presents no problem' for matrices sized at 3000 by
1000, indicating the method would be feasible for large
problems.

ACKNOWLEDGMENT
The support of the Veterans Administration in this
research is gratefully acknowledged.

REFERENCES

(1] SR.H. Hoole, Computer-Aided Analysis and Design of
M_%Neﬂfmk.mme 1989, pp. 73-

[2]R.W Hombeck, Numerical Methods, Preatice Hall, New
Jersey, 1975, pp 269-289.

[3] P. Girdinio, P. Molfino, G. Molinari, L. Puglisi, and A.
Viviani, "Finite difference discretization procedures with
improved continuity of interpolation functions," IEEE Trans.
Magn., Vol. Mag-19, No. 6, 1983, pp. 2558-2561.

{4] P. Girdinio, P. Molfino, G. Molinari, L. Puglisi, and A.
Viviani, "Finite Difference and Infinite Rlement Grid
Optimization by the Grid Iteration Method,” IEEE Trans.
Magn., Vol. Mag-19, No. 6, 1983, pp. 2543-2546.

[5] J]M. Varah, "On the numerical solution of ill conditioned
linear systems with applications to ill posed problems,”
SIAM J. Numer. Analysis, Vol. 10, No. 2, pp. 257-267.
[6] R. Varga, Matrix Iterative Analysis, Prentice Hall, New
Jersey, 1962, pp. 173-191.




A Case Study Comparing the Lossy Wave Equation to the
Continuity Equation in Modeling Late-Time Fields Associated with
Lightning*

Michael E. Baginski

Abstract

An investigation is presented into lightning-related
transient electric fields and conduction current densi-
ties due to the redistribution of charge by the return
stroke (late-time effects). A qualitative comparison
is made between the late-time vertical electrical field
magnitudes predicted by two solutions via the conti-
nuity equation/Poisson’s equation and the continuity
equation in conjunction with the lossy wave equation.
'The differences between these results indicate that
the magnetic energy density created by a lightning
discharge generally provides relevant changes in the
resulting electrical field waveforms as radial and ver-
tical distances increase from the lightning discharge.
That is, the accuracy of the conservative field as-
sumption V x E = 0 decreases with the distance from
the point of excitation to the point of observation of
the electric field for the study conducted. This obser-
vation suggests the use of the lossy full wave equation,
when computationally feasible, for the prediction of
late-time electric field behavior. This study addresses
trends in the general behavior of the two solutions
over region 0 < » < 30 km and 30 < z < 50 km.

1 Introduction

The purpose of this research is to examine the ne-
cessity of using both Ampere’s current law and Fara-
day’s law on induction as opposed to using the quasi-
static solution to describe the late-time field recovery
of electromagnetic transients associated with light-
ning. This has been a major area of controversy for
several decades [1], [2], [3] due to the fact that so-
lutions based on quasi-static analysis are far simpler
to solve numerically and to formulate than solutions
based on the lossy wave equation. In the following,

*The authors are with the Auburn University Department
of Electrical Engineering, 200 Broun Hall, Auburn AL 36849

A. Scottedward Hodel

a brief overview of some of the previous research and
the true nature of the problem to be discussed is pre-
sented.

Late-time electromagnetic fields stem from the non-
propagating portion of the electromagnetic transient
from lighting and are therefore associated with the
electrostatic and magnetostatic energy created when
lightning occurs. Since a multitude of approximations
are required in the modeling of the late-time effects
of the lightning event, the digital simulations pre-
sented in the following sections employed commonly
accepted charge distributions conductivity profiles,
and general atmospheric parameters [4], {5). It is
hoped that this research will be of value not only to
atmospheric scientists but also those studying EMP,
HEMP, corona discharges, etc.

In this work, a finite element code was used to
compute the vertical electric fields in the middle at-
mosphere via (1) the continuity equation

dp
vV.-J+ i 0
and Poisson’s equation
vig=-L£,
€0

and (2) the complete set of Maxwell’s equations

o0H
v = —uge—
x E Ho g,
dE -
VxH = cE+ eo-a—t- + additional sources

of charge movement.

Both sets of equations used identical atmospheric pa-
rameters. The respective vertical electric field wave-
forms were then compared with waveforms over a
wide range of values of radial distance r and altitude
z. A detailed analysis of the waveforms generated by
the two different numerical solutions was performed
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by comparing the mean squared error difference be-
tween the solutions. The results showed that there is
a radial and vertical position where the electric field
signatures begin to deviate significantly from one an-
other. It is the view of the authors that this would
be the logical region that would mandate the use of
the complete set of the Maxwell equations. It should
be emphasised that the results presented herein are
only for a specific set of atmospheric conditions and,
thus, may show sensitivity to several atmospheric pa-
rameters.

2 Historical Perspective

Since the 1950’s several electrical models describing
the interaction of thunderstorms with the atmosphere
have been published. Holser and Saxon [6] have as-
sumed concentrated charges in a dipole configuration
with spatially varying conductivities to obtain tem-
porally invariant field patterns in the lower atmo-
sphere and ionosphere. The lightning return stroke,
however, generates transients in the electric field pat-
tern known as “field changes” [7]. Early workers at-
tributed this temporal recovery to recharging within
the thundercloud. Tamura [8] is credited as the first
to note that the surrounding atmosphere is also in-
volved. He defined solutions based on the conser-
vative field assumption (i.e., V x E = 0) that de-
pend on the conductivity at the point of observation.
Kasmir [9] constructed the first dynamic model of
the thundercloud system using resistors, a capaci-
tor, and a spark gap. His model connected a cur-
rent generator, a capacitor, and a resistor in parallel
to model the cloud ionospheric connections with the
path to earth replaced by a resistor. More dynamic
models began to follow. Anderson and Freier [10]
incorporated dynamic changes in the dipole struc-
ture with spatially varying conductivities. However,
they only include the quasi-static relaxation in their
model instead of solving the total set of Maxwell’s
equations. Additional solutions were developed based
on the “monopole” model of Wilson [11], Illingworth

3 Thunderstorm Modeling
3.1 Charging Mechanisms

The most difficult phenomenon to explain in thunder-
storm research has been the process involved in cloud
electrification. The difficulty is twofold: Firstly, there
exist a large number of possible mechanisms respon-
sible for charge separation and current generation;
further, it is usually impossible to isolate such mech-
anisms and test each for its relative effect. Regardless
of the mechanisms, what is known is that a thunder-
storm is sustained 'by a charge separation which can
be approximated by net positive and negative charge
centers. The height of the charge centers is somewhat
affected by seasonal changes and the geographic loca-
tion. Typical heights of 10 km for the upper charge
center and 6 km for the lower charge center are widely
found in the literature and have been selected for this
research [19]

The magnitudes and profiles of the charge centers
and currents vary significantly from storm to storm.
Kasmir [9], for instance, has measured values ranging
from 20 C up to 1000 C for thundercloud charges and
cloud electrification currents from less than 0.1 A to
10 A. Lightning return stroke currents are reported
to have an even larger range of values [7]. The exis-
tence of such large variations complicates selection of
the currents and the charge deposition profile. After
a review of the relevant literature [20], [14], a choice
of the forcing current and profile of charge deposi-
tion was made. The selection was based upon widely
used current and charge profiles. The charge pertur-
bation used was developed based on Sunde’s [4], [20]
lightning return stroke current model.

Sunde’s [20] lightning return stroke model is se-
lected for this research primarily because of its ex-
tensive commercial and military use in work requir-
ing an analytic formulation of the lightning return

‘stroke current. This model was developed based on

the statistics of a very large number of measurements
during lightning events. Sunde’s model is relatively
simple compared to some [7], but includes the fun-

[12], Park and Dejnakarintra [13], Greifinger and Greifindamental attributes necessary to predict “average”

ger [14], Holsworth and Chiu [5], Baginski et al [15],
and Driscoll et al [16]. The transient lightning event
was investigated recently by Hoole and Hoole [17] us-
ing a finite element code. Discussion on guided waves
in lightning plasma channels is presented in [18].
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electromagnetic field behavior [20]. The charge gen-
eration (in units of A or C/s) may be expressed in
terms of this lightning return stroke current tempo-
rally as follows:

G, = éthi)- =i(t) = I (e™® —e7) (3.1)

where i(t) = the lightning return stroke current from




Sunde’s modified model, a = 10*s~!, b = 0.1 x
10% s~!, and I, is proportional to the amount of charge
displaced during the return stroke.

It is well known that the deposition of charge from
the return stroke current is primarily responsible for
the charge perturbation [21). The deposition rate of
charge due to the the lightning return stroke current
is proportional to the time derivative of the charge
perturbation [19]. Therefore, the total charge de-
posited at time ¢ may be expressed as the integral
of the lightning return stroke current in time, given
by

Q) = [ i

where i(t) is the lightning return stroke current and
Q(t) is the total displaced charge of the return stroke.

Consider equation (3.1). The term e~ describes
the rise time of the charge generation inducing the
perturbation, i.e., how rapidly the maximum return
stroke current, but not charged depoasited, is attained.
Since the amount of charge exchanged during a return
‘stroke is related to its time integration, omission of
the term e~* causes no appreciable change (for time
greater than 5 x 10~% s) in the amount of charge
displaced, and therefore, no appreciable change in the
simulated electrodynamic response. The spatial and
temporal structure of the deposited charge G, is given
by a modified spherical Gaussian profile:

(3.2)

2 "3
_ -15 _rf+(z-2)
G, = (2xA)"“exp ( 23 )
e ‘/f;
x ( - ) (3.3)
where
n1 = 1073 8 is the decay time
of the force charge event
A = 4x10%m? is the effective variance
2z’ = the altitude of the charge perturbation.

The spatial distribution of the charge perturba-
tion does not noticeably affect electric field signa-
tures far from its interior [4]. This condition exists for
our model (electrical fields of interest in the present
study are at least 20 km from the charge perturba-
tion) which allows a certain degree of freedom in the
specification of the distribution. Also, since virtually
no published data is available describing the spatial
structure of the deposition of the charge from the
lightning return stroke current [22], the selection is

Figure 1: Region of simulation

even more arbitrary. Further, the modified Gaussian
distribution is used in the modeling of many man-
made and naturally occurring forced charge events
[4] which justifies our choice for this model.

Geometry of the Region: Before describing the
geometry, consider again the phenomenon of inter-
est: charge perturbations, located at altitudes no
greater than approximately 10 km, induce electric
fields throughout the atmosphere, but only those fields
induced within the middle atmosphere are to be sim-
ulated. Thus,

1. If not obviously constrained, the geometrical
limits of the model will approximate the en-
tire atmosphere’s electrical effect on the regions
where the simulations take place.

2. The boundary conditions of the region will be
electrically equivalent to those of the atmosphere.

The region selected (Figure 1) is contained within
a perfectly conducting right circular cylinder with a
radius of 60 km and height of 80 km. A discussion of
how each of the boundaries was arrived at follows:

Lower Plate: The earth’s surface is electrically mod-
eled as a perfect conductor. This assumption is based
on the very large difference that exists between the
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carth’s conductivity and adjacent atmosphere’s con-
ductivity. Typical values of .001 to 0.01 mhos/m [23]
are given for the earth’s conductivity, while 10-13
to 10~'* mhos/m is the usual range of the adjacent
atmosphere’s conductivity. This difference of more
than 11 orders of magnitude makes the earth appear
(electrically) as a perfect conductor.

Upper Plate: The selection of 80 km for the height
of the upper boundary was a necessary consequence
since the atmospheric conductivity structure is com-
plicated by the Hall and Pederson components above
an altitude of approximately 70 km [24]. The tensor
conductivity components result when the mean free
path and velocities of the charge carriers are sufficient
to allow their trajectories to be altered by the effect of
the earth’s magnetic field [25]. In the present model
tensor quantities have been excluded to keep the al-
gorithm simple without adversely affecting numerical
accuracy. Further, in past studies (3], [2] an altitude
limit is set in the vicinity of 70 km. Dejnakarintra
and Park [2] note that this level is an appropriate
choice since the conductivity becomes anisotropic at
this altitude.

For this study, the 80 km altitude was selected
based on the following considerations:

1. The relative magnitude of the Hall and Peder-
son tensor conductivity components is approx-
imately proportional to the additional distance
in altitude (beyond 70 km) considered, i.e., the
difference in components is proportional to (z2—
70). The maximum value of either of these com-
ponents with respect to the parallel o conduc-
tivity’s magnitude (for the range of altitudes
considered) is less than 10 percent [24].

2. The middle and upper atmospheric electric fields
resulting from lightning (with the exception of
the propagating component) are approximately
vertically oriented [24), i.e., the horizontal com-
ponent is negligible.

3. The off-diagonal tensor components of the high-
altitude conductivity only interact with electric
fields that are not aligned with the earth’s mag-
netic field [24]. Since the earth’s magnetic field,
with the exception of the equatorial regions, is
primarily vertically aligned [21], the influence
of both the Pederson and Hall components on
the lightning-induced vertical electric fields will
be, to first order, negligible. The inclusion of

Normalized response profiles: =30 km, =50 km
1 v v v v T - v v

0.9) Solid(-) Ez = o =0
0.8 Dottad(-.) = dv(EZ) = rho/eps
0.7 4
0.6
Eo.s
Hos
0.3}
0.2, 1
0.1
% oz o« o8 o8 1 12 14 18 18 2
time (sec)

Figure 2: Effect of 80 km upper plate in vertical E-
field computation

these components would tend to prolong the
simulated atmospheric transient response at al-
titudes of 70 km and above. Since this investi-
gation focuses on altitudes less 50 km the im-
pact of these terms on our results would be in-
significant.

An obvious concern is the influence this 80 km
altitude limit may have on the simulations. A pre-
vious study [3] used simulations based on the full
wave equation to determine the maximum error in
the vertical electric field in the region of interest in
the present study. The results showed that the maxi-
mum electric field error induced by the 80 km ceiling
occurs at z = 50 km and produced a relative error of
less than 1%. To investigate the maximum possible
error in the electric field due to this assumption (as-
suming an electrically passive atmosphere), two fur-
ther sets of simulations were conducted with the 80
km upper plate electrically described by: 1) The ver-
tical electric field and charge density are set to szero
(E; = p=0). 2) The divergence of the electric field
is set to the value of the charge density divided by the
permittivity of free space (V- E = p/¢). These sim-
ulations indicate a maximum error at radial distance
r = 30 km and altitude z = 50 km. A representa-
tive plot of respective vertical waveforms is shown in
Figure 2. Use of the conservative field assumption re-
duces the associated error even further. The change
in the two boundary conditions provided above pro-
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vides a worst-case error analysis. In all simulations,
comparison of results showed little if any difference
for the time frames of interest (0-2 s).

The probable reason for this behavior is that in
general, for lightning-induced transients, the electric
properties of the atmosphere below the point of ob-
servation of the field rather than above it, govern the
transient’s response [28]. This may be explained by
simply considering the fact that, in general, the con-
ductivity rapidly increases with altitude (i.e. resistiv-
ity decreasing), and therefore its influence (restrictive
effect) on the total global charge movement decreases.
Hence, it seems reasonable to assume the middle at-
mosphere’s simulated response to low-altitude charge
perturbations is governed by the adjacent and lower
altitude conductivity values.

Outer Cylindrical Surface: The lateral bound-
ary had no distance constraint and could have been
extended indefinitely. However, there exists a trade-
off between resolution (both temporal and spatial),
and computational resources: reduction in the model
dimensions yields improved accuracy in numerical so-
lution of the differential equations. Therefore, the er-
rors resulting from the adoption of finite boundaries
for the model must be weighed against those resulting
from degrading the numerical resolution of the code
by involving too large a volume.

The simulations were found to be insensitive to
increases in the radial limit beyond 50 km. No visi-
ble difference could be detected in the response using
either the 50 km or 60 km radial boundaries when
plotted together; see Figure 3. Therefore, selecting
the 60 km radial limit is a measure to provide addi-
tional confidence in the simulations.

Axis of Symmetry: Since r = 0 defines an axis
of symmetry and since there are no discontinuities in
the charge distribution, the derivatives of the vertical
electric field (OE, /8r) with respect to radial distance
reduces to sero on this axis.

The differential forms of the four boundary con-
ditions are summarised as follows:

1. At the z-axis, 8F, /8r = 0
2. at the upper and lower boundaries E, =0
3. at the outer radial boundary E, =0

Solid(-) 50 km radiel bound

Dotted(-.) 60 km radial bound

Figure 3: Effects of changes in radial limits on E-field
computations.

Maxwell’s Equations: To those familiar with clas-
sical electromagnetism, the analysis of the post-stroke
atmospheric response may seem rather simple at first.
A charge imbalance induced in a conducting region
would be expected to decay exponentially with time
at a rate determined by the local relaxation time of
the region [25]. The corresponding electric fields, be-
ing proportional to the overall charge distribution,
should decay in a like manner. When electric field
measurements obtained from parachute-borne pay-
loads [27] are considered, however, a significant devi-
ation from the exponential decay is at times observed.
In some cases a gradual peaking is observed hundreds
of ms after the return stroke has ceased. This behav-
ior suggests, at least for some circumstances, that a
more complicated description is required and that a
careful analysis of the governing equations should be
undertaken.

Beginning with Maxwell’s equations, a single equa-
tion is derived where the electric field is dependent on
the charge density only as follows:

6H
VxE = - —5? (3.4)
8D ee
VxH = J+ b + additional sources
of charge movement (3.5)
V.-D = p (3.6)
V-H =0 (3.7)

102




J =
D

oF
¢k

(3.8)
= (3.9)

By taking the divergence of the V x H we derive
the continuity equation that will be used in the anal-
ysis of both systems of simulations:

0=op/e+Va-E+:t—p+G, (3.10)
where G, = V - J; and J; is the source charge gen-
erator causing the perturbation.

The lossy wave equation is developed using the
above equations:

VxVxE
/] 3E
—ME ol [JCF (3.11)
0E 8J
- ip_ a5 b
Vple = VE y(a'at +—8t)
3E

The resulting second order partial differential equa-
tion is analytically solvable for only the simplest cases.
The types of solutions required for altitude-dependent
conductivities are not obvious. If one wishes to pur-
sue this problem further, assumptions must be made
or numerical methods must be applied. The most
common assumption used in the past (e.g., [12], [1])
is to define the electric field as the gradient of the
electric potential (E = —V¢), the conservative field
equation. The mathematical consequence of this, if
strictly enforced, is to constrain the electric field to
decay exponentially in time. This can be shown as
follows: E = —V ¢ yields the vector identity

VxE=Vx(-Vé)=0. (3.13)

Equation (3.4) and equation (3.13) imply that
a2 =V x(-V9) =0

i.e., H is time invariant. Since the H field in this
case is time invariant, the E field is necessarily time-
invariant as well for the study conducted. The general
solution for the electric field is given by

E(r,2,t) = Eo(r,z)exp(-t/7(r,2))

+Ey(r, z) (3.14)

where 7(r,2z) = ¢/o(r, 2).

This type of solution has a definite range of va-
lidity. However, for the general case, a computer so-
lution of the above equation, not limited by the con-
servative field assumption, would provide more infor-
mation about the true time dependent shape of the
electric field. The final equation required for both
simulations is the continuity equation. This is de-
rived by taking the divergence of equation (3.14).

Critical comments on the Full Wave Equation
There are several questions that need to be addressed
prior to continuing this discussion in regard to the use
of the lossy full wave equation. The first is the usual
spatial /temporal requirement that generally must not
be violated and depends on the number of dimen-

ons. (That is,

cAt < h/+/n,

where h is the spatial step and n is the number of
dimensions). However one can use the theory put
forth by Courant and Hilbert [28] that shows that the
above inequality can be modified for certain circum-
stances, especially when the region analysed is lossy
(i.e., o is non-sero). (Kuns and Luebers [29] have
presented a similar theory for the time-domain finite
difference method.) In the lossy full wave equation
used in the research, the grid sise and time step were
reduced until no appreciable difference was observed
in the results and thereby confirm their assertions.
A second point to ke made is that because of the
extremely high amount of loss (very low Q) of the re-
gion, the propagation delay caused by the ucd® E/8t?
term is of negligible significance compared with the
loss associated with either ucdE /8t (lossy full wave
equation) or the continuity equation. When several
preliminary computer simulations were conducted, the
actual number of triangles required to achieve accu-
rate results was found to be 520 with a final trian-
gulation being proportional to r~1/2 where r is the
distance from the charge center. A simulation was
also performed with 1000 triangles; no significant de-
viation was observed from results with 520 triangies.
(Quadratic elements were used in all simulations in
this study; the final triangulation is shown in Fig-
ure 4.) The time step was also made proportional
to =958, These two deviations from the traditional
stability criteria were a cause of concern in earlier
related research [15]. For comparison, simulations
were also performed using a uniform mesh with uni-
form grid spacing in space and a constant time step;
no appreciable difference was observed between the

103




§  Final Trisngulation
&
g
.3
-
&
s 4
-~
E —
b
—
g
".100 1.00 300 5.00
r(*10** 4)m

Figure 4: Triangulation used in simulations

computed solutions. The obvious benefit of the use
of non-uniform mesh and varoab;e time steps is that
there are enormous savings in CPU time and in-core
memory. In our experiments, a single simulation in-
volved 12-15 hours of computation on a SPARC 10
computer with the method used and probably would
have required at least an order of magnitude more
time if the time step and grid spacing were based on
the stability criteria stated above for the time step
derived from the rise time of the charge perturbation
waveform.

3.2 Summary of the two equations used

The two sets of equations that are used in the com-
parative simulations are the following:

3E

ot3
dp

opfe+ Vo-E + 5 +G, (3.18)

— e (3.17)

0

where G, =V . J;.

4 Numerical Results

As stated earlier, the intent of this research was to
investigate, via a finite element code based on a solu-
tion of the differential equations {30], [31] the neces-
sity of solving the lossy full wave equation (3 equa-
tions) versus the much less computer intensive con-
servative field equations for charge perturbations in
the middle atmosphere. The method used will now
be presented. The comparison was based on the use
of the mean squared error difference between the two
simulations to identify the difference versus position
and time. The grid used was spaced radially at points
of r = 0,5, 10,15, 20,25, and 30 km and at altitudes
of z = 30, 35, 40, 45,and 50 km.

Let ex(r, 2,t) denote the magnitude of the elec-
tric field at radial distance r, altitude z, and time ¢,
under the assumption that Faraday’s law of induction
is omitted; i.e., when using only the continuity equa-
tion (3.15) and Poisson’s equation (3.16). Similarly,
let e.(r, z,t) denote the electric field when using the
full wave equation (3.17) in tandem with the conti-
nuity equation (3.18). The PROTRAN program [30)
was used to compute e, and e. over a range of ra-
dial distances r and altitudes z for several seconds.
A sample plot comparing the computed electric fields
at radial distance 20 km are shown in Figures 5-9.
(In Figures 5-9 the solid line denotes the quasi-static
simulation (e ) and the broke- line denotes the so-
lution to the lossy full wave equation (e.).)

In order to determine quantitatively the effects of
the magnetic energy density on late-time electric-field
magnitude, an error signal

SET 1 Y(r, 2,t) = e (7, 2, ) — €c(r, 2,1)
was computed and an RMS error was normalized
0 = ople+Vo-E+ %tg +G, (3.15) against the energy in e (r, 2,t) by computing
/2
0 = Vig+p/e 3.16 ' 140 \'
¢+ (3.16) w(r, z,t) = (Mt—)l—?— . (4.1)
SET 2 leco(r, 2,t)|" dt
Time-varying plots of w(r, z,t) vs altitude and time
0 8J hown for varying radial distances r in figures
. oim_ OE 8J, are s ying 1 ces gu
Vele = VE-p (e I ) Figure 10-Figure 16.
104




[P

Figure 5: Electric field transient (altitude 30km)
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Figure 13: Error at radial distance 15km

Summary of RMS date, radial distance =20km

Figure 15: Error at radial distance 25km
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Error comparisons were also made using de,, /dt
and de./dt; results were consistent with those of the
electric field waveforms themselves. In each of these
cases, a clear distinction can be seen between pre-
dicted electric field values at altitude 35 km and at
altitudes in excess of 40km. These results indicate
that the magnetic energy density plays an increas-
ingly important role in defining late-time electric field
behavior as distance is increased from the source to
the point of observation.

5 Conclusions

Before examining the results in detail, it is impor-
tant to keep in mind that the focus of this study
is to characterise two standardly used sets of equa-
tions that describe the late-time lightning induced
electric fields. Because the number of atmospheric
parameters that effect the electrical phenomenology
is large (e.g., ¢, o, scale height, cloud conductivity),
this study serves as a precursor for future endeavors
that can investigate the electric fields’ sensitivity to
all constitutive parameters as well as the effects that
variable boundary conditions will have.

A comparison was made between the values of
late-time the vertical electrical field magnitude pre-
dicted by (1) the continuity equation and Poisson’s
equation and by (2) the continuity equation in con-
junction with the lossy wave equation, respectively.
The comparison clearly identifies trends that suggest
that as distance (either radial or horisontal) from the
source of the charge perturbation is increased, the
magnetic energy density significantly influences the
vertical electric field signatures. The data also indi-
cates that, under the conditions of this case study, at
an altitude of approximately z = 35 km the effects of
the magnetic energy density upon the vertical electric
field are more apparent than at surrounding altitudes.
However, further intensive studies are required to as-
sert that these qualitative schema will be observed in
the general case over arbitrary values of conductivity
and charge perturbation altitudes.

Past studies have used various criteria to select ei-
ther the conservative field assumption or the full wave
equation for solving the problem of interest. For ex-
ample, Dejnakarintra and Park [2) compare the con-
ductivity o to the susceptivity jweg in order to decide
which assumptions to use. Nisbet [1] implicitly advo-
cates the use of a conservative field assumption since
his model uses resistive and capacitive elcments but

not inductive elements. At present, the applicability
of the conservative field assumption for late-time elec-
tric field recoveries resulting from lightning remains
somewhat controversial.

The specific region (0 < r < 30 km, 30 < z < 50
km) used in the investigation was selected somewhat
arbitrarily based on two major factors. It was found
that simulations below this altitude and within the
same approximate ~adius have been investigated us-
ing several previous models (Nisbet [1], Dejnakarin-
tra and Park [2], Greifinger and Greifinger [14] among
others) and found to be consistent with the results of
the current study, hence, of little interest. The tran-
sient fields associated with the charge deposited from
lightning above 50 km have been investigated previ-
ously as well by Baginski et ol {15] and Dejnakarintra
and Park [2], and require a solution to the lossy full
wave equation due to speed of light effects as well as
the dielectric relaxation at the point of observation.

The investigation demonstrated that: 1) If the
widely used conservative field assumption (VX E = 0)
is rigorously enforced (both of Maxwell’s curl equa-
tions solved simultaneously) then the electric field
may only exhibit exponential decay that is generally
in error. 2) When the two solutions of the late-time
transient event (one using the conservative field as-
sumption and omitting Faraday’s Law of induction,
the other solving the complete lossy wave equation)
are compared, there is a measurable error in the be-
havior of the field waveforms between the altitudes of
30-50 km and radial distances of 0 - 30 km (equation
(4.1)).

Cursory examination of the error diagrams (Fig-
ures 10-16) reveals that a large error occurs at ap-
proximately 0.2 s and at 50 km altitude. The error
appears to decrease somewhat at altitudes z = 20 km
and z = 25 km from the source, but increases signif-
icantly at z = 30 km. This error is most likely due
to an “inductive surge” caused by the effects of the
magnetic field being taken into account in the lossy
full wave equation. At radial distance r == 10 km (see
Figure 12), the error between the two models is espe-
cially pronounced and growing. The most likely cause
of this effect is the error due to the interaction be-
tween the “inductive behavior” and the atmospheric
time constant at the point of observation.
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ABSTRACT. The capacitances of three phases cable
and the characteristic impedance of coaxal transmi-
ssion line with complicated shaps of the cross
sections are evaluated by using boundary element
method. The calculated results obtained by the
proposed method are coincident well with the
results given by the literatures [2-9].

1 INTRODUCTION

In engineering practice, the capacitances of multi-
phases cable are calculated approximately by using
curves and tables such as given in reference [3].
The nunerical methods are rarely used to calculate
the characteristic impedance of the coaxal trans-
mission lines due to the accurate result of the
flux density is not easy to obtain and the corner
effect can not be dealt with well. Hence many au-
thors intended to find a simple and aocurate method
to obtain the approximate snalytical formulas for
calculating characteristic impedance of comxal
tranmmission lines with complicated cross section.

By comparison with finite difference and finite
elenent methods, the boundary element method is
easy to obtain ths distribution of the normal
derivatives of potentizl along the boundary of the
field region directly. It is profitable to
calculate the total flux along the conductor
surface. Hence, the parameters of the capacitance
of multi conductors with any shepe of the cross
section can be obtained in a easy way with
sufficient soccuracy. The cspacitances of multi-
phases cable and the characteristic impedence of
transmission lines with complicated shape of the
cross section for TEM mode wave are calculated by
the boundary element wethod in following sections.

2  BRIEF INTRODUCTION OF BOUNDARY ELEMENT METHOD

Based on the weighted residual principle, the
birmdnry integral equation of Laplace’'s equation

c‘u‘=jl_<r";,-‘,‘; vy M

where u is the function of Laplace’s operator, F is
the fundamental solution of Lsplace’s equation, u,

is ths function value at sny point i of the
boundary of the field region, ' is the boundary of
problem region, n represents the normal direction
of the boundary. For smooth boundary, C‘=1/2 (1}.

After using the discretization technique, Eq.(1) im
spproximated by

1 .. OF,. N -0u
u.+ Edl': Fa= drr 2
Z% j-zsjl'".u ji:a‘rrj In @
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where N is the total number of elements along the
boundary which is discretized, l'j is ths boundary

of each element.
Suppose the unknown function u is spproximated by
n
uz L Nu 3)

img
where “o. is the shape function. Let

- oF
Hu:.r r, ¥, (R)dr

(4)
G":fr; F(N}d"
and
H =3
HiJ:{ P 1 Ch
2 1=d
then Eq.(2) is expressed by a matrix form
H=0Q (8)

Where H,G are coefficient matrices of order NxN,
U.Q are column matrices of order N of potentisls
and itas normal derivatives along the boundary.
Solve Eq.(5), the normal derivatives of tie
potential are obtained - with the =mame degres of
accuracy as the potential itself.

In Eq.(3) the shape function [N] is depending on
the type of discretization element. The fundsmental
solu~- tion of Laplacisn is

-1 1
F———Z" an (7
where r‘.r‘ are positions of field point and source
point,’ respectively.

3 CAPXCITANCES OF CABLES WITH ANY SHAPE OF
CROSS-SECTION

3.1 Validation of the Method

Two exaxples are used to examine the accurscy of
the method.

Bomple 1: A coaxial osble with radius of R‘=lon.
&:200 is shown in Fig.1(a).

The inner and ocuter circles are subdivided into 16
and 24 linear elements. Suppose the imposed voltage
is 1V. By using the boundary element method, the
field strength at the inner and the outer

conductors are o.144535x10°(V/m) and 0.72208x10*
(V/m), snd the relative are +0.18X and 0.292,




respectively. The capacitance per unit length of
the coaxal is 80.370685pf und the relative error of
the ospacitance is:

80.37065-80.2807 _

e°=—8-67§67———’0 1x

The accuracy is quite good.

(a)

R‘=1 .Oca

Fig.1(a) Coaxal cylinder
(b) A pair of parallel cylinder

Exsmple 2: Each contour of the cross section of a
pair of parallel 1line as shown in Fig.i(b) is
divided by 12 1linear elements. By using the
boundary element method, the cspacitance per unit

length of this system is 20.853768pf. The relative
error is 1.2%.

3.2 Mplication:

The partial cspacitances of multi-phases cables
with different shape of the cross sections are
"usually calculated by means of figures and tables
as introduced in reference[3). The cross section of
a symmetric three-phase cable is shown in Fig.2.

(A

Fig.2 The cross section of a three phases cable
(R:l‘.Ocn Rz=4.00n d=2.0cm)

Based on the definition of the inductive coeffi-
cients betuween milti conductors and the partial ca-
pacitance defined as Eq.(8), the parameters of Cio’

C‘k can be calculated by the above method directly.

Q‘=C‘°U‘°+C‘:U“+. * .+C"‘U‘k+. 4C,U

tnAn

Q“=C“Uk s+ckaukz+' ° ".Ckouko"" * '+cknultn

(8)

ah=cnaunt+cnzunz+' * '+anunk+ °e .+Ch°Un°

In Eq.(8), U _=U -y

k2 ko ‘20’

By using the above method. the partial capacitances
of the three phase cable showm in Fig.2 are C _=C

10”20
=C,,=13.3007pf and C,,=C, =C_ =9.977897pf.

12 29 M
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Compare the spproximate solution obtained from
reference (3], the error of C‘o is:

E = 13.3007-13.528

*——13.528 =1.66%

°1o
If the shape of the inner conductor is irregular,
for exsmple the sector approximte to elliptic, the
partial capacitance can be caloculate by the same
way.

4  CHARACTERISTIC INPEDANCE OF TRAMSMISSION LIMES

The characteristic impedance of coaxal trsnsmission
lines with different shape of cross sections both
of the inner and ths outer conductors are dealt
with by many suthors by means of analytical and
seni-analytical formulations such as those given in
references{2,4-9]. In this paper, the boundary
element method is successfully umed to calculate
ths characteristic impedance of the coexal trans-
nission lines conatructed by an inner conductor
with circular crosa section surrounded by an outer
conductor with a polygonal cross section and vice
versa. For TEM mode transmission lines, the field
distribution between conductors satisfies the
Laplacian equation. The method introduced in former
section is used. The characteristic impedances of
the transmission lines with polygonal and circular
conductors as shown in Fig.3(a),(b) and Fig.4 are
calculated. The comparison of the numerical results
calculated by BEM with those obtained from di-
fferent literatures of these configuration is
listed in Table 1 and 2. For Fig.3(a) and (b), the
outer and the inner conductors are divided by 38
and 20 linear elements, respectively. For Fig.4,
the circle is divided into 20 linear elements and
the square is divided into 38 linear slements.

=

(a) N=4

B—
(b) N=6

Fig.3 Polygonal transmission line with
circular inner conductor

™

Fig.4 Circular transmission line with
square inner conductor




Teble 1 Characteristic impedance 2,(Q) of the polygonal
transmission line with Circular inner conductor

(a) N=4

(b) N=B

A/B present work Bstevez[2] Lin(3] Pan{4) Riblet{8] present work Estevez[2] Lin({4] Ma[8] Pmn(8]
.05 183.72 185.21 183.77 184.14 181 .44 182.10 182.38 182.79 181.62
.10 142.32 143.16 142.21 142.58 140.04 140.38 140.82 141.20 140.28
.20 100.92 101.02 100.68 101.02 98.84 98.60 98.27 ©8.81 98.71
.30 78.70 76.41 78.35 76.89 74.43 74.18 74.98 75.28 74.39
.40 59.52 59.02 59.10 58.42 57.24 58.90 57.71 58.02 57.14
.50 48.19 45.681 45.73 48.00 48.09 43.92 43.53 44.34 44.63 43.75
.80 35.29 u.Nn 34.60 35.00 35.1%5 32.03 S2.84 33.41 33.89 32.80
.70 28.03 25.49 25.55 25.88 25.85 23.81 23.44 24.18 24.44 23.53
.80 17.90 17.44 17.55 17.48 17.68 15.80 15.46 18.16 168.43 15.47
.90 10.37 10.01 10.49 9.97 10.13 8.85 8.31 9.10 8.3 8.27
.94 7.28 6.99 5.93 5.55 8.49 8.7 5.53
.95 8.42 8.19 7.25 8.20 8.25 5.25 4.84 86.12

.99 2.17 2.3 2.41 1.689 3.3 3.85 1.78
.998 2.48 .99 4.28 1.07 1.00 1.54 0.68 3.18

Teble 2 Characteristic impedence ZO(Q) of the cir-
cular line wit;h square inner conductor

Table 2 shows that if the inner conductor is

B/A N " square, the difference of the between the
65 p"'ma!". “wor 11'33[2'; '1‘8.;2 i;'g'[gg nuneriocal results and the snalytical results looks
0 127.05  128.11 128.13 128.12 Sotious. However, for = B/A=0.05—0.8,  the
.20 85 .68 ‘55 88.54 B8.58 fferences are 0.73X — 2.8%. This influence is
‘30 81.45 62.24 6221 B82.23 due to the corner effect of the inner conductor. If
40 4.2 44.97 44.95 44.92 the inner conductor is larger then the influence is
.50 30.87 31.50 S1.56 31.38 bigger. But for large retio of B/A. the coincidence
‘80 19.88 20.20 20.82 19.85 of the result looks well than the result obtained
.70 9.25 8.85 11.37 7.32 by different snalytical methods.
Table 3 The convergence of the method
A/B 0. 0.10 0.20 0.30 0.40 0.50 0.80 0.70 0.80 0.90 0.84 0.95 0.99 0.898
Element Ro.(38+20) 181.44 140.04 98.64 74.43 57.24 43.82 33.03 23.81 15.81 8.85 5.93-5.25 2.41 1.54
Element No.(30+32) 181.73 140.23 98.73 74.45 57.22 43.88 32.94 23.71 15.68 8.49 5.73 5.03 2.01 1.57
The convergence of the method is proved by using 5 REFERENCES
the construction of the transmisaion line showm in

Fig.3(b). The outer and the inner conductors are
subdivided by (36+20) and (30+32) linear elements,
respectively, the charscteristic impedances(fl) are
listed in Table 3. The results show that the wvalue
of the calculated characteristic impedance is di-
fferent if the number of the discretization ele-
ments are different but the difference is very

small. It shows that the numerical results are
relisble.

S5  OONCLUSIONS

1. The BEM can obtain more accurate results for the
potential derivative along the conductor surface
then the finite difference and finite element
me thods. Hence it can be used to cslculate the
cepacitance and characteristic impedance of
transmission lines with different shape of cross
sections.

2. For the polygonal transmission 1line with oir-
cular inner conductor, the mumerical results are
coincident very well with the analytical re-
sults given by different spproximate methods of
different suthors. In this case, the effect of
the inner corner of the outer polygonal has no
siginificant influence the field distribution.
Hence, the corner effect in the mumerical method
has not present as a problem.

3. Table 2 shows that the accurascy of the charal-
teristic impedance for the circular transmission
1line with square inner conductor is a little bit
lower only if the inner conductor is larger.

4. Teble 3 shows that the stsblity of the numerical
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results are good.
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HIGH FREQUENCY FFT ANALYSIS OF AN ELECTRICALLY
LONG MONOPOLE ANTENNA

Saad N. Tabet

Department of Electrical and Computer Engineering
Mississippi State University
Mississippi State, MS 39762

ABSTRACT

In previous work the currents along a monopole,
20 meters long and operating at 299.8 MHz, placed over
a perfectly conducting ground plane were analyzed using
several modeling techniques and the Numerical
Electromagnetics Code version two (NEC-2). An
interesting topic to investigate is the presence of
spurious modes of propagation along the monopole.
Such modes of propagation are studied for each
modeling technique, and conclusions are drawn
accordingly. When the data are transformed into the k-
space domain, using Fast Fourier Transforms (FFT),
the spurious mode behavior along the monopole becomes
clearly visible. This technique provides valuable
information not yet documented.

INTRODUCTION

This work is a follow-on to previously published
work, Reference [1]. In [1] three different modeling
techniques, with NEC-2 {2, 3], were used to model a
long monopole antenna placed over a perfectly
conducting ground plane. The monopole antenna is 20
meters long, and has a radius of 1.5875 millimeters.
Also, the monopole is operated at a frequency of 299.8
MHz, thus making the wavelength equal to one meter.
The "EK" NEC command is used with the extended thin-
wire kemnel option, which guarantees accurate results for
scgment/radius ratio as low as 2. Since the shortest
segment used in all the cases run is 0.01 meters (0.011),
the smallest segment/radius ratio available exceeds 6,
thus satisfying the extended thin-wire kemnel condition
for accurate results.

The three monopole antenna analysis techniques
used are: Equal segmentation, entire grading, and partial
grading. The purpose behind studying these techniques
is to develop a new feasibility range for NEC to model
extremely long (electrically) wire antennas as accurately
as possible. Such long antennas are impossible to model
with NEC by using the traditional techniques, and thus
require special modeling techniques as the ones
discussed here. These techniques take into consideration
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the memory limitation (16 MByte RAM for in-core
solutions) of the DEC VAX 11/785 minicomputer used
in the computational analysis of this effort.

In the equal segmentation technique the
monopole, from source to end, was divided into 2000
equal segments of 0.01A length cach. In the entire
grading technique, three cases were considered where
the monopole segments were gradually increased from
0.01A, at the source, to last segment lengths of
approximately 0.25A, 0.5A, and 0.75A, at the end,
respectively. Finally, in the partial grading technique,
and for every case studied, part of the monopole (starting
with 0.01A at the source) was segmented using the entire
grading technique with a constant ratio RDEL = 1.1 (see
Reference [1]), then equal segments of approximately
the size of the last segment, from the entirely graded
portion, were used to model the rest of the length of the
monopole. For the cases studied, the equal scgments had
lengths of 0.25A, 0.35A, 0.45i, 0.5, 0.55A, 0.65A,
0.75A, 0.854, and 0.95)\..

As mentioned in [1], the use of very long
segments (greater than 0.1A) was not recommended by
NEC-2. Also, segments very close to the source must be
chosen to be even shorter (about 0.011). However, when
electrically long antennas (20A long in this case) are
being analyzed, the use of short segments becomes
almost impossible, due to the size of the interaction
matrix in NEC-2 and computer memory limitations.
Thus, the entire grading and partial grading techniques
were implemented to study electrically long antennas.
These techniques were compared with the equal
segmentation technique to determine a new range of
feasibility for NEC-2,

The conclusions presented in [1] were very
informative. The “eye balling" technique (used to
compare current versus distance data), the input
impedance comparison, and the rms deviation analyses
contributed to the resulting conclusions. Nonetheless,
none of these analysis techniques gave any information
about the presence and significance of spurious modes
along the monopole antenna.

Spurious modes are defined as the appearance of
eigenvalues of the static problem somewhere along the




wavenumber axis of the resonance problem. In other
words, additional peaks occurring in the approximation
to a system behavior that do not exist in the actual
behavior of the system itself. To observe such spurious
modes, the k-space domain data for the monopole
antenna are needed. Such data are the result of the Fast
Fourier Transform (FFT) of the current versus distance
data. The resulting transformed data have the units of
“Ampere-meters” and "radians/meters” for the vertical
and horizontal axes, respectively. The following section
describes the approach used to fulfill this technique.

GENERAL FFT APPROACH

As mentioned ecarlier, the FFT technique
determines the k-space domain data from the current
along the monopole versus distance data. To apply the
FFT technique, the current data must be re-evaluated at
equally spaced distances. This is a restriction imposed
on any data that needs to be Fourier transformed.
Moreover, the number of data points (Ndp) to be
transformed must be an integer power of 2. This is
another basic restriction for finding the FFT of any
available data set.

The number of current samples chosen in this
effort, for all the cases studied, is

N,, =2'! = 2048 samples.

This choice is made to guarantee that the undulations in
the current distribution will be well described. Also,
after a few tests were undertaken, this number of
samples proved to be high enough to avoid aliasing. To
check for over-sampling or under-sampling, the
reference data set was re-sampled at 8192 and 512
points, respectively, yet the FFT data plots maintained
the same shape as seen in the 2048 points case used in
this paper. Hence, 2048 points were found to be
adequate to represent the waveforms at hand.

Since the monopole antenna under study is 20
meters long, then the distance between samples (Ax) will
be9

Ax = 20/N,, = 9.76563E-3 meters.

This factor is needed due to its analogy to the sampling
rate of discrete time domain data. Hence, the
wavenumber sampling rate (Ak ), in rad/meter, is given

by,
Ak, = 21/(Ny, . Ax) = 0.31416 radians/meter.

Ak, is analogous to the sampling rate of discrete
frequency domain data, and is known as the wavenumber
sampling rate. With all the necessary information
available, the FFT routine can be applied to transform
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the current versus distance data, in [1], into the k-space
domain.

The maximum wavenumber value (k, ..) is
given by,

K, mex = 2VAx = 643.3982 radians/meter.

Note that the k-space domain data will be plotted up to
K, max rather than to k, .72, since the distance domain
data are complex in nature, which means that the k -
domain data will not necessarily be symmetric in nature

(about the midpoint).
FFT OF MONOQPOLE CURRENTS

A quick check on some of the cases reveals some
valuable information. First, a Log-Log scale is
necessary to clearly show the minima and maxima of
each plot. Consequently, the point corresponding to k=
0 must be removed from the data before plotting the
data, since Log(0) — -0, which is impossible to show on
a Log-scale. Hence, each plot will only show 2047
points instead of 2048 points. Even though both the
magnitude and phase responses of the transformed data
contain spurious mode information, only the magnitude
of the FFT data will be considered in this analysis. The
phase analysis is outside the intention of this effort.

The FFT of the reference case is shown in Fig. 1.
Fig. 1 is the most accurate of all the results, and is
assumed to be spurious mode free. Thus, any existing
minimum and/or maximum in Fig. 1 is considered to
correspond to the natural behavior of the current along
the monopole. Hence, when Fig. 1 is observed carefully,
it is obvious that the reference case has four visible
extreme points, two minima and two maxima.

1071 100 10!
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Magnitude of Current FFT (A-m)
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10°3
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Fig. 1. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20A Using 2000

Equal Segments of Length 0.01A.




The minima and maxima in Fig. 1, and the sample
number position where they exist, are shown in Table 1.
The data in Table 1 will serve as a supplementary
method used to compare results from other cases to those
of the reference case. This is accomplished by
comparing the sample value (SV) and the location of the
corresponding sample number (SN) of the minima and
maxima of the entire and partial grading techniques'
cases to those of the reference case. The relative error
method is used to compare the minima and maxima
sample values (SV_...; SVin SV and SV o).
The equation for relative error (RE) as determined in k-
space is,

RE = (SVref— SVother)
SVref

For the entire grading technique, the FFT
magnitude plots of the three cases studied (Sys = Length
of the last segment = 0.25A, 0.5, and 0.751) are shown
in Figs. 2, 3, and 4, respectively. The minima and
maxima information for these cases can be found in
Table 1.

-100%

Comparing Fig. 2 to Fig. | it is seen that spurious
modes are virtually nonexistent. Yet, there exists a
minor oscillatory behavior close to the point where the
second minimum in Fig. 2 takes place. The relative
error analysis for the Sy = 0.25A case shows that the
only error of concern is that of the first minimum
(RE,;,, = 17.33%). Now, keeping in mind that NEC-2
documentation, [2, 3], states that an error of at least 5%
is to be expected, the remaining portion of the relative
error values for the Sy ~ 0.25A case are well within the

acceptable range.

108 10!

1071

Magnitude of Current FFT (A-m)
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"0-7 T T T 193
Wavenumber (Radians/meter)

Fig. 2. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20A Using Entire
Grading with Sy = 0.25A.
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Comparing Fig. 3 to Fig. 1 shows an oscillatory
behavior just after the first maximum is observed. This
behavior is more visible than that in Fig. 2, but is not
significant enough to be considered as a spurious mode
behavior. Yet, it is an indication that some form of
instability in the solution does exist, mainly due to the
use of some segments close to 0.5 in length, which has
been proven to violate the boundary conditions in NEC-2
[1]. Moreover, the first minimum dips far below that of
Fig. 1. This can be clearly seen in the very large relative
error value (RE,,, = 51.11%) corresponding to it in
Table 1. Another value of some concern in Table 1 is
that of RE ., = 12%, since it represents a difference of
0.23 A-m, which is somewhat significant. Also, the
negative sign in the value of RE_,,, means that the
SV ..x2 Value for the Sy ~ 0.5X case is larger than that of
the reference case.

Fig. 4 shows many interesting results when
compared to Fig. 1. First, it is noticed that the first
minimum has almost totally disappeared. Second, the
spurious mode behavior is clearly visible in the area
preceding the first maximum. This behavior shows huge
instability in the solution, and is definitely attributed to
the extremely long segments =~ 0.75A used at the end of
the antenna. The error analysis in Table 1 shows that
RE ,,, = -141.51% is tremendously large, and again
amplifies the instability in that region. Nevertheless,
when the rest of the error values are checked, it is
noticed that the error values are extremely low and
consequently might lead to very deceiving conclusions.
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Fig. 3. Magnitude of Current FFT Versus Wavenumber

Along a Monopole of Length 20A Using Entire
Grading with S = 0.5A.
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Fig. 4. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20A Using Entire
Grading with Sy = 0.75A.

For the partial grading technique, the FFT
magnitude plots of the nine cases studied (Syg = 0.25A,
0.35A, 0.45A, 0.52, 0.55%, 0.65A, 0.751, 0.85A, and
0.951) are shown in Figs. 5,6, 7, 8,9, 10, 11, 12, and 13,
respectively. The minima and maxima information for
these cases can be found in Table 1.

Comparing Figs. S and 6 to Fig. 1 it is noted that
insignificant spurious modes exist. The error analysis in
Table 1 shows that the largest error for the Sy ~ 0.25A
and 0.35A cases at the first minimum (RE_,,, = -8.89%
and 13.33%, respectively), which are still very
acceptable values considering the size of the problem at
hand.
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Fig. 5. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20\ Using Partial
Grading with RDEL = 1.1 and Sy = 0.25A.
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Fig. 6. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20 Using Partial
Grading with RDEL = 1.1 and S\ = 0.35A.

In Fig. 7 a minor spurious mode behavior is
registered in the region directly following the first
maximum. Moreover, from Table 1, the error analysis
shows that larger errors are registered, especially at the
second minimum and first maximum (RE ., = -13.24%
and RE_,,, = 21.75%, respectively). These larger errors
reflect the use of extremely long segments, and the use
of the segment lengths that are close to the undesired
0.5 value.
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Fig. 7. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 204 Using Partial
Grading with RDEL = 1.1 and Syg =~ 0.45A.

Comparing Fig. 8 to Fig. 1 it is noticed that very
strongly visible spurious modes exist, and the first
minimum value is almost nonexistent. Morcover, the
results of Fig. 8 are approximately an order of magnitude
higher than those of Fig. 1. This observation is seconded
by the data in Table 1. The error analysis for this case
shows that the smallest error occurs at the second




maximum (RE__, = -296.42%). This is a tremendously
large value that clearly shows the violation of the
boundary conditions in NEC-2.

Figs. 9, 10, 11, 12, and 13 all show strong
spurious mode behavior, mainly in the region preceding
the occurrence of the first maximum. Also, the spurious
modes in Figs. 11, 12, and 13 are stronger than those of
Figs. 9 and 10. Again, the error analysis in Table 1
shows that all the cases exhibit relatively high
percentage errors, with the exception of the S = 0.65A
case where the errors remain moderately low. The Sy =
0.65A is an exception without a clear reason to why are
the errors so low. Nonetheless, the high errors in the
other cases are a reflection of the very large segment
sizes used in the equal segment portion of modeling the
monopole antenna.

Finally, when the positions of the minima and
maxima in Table 1 are compared, several observations
are made. First, the positions of both maxima (SN,,,,,
and SN_,,,), in each entire and partial grading case,
coincide with those of the reference case, respectively.
Next, the positions of the first minimum (SN, ), in
each entire and partial grading case, varied slightly from
that of the reference case, with the Sy =~ 0.5A partial
grading case being the furthest away. Last, the positions
of the second minimum (SN_,,), in each entire and
partial grading case, varies more significantly than the
variation in the position of the first minimum. Again,
the Syg = 0.5A partial grading case possesses the largest
shift.
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Fig. 8. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20 Using Partial
Grading with RDEL = 1.1 and S;¢ = 0.5).
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Fig. 9. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20A Using Partial
Grading with RDEL = 1.1 and S\ = 0.55A.
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Fig. 10. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 202 Using Partial
Grading with RDEL = 1.1 and Sy = 0.65A.
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Fig. 11. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20\ Using Partial
Grading with RDEL = 1.1 and Sy = 0.75A.
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Fig. 12. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20\ Using Partial
Grading with RDEL = 1.1 and Sy ~ 0.85A.
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Fig. 13. Magnitude of Current FFT Versus Wavenumber
Along a Monopole of Length 20A Using Partial
Grading with RDEL =~ 1.1 and Sy =~ 0.95A.

CONCLUSIONS

The FFT k-space analysis technique was used to
further investigate the use of the entire and partial
grading techniques as alternative methods of modeling
the monopole antenna over a perfectly conducting
ground plane studied in [1]). Again, the comparisons
were made to the data from the equal segmentation
technique, of 2000 equal segments of length 0.01A each,
serving as a reference. This form of analysis was mainly
concerned with locating spurious modes, if any existed,
and determining the main reason of their existence.
When Figures 2 through 13 were compared to Fig. 1, it
was noted that the use of extremely long segments
(greater than 0.451) was the major reason for existence
of spurious modes. Moreover, the conclusion arrived at
in [1] stating that segments equal to 0.5A, or even close
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to that value, should never be used was strongly backed
in this analysis. This can be seen in Fig. 8 and the data
in Table 1 corresponding to that figure, where even the
monopole characteristic peaks were alarmingly larger
than those evaluated using the equal segmentation
technique (Fig. 1). The behavior in Fig. 8 was an ideal
example of the presence of spurious modes, and the
consequences suffered due to such presence. Hence, for
the entire and partial grading techniques, it is
recommended that longer segments (not exceeding 0.41.)
can be used to model extremely long (electrically) wire
antennas while maintaining acceptable results.

Moreover, the data in Table 1 showed that the
values and locations of the minima were, in most cases,
far more affected than their maxima counterparts. This
can be attributed to the fact that numerical solutions to
problems of this magnitude cannot guarantee 100%
accuracy. Hence, the addition (or subtraction) of a small
error value to (from) an already small number changes
its value tremendously. On the other hand, the addition
(or subtraction) of a similar small error value to (from) a
large number changes its value only slightly.

Finally, the conclusions presented in [1] were
re-established using a different technique.  More
importantly, the presence of spurious modes resulting
from the use of large segments, as well as ill chosen
segment lengths (0.5, for example), was shown. This
technique reflected a far more visible way to show
discrepancies in data when different methods of solution
are used. Also, the spurious medes show that when a
system is poorly modeled, false system characteristics
(such as additional peaks) show up, and consequently,
lead to erroneous results.
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Response of externally excited coaxial
cables with wire braided shields

Dr S Sali , Bsc, PhD
Department of Electrical and Electronic Engineering
Merz Court, The University of Newcastle, Newcastle upon Tyne NE1 7RU, United Kingdom

ABSTRACT

The frequency responses of coaxial cables employing wire
braided shields, excited by external fields is studied using
an algorithm based on distributed circuit model, which
uses both electric and magnetic field parameters to model
the external field coupling. Simplicity and fast speed of
the modei enable computer aided analysis of externally
induced noise in cable interconnects to be carried out in a
computationally efficient manner. A general CAD
algorithm is developed based on this model and it is
applied to study the response of cables over a lossiess
ground plane. The algorithm is then used to study the
effects of different braid constructions on the responses of
cables excited by external fields. Responses of cables with
optimum braid designs in their shields are studied in
detail. The model uses the experimental values of the
leakage parameters which are measured separately using a
standard triaxial text fixture.

INTRODUCTION

With the advent of smaller and denser integrated circuits
very large electronic systems have resulted and these
require very complex networks of interconnections within
a limited space [Bayindir and Sali, 1990]{Sali 1993].
Coaxial cables are used as signal carriers in such
interconnection networks between the equipments when
extra shielding against the external interfering fields is
required. Since the interconnect cables have to be
mechanically flexible usually braided coaxial cables are
used as signal carriers. Price paid for the flexibility is a
conducting shield with a large number of small diamond
shaped holes [Sali 1993][Vance 1973] caused by the
braiding of the shield wires. Such shields therefore do not
provide complete immunity against external interfering
fields, which may penetrate inside the cable. The
mechanisms of wave penetration are directly related to
the geometry of the braid and the frequency of the
incident field [Sali, 1990]. At radio frequencies the
coupling of the external magnetic field is governed by the
Transfer Impedance (Zy) per-unit-length  and the
coupling of the external Electric field is governed by
Transfer Admittance (Y) per-unit-length . A detailed
experimental and theoretical study on both parameters
are given in [Fowler 1979]. These studies have already
demonstrated that Zp is purely inductive and Yt is
purely capacitive at frequencies above 2 MHz.
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Inductive rise of Z at high frequencies is caused by two
magnetic coupling process : the coupling by direct
penetration of external fields to the interior through the
holes in the shield which gives rise to hole inductance,
and the magnetic flux coupling in the circuits between the
inner and outer braid layers of the braid which results in
braid inductance. It is known that [Tyni 1976) for braid
angles less than 45° hole and braid inductances oppose
each other and greatly reduced transfer impedance values
may be obtained for certain braid constructions where the
difference between the two is minimum and such braid
designs are called optimum.

The objective of the work reported here is to develop a
general algorithm for the computation of transmission
line currents and voltages induced by the external field of
arbitrary incidence at any point along the interior of the
coaxial cable, placed over a finite-loss conducting plane.
The model uses both Y1 and Zt in contrast to earlier
studies which ignores Y and hence do not applicable to
optimised cables.

A large number of simulations have been carried out to
illustrate the capability of the new algorithm. The effects
of the high and low value passive load impedances on the
amount of coupling are investigated in detail. The effect
of polarisation of the incident wave on the coupling of the
external field is studied against the angular orientation of
the cable with respect to the direction of incidence.

BASIC MODEL FOR INTERFERENCE AND THE
LINE RESPONSE

The basic interference model studied is shown in Fig.1,
which shows a braided coaxial cable of length L ,placed
over a finite-loss conducting plane at a height of h. The
line is illuminated by an external electromagnetic plane

wave at an elevation angle of © and azimuth angle §.
Cross dimensions of the coaxial cable and its separation
from the conducting plane is much smaller than the
wavelength of the illuminating wave and hence the
principal mode of propagation in the coax is TEM. The
electric and magnetic field components of the incident
wave couples to the exterior circuit between the shield and
the metallic ground plane, inducing electric and magnetic
flux there, as shown in Fig.2. This flux coupling is

represented in terms of impressed sources (L) and i(v)
and per-unit-length equivalent circuit shown in Fig3 is




Fig.1 General terminations and signal coupling
for a braided coaxial cable over a finite loss
conducting plane excited by a plane wave.

empioyed for the interference problem shown in Fig.1. It W

is assumed that the tertiary circuit is terminated in passive

impedances at the near end and Zj ¢ at the far end

respectively. Zos Ls Fig.2 Geometry and contour integration for the
. - calculation of the coupled sources induced by

The propagation of the coupled wave in the tertiary circuit the plane wave.

is characterised by the propagation constant Y, =V YoZy
and the characteristic impedance  Zog= Zg/Yy Using
the method developed in [Sali, 1993] the coupled voltage h BEui(u,u)
and current in the teriary are given by

V) = [0} Ey'O0)] - | du
V4(v)=cosh 7,0V +Z sinhygo I,(0) + 94,0) 0 v
1
1) = - sinh y,0 V,(0) + cosh 7,0 L(0) + 8g(L) h
a4 w Vil 140 * Ous i)=Yy [ Egiuv)du @)
(1) 0
93 (V)= ]ocoslry,(u{)e,(l))dc The current and voltage in (1) now couple to the

interior of the coaxial line giving rise to a TEM wave
propagating inside. This wave coupling process is

e governed by the per-unit-length sources which are
- Zy [ sinkyy(0-Dig(©dL (2) described as
0
eTi(v) = ZT Is(v) (5)
1 v
Sgg(v)= - — [ sinhygloC)e(C)dC iTi(v) = YT Vs(v) (6)
Zeg O
Using the similar process as above the coupled
+ [ coshyg(v-<)ig(g)dC (3) current and voltage inside the coaxial cable are
0

given by
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W‘i

(V]
Vi(v)=coshrjuV;(0) "’ZciYT{' sinhi(v-<) X
- Zejsinhyjolj(v) + 344(v)
' ’ Zoscoshyss+Zcssinhysclds
1
lj(v) = - —— sinhy;uV{(0) + coshy;ul;(0) + 5g;(v) v
Zei . J sinhyi (u-cicoshyg(v)(CHdC
0
@ - n(v) + n(Ojcoshyguldv
. L (8’
| = . v ' 7
= —1C T Xss v
il .,r_ _[_ asi(v)=- —] sinhy(v0) X
Cis v} -
J! w be TOU ! ZcZcs Ags O
T t
i -[ —I- . %w . Zossinhygl+Zcgcoshyglldl
N Ll < v
| + {, sinhy;(v-v) X
Fig.3 The per-unit-length equivalent circuit {n(0)sinhygu+sinhyg(o-Cr(C)d0du

for the coaxial cable in Fig. 1
Since defining the field coupling in terms circuit

parameters Yy and Z isolates the two TEM waves Kss v
inside and outside the coaxial cable the transmission YT f coshyj(v-C) X
line equations in (1) and (7) are independent. This Agg 0 .

allows the boundary conditions to be considered

separately in terms of the passive terminations at )

both ends of each circuit. These are given by the {Zogcoshygl+Zogsinhygl}dl
Thevenin equations as Vg j{0) = - Zog j Ig i(0)

Vs,i® Zj4lg (L) Inserting these boundary

conditions in (1) and (7) the equivalent distributed

LV ] v
sources inside the coaxial cable becomes + ] coshy;j(v-u){ I coshyg(v-C)(C)dC
0 0
ZT xg5 o
84i(v)= —— [ coshyjv-c) X - n(v)+n(0)coshygu}dv (9)
Zes Ags 0

With the Thevenin equations for the terminal
conditions current and voltages inside the coaxial

Zggsinhygl+coshygl)dl cable are obtained from above equations as
D »e
- { coshTi{v-u)}{n(0)sinh¥s® 10) = _"'_'__
Aj
1V ]
+ Jo. sinhyg(u-chic)deldv Vi(0)=- Zo fi(0)
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Zos i
I{L}=( ~— sinhyL+coshyjL) — + Byi(L)
Zcs Ay

Xii.
vi(L) '-(ZolmhﬂL"zcitlnh‘yﬁ)—l*S'i(l.)
Aij

(10)
where

xiji *Zcil9gi(L) - Z} iBgi(L)]
kg™ Zcg[9gg(L) - Zg g8gg(L)]

Agg™(ZcsZog+Zcg?)sinhy gL
+Zcg(Zog*Z) gicoshygl
Aji *ZcZoi*ZciR)sinhyL

+Zei(Zoi*Zy jlcoshy;l (11)

Near end (L=0) and far end (L=L) responses of the
line are obtained from the coupied voltages V;(0)
and V;(L) as given above and the coupling factor is
computed from the normalised values of this vectors
to the maximum value of the incident field.

The incident plane waves are considered for paraliel
(E-field parallel to xz-plane, as shown in Fig.2)
polarisation, for which E-field may be obtained as

EyI=Eqcos0 cos¢ {ei¥,U.pedk Wyedk
Eyi=Eqsin (oK, U, pe ik ue ik 0
(12)

where E, is the maximum field intensity, From
Fig.1 the scalar wave numbers can be obtained as
k,=(2x/A)sinOsing, and k,=(2x/A)sinOcosd, p
is the reflection coefficient for the oblique incidence
on to ground plane of the incident wave and it is
calculated using the expressions in [Franke! 1979].

RESULTS

In this section simulations have been carried out to
investigate the response of a coaxial cable excited by an
external plane wave with arbitrary polarisation and
orientation with respect to cable axis. Several braid
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Fig.4 Frequency response of the cable samples
examined. The sheath and cable matched at
both ends. Results are computed by using
measured values of Y.

designs under different load conditions in the tertiary
circuit were investigated, using the standard (high optical
coverage), optimised and leaky (low optical coverage) of
URMA43 size (2.95 mm over inner dielectric) cables. The
results of these measurements are given in [Sali 1993] and
[Sali 1990] and they are used in these studies also. The
electrical and geometrical parameters of the cable samples
used in the studies are given in Table I of the Appendix.
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Fig.5 Frequency response for a 1m sample of URM L 1.
The sheath is shorted to a conducting plane at both ends.
The cable is matched. Resulits are computed using
measured values of Yy in the general method.




A general computer program was developed using the
theoretical field coupling model in Section IlI. The
frequency range was between 100 KHz and 1 GHz. In
each case the incident field was a uniform plane wave
with a maximum E-field intensity of 1V/m, and the
conducting plane was assumed to be made of Aluminium,
Since all the existing EMI studies on braid wire shielded
cables ignore Electric field coupling no comparable study
exists in the literature. However the accuracy of our EMI
model is checked against the technique suggested in
[Smith 1977]. Since Smith's model, is originally
suggested for lossless shield above lossless conducting
plane and ignores Yy coupling our model had to be
simplified to this simple case before the comparison.
Results of these studies showed that both approaches
produce identical results.

Fig.4 shows the results for the far end induced voltage for
URMA43 (standard), URM L 1 (leaky) , URM O 1 ,and
URM O 2 (both optimised) cables respectively, when the
tertiary circuit and the interior of the cables are matched.
Graphs with solid lines show the responses of the cables
when Y7 is returned zero in the interference model and
those with broken lines show the results for the same
cables when the measured values of Y are included in
the calculations . The results for URM 43 (which has a
high optical coverage and Zy values) show that coupling
curves with and without Y are almost identical. However
curves for URM O 2 and L 1 give 20 dB difference in the
standing wave region with and without Y included in
the model. Fig.5 shows the results when external circuit
is shorted to the conducting plane. The short circuits
enhance the series magnetic currents in the tertiary at the
expense of shunt voltages between the shield and the
conducting plane. In this case the magnetic field coupling
dominates. Further simulations have already confirmed
that coupling curves with and without YT are almost
identical for all cable samples with shorted external
circuit and the electric field coupling may be ignored .

1} 0se®  gene®
.0 Zoge$  ZyymiMa
- Zo2yyoZey
]
‘-l‘

P

3 ;'..'I‘l”i 3 I*I.!C"’i ] l.;’!ll.'; 2 l;.llf”i
Frequency (Hz)
Fig.6 Frequency response of URM 43 versus

coupling length.
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The amount of energy coupled to the cable depends on
the amount of flux induced by the dipole (or scattered)
mode ficlds in the area between the braided shield and the
ground plane, as illustrated in Fig.3. Simulations have
been carried out to investigate the effect of increased
surface area on the amount of the field coupling to inside
of the cable, by simply varying either the length or the
height of the shield from the ground plane.Fig.6 shows
the results for the far -end coupled voltage against
frequency when the length of the cable is varied between
1.0 m and 50.0 m. It is seen that increased length results
in much higher coupling levels at fow frequencies but no
noticeable difference between the amplitude values is
observed at high frequencies because of the increased
attenuation which cancels the increased coupling levels at
such frequencies. However the standing wave pattern is
brought down to much lower frequencies when the length
is increased, as expected. Further simulations have been
carried out to investigate the variation of the coupled
voltage when the height of the cable is varied from 0.5
mm to 5.0 cm and the results are shown in Fig.7 in the
frequency domain. Increase in the coupled voitage is quite
rapid at the initial stages but slows down gradually, and
little increase is observed for heights greater than 7.0 cm.

URM 43
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Fig.7 Frequency response for Im sample of URM 43
cable versus height from the ground plane.

The effect of the cable height on the coupling power is
further studied in Fig.8, which shows the coupled voltage
induced from a 300 MHz plane wave along the cable
length. Note that a coupling minima is expected to occur
at 0.5m along the cable (the position here is slightly less
as the velocity is taken as c=3x108_). This translates to a
position at around 150MHz in frequency domain which is
exactly the same frequency position given by the coupling




curves in Fig.5. Results in Fig.6 to 8 clearly illustrate the
spatial and frequency dependence of field coupling.
Theoretically the positions of minimas are given by L;=n
n/k, . as confirmed by these results.

Finally the angular dependence of the field coupling is
studied in Figs.9 and 10 where results for the far end
coupled voltage are shown when elevation angle is fixed
and azimuth angle is varied as in Fig. 9. and azimuth
angle is fixed and elevation angle is varied , as in Fig. 1)
Bear in mind that when the fixed angles were changed in
both cases, different coupling results would be obtained.
This clearly illustrates that there is a strong dependence
between the angular orientation of the cable with respect
to the direction of Poynting vector of the incident field.

CONCLUSIONS

A general algorithm is presented for the study for the
response of coaxial cables with wire braided shields
excited by external electromagnetic fields. The model
includes both electric and magnetic coupling parameters
in contrast to the existing studies on similar problem
which only include magnetic field coupling. Numerical
studies using this algorithm is concentrated on coupling of
the external fields to the cable with various braid designs
in their shields and different load conditions in the
tertiary circuits between the shield and the ground plane.
The studies have covered in detail the role of field
oricntation and geometry of the external tertiary circuit on
the amount of energy coupled to the interior of the coax.
The results show that at low frequencies the electric field
coupling can be ignored but this is not so at high
frequencies and accurate computation of the external field
coupling requires that both coupling parameters must be
included in the model for optimised cables. Even with
short circuited tertiaries, the electric field coupling may
contribute significantly to the overall response of the cable
when optimised cables are used.
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. o Table 1 - Geometrical parameters of the cable samples
x¢0° BWD Braid wire diameter (dw)
Azimuth Angle In Degrees LL Lay Length (I)
L. 0 Braid angle (6) » tan-A(x (do + 2.28dw)/1)
Fig.9 Response of the cable versus incident angle u Nember of
at elevation. Azimuth angle is fixed at §=45°. spindles
Frequency of the incident wave is 200 MHz. Number of bratd ‘wires per spindle
Ky Filling factor K¢ = Nndw/3 1 sin®
POL Polarity of the transfer impedance
— polarity indicates the dominance of the hole
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Fig.10 Response of the cable versus incidence angle
at elevation. Azimuth angle is fixed at ¢=100°.
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High Spatial Resolution Analysis of Electric Currents
Induced in Man by ELF Magnetic Fields
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Abstract This paper presents the formulation of the
impedance network method that allows computation of the
arbitrary injection currents on the boundary of a selected
sub-region for an analysis of induced electric current
distributions inside the human body exposed to extremely
low frequency magnetic fields. The obtained formulation
provides a high resolution modeling of a local region of
interest without using an excessively large number of
computational cells. The iterative equations for outer and
inner nodes are derived in detail. Solutions for a double-
layered sphere are then calculated to verify the derived
equations. The errors involved in the calculation are also
examined. To illustrate the method, its application to
computations of the induced currents in the human head is
described.

Introduction

Knowledge of the spatial distribution of the electric
currents and fields induced in the human body by
extremely low frequency (ELF) magnetic fields is
important in the assessment of potential health hazards to
people (1,2]. A high spatial resolution of these fields is
also very useful in some medical applications, e.g., neural
stimulation [3). Although this problem for homogeneous
biological bodies is well understood, considerable work
remains to be done in the development of numerical
methods and algorithms for heterogeneous systems.
Among the methods developed for electromagnetic (EM)
problems, two differential equation-based methods: the
time-domain finite difference method (FDTD) and the
impedance or admittance network method, have been found
effective for modeling of heterogeneous and complicated
3D bodies representing biological subjects [4]. At ELF,
the problem is a quasi-static one as the displacement
current is negligible compared to the conduction current.
This, together with the fact that a biological system does
not perturb an exposing magnetic field, makes the
impedance network method especially attractive for the
ELF calculation.
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As in any other numerical method for EM problems, the
impedance method starts with discretizing the space
analyzed into computational cells. With large memories
(16-64 Mbytes) increasingly available on computers today
up to 1 million cells can be routinely handled. A
reasonable representation of the human anatomy and its
surroundings can therefore be obtained. However, the
computing time increases almost exponentially with the
number of unknowns. As a result, an increase in the
number of the computational cells leads to demands of a
computing speed not available in most computers. To
illustrate the problem, we evaluated the calculation of a
double-layered sphere on an HP 9000/700 workstation.
The computation using about 70,000 cubical cells takes
about 5 minutes of CPU time and 800 iterations before it
reaches convergence. When, 10 model the curved
interfaces more accurately, the cell size is reduced by half
in each dimension, resulting in 8 times more of
computational cells, i.e., 560,000 cells, convergence is
obtained after about 3,600 iterations and 160 minutes of
CPU time. Moreover, to model the detailed anatomy and
morphology of a whole human body, one needs much
more than 1 million computational cells. This is a
formidable task in terms of both the memory and the

computing speed requirements.

There are many practical situations where high resolution
modeling is of interest for only a certain part of the body.
For example, such situations arise in case of the exposure
evaluation of the head to the magnetic field produced by a
hair-drier, or the arm from a hand-held drill. In these
situations and others, a finer mesh can be chosen without
leading to an excessively large number of cells in any
single computation. In previous work, the sub-region
was detached from the whole body and analyzed alone
[5,6). Dependent on the exposure situation, the results
from such an analysis may be questionable due to the
neglect of the injection currents on the boundary where the
sub-region is detached.

In this paper, a new approach for the sub-region analysis
with a high spatial resolution is presented. In this
approach, the injection currents on the sub-region
boundary are taken into account by using the previously




computed results for the whole-body as the sub-region
boundary values. The formulation involved in the
boundary condition is described and verified by modeling a
double-layered sphere. Finally, this approach is applied to
the calculation of the induced currents in the human head
in uniform 60 Hz magnetic fields.

Formulation of Sub-Region Analysis

In the impedance method, at ELF a biological body is
represented by a 3D resistance network in which each
parallelepiped volume shown in Fig.1(a) is equivalent to
three resistances RyivK, RyiJK and R,1J:K gssociated
with the network node (l,j gas shown in Fig.1(b). The
resistances are calculated as [7]):

_——

Rm'J-k = Am/(SmO'm"-"k)

(m=x,y,2) m
where Ag, is the cell length in the m-th direction, Sy, is
the area of the cell surface perpendicular 10 the m-th axis,
and oYK is the cell electrical conductivity in the m-th
direction. For each node, three line currents: Iy, Iy and
Iz, and three loop currents: Iy, Iy and I, are defined in
Fig.1(c). Once the loop currcms are known, the line
current through each resistance element can be obtained by
summing up the four loop currents which are common to
that resistance element. As illustrated in Fig.1(d),

(a) (b)
l/ (1y+ 1 k)
|
. I idok
y @ I R,
: VY RIS
ay | 7'_/__0_'\"_"_ |V k) x__ 0+1k)
x (i) A b o
2 (k) 4 4 '
(ig.k+1)
lp— AX —>

{c)

(d)

Figure 1. Cell impedance and current definition for the impedance network method.
(a) a paraliclepiped tissue volume of the body forming a computation cell (i,j.k);
(b) the three directional impedances associated with node (i j.k);
(c) the three line currents and loop currents, iy and Iy, (m=x,y,z), defined for node (i,j.k);
(d) the line current _iz‘J»k composed of the superposition of four loop currents flowing through the

resistance Rzidk.

the line current through Rz1J-K can be expressed by the
loop currents as
'zl\,'k = olxi\i’k + Ixi\j'lak + ]yl,j,k . ]yi-l,j,k ?

Similarly, TiJ:K and fyiJX can be found to be
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"‘xi,j,k = _Iyi.j,k + lyi,j,k-] + lzi-j'k . lzi,j-l.k 3)
and
iyi,j,k = _lzi,j,k + lzi-],j,k + Ixi’j’k . Ixi,j.k-] (4)




respectively. Applying Kirchhoff's voltage equation to
each loop associated with node (i,j.k), say the z-loop in
Fig.1(c), the following relationship is obtained

Rle,k'an,k,.,Ryn+lJ,k| i+l jk R itk ig+1.k

-Rylikp ik = emleJ.k )]
where emfziJ'k is the electromotive force generated by a
magnetic field perpendicular to the loop

CMleJ‘k = O)Bzi'j’ksZ ©)

and @ = 27f , where f is the frequency and B is the
magnetic flux density. .
Substituting Eqs.(3) and (4) into Eq.(5), Iz can be
solved as

1K = femfyidk - Ryddk(yigk-1op ik g i-1k)
-Ran+l,k(l ij+lk | |J+l.k- -1 d+1.k)
-Ry‘Jvk(Ix'J'k -l dd l-ld.k)-' '
Ryt L L ik
/[Rxl,j.k..,Rxl,ﬁ-l,k.,,Ryl,J,k..,RyH-lJ.k] V)

Similar equations can be derived for Ixii-K and IyiJX,
More details can be found elsewhere [7). It should be
pointed out that the (i,j,k) referred to so far is an inner
node, that is, a node surrounded by non-boundary nodes.
For outer nodes, some of the line currents in Eq.(5) are the
boundary values and should not be converted into the loop
currents. Eq.(5) is still valid for outer nodes, however,
their final loop current equations differ from those for
inner nodes.

Let's consider the generic parallelepiped region shown in
Fig.2a. This region can representi either a biological
body and its surrounding space or a sub-region identified
from the whole body for the purpose of a high spatial
resolution analysis. On its six surfaces: left (i=1), right
(i=nx), bottom (j=1), top (j=ny), rear (k=1) and front
(k=nz), line currents are assumed to be known. In the
sub-region analysis, the line current density on the
boundary can be obtained by interpolating the results from
the whole region analysis. The line currents on the
boundary are sometimes called injection currents,
however, they may also flow outward or parallel to the

boundary as shown in Fig.2(a).

All the outer nodes at which the loop equations are
formulated differently from those for inner nodes are
classified in Table 1. They do not cover all the outer
nodes because the loop currents at some outer nodes are
not needed for inner node calculations, such as those loop
currents parallel to the boundary surface. According to the
number of the boundary line currents employed, the outer
nodes in Table 1 fall into three categories: those on the

upper surfaces, those along the edges and those on the
lower surfaces. The corner node (ny-1 My~ l.,n,-1) is
included in the case of the edge nodes.
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Figure 2 Model for the derivation of iterative loop

current equations for the outer nodes of a
parallelepiped sub-region.

(a) Line currents on the sub-region
boundaries, i.e., left, right, boutom, top, rear
and front surfaces;

(b) Three outer nodes: A(iy,nz-1), B(nx-l,ny-
1,k) and C(i,),1) and the boundary line
currents involved in their loop current
equations.

In Fig.2(b), the y-loop at A(i,j,nz-1), the z-loop at B(nx-
1.ny-1,k) and the x-loop at C(i,j,1) are shown as
representative of each category. The boundary line

x(i)




currents involved around the loop are indicated by arrows;
the unmarked line currents need to be decomposed into the
loop currents. To illustrate the formulation of the
method, the z-loop current equation at node B is derived in
detail.

From Eq.(5), the z-loop equation at B(nx-1,ny-1,k) can be
written as

R, Bx-1,ny-1 kg nx-1,ny-1k g nx,ny-1k; nxny-1k
X X y y

RyMX- 1 .ny.k‘xnx- 1,ny k
_Rynx-l,ny-l,k]ynx-l,ny-l,k = emf,Nx-1.ny-1k ®)
where line currents TyPX-1.0y.K ang f nx.ny-1.K pave
known values, and IxPX-1.0y-1X ang fynx-1ay-1k are
unknown. Using Eqs.(3) and (4), the unknown currents
ixnx-1.0y-1k gng f,nX-1.ny-1.K can be expressed as

3xnx-l,ny-l,k =-J,nx-1,ny-1Lk Iynx-l,ny-l,k-l +
Iznx-l,ny-l,k . [znx-¥.ny-2,k )

and

fynx-1ny-1k - _pnx-1,ny-1k , 1 nx-2,ay-1k 4 [, nx-
1ny-1k _ Ix -1,ny-1k-1 (10)

respectively. After substituting Eqs.(9) and (10) into
Eq.(8) and rearranging it, IZ“X'I-“Y'lvk can be readily
found as

|znx-l ay-1k - [emf NX- 1,ny-1 ,k+Rxnx~ 1 ,ny,kixnx-
1,nyk _ Rynx,ny-l,k,ynx,ny~l,k
+ Rynx-1.ny-Lkaq nx-1ny-2 k y nx-1,ny-1.k j nx-1,ny-
l,k-l) + Rynx-l,ny-l,k(]znx-2,ny-l,k _,,Ixnx-l,ny-l k.
lxnx-l,ny-l,k-l)] /(Rxnx~l,ny-l,k+Rynx-l,ny-l,k) an

Using a similar procedure, other loop current equations at
the outer nodes listed in Table 1 can be derived.

What complicates the loop current derivation at the outer
nodes is the fact that loop currents are the iterative
variables in the impedance network method whereas line
currents are used as the boundary values. The reason for
this is that a loop current is not a physical but an
imaginary parameter which only facilitates the iterative
calculation. Consequently, the loop currents obtained
from the whole region analysis are not directly usable for
the boundary formulation of the sub-region analysis.
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Ouler Node Boundary Line
Location Current index Range Currests Used
Right Surface l, 2<ysny I, 2<hs 22 i:“""-
=ax-1 ;
(=) Il 2<y<sny- 2sksaz-} i:”“
Top Surface Iy 251$nx-1, 2€kgn2-2 i"‘""‘
Geay- 1, [2sisme2 2sksmr | jE0X
From Surface [ 2<1$nx-1, 2€5<Say-2 i;"‘m
{k=nz-1) Iy 2€1Snx-2, 25380yl i.l"'“l
Left Surface 1, J2siseyt 2sksnz el At A
=1 . .
=1 o f2sisayi 2sksnny | g% g e
: Ak L Lked -k
Bouom Surface Iy 2<isnx-1, 2sksnz-1 (ML
u=n IR LK iet K
1, 2s1<nx-t, 2SkSnz-) i ,I’ .|’
Rear Surface I 2Svsnx-l, 25 Syt i;"" ' i;"" . i:""‘
k=1 L R
k=n 1y, | 2sismcr 25y5ay [l bl Tt
X-Edge I 2518ax-1 jloriaz Linyne-t
(=ny- 1 k=nz-1) 14 [ 4
Y-Edge ] 2<j<Sny-) inl-‘l.j.lll inx.l.lll-\
(i=nx-1 k=nz-1) Y X v Iz
2-Edge 1, 2sksanz-l i nx-1.0y5 i nx.ny-1.x
(=nx-1j=ny-1) H » ly
Table 1 Summary of outer nodes and the boundary
line currents involved in the loop current
equations.
Verification

A solution for a double-layered sphere is used to verify the
formulation and accuracy of the sub-region analysis. The
sphere has radii of 0.15 m and 0.25 m, and electric
conductivities of 1 S/m and 0.5 S/m for its inner and
outer layers, respectively, and is placed in a uniform 60
Hz magnetic field in free space. An analytical solution is
elementary for this problem and hence can be used to
check the numerical results. The computation accuracy is
evaluated by an average relative error defined as [8]:

—o Y G3K) - TG k)
i.j.k

Al
= - 12

d=—z
T, NJ,

in which the summation is performed over all the non-air
cells and N is the number of cells. Jo* and Jg are the
numerical and analytical magnitudes of the current density
(the only component is in the ¢ direction), and a bar
denotes the average value,

The verification is conducted in three steps. In the first
step, computations are performed for the whole sphere. In
the second step, one eighth of the sphere is considered for
a sub-region analysis where the boundary values in the
planes of x=0, y=0 and z=0 as shown in Fig.3 need to be
assigned. The computational cell size is halved in each
dimension, resulting in roughly the same number of cells
as for the whole sphere. To examine the effect due to the
error in boundary values, the computation of this eighth
sphere is performed for two cases. For the first case, the
numerical results from the whole sphere, and for the




second case the analytical resuits, are used as the boundary
values. In the final step, a cubical region partially
embeded in one cighth of the sphere (see Fig.4) is chosen
for another stage of sub-region analysis and the cell size is
again halved. The boundary values on the six surfaces of
this cube are taken from the numerical results from case
one and two, and from the analytical solution.

:lkokSpl.me % o] One Erghit 35%

A=1cm,N= 70000 Computation 1% Cubic Subregion

—t 3%,
A=0.5m,N=70000 r ------ o={Computation L - 5%

-]
A =0 25, N = 54000

|Aw;um ! [ N ik - - 05%

Solution o%

Figure 3  Eighth of a double-layered sphere with a
partially embeded cubical sub-region (the mid-
horizontal cross-section of the cube shaded.

Figure 4 The relative errors in the computations of a
double-layered sphere.

The error for each case is illustrated in Fig.4. The average
error in the numerical results after each stage of sub-region
cell size halving is reduced to at least half of the larger cell
value, provided the boundary values used are accurate.
This is, understandably, due to the use of finer meshes
which model the interface better. The distributions of the
induced current densities computed with cells of 1 cm, 0.5
cm and 0.25 cm on the mid-cross section of the cubical
sub-region are shown in Fig.5, illustrating a higher
spatial resolution with a finer cell modeling. On the other
hand, the computational error is much larger when the
numerical results are used as the boundary than when the
analytical values are used. For instance, the error in the
computation for one eighth of the sphere is 3.5% in the
case of using the numerical boundary values as compared
to 2% when using analytical boundary values. This
indicates that the improvement in computation accuracy
obtained from one or multi-stage sub-region analysis will
be limited unless the whole region analysis is reasonably
accurate.
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Figure §

J(pAfem?)
2500

(c)

Distribution of the induced electric current
density on the surface corresponding to the
shaded cross-section in Fig.4, from the
computations of

(a) whole sphere using 1 cm cell size;

(b) one eighth of the sphere using 0.5 cm cell
size;

(c) cubical sub-region one eighth of the sphere
using 0.25 cm cell size.
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Sub-Region Analysis of Human Head

To illustrate the application of the above-described
approach to sub-region analysis, electric currents and fields
induced in the human head by a uniform 60 Hz magnetic
field of 1 T directed from the back to the front are
computed. The anatomically based man models developed
at the University of Utah [4] are used in this computation.
The data base of the man models was constructed from a
cross-section anatomy book [9]. In creating this data
base, a roughly quarter-inch grid (0.665cm) was first
divided on each of the transverse body cross-sections
which are equally spaced by the grid size. An electric
conductivity was assigned to each of such cubical cells,
according to the tissue type. Isotropic properties of
muscle were used. The conductivity matrix for the body
volume and its surrounding space has 90X48X268, i.c.,
about 1.16 million elements. Since this requires a
memory too large for most readily accessible computers,
the data for 2X2X2 = 8 cells are combined to form a
smaller matrix of 45X24X134 with 144 720 elements.
This half-inch model is used in the whole body
computation, while the quarter-inch model is used in the
computation of the head-region starting from the neck.
The boundary values on the neck cross-section are
obtained by interpolating (proportionally to the grid
surface) the line current densities from the whole body
computation.

The average and maximum values of the calculated electric
currents and fields induced in the head are listed in Table 2
for three computation cases. The electric field strength is
calculated by multiplying the current density by the
corresponding conductivity for each cell. First, as case 1
the whole body response of the man model is used with
the coarse grid (1/2-inch cell size). A head region is then
separated from the neck up and calculations using the finer
model (1/4-inch cell size) are performed for two cases
which differ by the boundary values assumed on the neck
cross-section, The results obtained from case 1 are used in
case 2 and null values are used in case 3. Therefore, case 2
takes into account the effects of the whole body, whereas
case 3 neglects current flowing between the head and the
rest and thus only models an isolated detached head.

From Table 2, it can be seen that the maximum current
density and field intensity for smaller computational cells
are 2-3 times higher than those of case 1, though the
average values are very close to those obtained with the
coarser grid. It is expected that the ratio of the maximum
to the average for both the current and field in the head
would be even larger if the head were modeled with finer
computational cells. Secondly, the differences in the
average and the maximum values between case 2 and 3 are
significant, indicating that the current flow between the
head and the rest of the body should not be neglected. It is
found that the densities of the current flow through the

neck are of the order of 1,000 uA/cm2, that is, about half

o
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of the maximum or 5 times the average value in the head
region. Understandably, for an exposure 9 a field directed
from the back to the front, much smaller electric currents
and fields are induced in a detached head than in the head
attached to the body because of the smaller coronal cross-
sections. If the magnetic field is applied along the body
vertical axis (head to toe), the difference between these two
cases would be smaller.

The spatial distribution of induced current density on two
cross-sections are presented in Fig.6 and Fig.7 for case 2
and 1, respectively. The cross-sections chosen are the
frontal passing through the ears and the transverse through
the nose. The distribution obtained with the smaller
computational cells reflects more anatomical details than
with the coarse grid. For instance, a realistic shape of the
nose and a distinctive air cavity of the pharynx can be seen
in Fig.6a. The difference between the current density in
the facial bones (low conductivity) and the facial muscles
(high conductivity) is also exhibited in Fig.6. Within the
cranial cavity (brain), a relatively uniform current density
is shown in both Fig.6 and Fig.7.

S:::“; E-Field
Computations (1A/cm?) (VM)
Cases Aver- | Maxi- | Aver- | Maxi-
age mum | age mum
Case 1: Whole Body Analysis| 191 | 1440 ] 14.0 | 105
(A = 1/2-inch, N = 144,700)
Case 2: Head Sub-Region| 206 ] 2000 | 13.7 | 296
Analysis
(A = 1/4-inch, N = 35,900)
Case 3: Detached Head] 161 | 1050} 11.3 | 65.2
Analysis
(A = 1/4-inch, N = 35,900)

Table2  Comparison of various computation cases of
modeling the electric current and field induced
in the human head by a 60 Hz uniform
magnetic field of 1 T directed from the back to

the front.
Conclusions

It is demonstrated that in calculations of the induced
electric current distribution in a 3D - model of the
heterogeneous human body, the impedance network
method coupled with the sub-region analysis approach is a
practicle way of dealing with theconflicting requirements
of modeling resolution and computation manageability,
Using one or multiple stages of sub-region analysis, a
body region of interest can be dealt with in a "zoom"
manner without resulting in an excessively large number
of computation cells. Of course, a correspondingly fine
model of man is required for this purpose. Our example




of the head analysis shows that the 1/4-inch man model can be significanily improved if accurate values of curents
results in spatial current distribution with a much higher at boundaries of the sub-region are known and used in the
resolution than those with the 1/2-inch model. However, analysis.

to properly model some organs, such as e¢yes, an even
finer anatomical model is needed. Computational accuracy

1172 uAlem? 522 yA/cm?

Figure 6 Spatial distribution of the current density induced in the human head on
(a) the frontal cross-section passing the ears and
(b) the ransverse cross-section passing through the nose, obtained from the whole body analysis using 1/2-inch
man model.

969 u A/lcm? 842 uA/cm?

Figure 7 Spatial distribution of the current density induced in the human head on
(a) the frontal and

(b) the transverse cross-sectionpassing through the nose, obtained from the head subregion analysis using 1/4-inch
man model.
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A VECTORIZED MULTIPLE PLATE SCATTERING CODE
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The Ohio State University ElectroScience Laboratory

Dept. of Electrical Engineering
1320 Kinnear Road, Columbus, Ohio 43212

Abstract

A computer code named Vectorised Multiple
Plate Scattering (VMPS) code has been developed
at the Ohio State University ElectroScience Labora-
tory to compute the scattered fields from structures
that can be modelled using perfectly conducting flat
plates. The VMPS code uses a moment method ap-
proach to solve an electric field integral equation for
the scattered fields. The code utilizes the vectorisa-
tion capability of CRAY s.upercomputers to compute
the scatiered fields very efficiently. In this paper,
the operation of the VMPS code is described and its
vectorisation efficiency is demonstrated.

L INTRODUCTION

A computer code named Vectorized Multiple
Plate Scattering (VMPS) code has been developed
at The Ohio State University ElectroScience Lab-
oratory (OSU-ESL) to compute the scattered fields
from structures that can be modelled using perfectly
conducting multiple polygonal flat plates. In the
VMPS code, an electric field integral equation is
solved using a moment method (MM) solution to
compute the scattered fields. The code utilizes the
vectorisation capability of CRAY supercomputers
and, thus, computes the scattered fields very effi-
ciently. The MM solution used in the code is basi-
cally the same as used in the Electromagnetic Sur-
face Patch (ESP) code (1]. However, the code has
been rewritten to facilitate vectorization on a CRAY
supercomputer.

In the MM solution, the equivalent currents on
the various plates are approximated by piecewise si-
nusoidal basis functions defined over quadrilateral
patches. Therefore, this code divides the various
plates into quadrilateral patches. A piecewise si-
nusoidal function (mode) is defined over every two
quadrilateral patches that share a common side.
Whenever two plates have a common edge, over-

135

\'1-
o
Plate §1
R P R
Y
J UL S —_—
T T
NEENE R
et b
O

Figure 1: Quadrilateral patches on two flat plates
and modal distribution. (—) plate modes, (—)
overlap modes.

lap modes, as shown in Figure 1, are placed near
the edge to ensure the continuity of currents. The
test sources in the moment method solution are fila-
mentary dipoles placed along the axial center of the
various modes.

In this paper, the operation of the code is de-
scribed and the approach used to vectorize various
section of the code is discussed. The CPU time used
by the code on a VAX 8550 computer, an IBM 486
personal computer and a CRAY Y-MP computer are
compared. The vectorization efficiency of the code
is studied by executing the code on the CRAY Y-
MP computer both in scalar and vector modes. It
is shown that by developing a code so that vector-
ization is facilitated, one can decrease the CPU time
by a factor as large as 8.

II. CODE DESCRIPTION

An EM moment method code, in general, consists
of the following steps.




o

1. Read the geometry of the structure, frequency
of operation and angular regions along which
the scattered fields are to be computed.

. Set up the modal distribution.
. Compute the impedance matrix {Z].
. Compute the excitation vector [V].

. Solve for the unknown current coefficients {I].

D N b W W

. Using the equivalent currents, calculate the
scattered fields.

7. Write the scattered fields to a data file.

For electrically large structutes (defined by more
than 50 modes), Steps 3 and 5 use most of the CPU
time followed by steps 4 and 6. These four steps ac-
count for more than 98% of the total CPU time. The
VMPS code is, therefore, written to facilitate the
vectorisation of these four steps. Since steps 1 and 7
involve input/output operations which can’t be vec-
torised, no attempt has been made to vectorize these
sections of the code. Further, existing software from
the Electromagnetic Surface Patch Code [1] is used
to set up the modal distribution. The approach used
to vectorise steps 3 through 6 is discussed below.

Impedance Matrix

Using the MM solution of an electric field integral
equation (EFIE), the elements of the impedance ma-
trix are given by

Zppn = _/j;l'E.mdsn (l)
Sn m’nzl,z...N

where E,, is the field of the m'™ test source, J,
is the current distribution on the n'® mode, N is
the total number of modes, and the integration is
carried over the surface defining the n'* mode. In
the MM solution used in the code, the test sources
are filamentary dipoles placed along the axial center
of the various modes. Thus, a test source consists
of two sinusoidal monopole filaments placed end-to-
end. The radiated fields of a monopole filament with
sinusoidal current distribution are known in closed
form. For example, if the monopole is positioned
along the z axis, as shown in Figure 2, the field at a
point P(p, z) is given by

o exp-wn, exp"""‘ i
= - d -
E 4x sinh(~d) { R: cosh(vd)—5- i
+% {sinh(vd) exp™ "1 + cosh(vd) cos ) exp "'
—cos 8, exp™ "2} 4| (2)
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Figure 2: A filament with a sinusoidal current dis-
tribution positioned along the z axis.

Figure 3: Mode n is defined by filamentary V-
dipoles.

where 1 is the free space intrinsic impedance, d is
the length of the monopole, and v is the complex
propagation constant. For this work, v is purely
imaginary. The distances (p, R), R;), angles (6,,6;)
and unit vectors (j, £) are defined in Figure 2. Note
that (2) does not include the field contribution from
the point charge at the end of the monopole. Since
two of these monopoles are placed end-to-end to
form a test source, the contributions from the two
point charges are cancelled. The field, Epn, of the
m'" test source is found by adding the fields of the
individual monopoles. Next, numerical integration
can be carried out to solve (1).

Note that when the observation point P moves

" closer to the filamentary dipole, the distance R, and

R; will become small and the field as given in (2) will
approach infinity. Thus, (2) can not be used to cal-
culate the self impedance terms or the impedance
terms for overlapping or touching modes. Let these
terms be defined as near-zone terms. To compute
the near zone terms, the »'* mode in (1) is rep-
resented by an array of filamentary V-dipoles (see
Figure 3). The impedance term is then found as
the weighted sum of the reaction between the test




source and these filamentary V-dipoles. To compute
these reactions, the distance between the test source
and each filamentary V-dipole is examined. Numer-
ical integration is performed whenever the distance
is large enough such that (2) is not singular. Oth-
erwise Richmond’s (2] closed form solution is used.
The closed form solution involves complicated expo-
nential integrals and requires more CPU time.

In the VMPS code, to facilitate vectorisation, a
whole row of the impedance matrix is computed at
a time rather than as individual elements. This ap-
proach increases the size of the DO loop structures,
which increases the vectorisation efficiency. Note
that the m'® row of the impedance matrix represents
the reaction from the test source m to all modes.
This section of the code involves the following steps.

1. Calculate the distance between the test source
and the various modes.

2. Separate the near sone terms and select the
number of integration points for the other terms
(far sone terms).

3. Select the location of the integration points on
the various modes and calculate the weights for
these points.

4. Find the reaction between the field of the test
source and the currents at the selected points.

5. Sum the weighted point reactions to calculate
the far sone elements of the impedance matrix.

6. Compute near sone terms.

In the first step, the distances from the m'* test
source to the various modes are calculated. These
distances are used in the second step to identify the
near sone terms and to determine the number of
integration points for the other terms. If the dis-
tance between the test source and a mode is less
than a predetermined distance, that element of the
impedance matrix is computed using the near zone
approach in step 6 and the number of integration
points for the mode is set equal to zero. Other-
wise, numerical integration is used to compute the
element. The number of points used in the integra-
tion is selected based on the distance between the
source and the test mode. For distances less than or
equal to A/4, 50 integration points are used. For dis-
tances between A/4 and A/2, 18 integration points
are used. For distances between /2 and 2], 8 in-
tezration points are used, and for distances greater
than 2), only two integration points (a single point
on each quadrilateral defining the mode) are used.
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Figure 4: Filamentary monopole distribution when
the source monopole lies along the center line of a
quadrilateral.

Note that this step provides & map of the number of
integration points for various modes.

In step 3, the locations of the integration points
on the various modes are found and the integration
weights for these points are defined. In step 4, the
reaction between the fields of the m*” test source and
the currents at all the integration points selected in
step 3 is calculated. Note that for large structures
the total number of integration points will be very
large. Thus, the DO loop structure in this step has
a large index. In the VMPS code, this DO loop
is written to maximise vectorisation. In step 5, the
point reactions associated with a mode are combined
to obtain the elements of the impedance matrix.

The above five steps compute all the elements of
the m** row of the impedance matrix except the near
zone terms. The near gone terms are computed in
step 6. Again, to facilitate vectorization, all the near
gone terms are calculated as a group, rather than as
individual elements. The procedure used to compute
the near zone terms is briefly described below.

To compute a near sone term of the impedance
matrix, each quadrilateral of a mode is represented
by an array of filamentary monopoles. The distri-
bution of the filamentary monopoles depends on the
location of the source monopole (remember that the
test source consists of two monopoles) with respect
to the quadrilateral. If the source monopole lies
along the centerline of the quadrilateral, then the
filamentary monopole distribution on that quadri-
lateral is given in Figure 4. Otherwise, the filamen-
tary monopoles are equally spaced on the quadri-
lateral. Using the above approach, the filamentary
monopole distribution on all the near zone modes for
a given source monopole is found and the integration
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weights for the various monropoles are calcnlated.
Next, these filamentary monopoles are grouped in
two sets. The first set contains all of the filaments
for which the reactance can be computed using nu-
merical integration, and the second set contains the
filaments for which Richmond’s closed form solution
is used. The reactances for the two sets are com-
puted in two separate DO loops. Again, the DO
loops are written to facilitate vectorisation. Next,
these reactances are combined to obtain the elements
of the impedance matrix. It should be pointed out
that Richmond’s solution involves extensive compu-
tations and is very hard to vectorise.

This completes the calculation of one row of
the impedance matrix. The procedure is repeated
over all of the test sources to compute the whole
impedance matrix.

Excitation Vector

Using the MM solution of EFIE, the elements of
the excitation vector are given by

Vm = ﬁ E; - Jrndvp, (3)

Vi
where E"i is the incident field, f,,. is the current along
the mth test source and the integration is performed
over the volume of the test source. Since filamentary

test sources are used in the VMPS code, (3) can be
writien as

Va = | [ E; - Judl,, (4)

where integration is carried out over both monopoles
that comprise the test source m.

Let the impressed current source be located at
(70,05, $0) and separated by a large (electrically) dis-
tance from the scatterer. Then the incident field E.-
can be considered as locally planar and can be writ-
ten as

E.., - E‘oejkf-fu (5)

where E, is a constant containing the polarization of
the incident field, #; is a unit vector from the coordi-
nate origin to the source and 7 is a radial vector from
the origin to the observation point. Substituting (5)
into (4), one obtains

Vi = Eg- / Tt iodl, (6)
Im
Or,
45 - =
Vwm = ——E¢-E,, (7)
wp

where

g _ Jus [ = s
E. = ¥ f et dl,, (8)

I

is the far-sone field of the m!® source. The closed
form expression for the far-sone fields of an elec-
tric line source with sinusoidal current distribution
is known [3]. Since the test source consists of two
monopoles with sinusoidal current distribution, E,,
and, thus, the elements of the excitation vector are
known in a closed form. In the VMPS code, all the
elements of the excitation vector are calculated in
a single DO loop, and this DO loop is written to
facilitate vectorisation.

Current Coeficients

Once the impedance matrix and the excitation
vector have been determined, it is & straight-forward
task to compute the current coefficients. The cur-
rent coefficients are given by the following set of lin-
ear cquations.

(21} = [V] (9)

where [Z] is the impedance matrix, [V] is the ex-
citation vector, and [I] is a vector containing the
current coefficients. Most of the vector computers
have very efficient routines to solve a set of simul-
tanecous linear equations. For CRAY supercomput-
ers, NAGLIB library routines are recommended. in
the VMPS code, routines FO3AHE and FO3AKE are
used. Routine FOIAHE is used for LU decomposi-
tion, and routine FO3AKE is used in the second step
(back substitution).

Scattering Field Calculations

To calculate the scattered fields, the current flow-
ing on the surface of various modes is represented
by 5 filamentary V-dipoles with piecewise sinusoidal
current distribution. The scattered field for each
mode is then given by the weighted sum of the 5 V-
dipoles representing the mode. The fields radiated
by a given filamentary V-dipole can be calculated by
summing the fields radiated by the two monopoles
forming the dipole. As pointed out before, the closed
form expression for the far-sone fields of an elec-
tric line source with sinusoidal current distribution
is known. Thus, to calculate the scattered fields,
one needs to compute the fields radiated by 10N
monopoles, where N is the total number of modes.
Next, all these fields can be summed to compute the
total scattered fields. In the VMPS code, a single
DO loop is used to calculate the fields radiated from




Table 1: CPU time (in seconds) used by the VMPS
code to analyse | meter square plate on various com-
puters.

CRAY Y-MP

Freq. | No.of | VAX IBM scalar | vector
(MHs) | modes | 8550 | 486 PC | mode | mode
300 40 11376 | 109.14 | 10.36 | 1.48
400 84 301.31 282.10 26.55 3.81
5§00 144 506.88 569.75 52.72 7.32
600 180 800.02 767.41 69.26 9.03
700 264 140_0.18 1344.58 | 11789 | 15.62
800 364 2275.81 | 2171.21 | 184.78 | 23.64
200 420 2809.23 | 2664.00 | 223.83 | 28.33
1000 544 4308.07 | 4050.88 | 327.86 | 42.10

all monopoles. Again, the DO loop is written to
facilitate vectorisation.

Thus, the four major steps (3-8) in the moment
method code have been vectorised. The improve-
ment in the computation speed due to this vector-
isation is demonstrated in the next section.

III. CODE EFFICIENCY

The VMPS code was executed on various com-
puters to calculate the backscattered fields from a
square plate and the CPU time used by the code on
these computers is listed in Table 1. The plate di-
mensions are 1 meter x 1 meter. The backscattered
fields are calculated at different frequencies along a
45° conical cut in 1° steps (361 aspect angles). The
CPU time listed in the table is the time spent in
steps 3 through 6 of the computer program. The
number of modes used to define the equivalent cur-
rents on the plate at various frequencies is also listed
in the table. Note that, as expected, the number
of modes increases with the frequency of operation,
and so does the CPU time used to calculate the plate
back scattered fields. For fair comparisons, only a
single processor was used on the CRAY computer.
Note that.the code uses the maximum CPU time on
VAX 8550 computer and the minimum CPU time
on CRAY Y-MP computer. This is true even if the
vector option of the CRAY computer is not utilised;
ie. the code is compiled with no vectorisation op-
tion (scalar mode operation). When the vectoriza-
tion option is utilised on the CRAY, the CPU time
shows further improvement. At higher frequencies,
the CPU times used in the vector mode of opera-
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Table 2: CPU time used to calculate the impedance
matrix on a CRAY Y-MP computer.

CPU (seconds)
Freq. | Scalar | Vector | Improvement
(MHs) | Mode | Mode
300 7.30 0.96 7.60
400 19.37 2.73 7.10
500 38.52 5.29 7.28
600 49.97 8.53 7.85
700 84.18 | 11.48 7.33
800 128.61 | 17.07 7.53
900 162.46 | 20.05 7.60
1000 | 215.53 | 29.65 7.27

tion is only one eighth of the CPU time used in the
scalar mode of operation, which is a significant im-
provement. In the vector mode of operation, the
code uses only 42 CPU seconds to analyse the plate
at 1,000 MHs, which is very efficient.

When the code was run on the VAX 8550, IBM
486 and in the CRAY scalar mode of operation, a
subroutine based on Crout’s method [4] was used to
solve for the unknown current coefficients in step 5.
In the CRAY vector mode of operation, this sub-
routine was replaced by NAGLIB subroutines. The
reason for using the Crout based subroutine in the
scalar mode of operation is that the NAGLIB sub-
routines are compiled using the vectorisation option
and we did not have access to the source subroutines.

Next, to study the extent to which various sections
of the code have been vectorised, the CPU time used
in the various sections of the code in scalar mode and
vector mode of operation are compared. Tables 2, 3,
4 and 5, respectively, compare the CPU time used
to calculate the impedance matrix, excitation vec-
tor, current coeflicients and the backscattered fields.
Note that, as expected, all sections of the code use
less CPU time in the vector mode of operation. The
improvement in the CPU time used to calculate the
impedance matrix is approximately a factor of 7.5;
whereas, the improvement in the CPU time used
to calculate the excitation vector is approximately
a factor of 8.8. Similarly, the improvement in the
CPU time used to calculate the scattered fields is
approximately 7.8. In general, for an optimally vec-
torized computer code the improvement in the CPU
time in the vector mode of operation is a factor of
9-10. Thus, these sections of the code have been vec-
torised effectively. The improvement factor for the
CPU time used to calculate the current coefficients




Table 3: CPU time used to calculate the voltage
vector on a CRAY Y-MP computer.

CPU (seconds)
Freq. { Scalar | Vector | Improvement
MHs) | Mode | Mode
300 0.41 0.053 71.74
400 0.86 0.11 7.82
500 1.47 0.19 7.74
600 1.84 0.21 8.78
700 2.70 0.31 8.71
800 3.712 0.42 8.86
900 4.30 0.49 8.78
1000 5.56 0.83 8.82

Table 4: CPU time used to calculate the current
coefficients on a CRAY Y-MP computer.

CPU (seconds)
Freq. | Scalar | Vector | Improvement

(MHs) | Mode | Mode
300 0.39 | 0.097 4.02
400 1.63 0.27 6.04
500 4.75 0.88 6.98
600 7.47 0.94 7.95
700 16.43 1.88 8.74
800 32.31 3.52 9.18
900 43.88 | 4.73 9.28
1000 76.80 7.93 9.68

Table 5: CPU time used to calculate the scattered
fields on a CRAY Y-MP computer.

CPU (seconds)
Freq. | Scalar [ Vector { Improvement
(MHs) | Mode | Mode
300 2.19 | 030 7.30
400 4.62 0.63 7.33
500 7.91 1.11 7.13
600 9.91 1.28 7.74
700 14.51 | 1.87 7.76
800 20.06 | 2.56 7.84
900 23.11 | 2.99 7.73
1000 | 20.87 | 3.82 7.82
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Table 6: CPU time (in seconds) used by the VMPS
code and the ESP4 code on a CRAY Y-MP com-
puter.

Freq. Scalar mode Vector mode

(MHs) | ESP4 | VMPS | ESP4
300 6.48 10.36 6.24 1.48
400 16.33 26.55 15.36 3.81
500 33.58 52.72 30.39 7.32
600 49.95 689.26 40.46 9.03
700 81.09 | 117.89 | 69.19 15.62
800 134.41 | 184.78 | 110.41 | 23.84
900 169.71 | 223.83 | 136.87 | 28.33
1000 | 263.18 | 327.86 | 204.21 | 42.10

increases with an increase in the frequency of opera-
tion and reaches as high as 9.68. This improvement
may be misleading in the sense that different rou-
tines have been used in the scalar mode and vector
mode of operation. Remember that in the vector
mode of operation NAGLIB subroutines are used;
whereas, a Crout based subroutine is used in the
scalar mode of operation. In any event, the CPU
time in the vector mode of operation is quite small
and it is clear that NAGLIB subroutines are very
efficient.

Next, to demonstrate the computation efficiency
of the VMPS code, its CPU times are compared with
the CPU times of the ESP4 code. Both codes were
executed on the CRAY computer in scalar as well
as vector mode of operation using the same options.
The same modal distribution was used in the two
codes. Table 8 shows the CPU time used by the
two codes at different frequencies. Note that in the
scalar mode of operation, the ESP4 code is a little
more efficient than the VMPS code. This is because
the VMPS code performs more calculations and is
written to calculate the impedance matrix more ac-
curately. The ratio of the CPU times used by the
two codes, however, is approaching unity at higher
frequencies. In the vector mode of operation, the
VMPS code is completely outperforming the ESP4
code. The VMPS code is 4-5 times faster than the
ESP4 code. The ratio of the CPU time used by the
ESP4 code to the CPU time used by the VMPS code
increases with an increase in the frequency of opera-
tion. Thus, the VMPS code utilises the vectorisation
capability of CRAY supercomputers better than the
original ESP4 code.




IV. SUMMARY AND CONCLUSIONS

The operation of the VMPS code was described
and the approach wsed to vectorise the various parts
of the code was discussed. It was demonstrated that
the code runs very efficiently on CRAY supercom-
puters. For example, to compute the back scattered
fields of & square plate with 544 modes, the code used
only 42.1 CPU seconds on a CRAY Y-MP machine.

For the VMPS code, the CPU time may not be the
limiting factor in analysing electrically large struc-
tures. The available memory space may be the lim-
itation. This problem can be addressed using an
out-of-core matrix solver. In the future, the VMPS
code will be modified to incorporate out-of-core me-
trix solver.
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PARTIAL SURVEY OF CODES FOR HIGH FREQUENCY SCATTERING
FROM FACET MODELS OF RADAR TARGETS
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ABSTRACT

In this work, four high-frequency electromagnetic scattering codes are surveyed
with regard to their capabilities and limitations for the calculation of the radar
cross section (RCS) of facet models of targets. The codes discussed are MISCAT,
NRCPTD, McPTD, and Xpatch. All of these codes utilize the physical theory of
diffraction (PTD) to approximate the field scattered from the target. A short
discussion of the modeling features of each code is given' and some sample numerical
results are generated. It is concluded that, of the models considered here, Xpatch
possesses the most comprehensive modeling features available, with no loss in
accuracy over the other codes.

1.0 INTRODUCTION

Choosing a high-frequency electromagnetic scattering code to accurately describe
the radar signature of a given target can be a substantial endeavor. Often, the
modeller will utilize the "familiar” code even when it is not the tool best suited to
the objective. Also, when there is a lack of accessible information on available
codes, additional effort may be expended in modifying existing -models or in
developing new codes to perform a specific task. However, as users become more
familiar with the available models, the need to modify existing codes and develop new
models is sometimes decreased.

The purpose of this paper is to familiarize the reader with the aforementioned
scattering codes. It is acknowledged that this survey is not comprehensive in that
only four PTD-based computer models are considered. Other excellent models are
available that utilize the PTD and/or the Geometrical Theory of Diffraction (GTD).

2.0 TARGET MODELING AND SCATTERING CODES

In this report, four active far-field electromagnetic scattering codes are
discussed. These are MISCAT, McPTD, NRCPTD, and Xpatch. All of these codes are
written in FORTRAN and employ the PTD to determine the scattering signature of radar
targets. The PTD does not include higher order edge diffractions or creeping wave
effects. These codes do not model the scattering from extended targets. The incident
radiatior is assumed to be a uniform plane wave with constant magnitude and
polarization over the target surface, and the scattered radiation is assumed to be a
spherical wave emanating from a single location. Also, these models do not currently
possess the capability to comprehensively analyze rough surfaces in that no
incoherent scattering pheonomena are modeled. However, the Xpatch code does have the
capability to associate a user-defined reflection coefficient with the scattering
surface as discussed in section 2.4. Some of the assumptions, limitations, and
modeling features of these codes are discussed in the following sections.

2.1 MISCAT
; The MISCAT scattering code was written by Northrop Corporation for the U.S. Army
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Missile and Space Intelligence Center (MISC) [l1]. The code was written for the
purpose of calculating the RCS of complex airborne targets such as aircraft and
missiles.

The current version of the code [2) calculates the RCS of conducting or coated
conducting targets. The RCS calculation can be monostatic or bistatic, and both
co-polarized and cross-polarized scattering signatures can be determined. The target
geometry is modeled as a set of primitives (plates, polygonal cylinders, elliptical
cylinders, and bodies specified by surface contours) and the total body RCS is
obtained by coherently summing the contribution due to each geometrical primitive.

The code can be used to predict the scattering signature of convex targets. Its
major limitations are in the shadowing calculation and single-bounce scattering
assumption. The shadowing of a facet is calculated using only the facet normal
vector. That is, the shadowing of one portion of the body by another portion is not
analyzed. Another limitation of the code comes about due to the method employed to
describe the target geometry. The format employed is quite general but also quite
bulky and no automatic edge/wedge extraction feature is provided. (If the target
under consideration can be modeled using some of the higher-order geometrical
primitives, then an automatic wedge contribution calculation can be performed.) The
code is quite useful for the purpose for which it was intended -- analysis .of
airborne targets. However, analysis of these target at aspects associated with body
inlets, cavities, and other interacting surfaces can not be performed reliably.

2.2 NRCPTD

This acronym (NRCPTD) is used to signify the author’s efforts at RCS prediction
of complex targets [3]. At present, NRCPTD is not a single code but consists of
separate modules for analyzing different contributions of the scattering process.
Some of the features of these codes will now be discussed.

The physical optics (PO) currents depends upon an approximation of the
geometrical optics (GO) field on the surface of the illuminated region of the target.
When the body can be approximated by a perfect electric conductor (PEC), the GO field
is Jjust twice the tangential incident magnetic field since the total tangential
electric field is zero on the surface of the body. To allow for the modeling of
nonperfectly conducting bodies as well as RAM coated targets, we have utilized the
exterior equivalent Fresnel reflection coefficients to obtain the GO surface field.

The material composition of the target can be quite general but not completely
arbitrary. The target can consist ¢f PEC components and/or conducting components
coated with arbitrary dielectric layers and/or lossy dielectric components coated
with dielectric layers. Transparent body components can not be treated with this
code.

There exists a shadow boundary on the target which divides the illuminated
region from the shadowed region. For a simple convex body, we can distinguish
between the illuminated and shadowed regions by use of the body’s normal vector. If
the target is complex, more elaborate steps can be taken to identify the illuminated
portion of the body. The method implemented in this model is approximate but still
quite useful. It consists of treating each facet of the target as hidden or
illuminated dependent upon whether the centroid of the facet is hidden or
illuminated. Clearly, this is an approximation but one that can be used to obtain
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any desired level of accuracy by adjusting the facet size. We have also retained the
simpler, and computationally faster, surface normal approximation to the shadowed
region as a user option.

In using the PTD to approximate the high-frequency scattering signature of a
target, it is necessary to know the location and orientation of the geometrical
discontinuities (wedges and edges) on the body. In this code an algorithm was
implemented to extract exterior wedges and edges (wedges with zero interior angle)
from a facet file. The extraction routine locates connected facets and then checks
the angle between the adjoining facet normals to decide if a "true" wedge or edge is
formed. The angle between the normals for which a wedge is determined is a
user-defined parameter and can be set based on how finely the target is discretized.

Since the wedge extraction algorithm looks for wedges and edges when the
vertices of two connected facets are the same, it is possible to construct a wedge
geometry that the algorithm will not process correctly. For instance, when a wedge
is formed by two facets whose vertices are offset such that the wedge does not run
the full length of both facets, the wedge will not be found.

In summary, this code employs the PTD to predict the scattered field and
f associated RCS of complex targets. The target is modeled by a set of triangular
facets. The total body contribution is obtained by summing the contribution due to
each facet. The facets can be conducting or can be coated with material layers.
Geometrical optics is used to approximate the surface field on the target. From the
GO surface field, the equivalent currents are calculated. Integrating over the
equivalent currents provides the PO approximation to the scattered field. Edge
effects can be included for conducting body components. The RCS determined by the
code can be monostatic or bistatic and both co-polarized and cross-polarized
scattering signatures can be calculated. Angle scans and frequency sweeps can be
easily performed.

2.3 McPTD

McPTD consists of a family of component computer codes for the high-frequency
computation of the scattered field/RCS of complex targets [4]. The codes were
written primarily by S. W. Lee at the University of Illinois and have undergone
several upgrades since they were first distributed in 1990. They are currently being
distributed by Dr. Lee’s company, DEMACO, and by the electromagnetic code consortium
(EMCC).

The codes analyze the scattering from a variety of geometrical components
ranging from flat facets to numerically-defined, CAD-generated surfaces. A main
routine exists for the summation of the field scattered from the different target
components.

The primary limitations of the code lie in its inability to model
multiple-bounce scattering mechanisms and in its shadowing capability. While the
ability to perform accurate shadowing is available, the code uses an inefficient
process, just as in NRCPTD. Nevertheless, McPTD is a more sophisticated modeling
tool than both MISCAT and NRCPTD discussed previously.

Since the McPTD family of codes is written by the same author as the Xpatch
codes to be discussed next, no numerical results generated via McPTD will be given
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here. Also, McPTD is essentially a subset of the more sophisticated modeling tool,
Xpatch.

2.4 Xpatch

Xpatch consists of a set of codes written primarily by S. W. Lee [5]. The codes
analyze the scattering signatures of complex targets in both the frequency and time
domains. Shown in Table 1 is a list of some of the capabilities of the various
Xpatch modules.

Notice that Xpatchl and Xpatch2 are frequency-domain codes while Xpatch3 and
Xpatch4 are time-domain codes. Although conversion from one domain to another can be
accomplished via the Fourier transform, each domain offers computational advantages.
For instance, modules 3 and 4 are time-domain codes and do not easily model material
parameters.

The Xpatch codes provide for a range of target modeling geometrical primitives.
Modules 1 and 3 employ a triangular facet description of the target geometry in ACAD
format [6]. (These ACAD facet files can be easily converted to formats applicable
for input to MISCAT and NRCPTD). Modules 2 and 4 employ a numerical description of
the target surface. The initial graphics exchange specification (IGES) can be used
to describe target geometries to the code. Also, the code can utilize constructive
solid geometry (CSG) models created with BRL-CAD [7].

The frequency-domain codes (modules 1 and 2) can model the edge diffraction
contribution for conducting edges. This contribution is for a single-bounce
interaction. That is, only the field originally incident on the target can produce
an edge diffraction contribution. Parameter extraction for wedges and edges can be
performed by a component preprocessing code.

All modules of the Xpatch family can utilize a shooting and bouncing ray (SBR)
algorithm (8,9]. In this approach a dense grid of rays is shot at the target. The
rays are traced throughout the target using GO and then a PO integration over the
equivalent currents on the last interacting surface is performed. Perfect
specularity is assumed in the ray tracing. Shadowing is automatically performed in
the SBR analysis.

When using facet models generated via CAD packages, errors in the direction of
the facet normal vectors is a common occurrence. Using the Xpatch codes in SBR mode
eliminates the need to know the direction of the facet normal vector.

Another feature of the Xpatch code is its capability to read a set of angular
and frequency dependent reflection coefficients and associate these coefficients with
various facets on the target. These coefficients are then used in the ray tracing
and equivalent current computation. It appears feasible to use this feature of the
code to model the reduction in the coherent component of the RCS of a slightly rough
target. This has application in the millimeter wave (MMW) region of the spectrum.

The documentation provided with the Xpatch codes is currently limited. No
comprehensive technical description of the techniques and approximations employed is
given. However, some documentation is given within the input file structure as well
as in an example problem set provided with the codes. For researchers already
familiar with the modeling of high-frequency electromagnetic scattering, enough
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documentation is provided to enable the user to become proficient with the code.

The Xpatch codes are currently being utilized on Silicon Graphics machines. The
main routines are written in FORTRAN and can be ported to other machines with minimal
effort. If a PC is to be used, then a compiler is needed that can access extended
memory. Some utility codes (format conversion, wedge parameter extraction, etc. )
are written in C and no source code is provided.

The Xpatch codes have other features which have not been fully discussed here.
For some comparisons of measured results to numerical Xpatch simulations, the reader
can consult some recent literature [10].

2.5 Numerical Results

In this section some numerical results will be considered. These examples serve
as a partial validation of the newer codes against the more established models and
also illustrate some of the features and limitations of the codes. The frequency of
the incident radiation in the following examples is taken to be 1.0 GHz in all cases
and is chosen for illustration purposes. While the PTD would provide a more accurate
estimate of the true RCS of the targets considered below if the frequency were
increased an order of magnitude, the resulting plots would be unnecessarily dense.
Hence, the lower frequency was preferred for these comparisons.

Numerical comparisons other than the ones shown below have been made. While
some of these comparisons have utilized more complex and realistic geometric models,
the resulting predictions are readily extrapolated from the examples given below.
Please note that in making comparisons with the Xpatch codes, only results generated
via Xpatchl will be shown here. The other Xpatch modules have many interesting
features and capabilities as outlined above but tend to be beyond the scope of this
comparison.

2.5.1 PEC Plate

Consider the thin square plate shown in Fig. 1. It is 1.0 m on a side and is
taken to be perfectly conducting. The co-polarized monostatic RCS of the plate has
been calculated using the scattering codes and the results are shown in Fig. 2. The
incident field is a vertically polarized plane wave, The zemth angle is 6 = 90
{x-y plane) and the azimuth angle is varied from O °(broadside) to 90° (grazing).

The calculations were performed using the PTD and for reference purposes the
method of PO (no edge contribution). Notice that at broadside, the RCS has a value
of 21.4 dBsm and agrees with the analytical PO result of 41:(.‘\;:/7\),2 where Ap is the
area of the plate and A is the wavelength of the incident radiation. Furthermore,
notice that the first sidelobe is 13.2 dB down from the maximum as is typical for
rectangularly-shaped scatterers and uniformly illuminated apertures. The PO result
is a fairly accurate estimate for the first few sidelobes except in the prediction of
the nulls. After the first few lobes, the edge starts to dominate the response and
the PO approximation yields an inaccurate resuilt. Finally, notice that for this
simple target, all three PTD scattering codes agree well for all aspects considered.

2.5.2 RAM Coated Plate

In this example a coated body will be analyzed. Consider the rectangular plate
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shown in Fig 3. The plate is of width 2.0 m and height 3.0 m and is coated with a
broadband RAM., The coating is 1.0 cm thick with relative permittivity and
permeability of € =p = 2 - jS. This RAM does not exist in practice but is used

for the purpose of illustration.

The PO approximation to the co-polarized (VV) monostatic RCS of the coated plate
has been computed and the results are shown in Fig. 4. The zenith angle is held
constant at 6 = 90 (x-y plane) and the azimuth angle is scanned from 0° to 90. Shown
for comparison is the PO approximation to the RCS of a PEC plate of the same size.
Notice that the RAM coating significantly reduces the RCS from that of the uncoated
plate. At -normal incidence, the amount of reduction is seen to be 18.2 dB
corresponding to the reduced Fresnel reflection coefficient. As in the previous
example, the first sic '-be is 13.2 dB down from the maximum and the first null
occurs at an azimuth ngle of ¢ = sin (A/2w) where w is the width of the plate.
Observe that all scattering models again produce equivalent results in this case.

2.5.3 Dihedral Corner

Consider the dihedral corner reflector shown in Fig. 5. It is of length 2.0 m
in each of the x, y, and z dimensions. The co-polarized {VV) monostatic RCS of the
corner has been calculated and the results are shown in Fig. 6. The zemth angle is
held constant at 6 = 90 (x-y plane) and the azimuth angle is varied from 0° (normal
to face 2) to 90° (normal to face 1). Only scattering from the interior of the
corner has been considered and all edge diffraction effects have been ignored.
Although edge diffraction effects can be important for scattering from the exterior
corner (wedge), the single and double-bounce scattering mechanisms dominate the
response of the interior corner.

Shown in Fig. 6 are the results of three different solution procedures. First,
the analytical solution to the RCS is shown. This represents the combined
single~bounce PO approximation and the double-bounce GO/PO approximation. Also shown
in this figure is the single-bounce approximation available with any of the codes.
Finally, the Xpatch code was used in SBR mode {SBR/2 BOUNCE) to approximate the RCS
of the corner. In the SBR mode, 10 rays/wavelength were shot at the target and 2
bounces were allowed. Notice the resuits of the SBR analysis agree very well with
the analytical result. Furthermore, notice that the single-bounce PO approximation
is inadequate for describing the response of the interior corner over most of the
aspects shown.

The Xpatch code is the only model considered that can provide an adequate
description of the response of the dihedral corner. The other scattering codes
considered (MISCAT, McPTD, and NRCPTD) do not attempt to analyze multipie bounce
scattering. While the effect of multiple bounces is not always an important
contributory mechanism, the errors introduced by neglecting them can, for some
targets, be significant.

The SBR mode of the Xpatch code requires that a dense grid of rays be shot at
the target. The density of the ray grid governs the accuracy of the approximation
with a dense grid providing more accurate results than a coarse grid. In the
previous example, the density of the grid was 100 rays per square wavelength. Shown
in Fig. 7 is the RCS of the corner calculated via Xpatch in SBR mode using a grid
density of 2 rays/wavelength (4 rays per square wavelength). Also shown for
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comparison purposes is the analytical calculation of the RCS. Notice that the Xpatch
solution is degraded somewhat from the previous example but still provides what for
some cases could be an adequate approximation.

2.6 Model Survey Summary

A summary of the capabilities and limitationé of the wvarious codes discussed in
this report is given in Table 2. Of the codes considered, MISCAT is currently the
most trusted (for a limited set of targets) and best documented while Xpatch provides
the most comprehensive modeling features. Xpatch has the capability to model
multiple bounce scattering as well as shadowing. While NRCPTD and McPTD can perform
global shadowing checks, they are not as efficient in this regard as the Xpatch
codes.
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Table 1. Capabilities of Xpatch family of scattering codes.
Code Xpatchl Xpatch2 Xpatch3 Xpatch4
Feature
Domain Frequency Frequency Time Time
Modeling Facet CSG/IGES Facet CSG/GES
Primitives
Coatings Yes Yes No No
Edge Yes Yes No No
Diffraction
Shadowing Yes Yes Yes Yes
Multiple Yes Yes Yes Yes
Bounces
Uses RCS and RCS and Range profile | Range profile
Range Profile | Range Profile | and SAR* & SAR*

* Not conventional SAR but images are similar.

Table 2. Capabilities of EM scattering codes surveyed.

Feature | Surface Wedge Wedge Global Multiple
Coatings | Extraction| Effects |Shadowing| Bounces
Code (PEC)
MISCAT Yes No Yes No No
NRCPTD Yes Yes Yes Yes* No
McPTD Yes Yes Yes Yes * No
Xpatch Yes Yes Yes Yes Yes
* Not handled as well as in Xpatch
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AN EXPERIMENTAL AND THEORETICAL INVESTIGATION OF SCATTERING
BY FINITE PERFECTLY CONDUCTING CYLINDERS
WITH VARYING CROSS-SECTION

KRISHNA M. PASALA, PH.D.
University of Dayton
Electrical Engineering Department

Dayton, Ohio 45469-0226

ABSTRACT. In this paper we consider the problem of
scattering from a class of three dimensional (3-D) target