USES

- Form Approved
REPORT .DOCUMENTATION PAGE OMB No. 0704-0188
' . ‘ Publc rep0rting burden 10r thes colCtion of w: ted t0 t hOur Der reIpOMe, mwm'wmmm mmgaum
Mg colecton burden estimate or |
&Eggummmmu-"‘“unn-"izsqga'.aam;& “M'NSE‘aungkma‘m"“""%q&ﬂﬁﬁ%"mw arm1aaﬁgfﬂux
1. AGENCY USE OMLY (Leave Diank) | '{W‘F 3. REPORT TYPE AND DATES COVERED
— v v e .01594
0 4. TITLE AND SUSTITLE S. FUNDING NUMBERS
LO) A Stepsize Control Strategy For Stiff Systems PO
- Of Ordinary Differential Equations DAAL03-92-G-0247
‘ "'=== €. AUTHOR(S)
g- Peter K. Moore & Linda R. Petzold
- S e
<- 7. PERFORMING ORGANIZATION NAME(S) AND ADORESSIES) 8. ::mm ?amunou
| == Peper K. Moore, Dept. of Mathematics, T-lane
‘:‘ Univ., New Orelans LA 70118 94-08
< Linda R. Petzold, Dept. of Computer Sce e,
Univ. of Minnesota, Mpls MN 55455

SPONSORING / MONITORING
GENCY REPORT NUMSBER

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-221

", MENTARY S
The view, opinions and/or findings contained in this report are those of the
suthor(s) and should not be construed as an official Department of the Army

sition licy, or decision, unless so des ted by other documentation.
122, 18V 17 C

Approved for public release; d:lll:r:lbutionpnlh:l.t.d.

13, ABSTRACT (Maximum 200 words) *

In solving stiff systems of ordinary differential
equations using BDF methods, Jacobians needed for quasi-Newton
iteration are frequently computed using finite differences. Round-off
errors in the finite-difference approximation can lead to Newton
failures forcing the code .to choose its time steps based on "stabili{y"”
rather than accuracy considerations. When standard stepsize control lis
used the code can experience thrashing which increases the total n el
of time steps,Jacobian evaluations, & function evaluations. 1In this
paper we investigate this situation, explaining some surprising time
step selection behavior produced by the standard control mechanism.
A new control mechanism is proposed which attempts to find & use a
"stability" stepsize. A comparison of the new strategy with the
standard strategy & with two PI controllers introduced earlier is
made using the stiff test set.

[, SowiecT Tinms @é 94-21064 W
MAREERRT e

.

(77, SECURITY CLASSIFICATION [16. SECUNITY CLASSWICATION | 19, SECURITY CLASSWICATION | 320. UMNTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASS1IFIED URCLASSIFIED UL
N3N 7540.01-180-5%00 Standard Form 138 (Rev. 2.89)
DTIC QUaksi sasucitusD 1 o o

Bd © il J6R

Computer Science Department
University of Minnesota
Twin Citles
4-192 EE/CSci Bullding
200 Union Street S.E.
Minneapolis, MN 55455

Accesion For
NTIS CRA&I
DTIC TAB

Unannounced
Justification _

0O PR

By .
Distribution|

Availability Codes

Avail and]or
Dist Special

|

A Stepsize Control Strategy
for Stiff Systems of Ordinary
Ditterential Equations
by
by Peter K. Moore and Linda R.
Petzold

TR 94-08
1994
Technical Report

A STEPSIZE CONTROL STRATEGY FOR STIFF
SYSTEMS OF ORDINARY DIFFERENTIAL EQUA.TIONS

Peter K. Moore

Deparmment of Mathematics, Tulane University, New Orleans, Louisiana 70118,

and

Linda R. Petzold *

Deparvoment of Computer Science, University of Minnesoia, Minneapolis, Minnesotwa
55455

Abstract. In solving sdff systems of ordinary differential equations using BDF
methods, Jacobians needed for quasi-Newton iteration are frequently computed using
finite differences. Round-off errors in the finite-difference approximation can lead to
Newton failures forcing the code 10 choose its ime sieps based on ““stability” rather
thtnwcuncyconsidaations. When standard stepsize control is used the code can
experience thrashing which increases the total number of time steps, Jacobian evalua-
tions, and function evaluations. In this paper we investigate this situation, explaining
some surprising time step selection behavior produced by the standard control mechan-
ism. A new control mechanism is proposed which attempts to find and use a *‘stabil-
ity’* stepsize. A comparison of the new strategy with the standard strategy and with
two PI coatrollers introduced earlier is made using the stiff test set.

L. Introduction.

In solving stiff systems of ordinary differential equations using BDF methods,
Jacobians which are needed for the quasi-Newton iteration are often approximated

* The work of this suthor was partially supporied by ARO Contract Number DAALO3-89-C-0038
with the U. of Minn, AHPCRC, and by ARO Contract Number DAALO3-92-G-0247.

- S v e i mwa e - - ——eee e e

-2-

using finite differences (1, 2, 9]. Smaller stepsizes than allowed by accuracy con-
siderations may be needed to guarantee convergence of the Newton iteration due to
round-off errors in the finite-difference Jacobians. The standard stepsize control
mechanism, such as that used in DASSL [2], is |

hy = (TOL/EST,_)'? h,,_,, (1.1)
where TOL is the user-prescribed tolerance, EST, ., is the local error estimate com-
puted at time 1,_,, and p is the method order. However, (1.1) is based solely on accu-
racy considerations. This can lead to highly oscillatory stepsize behavior (see Figure
LY.

Here we apply DASSL to the stff test set {4, 5] with an approximate Jacobian to
simulate the effects of an inaccurate finite difference Jacobian. The stepsize behavior
shown in Figure 1.1 when DASSL is applied to problem D2 is typical. After periods
of taking relatively small stepsizes the algorithm suddenly increases the stepsize by
several orders of magnitude. It remains at this larger stepsize for several time steps,
andmcndecmxsmeaepsiudrmnywhaeuponmepmssbeginsagain.
Although most of the time steps taken by DASSL are of the smaller size, the solution
on most of the time interval is found using the larger time steps.

In §2 we analyze the behavior of DASSL on a simple linear system which leads
to an understanding of the stepsize behavior discussed above. We also present a
modification of the time step selection strategy used in DASSL based on the quasi-
Newton algorithm of Dennis and Schnabel [3). The revised strategy prevents the
larger ‘‘anomalous’” steps but leads to a much larger number of time steps with no
significant’improvement in accuraCy. The stepsize controller of Gustafsson et al. [6],
referred to henceforth as the PI controller L, is presented in §3 with a new interpreta-
tion. This controller was developed for explicit time integrators. Gustafsson (8]

-3.

developed a PI controller (referred to herein as PI controller II) for implicit methods.
We also discuss this controller in §3. In §4 we present a new control strategy and
compare it with the standard stepsize controller and the PI controllers on the stff test
set {4, 5]. Brief conclusions are given in §5.

2. Analysis of a stiff system.

Consider first the standard test problem

y' =iy, y0)=1 (2.1)
where Re(A) < 0. Applying the backwa.rd-Euler method together with quasi-Newton
iteration yields

(1 - aMi)Aya =l (1= M) +y,, 21 (2.2)
Typically, if an analytic Jacobian is used & = 1. To model the effects of an inaccurate
matrix approximatiqn, v?e choose a different from 1. After k+1 iteratons of the

quasi-Newton method we obtain

kvt o p0 (@= 1)+ (—Ah)i+ o n (- DAR
Ya+l n+l (1_)l)‘ﬂ l—DI)' l_m ;
- a k
b lo= DAY 2.3)

(1 - ohh)*
where y0,, is the predicted solution. If Ak(a — 1)/(1 — ahh)! < 1 the quasi-Newton
iterates converge to the the true solution where the rate of convergence, p. is given by

lykt - ya/(1 = Ab)I
=
IY:-o-l = ya/(1 = Mh)l

= Ak (a - 1)/(1 - arh)l. (2.4)
In DASSL [2] the quasi-Newton iteration is said to converge if

By k<033 (2.52)

I oz e o e A o -

where f is an approximation of the rate p given by

P = (ydl = yau Wyl =y DV, (2.5b)
Thus the number of iterations before convergence is determined by both the accuracy
of the predictor and the rate of convergence .

For systems of equations, the analysis is complicated by the norm used.
Although DASSL uses a weighted rms norm, herein we consider the /2 norm which

displays the same type of behavior. Cousider the diagonal system
Y =Dy, y0)=1, (2.6)
where D = diag(A,,A,, -, &,,) with Re(X;) <0, i =1, 2, -, m. After two iterations

'

the rate of convergence is given by

[(pl()'noo-l.l - yn.l/(l - z'l" »)2 + o+ (pn (yuo-o»l.n -)’,._./(l - A'mh)))2]"2

Q2.n
(Ot = Yaal(l = ARDP + =+ 00 = Yam/(1 = Ay h))A'?

where the second subscript indicates the component of the vector y and p; is given by
(2.4) with the appropriate A;. Unlike (2.1) the rate of .convergence of (2.7) is not con-
stant, but is instead determined by the stiffness (through p;) and the accuracy of the
predictor (2,1, = y,./(1 = A;h)). Thus if the stff components are sufficiently more
accurately predicted than the nonstiff components (which is likely since the stff com-
poanents change little from step-to-step) the rate of convergence will be controlled by
the rate of convergence for the nonsuﬁ' components which have smaller rate constants.
The stepsize controller may then wish to increase the stepsize (which may be low for
the nonstiff components) until. the errors in the stff components are excited whereupon
the stepsize undergoes a drastic reduction since the rate is now being determined by
the stiff components.

That this actually happens can be seen by applying DASSL to problem A4 of the

- 5.

stff test set [S] which has A; =~i%, i =1,2,-, 10. We solved this problem on
0 <t S 0.4 with absolute and relative error tolerances of 0.01 and with a = 0.5. Fig-
ure 2.1 shows the time steps and the error in the stiffest component over the interval.
When the stiff component becomes sufficiently accurate (after very mall time steps)
the time step increases rapidly, reaching a value controlled by the error in nonstiff
components. Such large time steps excite errors in the stiff components until the rate
of convergence becomes dominated by the stiff components and the time step is drasti-
cally reduced, beginning the process again. Such behavior is also seen in non-diagonal

systems as shown in Figure 1.1.

The question arises, is it desirable to permit the large stepsizes. We observed that
on some successful steps at the larger stepsizes |ig(z, Y. Y| increased where Y is the

BDF solution when we are solving

ge.y.y)=0. 2.8)
One approach we implemented to comrect this problem was to insist that jig(z,Y, YO}l

decrease before a step was converged. Specifically we required that on each Newton

step

Lg(Y + AV)P - lgIP - o 05 2.9
X .9)
2P

(cf. Dennis and Schnabel [3]) where AY is the quasi-Newton direction. Although
_using (2.9) did reduce the number and extent of the large stepsize regions, more time
steps were used with no significant improvement in accuracy. Thus, it seems reason-
able to allow the large steps and subsequently we do not use (2.9).

3. P1 control.

As was seen in §2 the standard stepsize control mechanism (1.1) leads to oscilla-

-6-

tory time steps. The difficulty is finding a way t0 smooth out the selection of small
time sweps without ecliminating the selection of the large time steps. One possible
approach is to use PI controller I introduced by Gustafsson et al., [6, 7, 8] for explicit
methods or PI controller II of Gustafsson [8] for implicit methods. In this section we
present a new interpretation of these strategies alodg with some modifications for use
in our situation.

PI coatroller I can be written in the form (with some modifications for maximum
rate of stepsize increase and decrease) (7]

h, = (TOLIEST,_,Y"(EST, /EST,_)*"h,, - (3.1)
where EST,_, and EST,_, are estimates of the local truncation error at time 7,_, and
ty.;» respectively, and K; and Kp are parameters whose values depend only on
whether a step is successful or not. Values for K; and Kp are given in [6] and [7]
although they differ slightly. 'For our purposes it is important to note first that in the
case of a rejected step K; = 1/p and Kp = 0. Thus, when a step is rejected the stan-

dard controller is used. Second, in the case of an accepted step K; + Kp = 1/p.
We can rewrite (3.1) as
hn = (EST,_o/TOLY** (TOLIEST,_)** * “'h,_, 3.2)
Assuming X; + Kp = 1/p and using
Roce a-1 = (TOLIEST,_)'P h,_, (3.3a)
we obtain
hy = (EST,_y/TOLY " hyy. (3.3b)

where h,.,_; Tepresents the stepsize based on the local truncation error that could
have been taken at time ¢, _,. We note that A, ,_, also represents the stepsize based

-7-

on accuracy that is typically used for the next time step (f,_;4,]. Now, since (3.3a)

holds at time 7,_; we obtain

hy = (hp_3/Bace 2)"Pace n1- (3.4)
where K; = Kp/(Kp + K;). Thus the new stepsize is chosen to be the stepsize based
on accuracy multiplied by a factor that represents the ratio of the actual stepsize to
accuracy stepsize we could have chosen on the previous step. If on the last step the
mmcyandacmaldmestepwmthesame,ihemmys&psiuis-usedontbe
present step. Otherwise (the previous stepsize can never be larger than the previous
stepsize based on accuracy), if the previous stepsize was much smaller than the previ-
ous stepsize based on accuracy only a fraction of the accuracy stepsize is used.

A similar analysis shows that PI controlier II has the form

n = (rn—2thace x-2)" (hn 1/ e n-1. (3.5)
if two or more successive accepted time steps have been taken (otherwise the standard
controller is used). Now the accuracy time step A, ,.; is multiplied by an additional

factor representing the ratio of successive accepted time steps.
The version of the PI algorithms we used in our testing consists of three cases.
1: If the present step is rejected due to the error test, set h, = Ay -1, K¢ = Ko

2: If the present step is rejected due to Newton divergence, set h, =h,_;/4,

K¢ =Ky,

3. If the present step is accepted update K; = max(fac*K; K) if the previous step
was not a Newton faiture. For PI controiler I set
hy = min(1,(An_2/hace -2 Whace -y and set

hy = @01ty g hce p—2) (1B 2)hace -y for PI controller II.

where fac = 0.9, Kz = 0.5, and Kj; = 0.7 are fixed parameters. This differs slightly
from the approach taken- by Gustafsson (6, 8], since we allow K to vary. We found
varying K; resulted in slightly better performance over fixed K.

Gustafsson {8] offers some additional ideas for PI controller II. He has a stepsize
algorithm for the case of successive stepsize failure due to error control. In our situa-
tion, however, we encounter successive stepsize failure due to divergence in Newton’s
method so we did not incorporate this heuristic in our algorithm. In certain cases of
Newton divergence he computes a second, ‘‘stability’’ stepsize which is based on the
size of the norm of the Jacobian. Since we are also interested in solving differential-
algebraic equations, we are very reluctant to use a scale-dependent quantity in our
algorithm so we have neglected this feature.

4. A new controller.

For reasons that will become clear from the examples in this section neither the
standard controller nor the PI controllers possess the desired stepsize behavior. Using
the analysis from §2 we present a new controller which we refer to as the STAB con-
troller. We then present a numerical comparison of the the standard, Pl, and STAB
controllers applied to the suff test set (4, 5].

Fromomob#ervationsin§2weduiteacontmllerthatima'fereswiththestan-
dard controller as little as possible; Our goal was to smooth out the time step selec-
tion strategy only when the code is thrashing due to Newton convergence difficulties.
When the code is able to use larger stepsizes because of a good predictor for the stiff
componeats, we want to let it do this because this is where it makes most of its pro-
gress. Additionally, as indicated in §2, no accuracy is lost in accepting the large steps.

We begin with the observation that there are two important time step sizes, an
accuracy size h,.. and a stability size hg,,, where here, stability refers to the conver-
gence of Newton’s method. Normally A, is smaller than A,,, for BDF methods but
when the Jacobian is poorly approximated the reverse can occur. In the graph on the
right side of Figure 1.1, the peaks in curve A indicate stepsizes chosen by accuracy but
which caused the quasi-Newton iteration to diverge. Thus the best guess at A, is
represented by the peaks, although it may be quite a bit larger (curve C on the right,
Figure 1.1). After each peak two successful, smaller steps are taken. The value Ay,
is approximated by curve B in Figure 1.1. Our controller seeks to detect when A, is
smaller than h,,. and then makes two attempts at finding hg,,. The algorithm then
limits the time step size for 10 steps to 0.87h,, after whic.:h it reverts to the standard
controller. The value 0.87 is chosen to reduce the number of step failures and to
reduce the number of Newton iterates required for convergence. If the time step used

was hg,,, Newton make take several steps to converge due to a larger ratc and a

poorer predictor.

The new controller is invoked ohly when the Newton iteration fails to converge
(as long as the convergence is not due to a singular Jacobian), i.e., when the criteria
(2.5a) fails and when the last successful time step h,_; is smaller than the first failed
(Newton) step h,. Two attempts are made at finding hg,,. After the first Newton
failure, if h,_,/h, 2 0.8, h, = 0.87h,_, and the time step is not allowed to become
largci than this value for 10 time steps (of course it can become smaller due to subse-
quent Newton failures or error failure). If h,_,/h, < 0.8 then h, = 0.8h,_, + 0.2h,.
Now, however, the stepsize is allowed to increase, but at a reduced maximum rate of
1.18. If Newton fails for a second (but not second consecutive) time within the 10
step limit, 4, = 0.87h,_; and no increase above this value is allowed for 10 steps.

-10 -

Consecutive Newton failures result in the algorithm reverting to the standard controller
since we no longer seem to have a good approximation to Ag,,. We limit our con-
troller to 10 steps so that larger stepsize increases are aliowed from time to time which

should preserve the desirable property of the standard controller.

We solved the stff set using DASSL with the three controllers and absolute and
relative error tolerances of 107%, k =2, 3, -+, 6 and @ =0.5. Table 4.1 contains the
number of time steps used (including successful and unsuccessful time steps) by each
of the three algorithms with tolerances of 0.0001. None of the algorithms was able to
solve F1 or F4 in 10000 time steps and only PI controller I was able to do so for F5
with this poor approx'xmation' to the iteration matrix. In aimost all cases the STAB
controller outperforms the standard controller. For problems A2, D3, and D5 where
the standard controller appears to outperform the STAB controller, the error produced
using the STAB controller was.at least a factor of three smaller. Also note the
anomalous behavior of the standard controlier on F3. PI contoller II is slightly better
than PI controller I. The STAB controller is more efficient than the PI controllers for
a significant number of the test problems. Although PI controller II appears to per-
form better than the STAB controller on the early problems A2, A3, and A4, the
STAB controller produced solutions with errors at least a factor of 10 smaller than PI
controller II. On problems D4 and D5 the STAB controller is more accurate by a fac-
tor of at least 2.5. The results at this tolerance were typical of the performance of the
control algorithms at the othex; tolerances.

In Table 4.2 we have listed the number of Jacobian evalu'ations. function evalua-
tions, and errors (in the /2 norm) for several cases. The STAB controller is clearly
more efficient in almost every case. For several problems it uses a factor of 6 fewer
Jacobian evaluations and less than half the number of function evaluations while

-11 -

obtaining a smaller error. Even in the cases where it uses more function evaluations
and time steps, such as D4, its solution is more accurate. PI controller II is generally
superior to PI controller 1. The PI controllers have, in general, larger errors and are

often between the STAB and standard controllers in the other measures.

Figure 4.1 presents the time steps used in the standard controller and the STAB
controller for 0 < ¢ < 8 with tolerances of 0.00001 and a = 0.5. Clearly the STAB
controller produces a smoother time step history than the standard controiler.

The only problem which presented any difficulty to DASSL with the standard
controller and o = 1 was F5. We solved F5 with the standard, the STAB, and the PI
controllers with @ = 1 and with both analytic and finite difference Jacobians for toler-
ances of 107, k =2, 3, ---, 6. The results shown in Table 4.3a (analytic Jacobians)
and Table 4.3b (finite-difference Jacobians) indicate that the STAB controller enhances
the performance of DASSL in both cases.

5. Conclusions.

When finite-difference approximations to the Jacobian are used in stiff solvers
such as DASSL, thrashing of the time step can occur because the accuracy stepsize
exceeds the stepsize required for convergence of the quasi-Newton iteration. After
damping the stff components at small stepsizes, such algorithms using the standard
stepsize control mechanism are able to take larger time steps based on the error in the
nonstff components. However, the stff components then become excited resulting in
drastic decreases in the stepsize. We analyzed a simple linear system to explain this
stepsize phenomena. To_smooth out the smaller stepsizes we tried modified versions
of two PI controllers proposed by Gustafsson et al. [6, 7, 8] for explicit Runge-Kutta
methods and implicit Runge-Kutta methods, respectively, which we reinterpreted to our

-12-

situation. A new controller was also proposed which attempts to find and use a ‘‘sta-
bility’’ stepsize. In comparing thg. four controllers on the suff test set with altered
Jacobian we found the new controller superior in almost every case. In fact for a
number of cases it offers dramatic improvement over the standard and the PI controll-

€rs.

Although most of the test results of §4 were somewhat artificial the new con-
woller does produce significantly better results especially in terms of the number of
Jacobian evaluations. This continued to be true even when analytic and finite
difference Jacobians were used for problem F5. Smoothing out the smailer stepsizes
also seems to be beneficial for the error. More testing needs to be done to verify the
usefulness of the algorithm in a wider s:tting, when used to solve partial differental
equations b.y the method-of-lines and differential-algebraic equations.

References

1. M. Berzins, R.M. Furzeland, and P.M. Dew, Software tools for time-dependent
differential equations, in Simulation and Optimization of Large Systems, AJ.
Osiadacz, Ed., Oxford University Press, (1988).

2. KE. Brenan, S.L. Campbell, and L.R. Petzoid, Numerical Solution of Initial-
Value Problems in Différential-Algebraic Equations, North Holland, New York,
1989.

3. JE. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, 1983.

4. W.H. Enright and T.E. Hull, Comparing numerical methods for the solution of
stiff systems of ODEs arising in chemistry, in Numerical Methods for Differential
Systems, Recent Developments in Algorithms, Softiware and Applications, L.
Lapidus and W E. Schiesser, Eds., Academic Press, New York, (1976), 45-66.

5. W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff
systems of ODEs, BIT 15 (1975), 10-48.

6. K. Gustafsson, M. Lundh, and G. Soderlind, A PI stepsize contol for the numeri-
" cal solu;ion of ordinary differential equations, BIT 28 (1988), 270-287.

7. K. Gusafsson, Control theoretic techniques for stepsize selection in explicit
Runge-Kutta methods, ACM Trans. Math. Soft. 17 (1991), 533-554.

9.

-13 -

K. Gustafsson, Control of error and convergence in ODE solvers, Ph.D. Thesis,
Department of Automatic Control, Lund Institute of Technology, Lund, Sweden,
1992.

A.C. Hindmarsi, ODEPACK, A systematized collection of ODE solvers, in
Scientific Computing, R.S. Stepleman et al., Eds., North Holland, Amsterdam,
(1983), 55-64.

-14.-

100 v v y—r y oy L e . S S A .
L) L §

‘- ' hd < ¢ L
“ e D‘ h
-

- -

12 1 _/ i
< 3 .
£ 3] & ‘I.'2 - 1
R x _ 1 r L p

T ey

sl Aoaaasaiab. 2 4

A

A

Al

‘r‘ L

1973 L - . s .) SN ; . N
'] 1 2 3 4 s [7 [] 1.02 1.84 1.06 1.00 . 0 1.92 1.9 1.% 1.9 2.00
Time Ties

— e dn

Figure 1.1. Time steps used in solving problem D2 from the stiff test set (5]
on 0<r S8 (left) and on 1.83Ss <198 (right denoted by A) using
DASSL with absolute and relative error tolerances of 0.01 and & = 0.5. Es-
timates of the stepsize based on ‘‘stability’’, h,, (right, denoted by B) and
accuracy, h,.. (right, denoted by C).

109
3
‘]
1. 3
a -
| 3
3
b
1573 !
. 3
H 1974
: z
1073 1
1970 %
|I‘7 !
t]
1,-8[.. ahendd bbb dbedebechdenisn ndemdbenddodbgrdbmbnleinabeedn
.23 10 .15 .28 .25 .30 .35 N
Tine

Figure 2.1. Time steps (A) and eror in y,o (B) in solving A4 from the
stiff test set [S] on 0 < ¢ £ 0.4 with DASSL with absolute and relative
error tolerances of 0.01 and a = 0.5. ‘

1
] -16 -

) Number of Time Steps

Suff Set e dad | STAB Pl P

Froblem | Controller | Controller | Controller I | Controller II
Al 367 17 286 343
A2 1546 1627 1990 984
A3 2446 1467 1946 746
A4 1469 1417 1201 805
Bl 1154 892 2578 2372
B2 110 106 120 106
B3 145 120 132 127
B4 | 27 184 360 328
BS 1633 | 1071 1413 1334
c1 347 238 153 200
c2 328 242 258 274
c3 322 152 257 303

- C4 348 281 420 383
Cs 272 233 393 358
DI 2099 621 1928 2023
D2 2767 1576 2408 1810
D3 376 449 358 364
D4 154 497 99 106
DS 144 182 131 107
D6 | 517 604 476 510
El 62 40 73 73
E2 156 156 871 768
E3 2121 1063 1973 1635
E4 1298 972 1339 1270
ES |. 19 19 19 19
2 159 135 112 138
F3 15002 152 1002 | 15002

Table 4.1. The number of time steps needed by DASSL with the stan-
dard controller, the STAB controller, and the PI controllers in solving
the problems of the stff test set [4, 5] with tolerances 0.0001 and
a=0.5. None of the three algorithms solved F1 or F4 in fewer than
10000 steps and only PI controller I was able to solve FS5 in fewer than
10000 steps. :

S A —— e e o o

-17 -

Stff Set TOL Standard STAB Pl Pl
Probiem Controller | Controller | Controller I | Controller II
3349 €97 2361 1030 JACS
1073 8649 6423 7182 3632 FNS
3595 2632 2918 1483 STEPS
A2 0.42x10°5 | 0.11x107% | 0.68x10°° | 0.14x10™* | /2 ERROR
8241 1077 2679 1117 JACS
10°6 22570 10237 10037 6218 FNS
8630 4110 3958 2742 STEPS
0.19x1075 | 0.54x10”7 | 0.25x10° | 046x10~° | /2 ERROR
6002 905 3666 492 JACS
16°5 15458 8554 11065 3079 FNS
4375 2933 4312 1375 STEPS
A3 0.36x102 | 043x10°3 | 035x102 | 0.62x102 | {2 ERROR
9901 1207 1906 2883 JACS
s | 25928 11786 10087 10608 FNS
10595 4594 4109 4384 STEPS
096x10~2 | 0.14x1073 | 020x102 | 0.21x1072 | /2 ERROR
5223 704 . 3092 2988 JACS
10°5 13226 6431 10014 8863 FNS
5317 2607 3788 3420 STEPS
D2 0.11x107! | 0.12x102 | 0.12x10°! | 0.20x10°! | /2 ERROR
9123 967 4519 7224 JACS
10°6 24408 9806 18768 20259 FNS
9403 3761 6762 7554 STEPS
028x1072 | 029x10°3 | 044x102 | 0.51x10~2 | {2 ERROR
488 434 1029 311 JACS
105 1129 3520 2500 824 FNS
506 1538 1066 341 STEPS
D4 0.19x10°3 | 0.12x1073 | 0.64x10°3 | 0.10x10°2 | /2 ERROR
1998 589 209 166 JACS
10°6 4859 "5353 1058 856 FNS
2129 2330 482 389 STEPS
0.18x10°3 | 0.35x10* | 030x10"3 | 0.30x10~> | /2 ERROR
5403 521 3393 4599 JACS
E3 10°6 14102 5905 12103 12439 FNS
5609 2120 4293 4873 STEPS
021x10* | 0.28x10~* | 0.31x10"® | 023x10"3 | /2 ERROR

Table 4.2. The number of Jacobian evaluations (JACS), function evaluations.
(FNS), time steps (STEPS), and error in the /2 norm for selected probiems
from the stff test set 5] using DASSL with standard, STAB, and PI con-

trollers.

r -
- 18 -
Analytic
Jacobian
ToL Standard STAB PI PI
Controller { Controller | Controller I | Contoller I
1072 49 28 51 49 JACS
82 83 86 82 FNS
49 44 52 49 STEPS
39 51 84 39 JACS
1073 7 170 142 71 FNS
39 87 85 39 STEPS
356 100 313 421 JACS
1074 637 314 545 687 FNS
370 | 14§ 329 430 STEPS
2575 119 2137 1175 JACS
10°3 4138 435 3495 2035 FNS
2604 195 2180 1200 STEPS
9296 3547 12576 - 12211 JACS
1076 14798 12166 20006 19950 FNS
9339 5675 12710 12326 STEPS

Table 4.3a. The number of Jacobian evaluations (JACS), function evalua-
tions (FNS), and time steps (STEPS) needed to solve problem F5 from the

stff test set with DASSL and analytic Jacobians using the standard, STAB, -
and PI controllers. ‘

-19-

il SR

Finite-Difference
Jacobian
TOL Standard STAB PI Pl
Controller | Controller | Controller I | Controller II
1074 41 34 43 35 JACS
202 226 248 202 FNS
35 47 a4 35 STEPS
74 48 39 74 JACS
1073 418 346 230 418 FNS
74 74 40 74 STEPS
411 146 38 253 JACS
107 2328 1043 261 1451 FNS
425 197 54 262 STEPS
2805 897 3202 1390 JACS
1075 15783 6764 17954 7923 FNS
2834 1443 3245 1423 STEPS
2683 1383 4655 6645 JACS
106 15160 10362 26317 37297 FNS
2726 2269 4789 6760 STEPS

Table 4.3b. The number of Jacobian evaluations (JACS), function evalua-
tions (FNS), and time steps (STEPS) needed to solve problem F5 from the
stff test set with DASSL and finite-difference Jacobians using the standard,

STAB, and PI controllers.

=20 -

19 197¢ r
_ s
w? 107§
E
1..‘ N . s L P N N I 1.—‘ N A i S S
3 1 2 3 4 5] ? 8 [3 2 4 S [} 7)
Tise Tiae

Figure 4.1. Time steps used in solving problem D2 from the stff test set (4]
on 0 <t < 8 using DASSL with the standard controller (left) and the STAB
conuollex(') (Sright) and with absolute and relative error tolerances of 0.00001
and a = 0.5.

