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Abswact. In solving stiff system of omuinary differential equations using BDF

methods, Jacobians needed for quasi-Newon iation are frequently computed using

finite differences. Round-off errors in the finitedifference approximation can lead to

Newtn failures forcing the code to choose its time steps based on "stability" rather

than accuracy cousidertons When standard steuize control is used the code can

expeience thrashing which increases the total number of time steps, Jacobian evalua-

dons, and function evaluations. In this paper we investigate this situation, explaining

some surprnsng time step selection behavior produced by the standard control mechan-

is. A new control mechanism is proposed which anempts to find and use a "stabil-

ity" stepusi A comparison of the new strategy with the standard strategy and with

two PI controllers introduced earle i made usig the stiff ten set.

L•

In solving stiff system of ordinary differential equations using BDF methods,

Jacobians which are needed for the quasi-Newton iteration are often approximated
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using finvi differences 1, 2, 91. Smale siepsizes than allowed by accuracy con-

siderations may be needed to guarantee c nvergence of the Newton iteration due to

round-off error in the finite-difference Jacobians. The standard stepsize control

mechanism, such as that used in DASSL [2], is

ha = (TOLIEST.=-)'h,._, (1.1)

where TOL is the user-prescribed toleance, EST.-, is the local euror estimate com-

puted at time t.-I, and p is the method order. However, (1.1) is based solely on accu-

racy coniderations. This can lead to highly oscillatMry stepsize behavior (see Figure

1.1)..

Here we apply DASSL to the stiff test set [4, 51 with an approximate Jacobian to

simulate the effects of an inaccurate finite difference Jacobian. The stepsize behavior

shown in Figure 1. 1 when DASSL is applied to problem D2 is typical. After periods

of taking relatively small stepsizes the algorithm suddenly increases the stepsize by

sevrl orders of magnitude. It remains at this larger stepsize for several time steps,

and then deceases the stepsize dram cally whereupon the process begins again.

Although most of the time steps taken by DASSL are of the smaller size, the solution

on most of the time interval is found using the larger time steps.

In 12 we analyze the behavior of DASSL on a simple linear system which leads

to an understanding of the stepsize behavior discussed above. We also present a

modifiation of the time step selection strategy used in DASSL based on the quasi-

Newton algorithm of Dennis and Schnabel [3). The revised mategy prevents the

larger "anomalous" steps but leads to a much larger number of time steps with no

significant'improvement in accuracy. The stepze controller of Gustafsson et aL [6],

refenud to henceforth as the P1 ctroller 1, is presented in §3 with a new interpreta-

dan. This controller was developed for explicit time integrators. Gustafsson [81
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dveloped a PI controller (referred to herein as PI controller Hi) for implicit methods.

We also discuss this controller in V3. In §4 we present a new control strategy and

compare it with the standard stepsize controller and the PI controllers on the stiff test

set (4, 51. Brief conclusions are given in §5.

2. Analysi of a siff systm.

Consider first the standard test problem

y'=Xy, y(O)=1 (2.1)

where Re (.) < 0. Applying the backward-Euler method together with quasi-Newton

iteration yields

(1 -aXh)Ay.+ 1 = -y.'- (I - Xh) + ys, 1 • 1. (2.2)

Typically, if an analytic Jacobian is used at = 1. To model the effects of an inaccurate

matrix approximation, we choose a different from 1. After k+l iterations of the

quasi-Newton method we obtain

+1 = yl (a - I)k+1--h)k+ l Y_ (a - 1)
(I - WtA)k+1 I - oL3,h I - ak3h

..+ (a- I t (-Xh )k 23
(I _ ) ](.)k

where y°÷ is the predicted solution. If IU(a - 1)/(1 - WAh)I < 1 the quasi-Newton

iterates converge to the the true solution where the rate of convergence, p. is given by

i. tl'+, - y, /(I - Lh )I
- yl(l - Jz). = iMh(a - 1)/(1 - a.h)I. (2.4)

IyI•+I -y,/l-hl

In DASSL (2] the quasi-Newton iteration is said to converge if

".,-y* Y.t+l I < 0.33 (2.5a)
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where n is an ap imation f the rate p given by

S= (Iynu+t? - YSt..II / y ,YI - Ye0÷ I )1/t. (2.5b)

Thus the number of iteraions before convergence is determuied by both the accuracy

of the predictr and the rawe of coMvergence A.

For systems of equations, the analysis is complicated by the norm used.

Although DASSL uses a weiusdh rms norm, herin we consider the 12 norm which

displays the same type of behavio. Consider the diagonal system

y' = Dy, y(O) = 1, (2.6)

where D = diag(XQIX,,...,) with Re (A,) < 0, i = 1, 2, ---, m. After two iterations

the rawe of convergence is given by

[(pI (y°÷?..1 - y'../(l - ).1h))& + -- + (pyo÷•, - yM•/(I - )
[(yR +,. XM(2.7)

[ ÷.1 - y.. 1/(l - +.11))2 + ... + (yo y (1 - (2h)).27

where the second subscript indicates the component of the vector y and pi is given by

(2.4) with the appropriate ;.i. Unlike (2.1) the rate of convergence of (2.7) is not con-

stant, but is instead determined by the stiffness (through pi) and the accuracy of the

predictor y0'°. -y ,I/(I - 4 h)). Thus if the stiff components are sufficiently more

accurately predicted than the nonstiff components (which is likely since the stiff com-

ponents change little from step-to-step) the rate of convergence will be controlled by

the rate of convergence for the nonstiff components which have smaller rate constants.

The stepsize controller may then wish to increase the stepsize (which may be low for

the nonstiff components) until the errors in the stiff components are excited whereupon

the stepsize undergoes a drastic reduction since the rate is now being determined by

the stiff components.

That this actually happens can be seen by applying DASSL to problem A4 of the
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stiff tosn et [5] which has ki = -. 5, i = t, 2,*.., 10. We solved this problem on

0 < r : 0.4 with absolute and relUive ar toolernces of 0.01 and wth a = 0.5. Fig-

'we 2.1 shows the time steps and the eror in the stiffest component over the interval.

When the stiff component becomes sufficiently accurate (after very ;.mall time steps)

the time step increases rapidly, reaching a value conrolled by the error in nonstiff

c e Such large time steps excite error in the stiff components until the rate

of convergence becomes dominated by the stiff components and the ume step is drasti-

cally reduced, beginning the process again. Such behavior is also seen in non-diagonal

systems as shown in Figure 1. 1.

The question arises, is it desirable to permit the large stepsizes. We observed that

on some successful steps at the larger stepsizes jg(t,Y,Y')U increased where Y is the

BDF solution when we are solving

g(ty')= 0. (2.8)

One approach we implemented to correct this problem was to insist that jg(t,Y,Y')H

decrease before a step was converged. Specifically we required that on each Newton

step

Ile(Y + A])DO2 - Hg(Y)0 2 ! 0.05 (2.9)
--281g(Y)fP

(cf. Dennis and Schnabel [3]) where AY is the quasi-Newton direction. Although

using (2.9) did reduce the number and extent of the large stepsize regions, more time

steps were used with no significant imptovemen in accuracy. Thus, it seems reason-

"able to allow the large steps and subsequently we do not use (2.9).

3. PI controL

As was seen in §2 the standard stepsize control mechanism (1.1) leads to oscilla-
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try time steps. The difficulty is finding a way to smooth out the selection of small

tme sas without eliminaring the selection of the large tume steps. One possible

appromch is to use PI controller I introduced by Gustafsson et aL, [6, 7, 8] for explicit

methods or PI controller U of Gustafsson [81 for implicit methods. In this section we

present a new inuerreaton of these strategies along with some modifications for use

in our situation.

P1 controller I can be written in the form (with some modifications for maximum

rate of stepsize increase and decrease) [71

h= (TOLlEST,,_)"(ET. 2lEST.- )"Ph.h, (3.1)

where EST,_ 2 and EST,,_ are estimates of the local mtncation error at time tn-2 and

t,.t, respectively, and K! and Kp are parameters whose values depend only on

whether a step is successful or not. Values for K1 and Kp are given in [6] and [7]

although they differ slightly. 'For our purposes it is important to note first that in the

case of a rejected step K1 = lip and Kp = 0. Thus, when a step is rejected the stan-

dad controller is used. Second, in the case of an accepted step K1 + Kp lip.

We can rewrite (3.1) as

h, = (EST,,_21TOLf)(TOLIES.TF,,_I)(Kp (3.2)

Assuming K1 + Kp = lip and using

hO.,,1 = (TOLIEST.._1 )1 p h.,_I (3.3a)

we obtain

h, = (EST,,_2/TOL) ha.,_l (3.3b)

where hwcx.,I represents the stepsize based on the local truncation error that could

have been taken at time t,,_2. We note that hA.._ also represents the stepsize based
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on accuracy that is typically used for the next time step [ Now, since (3.3a)

holds at time 4-2 we obtain

h. = (h._21/h.A._2)"ha...n_. (3.4)

where KG = Kp/(Kp + K,). Thus the new stepsize is chosen to be the stepsize based

on accuracy multiplied by a factor that represents the ratio of the actual stepsize to

accuracy s i we could have chosen on the previous step. If on the last step the

accuracy and actual tme step were the same, the accuracy stepsize is used on the

present step. Otherwise (the previous stepsize can never be larger than the previous

stepsize based on accuracy), if the previous stepsize was much smaller than the previ-

ous stepsize based on accuracy only a fraction of the accuracy stepsize is used.

A similar analysis shows that PI controller II has the form

hn = (h._ 2/hacjA._2)l(h4 lhn_2)ha•.ngl. (3.5)

if two or more successive accepted time steps have been taken (otherwise the standard

controller is used). Now the accuracy time step h.a.-I is multiplied by an additional

factor representing the ratio of successive accepted time steps.

The version of the PI algorithms we used in our testing consists of three cases.

1: If the present step is rejected due to the error test. set h = hd.n-., KG = Kw

2: If the present step is rejected due to Newton divergence, set h,, = h,,114,

KG = KH,

3: If the present step is accepted update KG = max(fac*KG ,LK ) if the previous step

was not a Newton f&=ume. For PI controller I set

h min(l,(hs_2/hacc.a_2)lKa)ho.c .l and set

hn = min(1,(hn_2/ha..._2)f"(h.i./hn_2 ))haccn_! for PI controller 11.
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where fac = 0.9, Kw = 0.5, and KmN = 0.7 are fixed parameters. This differs slightly

titn the apprach taken by Gustafuan [6, 81, since we allow KG to vary. We found

varying KG reuted in slightly bet performance over fixed KG.

Gustafsson (8) offers some additional ideas for Pl controller II. He has a stepsize

algorithm for the case of successive stepsize failure due to error control. In our situa-

tion, however, we encounter successive stepsize failure due to divergence in Newton's

method so we did not incorporate this heuristic in our algorithm. In certain cases of

Newton divergence he computes a second, "stability" stepsize which is based on the

size of the norm of the Jacobian. Since we are also interested in solving differential-

algebraic equations, we are very reluctant to use a scale-dependent quantity in our

algorithm so we have neglected this feature.

4. A new controller.

For reasons that will become clear from the examples in this section neither the

standard controller nor the PI controllers possess the desired stepsize behavior. Using

the analysis from §2 we present a new controller which we refer to as the STAB con-

troller. We then present a numerical comparison of the the standard, PI, and STAB

controllers applied to the stiff test set [4, 5].

From our observations in §2 we desire a controller that interferes with the stan-

dad controller as little as possible. Our goal was to smooth out the time step selec-

tion strategy only when the code is thrashing due to Newton convergence difficulties.

When the code is able to use larger stepsizes because of a good predictor for the stiff

comnIFents, we want to let it do this because this is where it makes most of its pro-

gress. Additionally, as indicated in §2, no accuracy is lost in accepting the large steps.
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We begin with the observation that there are two important time step sizes, an

accuracy size h,, and a stability size h,,, where here, stability refers to the conver-

gence of Newton's method. Normally h•., is smaller than h, for BDF methods but

when the Jacobian is poorly approximated the reverse can occur. In the graph on the

right side of Figure 1.1, the peaks in curve A indicate stepsizes chosen by accuracy but

which caused the quasi-Newton iteration to diverge. Thus the best guess at hr,.c is

represented by the peaks, although it may be quite a bit larger (curve C on the right,

Figure 1.1). After each peak two successful, smaller steps are taken. The value hm,

is approximated by curve B in Figure 1.1. Our controller seeks to detect when hsw, is

smaller than hWc and then makes two attempts at finding hsb. The algorithm then

limits the time step size for 10 steps to O.87h=,,b after which it reverts to the standard

controller. The value 0.87 is chosen to reduce the number of step failures and to

reduce the number of Newton iterates required for convergence. If the time step used

was hs,, Newton make take several steps to converge due to a larger rate and a

poorer predictor.

The new controller is invoked only when the Newton iteration fails to converge

(as long as the convergence is not due to a singular Jacobian), i.e., when the criteria

(2.5a) fails and when the last successful time step hn.- is smaller than the first failed

(Newton) step h,. Two attempts are made at finding hb,. After the first Newton

failure, if hn/ 1Ihn 2! 0.8, hn = 0.87hn.- and the time step is not allowed to become

larger than this value for 10 time steps (of course it can become smaller due to subse-

quent Newton failures or error failure). If hn11hn < 0.8 then h. = 0.8hn_1 + 0.2h,.

Now, however, the stepsize is allowed to increase, but at a reduced maximum rate of

1.18. If Newton fails for a second (but not second consecutive) time within the 10

step limit, h, = 0.87hn-. and no increase above this value is allowed for 10 steps.
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Consecutive Newton failures result in the algorithm reverting to the standard controller

since we no longer seem to have a good approximation to hr,*. We limit our con-

troller to 10 steps so that larger stepsize increases are allowed from time to time which

should preserve the desirable property of the standard controller.

We solved the stiff set using DASSL with the three controllers and absolute and

relative error tolerances of 10t, k = 2, 3, ... , 6 and a = 0.5. Table 4.1 contains the

number of time steps used (including successful and unsuccessful time steps) by each

of the three algorithms with tolerances of 0.0001. None of the algorithms was able to

solve Fl or F4 in 10000 time steps and only PI controller I was able to do so for F5

with this poor approximation to the iteration matrix. In almost all cases the STAB

controller outperforms the standard controller. For problems A2, D3, and D5 where

the standard controller appears to outperform the STAB controller, the error produced

using the STAB controller was. at least a factor of three smaller. Also note the

anomalous behavior of the standard controller on F3. PI controller II is slightly better

than PI controller I. The STAB controller is more efficient than the PI controllers for

a significant number of the test problems. Although PI controller II appears to per-

form better than the STAB controller on the early problems A2, A3, and A4, the

STAB controller produced solutions with errors at least a factor of 10 smaller than PI

controller H. On problems D4 and D5 the STAB controller is more accurate by a fac-

tor of at least 2.5. The results at this tolerance were typical of the performance of the

control algorithms at the other tolerances.

In Table 4.2 we have listed the number of Jacobian evaluations, function evalua-

tions, and errors (in the 12 norm) for several cases. The STAB controller is clearly

mm efficient in almost every case. For several problems it uses a factor of 6 fewer

Jacobian evaluations and less than half the number of function evaluations while
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obtaining a smaller error. Even in the cases where it uses more function evaluations

and time steps, such as D4, its solution is more accurate. PI controller UI is generally

superior to Pl controller 1. The PI controllers have, in general, larger errors and are

often between the STAB and standard controllers in the other measures.

Figure 4.1 presents the time steps used in the standard controller and the STAB

controller for 0 < t < 8 with tolerances of 0.00001 and a = 0.5. Clearly the STAB

controller produces a smoother time step history than the standard controller.

The only problem which presented any difficulty to DASSL with the standard

controller and a = 1 was F5. We solved F5 with the standard, the STAB, and the PI

controllers with a = I and with both analytic and finite difference Jacobians for toler-

ances of 10"*, k = 2, 3, -", 6. The results shown in Table 4.3a (analytic Jacobians)

and Table 4.3b (finite-difference Jacobians) indicate that the STAB controller enhances

the performance of DASSL in both cases.

5. Conclusions.

When finite-difference approximations to the Jacobian are used in stiff solvers

such as DASSL, thrashing of the time step can occur because the accuracy stepsize

exceeds the stepsize required for convergence of the quasi-Newton iteration. After

damping the stiff components at small stepsizes, such algorithms using the standard

stepsize control mechanism are able to take larger time steps based on the error in the

nonstiff components. However, the stiff components then become excited resulting in

drastic decreases in the stepsize. We analyzed a simple linear system to explain this

stepsize phenomena. To-smooth out the smaller stepsizes we tried modified versions

of two PI controllers proposed by Gustafsson et al. [6, 7, 81 for explicit Runge-Kutta

methods and implicit Runge-Kutta methods, respectively, which we reinterpreted to our
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situation. A new controller was also proposed which attempts to find and use a "sta-

bility" stepsize. In comparing the four controilers on the stiff test set with altered

Jacobian we found the new controller superior in almost every case. In fact for a

number of cases it offers dramatic improvement over the standard and the Pl controll-

era

Although most of the test results of §4 were somewhat artificial the new con-

troller does produce significantly better results especially in terms of the number of

Jacobian evaluations. This continued to be true even when analytic and finite

difference Jacobians were used for problem F5. Smoothing out the smaller stepsizes

also seems to be beneficial for the error. More testing needs to be done to verify the

usefulness of the algorithm in a wider s:tting, when used to solve partial differential

equations by the method-of-lines and differential-algebraic equations.
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accuracy, hac (right, denoted by C).
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Stiff Set __Number 
of Time Steps

Standard STAB P1 R
Pioblem COG l CotrUoiler Controller I CMonroller II

Al 367 217 286 343
A2 1546 1627 1990 984
A3 2446 1467 1946 746
A4 1469 1417 1201 805
BI 1154 892 2578 2372
B2 110 106 120 106
B3 145 120 132 127
B4 277 184 360 328
B5 1633 1071 1413 1334
Cl 347 238 153 200
C2 328 242 258 274
C3 322 152 257 303
C4 348 281 420 383
C5 272 233' 393 358
DI 2099 621 1928 2023
D2 2767 1576 2408 1810
D3 376 449 358 364
14 154 497 99 106
D5 144 182 131 107
D6 517 604 476 510
El 62 40 73 73
E2 156 156 871 768
E3 2121 1063 1973 1635
E4 1298 972 1339 1270
E5 19 19 19 19
F2 159 135 112 138
F3 15002 152 15002 15002

Table 4.1. The number of time steps needed by DASSL with the stan-
dard controller, the STAB controer, and the PI controllers in solvmg
the problems of the stiff test set [4, 5] with tolerances 0.0001 and
at = 0.5. None of the three algorithms solved Fl or F4 in fewer than
10000 steps and only Pl controller I was able to solve 15 in fewer than
10000 steps.
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Stiff set Standard STAB 'PI PI
Probim Contoller Controller Controller I Controller II

3349 697 261 1030 JACS
1(r5  8649 6423 7182 3632 FNS

3595 2632 2918 1483 STEPS
0.42x10- 5  0.11x10-6 0.68x10-5  0.14 x 10-4 12 ERROR

8241 1077 2679 1117 JACS
10.6 22570' 10237 10037 6218 FNS

8630 4110 3958 2742 STEPS
_0.19 x1(0 5  0.54x10-7  o.25 x 1 5  0.46x 1(r 5  12 ERROR

6002 905 3666 492 JACS
105 15458 8554 11065 3079 FNS

4375 2933 4312 1375 STEPS
0.36 x 10-2  0.43 x 10- 3  0.35 10-2  0.62 X 10-2 12 ERROR

9901 1207 1906 2883 JACS
10-6 25928 11786 10087 10608 FNS

10595 4594 4109 4384 STEPS

0.96x 10-3 0.14x1(r 3  0.20x 10-2 0.21 x 10-2 12 ERROR

5223 704 3092 2988 JACS

10_5 13226 6431 10014 8863 FNS
5377 2607 3788 3420 STEPS

D2 - .llx10- 0.12x10-2  0.12x 10-1 0.20x 10-' 12 ERROR

9123 967 4519 7224 JACS
10-6 24408 9806 18768 20259 FNS

9403 3761 6762 7554 STEPS

0.28 x 10- 2  0.29 x 10- 3  0.44 x 10-2  0.51 x 10-2  12 ERROR
488 434 1029 311 JACS

0- 1129 3520 2500 824 FNS
506 1538 1066 341 STEPS

D4 0.19 x 10-3  0.12x 10-.3 0.64x 10- 3  0.10 Xl0- 2  12 ERROR
1998 589 209 166 JACS
4859 5353 1058 856 FNS2129 2330 482 389 STEPS

0.18x10-3  0.35x 10-4 0.30x 10-3 0.30x 10-3 12 ERROR

5403 521 3393 4599 JACS
E3 10_6 14102 5905 12103 12439 FNS

5609 2120 4293 4873 STEPS
0.21x 10-4 0.28x10-4 0.31x10-3  0.23x10- 3  12 ERROR

Table 4.2. The number of Jacobian evaluations (JACS), function evaluatim.
(FNS), time steps (STEPS), and error in the 12 nogM for selected problems
fhm the stiff test set (5] using DASSL with standad, STAB, and PI con-
Uolcn.
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Analtic
___O_____Jacobian ,________

TOL Stndard STAB PI PI

Controller ContoUllr ConmroUlr I Controller 1U
10-z 49 28 51 49 JACS

82 83 86 82 FNS
49 44 52 49 STEPS
39 51 84 39 JACS

10-3 71 170 142 71 FNS
39 87 85 39 STiP

356 100 313 421 JACS
10- 637 314 545 687 FNS

370 145 329 430 STEPS
2575 119 2137 1175 JACS

10-5 4138 435 3495 2035 FNS
2604 195 2180 1200 STEPS
9296 3547 12576 12211 JACS

10-6 14798 12166 20006 19950 FNS
9339 5675 12710 12326 STEPS

Table 4.3a. The number of Jacobian evaluations (JACS), function evalua-
dons (FNS), and time steps (STEPS) needed to solve problem F5 from the
stiff test set with DASSL and analytic Jacobians using the standard, STAB,
and P1 controllers.
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Fmini-Difference

TOL Jacobian _

Standard STAB PI PI
Conuoller Conuroller Conuolier I Conuoller II

0" 41 34 43 35 JACS
202 226 248 202 FNS
35 47 44 35 STEPS
74 48 39 74 JACS

10-3 418 346 230 418 FNS
74 74 40 74 STEPS

411 146 38 253 JACS
104 2328 1043 261 1451 FNS

425 197 54 262 STEPS
2805 897 3202 1390 JACS

10-5 15783 6764 17954 7923 FNS
2834 1443 3245 1423 STEPS
2683 1383 4655 6645 JACS

10-6 15160 10362 26317 37297 FNS
2726 2269 4789 6760 STEPS

Table 4.3b. The number of Jacobian evaluations (JACS), function evalua-
iow (FNS), and time steps (STEPS) needed to solve problem F5 from the
stiff test set with DASSL and finite-daiffernce Jacobians using the standard,
STAB, and P1 conrollers.
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Fige 4.1. T7me steps used in solving prblem D2 from the stiff test set [41
on 0 < t S 8 using DASSL with the standa conrller (Ieft) and the STAB
cantoller (right) and with absolute and relative error tolerances of 0.00001
and z 0.5.


