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I. INTRODUCTION AND PORMULATION

An important application of the wing-body juncture problem is in
the study of the horseshoe vortex which occurs in the vicinity of
a wing/strut-wall intersection for instance. Numerous flow
visualization studies (Thwaites 1960, Baker 1979, Barber 1978,
Thomas 1987) have shown that the horseshoe vortex system consists
of a three-dimensional boundary-layer separation in front of the
wing/strut followed by a vortex flow which wraps around the
structure. This vortical flow is characterized by three-
dimensionality, unsteadiness, and large Reynolds number but
having viscous effects which are crucial to the flow evolution.
Such flows exist in many situations. For example, horseshoe
vortex flow occurs near the junction of an airplane wing with the
fuselage (Thwaites 1960) or the junction of plate and support in
a plate heat exchanger. Another example is present in axial
turbomachinery (Barber 1978) where boundary layers which develop
on the annular surfaces of the axial flow passage encounter rows
of stationary and rotating blades. The horseshoe vortical flow
is of engineering interest because it can lead to flow
degradation, high wall shear stresses, and high local heat
transfer rates. It also plays a role in the origin of three-
dimensional corner flows.

Three-dimensional fluid motion past a wing-body juncture or
the related problem of corner flow is of fundamental importance
in fluid mechanics as noted above. 1In all of these cases, the

concern is with both the local and global scales of the viscous




forces produced by the body as well as with any significant

secondary flows which may be set up. It is hoped that an
understanding of these types of flows and their scales will
provide us with a more complete understanding of complicated
three-dimensional, high Reynolds number flows. To this end, the
concepts of interaction theory have been utilized with the
ultimate goal of elucidating the major effects of viscosity and
heat transfer on the local flowfield near a wing-body juncture
for subsonic mainstream flows.

Smith & Gajjar (1984) were the first to consider the problem
of a steady, incompressible, laminar flow past a juncture made up
of a localized small-scale thin wing protruding from a locally
flat surface when the Reynolds number, Re, is large, using the
triple-deck theory of viscous-inviscid interactions. A schematic
of the geometry considered by these authors and that to be
considered in this report is shown in Figure 1. Smith & Gajjar’s
theory was developed to accommodate small wings of finite span
which scale with the streamwise and spanwise triple-deck length
scales. However, as was determined as part of this current
research effort, Smith & Gajjar’s theory is not generally
applicable to all suitably scaled wing shapes, as will be
discussed below. The incident boundary layer on the body surface
is assumed to be driven by a locally uniform external flow and it
is taken to be well developed, attached, and planar in character.
Under these conditions an interaction between the body surface
flow and the wing is established which presumably has the triple-
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deck structure wherein the motion past the thin wing provokes on
the body surface an unknown pressure force which interacts with
the unknown displacement thickness there. Due to this
interaction, the boundary layer on the body surface becomes
three~dimensional and exhibits upstream influence. Furthermore,
a nonlinear interaction is possible if the slope of the thin wing
in the interaction region is of the order Re™/‘.

As shown by Smith & Gajjar (1984) the fundamental problem,
as sketched in Figure 1, can be reduced to a consideration of the
following boundary-value problem for an incompressible steady
flow in terms of suitably scaled velocity components (U,V,W),
pressure, P(X,Y), and displacement thickness function, §(X,Y), in
the (X,Y,2) directions, respectively. More complete details of
the scaling laws and the triple-deck nature of the flowfield
structure can be found in Lee (1994). The fundamental governing
equations appropriate for the viscous layer in the usual triple-
deck theory are given by
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In addition, the following boundary conditions apply
UsV=W=0 onz=0, (4)
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U=-=2-8((X,Y), V>0 a8 2 ~ =, (5)
(U,v,¥,P) - (Y¥,0,0,0) as |X| = =, (6)
and, and according to Smith & Gajjar (1984), the symmetry
condition
V=0 onyY = 0. (7)
The problem is closed mathematically by applying the
pressure-displacement thickness interaction law, viz,
PED = -1 i(e)(x i
®
Ll D em—2
' S T 20S
for two-dimensional wings, or
PD = 1 [~ 28 0B
3 VX-EP+12+ 8 o

1 (== P dtdn
o (f.ﬂz
-2 & X -n

for three~dimensional wings, where hf(X) is the scaled local two-

dimensional wing surface shape, while the three-dimensional wing
surface is defined by hg(X,Y). We should note that it is the
wing shape which generates the forcing which in turn generates
the interaction and three-dimensionality in the body’s boundary
layer. This forcing comes from outside the boundary layer itself
and is, therefore, quite different from the usual three-
dimensional interactive flow produced by a small hump in a
boundary-layer flow.

%
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In general the problem posed in equations (1) - (7) and (8)

or (9) above is nonlinear and thus requires a numerical
treatment. However, Smith & Gajjar (1984) and Lee (1994) have
considered linearized solutions of these equations, using Fourier
transform methods, valid for small values of the wing thickness
parameter h, and several choices for the wing shapes f(X) and
g(Xx,Y).

These linearized results always showed two maximum local
deficits occurring in the streamwise surface shear stress on the
body, just ahead of and beyond the front of the wing, on the axis
of symmetry, which suggests that a regular separation or flow
reversal would tend to occur there first, when the flow is
sufficiently nonlinear. This result, coupled with the
corresponding spanwise surface shear stress patterns, led to
qualitative agreement with experimental observations, as noted by
Smith & Gajjar (1984), of a separation line starting upstream of
the wing and bending around it, and of separation downstreanm.
Furthermore, the secondary flow patterns found from the
linearized analysis tend to tie in with those found in
experiments also.

In view of the encouraging results of the linearized theory,
in this research effort numerical solutions of the nonlinear
boundary-value problem defined by equations (1) - (7), and (8) or
(9) have been found for several wing shapes with the goal of
determining, among other things, the conditions for boundary-
layer separation. We have also extended the theory to include the

e
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effects of temperature on the flow when the mainstream is
subsonic in character. Referring to Lee (1994) for details, it
can be shown that the energy equation in suitably scaled
variables for the nondimensional temperature distribution, T, in
the viscous sublayer is given by

vT ol ol _ 1 &T (10)

X oY adZ Praz?
along with the boundary conditions

TX,YZ) ~Z as |X]|,|Y|~ =
TX,Y0) =0, T(X,Y,2) ~Z - 3(X,Y) for Z ~ =

when we can assume that the wall temperature and Prandtl number,

an

Pr, are constants. It should also be noted that the above system

of equations is valid for amy subsonic flow since all parameters

related to the compressibility effects of the flow can be scaled
out in the triple-deck formulation of the problem (see Lee 1994).
In obtaining numerical solutions to the linearized form of
the above equations for h << 1, Smith & Gajjar (1984) introduced
the concept of an "effective™ hump shape to transform the
linearized physical wing-body juncture problem into an equivalent
three~dimensional hump-like problem using an appropriate
transformation relating the displacement thickness, interactive
pressure and the wing shape. This change allowed for rather
simple computations to be done using a finite- Fourier transform
method to convert the closed-form solutions for the pressure,

displacement thickness and wall shear stresses in spectral space

- - - - - - s A




to equivalent functions in physical space. Lee (1994) confirmed
these results and also computed the wall heat transfer
distribution functions.

In our study of the linearized version of this problem it
was determined that the theory developed by Smith & Gajjar is not
generally applicable for the airfoils they used in their paper
due to the imposition of symmetry conditions on the pressure and
the spanwise velocity. These conditions are inconsistent with the
physical formulation of the wing-body problem except for "wing"
shapes, f(X), that are composed of linear elements, such as in a
diamond shaped airfoil. This restriction places rzther serious
limits on the types of airfoils for which this theory is useful.
It should be noted that attempts at generalizing this theory to
include a broader class of wing shapes was not successful.

Of primary concern in this research effort was the numerical
solution of the nonlinear governing equations (1) - (11) for
acceptable wing shapes and order-one values of the wing shape
parameter h. Two different approaches for the numerical scheme
were considered. In one approach, the finite-difference method
for three-dimensional interacting flows developed by Bodonyi &
Duck (1988) wherein the pressure-displacement law, equation (8)
or (9), is replaced by a numerical solution of the upper-deck
boundary-value problem which is solved simultaneously, following
the ideas originally proposed by Veldman (1979), along with the
finite-difference form of equations (1) - (3). In previous
studies this approach has proved to be quite useful in computing
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three-dinensional nonlinear interacting flows. In the second
approach the solution of the system (1) - (3) along with a
numerical implementation of the Cauchy-Hilbert integral, (8) or
(9), using Smith’s approach (1991) to discretize the pressure-
displacement, law was determined.

In either approach the above set of equations is elliptic in
the pressure field and therefore requires a modification of the
multi-sweep forward-marching methods which were successfully
developed for 2-D problems. As noted by Smith (1983) this
ellipticity causes an explosive 3-D free interaction in any
forward-marching procedure unless treated properly. To overcome
these difficulties, a skewed-shear method is used to cast the
problem in a quasi-two-dimensional form (see Bodonyi & Duck 1988
and Lee 1994) while at the same time capturing the elliptic
nature of the inverse 3-D boundary-layer problem. In terms of
these new variables, a second-order finite-difference method was
developed for the governing equations and numerical solutions of
the finite~difference equations were computed for a variety of
grid sizes and several choicss for the wing shape. The
computations are involved, requiring the use of the CRAY YMP/864
supercomputer at the Ohio Supercomputer Center. Results of the
numerical computations are given in the following section.

o
i




II. NUMERICAL RESULTS

After considerable study, it was determined that the second
numerical approach discussed above resulted in the most accurate
solutions of the qovernihq equations. Therefore, the numerical
results to be presented below will be taken from that approach.
As noted abova, for the theory to be strictly applicable, the
two-diﬁensional wing shape, f(X), must be composed of linear
elements. Thus we shall consider the diamond-shaped airfoeil
defined by

ﬂx)'lxx for0<X<05 (12)

- Jor05<X<1

The grid sizes used in all cases have 101 points for -4.5 < X <
5.5, 31 points for 0 < Y < 3.75 and 41 points for 0 < Z < 6 in
the streamnwise, spanwise and normal directions, respectively.
The local convergence criterion for the interactive pressure and
the global convergence criterion for the velocity components are
10"* and 10~°, respectively.

A surface plot of the effective hump shape generated by the
diamond shaped airfoil is given in Figure 2. It is clearly
evident that this “effective" hump shape is very peaked near Y=0
and X = '1/2. This sharp peak places severe limitations on what
grid sizes are needed to adequately resolve the flow structure in
this vicinity, and it is a primary reason that numerical
solutions could be found only for rather limited ranges of the
parameters involved. This situation is quite different than in
the "regular" 3-D hump problem considered by others since in
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those cases the hump shape could be more conveniently defined so
that such situations as that noted above did not occur. In the
current study the "hump" shape is predetermined, depending only
on the actual wing shape and the mathematical transformation
inherent in the problenm.

Figures 3 through 6 give comparisons between the linearized
solutions using the FFT method and the nonlinear solutions using
the finite-difference method for small h. Note that the results
are quite close to each other, indicating that the nonlinear
finite~difference computational method developed in this effort
does work. For completeness, Figures 7 ~ 11 give the surface
plots for the pressure, stream and spanwise shear stress
distributions, displacement thickness, and wall heat transfer
distributions, obtained from the nonlinear computations for
h=0.1.

Nonlinear solutions on the plane of symmetry, Y = 0, for
various values of h are given next in Figures 12 - 15. Note that
oscillations begin to appear in the solution for the pressure
when h = 0.5, and they are clearly evident when h = 1.0. This
numerical instability could not be removed from the computations,
and this eventually prevented the computation of further
solutions for larger values of h. Unfortunately, this numerical
breakdown always occurred before separation on the body surface
in front of the wing occurred. Also note that the nonlinear
solutions at Y = 0 do not return to either 0 or constant values

at the downstream limit of the computational domain. The reason
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for this discrepancy is that the computational domain for the
nonlinear problem is much smaller in extent than that for the
linearized solutions found by the FFT method. Due to computer
resource limitations it was not feasible to solve the nonlinear
problem on larger domains, although it is believed that the
computations would return to their appropriate values if a larger
domain were utilized.

Figure 16 shows the flow streamlines in the plane of
symmetry (Y = 0) and Figures 17 through 19 show the cross-flow
streamlines near the leading edge, at mid-chord, and near the
trailing edge for h = 0.5. Note that the directi = of the normal
velocity is downward near the wing (0 < X < 1). This effect is
indicated by the solid lines in Figures 17 and 18. However, the
normal velocity changes sign near the trailing edge as shown by
the dotted lines in Figure 19. The surface stress pattern for
this problem is shown in Pigure 20. The only noticeable effects
on the surface due to the wing are in the vicinity of the wing (0
<X<1l, Y = 0).

The sharp peak of the effective hump at Y = 0 seems to be
the main cause for the numerical difficulties which occur behind
the wing. This sharp peak is the result of discontinuities in the
derivative with respect to X of the wing-shape function which
appears in the pressure-displacement thickness relationship. As
noted without reaching large enough values of h it is impossible
to have separation around the wing. For example, the flow over a

"regular" hump shape h-exp(-x*-y?), will result in boundary-layer




12
separation when h is approximately 2.8 (see Bodonyi & Duck 1988).
Separation in front of this wing-body junction would be expected
to occur for such order-one values of h. However, in this
problem, the numerical scheme becomes unreliable for h > 0.5, and
for these, or smaller, values of h, the flow near the surface is
still strongly attached, precluding the possibility of bounc -
layer separation.

For a study of step-size effects, an effective hump shape is
computed for a finer grid with AX = 0.05 and AY = 0.0625 for the
diamond-shaped airfoil. Figure 21 shows the comparison of the
effective hump shape for the two different meshes. The effective
hump shape generated using this finer grid is input into the
nonlinear wing-body solver using the grids AX = 0.1 and AY =
0.125. In this case, the pressure shows oscillations for even
smaller values of h than before, as shown in Figure 22. Much
finer grids may therefore be needed along with wider ranges for
each direction to increase h to larger values.

Linear and nonlinear solutions for a three-dimensional wing

shapes of the following forms have also been computed:

#XZ) = AD[1+0Z)) (13)
| AX-Z,uod)e* £ X > Z oné (14)
sx.z) |/ o

Here f£(X) is the base shape of the wing adjoining the surface and
Z, is the upper-deck coordinate, ¢ is a sweep angle and ¢ is a

~
i
;
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positive constant which controls the degree of tapering in the 2
direction away from the body junction. The results of the
computations are qualitatively similar to those of the two-
dimensional wings discussed above and will not be repeated here.
For further details on these three-dimensional solutions see Lee
(19%4).
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III. CONCLUSIONS

In this research effort we have considered the flow
structure near a small-scale wing-body combination within the
framework of triple-deck theory. Thin airfoil theory was used to
obtain the pressure distribution around a wing which in turn
triggers a viscous-inviscid interaction near the wing-body
juncture. As part of the formulation of the problem we have
followed the lead of Smith & Gajjar (1984), utilizing the concept
of an "effective hump shape™ in the formulation of the nonlinear
problem. This technique not only simplifies the pressure
expression but also enhances the convergence of the numerical
scheme even though the concept itself is just a transformation to
convert the wing-body problem into a more conventional problem
for computational efficiency.

As noted earlier, there is an important inconsistency in
Smith & Gajjar’s paper on the wing-body problem. According to the
triple-deck scalings, the wing’s presence enters in the upper
deck of the triple~deck theory as a thin-airfoil formulation to
leading order. In the lower-deck region, however, the only effect
of the wing’s presence is felt in the pressure field. Thus it can
be shown that the boundary condition on the pressure must be
given by

Py ya0) = -2 3L 1
&0 = AL (15)

However, Smith & Gajjar omitted this condition and used 9P/3Y = O
instead. This is equivalent to taking the spanwise velocity, V,
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equal to zero at the line of symmetry, and this is inconsistent
for this problem. As a result it can be proved from the
linearized problem that there can be no viscous-inviscid
interaction for general two-dimensional wing shapes. Furthermore,
this result seems to carry over to the nonlinear computations.
The exception to this result occurs for wings composed of linear
elements since in this case £"(X) is identically zero. We note
here that there can be a viscous-inviscid interaction for a
three-dimensional wing shape as discussed in lLee (1994).

It is not clear at this point whether the triple-deck
structure can accommodate interactions which originate outside
the lower-deck region as originally noted by Stewartson (1974).
Indeed, tThe results of this study suggest that the wing-body
juncture problem is generally not of the triple-deck kind
proposed by Smith & Gajjar, due to the inconsistencies in
matching the solutions between the three regions of the flow
field normal to the surface. In particular, the effects of normal
pressure cannot be ignored, and the wing’s presence must come
into play in a more significant way than originally proposed.
Unfortunately, attempts at developing such a theory have not been

successful.
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The triple-deck "box" describing the three-
dimensional flow about the entire junction of
a thin symmetric wing is shown by dashed
lines. The box’s dimensions are O(Re™’*) x
O(Re™*’*) x O(Re**) in the X,Y, and 2
directions, respectively, and the distance to
the box)tro- the leading of the flat plate is
L = 0(1).
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Pigure 3: Comparison of surface pressures for linearized and

nonlinear solutions of the two~-dimensional wing-
body for a diamond-shaped airfoil.
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Figure 4: Comparison of streamwise shear stress for
linearized and nonlinear solutions of the
two-dimensional wing-body for a diamond-
shaped airfoil.




Figure 5. Comparison of displacement thickness for
linearized and nonlinear solutions of the two-
dinn:ional wing-body for a diamond-shaped
airfoil.
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Figure 6. Comparison of wall heat transfer for linearized
and nonlinear solutions of the two-dimensional
wing-body for a diamond-shaped airfoil.
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(h = 0.1) of the two-dimensional wing-body for a
diamond-shaped airfoil.
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Figure 10: Displacement thickness distribution for nonlinear
flow (h = 0.1) of the two-dimensional wing-body
for a diamond-shaped airfoil.
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Figure 11: Wall heat transfer distribution for nonlinear
flow (h = 0.1) of the two-dimensional wing-body
for a diamond-shaped airfoil.
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Figure 12: Comperison of surface pressures for nonlinear
solutions of the two-dimensional wing-body for a
diamond-shaped airfoil.
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Figure 13: Comparison of streamwise shear stress for
nonlinear solutions of the two-dimensional wing-
body for a diamond-shaped airfoil.
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Figure 14: Comparison of displacement thickness for
nonlinear solutions of the two-dimensional wing-
body for a diamond-shaped airfoil.
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Figure 15: Comparison of wall heat transfer for
nonlinear solutions of the two-dimensional wing-
body for a diamond-shaped airfoil.
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Figure 16: Flow streamlines in the plane of symmetry (Y = 0)

for the two-dimensional wing-body for a diamond-
shaped airfoil ( h = 0.5, 0 < X < 1). The dotted
lines indicate the location of the wing. The
contour values are 0 (Z = 0), 0.5, 2.0, 4.0, 6.0,
10.0,12.0, 16.0 and 18.0.
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rigure 17: Cross-flow streamlines near the leading edge (X =
0) of the two-dimensional wing for a diamond-
shaped airfoil (h = 0.5). The contour values are
0 (%), 0.01, 0.02, and 0.03.
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Figure 18: Cross-flow streamlines at the mid-cord (X =

0.5) of the two-dimensional wing for a diamond-
shaped airfoil (h = 0.5). The contour values are
-0.0025,0(*), 0.0005, and 0.01.
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Figure 20: Surface stress pattern for the two-dimensional
wing-body for the diamond-shaped airfoil (h=0.5,
0 <X <1).




Pigure 21: Comparison of effective hump shapes for the two-
dimensional wing for the diamond-shaped airfoil
(grid 1: AX=0.1 and AY=0.125, grid 2: AX=0.05 and
AY=0. 0625).
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Figure 22: Comparison of surface pressures for nonlinear
solutions (h=0.5) for the two-dimensional wing
for the diamond-shaped airfoil (grid 1: AX=0.1
and AY=0.125, grid 2: AX=0.05 and AY=0. 0625).




