AD-A281 506
AR

]

O

TASK: PVO03

CDRL: A018
25 October 1993

STARS Conceptual Framework
For Reuse Processes (CFRP)

Volume I: Definition
Version 3.0

Informal Technical Data

94-21
LT Illll ummw ,\%

STARS-VC-A018/001/00
25 October 1993

TASK: V03
CDRL: A018
October 25, 1993

INFORMAL TECHNICAL REPORT
For

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

STARS Conceptual Framework for Reuse Processes (CFRP)
Volume I: Definition
Version 3.0

STARS-VC-A018/001/00
October 25, 1993

Data Type: Informal Technical Data
CONTRACT NO. F19628-93-C-0130

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF
Hanscom AFB, MA 01731-5000 DTIC QUALITY INSPLCLLD &

Prepared by:
The Boeing Company, IBM, "’
Defense & Space Group, Federal Systems Company, Unisys Corporation,
P.O. Box 3999, MS 87-37 800 N. Frederick Pike, 12010 Sunrise Valley Drive,
Seattle, WA 98124-2499 Gaithersburg, MD 20879 Reston, VA 22091

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

TASK: V03
CDRL: A018
October 25, 1993

Data ID: STARS-VC-A018/001/00

Distribution Statement “A”
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1993, Unisys Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with the
DFAR Special Works Clause.

Developed by: Unisys Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems (STARS)
program, is approved for release under Distribution “A” of the Scientific and Technical Informa-
tion Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated. Sponsored
by the U.S. Advanced Research Projects Agency (ARPA) under contract F19628-88-D-0031, the
STARS program is supported by the military services, SEI, and MITRE, with the U.S. Air Force
as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated under Dis-
tribution “A” and without fee is hereby granted, provided that this notice appears in each whole
or partial copy. This document retains Contractor indemnification to The Government regard-
ing copyrights pursuant to the above referenced STARS contract. The Government disclaims all
responsibility against liability, including costs and expenses for violation of proprietary rights, or
copyrights arising out of the creation or use of this document. The contents of this document con-
stitutes technical information developed for internal Government use. The Government does not
guarantee the accuracy of the contents and does not sponsor the release to third parties whether
engaged in performance of a Government contract or subcontract or otherwise. The Government
further disallows any liability for damages incurred as the result of the dissemination of this infor-
mation.

In addition Unisys and its subcontractors disclaim all warranties with regard to this document,
including all implied warranties of merchantability and fitness, and in no event shall Unisys or
its subcontractors be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from the loss of use, data, or profits, whether in action of contract, negligence
or other tortious action, arising in connection with the use or performance of this document.

INFORMAL TECHNICAL REPORT
STARS Conceptual Framework for Reuse Processes (CFRP)

Volume I: Definition
Version 3.0

Approvals:

\/Z,,; / /@ﬁm

TASK: V03
CDRL: A018
October 25, 1993

Program Manager Tert Payto#

(Signatures on File)

‘ DTIC TAB

. Just ification i

raf 2863
4 / Date
Acceasion For
ATIS GRAXI o

Uneanounced a7F

By
Distributfonf il . |
Availadility Godes

vail and/for
Spec ial K

A
‘ e S
LT
'. ™~
f* ”'f'i

INFORMAL TECHNICAL REPORT
STARS Conceptual Framework for Reuse Processes (CFRP)

Volume I: Definition
Version 3.0

Change Record:

TASK:

Vo3

CDRL: A018
October 25, 1993

Data ID

Description of Change

Date

Approval

STARS-VC-A018,001/00

Version 3.0: CFRP process
categories further refined.

25 October 1993

on file

STARS-UC-05159/001/00

Version 2.0: CFRP revised
to incorporate Reuse Manage-
ment and Reuse Engineering
idioms.

13 November 1992

on file

STARS-SC-04040/001/00

Version 1.0: Original Issue

14 February 1992

on file

REPORT DOCUMENTATION PAGE

form Approved
OMB No. 0704-0188

Putlic reporting purden for this of intor "

10 average | NOUr PEf rEIPONIE, INCIUGING the LIMe tOf FEVIeWwINg INSITUCLIONS, SBFCING EXiITING TBLS JOWCES.

Qathenng and mamntaimng the data and deting and re
ot intor tudk _ng tor g this Due . 10 Washingy!
Davrs reghway, Suite 1204, Ariington, VA 22202-4302. and to the Oftice of Management

#
1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE
25 October 1993

G the collection of infor
Hesgauarters

Of AIng this Durden estimate or snv Othe! Aspect of thiy
Services. Directorate for information Operatioms and Reports, 1215 Jetferson
and Budger, Paperwors Recuction Project (0704-0188), washington, DC 20503,

3. REPORT TYPE AND DATES COVERED
Informal Technical

h’
4. TITLE AND SUBTITLE
th

Volume I: Definition-

Version 3.0

'ARS Conceptual Framework for Reuse Processes (CFRP)

6. AUTHOR(S)

Boeing
IBM
Unisys
7. Piﬁgwlgﬁ 8gf%¥é€?gnNAMt(S) AND ADDRESS(ES)
12010 Sunrise Valley Drive
Reston, VA 22091

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

-f the Air Force
Electronic Systems Center

Departmen-
Headquarte

S. FUNDING NUMBERS

'F19628-93-C=-0130

8. PERFORMING ORGANIZATION
REPORT NUMBER

STARS-VC-A018/001/00

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

aA018

P ———
11. SUPPLEMENTARY » :§

A
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution "a"

12b. DISTRIBUTION CODE

13, ABSTRACT (Maximum 200 words)

the version sequencing has been retained.

to apply the CFRP.

This document, STARS Conceptual Framework for Reuse Processes (CFRP), Volume I: Definition,
Version 3.0, defines version 3.0 of the STARS CFRP. It supercedes an earlier CFRP definition doc-
ument, STARS Reuse Concepts, Volume I - Conceptual Framework for Reuse Processes (CFRP),
Version 2.0. This document is a new version of the earlier document, describing a new version of
the CFRP. The document has been retitled to more directly reflect its CFRP subject matter, but

This document is Volume I of a two volume set. Its companion volume, STARS Conceptual Frame-
work for Reuse Processes (CFRP), Volume II: Application, Version 1.0, provides guidance in how

14. SUBJECT TERMS

S
18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

0
17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

T TP
19. SECURITY CLASSIFICATION

OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
85

16. PRICE CODE
e =TT
20. LIMITATION OF ABSTRACT

SAR

NSM 7540-0°-280-5500

S*ardard Form 298 (Rev 2.89)

October 25, 1993

Page ii

STARS-VC-A018/001/00

Contents
1 Introduction 1
1.l Purpose o e e e e e e e e e e e e e 1
1.2 Applicability and Scope e e e e 1
13 Audience e e e e e e e e e e e 2
1.4 Relationship to Other Work i it ittt it 2
1.5 Document Organization, 3
2 Context and Motivation 4
2.1 ReusePracticesand Trends 4
2.2 STARS Reuse Vision, Mission, and Strategy 6
2.3 Document Objectives. i v v it i it ittt e e 7
3 CFRP Description 9
3.1 Reuse Management Process Idiom, 13
3.1.1 Reuse Planning Process Family 16
3.1.1.1 Assessment Process Category 18
3.1.1.2 Direction Setting Process Category 19
3.1.1.3 Scoping Process Category 19
3.1.1.4 Infrastructure Planning Process Category 21
3.1.1.5 Project Planning Process Category 22
3.1.2 Reuse Enactment Process Family 23
3.1.2.1 Project Management Process Category 25
3.1.2.2 Infrastructure Implementation Process Category 26
3.1.3 Reuse Learning Process Family 28
3.1.3.1 Project Observation Process Category 30
3.1.3.2 Project Evaluation Process Category 30
3.1.3.3 Innovation Exploration Process Category 31
3.1.3.4 Enhancement Recommendation Process Category 32
3.2 Reuse Engineering Process Idiom 32
3.2.1 Asset Creation Process Family 34
3.2.1.1 Domain Analysis and Modeling Process Category 38
3.2.1.2 Domain Architecture Development Process Category 42
3.2.1.3 Asset Implementation Process Category 45
3.2.2 Asset Management Process Family : 47
3.2.2.1 Library Operation Process Category 49
3.2.2.2 Library Data Modeling Process Category 50
3.2.2.3 Library Usage Support Process Category 51
3.2.2.4 Asset Brokering Process Category 52
3.2.2.5 Asset Acquisition Process Category 53
3.2.2.6 Asset Acceptance Process Category 54
3.2.2.7 Asset Cataloging Process Category 54
3.2.2.8 Asset Certification Process Category 55
3.2.3 Asset Utilization Process Family 57
3.2.3.1 Asset Criteria Determination Process Category 59
3.2.3.2 Asset Identification Process Category 61
3.2.3.3 Asset Selection Process Category 61

October 25, 1993 STARS-VC-A018/001/00
3.2.3.4 Asset Tailoring Process Category 63

3.2.3.5 Asset Integration Process Category 64

4 Summary 66
A CFRP Composition Techniques é8
Al Linkage e e e e e e e e e e e 68
A2 Recursion i i it ittt ittt e e e e e e e e e e 70
A3 Overlapping i i it e e e e e e e e e e 72
Glossary 75
References 82

Page iii

October 25, 1993 STARS-VC-A018/001/00

List of Figures

WD 00 I Uk W

STARS Conceptual Framework for Reuse Processes 10
Reuse Planning Process Family, 17
Reuse Enactment Process Family 24
Reuse Learning Process Family 29
Relationships Among Reuse Products and Processes 36
Asset Creation Process Family 38
Asset Management Process Family 48
Asset Utilization Process Family, 58
Linkage of Reuse Engineering Processes 69
Mutual Recursion of Reuse Management and Reuse Engineering 71
Recursion of Reuse Management within Reuse Management 72
Cascading of Reuse Engineering Processes 73
Typesof Domainsttt ittt nnenenn 77

Page iv

October 25, 1993 STARS-VC-A018/001/00

List of Tables

1 CFRPDecompositionottt tonn e 11

Page v

October 25, 1993 STARS-VC-A018/001/00

Prologue

This document, STARS Conceptual Framework for Reuse Processes (CFRP), Volume I: Definition,
Version 3.0, defines version 3.0 of the STARS CFRP. It supercedes an earlier CFRP definition doc-
ument, STARS Reuse Concepts, Volume I - Conceptual Framework for Reuse Processes (CFRP),
Version 2.0. This document is a new version of the earlier document, describing a new version of
the CFRP. The document has been retitled to more directly reflect its CFRP subject matter, but
the version sequencing has been retained.

This document is Volume I of a two volume set. Its companion volume, STARS Conceptual Frame-
work for Reuse Processes (CFRP), Volume II: Application, Version 1.0, provides guidance in how
to apply the CFRP.

Version 3.0 of the CFRP is significantly different from version 2.0 in several ways. The most
prominent differences are briefly summarized below:

¢ The Domain Selection process category in the Reuse Planning process family has been re-
named Scoping. In addition, its meaning has been generalized to encompass definition of
the overall technical and organizational scope of a reuse program. This involves selecting
the key domains of focus in the program and planning how the domain assets will be ap-
plied in selected application product lines. It also involves delineating the reuse program’s
organizational boundaries and spheres of influence.

o The Process Observation and Process Evaluation process categories in the Reuse Learning pro-
cess family have been renamed Project Observation and Project Evaluation, respectively. This
renaming makes these categories more consistent with other Reuse Management categories
that focus on the CFRP notion of reuse projects, and it also removes the implication that
learning focuses narrowly on processes, rather than processes, products, and infrastructure.

e The Software Architecture Development process category in the Asset Creation process family
has been renamed Domain Architecture Development to better reflect its scope and role in
developing domain architecture assets.

e The Application Generator Development and Software Component Development process cat-
egories in the Asset Creation process family have been merged into a single category called
Asset Implementation. This category encompasses the development of software components
and other non-architecture assets such as reusable requirements and test software, and also
addresses the development of assets that can generate such application products.

o Library Usage Support and Asset Brokering process categories have been added to the Asset
Management process family. These categories represent important activities in supporting
and encouraging the utilization (as well as creation) of assets. These activities may have been
seen as implicit in the Library Operation category in earlier versions of the CFRP, but are
now viewed as important enough to be treated as explicit process categories.

o The Library Metrics Collection and Asset Metrics Collection process categories have been
removed from the Asset Management process family. The CFRP addresses process and
product metrics collection in the Plan-Enact-Learn idiom, and specific metrics collection

Page vi

October 25, 1993 STARS-VC-A018/001/00

categories in the Asset Management family were viewed as redundant. However, aspects of
the Asset Metrics Collection category that involved recording intrinsic asset characteristics
for the benefit of asset utilizers have been incorporated into Asset Cataloging.

e The Asset Fvolution and Library Evolution process categories have been removed from the
Asset Creation and Asset Management process families, respectively. The CFRP addresses
process and product evolution implicitly, through the continual application of the Plan-Enact-
Learn idiom. Therefore, no explicit process categories to address process and product evolu-
tion are necessary.

o The Asset Requirements Determination process category in the Asset Utilization process fam-
ily has been renamed Asset Criteria Determination to avoid unnecessary confusion resulting
from excessive use of the already overloaded word “requirements”. The meaning of the cate-
gory remains unchanged.

¢ The Integration of Assets with Application process category in the Asset Utilization process
family has been renamed Asset Integration to shorten and simplify the name. The meaning
of the category remains unchanged.

Both CFRP volumes will be revised and re-released periodically to reflect the lessons learned in
defining and applying the CFRP and to address comments from reviewers of the documents, both
internal and external to STARS.

We thus encourage trial application of the CFRP and solicit reader review and comments as input
to future revisions of both volumes. Please submit comments to:

CFRP Comments

c/o Dick Creps

Unisys Government Systems Group
Dept. 7670

12010 Sunrise Valley Drive

Reston, VA 22091

Phone: (703) 620-7100

Fax: (703) 620-7916
E-mail: cfrp@stars.ballston.paramax.com

Page vii

October 25, 1993 STARS-VC-A018/001/00

1 Introduction

This document was produced by the Software Technology for Adaptable, Reliable Systems (STARS)
program on behalf of the U.S. Department of Defense (DoD) Advanced Research Projects Agency
(ARPA). The document was developed by a STARS working group consisting of members from each
of the three STARS prime contractor teams, the MITRE Corporation, and the Hewlett Packard
Company (a STARS Technology Transition Affiliate). The DoD Software Engineering Institute
(SEI) also contributed significantly to the document during the early stages of its development.

1.1 Purpose

The principal purpose of this document is to define a conceptual framework that describes reuse in
terms of the processes involved. This STARS Conceptual Framework for Reuse Processes (CFRP)
is intended to:

articulate, and promote understanding of, STARS reuse concepts,

identify reuse processes that are candidates for detailed definition,

provide techniques for modeling interrelationships among reuse processes, and

identify organizational and management issues associated with reuse and provide a framework
for managing change in that context.

In addition, this document elaborates on the STARS vision and mission with respect to reuse and
provides a context for understanding STARS reuse products and plans.

1.2 Applicability and Scope

The CFRP is intended to be generic with respect to domains, organizations, economic sectors,
methodologies, and technologies. Furthermore, even though this document focuses discussion of
the CFRP by describing it primarily in the context of software engineering, CFRP concepts should
generally be applicable to reuse ir any information-intensive context, such as technical documen-
tation, general information retrieval, and business, scientific, or personal information management.

The CFRP is a reuse process framework; its scope is limited to identifying the processes involved
in reuse and describing at a high level how those processes operate and interact. In so doing, it
offers an indication of how some reuse processes can be integrated with other processes and how
the transition to reuse can be managed from a process perspective. The CFRP does not prescribe
how reuse should be implemented in any particular context, nor does it include processes that
do not directly contribute to reuse. It thus should not be interpreted as providing prescriptive
process definitions or imposing a particular life cycle model. However, in separate efforts, STARS
is developing detailed reuse process definitions and life cycle models that are consistent with the
CFRP.

In general, legal, business, and acquisition aspects of reuse are outside the scope of this document.

Page 1

October 25, 1993 STARS-VC-A018/001/00

1.8 Audience

This document is targeted to readers having one or more of the following roles in their organizations:

e Program/Project Planner - Responsible for planning the objectives, strategy, processes, in-
frastructure, and resources for software engineering programs or projects. Interested in in-
corporating domain-specific reuse into those programs/projects.

o Process Engineer — Responsible for defining, instantiating, tailoring, installing, monitoring,
administering, and evolving software engineering process models. Interested in defining reuse
processes or integrating them with overall life cycle process models.

o Reuse Advocate — Responsible for keeping abreast of reuse concepts, technology, and trends
and promoting the establishment/improvement of reuse capabilities and practices within an
organization. Interested in understanding how new concepts and technology can be applied
to accelerate reuse adoption.

Different portions of this document may appeal most strongly to one segment of the audience
or another. However, the entire document should be of some interest to all readers, because all
the audience segments are interdependent and each can benefit from the variety of perspectives
presented in the document.

1.4 Relationship to Other Work

This document is Volume I of a two volume set. The other volume, STARS Conceptual Framework
Jor Reuse Processes (CFRP), Volume II: Application, Version 1.0 [Sof93c], directly supplements
Volume I by providing initial guidance in how the CFRP can be applied. It is recommended that
Volume II be read in addition to Volume I to gain increased understanding of the CFRP and its
applicability. (Note that throughout the remainder of this document, Volume I will be referred to
informally as the “CFRP Definition document”, and Volume II will be referred to as the “CFRP
Application document™.)

The CFRP is derived from and elaborates on the STARS vision with respect to reuse. It reflects
and abstracts the experiences of software reuse efforts both within and outside of STARS. It also
draws on organizational and management concepts and STARS process concepts. The CFRP has
been reviewed by individuals in government, industry, and academia, and by working groups at the
1991 and 1992 Annual Workshops on Software Reuse (WISRs) and the 1991 Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA). The CFRP reflects a
consensus view among its varied authors, based on their own experience, feedback from reviewers,
and lessons learned through early CFRP application.

The CFRP thus provides a conceptual foundation, framework, and set of high level requirements for
the reuse technology products (processes and supporting tools) needed to accomplish the STARS
reuse mission. STARS has already produced specific reuse process definitions consistent with the
CFRP, such as the Reuse-Oriented Software Evolution (ROSE) Process Model [Sof93d], the Orga-
nizational Domain Modeling (ODM) Process Model [Sof93a), the STARS Reuse Library Process

Page 2

October 25, 1993 STARS-VC-A018/001/00

Model [Sof91c], the STARS Composite Process Model [Sof91b], and the ASSET Criteria and Im-
plementation Procedures for Evaluation of Reusable Software Engineering Assets [Ass92b]. The

STARS asset library mechanisms provide automated support for many of the process categories
identified in the CFRP.

The CFRP also provides a framework or basis for some of the products that are needed to transition
reuse-related technology into use. For example, the STARS Reuse Strategy Model (RSM) [Sof93b],
a mechanism to help projects assess their current reuse capabilities and develop strategies for
improving them, draws heavily on the CFRP as a basis for characterizing reuse capabilities.

However, for an organization undertaking a reuse program, the CFRP and the associated technology
cited above must be augmented with additional information to motivate and promote the adoption
of reuse. Such information can include case studies, rationale, lessons learned, economic models
and data, and specific guidance about how to implement a reuse program. Products providing
these kinds of information may be consistent with the CFRP and even use it as an organizing
principle, but extend beyond the scope of the CFRP itself. Examples of such products are the
Reuse Adoption Guidebook [Vir92a] developed by the Virginia Center of Excellence for Reuse and
Technology Transfer (VCOE), and the Direction Level Handbook [Cen93a), Acquisition Handbook
[Cen92), and Franchise Plan [Cen93b] developed by the DoD Central Archive for Reusable Defense
Software (CARDS) program.

1.5 Document Organization

This volume is organized as follows:

e Section 1 (this section) provides introductory material that defines the purpose, scope, and
audience of the document and establishes its relationship to other reuse-related work.

o Section 2 describes the context in which the CFRP was developed and the factors that
motivated its development.

e Section 3 describes the CFRP in detail.
e Section 4 summarizes the CFRP in terms of the key themes it embodies.

e Appendix A describes a set of CFRP process xilodeling techniques enabling construction of a
wide variety of CFRP process configurations.

o The Glossary defines the key terms used in this volume.

e The References section provides bibliographic entries for all documents referenced in this
volume.

Page 3

October 25, 1993 STARS-VC-A018/001/00

2 Context and Motivation

A number of factors have influenced and motivated the work that STARS is doing in the area of
software reuse. This section discusses these factors from two viewpoints. The first provides a brief
assessment of current reuse practice and presents an overview of recent reuse-related technical and
management trends that have influenced STARS work and are already impacting reuse practice
to varying degrees. The second viewpoint provides insight into the STARS vision, mission, and
strategy as seen specifically from a reuse perspective. The section closes by describing a set of
objectives for this document, derived from these motivating factors.

2.1 Reuse Practices and Trends

As has been frequently documented (e.g., in [U.S89]), the practice of software development in
the United States has become increasingly plagued by high cost, poor productivity, and poor
or inconsistent quality. One of the reasons for this problem is that many software development
organizations continue to recreate the same or similar systems over and over again, rather than
treating their previously-developed systems and previous experiences as assets to be captured,
nurtured, and evolved so that they can contribute directly to f** re development activities. That
is, these organizations are practicing little or no software reuse.

In particular, the development of software systems for the U.S. Department of Defense (DoD)
historically has not been very reuse-oriented. There are many reasons, all valid from one perspective
or another, for software reuse not to have become standard practice within DoD and its contracting
organizations. These reasons are wide-ranging, involving many different kinds of issues: technical,
cultural, contractual, organizational, economic, legal, political, and so on. When reuse does occur
in the DoD context, it is typically through individual initiative, rather than in response to a
deliberate plan and well defined processes. Such reuse is likely to involve code and perhaps design
information rather than complete sets of assets covering the entire life cycle. Furthermore, reuse is
usually isolated within a single organization — typically among a small number of similar projects —
and the information that is reused in these circumstances often requires significant modification
because it was not designed for reuse.

However, this situation appears to be steadily changing. The barriers that have inhibited reuse
are gradually diminishing and, due to a downturning and more competitive economic climate, it is
becoming increasingly critical for organizations to overcome those barriers. The result has been a
recent substantial increase in the number of industry and government initiatives focusing on estab-
lishing reuse programs. For example, the DoD has developed a Reuse Vision and Strategy [DoD92]
and has established a Reuse Executive Steering Committee and two working groups addressing
reuse technical and management issues. The DoD has additionally established a Software Reuse
Initiative, which is a federation of three reuse-related programs: STARS, the Air Force Central
Archive for Reusable Defense Software (CARDS) program, and the Defense Information Systems
Agency (DISA) Joint Interoperability Engineering Organization (JEIO) Center for Information
Management (CIM) Software Reuse Program (SRP). The DISA/JEIO/CIM SRP, in particular,
has undertaken a number of activities to directly support the realization of the DoD Reuse Vision
and Strategy. In addition, the Army, Navy, and Air Force have each issued plans for accelerating
adoption of reuse within the individual services. Prior to tkese developments, DoD organizations

Page 4

October 25, 1993 STARS-VC-A018/001/00

such as the Joint Integrated Avionics Working Group (JIAWG), the Strategic Defense Initiative
Office (SDIO), and the Army Communications and Electronics Command (CECOM) established
reuse initiatives. The Air Force has established, in tandem, the CARDS program to develop a
blueprint for domain-specific, architecture-based reuse, and the Portable, Reusable, Integrated
Software Modules (PRISM) program to develop a generic command center prototyping capability
based on CARDS facilities and processes. Individual companies have begun to formalize reuse and
to develop reusable components for competitive advantage or commercial purposes (e.g., TRW’s
Universal Network Architecture Services, EVB’s GRACE components).

This increased reuse activity has built upon, and often contributed to, a number of technical
and management advances that form the theoretical and practical foundations fc se. Foremost
among these advances is the emergence of domain analysis and domain engineeri: :istinct fields
of study. These disciplines focus on methods and tools for analyzing families of sy...ms (domains)
and capturing, organizing, and evolving information about the domains (encoded in domain models,
architectures, generators, and components) so that it can be exploited to support reuse-based system
development and evolution. This technology area is still somewhat immature, but current work
is paving the way for more generalized techniques to support domain-specific reuse (see [PDA91]
for an overview of this technology area and [Sof93a, Sof91c, DIS93, Vir92b, KCH*90, YHD*90,
PW92, Shadl, Sha89, Bai89a, MCP*88] for further information). The DoD Advanced Research
Projects Agency (ARPA) is explicitly focusing on domain engineering issues through its Domain
Specific Software Architecture (DSSA) program [MG92]. In addition, the software maintenance
and reengineering communities are shifting increasingly towards a view of their disciplines that is
more directly compatible with general domain analysis and domain engineering principles [Bas90,
Big89, Nav93].

Another strong influence on modern reuse practices is the work underway to address automated
support for domain-specific reuse, including reuse library technology. Theoretical aspects of reuse
libraries have been explored significantly (e.g., [PDF87, FG90]), and a number of processes and tools
have been developed to support them (e.g., [Reu90, Sof91lc, SWT89]). As a result, several major
efforts are underway to establish operational domain-specific reuse libraries (e.g., the STARS Asset
Source for Software Engineering Technology (ASSET) [Ass92a)], the CARDS Generic Command
Center library [Cen93c], the DISA/JEIO/CIM Defense Software Repository System (DSRS), and
the Reusable Ada Avionics Software Packages (RAASP) library). There has been other important
work focusing on reuse automation, as well, ranging from application generation technology to
reuse-based software environments (e.g., [Cle88, Bai89b, Sca92]).

In addition, there have been a number of recent advances in disciplines that are not generally recog-
nized as being reuse-oriented, but that focus on many of the same goals as reuse and are beginning
to influence reuse practice, particularly from a management perspective. Among these influences
are concepts from the software process modeling and management community (e.g., [CKO92]),
Continuous Process Improvement (CPI) and Total Quality management (TQM) principles (e.g.,
[Dem86]), and advances in organizational and learning theory, including the concept of the Learning
Organization (e.g., [Sen90)).

October 25, 1993 STARS-VC-A018/001/00

2.2 STARS Reuse Vision, Mission, and Strategy

As indicated by the reuse-related activity cited above, a trend towards reuse-based software en-
gineering is already underway, both within DoD and its contracting organizations and in general
industry. This is evidenced clearly in the DoD Reuse Vision defined in the DoD Reuse Vision and
Strategy document [DoD92}:

The DoD vision for reuse is to drive the DoD software community from its current
“re-invent the software” cycle to a process-driven, domain-specific, architecture-centric,
library-based way of constructing software.

To help accelerate the trend towards reuse-based software engineering consistent with this vision,
ARPA is sponsoring the STARS program. To focus its efforts, STARS has defined its own vision
describing the desired future state of DoD software engineering practice, a mission defining the
STARS role in realizing the vision, and a strategy defining specific activities that STARS will
undertake to pursue the mission. The STARS vision and mission, taken together, are highly
consistent with the DoD Reuse Vision.

The STARS vision is:

Within 15 to 20 years, the DoD will have institutionalized a disciplined architectural
and engineering-based approach to the development and evolution of software-intensive
systems.

The STARS mission is:

To provide DoD the technological, management, and transitional basis to influence and
enable a paradigm shift to a process-driven, domain-specific reuse-based approach to
software-intensive systems development and evolution.

The paradigm described above is a STARS interpretation of a new software engineering paradigm
that has been dubbed megaprogramming within ARPA. In the paragraphs below, this paradigm
is further interpreted, specifically from a reuse perspective, to construct a STARS “reuse vision”
that defines what reuse-based means and how the process-driven and domain-specific aspects of the
paradigm constrain that meaning.

Being reuse-based means that the standard approach to software-intensive system development and
evolution is to derive new and modified systems principally from existing assets rather than to
create the systems anew. Reusable assets are thus a central concept of the reuse vision, and they
imply a need for processes to create such assets, manage them (typically in some form of asset
library), and utilize them to produce new systems. Assets include not only the software code
components most commonly associated with reuse, but also other kinds of information such as:

¢ Reusable forms of other software products; e.g., requirements specifications, architectures,
designs, test procedures

Page 6

October 25, 1993 STARS-VC-A018/001/00

¢ Application domain knowledge; e.g., models, data dictionaries, algorithms
o Process definitions; e.g., for managing asset libraries, for developing application systems

¢ Rationale; e.g., for the inclusion of features, services, objects, and/or algorithms in a system;
for the selection of one architecture or design over another.

Being domain-specific means that the reusable assets, the development processes, and the sup-
porting technology are appropriate to (perhaps tailored for) the application domain for which the
software is being developed. STARS is focusing on reuse within application domains because we
believe that is where the greatest reuse impact will be achieved. Application domains are generally
considered to be broad in scope, for example C1, and to comprise subdomains. These cubdomains
may be unique to the application domain or common across several domains. A domain-specific
software architecture with standard interfaces is central to domain-specific reuse, in that it provides
a framework for creating assets and constructing systems within a domain. The effectiveness of
domain-specific assets depends on a number of factors, including the maturity of the application
domain and the investment applied to create the assets. As a domain matures, it generally becomes
more stable and better understood, thus increasing the likelihood that assets will be reusable in
a large number of systems. However, even in mature domains, asset reusability and quality will
be maximized only if suitable investment has been applied to identify key reuse opportunities and
develop assets that best exploit those opportunities.

Being process-driven means that software engineering is done in accordance with well defined,
repeatable processes that are subject to continuous measurement and improvement and enforced
through management policies. Computer-assisted software engineering environments provide, at a
minimum, automated definition of the processes and guidance in applying them, and in some cases
may provide a significant degree of automated process enactment and enforcement.

The high-level STARS strategy for effecting the megaprogramming paradigm shift is to:

o Demonstrate the benefits of domain-specific reuse in familiar DoD application contexts,

e Support the transition from the current paradigm in such a way as to reduce risks in DoD’s
evolution to domain-specific reuse-based software engineering, and

o Ensure that basic reuse support capabilities, both processes and technologies, are available
and validated for use.

The STARS program is building on the results of previous reuse efforts, working together with
ongoing government and industry programs, and undertaking additional initiatives to implement
this strategy and help make realization of the vision and mission possible.

2.3 Document Objectives

Successful pursuit of STARS objectives requires a common understanding of what process-driven,
domain-specific reuse-based software engineering (i.e., the megaprogramming paradigm) means.
Thus, one key motive behind this document is to develop a common, consensus view of the reuse

Page 7

October 25, 1993 STARS-VC-A018/001/00

aspects of the paradigm among STARS personnel and within a broader community. This implies
that the document should provide an expanded and unified elaboration of the STARS reuse vision
and its implications, in a way that properly reflects and integrates relevant ongoing work from
various reuse-related disciplines.

These are ambitious objectives, and there are numerous possible approaches to the problem. Other
work has strived to explore the conceptual underpinnings of reuse (e.g., [BR87]), establish broadly-
scoped reuse process models (e.g., [BCC92]), examine reuse from a management perspective (e.g.,
[BB91}), or establish reuse adoption and maturity models (e.g., [Vir92a]). A key ingredient that
is missing from such work is a unifying conceptual model that provides a common context for
understanding the technical and management aspects of reuse in terms of the processes that are
involved. Such a conceptual process framework could provide a common basis for establishing, com-
paring, contrasting, measuring, and improving reuse-related processes among varied organizations.
A framework that satisfies these needs should meet many if not all of the following goals:

Establish a common reuse terminology,

e Emphasize consideration of reuse issues from a process perspective,

¢ Define a classification scheme for reuse processes,

e Formalize and normalize essential reuse process characteristics and interrelationships,
¢ Encompass both technical and management aspects of reuse,

¢ Emphasize the importance of formulating reuse strategies in the context of specific application
domains and product lines,

¢ Emphasize domain-specific architecture-based approaches to reuse,

e Establish measurement, learning, and change as integral to reuse,

e Emphasize the need for investment in infrastructure,

¢ Establish the brokerage role as fundamental to reuse,

¢ Accommodate small-scale as well as large-scale software engineering efforts,

e Accommodate complex, reuse-driven interactions among organizations,

o Provide flexible mechanisms to support modeling and configuration of reuse processes,

o Be generic with respect to domains, tecknologies, organizational structures, and economic
sectors.

To address these objectives, STARS has developed the Conceptual Framework for Reuse Processes
(CFRP) described throughout the remainder of this document.

Page 8

—

October 25, 1993 STARS-VC-A018/001/00

3 CFRP Description

The STARS CFRP defines a context for considering reuse-related software development processes,
how they interrelate, and how they can be composed and integrated with each other and with
non-reuse-related processes to form reuse-oriented life-cycle process models that are tailorable to
organization needs.

The CFRP consists of dual, interconnected “process idioms” called Reuse Management and Reuse
Engineering, as depicted in their most basic form in Figure 1. These idioms describe distinctive
patterns of activity that are inherent to the organizational and management aspects and the product
engineering aspects of reuse, respectively. The CFRP process idioms are further decomposed into
“process families” (shown in Figure 1) and these in turn are decomposed into “process categories”.
Table 1 shows the full decomposition structure of the CFRP.

Figure 1 also shows the major inputs to and outputs from the CFRP. Inputs to the CFRP are:

¢ Market Forces — new market trends, competitive developments, new technologies, emerging
standards, and other factors that impact perception of marketplace needs

o Assets — existing reusable units of information relevant to a domain or set of domains; e.g.,
domain models and architectures, software components, application generators, test cases,
processes

¢ Software Systems - systems in domains of interest that can impart legacy knowledge about
the domains anc feed domain analysis or reengineering efforts to produce domain assets or
new application systems

¢ Domain Knowledge - information about domains that can be imparted in a variety of
ways, other than via the legacy systems

¢ Technology - technological capabilities that can contribute to the reuse infrastructure within
an organization and can be applied to establish or automate reuse processes

e Organizational Context — the business strategies, policies and procedures, expertise, tech-
nological capabilities, cultural legacies, etc., of the set of organizations involved in a reuse
effort

Outputs from the CFRP are:

¢ Software Systems - application systems built using domain assets

e Assets — new or refined reusable units of information relevant to a domain or set of domains

The arrows in Figure 1 represent, at a high level, the directions of information flow, influence, and
feedback among the process families. They also, to some degree, indicate sequencing among families,
although sequencing can vary substantially depending on specific circumstances, and activities
within different families often will operate in parallel. The meaning of the arrows is discussed in
more detail in the subsections below that describe the individual idioms.

Page 9

STARS-VC-A018/001/00

October 25, 1993

Market Forces

Assets

Software Systems

Domain Knowledge

Technology
Organizational Context

55

BRI

/us,:;;g/y_.u
e

i

Software Systems
Assets

STARS Conceptual Framework for Reuse Processes

Figure 1

Page 10

October 25, 1993 STARS-VC-A018/001/00

Reuse Management Reuse Engineering
¢ Reuse Planning o Asset Creation
- Assessment - Domain Analysis and Modeling
- Direction Setting - Domain Architecture Development
- Scoping - Asset Implementation
- Infrastructure Planning e Asset Management
- Project Planning - Library Operation
¢ Reuse Enactment - Library Data Modeling
- Project Management - Library Usage Support
- Infrastructure Implementation - Asset Brokering
¢ Reuse Learning ~ Asset Acquisition
- Project Observation - Asset Acceptance
- Project Evaluation - Asset Cataloging
— Innovation Exploration Asset Certification

Enhancement Recommendation o Asset Utilization
— Asset Criteria Determination
—~ Asset Identification
— Asset Selection
- Asset Tailoring
~ Asset Integration

Table 1: CFRP Decomposition

The Reuse Management idiom describes a cyclic pattern of activity addressing the establish-
ment and continual improvement of reuse-oriented activities within an organization by emphasizing
learning as an institutional mechanism for change. Learning in this context means actively evalu-
ating and reflecting on behavior to effect positive change. The idiom consists of the following three
process families:

¢ Reuse Planning processes establish objectives and strategies for reuse within and across se-

lected domains and application product lines; plan an interconnected set of reuse projects
consistent with the objectives and strategies; and plan infrastructural capabilities to facili-
tate project performance and evolution.

Reuse Enactment processes manage active reuse projects (e.g., allocate resources to them,
initiate and retire them, monitor their performance); regulate day-to-day project performance;
and ensure that a reuse infrastructure sufficient to meet the needs of the projects is established
and maintained.

Reuse Learning processes evaluate reuse project performance relative to local and global
objectives and investigate and recommend approaches to effect evolutionary or revolutionary
enhancements in reuse capabilities; they can be viewed as an institutional mechanism for
managing improvement and innovation.

The Reuse Engineering idiom describes a “chained” pattern of activity that addresses reuse-
related product development and reuse and explicitly recognizes the role of the broker as a mediator

Page 11

October 25, 1993 STARS-VC-A018/001/00
between asset producers and consumers. The idiom consists of the following three process families:

o Asset Creation processes produce and evolve domain models and domain assets, including
requirements and architecture assets, application generators, and software components.

o Asset Management processes acquire, describe, evaluate, and organize assets produced by
Asset Creation processes, make those assets available to utilizers as a managed collection,
and provide services to promote and facilitate reuse of the assets.

o Asset Utilization processes reuse the assets made available by the Asset Management pro-
cesses by identifying, selecting, and tailoring desired assets and integrating them to construct
application systems within target domain(s).

The Reuse Management and Reuse Engineering idioms represent reuse-specific specializations or
adaptations of more general forms of organizational activity that can be termed the “Learning
Loop” and the “Brokered Marketplace”, respectively. The CFRP specializes these more general
idioms to facilitate adaptation of a wide body of management and organizational theory to the
software reuse problem.

Separating reuse processes into distinct Reuse Management and Reuse Engineering idioms within
the CFRP not only cleanly distinguishes between these two aspects of reuse-related activity, but
also enables very flexible configuration of reuse processes via a set of CFRP process composition
techniques. These techniques, described in detail in Appendix A, can be used to construct a wide
variety of reuse-specific process configurations reflecting different planning levels, organizational
structures, and interaction patterns. Figure 1 shows one possible CFRP configuration, termed the
“canonic” configuration. This configuration provides the most intuitive, straightforward view of
the CFRP, wherein one set of Reuse Engineering activities is controlled directly by a set of Reuse
Management activities. The canonic configuration is thus used throughout Section 3 as the basis
for describing idiom and family interrelationships and information flows. However, other kinds of
configurations are discussed briefly in some places to make key points about certain processes.

The CFRP idioms and families (in association with the CFRP composition techniques) represent a
complete, cohesive system of reuse processes. That is, reuse processes can be adequately described
at a high level by the classes and patterns of activity formed by CFRP idioms and families. Fur-
thermore, eliminating a process family or otherwise substantially altering the relationships among
the families or idioms could significantly alter the basic meaning of the CFRP and jeopardize its
cohesiveness. The CFRP process families take on their unique characteristics largely by virtue of
participating in a network of interactions with other families, as captured in the structure of the
idioms. For example, Reuse Planning is defined with respect to its interactions with accompanying
Reuse Enactment and Reuse Learning families. Similarly, Asset Management functions would have
little meaning without the surrounding Asset Creation and Asset Utilization context.

On the other hand, the specific CFRP process categories defined in this document are considered to
be less critical to the cohesiveness of the CFRP and are thus open to interpretation and tailoring.
Some organizations may employ reuse processes that cannot be readily mapped to current CFRP
categories, and they may wish to define additional categories. Alternatively, some organizations
may elect to repartition the processes within the families to establish a different set of categories that
is better suited to modeling that organization’s processes. In general, the mapping of processes

Page 12

October 25, 1993 STARS-VC-A018/001/00

to categories will vary across organizations and will change over time within any organizational
context. The CFRP can thus be viewed as flexible and tailorable at the category level and likely
to evolve over time to reflect experiences and alternative viewpoints.

The CFRP idioms, families, and categories form a hierarchical classification scheme for reuse-
oriented processes. In addition, the CFRP describes how those processes can interrelate and
interact. The CFRP can thus be viewed as a domain model and high-level architecture for the
reuse process domain (with variability at the process category level, as noted above). As is true
of domain models and architectures in general, the CFRP is intended to promote understanding
and reuse within its domain. That is, the CFRP addresses not only reuse processes, but also reuse
of those processes, by providing a framework for the definition and composition of process assets.
However, the CFRP process elements do not cover all processes involved in software engineering,
and the reuse of many processes addressed by the CFRP will involve integrating them with other
non-reuse-oriented processes to compose total life cycle models tailored to the needs of an organi-
zation or project. The CFRP Application document addresses this and other applications of the
CFRP in significant detail.

The two subsections that follow describe the Reuse Management and Reuse Engineering process
idioms and their constituent process families and categories in greater detail. These subsections
are not greatly dependent on one another and can be read in either order, depending on reader
interest. Each subsection presents an overview of the idiom and then provides three subsections
that describe each of the idiom families in significant detail. Each of these family subsections
presents an overview of the family and then provides a set of subsections that describe each process
category within the family.

3.1 Reuse Management Process Idiom

The Reuse Management process idiom describes a cyclical pattern of planning, enactment, and
learning processes fundamental to domain-specific reuse-based software engineering. Reuse Man-
agement can be viewed as a systematic “learning loop” for managing innovation and improvement
of the reuse capabilities within a reuse program. The Reuse Management idiom encompasses
the following major functions, distributed throughout its three constituent process families, Reuse
Planning, Reuse Enactment, and Reuse Learning:

¢ Determining and evolving the objectives, stra;tegy, and scope of a reuse program, resulting
in selection of a set of suitable domains and product lines in which to apply reuse within an
organization;

o Planning, establishing, monitoring and evaluating Reuse Engineering (Asset Creation, Asset
Management, and Asset Utilization) projects addressing the selected domains and product
lines;

o Incorporating reuse processes into the organization’s overall software engineering processes
and policies;

¢ Planning, implementing and improving the organization’s reuse infrastructure;

e Managing improvement, innovation, and research on reuse processes, tools, and domains
within the organization.

Page 13

October 25, 1993 STARS-VC-A018/001/00

Conventional software engineering focuses on the production of application systems, and Reuse
Engineering widens this notion to include production of managed collections of reusable software
assets (i.e., asset bases) addressing specific application domains. Reuse Management adds a strate-
gic level above Reuse Engineering by selecting the key domains and product lines of interest for
a reuse program, establishing reuse-related projects focusing on those domains and product lines,
and learning »bout those projects and other aspects of the reuse program in systematic ways.

In planning reuse-related projects, Reuse Management emphasizes interconnections among the
projects. Reuse by its nature implies interdependence and cooperation among organizations and
individuals, so project interconnections must be explicitly planned and managed to ensure reuse
effectiveness. In addition, since these interconnections can have significant structural and cul-
tural impact within participating organizations, Reuse Management addresses issues of technology
transfer, organizational change and restructuring, and evolution of engineering capabilities. Also,
whereas Reuse Engineering processes establish a kind of asset marketplace internal to a reuse pro-
gram, Reuse Management addresses the exchange of technology, assets, and domain knowledge
with organizations external to the program. Reuse Management activities also address the plan-
ning, implementation, and evolution of the reuse infrastructure necessary to support the engineering
projects within the program.

Reuse Management learning processes are consistent with the incremental, evolutionary improve-
ment approaches exemplified by Continuous Process Improvement (CPI) and Total Quality Man-
agement (TQM). Reuse Management therefore supports definition of explicit, measurable objectives
for reuse, collection of metrics necessary to evaluate success in achieving those objectives, and re-
flection on the data to improve the reuse approach in subsequent engineering activity. However,
Reuse Management yoes beyond such approaches by incorporating emerging general theories of
organizational learning [Sch83, Bee72, Sen90] that have been adapted to the reuse-based software
engineering context. Reuse Management thus includes processes for analyzing and synthesizing
qualitative project experience and lessons learned, research results, and market advances to gen-
erate new discoveries and unanticipated insights. Such discoveries and insights, which can yield
enhancements of a more revolutionary than evolutionary nature, emerge largely as a result of
learning processes that explicitly encourage innovation.

Because of this integrated approach to learning and innovation, the Reuse Management idiom can
be viewed as a kind of “maturity engine” that promotes continual increases in the maturity of reuse
processes, technology, and overall reuse capabilities within an organization.

Idiom Elements and Their Interactions

The Reuse Management idiom consists of three process families, decomposed into a total of 11
process categories, as shown in Table 1. These families and categories are described in significant
detail throughout the remainder of this section.

The following key concepts provide a useful basis for describing and understanding the relationships
between elements of the Reuse Management idiom.

¢ Reuse Program - A reuse program is the set of activities and capabilities encompassed
by a particular instance of the Reuse Management idiom. Each reuse program has a defined

Page 14

October 25, 1993 STARS-VC-A018/001/00

scope representing the program’s technical and organizational boundaries. The program scope
includes the program’s Reuse Management activities, a set of enacted reuse projects (and/or
nested reuse programs), a set of selected domains and application product lines defining the
technical context for the enacted activities, and an organizational context in which the overall
program activities are performed.

¢ Reuse Project — A reuse project is any collection of Reuse Engineering activities that is
managed and enacted as a unit by Reuse Management processes. Reuse projects as dis-
cussed in this document generally involve activities from only one of the Reuse Engineering
process families. Each project may thus focus distinctly on Asset Creation activities, Asset
Management activities, or application engineering activities involving Asset Utilization.

o Reuse Cycle -~ Because the primary flows of information within the Reuse Management
idiom are from Reuse Planning =—> Reuse Enactment => Reuse Learning —> Reuse Plan-
ning, reuse programs are conceived of as sequences of iterations, or cycles, through the three
process families. Each reuse cycle (or reuse program cycle) represents one pass through the
various Reuse Management steps in a particular reuse program.

¢ Reuse Initiative - The CFRP Reuse Management idiom is applicable both in organizations
that are transitioning to reuse-based approaches and in organizations in which reuse has
become ingrained. Management of the transition phase in which a reuse program is initially
established will differ in some ways from the ongoing activities that sustain the program. A
reuse program thus consists of an initial reuse cycle, termed a reuse initiative, to manage the
transition phase, followed by a number of sustaining reuse cycles.

Although this document presents Reuse Planning as the first family in the Reuse Management id-
iom, reuse program cycles can begin with Reuse Enactment (representing a prototyping, exploratory
style) or Reuse Learning (emphasizing research and empirical data collection from existing prac-
tice). Also, the term “reuse cycle” may be somewhat misleading, in that it may imply that Reuse
Management activities move strictly sequentially between Reuse Planning, Enactment, and Learn-
ing. Even though the overall pattern is cyclical, there may be considerable concurrent activity
among the families, particularly in stable reuse programs. While reuse projects are being enacted,
observation and learning about the projects and infrastructure may be underway, and initial plan-
ning activity may have begun for the ensuing cycle or for some projects that are not completely
synchronized with others.

The above definitions of “reuse program” and “reuse project” are most readily understood in terms
of the canonic CFRP configuration shown in Figure 1. In this configuration, the outer Reuse
Management idiom and the enacted Reuse Engineering families map clearly to the conventional,
intuitive notions of a reuse program managing a set of reuse projects within a single organization.
However, when considering more complex CFRP configurations (as discussed in Appendix A), the
concepts of “reuse program” and “reuse project” are open to somewhat broader interpretations.

For example, any Reuse Management idiom can be modeled as having other Reuse Management
idioms nested recursively within it (as in Figure 11 in Appendix A); each of these, by the above
definition, is a “reuse program”. Such CFRP configurations can reflect the hierarchical structure
of an organization (e.g., company — division — department — project — engineer), with the
Reuse Management idioms at each level of nesting representing a particular organizational level.
The concept of a “reuse program” is thus scalable to any organizational level, and needn’t reflect

Page 15

October 25, 1993 STARS-VC-A018/001/00

only the static, intuitive view implied in Figure 1. Reuse projects are similarly scalable to reflect
the scope of the work managed at different organizational levels, ranging from division-level reuse
efforts down to individual engineering tasks.

In a situation involving nested reuse programs, the planning decisions made in any given program
are considered to be “inherited” by its nested programs to establish a planning context for those
programs. The nested programs thus are subject to the objectives, strategies, project plans, lessons
learned, etc., that are produced at the higher level. The nested programs may refine, or perhaps
even contradict, the inherited planning decisions, depending on the degree of planning freedom they
enjoy. This planning freedom is generally a function of the management style prevailing within the
organization.

Although the remainder of this section describes the CFRP in terms of the canonic CFRP con-
figuration and the straightforward view of reuse programs and projects that it suggests (with the
occasional exception where appropriate), some readers may wish to consider the impact of other
CFRP configurations when reading this section.

The following subsections describe the Reuse Management process families in more detail.

3.1.1 Reuse Planning Process Family

The Reuse Planning process family encompasses both strategic planning and tactical, project-
oriented planning within a reuse program. Strategic planning processes establish reuse program
strategies that can span multiple reuse cycles (although each cycle may evolve the strategies).
Strategic planning determines how organization resources should be applied to initiate and sustain
reuse-based development in accordance with overall business objectives. Strategic reuse planning
differs from traditional strategic or project planning, in part because of the need to consider the
organization’s key domains of interest. One key strategic reuse planning function, which augments
traditional product line planning within an organization, is to select the key domains of focus for
the reuse program and determine how the domain assets will support the organization’s product
engineering efforts.

Based on strategic domain and product line planning decisions, the tactical, project-level planning
processes plan specific Reuse Engineering projects. These can include Asset Creation projects to
create assets in the selected domains, Asset Management projects to manage the assets appro-
priately, and product engineering (Asset Utilization) projects to utilize the created assets. Reuse
project planning processes generally plan reuse project activities for the duration of one cycle and
replan relevant activities in each subsequent cycle, based on the results of Reuse Learning activities.
The project planning activities address topics such as project processes, project interconnections,
project infrastructure requirements, and resource planning. These planning activities can differ
from conventional planning, due to the novel ways in which Reuse Engineering projects can be
interconnected to exploit and evolve domain resources, and the way in which the CFRP promotes
definition and tailoring of reuse-based project processes through integration of CFRP-consistent
reuse process assets with existing process models.

Another key focus of Reuse Planning is the reuse infrastructure that is required to transition to
and sustain a reuse-based software engineering approach. Infrastructure planning can focus both

Page 16

October 25, 1993 STARS-VC-A018/001/00

\
\
\

\
Market Forces

\
\

Software Systems

Domain Knowledge
Technology

Organizational Context
Lessons Learmed

Recommendations

Figure 2: Reuse Planning Process Family

on long-term strategic capabilities and on the short-term requirements of individual projects.

As shown in Figure 2, the inputs to the Reuse Planning family include:

o Market Forces characterized by new market trends, competitive developments, new tech-
nologies, emerging standards, and other factors that impact perception of marketplace needs

¢ Software Systems in domains of interest that can impart legacy knowledge about the
domains and feed domain analysis or reengineering efforts to produce domain assets or new
application systems

¢ Domain Knowledge that can be imparted in a variety of ways (other than the legacy
systems) to provide information about domains

o Technology that can contribute to the reuse infrastructure within an organization and can
be applied to establish or automate reuse processes

¢ Organizational Context that includes the business strategies, policies and procedures,
expertise, technological capabilities, cultural legacies, etc., of the set of organizations involved
in the reuse program

Page 17

October 25, 1993 STARS-VC-A018/001/00

o Lessons Learned that provide feedback from the Reuse Learning process family about
preceding program cycles

¢ Recommendations from the Reuse Learning family regarding potential new domains and
enhancements to the reuse program strategy, reuse infrastructure, and reuse processes

The outputs from the Reuse Planning family include:

o Plans for the reuse program, including program objectives and strategies, program scoping
decisions, reuse infrastructure plans, individual reuse project plans (with planned interrela-
tionships), and criteria and metrics for evaluating the program

¢ Processes to be employed by the projects

¢ Committed Resources to support the projects, in terms of funding, staffing levels, exper-
tise, equipment, etc.

The subsections that follow describe each of the Reuse Planning process categories shown in Fig-
ure 2.

3.1.1.1 Assessment Process Category

Assessment processes characterize the current state of reuse practice within an organization, the
readiness of the organization as a whole (or of specific groups) for practicing reuse-based software
engineering, and the reuse technology and expertise available both internal and external to the
organization. In addition, Assessment processes help to identify key opportunities for applying
reuse to improve business practices and possibly gain competitive advantage.

Assessment draws upon the learning insights gained from previous reuse program cycles. Assess-
ment processes thus form an important bridge between the Reuse Learning and Reuse Planning
processes, enabling accumulated lessons to be used, not just learned. Learning results to be con-
sidered can include feedback about the state of reuse practice within the organization, specific
recommerdations (with rationale) based on evaluation of current practice, detailed lessons learned,
and new discoveries and innovations. Depending on the degree of up-front planning desired, addi-
tional assessment activities internal to the reuse program can be initiated; for example, interviewing
key personnel to assess experience and expertise in various domains, or inventorying software ar-
tifacts available for potential reengineering. Assessment activities can also take into consideration
business needs and constraints as seen from a broader organizational perspective, and can analyze
information from external sources addressing market factors such as competitive challenges, new
technologies, emerging standards, developments within relevant application domains, and so on.
Assessment processes synthesize the information from these various sources to establish a context
for other planning processes.

While some assessment activities will be performed in ways that are unique to the needs and
culture of an organization, other assessment activities can follow established or emerging guidelines
developed within the reuse research community. For example, models are being developed that
enable organizations or projects to formally assess their reuse capabilities in terms of particular
dimensions or aspects of reuse [Sof93b, Vir92a].

Page 18

October 25, 1993 STARS-VC-A018/001/00

3.1.1.2 Direction Setting Process Category

Direction Setting processes define specific objectives for the reuse program, strategies for achieving
those objectives, and criteria for evaluating how successfully the objectives have been met. These
planning elements can vary considerably from one organization to another, depending on factors
such as overall business goals and high-level software engineering policies. For example, objectives
and strategies for the following types of organizations may differ substantially: a company seeking to
market reusable components or develop systems based on them, a DoD program office establishing a
reuse program for a given application domain, a contracting organization developing or integrating
custom systems, or a system maintenance organization.

Objectives and strategies can also address different stakeholder perspectives within an organization,
at varying levels of detail. For example, reuse program objectives can include high-level business
objectives (e.g., win certain contracts because of reduced cost and demonstrated domain capabil-
ities), more detailed business or management objectives (e.g., increase productivity, reduce cost,
or improve time-to-market by certain percentages), or technical objectives (e.g., modernize the
technical infrastructure, establish domain capabilities to ease maintenance and improve quality).

The strategies developed to achieve program ob jectives are used to plan and guide the program’s Re-
use Engineering projects and reuse infrastructure. The strategies employed can, among other things,
emphasize investment in different areas. One strategy might involve focused, capital-intensive Re-
use Engineering efforts (e.g., domain analysis, investment in generative technology) in business
areas where sufficient return on investment is projected and risk is acceptable, while another strat-
egy might emphasize more broad-based efforts to cultivate reuse more naturally through tools,
education, incentives, organizational redesign, and integration of reuse into organizational policies
and procedures.

The models that are now eme-ging in the reuse community to support the Assessment process
category (see above) also can offer a basis for Direction Setting. These models can be used not only
to assess current capabilities, but also to define objectives for making specific improvements to those
capabilities. Furthermore, by describing both current and desired capabilities in common terms, the
models provide a useful context for developing strategies to transition to the desired capabilities.
Such models also can assist in defining reuse program success criteria by giving planners guidance
in deriving questions (and perhaps metrics) for evaluating whether the objectives are being met.
Use of such models results in the direct coordination of Assessment and Direction Setting processes.

Since t'ic objectives and strategies may depend in part on decisions about the specific domains
and reuse-driven preduct lines on which the reuse program will focus (and vice versa), Direction
Setting and Scoping processes may require close coordination. This will ensure that the strategies
of the reuse program and the scope of its activities are mutually consistent.

Also, in practice, reuse-specific Direction Setting processes must be integrated with more gen-
eral goal setting and strategy development processes within the program’s organizational scope to
integrate and prioritize reuse issues in a broader business context.

3.1.1.3 Scoping Process Category

Scoping processes define the overall scope of the reuse program by delineating the program’s tech-

Page 19

October 25, 1993 STARS-VC-A018/001/00

nical and organizational boundaries. The technical scope is defined in terms of the domains and
product lines to be encompassed by the reuse program, while the organizational scope is defined
in terms of the program’s organizational context and management influence. A program scope’s
level of detail will generally be greater when the organizational scope is narrow, reflecting the
finer-grained planning decisions made at lower levels within an organization.

Scoping processes draw upon information from various sources (particularly Assessment processes)
to define a program scope that supports the reuse objectives and strategies defined by Direction
Setting. As part of this activity, Scoping processes can focus on a variety of issues, such as candidate
domains and product lines to target within the program, organizations or groups that could be
involved in the program, potential asset and infrastructure suppliers and/or consumers in the
program context, and other market or business factors that could influence decisions about program
scope.

The major aspect of Scoping in the CFRP context that distinguishes it from more conventional
planning approaches is selection of the key domains of focus for the reuse program and development
of a planned approach for applying assets in those domains to selected application products or
product lines. The selected domains may be targeted for Asset Creation efforts or chosen based on
availability of an existing asset base. The process of selecting applicable domains may be tightly
intertwined with the mapping of those domains to application products, because domain relevance
to existing or planned product lines may be a key domain selection criterion.

A first step in domain selection is to identify and characterize promising candidate domains, based
on the organization’s business interests, key areas of expertise, and existing legacy systems. Some of
this activity may be performed by Assessment processes. Criteria for identifying promising domains
can be quite extensive; examples include [HCKP89, JHD*90):

¢ The domain is well-understood and includes codified experience that can predict technology
and provide domain expertise,

¢ The domain is based on predictable technology that will not make the reusable assets obsolete
before the investment in their development can be recovered,

¢ Domain expertise is available to support Asset Creation, or relevant assets are already avail-
able in the domain, and

o The domain addresses key functional needs within existing and planned application products.

After candidate domains have been identified, they are further evaluated by applying additional
or refined criteria, prioritized appropriately. This results in selection of one or more domains for
which Reuse Engineering activities are to be initiated (or for which external sources of assets are
to be selected). Goals of the domain selection process include:

o Identify the highest payoff, lowest-risk domains from among the identified candidates,

¢ Demonstrate sufficient promise in domains for which suitable assets are not available, to gain
commitment for Asset Creation efforts, and

Page 20

October 25, 1993 STARS-VC-A018/001/00

o Document the selection process and rationale so that it can be reused by subsequent domain
selection processes.

In general, the initial domain identification activity focuses on the general technical feasibility of a
domain in supporting reuse within the organization. The actual domain selection process focuses on
criteria and trade-offs addressing more strategic issues, such as the relative priority of the domain
in the current environment of an organization, the utility of the domain in supporting specific
organization product lines, and economic factors such as projected return on investment. These
issues should be considered in the context of factors such as domain stability and organizational
priorities for near-term vs. long-term payoff.

3.1.1.4 Infrastructure Planning Process Category

Infrastructure Planning processes (a) identify needs for various types of support that are common
among planned reuse projects, and (b) develop plans for establishing a shared reuse infrastructure to
satisfy those needs. Reuse infrastructure can be informally divided into its technical, organizational,
and educational aspects:

o Technical infrastructure includes computer and communication equipment, support tools and
environments to automate reuse processes, technical support functions such as configuration
management and quality assurance, reusable process definitions that are applicable across
projects, technical standards and guidelines, etc.

¢ Organizational infrastructure includes staff members, office facilities, non-technical organi-
zational support functions, organizational policies and procedures, organization and project
history information, funding models, incentive strategies, institutionalized project role defi-
nitions, reuse-oriented task forces, transition teams and steering committees, etc.

o FEducational infrastructure includes capabilities for developing and evolving necessary knowl-
edge and skills among individual workers in an organization.

These aspects of infrastructure may not be as cleanly divisible as implied above. For example, pro-
cess definitions may be codified in organizational policies and procedures. Furthermore, individual
infrastructure elements will generally be interdependent and have implications on one another. For
example, manually enforced reuse policies can eventually become automated by support tools, and
introduction of new tools invariably creates new requirements for reuse education and training.

The infrastructure needs within a reuse program are closely tied to the program’s reuse strategies,
the pre-existing infrastructural capabilities, the organization’s projected capacity for change, and
the specific project strategies and processes. It is important to be realistic in planning the infras-
tructure so as not to introduce change at a greater rate than an organization can accommodate.
Hence, Infrastructure Planning should involve short-term planning that addresses the specific in-
frastructure capabilities that can be accommodated in the current reuse cycle, as well as longer-term
planning that addresses incremental insertion of more advanced capabilities over a span of several
reuse cycles.

Page 21

S,

October 25, 1993 STARS-VC-A018/001/00

Infrastructure Planning and Project Planning are interdependent processes, since infrastructure
needs can be fully determined only in the presence of project strategies and processes, and project
plans describing the specific infrastructure capabilities to be used by each project can be finalized
only in the presence of infrastructure plans. Thus, Infrastructure Planning and Project Planning
should generally be closely coordinated and performed in parallel or iteratively.

Also, since many reuse infrastructure elements identified above overlap with traditional infrastruc-
ture needs in an organization, the reuse Infrastructure Planning processes must be coordinated
with planning for the organization’s overall infrastructure.

3.1.1.5 Project Planning Process Category

Project Planning processes plan the reuse program’s Reuse Engineering projects in detail. This
first involves determining which specific projects to plan, based on the domains and application
product lines targeted for reuse activity by Scoping processes. Asset Creation projects are identi-
fied to produce desired domain capabilities, and application engineering projects are identified to
incorporate Asset Utilization processes that exploit the domain capabilities. In addition, a set of
Asset Management projects is identified that will most effectively serve the needs of the (possibly
multiple) Asset Creation and Asset Utilization projects. In any of these cases, new projects may
be established or existing projects may be evolved, as appropriate. Once the individual projects
are identified, dependencies and information flows among the projects are defined explicitly. The
resulting plans can be considered a “project architecture” for the reuse program, specifying the
relationships and interconnections of the various Reuse Engineering projects in CFRP terms.

Some of the projects identified via the above approach may be external to the organization es-
tablishing the reuse program. For example: external Asset Creation projects may exist that are
already producing relevant assets in a target domain; external clients may exist for domain assets
that the organization is producing; relevant assets may be available through an external organiza-
tion providing Asset Management services in a target domain. To the extent that such external
involvement is consistent with the organizational scope and strategy of the reuse program, Project
Planning processes should evaluate such opportunities (perhaps identified by Assessment or Scop-
ing processes) and incorporate external projects into the “project architecture” appropriately. The
Project Planning activities described below relate to projects that are within, or can be directly
influenced by, the planning organization.

Project Planning is responsible for establishing specific objectives for each identified project, and
for defining the metrics to be used to evaluate the effectiveness of the projects relative to those
objectives and the objectives of the overall reuse program. A variety of metrics can be defined
relating specifically to assets and reuse. Examples include:

o The number of assets produced in each domain

o The percentage of each application product that was directly derived from domain assets
o The percentage of assets in each domain that have been reused at least once

¢ The number of times each asset has been successfully (or unsuccessfully) reused

¢ Reliability and maintainability metrics for the assets and resulting application products

Page 22

————

October 25, 1993 STARS-VC-A018/001/00

o The number of assets that have been extracted from or submitted to a library
¢ The number of regular users of an asset library

¢ The rates of change in the above metrics over time

A key Project Planning activity is definition of the specific processes that will be employed on each
project. In a mature, stable reuse program, these processes may be institutionalized as policies
and procedures within the organizational infrastructure, requiring only minor tailoring for each
project. In less stable circumstances, such as in a reuse initiative, reuse-based processes generally
will not be available within the organization and will have to be developed from scratch or obtained
(and probably adapted) from other sources. The CFRP supports the definition and reuse of reuse
process assets to facilitate project process definition and tailoring, so if an external process asset
library is available containing such assets, they can be integrated with existing conventional life
cycle processes to incorporate needed reuse capabilities.

Another aspect of Project Planning is the identification of reuse infrastructure capabilities (aside
from process definitions) that will be used by each project to support the processes it will employ.
In addition, plans should be developed for tailoring the identified capabilities to suit the needs of
each project, if such tailoring is necessary.

The final stage of Project Planning is to plan the reuse projects’ resource needs, budgets, and sched-
ules in detail and then obtain the necessary commitment to implement the plans. Commitment
should be obtained from both higher level management and the technical staff members whose
buy-in will ultimately determine whether or not reuse practice is really improved by the program.
Obtaining this commitment can be difficult, due not only to technical considerations and resource
requirements, but also resistance to change. Iteration among Direction Setting, Scoping, and In-
frastructure and Project Planning processes will often be required before the necessary commitment
can be obtained.

3.1.2 Reuse Enactment Process Family

The Reuse Enactment process family addresses initiation, performance, and retirement of the var-
ious reuse-related projects planned by Reuse Planning. Reuse Enactment processes also include
supervisory activities, such as project control, monitoring, mid-course corrections, and local adap-
tation of processes and policies to accommodate project-specific circumstances.

Although Reuse Enactment processes can, in general, manage and control any project or process
(including nested Reuse Management processes or even non-reuse-oriented processes), the emphasis
in this section is on management of a set of interrelated projects employing Reuse Engineering
processes. The managed projects and their interrelationships reflect the “project architecture”
produced by Project Planning.

As shown in Figure 3, the inputs to the Reuse Enactment family include:

¢ Plans for the reuse program, including program objectives and strategies, program scoping
decisions, reuse infrastructure plans, individual reuse project plans (with planned interrela-
tionships), and criteria and metrics for evaluating the program

Page 23

October 25, 1993 STARS-VC-A018/001/00

Figure 3: Reuse Enactment Process Family

¢ Processes to be employed by the projects

¢ Technology that can contribute to the reuse infrastructure and can be applied to establish
or automate reuse processes

¢ Committed Resources to support the projects, in terms of funding, staffing levels, exper-

tise, equipment, etc.

The outputs from Reuse Enactment processes include:

¢ Project Measurements collected during project enactment to measure the effectiveness of
the project processes, products, and infrastructure

¢ Project History that provides qualitative historical information about the project processes,
products, and infrastructure

¢ Reuse Infrastructure that is implemented and evolved within Reuse Enactment

The subsections that follow describe each of the Reuse Enactment process categories shown in
Figure 3.

Page 24

October 25, 1993 STARS-VC-A018/001/00

3.1.2.1 Project Management Process Category

Project Management processes establish a temporal context for reuse project activities and per-
form detailed project supervision. Temporal Project Management tasks include project initiation,
performance, and retirement, in recognition of the fact that projects and processes have distinct
lifetimes within an organization. Supervisory tasks include project control and monitoring.

Project processes can be viewed as generating output that includes not only explicitly planned prod-
ucts, but also project measurements and history of various kinds. Detailed performance history and
rationale, adjustments in performance relative to plans, and metrics are all secondary or “learning-
oriented” rather than “product-oriented” results of project enactment. Reuse Management, in
controlling any project, should prioritize and balance the product-oriented and learning-oriented
activity to ensure that each is adequately emphasized.

Project Management includes the following specific functional areas:

o Project initiation activities include allocation and tailoring of technical reuse infrastructure
capabilities to specific projects; allocation of project resources committed during Reuse Plan-
ning; staffing, training, and team formation for the specific organizational units involved in the
projects; and application of incentives, funding strategies, and other relevant organizational
policies and mechanisms to the projects.

¢ Project performance, at the core of Reuse Enactment, is where the processes being enacted
are “hooked in” to the Reuse Management idiom and actually performed by individual staff
members. Project performance activities are distinct from the processes being enacted in
that they involve tactical decisions about how the work will be performed on a detailed, day-
to-day basis. At one level, project performance activities can be viewed as individualized
techniques for filling in the minute implementation details that are generally missing from
project processes established in Project Planning.

o Project control activities intervene with project performance to optimize overall project per-
formance relative to reuse program and project objectives and constraints. Project control is
the “management” function (in the most conventional sense) for the projects being performed.
Project control activities may dynamically adjust project budgets, schedules, staffing, pro-
cesses, infrastructure, task assignments, etc., in response to performance deficiencies identified
during project enactment. '

o Project monitoring activities capture “learning-oriented” information from the projects as
they are performed. Some of this information provides detailed feedback to project control
activities to support needed project adjustments. Such information can include data collected
in accordance with some or all of the reuse project metrics identified in Project Planning.
Project monitoring activities also supply information to Reuse Learning processes. This infor-
mation includes all reuse program and project metrics data, as well as more qualitative project
history information such as a record of the process steps that were applied and rationale for
the decisions that were made and the workproducts that were created.

o Project retirement activities can include termination procedures for the project, capture of
essential project results, elimination of information needed solely to maintain the project
on an ongoing basis, debriefing of experts on the knowledge gained during the project, and

Page 25

October 25, 1993 STARS-VC-A018/001/00

archival of the key results and knowledge as part of the reuse infrastructure. Since every
process produces knowledge as well as products, and some of this knowledge can only be
finalized with project completion, a managed project retirement process should be an explicit
part of a reuse-based engineering paradigm. This will enable each project to become part of
an established reuse program legacy that may be assessed or reused in future reuse cycles.

Project control activities may involve project re-direction — not merely simple adjustments during
performance to better meet project objectives, but also updates to original planned projections,
budgets, milestones, schedules, and technical approaches, or even revisions of the objectives based
on experience or rapidly shifting conditions. Such mid-course corrections should be documented,
with associated rationale, so that later evaluations of project success can take into account any
substantive changes to the plans or objectives. In the case of projects where the learning output is
prioritized higher than the product output (such as in training or educational settings, controlled
R&D experiments, or shadow projects), re-direction may be discouraged or prohibited to ensure
that needed lessons are learned.

3.1.2.2 Infrastructure Implementation Process Category

Infrastructure Implementation processes ensure that reuse infrastructure capabilities are established
and evolved in accordance with infrastructure plans and evolving project needs. Infrastructure
Implementation can be divided into the technical, organizational, and educational aspects of reuse
infrastructure identified in the description of the Infrastructure Planning category above.

o The reuse technical infrastructure includes software process and method descriptions, tools
and environments to provide automated support for reuse processes, technical standards and
guidelines, technical support functions (e.g., configuration management, quality assurance),
and computer hardware and other technical resources needed by reuse projects.

To be considered part of the reuse infrastructure, tools should specifically support reuse
processes and should be applicable across multiple projects within the reuse program’s scope.
Reuse support tools may include tools developed specifically to support reuse (e.g., modeling
tools to be used by domain analysts during Asset Creation), or may be general software
engineering tools adapted to serve reuse needs (e.g., code inspection tools that are used
for asset understanding). Implementing the technical infrastructure may involve acquiring
technology through external organizations (e.g., commercial vendors) or developing it in house
if appropriate.

Existing technical support functions within an organization may be called upon to perform
similar roles in a reuse context, and they will need to be adapted appropriately to support
reuse. For example, a quality assurance department that is assigned responsibility for Asset
Certification will need to adapt their existing processes to take reuse-specific factors into
account.

o A key aspect of the reuse organizational infrastructure is the body of institutionalized policies
and procedures that regulate various tasks and activities within an organization. An appro-
priate set of policies and procedures should be selected and tailored (as allowed) for use on the
reuse program. Policies and procedures may overlap with the technical infrastructure in that

Page 26

October 25, 1993 STARS-VC-A018/001/00

they may mandate the use of specific processes, methods, guidelines, standards, and tools
within a broad organizational context. Qver time, reuse-specific practices should be captured
in policies and procedures as they become more widespread throughout an organization.

Organizational infrastructure implementation also involves activities to standardize reuse-
oriented project role definitions, establish funding models and incentive strategies that pro-
mote reuse, and establish reuse-oriented task forces, transition teams, steering committees,
and so on. Funding models can include reuse-oriented software cost estimation models, do-
main engineering return-on-investment models, etc. Incentive strategies can include reward
systems for investment in reuse and for creation and utilization of assets, publication of success
stories and testimonials attesting to the benefits of reuse, etc.

Another facet of the organizational infrastructure is the ongoing capture and maintenance
of organizational and project history information. This can include project plans, results,
experiences, lessons learned, and other information that can be of use to future planning
efforts. A sophisticated way of dealing with this issue is to manage such information in an
“organizational asset library” that includes not only historical information, but also other
aspects of the infrastructure, such as process definitions, policies and procedures, and so on.
In this context, Reuse Management activities can be viewed as also playing Asset Creation,
Management, and Utilization roles with regard to these organizational assets.

Organizational infrastructure activities also address infrastructure issues such as building a
staff of suitable size with suitable reuse skills and experience, providing adequate office facili-
ties, and establishing organizational support functions (e.g., photocopying and documentation
support).

e The reuse educational infrastructure is needed to develop and maintain the reuse skills and
capabilities needed by individual workers in the context of a reuse program. Transitioning to
reuse-based software engineering will require cultivation of new technical and interpersonal
skills to accommodate new project roles, new processes and tools, and new forms of team
interaction. Existing personnel may be assigned to the new reuse-oriented roles, or new
personnel may be hired to address specific needs. In either case, training in reuse concepts
and skills will be needed, though the needs will vary from one reuse project to the next,
depending on the background of the workers involved. The organization will need to either
establish an in-house training capability to accommodate these educational needs, or acquire
training from external sources. .

The above view of Infrastructure Implementation suggests a general bottom-up approach for “pro-
moting” infrastructure capabilities from initially narrow use to increasingly widespread and stan-
dardized use, based on their increasing level of acceptance and generality over time. In this ap-
proach, reuse capabilities (e.g., processes, guidelines, tools) are acquired or developed for use on
individual projects (perhaps even by individual engineers in their daily work). These capabilities
are monitored and evaluated as part of Infrastructure Implementation, and the capabilities that are
considered general (or generalizable) enough to be reusable for other projects are “promoted” to the
common infrastructure. As they achieve progressively more widespread use, they may be further
promoted by being incorporated into organizational policies and procedures that institutionalize
their use throughout the organization.

Page 27

October 25, 1993 STARS-VC-A018/001/00

3.1.3 Reuse Learning Process Family

The goal of Reuse Learning processes is to enhance the plans, performance, and overall reuse
capabilities of a reuse program, based on reuse project results and other relevant factors. Reuse
Learning achieves this goal in two major ways:

1. Identifying opportunities for improvement in the reuse program by evaluating reuse project
performance relative to program and project objectives.

2. Exploring opportunities for innovation that can be applied to the reuse program by analyzing
project history and experience in light of external factors (e.g., emerging technologies, changes
in domain requirements) to produce unanticipated discoveries and insights.

The results of Reuse Learning are fed back to Reuse Planning processes in the form of recom-
mendations for the next reuse program cycle. Such recommendations can address overall program
objectives and strategies (e.g, increase projected cost savings from reuse, apply reuse more in soft-
ware maintenance contexts), program scope (e.g., consider specific new domains, drop or rescope
axisting domain efforts, expand existing reuse-driven product lines), reuse infrastructure (e.g., ob-
tain new tools, evolve existing processes, establish additional training), or reuse projects (e.g.,
adjust individual project processes or tool choices, modify project interconnections, make greater
use of external asset sources). Reuse Learning results can also be propagated outside the program
to other reuse programs and organizations or to the reuse research community.

Learning is relevant to any activity emphasizing continual improvement, but it is particularly vital
to a managed approach to software reuse. Reuse is founded on the notion that the results of
prior work can be reapplied in current and future work. This only holds, in general, if future
needs are continually analyzed, work is performed to anticipate those needs, and workproducts
are continually evolved in concert with those needs. Such an approach requires continual learning
about the workproducts, the needs they must target, and the overall context in which the work
is performed. Although such learning can occur informally, the CFRP includes Reuse Learning
as a separate process family to encourage planners and managers to explicitly designate resources
for learning activities, rather than to have them occur in an ad hoc and unsupported manner.
The CFRP, by explicitly distinguishing between the production and learning aspects of software
engineering processes, encourages planners to directly confront and balance the trade-offs between
product-oriented and learning-oriented activities.

In addition to the product- or goal-driven approaches to learning that are characteristic of con-
ventional improvement methods such as TQM, Reuse Learning emphasizes a “reflective” learning
mindset [Sch83]. With this mindset, process and product improvement opportunities are identified
not only through measurements relative to specific objectives, but also through reflective observa-
tion of the processes and products to reveal new insights, lessons, and discoveries. This approach
can yield valuable results, such as new ideas for methods and strategies to apply in reuse activities,
suggestions for redesign of the technical infrastructure, ideas for new assets addressing higher levels
of abstraction, and new training concepts to better prepare personnel for reuse tasks. For example,
the rationale for decisions made by asset creators in developing a domain architecture, combined
with feedback from asset utilizers in using the architecture to build applications, may lead to the
realization that a process is needed for developing architectures having a completely different archi-

Page 28

October 25, 1993 STARS-VC-A018/001/00

Plans

Project Measurements Lessons Learned
Project History Recommendations
Innovative Technology

Figure 4: Reuse Learning Process Family

tectural style. The new process would not be an incremental improvement of the existing process,
but a substantially new and different process.

As with the CFRP idioms and families in general, the Reuse Learning family is relevant at each level
of planning within an organization, and across the software life cycle. At the personal level, Reuse
Learning processes can be applied to improve individual workers’ performance and skills through
systematic planning and reflection in the context of day-to-day work. At the project team level,
Reuse Learning can play a vital role in the continual evolution of project processes and products.
At the level of the orgamization as a whole, Reuse Learning can focus on continually enhancing
reuse capabilities across a broad range of domains and projects.

As shown in Figure 4, the inputs to the Reuse Learning process family include:

¢ Plans for the reuse program, including program objectives and strategies, program scoping
decisions, reuse infrastructure plans, individual reuse project plans (with planned interrela-
tionships), and criteria and metrics for evaluating the program

¢ Project Measurements collected during project enactment to measure the effectiveness of
the project processes, products, and infrastructure

¢ Project History that provides qualitative historical information about the project processes,
products, and infrastructure

Page 29

October 25, 1993 STARS-VC-A018/001/00

¢ Innovative Technology from sources internal or external to an organization that can have
impact on the processes, infrastructure, or assets within the reuse program

The outputs from the Reuse Learning family include:

¢ Lessons Learned from the current program cycle that can contribute to the overall reuse
program experience base and influence ensuing planning activities

¢ Recommendations regarding potential new domains and enhancements to the reuse pro-
gram strategy, reuse infrastructure, and reuse processes

The subsections that follow describe each of the Reuse Learning process categories shown in Fig-
ure 4.

3.1.3.1 Project Observation Process Category

Project Observation processes gather information about enacted reuse projects, package it as ap-
propriate, and make it available for other Reuse Learning processes. The information can be used
to evaluate project performance relative to objectives or can provide a basis for Innovation Explo-
ration. The information may also be considered to have legacy value by other reuse programs or
the reuse community at large. The project information can be gathered in a variety of ways, in-
cluding observations via instrumented tools and environments; reflective observation on the part of
project team members; solicitations of information from project team members through interviews,
questionnaires, debriefings, etc.; or observations by outside researchers. One set of information that
should always be gathered by Project Observation processes is metrics data generated in Project
Management in accordance with the project metrics defined in Project Planning. Some project
observations will inevitably be performed in parallel with reuse project activity, rather than taking
place after completion of the project.

Whereas TQM and similar approaches emphasize detection of problems such as breakdowns in
information flow within the work environment, a reuse-based approach also involves searching for
common sequences of engineering tasks that could be encapsulated in reusable form to promote
process reuse. Observers can learn to identify such common sequences of operations, but this
involves a set of skills quite different from general software engineering skills. As a reuse program
matures, these process observation skills should become increasingly ingrained and integrated within
the overall software engineering paradigm. A mundane example of such skills is an experienced Unix
programmer’s ability to recognize recurring sequences of system commands that can be encapsulated
in shell scripts.

3.1.3.2 Project Evaluation Process Category

Project Evaluation processes compare the project results that are generated in Reuse Enactment
(and gathered in Project Observation) with the reuse program and project objectives and success
criteria developed in Reuse Planning. This comparison yields a detailed evaluation of the successes
and shortcomings of the reuse program in the current reuse cycle. The results of the evaluation

Page 30

October 25, 1993 STARS-VC-A018/001/00

directly support the generation of recommendations for incremental improvements in subsequent
reuse cycles.

It is important to distinguish the Project Evaluation processes that support overall reuse program
evolution from the Project Management processes that apply mid-course corrections to projects
during enactment. Project Evaluation processes assess the performance of projects relative to their
objectives to support evolution of reuse program and project plans in the context of an overall
reuse program cycle. They do not provide feedback directly to Project Management processes to
intervene in the ongoing enactment of current projects. Note, however, that even though Project
Evaluation can be viewed conceptually as occurring after the evaluated projects are completed, in
practice the evaluation activities may be concurrent with Project Management activities. They
may even be performed by the same people, and those people should understand the distinctions
between the processes.

3.1.3.3 Innovation Exploration Process Category

A primary goal of Reuse Learning processes is to support the evolution of an organization’s reuse-
based software engineering capabilities. Innovation Exploration processes address this goal in a
different way than Project Evaluation, by gathering, generating, analyzing, and testing new ideas,
discoveries, and innovations to generate recommendations for potentially dramatic improvements.

One source of inspiration for Innovation Exploration processes is the results of the Project Evalua-
tion activities. When discrepancies between objectives and performance are discovered, hypotheses
or interpretations of probable causes for the discrepancies are often proposed. In general, such
hypotheses should be explored before becoming the basis for concrete planning in subsequent re-
use program cycles. Innovation Exploration provides the necessary managed-risk environment for
testing these hypotheses. Many R&D groups perform this kind of role within software engineering
organizations, but perhaps in a less managed or focused manner than is suggested here.

Innovation Exploration activities can also draw from Project Observation results. These results can
include project history, rationale, and lessons, as well as interesting artifacts that emerged during
engineering activity even though they were not anticipated in project plans. Here, exploratory
activity might involve collecting further data to assess hypotheses based on the engineering results,
or establishing experiments to build on those results in innovative ways to yield substantial new
discoveries and insights. In the context of such activity, Innovation Exploration can serve as
a key resource within Reuse Management for gathering and evaluating potential assets, domain
knowledge, and technology innovations from external sources (e.g., the research community, the
commercial marketplace, publicly available asset bases). Conversely, Innovation Exploration can
serve as a conduit for exporting internal innovations and research results to the external community.

A key question that may need to be addressed as a result of Innovation Exploration activities is
whether to modify program objectives that have not been attained, or introduce technical or policy
innovations that can increase the program’s overall reuse capability to make the objectives attain-
able. Potential recommendations that could result from Innovation Exploration to increase reuse
capability include dramatic changes to reuse tools, environments, and processes; restructuring of
organizational policies and procedures; changes in emphasis in organizational training materials;
and nomination of ripe new target domains. By their very nature, Innovation Exploration pro-
cesses promote substantial, and often revolutionary, change, whereas Project Evaluation processes

Page 31

October 25, 1993 STARS-VC-A018/001/00

tend to generate more incremental improvements. Together, Innovation Exploration and Project
Evaluation processes can provide a flexible set of mechanisms for promoting a variety of different
kinds of change in an organization.

3.1.3.4 Enhancement Recommendation Process Category

Enhancement Recommendation processes propagate the verified results of Project Evaluation and
Innovation Exploration to the Reuse Planning family of processes. Enhancement Recommenda-
tion may often emphasize consideration of the technical feasibility or desirability of new reuse
approaches, leaving more management- and business-oriented considerations to Reuse Planning.
Such analysis will generally be performed in the context of information available from within the
immediate program scope (e.g., plans, project results, and innovations from the current reuse cy-
cle). Enhancement Recommendation can also identify assets and domain resources that could be
made available to other reuse programs within or outside an organization.

Enhancement Recommendation may involve synthesizing the results of a number of separate in-
vestigative activities into concrete recommendations for the next planning cycle. Enhancement
Recommendation activities should appraise and trade off potential enhancements and innovations
as completely as possible before putting forth specific recommendations. Just as the process of
obtaining commitment within Project Planning may result in a number of iterations to revisit
program objectives and strategies, so the enhancements suggested by Innovation Exploration and
Project Evaluation may be initially rejected as insufficient or inappropriate, thus initiating a further
round of investigation. It is left to Reuse Planning functions to make final decisions on adoption
of the recommendations, depending on circumstances that prevail at the time of planning. Since
the planning cycle may be quite long-term, market forces, technology, and other factors could shift
significantly between the time recommendations are developed and the commencement of a new
reuse program cycle. On the other hand, there could be short-term feedback from Reuse Planning
that could trigger additional investigation of enhancements.

3.2 Reuse Engineering Process Idiom

The Reuse Engineering idiom describes a pattern of activity that addresses the creation, manage-
ment, and utilization of reusable assets in support of domain-specific reuse-based software engi-
neering. Because Asset Management serves in a kind of brokerage role between Asset Creation
and Asset Utilization, the idiom can be viewed as a reuse-specific specialization of a more general
Producer-Broker-Consumer idiom that reflects common marketplace interactions.

The Reuse Engineering idiom embodies the following general principles, which are characteristic of
the idiom as a whole and impact each of its individual process families:

¢ Domain analysis and the resultant models and architectures permeate all aspects of Reuse
Engineering and are critical for establishing the domain-focused mindset that is essential to
the success of a domain-specific reuse program. Because domain models and architectures
encapsulate an organization’s domain knowledge in ways that can be directly utilized to
build strategic application products, they will, over time, have fundamental impact on how

Page 32

October 25, 1993 STARS-VC-A018/001/00

an organization thinks about its business and marketplace, how it builds its products, and
how it applies its investment dollars (e.g., to improve and broaden its asset base).

¢ Reuse-based approaches are inherently quality-oriented. Reusable assets must be of high qual-
ity to encourage their repeated reuse. Asset libraries therefore should carefully manage asset
quality by establishing well-defined quality criteria, ensuring that only assets of acceptable
(or higher) quality are installed, and making information about the quality of assets available
to reusers. Also, since assets will be of value to an organization over significant periods of
time spanning multiple application projects, engineering processes should systematically gen-
erate feedback about assets to promote continual improvement of asset (and thus application)
quality over time.

o The asset brokerage role is fundamental to reuse. Reuse is often described in terms of a
simple dichotomy between “domain engineering” and “application engineering”, and asset
management is typically just lumped into one of these two areas. However, this approach
limits flexibility when, for example, working with applications that cross domain boundaries
or when creating assets in two or more domains that have redundant subdomains. Explic-
itly recognizing the importance of the asset management role in mediating and promoting
interactions between asset creators and utilizers results in substantially greater flexibility in
configuring processes and underlying infrastructure and in evolving them over time.

e The CFRP is neutral with respect to particular reuse approaches and technologies and recog-
nizes that they should be allowed to evolve over time within an organization in response to a
variety of factors (e.g., application technology changes, architecture evolution). However, it
is important that the specific approaches and technologies that are used among interdepen-
dent organizations be compatible across the Reuse Engineering families. For example, asset
creators should produce application generators only if asset utilizers are ready and equipped
to use them.

Idiom Elements and Their Interactions

The Reuse Engineering idiom consists of three process families, decomposed into a total of 16
process categories, as shown in Table 1. These families and categories are described in significant
detail throughout the remainder of this section.

Within the Reuse Engineering idiom, there are two principal kinds of information flow among the
process families (as depicted without labels in Figure 1). One is the flow of assets and associated
information from Asset Creation to Asset Management and in turn, in managed form, to Asset
Utilization. The other is the flow of feedback about assets, reuse services, and other related in-
formation from Asset Utilization to Asset Management and in turn to Asset Creation. Note that
Figure 1 also shows a direct flow from Asset Utilization back to Asset Creation, in recognition of the
fact that utilizers may often inform creators directly about significant shortcomings in the domain
model or architectures or in specific domain components. However, it is also possible for Asset
Management to be the mediator for all feedback between utilizers and creators, as may sometimes
be the case with centralized libraries that provide Asset Management services spanning multiple
domains. Feedback from Asset Utilization that is targeted specifically to Asset Management com-
monly addresses the quality of the Asset Management services themselves or focuses on relatively
minor problems with assets that can be resolved within Asset Management.

Page 33

October 25, 1993 STARS-VC-A018/001/00

Control flow among the Reuse Engineering families can be directly related to the information flows
described above, in terms of responding to feedback or to requests to manage or utilize assets. In
general, however, control flow among the Reuse Engineering families is difficult to characterize,
because it can differ greatly from organization to organization. In an organization that has a
mature reuse program underway, there will likely be Asset Creation, Asset Management, and Asset
Utilization projects in operation simultaneously and often asynchronously. It is usually only in the
early stages of a domain-specific reuse program that any clearly sequential high-level flow of control
among the families may exist; e.g., an Asset Creation project may be started to produce an initial
asset base, and after there is a critical mass of assets, an Asset Management project may begin
operation, at which point Asset Utilization may begin. However, even this scenario may not be
typical in practice, since many organizations, before beginning formal Asset Creation efforts, will
establish some form of reuse library capability to attempt to reuse existing artifacts as much as
possible.

The data and control fiows among the families are important to understanding how assets and asset
libraries evolve through feedback and refinement. However, there are no specific asset or library
evolution process categories defined within the Reuse Engineering idiom. This is because evolution
and refinement of products and processes is considered to be an implicit, natural phenomenon
within the CFRP, driven by continual application of the learning processes that are fundamental
to the Reuse Management idiom. In effect, each process has “built-in” capabilities for evolving
its own products, via higher-level or embedded learning processes that respond to feedback and
lessons learned from the development and use of the products. Such evolution can be gradual
(e.g., addressing identified shortcomings or bugs in individual assets; adjusting the library data
model to better address user needs) or can be more dramatic (e.g., generalizing or combining
assets into larger-scale assets; producing new, complementary assets to address evolving application
requirements; developing new tools to further automate composition of applications using particular
sets of assets).

Similarly, there are no explicit metrics collection processes in Reuse Engineering because of the
metrics definition, collection, and analysis activities inherent in the Plan-Enact-Learn mechanisms
within Reuse Management. This implies that the specific metrics needed by an organization with
regard to Reuse Engineering processes and products (e.g., library usage metrics) are planned,
collected, and evaluated by Reuse Management processes.

The above discussion of data and control flow generally assumes a straightforward configuration
of projects within the different families, where all of them are operated and controlled within the
same organization. As discussed in significant detail in Appendix A, substantially more complex
configurations among Asset Creation, Management, and Utilization projects are possible. These can
span organizational boundaries and involve complex interconnection patterns among organizations.
The data and control flows in each of these kinds of situations is likely to be highly idiosyncratic
and needs to be considered carefully on a case-by-case basis during planning.

3.2.1 Asset Creation Process Family

The goals of the Asset Creation process family are to (a) capture, organize, and represent knowledge
about a domain, and (b) use that knowledge to develop reusable assets that can be applied to
produce families of systems (and other products) within the domain. Asset Creation can be viewed

Page 34

October 25, 1993 STARS-VC-A018/001/00

as consisting of:

1. Domain Analysis and Modeling processes that analyze, abstract, and model the characteristics
of existing and envisioned application products within a domain in terms of what the products
have in common (their “commonality”) and how they may vary (their “variability”). This
information is captured in a set of domain models.

2. Domain Architecture Development and Asset Implementation processes that produce reusable
assets providing domain capabilities that reflect particular product commonalities and ranges
of variability defined by the domain models. These assets form a domain asset base.

In general, the assets produced by such an approach support a range of capabilities identified
during domain analysis, and should thus be applicable in multiple system contexts. In contrast,
traditional software development practices emphasize development of point solutions that satisfy
exactly one set of system requirements. As a simple example, countless implementations of the
“stack” abstract data type have been developed to address some unique set of application require-
ments. These implementations, in general, require some adaptation or reengineering to perform
correctly in different applications. However, some programming languages, such as Ada, permit the
definition of a generic stack package that can be tailored to form a specific stack implementation
by supplying parameters such as the type of element to be stacked or the maximum number of
elements to be stacked. The parameters that the package supports are, in effect, identified through
a form oi domain analysis for the stack domain (although the package designers may not be aware
of that). Such a generic package will generally be more reusable (i.e., applicable to a broader range
of systems) than a package in which the parameter values are hard coded.

Domain models and asset bases, as presented in this document, are logically at different levels of
abstraction and serve different purposes. The primary role of domain models within Asset Creation
is to assist in determining (and perhaps recording decisions about) which assets should be produced
and the range of characteristics they should support. For that reason, domain models focus on
describing the commonality and variability among existing and envisioned systems, rather than on
describing the systems themselves. The assets that are developed using the domain models are at
a lower level of abstraction: they describe or implement (or, in the case of application generators,
generate) system work products. The assets often accommodate some degree of variability, but
with a principal objective not of describing the variability, but of providing mechanisms to resolve
it during Asset Utilization to produce specific system solutions.

Domain models can have broader goals than is implied above. For example, they can serve as-a
general organizational repository of domain knowledge and experience to support domain evolution
and learning. They can thus provide a framework for recording information that has broader
organizational purposes than just the production of software assets or systems (e.g., information
concerning business planning, project and proposal histories, corporate experience, etc.). The
domain models and the general information they contain can themselves be viewed as assets from
this perspective. To focus the discussion, however, this section emphasizes the somewhat narrower
role that domain models play in support of asset development.

An alternative way of viewing Asset Creation is from the perspective of software life cycle stages
or products. This view is orthogonal to the “domain model vs. asset base” perspective described
above, in that it applies equally to both domain models and assets. In this view, domain models can

Page 35

October 25, 1993 STARS-VC-A018/001/00

Domain Models Assets Applications

Domain Analysis and Modeling Domain Architecture Development Asset Utilization
Asset Implementation

Figure 5: Relationships Among Reuse Products and Processes

be divided logically into separate models that focus on describing the commonality and variability
among different classes of software life cycle products within a domain. This approach can be
useful because it (a) reflects the natural abstraction layerings among life cycle products, (b) can
ease traceability among the models, assets, and existing and future system life cycle artifacts, and
(c) can reduce the complexity of the domain modeling process through decomposition. For the
purposes of this discussion, the following three general classes of domain models are considered,
reflecting the requirements definition and analysis stage, the architecture/design stage, and the
implementation stage:

» Domain requirements models that describe the overall scope and context of the domain and
the range of potential requirements on the operational characteristics of domain applications.

o Domain architecture models that describe the range of potential software architectures and
designs that can satisfy domain requirements.

e Domain implementation models that describe the range of potential implementation assets
that can satisfy domain requirements and architecture constraints.

Similarly, the asset base can be viewed in terms of life cycle stages or products, by mapping
assets into the conventional life cycle product categories of requirements, architecture/design, and
implementation. As with the domain models, there is a cascading of constraints from requirements
through architecture to implementation. That is, at each level, assets are constrained by the range
of possibilities admitted at the higher level. For example, each implementation asset ideally should
satisfy some need identified within one or more architecture assets. Note that implementation
assets can extend beyond the scope of operational system software, to include items such as system
simulators, test drivers and data, user documentation, and so on.

Figure 5 illustrates the two dimensions of Asset Creation discussed above (i.e., the domain
model/asset base view and the software life cycle stage view) by showing, in somewhat simpli-
fied form, the relationships among various products. The shaded areas represent domain models,
assets, and application products, as seen from left to right. Arranged vertically within each of
these shaded areas are the more specialized products that address each of the major life cycle
stages discussed above. The arrows in the figure indicate constraints, dependencies, or influences
among products. In general, the downward arrows indicate constraints imposed by products at one
level that must be satisfied by products at a lower level. The arrows pointing to the right indicate

Page 36

October 25, 1993 STARS-VC-A018/001/00

similar kinds of constraints, and also indicate derivation and usage relationships. For example,
an application product may be derived (e.g., instantiated, adapted, generated) from an asset; a
generator asset may generate an application product by directly using commonality and variability
information encoded in a domain model.

The names at the bottom of each shaded area in Figure 5 indicate which CFRP process categories
are principally involved in producing the three major types of products. The various domain
and application products and processes are discussed in more detail in the corresponding process
category descriptions within this document. For the sake of simplicity, the figure omits a number of
details, such as the role of Asset Management and various secondary relationships among products.

As the above discussion of Figure 5 illustrates, there is potentially a very rich web of interrelation-
ships between and among the domain models and assets that should be recorded and managed. For
example, it is important to record relationships and constraints such as derivation and traceability
(e.g., code asset A satisfies some specific aspect of architecture asset B, and also covers some specific
subrange of variability in the domain implementation model) and compatibility or incompatibility
(e.g., code asset A will work together with code asset B but not code asset C in the context of
architecture asset D).

Such information can be recorded in a variety of ways. The relationships among domain models
could be stored in the domain models themselves and/or in some form of higher-level model. Some
relationships among assets could be stored within some of the assets themselves (e.g., as part of
the architecture assets), but can be viewed more logically as stored within higher-level asset models
that describe the overall structure of the asset base. Relationships between the domain models and
assets (e.g., to characterize the ranges of variability that the asset base addresses) could be stored
in the domain models and/or asset models. In any event, the extensive interrelationships among
the domain models and assets imply a need for considerable interaction, iteration, and feedback
among the Asset Creation process categories (as well as the other Reuse Engineering processes that
use Asset Creation products), both as the models and assets are initially developed and as they
continually evolve over time.

Note that the distinctions drawn between the different classes of domain models and assets described
above, though conceptually straightforward in relation to the Asset Creation process categories, are
nevertheless strictly logical in nature. Any particular approach to Asset Creation may partition
or organize the models, assets, and processes differently or give them different names, but the
approach will likely be mappable, at some level, to the concepts described in this section.

As shown in Figure 6, the inputs to the Asset Creation family include:

o Assets relevant to a domain or set of domains, created previously by Asset Creation processes

e Software Systems in domains of interest that can impart legacy knowledge about the
domains and feed domain analysis or reengineering efforts to produce domain assets

¢ Domain Knowledge that can be imparted in a variety of ways (other than the legacy
systems) to provide information about domains

o Market Forces characterized by future market trends, competitive developments, new tech-
nologies, emerging standards, and other factors that can impact technology and requirements
forecasting

Page 37

October 25, 1993 STARS-VC-A018/001/00

Domain Models

Figure 6: Asset Creation Process Family

¢ Feedback from Asset Management and Asset Utilization processes concerning the assets
supplied by Asset Creation

The outputs from the Asset Creation family include:

¢ Domain Models that describe commonality and variability within a domain, from a variety
of perspectives :

e Assets that can be reused to construct application system products within a domain

The subsections that follow describe each of the Asset Creation process categories shown in Figure 6.

3.2.1.1 Domain Analysis and Modeling Process Category

The Domain Analysis and Modeling process category focuses on producing engineering models to
support the development of domain assets. Other activities that are sometimes associated with
domain analysis, but which focus more on organizational and management-oriented issues (e.g.,
domain selection), are addressed in the CFRP within Reuse Management process categories such
as Assessment and Scoping.

Page 38

-

October 25, 1993 STARS-VC-A018/001/00

The principal goal of Domain Analysis and Modeling is to develop a set of domain models, such as
the domain requirements, architecture, and implementation models discussed above, that can assist
in the process of asset specification (i.e., deciding which assets to develop, and the range of features
or capabilities they should support). Such models focus on describing system characteristics in
terms of their commonality and variability within the domain, and they may include a wide variety
of information that supports such modeling or is otherwise relevant to asset specification.

To establish the most reusable and effective asset base, domain analysts often must adopt a very
broad view of what is relevant to the problem. One technique for scoping the analysis is to consider
the domain from the perspective of a variety of different “stakeholders” who each work with the
domain in some capacity. Such a stakeholder analysis can help clarify and prioritize the aspects of
the domain that are most important; can establish lines of communication with stakeholders that
can assist with knowledge acquisition, model validation and evolution, and community buy-in; and
can provide a basis for determining how best to model the domain and how to partition the models
most effectively. Some typical stakeholders include: the application end users, maintainers, and
installers; the application developers, testers, and configuration managers; and the domain analysts
and domain engineers themselves.

Although there has been a recent proliferation of domain analysis methods (e.g., [Sof93a, DIS93,
PDA91, Sof91c, KCH*90, Sof91a, JHD*90]), there remains little consensus on specific techniques.
Domain analysis in general remains a substantial research topic and it will likely be a while before
any strong community consensus emerges on domain analysis objectives, scope, approach, and
products. However, many existing domain analysis processes have in common the following general
activities:

o Reverse engineering,
¢ Knowledge acquisition,
¢ Technology and requirements forecasting,

¢ Domain modeling, and

o Asset specification.

These activities are described in the following paragraphs.

Reverse Engineering

One very important source of information that can be used to construct domain models is the
set of legacy systems that is available within the domain. To extract expertise already encoded
in these legacy systems, they are often analyzed using reverse engineering and design recovery
techniques. These techniques aid in identifying basic domain concepts and vocabulary, commonality
and variability in the domain, and, where several versions of the same system are available for
analysis, responses to changes in technologies and methodologies over time. Increasing the number
of systems analyzed and compared within a domain will likely enrich the domain models and thus
increase the overall depth and breadth of applicability of the resultant domain assets.

Page 39

October 25, 1993 STARS-VC-A018/001/00

For the purposes of this discussion, design recovery is considered a subset of reverse engineering.
Design recovery methods extract high level design information from existing systems, while other
reverse engineering methods extract lower level design and implementation information. All of these
methods may, in full, be more applicable to the development of assets that can be reengineered
from existing system artifacts, but the methods also clearly apply to domain analysis. Design
recovery can be used to discover, validate, and record basic domain concepts and requirements
from a user’s and customer’s perspective. Design recovery can also help to identify issues and
alternatives regarding architecture, design, and implementation methods and technology from a
developer’s perspective. Lower level reverse engineering techniques can similarly be used to extract
information about design, implementation, and technology alternatives and can help to reveal the
impact such choices have on one another and on issues such as system performance, timing, and
sizing.

Knowledge Acquisition

One key objective of domain analysis is to capture and formalize domain knowledge that would
otherwise remain only in people’s heads. Such knowledge is useful not only because it represents
expertise and experience in the domain, but also because it can be used to verify or corroborate
the information obtained through the analysis of existing systems. Domain experts can also assist
in defining domain abstractions at various levels and in providing domain rationale, examples, and
rules of thumb.

Processes to support knowledge acquisition in domain analysis can be adapted from knowledge
acquisition techniques used by expert system developers, interviewing techniques used for systems
analysis and requirements elicitation, and general methods used for in-depth interviewing in any
discipline. Knowledge acquisition remains a craft area that is ripe for innovation in methods and
tools, both to promote completeness and consistency of the acquired knowledge and to automatically
structure that knowledge in useful ways.

Technology and Requirements Forecasting

In order for reuse to remain viable within typical domains over a period of years so that a return
on the investment in asset creation will be fully realized, forecasting of future trends in domain
requirements, architectures, and supporting technology is essential. This does not necessarily mean
predicting these trends in detail, but being prepared to accommodate changes in a manner that
will allow smooth evolution and modernization of assets over time. This forecasting activity can
involve consulting domain and technology experts, keeping abreast of evolving standards and un-
derlying technology, and staying directly involved in relevant domain and technology professional
communities via conferences, journals, and so on. Technology forecasting can play a key role in
domain analysis by identifying strategic technology requirements, and it can also play an important
role in identifying technology alternatives and evolution paths for architecture and implementation
assets at a more tactical level.

If domain knowledge acquisition is a craft, technology and requirements forecasting qualifies as an
art. Short term forecasts of 9 months to two years can often be developed with a reasonable amount
of confidence. Long term forecasts of more than two years are more difficult to develop with any
confidence, although this can vary from domain to domain.

Page 40

e

October 25, 1993 STARS-VC-A018/001/00

Domain Modeling

During and after the gathering of domain information by reverse engineering, knowledge acquisi-
tion, and forecasting activities (and any other information gathering activities deemed necessary),
the information is integrated into a set of domain models that can be used to support asset specifi-
cation and development. The information gathering activities often produce data in raw form, and
this data must be distilled, synthesized, and further analyzed to capture essential domain charac-
teristics. This is usually done in an ad hoc manner because few (if any) general methods exist that
support comprehensive model synthesis of this nature. Determining which domain characteristics
are “essential” in this context is also generally ar ad hoc process, but one good general criterion is
importance in the eyes of domain stakeholders.

Domain models bound and scope the domain, capture fundamental domain concepts and vocabu-
lary, and describe the commonality and variability that can exist among elements of the domain.
The elements in question here can be wide-ranging; examples include:

¢ end-user requirements,

functional features and capabilities,

e architecture and design characteristics,

implementation algorithms and techniques,

development processes, methods, and technologies,

development and operational context,
¢ user and developer organizations, skills, and expertise, and

¢ applicable standards.

Some of these elements are associated with particular life cycle stages, and can be described by
domain models focusing on those life cycle stages (e.g., the domain requirements, architecture, and
implementation models discussed earlier, or other life cycle partitionings, as appropriate). Other
elements from the above list have impact across the life cycle or define overall domain context,
and could be described in additional models or shared across multiple models. The various models
generally include a variety of relationships and constraints among elements (within and possibly
across models), and may also include information about how those relationships and constraints
vary under differing circumstances.

As with other aspects of Domain Analysis and Modeling, model representation techniques can vary
widely, but techniques that readily represent variability are particularly useful. These can include
taxonomic modeling, object-oriented modeling, domain-specific language definition, and rule-based
modeling. Domain models may also include conventional system modeling representations (e.g.,
data flow models, entity-relationship models, structure charts) as a context for abstracting and
describing commonality and variability.

Domain models can also be annotated with various anecdotal and heuristic information about the
domain. This can include information such as design rationale, rules of thumb, examples, and

Page 41

October 25, 1993 STARS-VC-A018/001/00

domain experience gathered during development or maintenance activities. Such information can
provide valuable, though informal, advice to asset specifiers and developers. It can also be of
considerable value to asset utilizers during Asset Selection, when encoded in a library data model
or in individual asset descriptions.

Domain models will ultimately be of little use if they are not validated in some way to establish con-
fidence in their correctness and utility. Processes supporting model validation include walkthroughs,
expert and stakeholder reviews, consistency and completeness checking by tools supporting specific
representations, and prototyping and trial application of assets derived from the models.

Asset Specification

The asset specification process involves deciding and specifying which assets should be developed,
and tho range of features or capabilities they should support. One issue to consider in Asset Creation
is where the asset specification process resides in relation to other processes. Asset specification
could be viewed as a final stage of domain analysis, but could just as readily be viewed as an aspect
of the asset development processes. In practice, the asset specification process will likely be very
iterative and interact with a number of other processes. It may also be interleaved among a number
of processes (e.g., specification of the architecture assets could be part of Domain Analysis and
Modeling, but code asset specification may be considered part of Domain Architecture Development
because it may not be possible to fully specify the code assets until the architecture assets are
developed). For ease of presentation in this document, asset specification is addressed as part of
Domain Analysis and Modeling.

Domain models generally describe a broad range of potential asset capabilities, as well as a complex
set of constraints and interdependencies. In general, it is neither feasible nor desirable to develop an
asset base that accommodates the entire range of possibilities. A number of criteria can be used to
decide which asset capabilities and configurations to implement, either immediately or in accordance
with some evolution plan. These can include factors such as development cost, number of future
applications affected, maintenance impact, overall long-term cost savings, market conditions and
customer impact, perceived stability of the technologies or architectures, coherence of sets of assets
in addressing common ranges of requirements and architectural constraints, and so on. The result
of analyzing the domain models with respect to the chosen criteria is a set of asset specifications
that reflect the relevant decisions made about the assets to be developed. These specifications can
be encoded within the domain models or asset models, or can exist separately.

In general, it is useful to consider asset specification issues from the perspective of the domain
stakeholders discussed above. They will provide several specific contexts for considering cost and
benefit and will also open the process to multiple relevant viewpoints.

3.2.1.2 Domain Architecture Development Process Category

The CFRP treats domain architecture assets differently from other assets by addressing their de-
velopment in a separate process category. The principal reason for this is the important role that
domain architectures play in facilitating domain-specific reuse by defining implementation frame-
works for constructing systems within a domain. The development of other forms of assets is
addressed by the Asset Implementation process category.

Page 42

October 25, 1993 STARS-VC-A018/001/00

The goal of Domain Architecture Development is to produce a set of domain architecture assets
that satisfy the architecture asset specifications produced during Domain Analysis and Modeling.
These specifications identify which architecture assets will be produced and the variability they
will accommodate. The variability encompassed by the architecture assets should be consistent
with constraints expressed in the domain architecture model and the requirements assets (Figure 5
illustrates this context). In turn, architecture assets establish a set of architectural constraints on
potential application architectures and implementation assets (and thus implicitly on application
implementations) within the domain.

The domain architecture assets are adaptable software architectures or designs that define the
structure of application systems or subsystems within a domain. Each domain architecture may
consist of a number of different views capturing a number of different perspectives on the overall
architecture. Examples of such views are functional decomposition models, entity-relationship
models, dependency graphs, data flow models, control flow models, and state transition models.
For the purposes of this discussion, an architecture is defined in terms of the following general
constructs:

¢ a set of software system elements, which may include both processing and data elements
¢ interfaces for each element

o a set of element-to-element connections, collectively forming interconnection topologies
¢ the semantics of each connection

— the meaning of static connections (e.g., between data elements)

— protocols describing information transfer across dynamic connections, in terms of element
interfaces (general classes of protocols include procedure call, pipe, message passing, etc.)

Each architectural view presents some specific filtered subset of this information. In addition,
certain architectural traits (e.g., particular connection topologies, interaction patterns, etc.) can
be said to represent certain architectural styles or idioms! [Sha91, PW92]. It is generally important
to maintain a consistent style within an architecture, at least in the context of a particular view.

The specific approaches that can be taken to develop and represent architectures vary widely, and
no broad consensus is evident in this area. However, there has recently been a sharply increased
level of activity in this field (e.g., [Cen93c, MG92, PW92, Sof91a, Sha9l, Sha89, Bai89a, Kam89]),
both in system and domain contexts. In particular, the DoD DSSA and CARDS programs are
working towards some level of consensus, at least within limited communities, on architecture
representation. Among the many issues that recent work in this area is attempting to address are
the qualities of an architecture that make it “good” (e.g., adaptable, extensible, reusable) and the
qualities that distinguish a domain architecture from a system architecture. Current approaches
to domain architecture development generally tend to mirror system design methodologies, and
it is an open issue whether fundamentally different approaches are needed to adequately support
domain-specific reuse. As with design methodologies, object-oriented approaches to architecture
development are becoming popular, and layering within architectures is another common techuique.
A recent phenomenon is the emergence in the commercial marketplace of tools that directly support

Not to be confused with CFKP procus_ﬁioms.

Page 43

October 25, 1993 STARS-VC-A018/001/00

methods for message-based, architecture-driven system design and implementation (e.g., TRW’s
Universal Network Architecture Services (UNAS) product set).

Reverse engineering of legacy systems to recover and subsequently generalize their designs can play
an important role in architecture development. Reverse engineering and design recovery methods
can be used at a more detailed level than in domain analysis to identify a software system’s mod-
ularization, the relationships among the structural elements, data usage and flow patterns, control
flow patterns, and scoping information. This information can be used as a basis for defining new
architectures and abstracting them to accommodate variability.

In general, there could be many architecture assets for a given domain, reflecting different sets of
requirements or addressing different levels of abstraction. For example, within a broadly scoped
domain, there may be a high level architecture that describes, rather coarsely, how systems within
that domain are constructed. In the context of that architecture, there may be a number of
specialized subdomains, and for each of these subdomains, there may be a variety of alternative
detailed architectures, each reflecting a different set of implementation technologies, performance
requirements, and so on.

Architectural alternatives may be expressed in terms of distinct architectures, or by defining indi-
vidual architectures that encompass some range of variability. In either approach, the architecture
assets may accommodate variation with respect to a number of factors, including the architectural
constructs listed above. If the variability within a single architecture becomes unwieldy to repre-
sent, creation of separate, alternative architectures may be advisable. One approach to managing
complex variations in architecture assets is to use application generators, which are described as
part of the Asset Implementation process category below. Generators can encapsulate architectural
variability very effectively. For example, a generator can allow a user to interactively configure an
application architecture in high-level terms while the generator ensures architecture completeness
and consistency at the more intricate, detailed level. In fact, generators can encapsulate an archi-
tecture so fully that the user need not make explicit architectural decisions; in such cases, all such
decisions can be determined implicitly from application requirements that the user specifies.

The Domain Architecture Development and Asset Implementation processes collectively may record
a variety of information about assets as they are developed. This information can include: con-
straints such as those depicted in Figure 5; asset specifications describing how the assets satisfy
those constraints (including descriptions of asset variability); development trade-offs, decisions, and
rationale; instructions and heuristics for applying the assets, and various other asset characteris-
tics, interdependencies and constraints; Logically, such information is stored in asset models that
describe the overall structure of the asset base, at a higher level of abstraction than the assets
themselves. For example, such models can capture the various dependency and coherence relation-
ships that define implementation alternatives associated with an architecture (e.g., by identifying
implementation assets that satisfy particular requirements or architectural constraints, defining de-
pendencies and compatibility constraints among implementation assets, and describing how asset
choices may impact tailoring decisions for other assets). Physically, such information might not be
stored in separate asset models, per se (e.g., some of it could be embedded within the architecture
assets themselves), but it is useful to consider the information to be logically distinct from the
assets.

Page 44

October 25, 1993 STARS-VC-A018/001/00

3.2.1.3 Asset Implementation Process Category

The goal of Asset Implementation is to produce the non-architecture (requirements and implemen-
tation) assets in the asset base. These assets are developed to satisfy asset specifications, produced
during Domain Analysis and Modeling, that identify which assets will be produced and the range of
variability they will accommodate. This variability must be consistent with constraints expressed
in the domain requirements and implementation models and the architecture assets (Figure 5 illus-
trates this context). Requirements assets establish a set of requirements constraints on application
requirements and on architecture and implementation assets within the domain. Implementation
assets establish a set of smplementation constraints on application implementations.

This category encompasses two major asset implementation perspectives:

¢ Production of software components that have the same general form as application products
and can be reused directly (perhaps with some tailoring) to produce application products
in whole or part. The term “software component” is used broadly here to include not only
code components, but a variety of other life-cycle products, including reusable requirements,
detailed designs, test cases, documentation, and so on.

¢ Production of application generator tools that accept specifications of desired application
characteristics and generate application life-cycle products (of any type) that reflect those
characteristics.

Some high-level decisions can be made within Reuse Planning processes (e.g., Infrastructure Plan-
ning) with regard to the general approaches, technologies, or methods that will applied in developing
certain classes of assets. For example, strategic decisions can be made to emphasize a generator-
based approach in general. However, Asset Implementation processes should assume responsibility
for making final decisions on such issues for individual assets, based on finer-grained considera-
tions than are apparent at the strategic planning level. A variety of factors, such as technology
maturity, domain maturity and stability, technology compatibility among assets and application
products, and initial cost vs. long-term cost savings, can enter into such decisions. Consideration
of these factors may sometimes result in decisions not to implement certain assets, in which case
custom development or “non-reuse-based” reengineering of corresponding application products will
be required.

The remainder of this section provides an overview of software component and application generator
asset development processes.

Software Component Development

The goal of software component development is to develop a set of reusable software components
(in accordance with the broad definition above) that satisfy particular asset specifications. This is
generally done either by developing the components from scratch or through “reuse-based” reengi-
neering of legacy artifacts. In either case, the processes employed should emphasize good software
engineering practices and principles such as separation of concerns and information hiding and
should observe general guidelines for reusability and quality. Techniques used to incorporate vari-
ability into the assets will vary greatly depending on the methods and tools (e.g., programming

Page 45

October 25, 1993 STARS-VC-A018/001/00

languages) used. The analysis, design, and coding guidelines that are available for different meth-
ods or programming languages may be used to help guide the component development processes.
It may also be useful to consider implementing functions, data, and modularizations that exceed
the needs of some systems or accommodate more variability than is immediately required, in order
to build in flexibility and future growth. Also, in addition to simply building the components,
software component development processes should produce supporting material such as reuse and
maintenance documentation, and possibly items such as test drivers and test data if no separate
assets of that nature are specified for development.

A distinction is made above between “reuse-based” and “non-reuse-based” reengineering. Much
of the reengineering that is done today is non-reuse-based, in the sense that it is code-oriented
and “point-to-point”. That is, it focuses on reengineering code from one application so that it
operates within another, usually very similar, application, without much consideration for how the
code might apply to additional applications. This is often done to convert an application from one
programming language to another without significantly affecting data structures, modularization,
or control flow, and it is usually done using a simplistic language-to-language translation approach.

Increasingly, however, reengineering is being done in a more reuse-based manner, to improve the
reusability (and quality, maintainability, etc.) of the legacy components so that they apply not
only to a single new system, but also to a variety of other potential systems. This approach
often involves substantial restructuring of the legacy system and is ideally done in the context of
domain models and architectures that may have been derived in part through design recovery of the
system. This approach is initially more costly than the “point-to-point” approach, but substantial
cost savings can be realized if a series of similar, but significantly varying, systems will be built in
the domain. In a system maintenance and evolution context, the various versions of a system can
be viewed as a series of similar systems, and a reuse-based reengineering approach can thus serve as
a sound basis for a long-term system maintenance and evolution strategy [Big89, Bas90, Vir92b].
One valid approach is to apply reuse-based reengineering techniques incrementally, targetting one
key subsystem after another over time.

Application Generator Development

The goal of application generator development is to produce tools that accept specifications of
desired properties of a target application and generate application life-cycle products that reflect
the specified properties. The objective is to allow .an application engineer to specify “what” is
desired (in terms that are native to the domain and familiar to the engineer) rather than detailing
“how” the desired effect is to be achieved, as is the case in more conventional development. This
“what” orientation can be termed requirements-based. Two examples of the domain-specific nature
of generator input languages are:

o A generator supporting interactive construction of graphical user interfaces might allow the
direct specification of user interface abstractions such as menus, popups, buttons, etc.

¢ A generator addressing the chemical process control domain might support direct specification
of control law concepts, symbols, and terminology.

Application generator development depends on the results of other Asset Creation processes. The
language used to specify the required properties of the generated products should be derived from

Page 46

October 25, 1993 STARS-VC-A018/001/00

domain models (particularly the domain vocabulary). Such languages may have been developed
during domain modeling to characterize appropriate aspects of commonality and variability within
the domain, or they may need to be developed or refined as part of the application generator
development process. Also, knowledge about the form and variability of the application products to
be generated must be either embedded within the generator assets during development or obtained
from external sources, such as domain models or other assets during generator execution. Code
generators often presume a tightly constrained range of architectural contexts, so generators are
often closely associated with particular architecture assets.

Complete applications are generally composed from code assets, newly-developed custom code
components, and generated subsystems. Some application generators, kcown as composition tools,
provide automated support for part or all of this composition process by composing and config-
uring individual components in accordance with an application engineer’s specifications to form
(sub)systems that meet application needs.

The specific generation techniques and technologies that are available and understood within an
organization are key factors in determining the development processes that will be employed to
implement a generator. Techniques used may include textual or graphical language design, lan-
guage translation techniques, meta-generation techniques (i.e., generation of a generator using a
higher-level tool), knowledge-based and expert system techniques, and so on. Although somewhat
specialized, development of an application generator is similar to development of any software sys-
tem. Therefore, software engineering principles, reuse principles, sound design methods, validation,
and testing are all vital to generator development.

3.2.2 Asset Management Process Family

The goal of the Asset Management process family is to establish managed collections of reusable
assets, give Asset Utilization processes access to those assets, and promote and support the reuse of
the assets. The Asset Management family functions in a brokerage role between Asset Creation and
Asset Utilization processes, in that it establishes a kind of marketplace supporting and encouraging
asset distribution and creation, based on availability and needs.

The Asset Management processes fall into two general classes: processes that focus on acquiring,
installing, and evaluating individual assets in a library, and processes that focus on developing and
operating libraries that house collections of assets, provide access to those assets, and support their
utilization.

Asset Management may appear to overlap in some ways with the Reuse Management idiom, par-
ticularly with regard to reuse infrastructure. Asset Management processes and capabilities can be
viewed as just another form of infrastructure serving the needs of the more product-oriented Asset
Creation and Asset Utilization processes. This issue is accentuated by the fact that “organizational
assets” (e.g, plans, policies, processes, history) are generally treated as part of the reuse infrastruc-
ture, while library support technology is generally considered the province of Asset Management.
The following general guidelines can help clarify these matters:

o There can be logically distinct Asset Management processes within a reuse program, each of
which manages assets addressing distinct organizational needs. For example, one set of Asset

Page 47

October 25, 1993

Figure 7: Asset Management Process Family

STARS-VC-A018/001/00

Asset Libraries

Feedback

Management processes (enacted as shown in the canonic CFRP in Figure 1) can manage
assets relevant to production of application products within an organization’s product line.
Meanwhile, another set of Asset Management processes (recursively embedded within Infras-
tructure Implementation processes — see Appendix A for more information on recursion) can
manage “organizational assets” relevant to planning and other management functions.

o Asset Management addresses the selection and support of technology that is inherently asset-,
library-, or domain-specific, or tailored to be so. Realistically, however, such activity is gen-
erally influenced to some degree by the overall infrastructure policy and technology planning
constraints imposed by Reuse Management processes.

Although the term “library” is used throughout this section (and, in fact, throughout the document)
to refer to entities that house managed asset collections, this term is not meant (except where
noted otherwise) to connote any particular technological approach. A library need not even be
automated to effectively manage a collection of assets and serve a useful mediator role between
Asset Creation and Asset Utilization processes. The STARS Asset Library Open Architecture
Framework (ALOAF) document [Sof92] includes an Asset Library Reference Model that describes
the general characteristics of asset libraries without any strong technological bias (although it does
assume some degree of automation), and consultation of that reference model may be useful (though
not required) when reading the process category descriptions below.

Page 48

October 25, 1993 STARS-VC-A018/001/00
As shown in Figure 7, the inputs to the Asset Management family include:
¢ Domain Models that describe commonality and variability within domains, from a variety
of perspectives
o Assets relevant to a domain or set of domains
o Feedback from Asset Utilization processes concerning the assets and services provided by
Asset Management

The outputs from the Asset Management family include:

o Asset Libraries that each provide an organizing scheme and descriptive information for a
collection of assets, along with a set of services and capabilities for identifying, evaluating,
and reusing the assets

o Assets, managed in the libraries, that can be reused to construct application systems in
relevant domains

o Feedback concerning the assets supplied by Asset Creation processes

The subsections that follow describe each of the Asset Management process categories shown in
Figure 7.

3.2.2.1 Library Operation Process Category

The goal of Library Operation processes is to ensure the availability and accessibility of the library
and its associated assets for Asset Utilization. This can involve a variety of activities, such as:

¢ Administration and operation of the physical library facility,

¢ Acquisition, installation, operation, and maintenance of computer system hardware and soft-
ware, including the basic library software if that is not already part of the established reuse
infrastructure, ‘

e Library access control and security,
¢ Configuration management of library contents,

¢ Periodic archiving and backup of library contents, and

Support for interoperation with other libraries.

These activities are strictly operational in nature, and organizations may consider many or all of
them to be aspects of Infrastructure Implementation. However, there are aspects of these activities
that relate specifically to asset libraries and merit attention from an Asset Management perspective.
For example:

Page 49

October 25, 1993 STARS-VC-A018/001/00

¢ Access Control

Access to asset libraries and individual assets or sets of assets may need to be restricted.
Access restrictions can be levied to enforce a wide variety of constraints, including data rights
(e.g., license) restrictions, government security laws or policies, and company proprietary
policies. Such restrictions can be applied to individual users or groups of users, based strictly
on identity or on attributes such as user role. Some typical library user roles, corresponding to
some of the Asset Management and Asset Utilization processes, include: library data modeler,
asset cataloger, asset certifier, library operator, asset utilizer, and asset broker. Where access
restrictions are needed, libraries should support strong user identification and authentication
policies and mechanisms, in concert with administrative procedures for managing information
about users.

¢ Configuration Management

Version and configuration control is an important and potentially complex set of processes
within a domain-specific reuse-based life cycle. All assets, ranging from high level require-
ments and architecture assets to the lowest-level implementation assets, must be kept mutually
consistent to ensure the consistency and integrity of applications built from the assets. As-
sets are typically longer-lived than system artifacts, with the potential for creation of multiple
versions or variations of the same asset, each of which must be maintained concurrently. The
consistency of relationships between each particular variation of an asset and other library
assets (and their variations) also needs to be maintained. Because these processes manage in-
formation about assets, they may be tightly intertwined with (or considered part of) Library
Data Modeling and Asset Cataloging processes.

¢ Library Interoperation

Some libraries require procedures and mechanisms for interoperating with other asset libraries.
Such interoperation may take a variety of forms, including accessing assets in the other
libraries in a direct and “seamless” manner, importing assets from those libraries for local
installation, or exporting local assets to those libraries. Before such interoperation can be
effective, the policies, data models, and interfaces of the participating libraries may need to
be evaluated. If the policies and data models of the libraries are similar and they support
standard library interfaces, interoperation may simply be a matter of maintaining network
connectivity. However, as the library policies, data models, or interfaces diverge, the potential
for interoperability between the libraries will become progressively lower, ranging from the
ability to automate the exchange of assets, to maintaining electronic catalogs (sometimes
called “Yellow Pages”) of external libraries and assets, to simply publishing paper catalogs
and requesting that assets be sent from one library to another on tangible media.

3.2.2.2 Library Data Modeling Process Category

The goal of Library Data Modeling processes is to develop a data model for describing assets within
a library. This library data model filters and synthesizes the domain models, asset models, and
assets produced by Asset Creation to capture the structure of the information needed specifically
to support Asset Utilization. The specific approach taken to produce the library data model is
thus highly dependent on the characteristics of the Asset Creation products and on the objectives
of the library in supporting Asset Utilization. If the library’s objectives are to provide a basic
search and retrieval capability for individual assets, it should suffice for the library data model to
include mainly taxonomic information derived from one or more domain models. If the objectives

Page 50

October 25, 1993 STARS-VC-A018/001/00

are more ambitious, to include more direc: :upport for system composition, the library data model
must integrate additional elements of the domain models, elements of asset models describing
various asset interrelationships, and possibly elements of specific assets (e.g., architecture assets).
In addition to incorporating information produced by Asset Creation processes, the library data
model also codifies information that specifically addresses Asset Management needs. For example,
a model could include data elements to support library and asset metrics collection, record asset
certification information, and capture asset submittal and user feedback data.

One of the basic elements of any library data model is the classification scheme, or taxonomy, that
is used to partition library assets into different classes or categories. Classification knowledge can
be represented in a variety of ways, including indexing schemes, simple hierarchies, faceted schemes,
object-oriented class hierarchies, and semantic networks [FG90]. One powerful technique that can
be used within a library data model is the concept of multiple classification schemes that provide
library users with alternative taxonomic views of the domain and thus provide alternative browsing
and querying strategies for locating assets. Taxonomic models can be especially useful when they
are combined with non-taxonomic (e.g., architectural) information to produce integrated library
data models enabling navigation from multiple perspectives.

3.2.2.3 Library Usage Support Process Category

In addition to simply operating a library and making assets available within it, Asset Management
should provide a set of library services that anticipate and address specific asset utilizer needs.
These services support usage of the library and of individual assets. Some of these services could
be considered extensions of the Library Operation activities discussed above, but are distinguished
from those activities because of their direct support for library and asset usage. Examples of these
kinds of services are:

o The production of conventional catalogs, in paper or electronic form, that describe the assets
in the library and enable prospective users to quickly assess library contents without direct
library access,

e The collection and generation of asset data in a number of different formats, including a
variety of media (e.g., paper, on-line files, video) and data representations (e.g., plain ASCII
text, Postscript, executables, specific tool data formats),

o The distribution of assets to library customers in a variety of formats via a number of different
physical media, in accordance with distribution restrictions,

o The operation of electronic and/or telephone hot lines to accept and resolve user requests,
suggestions, complaints, and other feedback, and

e The operation of electronic bulletin boards and mail systems to enable sharing of information
among library users.

Another key aspect of Library Usage Support is the selection (or development), tailoring, and
integration of library tools that are specific to the domain or to particular types of assets. This
activity, often closely associated with Library Data Modeling, involves determining users’ library
interaction needs in terms of the kinds of assets and descriptive information that will be in the

Page 51

October 25, 1993 STARS-VC-A018/001/00

library and the kinds of tools that will be needed to inspect, evaluate, and utilize the assets and
associated information. Such tools can support activities such as: viewing assets, understanding
assets, testing assets, executing assets for evaluation, providing views of asset interrelationships
and architectural structures, extracting sets of closely related assets, composing assets to build
applications, and so on. In general, there should be coordination between Reuse Management and
Reuse Engineering processes to ensure that tools that prove useful within a domain context are
absorbed into the established reuse infrastructure over time, and perhaps broadened or generalized
to apply across domains.

An often critical form of Library Usage Support is direct, personal assistance to users in understand-
ing library capabilities, finding and assessing relevant assets, and utilizing those assets for desired
purposes. These kinds of consultation services can be likened to the role of the traditional librarian
in conventional book libraries. Such services can be automated to some degree, but are usually most
effective when rendered in person by knowledgeable individuals. This person-to-person approach
can effectively lower the technological harriers to reuse that typical library software presents to
many users.

A related form of services is asset subscription, which allows users that “subscribe” to a particular
asset to be informed of all changes to that asset (and, optionally, to be given updated versions of it)
as it evolves. The kinds of asset changes about which a user can be notified include identification or
resolution of errors, changes in classification, development of new variations, and addition of new
usage history data.

3.2.2.4 Asset Brokering Process Category

Without planning and management that anticipates asset needs, Asset Creation efforts may not
produce assets that satisfy the needs of Asset Utilization efforts. Furthermore, even when assets are
available and appropriate for application system needs, prospective asset utilizers could be unaware
of the assets, or could be aware but unmotivated to consider them for reuse. Careful planning at
the reuse program level can address these problems to some degree by clearly specifying producer
and consumer responsibilities and establishing global reuse promotion and incentive efforts.

However, these program-level measures are only part of the formula to adequately motivate creation
and utilization of appropriate assets. Such measures generally need to be augmented with more
localized efforts that take into account observations about (a) needs that are not being met by
asset creators and (b) assets that are not being exploited by asset utilizers. These efforts involve
activities to monitor asset flows, interactions, and feedback among Asset Creation, Management,
and Utilization processes, and apply that knowledge to work proactively with all concerned par-
ties to improve effectiveness in particular areas. Such activities can be viewed as asset brokering
processes. Some general examples of asset brokering approaches are:

e Based on observed asset utilization and application construction patterns and feedback, de-
termine areas where additional assets addressing some portion of a domain would yield sub-
stantial benefit to application engineers. Notify relevant asset creators and encourage them
to create new assets addressing the identified needs. Alternatively, identify new external
sources of relevant assets that can be acquired and brought under Asset Management control
(or simply accessed directly by asset utilizers in their external form) to address application

Page 52

October 25, 1993 STARS-VC-A018/001/00

needs.

¢ Based on asset utilization patterns and feedback, determine which known assets are generally
not being reused (even though they nominally address application needs), and why they are
not being reused. If the problem is that the asset utilizers perceive shortcomings in the assets,
inform asset creators of the perceived shortcomings and encourage modification of the assets
or other appropriate actions to remedy the problem. If the problem is that the asset utilizers
are unaware of the assets or have not properly assessed their benefits, work with the utilizers
to improve their awareness or knowledge of the assets.

o Monitor asset creation and application engineering activity within and across various organi-
zations. Identify assets or potential assets in existing or even new (i.e., previously unmanaged)
domains that can be applied to ongoing or future application engineering efforts. Among vari-
ous projects and organizations, encourage acquisition and management of new assets, creation
of new assets from promising applications, and utilization of those assets within the applica-
tion engineering efforts.

Of course, such activity must be coordinated with Reuse Management processes to ensure that the
work being encouraged is within the scope of existing reuse program plans or that the plans are
modified appropriately to accommodate any additional work.

3.2.2.5 Asset Acquisition Process Category

The principal goal of Asset Acquisition processes is to obtain assets from external sources (including
other asset libraries) to support Asset Utilization activities. Asset Acquisition obtains assets that
appear to be good candidates for inclusion in an asset library, based on the domain and architectural
requirements embodied in the library data model (or potential extensions to that model). Such
candidate assets can then be assessed more strictly by Asset Acceptance processes to determine
whether or not they should be made available to utilizers.

In an ideal situation, Asset Acquisition is coordinated directly with Asset Creation processes de-
signed to produce domain models and assets that comprehensively address some set of Asset Uti-
lization (and thus application system) needs. In such cases, Asset Acquisition typically involves
little more than obtaining the assets from the suppliers so that they can be made available to
utilizers through the asset library. In less ideal situations, where there is less direct coordination
with Asset Creation processes or those processes do not perform so comprehensive a role, Asset
Acquisition involves locating and acquiring needed assets through other means.

In these latter situations, external sources (possibly identified by Reuse Planning or Asset Bro-
kering processes) should be exploited. Such sources can include external asset libraries, projects
developing systems within a relevant domain, commercial or government off-the-shelf products, ex-
ternal individuals or organizations that voluntarily submit candidate assets, and so on. Acquiring
assets from such sources can present a variety of problems, however, including difficulty in obtain-
ing enough information about the assets to reliably evaluate and catalog them. For example, when
assets are submitted voluntarily, repeated requests may be necessary to obtain sufficent descriptive
information. Similar in some ways is the acquisition of assets from an external library, wherein
differences in the data models between the local and external libraries must be resolved in order to
obtain adequate descriptions of the assets. The degree to which acquisition of assets from external

Page 53

October 25, 1993 STARS-VC-A018/001/00

libraries can be automated is directly related to the homogeneity of the local and external library
data models and the degree of interoperability among the libraries, as discussed in [Sof92].

In addition to supporting Asset Utilization processes, Asset Acquisition may also support Asset
Creation activities by obtaining candidate assets that come “close enough” to satisfying the do-
main and architectural requirements to justify the cost of modifying the assets or extending the
requirements. Asset Acquisition may also obtain legacy software that does not satisfy the require-
ments but could be useful input to Asset Creation processes to help evolve the domain models
and assets. To support Asset Creation in these ways, the Asset Acquisition and Asset Creation
processes should be coordinated to ensure that the software products being acquired are relevant
to the creation activities.

3.2.2.6 Asset Acceptance Process Category

The goal of Asset Acceptance processes is to ensure that an asset that is a candidate for inclusion
in a library satisfies relevant policy, legal, and domain-specific constraints.

The purpose of library policy constraints is typically to ensure that assets in a library satisfy
at least minimal criteria for quality and suitability for use in Asset Utilization activities. Such
constraints are generally imposed internally by an organization. They are often expressed in terms
of requirements on the descriptive information that accompanies a candidate asset, and sometimes
in terms of requirements on the asset itself. Requirements on the descriptive information are often
expressed in terms of an asset submittal form that defines the minimal set of information that must
be submitted with an asset in order for it to be cataloged in the library. The submitted information
may then be subjected to further criteria to determine if the asset is acceptable for inclusion in the
library, such as criteria on the format of the asset, its source language, its degree of documentation,
and so on. The asset itself may also undergo examination; for example, it may be subjected to
metrics analysis or testing to assess asset quality relative to some basic criteria.

Legal constraints are generally imposed by external organizations and focus primarily on restrict-
ing the access, distribution, or use of an asset, independent of its perceived technical quality or
suitability. Consideration of legal constraints is particularly important for assets acquired from
external sources such as public, government-supported, or commercial asset libraries, or sometimes
even other projects within the same organization, In any of these cases, licenses, patents, copy-
rights, distribution rights, liability requirements, royalties, and other related issues may complicate
or restrict the ability to reuse a particular asset.

Domain-specific asset acceptance constraints are derived from the domain models (and perhaps
some assets, such as architecture assets) produced by Asset Creation processes. These constraints
establish qualification criteria with respect to the functions, interfaces, interactions, side effects,
performance, etc. (sometimes called the “form, fit, and function”) of candidate assets relative to
domain needs. Assets must satisfy some set of these criteria in order to be considered acceptable
for reuse in some context within the domain and thus qualify for inclusion in the library.

3.2.2.7 Asset Cataloging Process Category

The goal of Asset Cataloging processes is to incorporate accepted assets into a library to make

Page 54

October 25, 1993 STARS-VC-A018/001/00

them accessible to library users. Asset Cataloging is generally broken down into the following three
steps:

o Asset classification is the process of determining where an asset belongs within the library
classification scheme that is created by the Library Data Modeling processes described above.
Once the appropriate place(s) in the scheme is/are found, the asset is said to be classified.
For example, classification within a faceted scheme might involve identifying a facet term, or
set of terms, for the asset.

o Asset description is the process of creating, capturing, or adapting all the other information
that is needed to describe the asset in the context of the library data model, once the asset
has been classified. Asset Description can involve a wide variety of activities to collect and
record needed information, such as capturing general or domain-specific asset properties; gen-
erating ob jective measures of asset size, reusability, quality, and complexity; and transcribing
and interpreting asset submittal information. Asset Description may also involve identify-
ing dependencies on and relationships to other assets, as determined from domain or asset
models developed during Asset Creation. Some of the collected descriptive information may
need to be tested for correctness or validated against library standards, to the extent that
the information is not checked during the Asset A:.ceptance process.

o Asset installation is the process of installing the classified and described asset in the library
system. This involves capturing the asset and its descriptive information in some kind of data
base or other persistent store, linking this information to the library data model and other
library information as appropriate, and performing other environment-specific operations to
make the asset available to asset utilizers.

3.2.2.8 Asset Certification Process Category

The ultimate goal of Asset Certification processes is to guarantee that the assets satisfy their re-
quirements without error. From a practical standpoint, Asset Certification is an iterative evaluation
process that gradually approaches but may not achieve that ultimate goal. Various categories of
certification can be defined, each associated with particular sets of certification criteria. To be
assigned a particular certification category, assets must satisfy the corresponding criteria. These
categories can be arranged in hierarchical “levels”, wherein each level represents a greater degree
of certification than those below it, or they can be considered more independent, each representing
some particular important quality for an asset to achieve; some mixture of both is also possible. In
the more hierarchical approach, an asset at a particular level is considered more trusted than the
assets at lower levels in the sense that there is increased confidence that it meets its requirements
without error.

Asset Certification typically begins after Asset Acceptance and Asset Cataloging have occurred.
However, it is generally an ongoing process that continues while an asset is available through, and
evolves within, the library. The certification categories that an asset has been assigned at any given
time are typically included as part of the asset description.

Some of the criteria that can be applied during Asset Certification may also be appropriate during
Asset Acceptance; the specific processes in which particular criteria are applied will reflect organi-
zation preferences and needs. Certification criteria need not be strictly formal and measurable to

Page 55

October 25, 1993 STARS-VC-A018/001/00

be useful, although greater care needs to be taken in applying criteria that are relatively informal
or heuristic in nature. Examples of general certification criteria include:

Completeness
- Does the asset include associated life-cycle products, such as requirements, design, code,
test cases and data, analysis and verification artifacts, and documentation?
— Are the asset’s dependencies and (in)compatibilities documented?
— Is the asset accompanied by other products on which it is dependent?

Reliability and quality

— How good are the results of asset testing, inspection, and review?
— How good is the asset’s development and/or runtime performance?
— Has the asset undergone formal verification? Of what nature?

— Does the asset come with results of independent review, evaluation, or accreditation?
How good are the results?

Ease of reuse

— Does the asset come with reuse instructions or reuse support tools?

— What is the asset’s reusability, understandability, portability, complexity, maintainabil-
ity, debuggability, etc., as determined via metrics, inspection, or other methods?

Adherence to guidelines and standards

— Which development or reusability guidelines does the asset adhere to?

— Which standard or required processes, methods, languages, or tools were used to develop
or verify the asset?

— Which standard or required architectures, interfaces, etc., does the asset satisfy?

Asset history

— Does the asset come with a documented history of user experiences?
— Does the asset come with a documented development and maintenance history?

Maintenance and support

— Does the asset come with maintenance or support agreements?
— What is the extent and quality of the asset support?

Known problems or limitations

— Does the asset have a documented set of known bugs or faults?
— Does the asset have critical limitations in functionality, performance, compatibility, etc.?

Legal/contractual constraints

— Is the asset known to have legal or contractual constraints that limit its accessibility,
applicability, or (re)distribution?

Page 56

October 25, 1993 STARS-VC-A018/001/00

3.2.3 Asset Utilization Process Family

The goal of the Asset Utilization process family is to construct new applicatior products (e.g.,
requirements, design, code, tests, documentation) using previously developed assets. Asset Utiliza-
tion encompasses the reuse-based aspects of the process that is becoming increasingly known as
“application engineering”. Asset Utilization generally involves determining a set of criteria to use
in selecting assets for reuse, identifying suitable candidate assets in the context of those criteria,
selecting and tailoring assets to meet the criteria, and integrating the tailored assets with the target
application.

The domain and asset models developed in the Asset Creation family support Asset Utilization
processes by encoding a variety of domain information that can be reused when building systems
within a domain. The Asset Management family makes this information directly available to Asset
Utilization processes through the library data model, the associated asset descriptions and assets,
and a collection of library capabilities or services for accessing and processing the information. This
information and corresponding set of services can support Asset Utilization in a number of ways
by, for example:

¢ Providing access to general system requirements and characteristics within the domain to
establish a context for identifying and understanding domain assets;

e Providing access to architecture assets that can be used as architectural frameworks for con-
structing target applications;

e Providing access to specific implementation assets that satisfy certain domain, architectural,
or implementation constraints, and describing how those assets can vary to satisfy a range of
such constraints; and

¢ Providing guidance or assistance (at varying levels of automation) in finding, evaluating, or
applying assets to construct target application products.

The Asset Utilization process categories were chosen to be independent of any particular method
or life-cycle process. That is, these categories are at a level of abstraction that enables them
to be integrated with any method to make that method more reuse-based without substantially
disrupting or compromising its other inherent qualities. However, as Asset Utilization processes
become integrated with particular methods and supported by particular technologies, these should
be coordinated with corresponding Asset Creation methods and tools to ensure a consistent strategy.
One key issue to acknowledge in this area because of its pervasive impact is the dichotomy between
system composition and system generation techniques.

These two techniques differ in a number of ways, and their differences are particularly apparent in
the Asset Creation and Asset Utilization families. In Asset Utilization, differences between these
techniques impact several categories, with the strongest impact appearing in Asset Tailoring. This
is because a generator asset is a tool that generates system artifacts that eventually get integrated
with the target application, and to generate those artifacts, the asset must be tailored through
some form of specification language. The specification language is typically non-procedural in
nature (though not necessarily textual) and is generally domain-specific. That is, the specifications
that can be expressed in the language specify requirements or constraints on the generated system in

Page 57

October 25, 1993 STARS-VC-A018/001/00

Software System Needs Software Systems
Asset Libraries Assets
Assets Feedback

Figure 8: Asset Utilization Process Family

domain-specific terms. This generally requires a much more extensive and sophisticated tailoring
process than is the the case when tailoring an Ada generic package via generic parameters, for
example. Generators are also different because a product of the asset, rather than the asset itself,
is integrated with the target application, unlike conventional software components.

The viewpoint taken within the Asset Utilization category descriptions that follow is that system
composition is generally considered the principal utilization technique and system generation is in
some sense subordinate in this respect. This is because, even in circumstances where generation
is used heavily, complete application systems are typically composed from generated subsystems,
software component assets, and some components developed from scratch. The situation where
an application is generated in its entirety can be viewed as a degenerate case of the composition
process, where there is only one element to compose to form the application. As a result of
this somewhat composition-centered viewpoint, the category descriptions focus principally on the
composition perspective, but do point out ways in which generation differs where appropriate.

As shown in Figure 8, the inputs to the Asset Utilization family include:

¢ Software System Needs that identify requirements for desired application systems in rel-
evant domains; these may include reuse-related requirements or criteria addressing specific

Page 58

October 25, 1993 STARS-VC-A018/001/00

asset characteristics

o Asset Libraries that each provide an organizing scheme and descriptive information for a
collection of assets, along with a set of services and capabilities for identifying, evaluating,
and reusing the assets

e Assets, managed in the libraries, that can be reused to construct application systems in
relevant domains

The outputs from the Asset Utilization family include:

¢ Software Systems and other application products that are constructed from assets, in whole
or in part

o Assets that are improved or synthesized during Asset Utilization and made available to Asset
Management and Asset Creation so that they can be considered for incorporation into the
asset base

¢ Feedback concerning the assets and services supplied by Asset Creation and Asset Manage-
ment processes

The subsections that follow describe each of the Asset Utilization process categories shown in
Figure 8. Note that, although the Asset Utilization process categories are applicable to the reuse
of assets that span the application life cycle, most of the examples in the category descriptions that
follow are presented in terms of code assets for convenience. Also, for brevity, the term “library
data model” as used throughout the remainder of this section refers to both the data model and
associated asset descriptions, unless otherwise noted.

3.2.3.1 Asset Criteria Determination Process Category

The goal of Asset Criteria Determination processes is to establish a set of constraints or criteria
for identifying, selecting, and tailoring assets that can be applied to the construction of application
products. Since assets can address the entire system life cycle, the asset criteria may apply to a
variety of different kinds of assets that address various aspects of the application. For the purposes
of this discussion, the criteria apply to requirements assets, architecture assets, and implementation
assets, as discussed in Section 3.2.1.

The asset criteria generally are derived from three sources: (a) the domain and asset information
encoded in the library data model, (b) the overall user requirements or constraints imposed on
the target application, and (c) the life cycle products produced for the application, each of which
constrains products produced further downstream in the life cycle. These sources of information
apply to Asset Criteria Determination in the following ways:

e Overall application requirements are used to derive criteria that are applied to the selection of
domai- cequirements assets, which are then reused to construct detailed system requirements.

¢ Detailed system requirements are used to derive criteria that are applied to the selection of
domain architecture assets, which are then reused to construct system designs.

Page 59

October 25, 1993 STARS-VC-A018/001/00

¢ Detailed system requirements and designs are used to derive criteria that are applied to
the selection of domain implementation assets, which are then reused to construct system
implementations.

As the above implies, it is in general neither possible nor desirable to determine the criteria for all
wssets at once. An iterative or phased approach is appropriate, wherein criteria are first determined
for requirements assets, which ultimately cascade down into architecture and implementation asset
criteria via reuse at the requirements and architecture levels, respectively. This is not to imply,
however, that the process is necessarily rigid or highly sequential. Iterative prototyping and assess-
ment of results at all stages of this process can be a key factor in producing “good™ asset criteria
and thus in eventually producing “good” system products that satisfy customer needs.

Regardless of the specific steps that are taken, the Asset Criteria Determination process ultimately
produces a set of criteria to be used in identifying, selecting, and tailoring assets that address one
or more aspects of an application. Each of the criteria produced is considered to be in one of two
categories:

o Shallow criteria that are applied by Asset Identification processes to identify a set of candidate
assets for further evaluation. In general, shallow criteria are those which can be applied
through direct appeal to the library data model via library browsing and query operations.
Examples of such criteria are:

~ Assets within a particular category in a domain taxonomy,

~ Assets that can implement a particular architectural element,

~ Assets that have been certified at a particular level,

~ Assets written in a particular programming language, and

~ Assets that work in a particular development or target environment.

o Deep criteria that are applied by Asset Selection processes to evaluate candidate assets and
select particular as.zts to be reused. Deep criteria cannot be readily applied by inspecting only
the library data model. Instead, they focus on asset characteristics requiring more in-depth’
inspection and analysis of individual assets. Examples of such criteria are:

— Assets that operate properly in a particular testbed environment,

~ Assets exhibiting a particular range of performance given certain test data,

— Assets that meet subjective architectural quality standards, and

— Assets that are sufficiently adaptable and reusable, as determined through trial reuse.

These categories of criteria are difficult to characterize in any greater detail because of the fact
that they are defined in terms of the contents of the library data model, which can vary widely in
breadth and depth from library to library. Some further insight into the nature of these criteria is
provided in the Asset Identification and Asset Selection process category descriptions below.

Page 60

October 25, 1993 STARS-VC-A018/001/00

3.2.3.2 Asset Identification Process Category

The goal of Asset Identification processes is to identify a set of candidate assets that meet shallow
asset criteria. These candidate assets are provided to Asset Selection processes that assess the
assets relative to deeper criteria.

As noted above, shallow asset criteria can be applied directly by browsing or querying the library
data model. The specific techniques used to browse and query the data model are highly dependent
on the structure and representation of the model and the support tools that are provided by Asset
Management to access the model. Common approaches include facet- and keyword-based queries,
hierarchical and hypertext-style browsing, and dialog-based browsing wherein the user is guided
through the library by answering questions that elicit the asset criteria. These approaches can be
complementary within the same library. For example, the understanding of the data model acquired
while browsing can help the engineer to formulate queries; conversely, the results of queries may
help direct the engineer’s attention towards portions of the model that are best browsed (possibly
with on-line assistance) to achieve full understanding of certain assets and their interrelationships.

If the library data model is relatively complete, in that it reflects thorough domain and asset
models, it can be quite an effective vehicle for identifying a narrow, focused, and complementary
set of assets that will require little additional evaluation to determine if they are suitable for the
target application. That is, in such cases, the “shallow” criteria used to identify assets can in fact
be quite deep, reflecting the depth and richness of the model. Libraries based on such deep models
enable fine-grained resolution of asset information and may thus be amenable to tools that perform
automatic composition of assets to produce application products, based on the specification of
relatively deep asset criteria by the user. In such cases, Asset Identification and Asset Selection
processes may both be fully encapsulated by the tool.

It may often be the case, however, that the library data model is relatively superficial, in that it does
not encode very thorough domain requirements or architecture information or enables only very
coarse classification of assets. Under such circumstances, Asset Identification can be challenging
and will often yield too few or too many assets for further consideration. In these cases, it can be
useful to broaden or narrow the asset criteria systematically to eventually yield a candidate asset
set of sufficient and manageable size.

At times, analysis of the library data model may indicate that other domains or other libraries
need to be browsed or queried to obtain useful assets. In such cases, library interoperability comes
into play. Other domain-specific libraries, which may be locally or remotely located, wi'l need to
be browsed and/or queried in a manner similar to the initial library, even though they may have
substantially different data models. A high level of interoperability between libraries will allow
engineers to perform these activities without being strongly aware that such differences exist or
that the libraries may be widely distributed on a network.

3.2.3.3 Asset Selection Process Category

The goal of Asset Selection processes is to further evaluate the assets identified by Asset Identifi-
cation processes to select those which best meet target system needs and should thus be tailored
for integration into the application. The asset evaluation is done by applying “deep” asset criteria
that are not readily applicable through direct appeal to the library data model. The criteria may

Page 61

October 25, 1993 STARS-VC-A018/001/00

vary greatly, depending on the breadth and depth of the data model; they may initially require
basic judgements about high-level asset capabilities due to the lack of resolution of the data model,
or they may focus at the outset on low-level deciding factors such as performance and level of
assurance.

Asset evaluation can involve a wide variety of activities, depending on the asset criteria and the
nature of the assets. These activities can take place entirely in the context of the library if the
library is well equipped with supporting tools and data, or they can be performed by extracting
assets from the library and evaluating them outside the library context. Asset evaluation often
begins with a thorough analysis of an asset’s description, as well as analyses of the asset itself
and of related assets and other supporting data. The asset description information to be analyzed
might include asset attributes and abstracts, detailed asset interface descriptions, usage histories
and problem reports, metrics and quality data, and a variety of other items. The assets themselves
can be inspected in their raw source form (e.g., the source code of an Ada package specification) or
can be viewed using alternative methods with the assistance of appropriate tools, such as hypertext
systems, design tools, graphics tools, and word processors. The dynamic behavior of assets can
also be evaluated. Inspection of behavioral specifications may be sufficient for this, but other
approaches include the use of tools to simulate the behavior of the asset under realistic conditions
or the use of test harnesses to actually execute the asset with representative data to provide live,
hands-on feedback. The latter approach may be useful for better understanding both the functional
and non-functional characteristics of the asset. In particular, non-functional characteristics such as
performance are often addressed unconvincingly, if at all, in the static asset description, and are
best understood through hands-on use.

Assets are also often evaluated in terms of their quality and assurance. This may involve the
inspection or the on-line computation of a variety of metrics for an asset, and may also involve
the tracing and inspection of corroborating assurance information, such as test results, formal
specifications, formal or informal proofs, and the results of certification or accreditation processes
which the asset (in the context of systems or subsystems of which it was a part) may have undergone.

Another key factor in evaluating assets is their ease of use, both from an end user and a reuser
perspective. The reuser, in particular, must be concerned with the variability the asset will accom-
modate, its tailorability, its ease of modification (if modification is necessary), and its compatibility
with other assets for purposes of integration. Such judgements can sometimes be made through
inspection or simple trial usage of the asset, but may also sometimes require more full-fledged
attempts to tailor the asset and integrate it with other portions of the application. This may
call for some iterative prototyping activity among the Asset Selection, Asset Tailoring, and Asset
Integration processes.

After undergoing the above evaluation activities (and possibly more), an asset may be judged to
provide an appropriate set of capabilities; provide them in an appropriate manner with adequate
documentation, assurance, and performance; be sufficiently variable, tailorable, and integratable;
and meet any other criteria that may be applied, including subjective or intuitive judgements made
by application engineers based on their individual experience with the domain. If only one asset
satisfies the criteria in a particular functional area, it will be selected for tailoring and integration
with the application. If there is more than one such asset, additional criteria (often subjective) are
generally applied to select the one “best” asset. atively, more than one can be selected and
each can be tailored and integrated with the apy 1 to assess which is best through practical

Page 62

October 25, 1993 STARS-VC-A018/001/00

experience.

If no assets fully satisfy the criteria, an assessment must be made of whether any particular asset
is “close enough” to the criteria to justify its reuse. Alternatively, the criteria may be reassessed
and adjusted to better accommodate the assets, thus emphasizing a “reuse first” approach in
which application requirements are allowed to be compromised (within limits) to favor a reuse-
based solution. An organization may establish economic criteria for making such judgements,
based on economic models that weigh the cost of modifying or otherwise adapting reusable assets
(and possibly fielding systems that don’t fully meet a priori requirements) against the cost of
implementing system functionality from scratch or reengineering it from existing systems.

3.2.3.4 Asset Tailoring Process Category

The goal of Asset Tailoring processes is to customize assets that have been selected for reuse (or
use them in customized ways) so that they satisfy target system requirements. Assets typically
require at least some tailoring during reuse. Tailoring generally comes in two forms, either or both
of which may be applied to any given asset:

Anticipated Target system needs lie within the range of variability anticipated for an asset during
Asset Creation; the asset encapsulates the variability through some set of tailoring interfaces
(such as parameters); these interfaces can be used to resolve the variability to meet target
system needs.

Unanticipated Target system needs lie outside the range of variability anticipated for an asset
during Asset Creation (e.g., there is a need for new or alternative features where no variability
was anticipated); the asset thus provides no relevant tailoring interfaces that can be applied;
the asset is modified to address the unanticipated target system needs.

To perform anticipated tailoring, an engineer must understand the range of variability an asset
may accommodate a- . w the asset’s tailoring interfaces are used to select among the variations.
This information shc - > included in the library in the form of “reuse instructions” for the asset,
which may be augmented by examples. Parameterization (interpreted broadly) is the mechanism
most commonly used for anticipated tailoring. Examples of parameterization include:

e run-time parameters that are passed to the asset procedurally or via messages during system
execution,

¢ specifications, macros, data files, or command-line arguments that are interpreted at run-time
to produce desired behavior (e.g., initialization files, document style sheets),

e compile-time parameters that are passed to the asset to produce a system-specific instantiation
of the asset (e.g., Ada-style generics),

¢ installation parameters that control system-specific configuration of the asset (e.g., variables
controlling conditional compilation), and

o specification of product requirements, expressed in some domain-specific language, that are
given to an application generator to generate the desired products.

Page 63

October 25, 1993 STARS-VC-A018/001/00

In addition to parameterization, another technique that can be used for anticipated tailoring is hand
modification of the asset in accordance with precise instructions. An asset that can be tailored in
this manner is typically called a template.

Note that the tailoring of application generator assets is treated here as a very sophisticated form
of parameterization, wherein the entire specification given to the generator is considered to be a
parameter or set of parameters that controls the characteristics of the generated products. In some
cases, the generated products themselves may also need to be tailored in anticipated ways, such as
through installation parameters or run-time customization parameters.

Unanticipated tailoring is more of an ad hoc process in which the engineer assesses the asset’s
shortcomings relative to system needs and then employs whichever strategies are appropriate to
tailor the asset to those needs. This often involves hand modification of the asset to add desired
features or remove undesired features. Modifications may also be needed to address issues such as
performance, environment compatibility, and safety, reliability, or other quality factors.

For generator assets, unanticipated tailoring typically involves modifying the generated products to
meet some system requirement unforeseen by the asset creators. This can be effective, but should
be pursued with great caution due to the typically poor understandability and modifiability of the
generated products and due to the fact that the modifications will have to be redone any time the
products are regenerated. An alternative approach is to modify the generator itself to accommodate
greater variability or to satisfy some specific system requirement. Ideally, this should be done by
notifying asset creators (possibly including commercial vendors) that a need exists, so that they
can modify the generator and related assets to benefit other application engineering efforts.

Some experimentation may be appropriate while tailoring assets using any of the above techniques,
to ensure that the tailoring is done most effectively, particularly if the relevant target system
requirements are not well understood in advance. At times, the results of such experimentation
may affect decisions made during Asset Selection, causing some iteration between the selection
and tailoring processes to occur. In the worst case, the full implications of an asset’s limitations
may not become clear until unanticipated tailoring of the asset is undertaken. At that point it
may be appropriate to revisit the decision of whether to reuse the asset, adjust the asset criteria
to accommodate the asset’s limitations or admit a broader set of assets, or develop the desired
capability from scratch, depending on a variety of technical and economic considerations.

3.2.3.5 Asset Integration Process Category

The goal of the Asset Integration processes is to ensure that assets that have been selected for use in
an application system and tailored to meet system needs are properly :ntegrated with other system
elements. Many Asset Tailoring activities are often considered aspects of system integration, in
part because some assets’ tailoring interfaces are made available through the same mechanism as
their integration interfaces (e.g., run-time parameters in procedure calls or messages). However, for
the purposes of this discussion, asset integration is the process of making tailored assets work with
other system elements in the context of a system architecture, and is logically distinct from tailor-
ing. While tailoring focuses more on the adaptation issues local to a particular asset, integration
addresses adaptation and consistency issues global to an entire system or subsystem. In this view,
the tailoring process can be subservient to the integration process in the sense that integration may
require several iterative refinements of tailoring to ensure that all system needs are being met.

Page 64

October 25, 1993 STARS-VC-A018/001/00

Even in relatively mature reuse environments, integration often involves the development of inte-
gration modules (sometimes called “glue code”) to allow system components to interoperate when
asset tailoring is inappropriate or insufficient for that purpose. One of the most commonplace
integration strategies is encapsulation. In this approach, an asset that does not present the desired
interfaces to its would-be clients is encapsulated by code that does present the desired interfaces
and also transforms the data passed through those interfaces into (and out of) formats that the
embedded asset can understand and process appropriately.

In mature reuse environments, system integration is often done in the context of a domain archi-
tecture that has been tailored to reflect target system needs and therefore provides a framework for
integrating the tailored implementation assets, newly developed modules, and other legacy compo-
nents in accordance with well-defined interfaces. In such cases, integration can be straightforward
and require little glue code or other interface matching techniques. In fact, in these circumstances,
the processes to identify, select, tailor, and integrate assets are all highly automatable, and tools
may hide or blur these processes or the distinctions between them.

A somewhat more common situation is that there exist portions of a domain for which there are
good architectures and implementation assets, and other portions of the domain for which such
assets are not available or do not match target system needs very well. Such situations can occur
when domain-specific reuse is being practiced in subdomains of a larger domain in which new
systems are being developed or legacy systems are being evolved in otherwise traditional ways. In
such cases, problems that arise in integrating the reuse-based and non-reuse-based portions of the
system can be addressed using encapsulation techniques. An alternative approach, in the legacy
system context, is to reengineer the non-reuse-based portions of the system to accommodate the
interfaces in the reuse-based portions. Such reengineering may, but need not, be done in the context
of an domain analysis or architecture development effort addressing the entire domain; if it is, it
should be considered an Asset Creation effort.

Another common situation is that a system needs to be built in a domain for which there are no
architecture assets, but there are a number of implementation assets available (each with idiosyn-
cratic interfaces) that perform desired functions. In such cases, a system-specific design can be
developed that incorporates the needed functions and the available assets can be encapsulated or
modified as appropriate to work within that design.

Page 65

October 25, 1993 STARS-VC-A018/001/00
4 Summary

Section 3 describes the STARS CFRP in significant detail. It does this in a methodical way,
by describing the CFRP hierarchically in terms of the process idioms, their constituent process
families, and the process categories within the families. To facilitate this approach, the CFRP
is described principally from the perspective of the “canonic” CFRP configuration depicted in
Figure 1. Appendix A supplements this view by describing the flexible process modeling features
of the CFRP that support construction of alternative CFRP-consistent process configurations.

In general, Section 3 and Appendix A focus on detailed aspects of CFRP elements or composition
techniques, rather than offering a more global view of the fundamental concepts, or themes, inherent
in the CFRP. These key themes are listed below for reader reflection. They are divided into themes
about the nature of reuse as it is expressed in the CFRP, and themes about the CFRP model itself
and its particular qualities and characteristics, which are specifically relevant to how it is applied.

The themes about reuse as expressed in the CFRP are:

o A reuse-based approach to software engineering should be driven by well-defined processes
that are repeatable and can be evolved in manageable ways.

¢ Software reuse has both management and engineering dimensions, whose key activities, and
their interrelationships, are captured in the CFRP Reuse Management and Reuse Engineering
idioms and their constituent process families.

e The CFRP process categories provide a definition of the specific activities involved in a
process-driven, domain-specific reuse-based approach to software engineering.

o Reuse should be applied as a “first principle”. That is, reusable products should always
be considered as the basis for work before creating new products. In addition, experiences,
processes, and workproducts should always be recorded for learning, and the workproducts
should be designed to facilitate reuse.

o Learning and managed change, based on measurement, history, and innovation, are essential
to reuse.

o Technical, organizational, and educational infrastructure is essential to reuse, and must be
designed and managed to support it.

¢ A domain-specific, architecture-driven approach to reuse will yield the greatest reuse impact,
and is thus important to address from both an engineering and a management perspective.

¢ The asset producer, broker, and consumer roles are important, separable aspects of reuse that
form distinctive patterns of activity within the Reuse Engineering idiom.

The themes about the CFRP and its applicability are:

o The CFRP is generic with respect to domains, technologies, organizational structures, man-
agement styles, and economic sectors.

Page 66

e

October 25, 1993 STARS-VC-A018/001/00

e The CFRP addresses only reuse processes, and these processes must be integrated with overall
planning and engineering practices to be effective.

e The CFRP provides a process modeling language featuring composition techniques that sup-
port construction of complex, reuse-oriented process configurations.

¢ The CFRP is highly scalable. In general, it can be applied in an organization of any size, at
any organizational level.

e The CFRP is a domain model and high level process architecture for the reuse process domain.
It provides a basis for the analysis of reuse processes (and associated products) and the
definition of reusable process assets.

In the companion volume to this document, STARS Conceptual Framework for Reuse Processes
(CFRP), Volume II: Application, guidance is provided for applying the CFRP to support various
forms of reuse planning. The document offers additional insight into the CFRP and its associated
themes, primarily by putting the CFRP into a more concrete context and showing how it can be
used to address practical concerns. STARS strongly encourages you to read the CFRP Application
document to gain this additional insight and to begin applying the CFRP in your own organization.

Page 67

October 25, 1993 STARS-VC-A018/001/00

A CFRP Composition Techniques

Section 3 of this document focuses on describing the individual CFRP process elements (the reuse
process idioms, families, and categories). These individual elements offer significant insight into
reuse processes, but they gain synergistic value when viewed as modular building blocks that can be
used to construct a wide variety of reuse-specific process configurations reflecting different planning
levels, organizational structures, and interaction patterns. The CFRP is described in Section 3
primarily in the context of one such configuration, the “canonic” CFRP configuration depicted in
Figure 1. However, many other configurations are possible.

To support the construction of process configurations, the CFRP includes not only the process
idioms and families already described, but also a set of “composition™ rules or techniques that
can be used to connect the idioms and families together in a variety of ways. These techniques
provide a flexible and scalable composition approach enabling CFRP models to capture aspects of
reuse-based engineering practice not easily described with traditional software life cycle models, as
discussed below.

A full understanding of how to apply the CFRP for planning, process engineering, or evaluation and
comparison depends on an understanding of the CFRP composition techniques. These techniques
may be of particular interest both to process engineers interested in process configuration and
composition and to planners interested in organizational design and interaction.

The CFRP Application document discusses the CFRP process modeling techniques of tailoring,
integration, and instantiation, as well as composition. The composition techniques are considered
an intrinsic part of the CFRP model, and they are thus described in this document as part of the
CFRP definition. The other techniques, though important in applying the CFRP, are not considered
intrinsic to the CFRP model, and are thus described in the CFRP Application document.

The following subsections describe the CFRP composition techniques of linkage, recursion, and
overlapping in significant detail. In general, the techniques are illustrated by realistic examples
showing how they can be useful.

A.1 Linkage

To model potentially complex interaction patterns among reuse projects in CFRP configurations,
the CFRP allows for one-to-many, many-to-one, and many-to-many linkages among process families.
These techniques are described below, with illustrative examples:

e One-to-many mapping Figure 9a depicts a situation in which single Asset Creation and
Asset Management projects have a set of multiple Asset Utilization “clients” for the reusable
assets developed. This is, in fact, almost a defining case for reuse, where the intention is to
create assets that can be used across multiple systems. In modeling this situation, the CFRP
encourages explicit documentation of the intended scope of applicability for the assets being
developed. Rather than designing for reusability in the abstract, asset creators can design to
an expected set of target systems. This configuration could apply to, for example, a single
organization performing product-line management by creating domain assets relevant to the

Page 68

October 25, 1993 STARS-VC-A018/001/00

(a) One domain development
may be used by multiple
system developments.

. . (c) Multiple domain developments
(b) Multiple domain develop- may be used in multiple
ments may be used in a system developments.
single system development.

Figure 9: Linkage of Reuse Engineering Processes

product line, managing those domain assets, and building a family of products in the product
line using the managed assets. (Nobeltech provides a real-life example of this approach with
its shipboard command and control systems [Rat91).) Alternatively, the same configuration
could apply to a software vendor marketing assets in a particular domain to a set of external
clients.

¢ Many-to-one mapping Figure 9b depicts a situation in which a single Asset Utilization
project integrates assets that are managed by a single Asset Management project, but de-
veloped by a number of separate Asset Creation projects. This configuration is typical of
large-scale systems, where system integrators need to merge assets from multiple domains to
implement and maintain a single complex system or family of systems. Boeing’s use of sub-
contractors for commercial avionics provides a real-life example. In the figure, the separate
Asset Creation projects could belong to distinct subcontractors. This configuration empha-
sizes the need for reuse technology, design methods, and infrastructure that allow assets from
multiple Asset Creation projects to be managed in common collections and readily integrated.
It also points to the need for investment in standard architectures and interfaces to facilitate
system composition and integration.

¢ Many-to-many mapping Both examples described above assume the presence of a single
Asset Management project in the configuration. In fact, just as there may be multiple Asset
Creation and Asset Utilization projects within the scope of a reuse program, there may be
multiple Asset Management projects as well. The rationale for such a configuration becomes

Page 69

——
October 25, 1993 STARS-VC-A018/001/00

apparent in a realistically complex picture of a reuse program spanning multiple domains and
several system development efforts, as depicted in Figure 9c. This situation suggests an open
marketplace of asset producers, brokers, and consumers. Each Asset Management project
receives assets from multiple Asset Creation projects, and two Asset Creation prajects provide
assets to multiple Asset Management projects. (The dashed lines represent assets moving
across organizational boundaries.} The lower “cluster” in the configuration can represent
an organization integrating in-house assets with external assets to create a product line. A
configuration not shown, but equally possible, would involve the Asset Utilization projects
drawing from multiple Asset Management projects across organizational boundaries, as well.

This diagram serves to illustrate that the brokerage role of Asset Management can be in-
dispensable in a multi-domain, multi-project, multi-organization marketplace. Without a
separately configurable Asset Management capability, the asset creators or the asset utilizers
in this scenario would bear the burden not only of performing basic Asset Management func-
tions, but also of managing multiple, redundant lines of communication to reiated projects.
The Asset Management projects here serve as central focal points for managing these complex
interactions. This diagram also suggests that reuse programs will have an ongoing need for
negotiating the import and export of assets into and out of the program scope.

This subsection has illustrated one-to-many, many-to-one and many-to-many relationships among
Reuse Engineering families. Similar linkages are possible among Reuse Management families; how-
ever, the real-world situations in which such modeling constructs would be useful are less intuitive
and are not discussed here.

A.2 Recursion

The linkage relationships discussed above involve multiple CFRP families at similar functional and
organizational levels. These CFRP families are connected with other families in the same idiom
or with families in other, similar idioms. These linked process families are distinct activities coor-
dinated via the peer-to-peer exchange of information. That is, in general, there is no hierarchical
interaction or control among the elements.

A different CFRP composition technique enables the modeling of hierarchical relationships among
CFRP elements. This technique, termed “recursion” (a special use of the term in the CFRP
context), allows CFRP idioms to be nested or embedded within a process family in another idiom.
The embedded idiom in a recursion relationship is termed the “child” idiom, and the embedding
family (or the idiom of which it is a member) is termed the “parent”. The intended semantics
of recursion is that enacting the processes of a parent family involves enacting processes of the
embedded idiom as sub-processes.

There are twelve distinct recursion relations possible in the CFRP (by embedding each idiom
respectively in any of the three Reuse Management families or in any of the three Reuse Engineering
families). Some of these relations are more meaningful in practice than others, and each implies a
unique set of issues. The following paragraphs discuss a selected subset of these recursion relations.

The canonic CFRP configuration that is used as a reference throughout Section 3 is a result of
the recursion relation depicted in Figure 10a. In this configuration, in which a Reuse Engineering

Page 70

October 25, 1993 STARS-VC-A018/001/00

CREATE

,m_f

MANAGE

e

23

UTILIZE
£S iy
\m/g’

Figure 10: Mutual Recursion of Reuse Management and Reuse Engineering

idiom is embedded within the Reuse Enactment family of a parent Reuse Management idiom, Reuse
Management acts as a regulator or overseer of Reuse Engineering activities. This configuration is
generally interprzeted in this document as representing a reuse program thai operates as follows:
Reuse Planning scopes the Reuse Engineering effort and plans the processes and interconnections
of the Reuse Engineering projects; Reuse Enactment embeds the projects and adds a number of
project management functions, such as metrics collection and project monitoring and redirection;
Reuse Learning collects and generates lessons learned, evaluates performance relative to objectives,
and abstracts processes and methods to improve the next reuse program cycle.

Recursion of Reuse Management within the various families of Reuse Engineering is depicted in
Figure 10b. Such recursion generally implies introduction of a different level of planning and
decision-making, often at a different organizational level. In this example, the parent families
represent the processes of particular reuse projects, with the three inner Plan-Enact-Learn loops
representing learning-oriented approaches to individual project tasks. The inner learning loop in
Asset Creation, for example, could represent an engineer planning, performing, and improving his
own reuse methods on a specific project task. An outer learning loop surrounding the three Reuse
Engineering families (as in Figur- 10a) would represent a reuse program that focuses more on
managing the overall projects and ..e interactions among them, at a higher organizational level.

Recursion of Reuse Management within the Reuse Enactment family of a parent Reuse Management
idiom (shown in Figure 11a) enables modeling of nested reuse programs reflecting hierarchical
scopes of planning within an organization. Such recursion can represent (a) levels of planning and
decision-making responsibility, reflecting organizational structure, and (b) differences in planning
timescales as one ascends the hierarchy, with lower-level planning loops addressing short-cycle
planning, and higher-level loops addressing longer, strategic cycles involving perhaps ten- to twenty-
year projections. Reuse planners, rather than making arbitrary assumptions about organizational
structure, can use the CFRP in this way to model the structural levels that appear relevant to
reuse within the organization. The nested Plan-Enact-Learn loops can be visualized as sets of
interlocking gears that transmit change at a rate appropriate to the given organizational level or

Page 71

October 25, 1993 STARS-VC-A018/001/00

Figure 11: Recursion of Reuse Management within Reuse Management

scope. The managed approach to change inherent in the Reuse Learning family allows potential
changes to percolate up the hierarchy of the organization as well as down.

Several CFRP process category descriptions in Section 3 implicitly suggest opportunities for the
use of recursion. For example, within an Innovation Exploration activity in Reuse Learning, a
Reuse Engineering activity might be established to conduct controlled engineering experiments.
This could be modeled as an embedded Reuse Engineering idiom within the Reuse Learning family.
Alternatively, if the experimentation involved a series of iterations or cycles (independent of the
longer cycle of the parent Reuse Management idiom), this situation could be modeled as an embed-
ded Reuse Management idiom within Reuse Learning. The Reuse Engineering idiom could then
be embedded within the lower-level Reuse Management idiom. Figure 11b shows a similar, but
more complex situation, in which an additional Reuse Management layer is embedded within Re-
use Learning. This illustrates, for example, that Innovation Exploration activities may be multiply
nested, reflecting layers of abstraction that occur naturally in R&D work.

Certain configurations, such as recursion of Reuse Management within the Reuse Planning family,
seem to threaten an infinite regression, a non-converging series of planning activities. (What does
it mean to plan the Planning, and where does such planning terminate?) Since such problems can
occur in real-life planning situations, however, it is interesting to note that the CFRP model has
predictive value in anticipating these potential problem areas.

A.3 Overlapping

Another important way that process idior.s can be composed is through “overlapping”, where a
process family within one idiom simultaneously serves in a different family role within a separate
idiom. Overlapping does not mean the mere sharing of two distinct functions by a single individual
or group within an organization, but rather one specific activity simultaneously filling two inde-
pendent functional roles in the context of logically separate idioms. As with recursion, there are a

Page 72

October 25, 1993 STARS-VC-A018/001/00

Figure 12: Cascading of Reuse Engineering Processes

number of overlapping relations possible, between idioms of the same or different types. Here, only
one overlapping relation will be discussed in detail to illustrate the general concept. This relation
is a significant special case termed “cascading”.

Cascading

Cascading involves overlapping of the Asset Utilization family of one Reuse Engineering idiom with
the Asset Creation family of another Reuse Engineering idiom, as depicted in Figure 12. As an
example, consider the implementor of a windowing system that will be marketed as a reusable
asset with a published programming interface. This person simultaneously enacts Asset Utiliza-
tion activities in one Create-Manage-Utilize context (as a reuser of existing, lower-level window
management capabilities) and enacts Asset Creation activities in another Create-Manage-Utilize
context (as creator of the new windowing system that will be reusable by others, both to establish
a window-based environment and to create higher-level window-based applications).

Cascading can iterate through multiple levels, in effect reflecting the “food chain” phenomenon
that occurs naturally in many areas within software development, where a chain of value-added
resellers build layers of application-specific enhancements to an underlying technical foundation.

Page 73

October 25, 1993 STARS-VC-A018/001/00

Each layer, by adding capabilities that did not exist in previous layers, establishes a new context
for creating reusable assets at a higher level of abstraction.

It is important to differentiate the cascading relation from typical producer-consumer relationships
in conventional software life cycles (e.g., relationships between requirements and design, design
and code, etc.). Processes in a cascading relation are not simply passing workproducts among one
another as part of a development cycle. The asset creator, rather than providing products from
previous life cycle stages that are prerequisites for the asset utilizer’s work, provides reusable assets
that enable products in the current life cycle stage to be developed more productively and at higher
levels of abstraction.

The cascading relation may become increasingly useful for modeling a number of situations that
will become more prominent in software engineering in the future. As more software products are
marketed as assets rather than systems, and more users become value-added resellers, the modeling
of cascading relationships as an integral part of reuse project planning will become more important.

Page 74

October 25, 1993 STARS-VC-A018/001/00
Glossary

application engineering The development or evolution of a system to meet particular appli-
cation requirements. In a domain-specific reuse-based environment this generally involves
determining the criteria for selecting domain assets in the context of the application require-
ments; identifying, selecting, and tailoring assets to meet the criteria and requirements; and
integrating the tailored assets into the application system.

application generator A software tool that generates software work products from non-
procedural user specifications of desired capability.

architecture See software architecture.

asset A unit of information of current or future value to a software development or maintenance
enterprise. Assets can include a wide variety of items, such as software life cycle products,
domain models, processes, documents, case studies, research results, presentation materials,
etc.

asset base A coherent set of assets, addressing one or more domains and residing in one or more
asset libraries.

asset certification The process of determining to what extent an asset can be trusted to satisfy
its requirements without error.

asset description Information about an asset that is useful for identification and selection of the
asset by a user (e.g., author, functionality, usage history, dependencies, etc.) and is organized
in accordance with a library data model.

asset library A set of assets and associated services for accessing and reusing the assets. A library
typically consists of assets, corresponding asset descriptions, a library data model, and a set
of services (manual or automated) for managing, finding, retrieving, and reusing assets. Such
services can include reuse consultation services.

asset library interoperability The ability of two or more distinct and possibly heterogeneous
asset libraries to dynamically access one another’s assets, asset descriptions, data models,
and/or library services.

asset model A data model describing relationships ‘and constraints among assets in an asset base.
An asset model describes the overall structure of the asset base.

asset qualification An aspect of the Asset Acceptance process that involves determining whether
assets qualify for inclusion in an asset library based on domain-specific criteria such as con-
formance t¢c a domain architecture.

asset specification The process of determining (and specifying) which assets should be developed
in a domain and the range of features or capabilities they should support.

asset understanding The process of thoroughly analyzing an asset and its description in order
to grasp the functionality being provided as well as the constraints and limitations on its use.

brokerage A function performed by a process when serving as an intermediary between other
processes to facilitate or focus interaction and information exchange among those processes.

Page 75

October 25, 1993 STARS-VC-A018/001/00

cascading In the CFRP context, a process modeling technique that enables overlapping of the
Asset Utilization family of one Reuse Engineering idiom with the Asset Creation family of an-
other Reuse Engineering idiom. Cascading relationships can reflect “food chain” relationships
characteristic of value-added software resellers.

certification category A category to which an asset is assigned to indicate the degree of confi-
dence that has been established about the asset relative to some criteria, such as functional
correctness, reliability, or adherence to standards.

component Some part of a software life cycle product. A component may be subdivided into
other components. A “complete” component includes both the component data itself and all
related information that is needed to use it.

composition A process, technique, or method that involves combining elements of some kind
of system or model to form larger, composite elements. For example, the elements can be
software system components (in which case the process is known as system composition) or
process model elements (e.g., the CFRP process model composition techniques).

constraint A functional or operational requirement for a system or model that limits the set of
candidate solutions.

design The process of defining the software structure, components, modules, interfaces, and data
for an application system to satisfy specified requirements.

design recovery The part of reverse engineering that involves analyzing system components and
relationships to identify design elements, their interrelationships and interactions, and their
design principles, requirements, and constraints. See reverse engineering.

domain An area of activity or knowledge. A number of different classification schemes have
been proposed for domains; some of the classes of domains that have been identified include:
application, horizontal, vertical, technology, computer science, execution, etc.. Figure 13
graphically depicts relationships among some of these classes of domains, as elaborated in the
text below.

application domain The knowledge and concepts that pertain to a particular computer ap-
plication area. Examples include battle management, avionics, C3I, and nuclear physics.
Each application domain can be decomposed into more specialized subdomains where
the decomposition is guided by the overall purpose or mission of systems in the domain.
For example, C3I may be decomposed into C3I for land operations, for sea operations,
for air operations, etc.

horizontal domain The knowledge and concepts that pertain to particular functional capa-
bilities that can be utilized across more than one application domain. Examples include
user interfaces, database systems, and statistics. Most horizontal domains can be de-
composed into more specialized subdomains where the decomposition is often guided by
characteristics of the solution software. Distinguishing characteristics can include archi-
tectural style (e.g., functional, object-oriented, data-oriented, control-oriented, declar-
ative, etc.), conceptual underpinning (e.g., relational or hierarchical data models), or
required hardware. For example, user interface capabilities can be subdivided into those
which support ANSI terminals and those which support bit-mapped, mouse input de-
vices.

Page 76

October 25, 1993 STARS-VC-A018/001/00
MILITARY SYST 6‘ pp”l "
omains
EMS gbacomposed
y Purpose)
Aviowics BATTLE
| MGT C3l1

MISSILE
AVIONICS

D
3

IicCBmM N\
CRUISE '\
SURFACE

Missile Avionics
Vertical Domain

Horizontal Domain
(Decomposed by Sol

Figure 13: Types of Domains

vertical domain The knowledge and concepts that pertain to a class of systems addressing
a particular functional need within an application (sub)domain. This class of systems
can be organized as a hierarchy of functions. Also, horizontal {sub)domains may address
functional requirements as described/modeled within the vertical domain functional hi-

erarchy.

domain analysis The process of identifying, collecting, organizing, analyzing, and modeling do-
main information by studying and characterizing existing systems, underlying theory, domain
expertise, emerging technology, and development histories within a domain of interest. A pri-
mary goal is to produce domain models to support the development and evolution of domain

asset.

domain engineering The development and evolution of domain-specific knowledge and assets
to support the development and evolution of application systems in a domain. Includes
engineering of domain models, architectures, components, generators, methods, and tools.

Page 77

“

October 25, 1993 STARS-VC-A018/001/00

domain knowledge Information about domains that exists in a variety of forms, including legacy
systems and human expert knowledge.

domain model A definition of the characteristics of existing and envisioned application products
within a domain in terms of what tke products have in common (their “commonality”) and
how they may vary (their “variability”).

domain requirements model A description of (a) the overall scope and context of a do-
main, and (b) the range of potential requirements on the operational characteristics of
domain applications.

domain architecture model A description of the range of potential software architectures
and designs that can satisfy domain requirements.

domain implementation model A description of the range of potential implementation
assets that can satisfy domain requirements and architecture constraints.

domain-specific language A machine-processable language (the terms of which can be derived
from a domain model) that is used to describe application system characteristics or capabilities
within a domain. Often is used as input to an application generator.

domain-specific reuse Reuse in which the reusable assets, the development processes, and the
supporting technology are appropriate to, and perhaps developed or tailored for, the appli-
cation domain for which a system is being developed.

generation A technique or method that involves generating software work products from non-
procedural user specifications of desired capability.

generator See application generator.

legacy systems Software systems in domains of interest that can impart legacy knowledge about
the domains and feed domain analysis or reengineering efforts to produce domain assets or
new application systems.

library data model The information (sometimes called meta-data) that describes the structure
of the data in an asset library.

library mecuanism A software system that provides a generic library system framework which
can be tailored and perhaps extended to support asset libraries with specific capabilities.

life cycle The stages a software or software-related product passes through from its inception until
it is no longer useful. Note that this definition shifts the usual definition of life cycle, which
is based on the life of a system, to a more general concept covering the lifetime of a software
product.

life cycle model A model describing the processes, activities, and tasks involved in the develop-
ment and maintenance of software and software related products, spanning the products’ life
cycles.

life cycle stage One phase of a software life cycle addressing some particular aspect of a product’s
development or evolution. Examples include requirements analysis, design, implementation,
and test. Fach stage may produce individual life cycle products representing the results of
that stage.

Page 78

N

October 25, 1993 STARS-VC-A018/001/00

linkage In the CFRP context, a process modeling technique that enables representation of complex
interaction patterns among reuse projects. Linked projects are distinct activities coordinated
via the peer-to-peer exchange of information.

megaprogramming A software engineering paradigm that emphasizes process-driven, domain-
specific reuse-based approaches to software development and evolution, automated by support
tools and environments.

method A series of steps, actions, or activities that use a defined set of principles to bring about
a desired result.

methodology A set or system of methods and principles for achieving a goal such as producing
a software system.

process A description of a series of steps, actions, or activities to bring about a desired result.
The process may be expressed at various levels of abstraction, reflecting the various degrees
of precision appropriate at different organizational levels and at different stages in a software
life cycle. Depending on the level of abstraction at which a process is described, it may
or may not include well-defined inputs, intermediate products, constraints, needed resource
descriptions, outputs, and testable criteria for starting, stopping, and moving on to the next
step in the series.

process category A class of processes having common objectives, inputs, outputs and overall
approach, but variable in methodology, complexity, formality, etc. The lowest level structural
element type in the CFRP.

process-driven software engineering An approach in which software is developed or evolved
in accordance with well defined, repeatable processes that are subject to continuous measure-
ment and improvement and are enforced through management policies.

process family A collection of different process categories that together support a major func-
tional capability. The middle level structural element type in the CFRP; decomposed into
CFRP process categories.

process idiom A distinctive pattern of process activity. The top level structural element type in
the CFRP; decomposed into CFRP process families.

project history Qualitative historical information about project processes, products, and infras-
tructure captured during project enactment.

query A request for identification of a set of assets, expressed in terms of a set of criteria which
the identified items must satisfy.

recursion In the CFRP context, a process modeling technique that enables CFRP idioms to be
nested or embedded within a process family in another idiom. Enacting the processes of a
CFRP family involves enacting processes of any recursively embedded idioms as sub-processes.

reengineering The process of examining, analyzing, restructuring, and/or re-implementing exist-
ing computer software to address evolving requirements, implementation technologies, etc.

requirement A condition or capability that must be met or possessed by a software system or
software-related product.

Page 79

October 25, 1993 STARS-VC-A018/001/00

reuse The application of existing information. In software engineering, reuse usually involves the
application of information encoded in software-related workproducts. A simple example of
the reuse of software work products is reuse of subroutine/subprogram libraries for string
manipulations or mathematical calculations. A simple example of the reuse of information
not encoded in software workproducts is consultation with a human expert to obtain desired
knowledge.

reuse-based software engineering An approach to software-intensive system development and
evolution in which new and modified systems are constructed principally from existing soft-
ware assets rather than through new development.

reuse cycle One pass through the Reuse Planning, Enactment, and Learning families in a partic-
ular reuse program.

reuse infrastructure The collection of capabilities that is needed to support and sustain reuse
projects within a reuse program. Includes tools and technology; organizational structure,
policies, and procedures; and education and training.

reuse initiative The first Reuse Management cycle of a reuse program, in which the program is
initially established.

reuse library See asset library.

reuse program The set of activities encompassed by (and including) a particular instance of the
Reuse Management idiom.

reuse program scope The technical and organizational boundaries of a reuse program. This
includes delineation of the program’s key domains of focus and application product lines.

reuse project A collection of Reuse Engineering activities that is enacted as a unit by Reuse
Enactment processes.

reuse strategy A strategy for instituting and evolving reuse capabilities to satisfy overall objec-
tives within an organization.

reverse engineering The process of analyzing a computer system’s software to identify compo-
nents and their interrelationships. See design recovery.

software architecture The high level design of a software system or subsystem. An architecture
is defined in terms of the following general constructs:

o a set of software system elements, which may include both processing and data elements
¢ interfaces for each element

e a set of element-to-element connections, collectively forming interconnection topologies
o the semantics of each connection

— the meaning of static connections (e.g., between data elements)

— protocols describing information transfer across dynamic connections, in terms of
element interfaces (general classes of protocols include procedure call, pipe, message
passing, etc.)

Page 80

October 25, 1993 STARS-VC-A018/001/00

software engineering environment (SEE) The computer hardware, operating system, tools,
and encoded processes and rules that an individual software engineer works with to develop
a software system.

specification A document or formal representation that prescribes, in a complete, precise, verifi-
able manner, the requirements, design, behavior, or other characteristics of a software system
or software-related product.

tailoring The process of adapting products for application in new, specific situations. The adapted
products may have been designed to anticipate specific forms of tailoring or may be tailored
in unanticipated ways.

technique A set of procedures, rules, or skills that can be applied to achieve a particular class of
results.

technology Technological capabilities that can contribute to the reuse infrastructure within an
organization and can be applied to establish or automate reuse processes.

traceability The characteristic of software-related products that identifies and documents the
derivation path (upward) and allocation/flowdown path (downward) of requirements and
constraints.

variability The extent to which an element or characteristic of a domain may vary among indi-
vidual systems or products in the domain.

Page 81

October 25, 1993 STARS-VC-A018/001/00

References

[Ass92a)

[Ass92b]

[Bai89a]
[Bai89b)
[Bas90]
[BB91]
[BCC92)
[Bee72]
[Big89]
(BRS7]

[Cen92)

[Cen93a)

Asset Source for Software Engineering Technology (ASSET). ASSET Operations Plan.
IBM STARS Technical Report CDRL 05602-001, Asset Source for Software Engineering
Technology (ASSET), Morgantown, WV, June 1992.

Asset Source for Software Engineering Technology (ASSET). Criteria and Implementa-
tion Procedures for Evaluation of Reusable Software Engineering Assets. IBM STARS
Technical Report CDRL S45.11, Asset Source for Software Engineering Technology (AS-
SET), Morgantown, WV, March 1992.

Sidney Bailin. Generic POCC Architectures. Report prepared for NASA Goddard Space
Flight Center, Computer Technology Associates, Laurel, MD, April 1989.

Sidney Bailin. The KAPTUR Environment: An Operations Concept. Technical report,
CTA Incorporated, Rockville, MD, 1989.

Victor Basili. Viewing Maintenance as Reuse-Oriented Software Development. IEEE
Software, 7(1):19-25, January 1990.

Bruce Barnes and Terry Bollinger. Making Reuse Cost-Effective. IEEE Software,
8(1):13-24, January 1991.

Victor Basili, Gianluigi Caldiera, and Giovanni Cantone. A Reference Architecture for
the Component Factory. ACM Transactions on Software Engineering and Methodology,
1(1):53-80, January 1992.

Stafford Beer. Brain of the Firm. Herder and Herder, New York, NY, 1972.

Ted Biggerstaff. Design Recovery for Maintenance and Reuse. TEEE Computer, 22(7):36—
49, July 1989.

Ted Biggerstaff and Charles Richter. Reusability Framework, Assessment, and Directions.
IEEE Software, 4(2):41-49, March 1987.

Central Archive for Reusable Defense Software (CARDS). Acquisition Handbook. Unisys
STARS Technical Report STARS-AC-04105/001/00, US Air Force Materiel Command,
Electronic Systems Center, Hanscom Air Force Base, MA, October 1992.

Central Archive for Reusable Defense Software (CARDS). Direction Level Handbook.
Unisys STARS Technical Report STARS-AC-04104/001/00, US Air Force Materiel Com-
mand, Electronic Systems Center, Hanscom Air Force Base, MA, March 1993.

[Cen93b] Central Archive for Reusable Defense Software (CARDS). Franchise Plan. Unisys STARS

[Cen93c]

Technical Report STARS-AC-04116/001/00, US Air Force Materiel Command, Electronic
Systems Center, Hanscom Air Force Base, MA, March 1993.

Centrai Archive for Reusable Defense Software (CARDS). Technical Concept, Command
Center Library. Unisys STARS Technical Report STARS-AC-04107A/002/00, US Air
Force Materiel Command, Electronic Systems Center, Hanscom Air Force Base, MA,
March 1993.

Page 82

October 25, 1993 STARS-VC-A018/001/00

(CK092] Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Communications of the
ACM, 35(9):75-90, September 1992.

[Cle88] J.C. Cleaveland. Building Application Generators. IEEE Software, 5(4):25-33, July
1988.

[Dem86] W.E. Deming. Out of the Crisis. MIT Press, Cambridge, MA, 1986.

[DIS93] DISA/CIM Software Reuse Program. Domain Analysis and Design Process, Version
1. Technical Report 1222-04-210/30.1, Defense Information Systems Agency Center for
Information Management, 701 South Court House Road, Arlington VA 22204, March
1993.

[DoD92] DoD Software Reuse Initiative. DoD Software Reuse Vision and Strategy. Technical
Report 1222-04-210/40, Center for Software Reuse Operations, Alexandria, VA, July
1992.

(FG90] W.B. Frakes and P.B. Gandel. Representing Reusable Software. Information and Soft-
‘nare Technology, 32(10), December 1990.

[HCKP89] Robert R. Holibaugh, Sholom G. Cohen, Kyo C. Kang, and Spencer Peterson. Reuse:
Where to Begin and Why. In Proceedings of Tri-Ada ’89, pages 266-277, New York, NY,
October 1989. Association for Computing Machinery.

(JHD*+90] A. Jaworski, F. Hills, T. Durek, S. Faulk, and J. Gaffney. A Domain Analysis Pro-
cess. Technical Report DOMAIN_ANALYSIS-90001-N, Software Productivity Consor-
tium, 2214 Rock Hill Road, Herndon VA, 22070, January 1990.

[Kam89] Gary M. Kamsickas. An Objective Look at the Modularization and Standardization of
Training Systems. In Proceedings of the Eleventh Interservice/Industry Training Systems
Conference, 1989,

[KCH*90] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990.

[MCP*88] D. McNicholl, S. Cohen, C. Palmer, J. Mason, C. Herr, and J. Lindley. Common Ada
Missile Packages — Phase 2. Technical Report AFATL-TR-88-62, Air Force Armament
Laboratory, Eglin AFB, FL, November 1988.

[MG92] E. Mettala and M. Graham. The Domain-Specific Software Architecture Program. In
Proceedings of the DARPA Software Technology Conference 1992. Defense Advanced Re-
search Projects Agency, April 1992.

[Nav93] Naval Surface Warfare Center Systems Reengineering Strategies Working Group. Draft
Reengineering Taxonomy and Process. Technical Report NSWCDD/TR-92/290, Naval
Surface Warfare Center, Silver Spring, MD 20903, August 1993.

[PDA91] R. Prieto-Diaz and G. Arango, editors. Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, Los Alamitos, CA, 1991.

[PDF87)] R. Prieto-Diaz and P. Freeman. Classifying Software for Reusability. IEEE Software,
4(1):6-16, January 1987.

Page 83

October 25, 1993 STARS-VC-A018/001/00

[PW92]

[Rat91]

[Reu90)

[Sca92]

[Sch83]

[Sen90]
[Shag9]

[Sha91]

[Sof91a]

[Sof91b]

[Sof91c]

[Sof92]

[Sof93a)

D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. ACM
Software Engineering Notes, 17(4):40-52, October 1992.

Rational. Foundation for Competitiveness and Profitability: FS2000 System, Rational,
and Ada. Case study, Rational, Santa Clara, CA, 1991.

Reusable Ada Products for Information System Development (RAPID). Final RAPID
Center Reusable Software Comporent (RSC) Procedures. Softech Technical Report 3451-
4-326/4, US Army Information Systems Engineering Command, Ft. Belvoir, VA, June
1990.

Walt Scacchi. Process-Driven Environments as Reusable Application Development
Frameworks. In Proceedings of the Fifth Annual Workshop on Software Reuse, November
1992.

Donald Schon. The Reflective Practiiioner: How Professionals Think in Action. Basic
Books, New York, NY, 1983.

P.M. Senge. The Fifth Discipline. Doubleday/Currency, New York, NY, 1990.

Mary Shaw. Large Scale Systems Require Higher-Level Abstractions. In Proceedings of
the 5th International Workshop on Software Specification and Design, Pittsburgh, PA,
May 1989.

Mary Shaw. Heterogeneous Design Idioms for Software Architectures. In Proceedings of
the 6th International Workshop on Software Specification and Design, Los Alamitos, CA,
QOctober 1991. IEEE Computer Society Press.

Software Productivity Consortium. Ada Quality and Style: Guidelines for Professional
Programmers. Technical Report SPC-91061-N, Version 02.00.02, Software Productivity
Consortium, Herndon, VA, 1991.

Software Technology for Adaptable Reliable Systems (STARS). Domain Specific Envi-
ronment Repository — Composite Paradigm Report. Unisys STARS Technical Report
STARS-SC-03068/001/00, Advanced Research Projects Agency, STARS Technology Cen-
ter, 801 N. Randolph St. Suite 400, Arlington VA 22203, May 1991.

Software Technology for Adaptable Reliable Systems (STARS). Reuse Library Process
Model. IBM STARS Technical Report CDRL 03041-001, Advanced Research Projects
Agency, STARS Technology Center, 801 N. Randolph St. Suite 400, Arlington VA 22203,
July 1991.

Software Technology for Adaptable Reliable Systems (STARS). Asset Library Open Ar-
chitecture Framework (ALOAF), Version 1.2. Unisys STARS Technical Report STARS-
S$C-04041/001/02, Advanced Research Projects Agency, STARS Technology Center, 801
N. Randolph St. Suite 400, Arlington VA 22203, August 1992.

Software Technology for Adaptable Reliable Systems (STARS). Orgaaization Do-
main Modeling (ODM), Volume I - Conceptual Foundations, Process and Workprod-
uct Descriptions, Version 0.5 - DRAFT. Unisys STARS Technical Report STARS-UC-
05156/024/00, Advanced Research Projects Agency, STARS Technology Center, 801 N.
Randolph St. Suite 400, Arlington VA 22203, July 1993.

Page 84

October 25, 1993 STARS-VC-A018/001/00

[Sof93b]

[Sof93c]

[Sof93d])

Software Technology for Adaptable Reliable Systems (STARS). Reuse Strategy Model:
Planning Aid for Reuse-based Projects. Boeing STARS Deliverable D613-55159, Ad-
vanced Research Projects Agency, STARS Technology Center, 801 N. Randolph St. Suite
400, Arlington VA 22203, July 1993.

Software Technology for Adaptable Reliable Systems (STARS). STARS Conceptual
Framework for Reuse Processes (CFRP), Volume II: Application, Version 1.0. Unisys
STARS Technical Report STARS-VC-A018/002/00, Advanced Research Projects Agency,
STARS Technology Center, 801 N. Randolph St. Suite 400, Arlington VA 22203, Septem-
ber 1993.

Software Technology for Adaptable Reliable Systems (STARS). The Reuse-Oriented
Software Evolution (ROSE) Process Model, Version 0.5. Unisys STARS Technical Re-
port STARS-UC-05155/001/00, Advanced Research Projects Agency, STARS Technology
Center, 801 N. Randolph St. Suite 400, Arlington VA 22203, July 1993.

[SWT89] James J. Solderitsch, Kurt C. Wallnau, and John A. Thalhamer. Constructing Domain-

[U.S89]

[Vir92a)

[Vir92b)}

Specific Ada Reuse Libraries. In Proceedings of the 7th Annual National Conference on
Ada Technology, 1989.

U.S. House of Representatives. Bugs in the Program: Problems in Federal Government
Computer Software Development and Regulation. U.S. House of Representatives Staff
Study, Committee on Science, Space, and Technology, September 1989.

Virginia Center of Excellence for Software Reuse and Technology Transfer (VCOE). Re-
use Adoption Guidebook. Technical Report SPC-92051-CMC, Software Productivity
Consortium, Herndon, VA, November 1992.

Virginia Center of Excellence for Software Reuse and Technology Transfer (VCOE). Do-
main Engineering Guidebook. Technical Report SPC-92019-CMC, Version 01.00.03, Soft-
ware Productivity Consortium, Herndon, VA, December 1992.

Page 85

