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1 Summary of Technical Results

The object of the Yale Knowledge-Based Planning project is to find a unified theory of robot planning
and sensing. We achieved several results in this direction. including the development of an architecture
for a reactive planner, the implementation and testing of a theory of map making by a mobile robot,
the development of an algorithm for reasoning about constraints on image hypotheses. and preliminary
work on high-speed visual tracking.

Our overall model of planning is this: An agent must be continously executing plans in order to
make progress on its goals. These plans are driven by sensors. and can normally cope with deviations
from expected results without intervention from the planner. When intervention is required, the planner
starts from scratch, generating plans and then revising them on the basis of their projected results. The
projector contains a probabilistic model of the world that allows the planner 10 forecast probable errors.

Our work on sensing has focused on these areas:

1. Theoretical foundations for set-based decision-making algorithms.

2. Visual tracking and vision-based coutrol of servo systems.
3. Comparison of set-based and statisticallyv-based estimation.

We will discuss all these areas in more detail.

1.1 Reactive Planning Architecture
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“Reactive”™ plans are simiply robot plans that involve explicit steps for using sensors and then reacting
to the data gathered. A reactive plan differs from a traditional plan in two principal ways: it must have
conditionals that branch based on the outcome of sensory tests: and 1t must have local variables that get
bound to the sensed objects and their properties. The added complexity makes the planning problem
harder, and so does the fact that the planner does not know everything abourt the world. In fact. most
work on reactive planning falls into two categories: studies based on robot plans written entirely by
hand (so that there is no real planning at all): and studies based on extreme special cases in which the
form of the plans is given. and the planner then tunes various parameters.

What we have developed is an archirecture. called XFRM. that allows us to go a hit bevond these
limits. We allow plans to be written i a flexibie and general language. the Reactive Plan Language. 1t
contains a uniform notation for referring 1o objects discovered hy the sensors. It also provides convenient
ways for a planner to transform plans. For example. substeps of a plan can be ragged. and the tags then
used in ordering statements and policies that constrain how the substeps are to he executed.

One of our main results in this arca was the development of an ~thcient and clean plan projector.
When dealing with complex reactive plans. a key reasoning strategy is to mentally simulate a plan and
see how well it accomplishes the goals. what bugs it has. and what resources it consumes. This “mental
simulator™ is called a plan projector. Its output is a set of scenarios showing what might occur when
the plan is executed. We have developed o simple algorithm that takes rules describing the effects of
actions. and builds a timeline summarizing the effect~ of an entire pian. The rules are stated in a simple
predicate-calculus format. like this:

This
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which says that a PICKUP action succeeds in getting an object into the robot’s hand with probability
?P if HAND-INTERFERENCE occurs with success probability ?P. (Other rules can be supplied that detail
under what circumstances HAND-INTERFERENCE occurs and reduces the probability.) The projector also
includes rules that model autonomous Poisson-distributed events. The rule (P->E P d E') specifies
that over any interval where P is true. the expected time to the next occurrence of E is d. We have
developed a formal semantics for these and the other rule types. and shown that the program generates
timelines with the probabilities given by the formal semantics.

Empirical tests show that for typical rule sets the projector runs in time proportional to the square of
the number of events generated. It achieves this efficiency by a variety of optimizations. including caching
the results of retrievals at timepoints. Actually. this strategy is a necessity because a probabilistic test
can obviously not be counted on to give the same results when run twice. But the effect is that the
system rarely has to sweep back far through the timeline looking for answers to a query; and when it
does, the answers are cached for the next occurrence of that query. The projector is so efficient that we
can run it several times for a typical plan. yielding a sample of possible scenarios.

We have implemented a robust interface between the planner and the plan-execution module that
allows swapping in of a new plan at any time. We have run experiments in our “delivery world” that show
that the system is able to achieve significant improvements in performance times simply by planning
simultaneously with execution. Typically. in cases where the planner can run fast enough to “beat” the
interpreter, the plan it swaps in embodies speedups over the default plan thar compensate for the time
and side effects incurred while executing the defanlt.

Transformational planners as vet lack a theoretical basis of the sort that underlies refinement planners.
A transformation can make an arbitrary change in a plan. and only the projector can verify that the new
plan is an improvement. To make the process run as reliably as possible. plans have to be represented
in a transparent manner that enables the planner to see the purposes of the pieces of behavior it
encapsulates. We have provided declarative constructs for expressing these purposes. In particular,
where possible we express sensor tests using a BELIEF construct that makes it explicit which beliefs
about the agent’s environment are heing polled. We have also developed a Prolog-like “meta-language”
XFRM-ML for expressing transfortnation rules and their assorated preconditions.

1.2 Interval-Based Inference on Sensor Data

Many sensor-data-processing tasks can be he phrased in terms of finding values of parameters that
satisfy given constraints. For example. determining whether a certain set of edges in an image could
be an instance of an object model can be thought of as finding values for the object’s parameters that
account for the given edges. Our approach to finding such values is to start with intervals containing
the correct values, and gradually prune away subintervals that are inconsistent. until we are left with
subintervals that are guaranteed to contain at least one point satistying the constraints.

Over the course of this project, we

o Designed and imiplemented the basic constrimt-satisfaction algorithm.

o lmplemented a distributed version of the sdeorition, The resulting implementation is significantly
faster (i.e. parallel) and more Faalt-toleran

o Implemented a data selection technique that reduced the tine needed to solve some benchmark

problems to less than 1 second (essentially real-tune operation).
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o Implemented and tested the algorithms on data requiring descrimination and comparisons among
multiple objects or targets.

o Implemented a version of the algorithms for use in unstructured domains. This significantly in-
creases the domain of applicability of the algorithms. making it possible. for example, to apply
them outdoors.

Our algorithms for set-based decision-making explictly recover the parameters of geometrical or
physical models until decision-specific accuracy criteria have been met. It is possible to supply any
number of decision criteria that are evaluated in parallel as parameter recovery is performed. We have
been able to show that the algorithm we use for evaluating decision criteria is correct and complete except
for a vanishingly small set of problems. Correctness means that only physically correct decisions will
be mnade as long as the input data are consistent with the parametric models supplied to the algorithm.
Completeness means that the algorithm will terminate on all inputs. We have shown that the algorithm
we use will terminate on all inputs except for certain boundary cases that are typically a set of measure
zero in the space of algorithm inputs.

These results hold for an extremely wide variety of problem settings including problems where the
number and type of geometric models is not known a priori. This means that our algorithm is ef-
fectively a decision procedure even when hoth segmentation and parameter fitting must be performed
simultaneously.

1.3 Map Building

Similar set-based methods have been emploved by us for working in mobile robot mapping and navi-
gation. The problem of mobile robot navigation is getting the robot to a place it’s been before. There
are several issues that must be resolved in systems which build such representations. We must pin
down what we mean by ‘place,” and do so in a way that supports efficient recording and recognition
of places. Several methods for automated map construction have been reported, but they all suffer
from the problem of error accumulation. Since all sensors have noise. and sensor interpretation often
depends on violable assumptions about the real world. any system which attempts to build a consistent
representation of its environment will make errors. In particular. the robot’s decision that it has been
somewhere before (more generally. that 1wo places are the same) can never he perfectly justified and
always involves some chance of error. If a mistaken dentification is aillowed to persist. then attempts
to make the rest of the map consistent with it will eventually turn the whole map into garbage. Hence,
some mechanism must be provided by which these errors can be detected and corrected. Interestingly,
this issue has been largely ignored in the literarure. with the primary emphasis going to reducing errors
entering the map to begin with.

This problem of autonomous environmental representation (the "map-learning’ problem) has been
studied for some time, from a number of viewpoints. There are two basic types of approach—metric
and topological. The metric approach attempts to build up a detailed geometric description of the envi-
ronment from perceptual data. while the topological approach concentrates on learning the qualitative
shape of the robot’s own paths. We have developed a hybrid model. in which the robot tries to learn the
metric shape of its paths. There are two fairly obvious reasons for this move: the metric information
can help in distingishing between perceptually siniilar places: and the wmetric information is useful in
deciding where to go and how to get there when the map is used.

So a map includes a graph with nodes representing "places’. i.e.. connected regions of a particular
type, and arcs labelled with sequences of actions. generally coucluding with an approacher. (Presently,
we deal only with point-like” places. small regions which can be treated as single points: the complexities
of shape representation will be investigated in future work.) However. there is more to the graph. Each
node has a record of what the place looks like. and what its position is with respect to other nodes. As
the robot wanders through the world. it adds new nades to the graph and refines its estimate of the
positions of old nodes.




There are several kinds of error that can occur. Some are relatively simple to correct. including
errors in position estimates. The hard ones are errors of identification. where two places are mistakenly
assumed equal, or one place is mistakenly broken in two. These errors are dealt with by the following
techniques. First, when the robot is not sure of its location. it maintains multiple tracks through the
map, until all but one have been disconfirmed by later reports. Second. if two tracks look quite similar.
it merges the places along them. Third. it keeps statistics on the position of a place, and if the position
has a multimodal distribution, it considers breaking it into two or more places.

Experiments with these techniques on a simulated world show that they usually converge to a correct
map, even in the presence of noise. We plan next to try running them with real visual data.

We have run experiments comparing set-based methods with classical statistical estimation methods
for map representation. We undertook a study to compare statistical estimation methods with set-based
methods for the purpose of robot navigation. We found that set-based methods typically outperform
statistical methods when the estimation problem has low-dimension and is nonlinear. As it turns out,
many of the estimation problews faced i robot navigation have rhese properties, so set-based methods
would be expected to outperform statistical methods. \We have run both simnlated and real experiments
with a mobile robot system and have verifed that this is true,
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3 Research Transitions And DoD Interactions

e Prof. McDermott did work with Brice Pomeroy and Bill Cheetham of GE's Corporate Research
and Development Laboratory on exporting some of the reactive planning ideas to the domain of
planning for emergencies at crewstations. This work was reported at a paper that appeared in the
proceedings of the IEEE SMC' conterence in October. 1991].

o Prof. McDermott was the General Chair of the First International (‘onference on Al Planning
Systems, held in June of 1992. DARPA supplied some of the funds for this conference, which was
viewed as the successor to the DARPA Planuning Workshops.

e Prof. McDermott has been serving on the Technical Review Board for the ARPA/Rome Lab Trans-
portation and Scheduling Initiative. The purpose of the board is 1o provide high-level feedback to
researchers in this area. using insights gained from past research on planning and scheduling.

4 Software and Hardware Prototypes

1. We have exported the Reactive Plan Language interpreter (in Common Lisp) to the University of
Washington and Georgia Tech.

2. The probabilistic time map has been split off from the planner. and is now available via anonymous
ftp.

3. We have shared robotics software. including a coustraint solver. visual tracker. and mobile-robot
control software with interested nstitutions. This software s written in €' and C++.




