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CHAPTER 1

INTRODUCTION

Review of Phase I Studies

This report describes studies conducted for Phase II of the project “Restraining Post-
Liquefaction Flow Deformations”. To provide a context for this report, the background of the
project will be reviewed briefly and some key findings from the first phase will be presented.

In Phase I of the project, studies were focussed on the use of piles to restrain flow
deformations. This topic was of considerable interest to the US Army Corps of Engineers
because pile-nailing of the upstream slope of Sardis Dam in Mississippi was being considered as
an option for restraining sliding of the slope on a potentially liquefiable thin layer in the foundation
(Finn et al., 1991).

The key factors controlling the feasibility and cost of pile installations to restrain flow
deformations are pile length and spacing, stiffness and strength of unliquefied soils surrounding
the piles, residual strength of liquefied soils, the geometry of the structure, and the intensity of
shaking after liquefaction has occurred. The ability to analyze such a complex problem while
taking into account nonlinear behaviour of soil, potentially large strain deformations in
unremediated parts of the structure and a realistic interaction between piles and soil during both
static and seismic loading is the essential requirement for determining the best location for the
piles, an appropriate length and size and for categorizing the effects of soil properties.

Very little is known about the behaviour of piles under these complex conditions. Most of
the evidence is from Japan where pile foundations have been severely damaged in liquefied ground

as a result of ground displacements. However these piles were designed for vertical static loading




only and both piles and the connections to the pile caps were inadequately designed to resist
horizontal loading. Piles in Oakland Harbor were similarly damaged during the Loma Prieta
Earthquake of 1989. Therefore there is a need for detailed analytical studies of pile installations
to provide much needed information on the potential performance of piles under these demanding
situations and hence provide a framework of understanding for design of cost effective
remediation measures.

The computer programs TARA-3 (Finn et al., 1986) and TARA-3FL (Finn and
Yogendrakumar, 1989) were used to conduct the studies in Phase I. It was the first time such
analyses had been performed. The findings of the Phase I studies were used to develop the design
requirements for the piles for remediating Sardis Dam. The pile design resulted in very substantial
savings in remediation costs compared to alternative proposals. The design would not have been
feasible without the Phase I studies.

The studies for Sardis Dam could be conducted using the plane strain 2-D analyses in the
TARA-3 suite of programs because remediation was necessary across a long longitudinal section
of the dam. Where such conditions do not hold, 3-D analyses are necessary.

Full 3-D nonlinear dynamic analysis of pile groups is not a feasible proposition for
engineering practice at present. It makes impractical demands on computational speed and
capacity and renders the extension to dynamic effective stress analysis extremely difficult. Full
3-D analysis also inhibits the detailed parametric studies which are so important in exploring cost-
efficient remediation options. A simplified model for the 3-D soil continuum under horizontal
shaking by vertically propagating shear waves has been developed which overcomes these

difficulties. This simplified 3-D model captures the significant motions and stresses in foundation




soils with acceptable accuracy during ground shaking and provides the basis for significant
advances in the seismic analysis of piles.

This report is restricted to describing the evolution and validation of a proposed simplified
3-D method of analysis of the dynamic response of piles that greatly reduces the computational
demands for solving practical problems. It is not a state-of-the-art study of the dynamic response
of pile foundations. References to the literature are restricted primarily to case studies used for

validation.

Structure of Report

A general simplified model of the dynamic response of the soil continuum is presented
first. Then particular models based on different simplifying assumptions (Matsuo and Ohara,
1960; Veletsos and Younan, 1994; Finn and Wu, 1994; Finn et al., 1994a,b) are derived from the
general case. The performance of these models is assessed using the classic solution of Wood
(1973) for the dynamic pressures against rigid walls by a homogeneous elastic backfill. The
validation study indicates that the proposed simplified model performs very well over a wide
range of soil properties. The solution for rigid walls has important applications in remediation
studies in its own right. A generally useful remediation measure is the inclusion of concrete plugs
such as slurry walls to restrain soil deformations. Assessment of the stability of such walls
requires estimates of the seismic lateral pressures. This type of remediation was one of the
options considered for Sardis Dam.

The model is modified to accommodate piles in the continuum. The equations of motion
for the soil-pile system are formulated in terms of finite elements. Elastic solutions for pile

impedances are validated against the full 3-D solutions by Kaynia and Kausel (1982).




The model is extended to nonlinear response by ensuring compatibility between soil strains
and the strain dependent moduli and damping of soils continuously during dynamic analysis. This
is a major modification of the equivalent linear method used in computer programs such as
SHAKE (Schnabel et al., 1972).

The proposed method of analysis is also validated using data from a forced vibration test
on a Franki pile conducted at the Pile Research Facility of the University of British Columbia (Sy
and Siu, 1992). Data from centrifuge tests on pile foundations under strong shaking conducted at
the California Institute of Technology (Gohl, 1991; Finn and Gohl, 1987) allow validation of the
proposed method of analysis when nonlinear soil effects are important. For the first time, the
variation of pile stiffness and damping with time are traced during strong shaking.

Finally, extensions of the method will be discussed. These extensioas include analysis of

pile groups, rocking effects and dynamic effective stress analysis.




CHAPTER 2

SIMPLIFIED EQUATIONS FOR DYNAMIC RESPONSE OF FOUNDATION SOILS

The soil is assumed to be a homogeneous, isotropic, elastic solid with a shear modulus G
and a Poisson’s ratio v. The equation of motion for the soil continuum in the horizontal direction,

X, is written as

o
ooy +__,1=pa2_:
x & “a

@2.1)

where o, is the normal stress in the x direction and 1y is the shear stress in the x-y plane.

For two-dimensional plane strain conditions, the stress components are related to the

displacements by
B S e
o =ﬁ%, [(l-v)% +vg“; : (23)
Ty = G(%w%) (24)
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Then the governing equation, Eq. 2.1, forundunpedﬁeew’bnﬁonofﬂwbackﬁllmjbewﬁtten
as

azu azu azu
a2 oy Par

2.5)
where p is the mass density of the backfill soil, t is time and 0 is a function of Poisson’s ratio v.

The expression for 6 depends on the approximations used in modelling the dynamic
response of the soil continuum. Three different approximations will be considered.

i) v=0
It is assumed that there is no (vertical) displacement in the y-direction. Applying this

assumption to Eq. 2.2 and Eq. 2.4 gives

Gl P}
%% =1 2v Ga: 26)
Txy =G% 2.7

Substituting Eq. 2.6 and Eq. 2.7 into Eq. 2.1 and comparing with Eq. 2.5, one finds

_2(-v)

0= 1-2v

.8)




ii) oy,=0
Here it is assumed that the dynamic normal stresses, G,, in the vertical direction are

negligible. Applying the assumption to Eq. 2.3, one finds that

ov v du
oy 1-vox 29
Then from Eq. 2.2 and Eq. 2.4 one obtains.
2 Qu
% = 1-vC ox (2.10)
o &
ol =G‘72;'-G = @.11)
n ot 1-voy
Substituting Eq. 2.10 and Eq. 2.11 into Eq. 2.1 and comparing with Eq. 2.5, one finds
2-v
0= T—2v 2.12)

iii)  Proposed Method (Wu, 1993)
In this method the condition oy = 0 is combined with the assumption that the layered half-

space behaves as a shear beam. The latter assumption implies that




Tay = G% (2.13)

The normal stress o, is found by assuming o, = 0 in Eq. 2.3.
Ou
Oy=T" G-&—‘- (2.19)
Substituting Eq. 2.13 and Eq. 2.14 into Eq. 2.1 and comparing with Eq. 2.5, one finds
2
0= T—v (2.15)

These three different approximations to the response of the layered half-space are incorporated in
the general expression for the equations of motion (Eq. 2.5) by the parameter 0.
The capability of different approximations to the response of the soil continuum will now

be verified using solutions to the classic problem of dynamic pressures against a rigid wall.




CHAPTER 3

DYNAMIC ANALYSIS OF RIGID WALL-SOIL SYSTEM

Figure 3.1(a) shows the geometry of the problem and its boundary conditions. A uniform
elastic soil layer is confined by two vertical rigid walls at its two side boundaries and a rigid base.
The soil layer has a total length of 2L and height of H. The original wall-soil problem can be
represented by half the structure because of the antisymmetric conditions. The equivalent problem
is shown in Fig. 3.1(b), and this is the physical model that will be analyzed. The ground
acceleration, iy (t) is input at the base of the wall-soil system.

Assume the displacement solution of Eq. 2.5 has the form

u(x,y,t)= >y (A-sinagpx+B-cosayxC-sinb,y+Dcosb,y): Yo, () @3.1)

Applying the boundary conditions

u=0.... aty=0 (3.2a)

u=0...atx=0 (3.2b)

The constants B and D are determined to be zero, so

u(x,y,t)=22 C, sinagx-sinbyy- Y, (t) (3.3)
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Fig. 3.1. Definition of rigid-wall system: (a) original system; (b) equivalent system using
antisymmetric condition.
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au .
Fol ¥ Ciap -cosapx-sinb,y- Yo, (t) (X))}
Ou .
-%-:ZZ C;b, ‘sinax-cosb,y: Yp,(t) 3.5
Applying the other two boundary conditions
5:0 ..... at x=L (3.6a)
and
%:o ..... at y=H (3.6b)
one obtains
a,-cosa,L=0 (3.79)
and
b, -cosb,H=0 (3.7)
therefore,
2m-1)=n
an= g——zil' (3.8a)
and
2n—-1)n
by = (—-Z—H—)— (3.8b)




The mode shape functions are written as
Qp (x,¥)=C, -sina,xsinb,y
and the displacement solution becomes

ulx,y,t)=2.2, & (X,y): Yo (V)

Substituting Eq. 3.10 into Eq. 2.5, one obtains
~G(Bag +b3)- Yo (1) = PV (1)

Yo (O _ 2

G2 12y
- P (Bap +by) = AN = =W'mn

The natural frequencies of the system are found to be
02, = %(Bafn +b2)

The frequency of the first mode is

12

(.9)

(3.10)

(3.11a)

(3.11b)

(.12)
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Gr? H?2

2

o =——(1+0 3.13
1 4pH2( L? @.13)

In the case of undamped forced vibration caused by a ground acceleration iiy(t), the

governing equation becomes
Pu  Fu Pu
Pz - @0 5T +G )= pilo() (3.14)

Substituting Eq. (3.10) into Eq. (3.14), multiplying the equation by the mode shape functions, and

integrating over the domain, one obtains

If T ;%) Opaixdy +[] TT G(@a? +b?) 0, Y, - Opdxdy

(3.15)
=—tio(t) I PP (x,y)- dxdy
Applying the orthogonality conditions and recalling Eq. (3.12), one obtains
I1 p@2dxdy- Vo ©+ ] p®2ndxdy 020 Yo (t)
(3.16)
=-tg(®J] PO (x,y)-dxdy
Voan (1) + 0%+ Yo (8) = =T (8) Ot (.17
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where
JI psin(anx)- sin(b,y)dx- dy
Omn = N N =
J) psin?(apx)-sin? (b,y)dx- dy
(3.18)
16
Omn =
(2m-1)2n- l)1t2
Let Y-(t) = Olgn * ﬂm(t),
foan () + 020+ £n (1) = =i (1) (3.19)

For a damped forced vibration of the wall-soil system, a constant moda’ damping ratio A is

introduced (Seed and Idriss, 1967)

£ () 4280 gy - g () + 02, - £ (1) = =g (1) (3.20)
For a given ground excitation ii,(t), a close-form solution of the system is found to be

u(x,y,t)=2.2, sinagX-sinb,y-Cyy - Fun (t) (3.21)
where fo(t) is the time history solution of Eq. (3.20) corresponding to a particular modal

frequency mme. It is noted that Eq. (3.20) is the standard damped vibration equation of a single

degree of freedom system.
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The dynamic earth pressure acting on the wall is the normal stress o, at x=0. The dynamic

pressure distribution along the wall is

P(X, Y, O xu0 = BG %:-Ix.o
(3.22)
PO%, Y, xm0 = BG 220 813G gun - Sin(bY) Frua (1)

From Eq. 2.6, Eq. 2.10 and Eq. 2.14, the stress coefficient B for the different soil models is

For v=0; B = 2(1-v)/(1-2v)
For 6, = 0; § = 2/(1-v)

For the proposed method; B = 2/(1-v)

The total dynamic thrust acting on the wall is

H
P(t)= Io P(X, Y, ) x=0 - dy

P0)=pG-TXT 2= () (.23)

16 £y (1)
(x*@n-D})L/H

P()=BG- 22

The total dynamic moment acting at the base of the wall is
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M(t)=j;" y'p(xoyst)x-() 'dy

(3.24)

8 Oy - 8in(b H)
b3

M(t)=pG- 2% fom ()

For a harmonic input {iy(t) = Aux - €, the amplitude of the steady state response fu(t) is found

from Eq. (3.20) to be

A
£ = max__ 3.25
(@i —0?)+2i- Ao g -0 @.29)

For any excitation iiy (t) the time history of the modal dynamic thrust associated with a particular
mode is obtained using Eq. (3.23). The time-history of the dynamic thrust for the desired number
of modes is then determined by summation of the time histories of the modal dynamic thrusts.

For earthquake motion the peak modal thrust acting on the wall associated with a
particular frequency ., can be determined using the pseudo-spectral velocity S,™. The pseudo-

spectral velocity S,™ is derived from response spectral displacement S™ by

SV =0y -S3" (3.26)

where S;™ is also the peak fu(t) corresponding to an excitation frequency ... From Eq. 3.23,
the peak modal thrust Pn, is determined by
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8y Qpy ST
PM=BG—ET’£;: (3.27)
o

The peak dynamic thrust is estimated by combining the individual peak modal thrusts by
some approximate method. Either the absolute summation or the root square summation of the
peak modal thrusts is commonly used.

Static 1g Solution: Validation of Model

In the previous chapter, three approximate models of the soil continuum were presented.
The v = 0, o, = 0, and the proposed models were represented by different expressions for the
coefficient 0 in Eq. 2.5. It is necessary to examine the accuracy of the solutions given by each
model. Wood’s rigorous solution (Wood, 1973) will be used as the measure of the accuracy of
the approximate solutions. Wood’s solution is strictly valid for an elastic layer of finite length
retained by a wall with a smooth interface at each end. Note that the “static” 1-g solution is the
solution for very low frequencies.

From Eq. 3.25 the static deflection produced by a 1-g static force may be obtained by

letting the exciting frequency o approach zero.

£ (t)=m% (3:28)

The corresponding 1-g static thrust is obtained by substituting Eq. 3.28 into Eq. 3.23
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:  YY. T
Py =pPsll m (3.299)
16
Pe =pBgX X Gn Dl L/ (3.29)
The 1-g static moment acting at the base of the wall is
M, = ppgY Y, 2m-Cmn 800 H) (3.30)

b2 (b3 +6a3,)

The total thrust against the wall due to 1-g static horizontal force is determined by doing a double

summation for modes m and n in Eq. 3.29. A normalized thrust ratio is defined as

(3.31)

where A, is the peak ground acceleration in m/sec?, ft/sec’ or other consistent units.
The three approximate models are used to obtain the total 1-g static force for two

different wall-soil systems with L/H=5.0 and L/H=1.5.




19

Discussion of Resuits
The results of the analyses are compared with Wood’s (1973) solutions for L/H = 5.0 and

L/H = 1.5 are shown in Figs. 3.2(a) and 3.2(b), respectively. The following observations may be

made

e For both L/H= 5.0 and L/H = 1.5 for all values of v, the proposed model gives
results that are in very good agreement with the exact solutions. The model
works better for walls retaining finite backfill (L/H = 1.5). The model gives a

total force slightly less than the exact force.

e For L/H = 5.0, the o, = 0 model yields results that are in very good agreement
with the exact solution for all v. For walls with long backfills, the accuracy of
the o, = 0 model is comparable to that of the proposed model. The o, =0
model overestimates the response by about 8%, the proposed model

underestimates the response by about 5%.

e For L/H = 1.5, solutions by the proposed model are much closer to the exact
solution for all values of v. The o, =0 model overestimates the total force by
up to 18%. The proposed model underestimates the total force by less than

4%.

e The v = 0 model gives good accuracy, provided values of v < 03. Asv
exceeds 0.3, the solutions start to deviate from the exact solutions. For L/H =

5.0, the accuracy of the solution becomes unacceptable as v > 0.4.
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r1g. 5.2: Comparison of approximate solutions for rigid-wall systems with Wood’s (1973) exact
solution for (a) L/H=5.0 and (b) L/H=1.5.
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Recently, Veletsos and Younan (1994) also evaluated the accuracy of the s, =0 and v=0
models compared to Wood’s rigorous solution. Their findings regarding these models agree with
those above. However, these more recent studies were limited to semi-infinite backfills.

The studies indicate that the proposed model gives the best approximation of solutions for
the rigid-wall systems with elastic backfills. Therefore, this proposed model will be used for all

further studies.




CHAPTER 4

ELASTIC DYNAMIC RESPONSE OF PILES

Equations of Motion for Soil-Pile System

The simplified model of the soil continuum derived earlier is now extended to incorporate
the important aspects of 3-D response and adapted to accommodate piles.

Under vertically propagating shear waves the soils mainly undergo shear deformations in
horizontal planes except in the area near the pile where extensive compressive deformations
develop in the direction of shaking. The compressive deformations also generate additional
shearing deformations along the sides of the pile because of the limited extent of the pile cross-
section. In light of these observations, assumptions are made that dynamic motions of soils are
governed by two kinds of shear stresses, and compressive stresses in the direction of shaking, y.

Let v represent the horizontal displacement of the soil in the direction of shaking, y (Fig.
v

52
4.1). The inertial force is p, E; The compressive force in the direction of shaking is eGEy_z_

The shear waves propagate in the z direction. The shear force in the xOy plane is G—Z:-;, and the

&
shear force in yOz plane is G'a};' Applying dynamic equilibrium in the y-direction, the dynamic

governing equation under free vibration of the soil continuum is written as

GZZXZ + eG:yz;' + GZZ = p,% @“.1)




(T 7 7 7 7
<

elements

Fig. 4.1. Important aspects of pile-soil interaction during horizontal excitation by shear waves.
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where 8 = 2/(1-v), G is the complex shear modulus, and p, is the mass density. Since soil is a
hysteretic material, the complex shear modulus G is expressed as G = G, (1+i 21), in which Gy is
the shear modulus of soil, and A is the equivalent viscous damping ratio. Radiation damping will
be considered later.

Piles are modelled using ordinary Eulerian beam theory. Only the bending moment in the
plane of shaking (yOz) is included. This consideration is appropriate in the case of earthquake
loading for single piles.

The dynamic equation of motion for a vertical pile is written as

a* o?
Epl, _: = pp_';!'
oz ot

4.2
where E,ly is the flexural rigidity of the pile in the direction of shaking, and p, is the mass density

of the pile.

Finite Element Formulation of Equations of Motion

The 3-dimensional soil continuum is divided into a number of 3-D finite elements of the
type shown in Fig. 4.2. The displacement field at any point in each element is specified by the
nodal displacements and appropriate shape functions. A linear displacement field in the soil
element is used because of its simplicity and effectiveness.

The displacement vector v(x,y,z) is expressed as
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Fig. 4.2: Finite elements used for soil continuum and pile.
v(x,y,z) = IN; x v;,...1= 1,8 (4.3)

where N; is a shape function, and v; is a nodal displacement.
Applying the Galerkin's weighted residual procedure to Eq. 4.1, the complex valued

stiffness matrix of the soil element is determined
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Kl = (GG ' ayj +G axl L+ G a" &;) dxdydz 4.9)
For a vertical beam element, (Fig. 4.2) the stiffness matrix is
12 6L -12 6¢L
Egl, | 6¢ 4e* -6¢ 202
Klpe = 4.5)

2’ |-12 -6t 12 -6t
60 202 61 442

The two nodes in a vertical beam element are shared by adjacent soil elements, thus coupling the
pile and the soil. The stiffness of a node, therefore, is comprised of stiffness contributions from
both the pile and the soil.

Consistent mass matrices are used for both soil elements and pile elements. The consistent

mass matrix for a soil element is

Miwy = [f py N;N; - dxdydz 456)

The consistent mass matrix for a pile element is written as

156 22¢ 54 -13¢

PpAL | 22¢ 4> 13t -3/

420 | 54 13¢ 156 -22¢ .7
~13¢ -3¢ 221 42

[M]pile =
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The global stiffness matrix K] and the global mass matrix [M] are constructed by standard
routines.
The radiation damping is modelled by using a set of set of dashpots along the pile shaft.

The damping force F4 per unit length along the pile is considered proportional to the velocity and

is given by
ov
Fd = C,. "é‘t‘ (48)
where
¢, = 6p,V,d 25" 4.9)

where ¢, is the radiation dashpot coefficient.
Gazetas et al. (1993) proposed simple expressions for the radiation dashpot coefficients c,

for both horizontal motion and vertical motion. The element radiation damping matrix [Cleem is

156 22¢ S4 -13¢
c,f| 22¢ 4®2 13¢ -3¢

(Claem =220 54 13¢ 156 -22¢ (4.10)
—13¢ -3¢2 -22¢ 4¢?
The global dynamic equilibrium equation in matrix form is now
[MI{¥} +[C]{V} +[K]{v} = {P(1)} 4.11)
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in which {V}, {v} and {v} are the nodal accelerations, velocities and displacements, respectively,
and {P(t)} are external dynamic loads.

Solutions of Eq. 4.10 will now be developed to give the stiffness and damping of single
piles (pile impedances) as a function of frequency. These impedances will be compared with
impedances calculated usmg the full 3-D equations for the continuum to verify the accuracy of the
proposed model for pile analysis.




CHAPTER S
PILE IMPEDANCES: SOLUTIONS FOR HARMONIC LOADING

The impedance K;; are defined as the amplitudes of harmonic forces (or moments) that
have to be applied at the pile head in order to generate a harmonic motion with a unit amplitude in

the direction of the specified degree of freedom (Novak, 1991) as shown in Fig. 5.1.

Fig. 5.1: Pile head impedances.

The impedances are defined as follows:
Kw: the complex-valued pile head horizontal force required to generate unit horizontal

displacement (u=1.0) at the pile head while the pile head rotation is fixed (60=0).
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Kvw: the complex-valued pile head moment generated by the unit lateral displacement (u=1.0)
at the pile head while the pile head rotation is fixed (6=0)
Keo: the complex-valued pile head moment required to generate the unit pile head rotation

(6=1.0) while pile head lateral displacement is fixed (u=0)

Since the pile head impedances K., Ko, Koo are complex valued, they are usually

expressed by their real and imaginary parts as

K=k, +i-Cy =k +i-oc; (5.1)

in which k; and C;; are the real and imaginary parts of the complex impedance, respectively, and
are usually referred as the stiffness and damping at the pile head. i=+-1; ¢j=Cj/o =
coefficient of equivalent viscous damping; and o is the circular frequency of the applied load. All
the parameters in Eq. 5.1 are dependent on frequency @. Determination of the pile impedances
requires solutions of the equations of motion for harmonic loading.

Under harmonic loading P(t) = Pee™, the displacement vector is of the form v = ve™, and

Eq. 4.11 is rewritten as

{1+i-o[Cl- 0?[M]} fv,} = (o) .2)

or

[K]glotnl {vo} = {Po} (5.3)
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(Klgotar = [K]+i-0{C]-0*[M] (54

The pile head impedances K., K. and Ke can be obtained using Eq. 4.8 by applying appropriate
loading and fixity conditions at the pile head.

Determination of Impedances K,, and Ko
If the pile head is fixed against rotation and a unit horizontal displacement applied at the

pile head, then Eq. 5.3 has the form

A

Vo 0
Klgobat 1107 = 1Ky (5.5)
0.0 K

where v,* are the displacements of the nodes other than pile head. Eq. 5.5 can be solved by

dividing the equation by K, and eliminating the row corresponding to zero rotation
A
vo /Kyl _ 0}
K]llohll { v } = {1_0 (.6

This equation suggests that an easier alternative for determining impedances is to apply a unit
horizontal force at the pile head and calculate the complex displacement v,". The moment at pile
head My’ corresponding to vo' is also calculated.
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Then the pile head impedance K., is determined by

(X))

o
$
1]
S|

and the corresponding cross-impedance

A
0Ylow

Kve = (58)

Determination of Rotational Impedance Koo
For a pile head fixed against horizontal displacement and given a unit pile head rotation
Eq. 5.3 has the form

vg 0
Klgow 1101 = {Key (5.9)
00] Ko
or
vB 0
[Klgiota { 0 ;;“} - {w} (5.10)

where v,° are the displacements of nodes other than pile head. The pile head rotation 6" is the

complex response to the application of a unit moment at the pile head.
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Keg = — (5.11)

Because of reciprocity principle, the cross-coupling impedances K. and Ko, are identical.

Dynamic Impedance of Single Piles
Analyses are conducted to determine the frequency dependence of the impedances K.,
K. and Ko for single piles. The dimensionless frequency ratio 8, is used to characterize the

frequency, where a, is defined by

d
8, = %— (5.12)
]

in which o is the angular frequency of the exciting loads (force or moment) at the pile head, d is
the diameter of the pile, and V, is the shear wave velocity of the soil medium. For a uniform soil
profile with a shear modulus G and a mass density p, V, ={/G/p.

For given values of E/E, and a,, the ratios Kw/(E.d), K./(E:d°), and Keo/(E,d*), remain
constant as the soil modulus E, varies if the soil profile is uniform. Therefore the normalized
impedances K./Ed), KW/(E.d"), and Keo/(E,d’) are used in presenting the frequency dependence
of the impedances.
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To assess the accuracy of the proposed simplified 3-D finite element approach, the
impedance functions of the pile-soil system shown in Fig. 5.2 were computed over a range of
frequencies and compared with the full 3-D linear elastic solutions of Kaynia and Kause! (1982).
However, the latter solutions, though regarded as benchmark solutions, are not exact. They

assume the form of the pressure distribution between soil and pile at any elevation to be uniform

around the laterally displacing pile.

single piles:

L p Ep/Es = 1,000
L/d > 15 (floating pile)
soil damping 5%
] e g
R poisson's ratio 0.4

Fig. 5.2: A pile-soil system used for computing impedance functions.

The impedances are determined for E,/E, = 1,000, Poisson’s ratio v = 0.4, and a damping
ratio A = 5%.

The finite element mesh shown in Fig. 5.3 is used for the analysis. The heavy dark vertical
element is the pile. Because of the symmetric character of the problem, only half of the full mesh

is required to model the response of pile-soil interaction. The half mesh consists of 1463 nodes
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Fig. 5.3: Finite element modelling of single pile for computing impedance.

and 1089 elements. The use of symmetry reduces the size of the global matrix by a factor of 4.0
and greatly reduces the computational time. The computing time is 300 seconds for each
frequency using a 33 Hz 486 PC computer.

The half-mesh includes only half the pile so that for the linear beam element E, and p,
must be reduced by a factor of 2. The loads applied to the pile must also be reduced from 1.0 to
0.5. The effects of these reductions must be kept in mind when the corresponding impedances are

calculated.

Discussion of Results

Since the normalized impedances are complex quantities, they are given in terms of their
real (stiffness) and imaginary (damping) parts. The computed normalized stiffnesses and damping
ratios as functions of dimensionless frequency a, are compared with the solutions of Kaynia and

Kausel (1982) in Figs. 5.4, 5.5 and 5.6.
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In general, the impedances computed by the simplified method agree well with those of
Kaynia and Kausel (1982). The horizontal stiffnesses k. computed by Kaynia and Kausel (1992)
are about 10% larger than those computed using the simplified model. The other two stiffnesses
kv and kes show closer agreement. The differences are on the average about 5%.

It is hard to decide which of the two solutions represents more closely the true solution of
this problem because both were obtained by approximate methods. In Kaynia and Kausel's
solution the horizontal load applied to soil medium by the pile is assumed uniformly distributed on
the cylindrical soil surface around the pile. This does not model well the non-uniform distribution
of lateral pressure on the cylindrical surface of the surrounding soil caused by the laterally
deflecting pile

The size and rumber of the finite elements affect the computed value of the impedance.
The accuracy increases as the number of finite elements increases especially as the frequency
increases. At high frequencies (such as a, > 0.4), large numbers of finite elements are needed to
capture the number of modes that are significant for response at that frequency.

Figure 5.7 shows a comparison of the dynamic stiffnesses computed by two different
meshes. It is clear that mesh size becomes significant when the frequency becomes high. A finer
mesh is needed to represent the dynamic responses accurately.

For earthquake loading, the non-dimensional frequency for pile foundations is usually less
than a, = 0.3 for the important frequencies in the ground motions. In this frequency range, the

approximate method proposed is very accurate, even with a rather coarse mesh.
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Fig. 5.7: Effects of mesh size on stiffness.
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CHAPTER 6
NONLINEAR DYNAMIC RESPONSE ANALYSIS OF PILES
The equations of motion are given by the incremental form of Eq. 4.8 as
MJ{A¥} +[C}{AV}+[K]{v} = {P(1)} = {MI][I] AV} (t) 6.1

Analysis of nonlinear response must be conducted in the time domain. The direct step by step
integration procedure developed by Wilson et al. (1973) is used to integrate the equations of
motion.

Rayleigh damping is used to model the hysteretic damping of the soil for nonlinear

analysis. The damping element matrix is given by

[Cletem = dMiiem +BlK]gjem 6.2)

in which o and P are constants related to the viscous damping ratio for the element. Let

a= ;"elem /ml and B = ldem /ml (6.3)

where Aqen is the damping ratio corresponding to element shear strainand o, is the fundamental

frequency of the system (Idriss et al., 1974).

The global damping matrix [C] is the aggregate of all the element damping ratios and the

radiation damping elements along the pile.
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For nonlinear analysis because of integration in the time domain, it is more efficient to use
a diagonal mass matrix rather than the consistent mass matrix used earlier for harmonic analysis.
Therefore, the mass matrices for soil and beam elements, [M)ui and [M]seem, respectively, are

given by

P, - vol
8

Mot = {10, 10, 10, 1.0, 1.0, 1.0, 1.0, 1.0} 6.4)

and

Mlpearm = Pp A2 {1/2,1/78,1/2,1/78} 6.5)

Soil modulus and damping in soils are shear strain dependent (Seed and Idriss, 1970).
During analysis compatibility is maintained between the computed shear strains and the effective
modulus and damping in each finite element. The compatibility can be restored for each time
increment during integration of the equations of motion or at specified times which are multiples
of the time increment for integration. This procedure differs from the equivalent linear method
used in programs such as SHAKE (Schnabel et al., 1972) in which compatibility is enforced only
after the complete response analysis has been completed. Ensuring final compatibility in that case
requires iterative analysis using the entire duration of the earthquake in each analysis. No iterative
analyses are required when compatibility is enforced during the analysis.

Two other features distinguish the nonlinear model proposed here from the Schnabel et al.
(1972) model. Shear yielding is incorporated by introducing a very low modulus when the

strength of the soil is reached. No tensile stresses are allowed. This is accomplished by
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introducing a very low modulus when the normal stress in any direction tends to become greater
than the tensile strength of the soil if any.
The nonlinear method of analysis will be validated now using data from strong shaking

tests of a single pile in a centrifuge.




CHAPTER 7
CENTRIFUGE TESTS ON A SINGLE PILE UNDER STRONG SHAKING

Test Set-Up

The nonlinear method is used to analyze the seismic response of a single pile in a
centrifuge test which was carried out on the California Institute of Technology (Caltech)
centrifuge by B. Gohl (1991). Details of the test may also be found in a paper by Finn and Gohl
(1987). Fig. 7.1 shows the soil-pile-structure system used in the test. A 209.5 mm long stainless
steel tube pile having an outside diameter of 9.52 mm and a wall thickness of 0.25 mm is
embedded in a dry loose sand foundation. The model pile is instrumented by 8 pairs of foil type
strain gauges mounted on the outside of the pile to measure bending strains at the locations
shown in Fig. 7.1. An average centrifuge acceleration of 60g was used in the tests.

The pile has a free standing length of 16.5 mm above the soil surface. The effect of a
super-structure is simulated by clamping a rigid mass to the head of the pile. The weight of the
structural mass including the pile head insert and the pile head clamp is 2.416 N. The mass
moment of inertia about the centre of gravity is I, = 0.0683 N.sec>.mm. The centre of gravity of
the mass is located 16.5 mm above the pile head. The model pile has an average flexural rigidity
of 13.26 N.m” and a mass density of 74.7 kN/m’,

The pile head mass is instrumented using a non-contact photovoltaic displacement
transducer and an Entran miniature accelerometer. The locations of the accelerometer and light
emitting diode (L.E.D.) used by the displacement sensor are shown in Fig. 7.1. The pile head

displacements are measured with respect to the moving base of the soil container.




45

m\ Pile tip

Fig. 7.1. The layout of the centrifuge test for a single pile.

The sand used for the test was a loose sand with a void ratio e, = 0.78 and a mass density
p = 1.50 Mg/m®. Gohl (1991) has shown that the low strain shear moduli of the sand foundation
vary as the square root of the depth, and they can be quantitatively evaluated using the Hardin and

Black (1968) Eq. (7.1)

(2973-¢,)?

Tre,—©@a)" .1)

G g = 3230
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where ¢, is the in-situ void ratio of the sand and o' is the mean normal effective confining
pressure in kPa.

A horizontal acceleration is input at the base of the system. The peak acceleration of the
input motion is 0.158g. The computed Fourier amplitude ratios of the pile head response and the
free field motion with respect to the input motions are given in Fig. 7.2(a) and Fig. 7.2(b). The
natural frequency of the free field acceleration is estimated to be 2.75 Hz from Fig. 7.2(b) and the
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Fig. 7.2. The Fourier Spectra of accelerations (after Gohl, 1991).
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fundamental frequency of the pile (from Fig. 7.2(a)) to be 1.1 Hz. The period of peak pile
response is much longer than the period of the free field.

The centrifuge test was analyzed by the simplified 3-D finite element method of analysis.
Fig. 7.3 shows the finite element model used for analysis. The sand deposit is divided into 11
layers. Layer thickness is reduced as the soil surface is approached to allow more detailed
modelling of the stress and strain field where lateral soil-pile interaction is strongest. The pile is
modelled using 15 beam elements including 5 elements above the soil surface. The super-

structure mass is treated as a rigid body.

GEO.SCALE f———f———

YAy /4

YL L

AXIS OF
SYMMETRY

L
SHAKING DIRECTION

Fig. 7.3. The finite element modelling of centrifuge test.

The finite element analysis is carried out in the time domain. Nonlinear analysis is
performed to account for the changes in shear moduli and damping ratios due to dynamic shear
strains. The shear-strain dependency of both the shear modulus and damping ratio used in the

analysis is shown in Fig. 7.4. The low strain shear moduli Gu Were determined using Eq. (7.1).
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The computed acceleration response at the pile head is plotted against the measured

The computed time histories of moments in the pile at the ground surface and at a depth of

Fig. 7.4. The relationships between shear modulus, damping and the shear strain.
moments. The computed and measured moment distributions along the pile at the moment of

is satisfactory agreement between the computed and measured moments in the range of larger
peak pile head deflection are shown in Fig. 7.8. The computed moments agree quite well with the
measured moments. The moments increase to a maximum value at a depth of 3.5 diameters, and

3 m are plotted against the corresponding recorded time histories in Fig. 7.6 and Fig. 7.7. There

accelerations is observed in the region of strong shaking.

response in Fig. 7.5.

Discussion of Results
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Fig. 7.6. The computed versus measured moment response in the pile at the ground surface.
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Fig. 7.7. The computed versus measured moment response at depth D =3 m.
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then decrease to zero at a depth around 12.5 diameters. The moments along the pile have the
same signs at any instant of time, suggesting that the inertial interaction caused by the pile head
mass dominates response, and the pile is vibrating in its first mode. The peak moment predicted
by the simplified 3-D finite element analysis is 344 kNm compared with a measured peak value of
325 kNm an error of only 6%.

It is interesting to show the degradation in shear modulus with shear strain around the pile
during shaking., Distributions of moduli at specific depths and a specific time during the
earthquake are shown in Fig. 7.9. The figures show that significant modulus degradation occurs

near the pile and is most pronounced near the pile head.

Computational Time

Using a PC-486 (33 MHz) computer, the average CPU time needed to complete one
integration step is 7 sec for the finite element grid shown in Fig. 7.3, and 3 hours of CPU time are
required for the full input acceleration record of 1550 steps. The computational time would be

shorter for a linear elastic analysis.

Pile Impedances During Strong Shaking

Dynamic impedances as functions of time were computed corresponding to the strain
dependent shear moduli from the finite element analysis. Harmonic loads with an amplitude of
unity were applied at the pile head, and the resulting equations were solved to obtain the complex
valued pile impedances. The pile impedances were evaluated at the ground surface. This is the

first time that the time histories of pile impedances during an earthquake have been determined.
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single pile at 17.11 sec

initial shear modulus 12945 kPa
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509

(a) at depth 0.25 m
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(b) at depth 2.10 m

Fig. 7.9. 3-D plots of the distribution of effective shear moduli with depth around a pile during
dynamic excitation.
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The dynamic stiffness of the pile decreases dramatically as the level of shaking increases
(Fig. 7.10). The dynamic stiffnesses experience their lowest values between about 10 and 14
seconds, when the maximum accelerations occurs at the pile head. It can be seen that the lateral
stiffness component k., decreased more than the rotational stiffness kee or the coupled lateral-
rotational stiffness kie. On the other hand the equivalent damping coefficients increased as the
level of shaking increased because the hysteretic damping of the soil increased with increased

strains.
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Fig. 7.10. Impedances kw, ke and kes of the single pile.

At its lowest level, k., decreased to 22,000 kN/m, only 15.2 % of its initial stiffness of

145,000 kN/m. ke decreased to 45,000 kN/rad or 36% of its initial stiffness of 125,000 kN/rad.
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keo showed the least effect of shear strain. It decreased to 138,000 kN.m/rad or 63.6% of its
initial stiffness of 217,000 kN.m/rad. The stiffnesses rebounded when the level of shaking
decreased with time. Representative values of the pile stiffnesses k., kie and kee that might be
used in structural analyses may be taken as 40,000 kN/m, 65,000 kN/rad and 160,000 kN.m/rad,
respectively. These stiffnesses are 32%, 52% and 73.7% of the original stiffnesses.

The effect of frequency on both stiffness and damping is explored for a range of
frequencies from 1.91 Hz to 10 Hz at different times during the dynamic shaking of the pile. The
stiffness response is shown in Fig. 7.11. Clearly within this range of frequencies which is typical

of the frequencies of peak response in many near and medium field earthquake motions, there is

no frequency effect on stiffness.
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Fig. 7.11. Variation of pile head stiffnesses with frequency.
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The damping response is shown in Fig. 7.12. Clearly, even within this relatively small
frequency range there is a significant variation in the damping of the pile. This indicates that it is
very difficult to select the proper equivalent dashpot to reflect the damping of a pile foundation in

a structural analysis.
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Fig. 7.12. The effect of frequency on pile damping.

The centrifuge test provides an opportunity to evaluate the effects of inertial interaction on
the stiffness of a pile foundation. Many procedures in practice for evaluating pile stiffnesses are
based on computing the inertial and kinematic components of soil structure interaction separately
(Gazetas, 1991a, 1991b). This is acceptable for elastic response because the additional
foundation excitation caused by the inertia of the structural mass does not affect the stiffness of

the foundation. However, when there is nonlinear response of the foundation, the inertial
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interaction of the structure with the foundation can cause major changes in foundation stiffness
and in the period of peak response.

This is clearly shown by analysis of the single pile in the centrifuge test with and without
the structural mass. The results of the analysis are shown in Fig. 7.13 which shows the significant
degradation in pile stiffness due to inertial mass at the pile head for both translational and
rotational stiffnesses, k., and kee, respectively. Clearly, for strong earthquake shaking the effects
of inertial mass cannot be ignored and relying on kinematic stiffness only may lead to a serious
overestimation of pile stiffness.

So far, validation of the simplified method of analysis has been done by comparing
solutions with published elastic solutions using full 3-D formulations or by data from centrifuge

tests. In conclusion, a forced vibration test on a full size pile in the field will now be analyzed.
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Fig. 7.13. The effect of inertial interaction on pile head stiffnesses.
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CHAPTER 8

ANALYSIS OF FULL-SCALE VIBRATION TEST ON A FRANKI PILE

Test Set-Up

A full scale vibration test on a single Franki type pile was performed by Sy and Siu (1992)
at the University of British Columbia Pile Research Facility located in the Fraser river delta just
south of Vancouver, B.C.. The soil profile at the testing site consists of 4 m of sand and gravel
fill overlying a 1 m thick silt layer over fine grained sand to a depth of 40 m. A seismic cone
penetration test (SCPT 88-6) was conducted 0.9 m from the test pile. In addition, SPT tests were
conducted in a mud-rotary drill hole ( DH88-2) 2.4 m from the test pile. The measured in-situ
shear wave velocity data are presented in Fig. 8.1, together with the cone penetration test (CPT)
data and the Standard Penetration Test (SPT) data.

The layout of the pile test is shown in Fig. 8.2. The pile has an expanded spherical base
with a nominal diameter of 0.93 m. For 6.4 m above the expanded base, the pile has a nominal
diameter of 510 mm. The remaining length has a square cross-section with a side width of 510
mm. A structural mass consisting of 1.6 m cube of reinforced concrete was formed on top of the
pile with a clearance of 150 mm above the ground surface.

Accelerometers were mounted on the shake mass and the pile cap to measure the dynamic
input force and the pile cap responses as shown in Fig. 8.2. The vertical and coupled horizontal
and rocking modes of vibration were obtained by rotating the shaker so that the dynamic forces
were applied in the vertical and horizontal directions. The natural frequency of the cap-pile-soil

system in each vibration mode was estimated by applying random bandwidth excitation. Then a
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detailed sinusoidal frequency sweep was carried out around the natural frequency indicated from
the random bandwidth test.

The resonant frequencies from the sinusoidal sweep testing are evident in Fig. 8.3. The
damping ratios are calculated from the measured frequency response curves shown in Fig. 8.3
using the half power point or bandwidth method (Clough and Penzien, 1975).
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Fig. 8.3. The measured dynamic responses of the pile cap under sinusoidal input
(after Sy and Siu, 1992).
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Analysis of Tests

The structural properties of the pile cap and the :-st pile used in the analysis are presented
in Table 8.1. The shear wave velocity V,, unit weight v, and damping ratio D, used in the analysis
are shown in Fig. 8.4. Following Sy and Siu (1992), an upper bound of the measured V, values
was used to account for the effect of soil densification caused by pile installation except for the
top 1.2 m depth. V, values in the upper 1.2 m were reduced, since the original soil around the
extended pile shaft section was replaced by the loose backfill. A Poisson's ratio of 0.3 is assumed

for all soil layers.

Table 8.1. Structural properties of pile cap and test pile (after Sy and Siu, 1992).

PARAMETER UNIT VALUE
PILE CAPE AND SHAKER
Mass Mg 10.118
Mass moment of inertia Mgm® 4317
Height to centre of gravity m 0.8
TEST PILE
Top 1.37m: axial rigidity (EA) MN 6350
Top 1.37m: flexural rigidity (EI) MN m’ 141
1.37-7.77m: axial rigidity (EA) MN 5150
1.37-7.77m: flexural rigidity (EI) MN m’ 92
Base: axial rigidity (EA) MN 14,720
Base: flexural rigidity (EA) MNm’ 800
Material damping ratio 0.01
Poisson’s ratio 0.25
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Fig. 8.4. The soil parameters used in analysis (Sy and Siu, 1992).

Figure 8.5 shows the 3-D finite element model used in present analysis. Due to symmetry,
only half of the full mesh is needed. The finite element model consists of 1225 nodes and 889
elements. There is one beam element above the ground surface to represent the pile segment
above the ground. The expanded base is modelled by a solid element rather than a beam element
in the finite element analysis.

Since the pile behaves elastically under the very low excitation forces used in the test (Fuu
= 165 N), it is possible to use an uncoupled analysis and treat the pile foundation and the pile
structure above the ground separately. First the pile impedances are determined as a function of
frequency. Then the response of the mass on the pile head is computed incorporating the proper
stiffness and damping components of the impedances depending on the frequency of the exciting

force.
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Fig. 8.5. Finite element model used in analysis.

The pile head impedances (stiffness and damping) of the pile foundation were computed
using the proposed simplified 3-D finite element method. Harmonic force or moment with unit
amplitude was applied at the pile head, and the resulting complex valued displacement at the pile
head was determined. Impedances were then evaluated.

The horizontal and rocking responses of the pile head mass were obtained by using the
two-degree of freedom system shown in Fig. 8.6(b). The coupled translation-rotation equation of

motion in Eq. 8.1 describes the motion of the system.
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where m is the mass of the pile cap and shaker; h is the height of the centre of gravity to the pile

head; I, is the mass moment of inertia at the centre of gravity; k; and C; are the stiffnesses and
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Fig. 8.6. Uncoupled systems for modelling the vertical motions (a), and the translational and
rotational motions (b).

damping at the pile head; v, and 6, are the translation and rotation at the pile head; and P, and M,
are amplitudes of the harmonic external force and moment, respectively, applied at the pile head.

Harmonic load amplitudes of 165 N in the horizontal direction with a coupled moment of
335 N.m were applied at the pile head to simulate conditions created by the test.

The horizontal displacement amplitude at the centre of gravity, v, is given by

Veg =Vp+6-hg, (8.2)

The analyses were carried out at different frequencies ®. The computed horizontal
displacement amplitude versus frequency o is shown in Fig. 8.7. A very clear and pronounced
peak response is observed at a frequency of 6.67 Hz compared to the measured frequency of 6.5
Hz. The computed and measured fundamental frequencies and damping ratios for the translation

and vertical modes of response are given in Table 8.2. The agreement between them is very good.
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Fig. 8.7. Amplitudes of horizontal displacement at the centre of gravity of the pile cap versus the
excitation frequency (first mode).

Table 8.2. Computed and measured resonant frequencies and damping ratios.

Mode of Computed Measured Resonant Computed Calculated
Excitation | Resonant Frequency Frequency Damping Ratio | Damping Ratio
(Hz) _(Hz)
Vertical 44.0 46.5 0.04 0.05
Translational 6.67 6.50 0.06 0.04




CHAPTER

CONCLUSIONS

A simplified 3-D model of the response of a soil continuum to horizontal earthquake
shaking has been developed which can simulate the important aspects of the seismic response with
very good accuracy.

The model has been formulated in terms of finite elements and adapted for the dynamic
analysis of piles by the incorporation of beam elements. Solutions can be obtained for both elastic
and nonlinear soil response. Nonlinear response is modelled by maintaining compatibility between
shear strains and effective moduli and damping throughout the dynamic analysis.

The modified 3-D model and its extension to dynamic analysis of piles was the original
conception of Guoxi Wu. (1993).

The model has been validated for elastic response using existing exact elastic solutions.
The soil continuum model alone has been validated using Wood’s (1973) exact solution for
dynamic pressures against rigid walls. The pile-soil model has been validated by comparing pile
impedances for single piles computed by the model with those computed by Kaynia and Kausel
(1982) using full 3-D continuum equations. Agreement between model solutions and the more
exact solution is very good.

In the nonlinear mode, the model has been validated for single pile response using data
from strong shaking tests on single pile foundations conducted on the centrifuge at the California
Institute of Technology (Gohl, 1991). The important aspects of acceleration and moment time
histories were simulated well by the model and the distribution of peak moments along the pile

were within 6% of the measured moments.
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The model simulated successfully the response of a full scale Franki type pile to forced
vibration. The test was conducted at the University of British Columbia Pile Research Facility oy
Sy and Siu (1992).

The computational time for conducting analyses has been greatly reduced. Thus, the main
objective of the Phase II studies has been achieved.

It now remains to extend the model to pile groups and to dynamic effective stress analysis.

The latter feature will allow consideration of the effects of high porewater pressures on response.
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