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1. STATEMENT OF RESEARCH PROBLEM

The aerosols in atmosphere are often random cluster of small primary particles with

ramified appearance. They are considered to be fractal aggregates with a noninteger di-

mensions and they have the important property of invariance under scale transformation.

This essential fractal morphology has already been demonstrated for soot and smoke. In

this research we investigate the scattering and absorption properties of aggregated aerosol

particles based on a fractal cluster model. A rigorous treatment of the scattering of elec-

tromagnetic radiations is pursued to take into account the features of inter-connected

primary particles. Specific research efforts include using the T-matrix method together

with the translation addition theorem for vector spherical waves to solve the scattering

and absorption by connected spherules with clustering and branched structures; computer

simulating the configurations for random aggregates, solving the scattering and absorp-

tion cross sections for random agglomerates; calculating the average optical properties of

random clusters over configurations; and validating the theoretical model by comparison

with experimental measurements.
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2. SUMMARY OF RESULTS

The research performed during the period of July 1991 - September 1993 was focused on
the theoretical formulations and numerical simulations of electromagnetic wave interaction
with random fractal clusters and electromagnetic wave propagation and scattering in media
with adhesive scatterers, and their applications in atmospheric aerosols and random media

consisting of aggregated particles. The major accomplishments in this period include: (i)
Development of a fractal-based aggregated model and a rigorous T-matrix approach for
studying the light scattering and absorption by agglomerated particles. We have simulated
the structure of random clusters, determine the fractal dimension, and investigated their
optical properties. (ii) Development of a sticky particle model for simulating a random
medium consisting of aggregated particles. We have studied the propagation and scattering
of waves in such random media and performed computer simulations to determine the
cluster size distribution and the fractal dimension for agglomerates. In the following, we
describe these major accomplishments.

2.1 Light Scattering and Absorption by Agglomerated Particles

The aerosols in atmosphere are often random clusters of small primary particles with
ramified and connected appearance. They are considered to be fractal aggregates and
the essential fractal morphology has already been demonstrated for soot and smoke [1-4].
The aggregation process of small primary particles has been simulated by applying the
cluster-cluster aggregation (CCA) algorithm [5-10]. In this model, the primary particles
undergo random walk simultaneously to form small clusters initially, and subsequent col-
lisions will lead to their aggregation. The fractal dimensions of resultant agglomerates are
determined by finding out the power form relationship between the number of primary
particles and the cluster gyration radius [9-101. To study the scattering and absorption
of electromagnetic waves by such fractal aggregates, a T-matrix approach together with
the translation addition theorem for vector spherical waves is employed to solve the ag-
gregate scattering problem [11-12]. Numerical results for the phase function, scattering
and absorption cross sections are illustrated as a function of observation angles, cluster
structures, particle sizes and number of primary particles. The model predicted that the
effects of multiple scattering may cause scattering and absorption cross sections of an
aggregate that will initially increase with its size (number of primary particles or size of
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monomer), then saturate and decrease when its size further increase. We also made the

comparison with the measurements of extinction cross sections on soot particles over the

wavelength region from millimeter wave to infrared [13]. It is shown that the extinction

decreases linearly with increasing wavelength, however, the slope is not in agreement with

the measurements.

2.1.1 Multiple Scattering Formulation

Consider a plane wave incident on an aggregate in the direction of ki, ki = sin ei cos Oac+

sin O sinoi + cos 0i. The aggregate is modeled as a cluster of N connected identical

spheres centered at P1, V2, ... , fN, each of which has radius a and refractive index u,.
The background medium has the refractive index p. In a cluster of N particles, the

total amount of wave excitation exerted on the particle t is the sum of incident field and

scattered fields from the other particles,

where -w-'() and a"ý are column vectors that represent the exciting field of the scatterer t

and the incident field respectively, T is the T matrix that describes scattering from the

scatterer j, (Pr-'j) is the transformation matrix used to convert spherical waves centered
at Yj to spherical waves centered at F, (see Appendix A), and k is the wave number of the

background medium [121.

The multiply scattered field WY() of particle t is given as

S- (2)

where '(t) is the column vector that represent the scattered field from the particle I. The

total scattered field at a field point V is given by the summation of scattered waves from

all particles
N

= ~ [~ 0 ~m~ki~)+ a*()(')1Vmn(kf 1')]()
,t=l -,n

where M,,,, and Y..,, are vector spherical waves (see Appendix B) [121, and a•)(L) and

aINX' are expansion coefficients for the scattered field form particle t. The far scattered

field in the direction k., k. = sin 0. cos O.4 +sin e. sin 0.0+cos 8Ji, can be expressed as

(D.E.. + ,.E,.) (4)
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with vo = cos Ba cos Oi+cos B, sin q5J-sin B0i and he = - sin O,•i+cosO 4 being the vertical

and horizontal polarization vectors respectively for the scattered wave. From (3) and (4),

E.. and Eh. can be expressed as
[a(N-,(M)j-.O,••

E,,• = EL ,,i-n-1 r,,(n),• • n(o.,7.) + . n(a,,.)] (5)

Eh -�"�= 7, , nt-1' .(M[ •U .n(O.,910 ) + iaso( hm. (o .,q .)] (6)
[asffrn 0.,0.

in,,'

where DRn and a'U.n are vector spherical harmonics [12], -n'.,,, are coefficients as defined in

Appendix B, and
N

a( (7)
L=1

N
an() -: ki•-,•..,,n.(f) (8)

Instead of solving the exciting field coefficients, we can combine equations (1) and (2)

to form equations for the scattered field coefficients

asM = N T) .- + .;'"V) (9)

Thus the multiple scattering solution consists of solving (9) numerically for W(Y) and then

using (3) to calculate the scattered field F'(F).

Equation (9) is solved by using an iterative scheme [14]. The result for the (v + 1)
iteration is

•"'X÷' =ei,, T( .W,, + Y- (0 (kfr--•). - ,(.0(,) (10)

where v denotes the vth iterated solution. The initial solution of I•(L)) is just the first term

on the right-hand side of (10). The physical correspondence is the first-order scattering,

the second-order scattering, and so on.

The bistatic scattering cross section is defined by

2IE#.12

where a and P represent the polarization states of the incident and scattered wave respec-

tively, and a and P can be v or h.
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2.1.2 Generation of Random Aggregates

Aggregation is an irreversible growth process in which initially dispersed primary parti-

cles collide and stick together to build the clumping structure. For example, soot particles

are formed by random collision of small carbon spheres in the turbulent region of a flame.

Growth models such as diffusion-limited aggregation (DLA) [5] and cluster-cluster aggre-
gation (CCA) [6] have been applied to obtain information about the growth processes and

predict the fractal structure of aggregates. In the DLA model primary particles are added

to a growing cluster successively. Each new particle moves in a random manner, its path

being chosen by the Monte Carlo method. The CCA model is a variation of the DLA

model, in which many particles undergoing random walk simultaneously to form small

clusters initially, and subsequent collisions will lead to their aggregation. However, many
studies of soot particles have shown that they are formed by cluster-cluster aggregation

[5-7] with an open structure and the fractal dimensions are in the range of 1.7 - 1.9.

The mechanism used here for generating fractal dusters is the hierarchical cluster-

duster aggregation algorithm [8]. In this model collisions are restricted to clusters of

the same size during the simulation, where dimers collide and stick to form tetramers,

tetramers collide and stick to make octamers, etc. This simulation process is more speedy

than the CCA model and produces dusters of very similar fractal dimensions [8]. Examples

of 3-dimensional aggregates obtained by this process are illustrated in Figure 1.

For fractal clusters, despite their random appearance, there exists a power form rela-

tionship between the number of primary spheres N and the radius of gyration Rg

N-cR"' (12)9

where D! is the fractal dimension and c is a proportionality constant. Assuming all

primary spheres to have equal mass, the radius of gyration of an aggregate is given by

R 2 = (Nr? (13)Ni=1

where r1 is the distance from the monomer i to the center of aggregate. The fractal

dimension D! z 1.74 is deduced from the ln(N)-in(R9 ) data curve fitting in Figure 2.

2.1.3 Simulation Results
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In this section we simulate the scattering of optical waves by soot aggregates that are

generated from the hierarchical CCA model with ka = 0.05 and ka = 0.25. A typical

refractive index for soot particle p, = 1.75 +iO.5 is considered in the simulation.

Assuming ki = i, we calculate the bistatic scattering coefficients as a function of scat-

tering angles. For Figures 3(a) and 3(b), we consider the scattering by a cluster of N = 32

primary spheres with ka = 0.05 and ka = 0.25, respectively. We plot bistatic scattering

coefficients as a function of 4, with 0, = 900. The coefficients show that a maximum scat-

tering is in the forward direction and the result for vv is larger than that for hh. There is

a minimum for hh around q, = 90° because the induced dipoles in small primary spheres

are pointing in the same direction as k.. In Figures 4(a) and 4(b), we illustrate the case

for a larger cluster with N = 128 monomers. Figure 4(a) shows that for a larger cluster we

have a much stronger forward scattering than that in Figure 3. The minima around 900

for the hh are also due to the induced dipoles' orientations.

In Figure 5, we plot the ratio of as a function of the number of primary particles

in a cluster. 0•N) is the scattering cross section for an agglomerate with N number of

monomers. a.1) is the scattering cross section for a primary particle. The results have been

averaged over 30 realizations. It shows that the scattering increases with N when clusters

are small (small N or small ka). However, the multiple scattering becomes important as

clusters grow larger which is indicated by the saturation of scattering cross section. The

ratio of O is shown in Figure 6, where the subscript a is used to denote the absorption

cross section. As expected, the absorption increases with N when multiple scattering is

a minor effect. However, when the agglomerates become larger, the multiple scattering

effects will block the absorption for the inner particles within the aggregates. In Figure 7,

we illustrate the results for extinction cross section which is equal to the sum of scattering

and absorption cross sections a, = a.++a.

Figure 8 shows the wavelength dependence of extinction cross section per constituent

particle. The index of refraction for carbon as a function of frequency is obtained from [15].

It is shown that the extinction decreases linearly with increasing wavelength, but the slope

is not in agreement with the experimental measurements [13]. However, in the above work

we have assumed only dipole interaction between primary particles and they touching only

at one point on the surface. This assumption has been justified for dielectric particles,

because in this case the displacement current dominates over the conduction current. In

7
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soot particles, the carbon monomers may overlap by nucleation and may have very high

conductivity. For these cases, we may need to include more multipole moments in the

T-matrix calculation to take into account the higher order interaction between primary

particles. Also, the sphere model may not be an accurate one for highly absorptive cases.

This is due to the difficulty of field penetration into the sphere.

2.2 Scattering of Waves in Media with Adhesive Particles

Some terrain media (e.g. snow, ice) may consists of aggregated particles, also they

can be characterized as dense media. In a dense medium, the inhomogeneities occupy

an appreciable volume fraction, the classical assumption of independent scattering is not

valid, we have to consider the effects of correlated scattering and mutual coherent wave

interactions among scatterers. However, the aerosol can be characterized as locally dense

medium because of the primary particles being aggregated together within a cluster. In or-

der to account for the clustering of particles, we have applied the sticky hard sphere (SHS)

model (16] by introducing a surface adhesive force between two particles. The analytic

wave approaches, quasicrystalline approximation (QCA) and quasicrystalline approxima-

tion with coherent potential (QCA-CP) [12], which take into account the mutual coherent

wave interactions, were applied to derive closed-form equations for effective propagation

constants in random media with sticky particles. The model produced results that explain

the observed features of the laboratory experiment [17]. The experiment involved light

scattering from colloidal silica particles suspended in a solvent background. The compari-

son with theory shows that the experimental data can be explained by assuming the silica

particles have some adhesion, but cannot explained without this assumption. The sticky

particle pair distribution function has been used by other researchers to explain x-ray

scattering from aggregated gold colloids [181. We also performed Monte Carlo simulations

to generate random media with aggregated particles. The computer simulated random

aggregated media has been shown to have fractal structure, and the fractal dimension

depends on the concentration and stickiness of particles.

2.2.1 Pair Distribution Function for Media with Sticky Particles

We shall consider a system consisting of non-interpenetrable, spherical particles of

diameter d with a non-zero surface adhesive force, i.e. sticky hard spheres (SHS). In
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this model, the interaction between two particles is of very short range, the interparticle

potential u(r) is described by [161:

S00 for0<r<s
u(r) = -ln In 12r(d-s) for s <r < d (14)

0 for r>d

where the limit is taken in such a way that the relation

lim(d - s)edu(r) = 0 (15)-12- < 0(

holds with d and -r being held fixed. The parameter r in (14) is dimensionless, and its
inverse is a measure of the attraction or stickiness between particles. The case of T- 1 = oo
corresponds to infinite stickiness and r"-1 =0 corresponds to non-sticky particles.

The pair distribution function g(r) measures the probability of finding a particle at a
point r given a particle at r = 0. The total correlation function h(r) between a pair of

particles is defined as

h(r) = g(r) - 1 (16)

The direct correlation function c(r) between a pair of particles, which is short-ranged, is
related to h(r) by means of the Ornstein-Zernike relation:

h(r) = c(r) + n f dr c(r') h(1I- i) (17)

where n is the number of particles per unit volume. Equation (17) indicates that the total

influence of a particle on another particle in the presence of remaining particles can be
decomposed into a sum of the direct effect and the indirect effect through other particles.

Under the Percus-Yevick (PY) approximation [19], correlation functions c(r) and h(r)
are approximated by

c(r) = 0 forr > d (18)
h(r)d +- -6(r-d) for 0 < r < d (19)

127
respectively, with t a dimensionless parameter to be determined later. The parameter t
tends to zero in the limit r-- = 0. The PY approximation of the pair distribution function

g(r) for the sticky spherical particles can be solved analytically using the factorization
method of Baxter [20].
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The Ornstein-Zernike relationship (17) can be Fourier transformed to obtain a conve-

nient algebraic equation:

1 - nC(p) = {I + nH(p)}- (20)

where H(p) and C(p) are the three dimensional Fourier transform of h(f) and c(f). Ac-

cording to the Wiener-Hopf technique due to Baxter [20], the left-hand side of (20) can
be factorized into the form

1 - nC(p) = Q(p)Q(-p) (21)

where Q(p) is defined by

Q(p) = 1 - 2irn f dr e•"'Q(r) (22)

and Q(r) is a real function, Q(r) = 0 for r > d. For sticky particles, in the range 0 < r < d,

Q(r) has a closed-form expression:

Q(r) = A- + Br + D (23)

2

where

A +2f - (24)
(1- f)2

B = (-3f + I)d (25)
2(1 - f)2

D =- A- - Bd -- (26)
2 12

f -(27)
6

Az = tf(1 - f) (28)

For a given volume fraction f and stickiness parameter r, the parameter t is determined
by the quadratic equation [16,211

fLt2 f +/-o(9ti2 ( + _ý)t + I +f12 = 0 (29)

Moreover, a further condition to determine the solution of t is that Q(0) must be positive,

or [16,21]

it < 1 + 2f (30)

The procedure for calculating the pair function is as follows. Given the particle diame-
ter d, particle concentration f, and particle stickiness r, the parameter t is first determined
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from (29)-(30). By using the parameter t and equations (23)-(28), Q(r) for 0 < r < d can

be computed. Then the Fourier transform Q(p) is calculated by using (22), and e(p) is

evaluated by using (21). Next, H(p) is computed by solving equation (20). Then h(r) is

obtained by taking an inverse Fourier transform from Hý(p). Finally, the pair distribution

function g(r) can be calculated from (16).

In Figure 9, the pair distribution funct'ons are shown for systems with sticky particles

of identical size, -r = 0.2 and r = 0.5, and compared with the non-sticky case for f = 0.3. The

major features for the pair distribution functions of sticky particles are the occurrence of

discontinuities at the particle separation equals one and two diameters. The discontinuity

at r = d is because the particles can not interpenetrate each other. The height of the peak

at r = d grows rapidly with the increasing of particle stickiness while the width of this
peak reduces, which shows a stronger connectedness between particles as particles getting

more sticky, and other particles are more likely to be excluded from the region d < r < 2d.

Therefore, in a dense medium with sticky particles, the sticky particles tend to aggregate
together. The discontinuity at r = 2d arises from the fact that for r > 2d, physically, when

the separation between two particles is larger than twice the diameter, the probability of

these two particles bound or connect to a third particle drops to zero. In Figure 10, the

pair distribution functions are plotted for f = 0.2 and f = 0.4, with stickiness " = 0.2.

For higher concentration of sticky particles, the pair distribution function displays more

fluctuations just as the case of non-sticky particles.

2.2.2 Monte Carlo Simulation of Media with Sticky Particles

Basically, the Monte Carlo technique used in simulating the clustering of particles is to

deposit particles one by one into a box which contains all particles subject to the condition

that no overlap between particles is allowed [22]. However, the essence in the simulation
process for the case of sticky particles is that we have to calculate, before depositing each

trial particle, the probabilities that determine the bound or unbound states for the trial
particle. These probabilities depend on the stickiness of particles, the size of particle, and

the number of particles existing in the box [23-241. After selecting a particular bound or

unbound state for the trial particle, we will determine its possible position in accordance
with the selected bound state according to a uniform probability. Then we test for overlap

and reject the trial position when a overlap is detected.

11



Volume Fraction 0.2 0.2 0.2 0.3 0.3 0.3

Stickiness Parameter 0.2 0.5 1 0.2 0.5 1

Fractal Dimension 1.72 1.74 1.59 1.90 1.76 1.60

Constant c 1.86 1.64 1.73 1.75 1.65 1.84

Table 1: Numerical Results for D! and c

In Figure 11, the Monte Carlo simulation of the pair distribution function is shown

for a system with N = 512 sticky particles for the case of f = 0.3, and r = 0.2. It shows
that the Monte Carlo simulation also indicates the discontinuity in the pair function when

the distance equals two diameters. Generally, the result shows a good agreement with the

Percus-Yevick approximation. A typical realization of the simulated medium with sticky

particles is shown in Figure 12. Clearly, we can see that particles form aggregates and the
structure of the cluster is quite open. The fractal dimensions of these agglomerates can be

calculated from the power-law relationship between the radius of gyration of a cluster and

the number of particles in a cluster as discussed in Section 2.1.2. The fractal dimension

depends on the concentration of particles and the stickiness of particles. Based on our

simulations, for 512 particles and 30 realizations, the computed fractal dimension is less

than 2 and larger than 1.7 as illustrated shown in Figure 13 and Table 1.

2.2.3 Computation of Effective Propagation Constant

When the scatterers in a medium are dose to each other, it is important to consider

the mutual coherent wave interactions between scatterers and the effects of correlated

scattering. For many years we have used analytic wave theory and approximations, such as
quasi-crystalline approximation (QCA) and quasi-crystalline approximation with coherent

potential (QCA-CP), to study the electromagnetic wave propagation and scattering in

uniformly dense media [12,25-271. In these two approaches, the mutual coherent wave

interactions among particles are weighted by the pair distribution functions. We have also

applied Monte Carlo method to directly solve the Foldy-Lax multiple scattering equations
for media with densely distributed particles. The results of Monte Carlo simulations

agree very well with those of QCA and QCA-CP [14], which is also confirmed by using

the recursive T-matrix numerical algorithm [28]. Also, controlled laboratory experiments
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have verified the QCA and QCA-CP theories (29]. The important advantage of using these
two analytic approximations is that, since they start with Maxwell's equations, the effects
of correlated scattering from different scatterers, the mutual coherent wave interactions
between scatterers, and spatial correlation among particles are all included in their analytic
formulations. Moreover, to solve the scattering problem in a random medium using these
two analytic approaches, we only need to solve the integral equation of the average field
once, which is computationally much more efficient than the Monte Carlo approach which
needs to solve integral equations for many realizations.

In this section, the effective propagation constants for QCA and QCA-CP are given,
and the solution with the sticky particle pair function are illustrated. The dispersion
relationships for QCA and QCA-CP are given as [12,25-27]:

K2= 2  + f(!- k,2) 1 + 2(k.2-k2)ka3(l _ f)4 (31)1 + P ( -k2 ) 9 [1 + 'k-2(1 - f)] (I + 2f (1- t)

f(k 2 - k2) 2(k. - k2 )Ka3(1- f)4
K=k + k2-k2( {1 +[ ia A (32)K +1+ 9'[1 +) 9[1+ (1- f)] [1+ 2f -tf(1 -f)12

respectively, where K is the effective propagation constant, f is the fractional volume of
particle, k, is the wave number inside the particle, k is the wave number of background
medium, a is the radius of particle, and t is the parameter in term of stickiness Tr determined
form equation (29).

The attenuation rates (21m(K)) for various values of stickiness parameter r as a func-
tion of fractional volume are shown in Figure 14. It can be seen that the sticky model
predicts larger attenuation for all fractional volumes than the non-sticky model. We also
note that the maximum attenuation shifts with stickiness which indicates the scattering
by effectively larger particles formed by the clustering. At a value of r = 0.2, the predicted
scattering may be greater than the independent scattering.

The concept of sticky particles has been explored by Penders and Vrij in an inter-
pretation of turbidity (attenuation of a light beam by scattering when passing through
a sample) studies on colloidal silica particles (17]. Details of the experimental procedure
are given in Jansen et. al. [30]. In these experiments, results from light scattering off of
high concentrations of silica particles is explained with the sticky particle pair function
described in section 2.2.1.
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Particle SE2 SJ9 SJ4

Solvent toluene toluene benzene

Refractive index of particle 1.437 1.433 1.425

Refractive index of solvent 1.490 1.490 1.494

Radius (nm) 47 34.5 23
Stickiness Parameter 1.0 0.9 1.5

Table 2: Parameter Values

The three stearylsilica particle dispersions used by Jansen et. al. in his turbidity
study were modeled using the multiple scattering theory with adhesive hard spheres. The
parameters are given in Table 2, where the values for T and a are those for best agreement

with QCA. The He-Ne laser had a free space wavelengtb of 632 nm, and the fractional
volume of the silica scatterers was varied from 0 - 40%.

Figure 15 shows the turbidity as a function of fractional volume for the three particle

species, with the stickiness given by the values of i- in Table 2. The results of QCA agree
quite well with the experimental data. However, without the assumption of adhesion, the
turbidity behavior cannot be explained.
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Appendix A

The translational matrix W(kf) for vector spherical waves in equation (9) is expressed

in the form of [121

[ 7(kF) W(kir) 1
!F(ki) l(kf?) I A1

where the matrices A(kf) and B(kF) are of dimension L,,, xL,,,. Lm,, = N,..z(N,,maz+2)

and N... is the maximum order kept in the summation. The expressions of their elements,

Aw,,m,,(kf) and BO,,,n,(kf), are given as follows.

sA&,n(kf) = 2-"(--1)" a(m,(n -p, vp)a(n,, ,p)
3't• p

x h,,(k,.)Ym-"( , ,)(A.2)

B,,mn(kf) =- 7-(-1)+ - a(m,nl - p,vp,p- 1)b(n,v,p)
"7• p

x hp(kr)Yp"-•'(O,) (A.3)

where
[(n + m)!(v + I,)!(p - m - k&)!]/2,a(m, nu,, vip) = (-1)'n+"( 2P + 1) '- m)!(zi - 7-, +m + 1 s).J

× (A.4)rn p -(mr+p))( 0 0 0()

,(n + m)!(v + #)!(p - m - p)! 1/2

a(m, nlp, lp, q) = (-1)"+(2pI+ 1) - m)!(v - p)!(p + m +a)!]J

X nv nvq (A.5)r MA -(m+) )(0 0 0()

a(n, V,p) 2v(i+l) [2v(v+1)(2v+1)+(v+1)(n+v-p)(n+p- +- )

- v(n+ v +p+ 2)(v +p-n+ 1)1/ 2  (A.6)

b(n, v,p)= (2v+l1) i ,_.+p [ (n+ v+ p+l1)(v + p-n)

2v(v + 1)

x (n2 p-0)(n+v-p+l)]'/2 (A.7)
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and

(ii j2 +3 (A.8)MI Mn2 -(MI + M2)

are the Wigner 3j symbols, hp(kr) is spherical Hankel function of first kind of order

p, and Y,7(8,0), Y."'(0,0) = P,-(cosO)e'-•, is spherical harmonic and P,'"(cos9), m =

0, +1.., ±n are associated Legendre polynomials. Also

S(2n + 1)(n - m)!
"- 4wn(n + 1)(n + m)! (A.9)
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Appendix B

The vector spherical waves are [12]

RgM k= y jn(kr).n(0, 4,) (B.1)

g-Y..(kf) = -t.. {(" + ijn(kr)Pv.(09, ) + [krJinkr)I' n( 0 , , )1 } (8.2)

where

P-(9, 4) - FY m (O, 4,) (B.3)

-mn(°4) = [LdPe'(cosG) + m_ (iCcos 9)] etM (8.4)

Cm(G4) 'n [. "(Cose0) - .dPnZ'(cos 1)ein (B.5)
Ls (, nG0- 4, dOs)em

are vector spherical harmonics and j,n is spherical Bessel function of order n. In (BI) and

(B2), Rg stands for regular part of the wave function. For vector waves M,,,(kf) and

Nm,,,(kf) without "Rg", they are the same expressions as (BI) and (B2) respectively with

in, replaced by hn, spherical Hankel function of first kind and of order n.

The T matrix coefficients for a sphere with radius a, permittivity C,, and wavenumber

k, = w VA/, are

T(M) = J,(k.a)[kaj7 (ka)]' - j,,(ka)[kaj,(k~a)]'
j(k.a)[kahn(ka)]' - hn(ka)[k,ajn(ka)j' (8.6)

T(N) = [k"aej.(k.a)l[kaj 7 (ka)j' - [k'a'j.(ka)l[k.ajn(k.a)]'
n [k.aj(k.a)j[kahn(ka)J' - [k2a2hn(ka)j[kaj7 (k.a)]' (B.7)
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of 3-dimensional aggregates obtained by the hierarchical CCA model,

(a) 16 particles; (b) 32 particles; (c) 64 particles; (d) 128 particles; (e) 256 particles; and

(f) 512 particles.

23



/

Df=1 .74 /

101 c=4.1 6
/

/

7 S.
/

6 /

44

3
2/

100

N
//

//

//

//

2 24

/
/

2 323 2 31 00 10 20 1 02

N

Figure 2. Radius of gyration 1?e as a function of the number of spherules N. The squares

are results of the hierarchical OCA model.
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Figure 3(a). Bistatic scattering cross section as a function of 0, for an aggregate with 32

spheres (see Figure l(b)). Other parameters are •, =1.75+iO.5, ka = 0.05, Oi = 90°, 0i = 0°

and 0. = 90.
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Figure 3(b). Bistatic scattering cross section as a function of qS. for an aggregate with 32
spheres (see Figure 1(b)). Other parameters are IA.= 1.75+i0.5, ka =0.25, 8 = 90*, 0i = 00
and 0. = 90*.
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Figure 4(a). Bistatic scattering cross section as a function of 0, for an aggregate with 128

spheres (see Figure l(d)). Other parameters are A. = 1.75+i( ,, ka=O.05, Oi = 90*, Oi = 0*

and 0, = 900.
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Figure 4(b). Bistatic scattering cross section as a function of #. for an aggregate with 128
spheres (see Figure l(d)). Other parameters are 1, -- 1.75+iO.5, ka-= 0.25, 8 -= 900, 0i = 0°
and 0, = 900.
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Figure 5. Scattering cross section as a function of number of primary particles within a

cluster. Other parameters are &, = 1.75 +i0.5, ka = 0.05, andO.25, i -" 90% and 'i = 00.
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Figure 6. Absorption cross section as a function of number of primary particles within a

duster. Other parameters are 1A.=1.75+i0.5, ka=0.05,and0.25, 0,=90°, and 0j= 0°.
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Figure 7. Extinction cross section as a function of number of primary particles within a
cluster. Other parameters are/p. = 1.75+iO.5, ka= 0.05, andO.25, 9i = 90, and ,i = 0*.
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Figure 8. Extinction cross section per constituent particle as a function of wavelength.

The number of particles in an aggregate are N = 128,256, and512. The radius of sphere is

a = O.031m.
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Figure 9. Percus-Yevick Pair distribution function for sticky spheres with r = 0.2 and
7= 0.5, and for non-sticky spheres.
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Figure 10. Percus-Yevick Pair distribution function for sticky spheres with f 0.2 and

S-=0.4 and stickiness r=0.2.
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Figure 11. Pair distribution function for media with sticky spheres. The simulation

parameters are f = 0.2, r = 0.2, N = 512, and 30 realizations. The simulated results are

compared with Percus-Yevick calculations.
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Figure 12. A typical configuration for media with sticky spheres at f 0.2 and -r 0. 2.
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Figure 13. Radius of gyration R. as a function of the number of spherules N. The squares

are results of the SHS model.
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Figure 14. Attenuation rates based on QCA-CP and independent scattering as a function

of fractional volume for various stickiness parameters. Other parameters are e. = 3.2c. and

ka = 0.314.
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Figure 15. Turbidity as a. function of fractional. volume calculated with the parameters in

Table 2 using QCA-SHS.
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