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HI. Green's Function Formalism For Low-Dimensional Systems, Dragica Vasileska-

Kafedziska and Paolo Bordone. We present an analytical derivation of the one-electron

Green's function in quantum wells, with both impurities and rough surfaces, using a zero-

temperature Green's function formalism. We also give the numerical results for the density of

states (DOS) function and conductivity for the case with an idealy flat interface only. The

numerical simulation of surface-roughness are still in progress. The transport properties of

low-dimensional systems have been the focus of scientific research for many years, but more

so recently due to advances in microfabrication of metallic and semiconductor

nanostructures. 1 In these systems, the width of the channel becomes comparable to the de

Broglie wavelength and therefore, the motion of the electrons in the direction perpendicular

to the interface is no longer free. The energy levels of the electrons are grouped into

electronic sub-bands, each of which corresponds to the particular quantized level for

transverse motion. The electrons are free to move in the plane parallel to the interface.

At low temperatures, the dominant scattering mechanisms in these structures are

impurities and surface roughness.2 The effect of impurities on the conductivity in low-

dimensional systems has been analyzed using the Green's function approach.3-5 In thin

quantum wells, only a small roughness of the heterointerface can cause a large fluctuation in

the quantization energy of confined Q2D-electrons, which could lead to a signifficant

momentum scattering. Therefore, for small channel widths, the effect of the rough boundaries
6

dominates the transport properties of the electrons. Early theories were based on the

Boltzmann equation in which the surface is incorporated via boundary conditions on the

electron distribution function.7-9 The first quantum-mechanical treatment of the problem was

given by Prange and Nee.10

We consider a model for a spin 1/2 Q2D-electron gas with a square-well confinement

potential in the z-direction as shown in Fig. 1. The states of the quantum well are considered

to be area-normalized plane waves in the directions along the well, and to be describable in



terms.of the wave functions for an infinitely deep well in the directions normal to the

interfaces.

V(z)

V V

-d/2 d/2

Fig.1 Potential energy profile of the quantum well structure

The first quantized form of the perturbing part of the Hamiltonian, due to impurities,

is given by

H,,P (R) = u(r- ri, z - zi) = u_ eiq(r-r')6(z- zi) (1)
i i.q

The sum runs over all impurity positions. For simplicity, we have takehf a E-function impurity

potential with strength u. Only the diagrams where we have multiple scattering from the

same impurity are considered.

The effect of the surface roughness is treated through a perturbation term of the form:

H,,(R) = -Vf (r)5(z-l d, (2)

where f(r) characterizes the change in the width of the well. The Hamiltonian Hj(R) gives

the local fluctuations of the quantization energy of the electrons. These fluctuations work as a

scattering potential for the 2D-electrons motion. The strength of the scattering potential is

described with two fitting parameters: the height of the bumps A and the lateral size ý of the

assunied Gaussian fluctuations11 -15 of the interface, expressed through the autocorrelation

function:

(f(r)f(r'))= A2 exp(- ,r Cr' ,= (Ir - r'I) (3)



where < ... > means an ensemble average over different surfaces with different locations of

the bumps. The Fourier transform of this autocorrelation function is:

Gsr(q) = xz2 ex (- (4)

The equation of motion for the unperturbed Green's function at zer6 temperature can

be written in the general form
Go(R,R',t - t )= "(z) (g(r',- )

(5)

since s(z- ze)= ¢'('v()W
(6)

The full Green's function is calculated in the so-called damping theoretical

approximation 16 (Fig. 2a). In this approximation the scattering mechanisms (impurities and

surface-roughness) are taken into account in the lowest Born one, whereas the broadening

effect-is included self-consistently as shown in Fig.2(b-c). This is a very good approximation

for the cases when the concentration of the scatterers is not too high. Assuming that the full

Green's function is of the same form as the unperturbed one, we get that the Fourier

transform of the subband Green's function equals to:

g,,(k, w) = ho) - ek _ E, _ ;U29- h16n 2 A2 Elm 2G ,,(q)g.(k-q,w) (7)h6-, .- nu • .O,.mg.(k -q 0))- q, w)

mq q

where ni is the impurity concentration and the overlap factors 0,,,, are defined by
d/2

0.= fdZIfa.(Z)j211/.(Z)l2

-d/2 (8)

Since the retarded sub-band Green's function is always of the form

1
g .r(k,c) =

S- ek - e , + R, (k9 w) + i,/ (k, w*)9 (9)

where R,, (k, (o) gives the shift in the sub-band energies, which is usually small and I. (k, 0)

is proportional to the inverse of the lifetime of the n-th state, substituting (9) into (7) gives
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Fig. 2 Damping Theoretical approximation of the zero-temperature Green's function.

(a) Dyson's equation, (b) Self-energy approximation for the scattering from-

impurities, (c) Self-energy approximation for surface-roughness scattering.

R[(440) = Cc•m 2
n 
2jdel "'e Jo(2a; et-•12 )exp[-a(E. + eq)]

- ~- E-R. (e., 0))]2' r~,,(E., ()

c.,0 + cn 2m 2
1 (2a4 )exp[-a(Ek + CA)l

{I'.(Ek,o)) = Fjdsqrn,(eq,c) 22 4(a~)xfL(C
r0o [ho)- E. -, - R. (eqCO)]f +r'.(qW)

where
m'• 2  ni.um hit Y2A2

2h= - c, 2,rh cC = 2md , (11)

and I0 is the modified Bessel function of the zero order. The coupled equations given in (10)

need to be solved self-consistently. For idealy flat interfaces F,, (k, CO) does not depend upon

the values of the k-vector. In this cise, the perturbed DOS defined in analogy with the

equations (15) and (16) can be approximated as

Am2) = Y -+-tan -( . (12)

The Drude approximation for the conductivity in this particular case gives

a( •-=(13) 2--2 h7 1 2"- ". (13)



The normalized DOS for the first two subbands for the quantum well with idealy flat

interfaces and impurity concentration ni = 5 x 1016 cm- 3 are shown in Fig. 3. The width of the

well is 30 angstroms. Due to the quantum size effects, we see a noticable change in the shape

of the DOS curve for energies close to the subband energies. The smoothening effect is more

pronounced for higher subbands where the effect of the mixing of the bands is more

important

The Drude approximation for the conductivity vs the thickness of the well is given on

Fig. 4. The parameter for this curve is the total energy of the electrons (1.5 eV). The dips in

the conductivity curve appear when new subbands are populated. As can be seen from the

figure, the depth of the dips is lower for wider wells where the number of populated subbands

is large. These dips would be further hidden by temperature broadening effects which are not

considered here.

2.0

M=Sxl0'6 ci 3  : tk=5xlo•an- 3

1.6 d= 30 angstroms 2

S1.2 .

z 0

0.4 • so
z

0.0 0 .. . .. . . . . . . . . .0

0.0 03 1.0 1.5 2.0 23 3.0 3.5 4.0 0.0 50.0 100.0 150.0 200.0

Fermi energy [eV] width of the well [angstroms]

Fig.3 Normalized DOS vs Fermi energy for Fig.4 The variation of the conductivity with

quantum well with idealy flat interfaces the width of the well
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IV. Simulation of Random Impurity Distribution Effect on Conductance Fluctuation

for Deep Submicron Devices, Jing-Rong Zhou. As devices scale down to the deep

submicron regime, especially for device feature size less than 0.1 gm, the active device

region will contain so few dopant atoms that the statistical fluctuation of the dopants either in

total niumber and/or in spatial distribution in the device may cause non-negligible effects on

device performance. The anticipated effects include: 1) universal conductance fluctuation

caused by quantum interference effect from electron waves propagating through the

semiconductor [1]; 2) the device current level shift and threshold voltage shift due to the total

dopant number fluctuation and/or distribution. The current research is devoted to better

understanding these processes. We are carrying on simulations for 3-dimensional device

structure of MESFETs and HEMTs by using Quantum Moment Equations, in which the

discretized 3-dimensional random impurity distribution and fluctuation can be included.

The simulated device structure is a domain of 0.36 pm (L) x 0.1 gm (H) x 0.045 gm

(W). The discrete impurity region is defined in the high-doped layer away from the

simulation domain boundary in order to use the existing simulation program and avoid

dealing with very complicated rough boundary conditions for the time being. This treatment

should not affect the simulation results much since most of the active device region is

covered by the discrete impurity distribution and device operation is dominated by the

electron transport through the discrete impurity region. The doping in the high doped layer is

1.5 x 1018 cm-3 for a uniform doping. The total number of dopants in the discretized region

is determined by taking the total charge in the region divided by a single ion charge. The

distribution of the discretize charge in the discretized simulation cells is done by check the

assigned random number in each cel! by computer random number generator. When the

random number for a cell is greater than one minus the ratio of the total number of dopants in

the region to the total discretized cells in the region, the cell is assigned an ion charge. The



distributions for different devices generated by the procedure is similar to a physical device

process such as ion-implantation. The simulation method is the same as we used in [2].

Fig. 1 shows the simulation results of AlGaAs/GaAs HEMTs, in which the drain

current versus gate voltage characteristics is plotted. In this results, no clear conductance

fluctuation is observed. This suggests that in this device size and simulation temperature

(300 K), the quantum interference is still averaged out. Further investigation on the possible

Universal Conductance Fluctuation need to be considered.

101 L =24nm

10.1 L = 48 nm

V 0 =5 V
7d

-5 -4 -3 -2 .. 0 J
V (V)

Fig. i The drain current vs gate voltage characteristics of HEMT devices with gate length of

24 nm and 48 nm, respectively. The drain potential is fixed at 0.5 V.
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Fig. 2 Current fluctuation as a function of dopant number under the gate of GaAs MESFETs.

" The study of the effect of random impurity distribution and fluctuation, however,

predicts large current fluctuations. Fig. 2 illustrates the current fluctuation for 25 GaAs

MESFET devices, with the same geometry, but different random impurity distributions in

which the gate voltage is -1.0 V and the drain voltage is 0.5 V. Two characteristics are

obvious: 1) the total dopant fluctuation under the gate causes current fluctuation. The current

increases essentially with the increase of the dopant under the gate, which means that higher

dopant concentration provides higher electron density in the channel and also wider channel

opening since less depletion will occur with the same bias voltage; 2) Different dopant

distributions cause current fluctuations. The current fluctuates even with the same total

dopant number under the gate, which implies that different distribution can cause different

potential fluctuation under the gate and results in stronger or weaker control of the channel

current flow under the same bias condition. The simulation shows that the fluctuation can be

as large as 50 per cent for this particular MESFET device structure. Figure 3 shows that the

current fluctuation doesn't follow the total dopant fluctuation in the discrete dopant region



i

clearly. And Fig. 4 states that the total dopant number under the gate is not necessary

following the total dopant number in the region.
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Fig. 3 Current fluctuation versus total dopant in the discretize dopant region.
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Fig. 4 Dopant number under the gate versus total dopant in the discretize dopant region.

In summary, we have investigated the effect of random impurity fluctuations and

distribution on small-device operation. For the device structure simulated here, the results

suggest that the effect of random impurity fluctuations and distribution can cause current

fluctuation as large as 50 per cent for small MESFET devices if the total gate area is very



small. Further study of different gate length and gate width devices needs to be carried out

before more conclusion can be drawn.
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V. Shubnikov-DeHaas Effect in the Nonlocal Geometry, Neil Deutscher.

Measurements of the magnetoresistance in a nonlocal geometry can yield information not

apparent in conventional local measurements. In a nonlocal geometry the current path and

voltage probes are physically separated, which causes the classical resistance to scale as exp(-

nLW where L is the separation between the current and voltage probes and W is the width of

the channel connecting them. This allows effects such as quantum interference, adiabatic

transport in edge states and ballistics to dominate the measurement. These effects were

thought to scale in terms of the phase coherence length, exp(-L/l4), but recent experiments

have shown this not to be the case.

We are studying the effect of placing a gated region between the current and voltage

probes and using it to interfere with the edge channels in high-mobility GaAs/A1GaAs

material. We have observed two unusual affects. The preferential measurement of certain

SdH peaks, for example we observe a peak at the 3->2 plateau transition but not the 2->3

plateau transition, or vice versa depending on the gate voltage, as shown in Fig. 1. We have

also observed Aharanov-Bohm like oscillations due to the presence of the gate, which can be

seen in Fig. 2.



Vg--0. 275
..... Vg--0.300

150

100 -..--.-.

C 50

0 2 4 6 8
B(Tesla)

Fig. 1 Variation in relative peak heights with gate voltage.
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Fig. 2 Aharonov-Bohm oscillations in the nonlocal SdH measurements.


