This program concentrated on research investigating quantum effects which become important in ultra-small semiconductor devices, and the manner in which these effects may limit downscaling of individual feature sizes. The major concentrations of the program were on:

1. Tunneling in gated semiconductor structures, an effect which has been found to be important in normal high-electron mobility transistors (HEMTs) with gate lengths of \(\leq 0.025 \mu m \).

2. The role played by slab and interface phonon modes in transport within small semiconductor devices.

3. Modeling of quantum effects in MESFET devices as a general tool for approaching the inclusion of such effects in dynamic semiconductor device models.
QUANTUM TRANSPORT IN SEMICONDUCTOR DEVICES

Final Report on DAAL03-91-G-0067 (28461-EL)

David K. Ferry, Principal Investigator

Department of Electrical Engineering
Arizona State University
Tempe, Arizona 85287-5706

June 30, 1994
CONTENTS

I. Publications under this Grant 1
II. Personnel Supported 3
III. Green's Function Formalism For Low-Dimensional Systems 4
IV. Simulation of Random Impurity Distribution Effect on Conductance Fluctuation for Deep Submicron Devices 10
V. Shubnikov-DeHaas Effect in the Nonlocal Geometry 15
I. PUBLICATIONS UNDER THIS GRANT

II. PERSONNEL SUPPORTED UNDER THIS GRANT

Faculty:
Dr. David K. Ferry, Principal Investigator

Research Staff:
Dr. Jing-Rong Zhou (Received Ph. D. on this, and earlier ARO grant in 1991).

Students:
Thomas Rössler (dropped out of program)
Dragica Vasileska-Kafediska (currently a doctoral student)
Neil Deutscher (received Ph. D. May 1994)
Cherng-Nan Tang (received M.S. May 1992, currently in Singapore)
III. Green's Function Formalism For Low-Dimensional Systems, Dragica Vasileska-Kafedziska and Paolo Bordone. We present an analytical derivation of the one-electron Green's function in quantum wells, with both impurities and rough surfaces, using a zero-temperature Green's function formalism. We also give the numerical results for the density of states (DOS) function and conductivity for the case with an ideally flat interface only. The numerical simulation of surface-roughness are still in progress. The transport properties of low-dimensional systems have been the focus of scientific research for many years, but more so recently due to advances in microfabrication of metallic and semiconductor nanostructures.\(^1\) In these systems, the width of the channel becomes comparable to the de Broglie wavelength and therefore, the motion of the electrons in the direction perpendicular to the interface is no longer free. The energy levels of the electrons are grouped into electronic sub-bands, each of which corresponds to the particular quantized level for transverse motion. The electrons are free to move in the plane parallel to the interface.

At low temperatures, the dominant scattering mechanisms in these structures are impurities and surface roughness.\(^2\) The effect of impurities on the conductivity in low-dimensional systems has been analyzed using the Green's function approach.\(^3\)-\(^5\) In thin quantum wells, only a small roughness of the heterointerface can cause a large fluctuation in the quantization energy of confined Q2D-electrons, which could lead to a significant momentum scattering. Therefore, for small channel widths, the effect of the rough boundaries dominates the transport properties of the electrons.\(^6\) Early theories were based on the Boltzmann equation in which the surface is incorporated via boundary conditions on the electron distribution function.\(^7\)-\(^9\) The first quantum-mechanical treatment of the problem was given by Prange and Nee.\(^10\)

We consider a model for a spin 1/2 Q2D-electron gas with a square-well confinement potential in the z-direction as shown in Fig.1. The states of the quantum well are considered to be area-normalized plane waves in the directions along the well, and to be describable in
terms of the wave functions for an infinitely deep well in the directions normal to the interfaces.

\[V(z) \]

\[V(z) \]
where $<...>$ means an ensemble average over different surfaces with different locations of the bumps. The Fourier transform of this autocorrelation function is:

$$G_m(q) = \pi \zeta^2 \exp\left(-\frac{q^2 r^2}{4}\right)$$

The equation of motion for the unperturbed Green's function at zero temperature can be written in the general form

$$G_o(R, R', t - t') = \sum_n \psi_n^*(z') \psi_n(z) g_{nm}(r, r', t - t')$$

since

$$\delta(z - z') = \sum_n \psi_n^*(z') \psi_n(z)$$

The full Green's function is calculated in the so-called damping theoretical approximation\(^1\) (Fig. 2a). In this approximation the scattering mechanisms (impurities and surface-roughness) are taken into account in the lowest Born one, whereas the broadening effect is included self-consistently as shown in Fig. 2(b-c). This is a very good approximation for the cases when the concentration of the scatterers is not too high. Assuming that the full Green's function is of the same form as the unperturbed one, we get that the Fourier transform of the subband Green's function equals to:

$$g_n(k, \omega) = \frac{1}{\hbar \omega - \epsilon_k - \epsilon_n - n_i u^2 \sum_m O_{nm} \delta_m(k - q, \omega) - \frac{\hbar^4 \pi^2 \Delta^2}{m^2 d^2} \sum_m \sum_q m^2 G_m(q) g_m(k - q, \omega)}$$

where n_i is the impurity concentration and the overlap factors O_{nm} are defined by

$$O_{nm} = \int_{-d/2}^{d/2} dz |\psi_n(z)|^2 |\psi_m(z)|^2$$

Since the retarded sub-band Green's function is always of the form

$$g_n^r(k, \omega) = \frac{1}{\hbar \omega - \epsilon_k - \epsilon_n + R_n(k, \omega) + i\Gamma_n(k, \omega)}$$

where $R_n(k, \omega)$ gives the shift in the sub-band energies, which is usually small and $\Gamma_n(k, \omega)$ is proportional to the inverse of the lifetime of the n-th state, substituting (9) into (7) gives
Fig. 2 Damping Theoretical approximation of the zero-temperature Green's function.

(a) Dyson's equation, (b) Self-energy approximation for the scattering from impurities, (c) Self-energy approximation for surface-roughness scattering.

\[
R_\alpha(e_k, \omega) = c_{\text{pr}} \sum m^2 n^2 \int \frac{d\epsilon_q}{2} \frac{\hbar \omega - \epsilon_m - \epsilon_q - R_m(\epsilon_q, \omega)}{[\hbar \omega - \epsilon_m - \epsilon_q - R_m(\epsilon_q, \omega)]^2 + \Gamma_m^2(\epsilon_q, \omega)} I_0(2\alpha \sqrt{\epsilon_m \epsilon_q}) \exp[-\alpha(\epsilon_m + \epsilon_q)]
\]

\[
\Gamma_m(\epsilon_k, \omega) = \sum_m \int \frac{d\epsilon_q}{2} \frac{c_{\text{imp}} O_{mn} + c_m n^2 m^2 I_0(2\alpha \sqrt{\epsilon_m \epsilon_q}) \exp[-\alpha(\epsilon_m + \epsilon_q)]}{[\hbar \omega - \epsilon_m - \epsilon_q - R_m(\epsilon_q, \omega)]^2 + \Gamma_m^2(\epsilon_q, \omega)}
\]

where

\[
\alpha = \frac{m^* \xi^2}{2\hbar^2}, \quad c_{\text{imp}} = \frac{n_1 \mu^2 m^*}{2\pi\hbar^2}, \quad c_{\text{pr}} = \frac{\hbar^2 \pi^4 \xi^2 \Delta^2}{2m^* d^6}
\]

and \(I_0\) is the modified Bessel function of the zero order. The coupled equations given in (10) need to be solved self-consistently. For idealy flat interfaces \(\Gamma_n(k, \omega)\) does not depend upon the values of the \(k\)-vector. In this case, the perturbed DOS defined in analogy with the equations (15) and (16) can be approximated as

\[
\rho(\omega) = \sum_n \frac{m^*}{\pi\hbar^2} \left[\frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{\hbar \omega - \epsilon_n}{\Gamma_n} \right) \right].
\]

The Drude approximation for the conductivity in this particular case gives

\[
\sigma(\omega) = \frac{e^2}{2\pi^2 \hbar} \sum_n \frac{\hbar \omega - \epsilon_n}{\Gamma_n} \left[\frac{\pi}{2} + \tan^{-1} \left(\frac{\hbar \omega - \epsilon_n}{\Gamma_n} \right) \right].
\]
The normalized DOS for the first two subbands for the quantum well with ideally flat interfaces and impurity concentration $n_i = 5 \times 10^{16} \text{cm}^{-3}$ are shown in Fig. 3. The width of the well is 30 angstroms. Due to the quantum size effects, we see a noticeable change in the shape of the DOS curve for energies close to the subband energies. The smoothening effect is more pronounced for higher subbands where the effect of the mixing of the bands is more important.

The Drude approximation for the conductivity vs the thickness of the well is given on Fig. 4. The parameter for this curve is the total energy of the electrons (1.5 eV). The dips in the conductivity curve appear when new subbands are populated. As can be seen from the figure, the depth of the dips is lower for wider wells where the number of populated subbands is large. These dips would be further hidden by temperature broadening effects which are not considered here.

Fig. 3 Normalized DOS vs Fermi energy for quantum well with ideally flat interfaces

Fig. 4 The variation of the conductivity with the width of the well

References

IV. Simulation of Random Impurity Distribution Effect on Conductance Fluctuation for Deep Submicron Devices, Jing-Rong Zhou. As devices scale down to the deep submicron regime, especially for device feature size less than 0.1 μm, the active device region will contain so few dopant atoms that the statistical fluctuation of the dopants either in total number and/or in spatial distribution in the device may cause non-negligible effects on device performance. The anticipated effects include: 1) universal conductance fluctuation caused by quantum interference effect from electron waves propagating through the semiconductor [1]; 2) the device current level shift and threshold voltage shift due to the total dopant number fluctuation and/or distribution. The current research is devoted to better understanding these processes. We are carrying on simulations for 3-dimensional device structure of MESFETs and HEMTs by using Quantum Moment Equations, in which the discretized 3-dimensional random impurity distribution and fluctuation can be included.

The simulated device structure is a domain of 0.36 μm (L) × 0.1 μm (H) × 0.045 μm (W). The discrete impurity region is defined in the high-doped layer away from the simulation domain boundary in order to use the existing simulation program and avoid dealing with very complicated rough boundary conditions for the time being. This treatment should not affect the simulation results much since most of the active device region is covered by the discrete impurity distribution and device operation is dominated by the electron transport through the discrete impurity region. The doping in the high doped layer is 1.5×10^{18} cm$^{-3}$ for a uniform doping. The total number of dopants in the discretized region is determined by taking the total charge in the region divided by a single ion charge. The distribution of the discretize charge in the discretized simulation cells is done by check the assigned random number in each cell by computer random number generator. When the random number for a cell is greater than one minus the ratio of the total number of dopants in the region to the total discretized cells in the region, the cell is assigned an ion charge. The
distributions for different devices generated by the procedure is similar to a physical device process such as ion-implantation. The simulation method is the same as we used in [2].

Fig. 1 shows the simulation results of AlGaAs/GaAs HEMTs, in which the drain current versus gate voltage characteristics is plotted. In this results, no clear conductance fluctuation is observed. This suggests that in this device size and simulation temperature (300 K), the quantum interference is still averaged out. Further investigation on the possible Universal Conductance Fluctuation need to be considered.

Fig. 1 The drain current vs gate voltage characteristics of HEMT devices with gate length of 24 nm and 48 nm, respectively. The drain potential is fixed at 0.5 V.
Fig. 2 Current fluctuation as a function of dopant number under the gate of GaAs MESFETs.

The study of the effect of random impurity distribution and fluctuation, however, predicts large current fluctuations. Fig. 2 illustrates the current fluctuation for 25 GaAs MESFET devices, with the same geometry, but different random impurity distributions in which the gate voltage is -1.0 V and the drain voltage is 0.5 V. Two characteristics are obvious: 1) the total dopant fluctuation under the gate causes current fluctuation. The current increases essentially with the increase of the dopant under the gate, which means that higher dopant concentration provides higher electron density in the channel and also wider channel opening since less depletion will occur with the same bias voltage; 2) Different dopant distributions cause current fluctuations. The current fluctuates even with the same total dopant number under the gate, which implies that different distribution can cause different potential fluctuation under the gate and results in stronger or weaker control of the channel current flow under the same bias condition. The simulation shows that the fluctuation can be as large as 50 per cent for this particular MESFET device structure. Figure 3 shows that the current fluctuation doesn't follow the total dopant fluctuation in the discrete dopant region.
clearly. And Fig. 4 states that the total dopant number under the gate is not necessary following the total dopant number in the region.

Fig. 3 Current fluctuation versus total dopant in the discretize dopant region.

Fig. 4 Dopant number under the gate versus total dopant in the discretize dopant region.

In summary, we have investigated the effect of random impurity fluctuations and distribution on small-device operation. For the device structure simulated here, the results suggest that the effect of random impurity fluctuations and distribution can cause current fluctuation as large as 50 per cent for small MESFET devices if the total gate area is very
small. Further study of different gate length and gate width devices needs to be carried out before more conclusion can be drawn.

References

V. Shubnikov-DeHaas Effect in the Nonlocal Geometry, Neil Deutscher.

Measurements of the magnetoresistance in a nonlocal geometry can yield information not apparent in conventional local measurements. In a nonlocal geometry the current path and voltage probes are physically separated, which causes the classical resistance to scale as \(\exp(-\pi L/W) \) where \(L \) is the separation between the current and voltage probes and \(W \) is the width of the channel connecting them. This allows effects such as quantum interference, adiabatic transport in edge states and ballistics to dominate the measurement. These effects were thought to scale in terms of the phase coherence length, \(\exp(-L/l_\phi) \), but recent experiments have shown this not to be the case.

We are studying the effect of placing a gated region between the current and voltage probes and using it to interfere with the edge channels in high-mobility GaAs/AlGaAs material. We have observed two unusual affects. The preferential measurement of certain SdH peaks, for example we observe a peak at the 3->2 plateau transition but not the 2->3 plateau transition, or vice versa depending on the gate voltage, as shown in Fig. 1. We have also observed Aharanov-Bohm like oscillations due to the presence of the gate, which can be seen in Fig. 2.
Fig. 1 Variation in relative peak heights with gate voltage.

Fig. 2 Aharonov-Bohm oscillations in the nonlocal SdH measurements.