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Naval Postgraduate School
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luqi@cs.nps.navy.mUl
ABSTRACT

This paper presents an evolution control system that provides automated assistance for

the software evolution process in an uncertain environment where designer tasks and their

properties are always changing.

We view an Evolution Control System (ECS) as the agent that keeps track of proposed,

ongoing, and completed changes to a software system. It provides automated assistance to

the software evolution manager to help him/her make the right decisions. It automatically

propagates change consequences by constructing the set of possibly affected modules. It

also coordinates change implementation activities within the design team in a way that

supports team work and maintains system integrity, as well as adapting itself to the

dynamic nature of the evolution process where new changes arrive randomly and ongoing

modifications are themselves subject to change as more information becomes available.

A. INTRODUCTION

An ECS has two main functions. The first is to control and manage evolving software

system components (version control and configuration management, VCCM) and the

second is to control and coordinate evolution team interactions in a way that maximizes the

concurrent assignment and meets management constraints such as deadlines and 0

precedences (planning and scheduling software evolution tasks which we refer to as

evolution steps).

This research was supported in part by the Army Research Office under grant number
ARO-145-91 and the National Science Foundation under grant number CCR-9058453.
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This system provides the required algorithms for coordinating and executing the

activities mentioned above as well as the algorithms for reaching and maintaining a feasible

schedule, if one exists, that meets the deadline requirements, reduces/avoids rollbacks, and

insures system integrity in an uncertain environment where the set of evolution steps and

their properties are always changing.

B. PREVIOUS WORK

The main areas in software engineering relevant to ECS are software development/

evolution, version control and configuration management, task planning and scheduling,

and concurrency control.

1. FORMAL EVOLUTION MODELS

In [9], Luqi presents a graph model for software evolution that introduced the

notion of evolution step as the activities of initiation analysis and implementation of one

request for change in the system under evolution. The graph model represents the software

system evolution history as an acyclic bipartite graph G = {C, S, 1, 0). C nodes represent

system components and S nodes represent evolution steps. The input edges I represent the

relation between a step and the set of system components that have to be examined to

produce output components that are consistent with the rest of the system. The output edges

0 represent the relation between an evolution step and the components it produces. The

states of an evolution steps as well as the generation of substeps to propagate the change

consequences are also defined. In this paper we extend this graph model to include other

relations among system components ("part-of" and "usedcby") and the "part-of"

relationship between composite step and its substeps.

Unlike the original development cycle, the evolution activities (adaptive,

corrective, and perfective maintenance) must take into consideration the existing system's

requirements, decomposition, constraints, capabilities and performance. The effect of the

changes must be propagated to preserve system consistency. In the mean time, concurrent

changes must be coordinated to avoid rollbacks and wasting engineering effort. Evolution

changes must be planned so that they meet the management constraints such as deadlines,

precedence, and priorities. This indicates the need for an evolution control system that takes
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into account the special characteristics of the evolution (maintenance) phase of the software

life cycle process that account for up to 75% of the cost of the software systems [15].

In the evolutionary prototyping model, where a prototype evolves via a number

of versions to the final system, developers start evolving the software system from its

fundamental concepts, then keep modifying the system in an interactive way with the

customer until the system reflects the customer's real needs. The support provided by an

evolution control system is particularly important in such an interactive, exploratory

system development model because all kinds of changes are going on simultaneously,

corrective changes-to reflect the real customer requirements after reviewing the designer's

interpretation of portions of the developed requirements, adaptive changes to the rest of the

customer's real needs, and perfective changes to the fundamental concepts already

accepted by the customers. The interactions between these different activities, the

coordination among related ones, propagating the effects of each of these changes to the

rest of the developed modules, and keeping track of which component belongs to which

system version are the main goals of our evolution control system.

2. VERSION CONTROL AND CONFIGURATION MANAGEMENT

As indicated in [14], version control and configuration management is one of the

fields in software engineering that has received much discussion and many proposals for

proper version and configuration models in different domains, but little has been

implemented, and much remains to be done in developing techniques for ensuring the

consistency of configurations and space efficient algorithms for version management.

According to [8] and [3], representations of the versioning process can be

classified into two main models. The first model is the conventional Version Oriented

Model (VOM) in which a system is divided into modules each of which is versioned

independently from the other modules. To configure a system one has to select a version of

each module of the system. This makes version a primary concept while change is a

secondary concept as a difference between versions. Both SCCS and RCS [17] [18] [19]

conform to this model. The second model is the Change Oriented Model (COM). In this

model the functional change is the primary concept. Versions are identified by a
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characteristic set of functional changes. To configure a system in this model, one has to

select a set of mutually compatible functional changes. Versions in this model are global,

meaning that to examine a module one has to specify a single version of the system first,

then proceed to the required module. In a VOM system, to examine a module one has to

select the module first, then individually select which version of this module is the target.

Reference [3] also defines the composition model and the long transaction model.

The composition model is a natural outgrowth of the VOM model. A configuration in this

model consists of a system model and version selection rules. A system model lists all the

components of a system. Version selection rules define which version is to be selected for

each component to compose a configuration rather than allowing the user to manually pick

component versions.

The long transaction model supports the evolution of whole systems as a sequence

of apparently atomic changes, and coordinates the change of software systems by teams of

developers. Developers work primarily with configurations rather than individual

components. A change is performed in a transaction. A specific configuration is selected as

a starting point for changes which implicitly determines the version of the components. The

modifications to this configuration are not visible outside the transaction until the

transaction is committed. Multiple transactions are coordinated via concurrency control

schemes to guarantee no loss of changes. The result of the committing of a transaction is a

new system configuration version either on the same development path or branch from an

existing development path resulting in a new alternative (variation) development path.

Our work utilizes concepts from both the VOM and long transaction models.

Applying a top level evolution step to a base version of a software system leads to

versioning of both the individual components involved in the change and the entire

software system producing a new configuration version (version of a whole system). In

addition our system automatically coordinates teamwork in such a way that concurrency

control is done at a higher level of abstraction, i.e., the serialization of dependent evolution

steps is done by serializing their assignment to developers in the same order and excluding

the need for the traditional locking schemes. Including the evolution steps, with all the data
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they have about the change they implement, as nodes in the bipartite evolution history

graph facilitates evolution history tracing.

Our concept of composite entities and its generalization to fit system

configurations is also similar to that used in PACT [13]. Our system uses a computed

labeling function and a single versioning mechanism for automatically versioning

individual objects as well as configuring a system (as a composite object). Simplifying

version control and configuration management and making it transparent to the user

without requiring his/her intervention, as it is the case in our system, are two of the main

goals of a good version control and configuration management system as set forth by

Feldman in [4].

According to Kaiser and Perry [5] the main tools that propagate changes among

modules are listed below. However, none of these support the enforced model of

cooperation among programmers necessary for large maintenance/evolution projects or

automatically assign tasks to programmers:

Make: a UNIX tool that is used for regenerating up-to-date executables after

source objects have been changed.

Build: is an extension to make that permit various users to have different views of

target software system.

Cedar: the Cedar System Modeler uses an advanced version of the Make tool with

version control to invoke the tools on a specific versions of files. This System informs the

"Release Master", a programmer, about any syntactic interface errors. The Release Master

is responsible for making work arrangements with responsible programmers.

DSEE: the Apollo Domain Software Engineering Environment also uses a Make-

like tool with version control. DSEE also has a monitoring facility that permits

programmers and/or managers to request to be notified when certain modules are changed.

Masterscope: Interlisp's Masterscope tool maintains cross-reference information

between program units automatically. It also approximates change analysis of potential

interference between changes by answering queries about syntactic dependencies among

program units.
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SVCE: the Gandalf System Version Control Environment performs incremental

consistency checking across the modules in its database and notifies the programmer of

errors as soon as they occur. The consistency checking is limited to syntactic interface

errors. It supports multiple programmers working in sequence but does not handle

simultaneous changes.

Kaiser and Perry [5] [7] [11] also describe Infuse, a system that automates change

management by enforcing programmer cooperation to maintain consistency among a

sequence of scheduled source code changes. Infuse automatically partitions these modules

into a hierarchy of experimental databases but programmers are assigned to the these

databases manually. This partitioning may be done according to the syntactic and/or

semantic dependencies among the modules or according to project management decision.

Consistency checking among the experimental database modules is a pre-condition for

merging a database back to its parent experimental database (meaning that the interface

between the modules must be correct and that the modules can compile and link

successfully).

In our system tasks and copies of the associated versions of software components

are assigned automatically to designers (programmers) according to their dependencies.

Versions are generated automatically as soon as the work is done. Syntactic and semantic

consistency checking for source code can be implemented by associating declarations of

consistency constraints with steps, and triggering the required checking actions as part of

the commit protocol.

3. APPROACHES TO SCHEDULING EVOLUTION STEPS

A scheduling problem in a real-time system is described by three basic concepts:

the model of the system, the characteristics of the tasks to be scheduled, and the objective

of the scheduling algorithm [12].

Task scheduling in real-time systems can be static or dynamic. A static approach

performs the calculation of the schedules for tasks off-line. It requires prior knowledge of

the characteristics of the tasks. On the other hand, a dynamic approach calculates schedules

for tasks "on the fly". Static approaches have low run-time cost, but they are inflexible and
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cannot respond to a changing environment with unpredictable behavior. Dynamic

approaches involve higher run-time costs, but they are flexible to adapt to environment

changes. A survey of static and dynamic scheduling approaches can be found in [12].

Task scheduling can also be characterized as preemptive and nonpreemptive. A

task is preemptive if its execution can be interrupted by other tasks and resumed afterwards.

A task is nonpreemptive if it must run to completion once it starts.

a. Scheduling Tasks with Precedence Constraints

Scheduling tasks with arbitrary precedence constraints and unit computation

time in multiprocessor systems is NP-hard for both the preemptive and nonpreemptive

cases [12] [21]. Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in

both multiprocessor and uniprocessor systems [12] [20] which excludes the possibility of

the existence of a polynomial time algorithm for solving the problem. Hong and Leung [5]

proved that there is no optimal on-line scheduler can exist for task systems that have two

or more distinct deadlines when scheduled on m identical processors where m > 1.

Scheduling evolution steps to more than one designer with arbitrary

precedence constraints and arbitrary deadlines is the same problem as that of

multiprocessor scheduling mentioned above which is shown by many researchers to be NP-

hard. These negative results dictate the need for heuristic approaches to solve scheduling

problems in such systems.

In [16] Stankovic et al. present an 0 (n2) heuristic scheduling algorithm for

scheduling a set of independent processes on a set of identical processors. A task (process)

in this model is characterized by an arrival time TA, a deadline TD, a worst case

computation time TC, and a set of resource requirements ITRI. Tasks are independent, non

periodic and non-preemptive. In [12], Ramamritham et al. introduce an 0(nk) version of

the algorithm introduced in [16] by considering only k tasks of the remaining tasks to be

scheduled at each step. We have extended this algorithm to deal with precedence

constraints and expertise levels of designers [1].
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C. CONCEPTUAL MODEL

Since the main purpose of the ECS is managing software evolution in a rapidly

evolving system, we review the graph model of software evolution that constitutes the

context for building the ECS [9] [10]. The goal of this model is to provide a framework for

integrating software evolution activities with configuration control [9]. The model of

software evolution has two main elements: system components and evolution steps. System

components are immutable versions of software source objects that cannot be reconstructed

automatically. Evolution steps are changes to system components that have the following

properties in the original version of the graph model [9]:

1. A top-level evolution step represents the activities of initiation, analysis, and imple-
mentation of one change request.

2. An evolution step may be either atomic or composite.

3. An atomic step produces at most one new version of a system component. This prop-
erty is no longer true in our model in order to include the cases in which an atomic step
is applied to an originally atomic component that needs to be decomposed according to
some design considerations. This decomposition may lead to the production of more
than one component.This modification is illustrated in section C.2.e later in this chap-
ter.

4. The inputs and outputs of a composite step correspond to the inputs and outputs of its
substeps.

5. The model allows steps that do not lead to the production of new configurations, e.g.
design alternatives that were explored but not included in the configuration repository.

6. Completely automatic transformations are not considered to be steps and are not con-
sidered in this model.

7. The graph model can cover multiple systems which share components, alternative vari-
ations of a single system, and a series of configurations representing the evolution his-
tory of each alternative variation of a system.

8. A scope is associated with each evolution step which identifies the set of systems and
variations to be affected by the step. The scope is used to determine which induced evo-
lution steps are implied by a change request.

The evolution history is modelel as a graph G=[C, S, CE, SE, I, 0]. This graph is a

directed acyclic graph (bipartite with respect to the edges I and 0). C and S are the two

kinds of nodes (C: software component nodes, and S: evolution step nodes respectively).

Each node has a unique identifier. C and S nodes alternate in each path that has only I and
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O edges. This represents the evolution history view of the graph. The edges represent the

"part-of" (between a sub-component of a composite component and the composite

component) and "used-by" relations (defined between components to represent the

situation where the semantics or implementation of one component A depends on another

component B; B used-by A) between the software components of a given configuration

( CE g C x C), the "part-of" relation between a substep of a composite step and the

composite step ( SE Q S x S ), the input relation between the system components which

must be examined to produce output components that are consistent with the rest of the

system and the corresponding evolution steps(I c C x S), and output relation between

evolution steps and the components they produce (0 Q S x C). System components are

immutable versions of software source objects that cannot be reconstructed automatically.

An "edge-type" attribute is used to distinguish between the two kinds of edges

representing the relations "used-by" and "partof" defined on the set of edges

CE c C x C. The "used-by" relation can be used for automatic identification of inputs of

proposed evolution steps and identification of the induced steps triggered by a proposed

step.

The model distinguishes between the primary and secondary inputs of a step. The

primary input concept can be formalized by introducing the attributes object-id, versionid

and variationid of each version. Variations represent alternative choices, which may

correspond to different formulations of the requirements in the context of prototyping, or

different kinds of system software (operating system, window manager, etc.) in the context

of product releases. Each variation is a linearly ordered sequence of versions. An input to

a step is primary if and only if it is the previous version of the same object and belongs to

the same variation as the output of the step.

1. Version and Variation Numbering

As soon as the input base version of a step is bound, the system assigns the version

and variation number of the output object for the step. The variations are assigned

successive numbers beginning with 1 for the initial variation. Versions along each variation

are assigned successive numbers starting with 1 at the root version of the initial variation.
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This means that the new version number is the base version number plus one, while the

variation number has two possibilities: the first possibility is to keep the base version's

variation number at the time the step is assigned. This occurs when the base version is the

most recent version on its variation line at the time the step is assigned. The other

possibility is to use the "next" variation number, which is the highest variation number plus

one. This labeling function illustrated in Figure 2 is the same for both atomic or composite

objects (the entire software system is represented as a composite object).

This labeling function allows a version to belong to more than one variation which

is a necessary modification to [9] to simplify the process of tracing the development history

of a version and to keep a logical and realistic development history.

FIGURE 1. Variation and version numbering

2. States of Evolution Steps

The dynamics of the evolution steps are modeled by associating six different

states with each step to express the different activities each step has to undergo during its

lifetime. The state transition diagram in Figure 5 shows the different explicit decisions that

have to be made by the management to cause the transition from one state to the other. It

also shows the automated transitions from the scheduled state to the assigned state and vice

versa (explained in detail in subsections c, and d below). By controlling the states of the

evolution steps, the evolution manager exercises direct control over both software

evolution/development and the resulting software configurations. The following are the

definitions of those states and the corresponding actions that cause the transition from one

state to the other. These states are similar to those presented in [9] except that a new state

called "assigned" has been added for the reasons explained below.
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a. Proposed State

In this state a proposed evolution step is subjected to both cost and benefit

analysis. This analysis also includes identifying the software objects comprising the input

set of the step. A "proposed" step is generally added to the configuration graph as an

isolated step node that does not have any input, output or part-of edges (except when an

old version is used that has existing specific reference). This is because the primary and

secondary input attributes are mostly generic inputs (objectid and variationid only).

b. Approved State

In this state the implementation of the step has been approved but not

scheduled yet and the input set of the step is not bound to particular versions. Approval of

a proposed step by the management triggers the decomposition process to create an atomic

sub-step for each primary or affected componept of the step. These sub-steps inherit the

status of their super-step which is "approved" in this case, and are added to the

configuration graph with a part-of edge between each sub-step and its super-step. It is also

in this state that the substeps are augmented with attributes that include the estimated

duration of each sub-step and management scheduling constraints such as precedence,

deadline, and priority.

suspend
create ve schedule

ab d bandon

0 inal state Assigned r

m moo o.. A utom atic transition con ii

-,. command transition

FIGURE 2. Evolution step's state transition diagram
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c. Scheduled State

In this state the implementation has been scheduled and the step is not yet

assigned to a designer. The "scheduled" state is reached from the "approved" state via the

command "schedulestep" that indicates that the management constraints are complete and

enables the scheduling and job assignment mechanisms. The scheduling mechanism

produces an updated schedule containing the newly scheduled step. A schedule specifies

the expected starting and completion times for the step.

d. Assigned State

In this state the smep is assigned to the scheduled designer, all inputs are bound

to particular versions, and unique identifiers have been assigned to its output components,

but these components are not yet part of the evolution history graph. A composite step

enters the assigned state whenever any of its substeps is assigned.

The assigned state is reached automatically from the scheduled state. When a

designer is available, the schedule is used to determine his/her next assignment. If his/her

next assignment is ready to be carried out then the step status is automatically advanced to

"assigned" and the designer is informed of the new assignment. When a step is assigned,

the version bindings of its inputs are automatically changed from generic to specific. An

edge is added as an input edge between the primary input component of the step and the

step itself in the configuration graph.

e. Completed State

In this state the outputs of the step have been verified, integrated, and

approved for release. This is the final state for each successfully completed step. This state

can only be reached from the assigned state using the "commitstep" command. In this

state the output components of the step have been added to the configuration graph. An

output edge has also been added to the configuration graph between the step and its output

component(s). A composite step enters the completed state when all of its substeps are

completed
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f. Abandoned State

In this state the step has been cancelled before it has been completed. The

outputs of the step do not appear as components in the evolution history graph. All partial

results of the step and the reasons why the step is abandoned are stored as attributes of the

step for future reference. This is the final state for all steps that were not approved by the

management or cancelled in the "approved", "scheduled" or "assigned" states.

3. SCHEDULING MODEL

The task in our case is to schedule a set of N evolution steps S = (SI, S2,..., SN)

relative to a set of M designers D = {DI, D2 ,..., DM). The designers are of three possible

expertise levels (Low, Medium, High). Each step has associated with it a processing time

tp (Si), a deadline d (Si), a priority p (S), and required expertise level e (Si). Steps have

precedence constraints given in the form of a directed acyclic graph G = (S, E) such that

(Si, SPj) e E implies that Sj cannot start until Si has completed.

Because of the dynamics of the prototyping/evolution process, the steps to be

scheduled are only partially known. Time required, the set of sub-tasks for each step, and

the input/output constraints between steps are all uncertain, and are all subject to change as

evolution steps are carried out.

Our goal is to dynamically determine whether a schedule (the time periods) for

executing a set of evolution steps exists such that the timing, precedence, and resource

constraints are satisfied, and to calculate this schedule if it exists.

D. DESIGN

The purpose of the Evolution Control System, ECS, is to provide automated

support for changes in plan during the execution of the plan, and provide automatic

decision support for planning and team coordination based on design dependencies

captured in the configuration model. The ECS also manages the software evolution steps

from its creation to completion and provides automatic version control and configuration

management for the products of these steps.
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a. Context Model

The Evolution Control System (ECS) interacts with two external entities: the

software evolution manager and the software designer. These represent classes of human

users rather than external software or hardware systems. There is one external interface for

each class of user: the managerinterface and the designer-interface. Both of these

interfaces are views of the proposed ECS. The message flow diagram in Figure 3 and the

stimulus-response diagrams in Figures 7, 8, 9 and 10 show the context of the system and

the available commands, their effects and the possible error conditions.

Designe"

commit..substep

showsteps DesigrInterfdesignerpool
.eatestep .ECS, controls configuration.graph

edit step______shde
snoii _sfhedule Managerjnterface schedule

ea, aovestep, schedule step,=ortM-f sap •bandA~Te-,
suspeni(.step, manager confi•mation,
ad_.odesigner, dropWegner, designer.expertisejevel

Mana er

FIGURE 3. ECS message flow diagram

1. State Model And Related Concepts

The state of the ECS consists of a configuration graph, a schedule, a set of

designers, and mappings giving the following attributes for each evolution step: deadline,

estimated duration, precedence, priority, status and required expertise level. The formal

definitions of the state model and the constraints on a feasible schedule are defined in [1].

2. Interfaces

The manager interface to the ECS enables the manager to create new prototypes,

provide for the evolution of the existing prototypes via a complete set of commands for

creating, editing, scheduling, suspending/abandoning and/or committing evolution steps,

and manage the designer._pool data via adddesigner, drop-designer, and
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designer expertise_level commands. The designer interface to the ECS enables the

designer to view the steps in a given prototype with a given status and get the sub-steps

assigned to him. This interface also enables the designer to create a sub-step of an assigned

step as well as committing the assigned sub-step.The formal specifications of the various

commands with the different responses for each command are defined in [1].
Done

schedule. changes
ad rim ut

t cl c-hange undone

change-not authorized

circular-precedence

undefinedobject

no such tp

Done

upcat_ rgcegence schedule changes
IaaesXnm priority coni•. (priority, precedence only)

change undone

changenot authorized

circular-precedence

nosuch p

te_ Done s- state change
deletel urm nut

e e! on
eee-ta ect schedule changes o no state change
ee ......'g

undened input normal response

no such step
.- .-..-.. ,--------. exception

FIGURE 4. Stimulus Response diagram for the edit interface

The following parameters can be adjusted manually (using the editinterface) as

uncertainties are resolved and planning errors are corrected. 1. Affected modules (Add/

del). 2. Secondary input (Add/del). 3. Constraints (Precedence, Priority, Deadlines)
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(Initialize/Update). 4. Estimated duration (Update). 5. Resource (Designer Pool Changes)

(Add/drop, Update).

Done

Add designer

show-schedule s chedule Drop dulgerd

~~~DP esiaeadrto ti...on

\\ o sayaable shedule required
\ ..edule c-_d.ang

apoe step cha undone
step ~~~ ~ m d o n osciesigner

Suspend ste_# J -- !•

NAbaospep Expertise level done

-4,.-~ DPV schedule cliangts

schRedule cianges chanperundoue
schedule step inteasible schedulenoschesge

estimated duration
........ no% t spfe

cfrculacrireceVence

desiner

step Isnot approvec show designerdsgnr

no sch sep M empy Z designerpoo

Commit step done
Suspend step J~-b.
Abandon step

~f-ltJ-<4.--.shedulechauges

FIGURE 5. Stimulus Response diagram for the manager interface

Commit substep shdl hne

%... nsich-asigned msutep

FIGURE 6. Stimulus-Response diagram for the designer interface
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The schedule-step command triggers the scheduling mechanism that finds a

feasible schedule if one exist or suggest changes to the deadlines of the lower priority steps

until a feasible schedule is reached. When a designer is available for his assignment the

ECS automatically checks out the required components from the design database to the

designer's workspace and sends an e_mail message to the designer informing him about his

new assignment. When a designer finishes his assignment, he simply issues the

commit.step command. The system then automatically checks in the modified components

to the design database giving them the right version and variation numbers and binding

them to the appropriate configuration.

The ECS automatically monitors changes in plan and takes the appropriate action

to maintain the required constraints. The following scenario shows some of the ECS system

features.

Using the command show-schedule we get the current schedule of the planned

steps as shown in the following screen image.

8 11106193 09:46 11068/93 13:48 brockett
7 11106193 13:46 11/07193 10:46 brockett
9 1106193 08:45 11106/93 15:45 dampier
10 1108193 09:46 1108193 12:46 dampier
14 1110O693 11:57 11107193 09:57 badr
15 11/06/93 15:46 11/08/93 09:46 dampier

To show the automated VCCM capabilities of the ECS let us commit the

substeps of step 1 (steps 6,7, and 8, step 6 is already committed, the composite steps do not

appear in the schedule) then step 1.

First let designer brockett commit step 8. This automatically updates the

schedule as shown below. This leads to assigning brockett step 7 and sending him an email

7 11/06/93 13:48 11/07/93 10:46 brdcltet
9 11/06/93 08:45 11/08/93 15:45 dampier
10 11/08/93 09:46 11/08/93 12:48 dampier
14 11/06/93 11:57 11/07/93 09:57 badr
15 11/06/93 15:48 11/08/93 09:46 dampier

message informing him about his new assignment.
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Now for the sake of the example let designer brockett commit step 7. This is

an early commit which automatically updates the schedule as shown below.

I 9 11/06/93 08:45 11/06/93 15:45 dampier
10 /0/93 15:52 11/07/93 10:52 dampier
14 11/06193 11:57 11/07/93 09:57 badr
15 11106193 13:52 11/07/93 15:52 brockett

Notice that as soon as designer brockett commits step 7 the system assigns

him step 15 which was planned for designer dampier before, because step 15 is ready and

designer brockett becomes available after committing step 7.

Before committing step I let us have a look at the versions of both c3i.system

and fishies prototypes in the database using show prototypes command as shown below.

fishies Has the following versions:
fishiesll

e3i system Has the following versions:
c3isystemll

The manager commits step 1 (applied to c3i_system prototype) using commit

step command from his menu when all the verification and checking for the substeps are

done. The result of this command is creating version number 2 on variation number 1 of the

c3i-sysem as shown below.

fiuhies Has the following versions:

fsh 
ies 

i

e3isystlem Has the following versions:
c3i.._.systemll
c3i _.systeml2

Now if we look at the available steps at the system we notice that step 1 and

its substeps 6, 7, and 8 all have the status completed when we use the show steps with the

option completed from the manager menu as shown below.
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step-set has 15 items.

6, Status: completed
7, Status: completed
1, Status: completed
8, Status: completed

One more feature of the ECS is related to the default base version to which

the top step is applied. When step 1, 2, and 3 are created as top level steps they had the

c3Lsystem 1:1 as the base version for the three steps. When step 1 is committed producing

c3Lsystem 1:2 the default base version for both steps 2 and 3 is automatically changed to

be the newly created version c3iOsystem 1:2.

Another important feature of the ECS is the automatic warning to both

manager and designer one hour before a step is due to commit as shown in the E-mail

message below received by the manager.

rom gadr Sat Nov 6 14:26:18 1993
Return-Path: <badr>
Received: from sunr7-caps. cs.nps.navy.mii (suns7. cs.nps.navy. ni1)
ps.navy.ri]. (4. 1/SNI-4. 1)

id A&08946; Sat, 6 Nov 93 14:26:18 PST
Date: Sat, 6 Nov 93 14:26:18 PST
From: badr (salah badr)
,essage-Id: <9311062226./h08946Btaurus.cs. nps. navy. xil>
To bagdr

rStatus: R

ION REQUIRED Step: 9 should commit within an hour...

a. Dropping a Designer

Designer dampier commits step 9, and the manager decides to schedule step

4 (step 4 has the substeps 11, 12, and 13). The updated schedule after committing step 9 is

shown below.I 10 11/06M93 15:52 11/07/93 10:52 dampier
14 11X06/93 11.57 11/07/93 09:57 badr
15 11/06/93 13:52 11/07/93 15:52 broclwtt
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The manager uses schedule step command for step 4 then the ECS produces

the updated schedule below.

14 11/06/93 11:57 11/07/93 09:57 badr
15 11106193 13:52 11107/93 15:52 brockett
11 11107193 09:57 11/08/93 09:57 badr
13 11/08/93 09:57 11108193 13:57 dampier
12 11108/93 09:57 11108193 14:57 badr

Now the manager decided to send designer badr on a field trip, so he must

delete him from the schedule. The manager uses drop designer option from the editteam

sub-menu. After the system asks for the manager's confirmation, it suggests deadline

changes for both steps 13 and 12 as shown below.

NOTICE: The Designer just deleted was busy
RESCHEDULINO his/her tasks.

in-feasible schedule: step # 13
suggested deadline should be >- 20
Would you like to change it? Ansver(y/n)y

nter the new Deadline 20
in-feasible schedule: step # 12
suggested deadline should be >- 21
Would you like to change it? Answer(y/n)y

nter the new Deadline 21
STEPID SLEVEL DNAME STARTTIME FINISH-TIME

14 LOW dampier 3 9
11 LOW brockett 8 16
12 LOW brockett 16 21
13 LOW dampier 16 20

When the suggested deadline changes is accepted by the manager, the ECS

produces the following updated schedule.

10 11106/93 15:52 11/07/93 10:52 dampier
14 11/07193 10:59 11108/93 08:59 dampier
15 11/06/93 13:52 11107/9315:52 brockett
11 11/07/93 15:59 11/08193 15:59 brockett
13 11W08/93 15:59 11/09/93 11:59 dampier
12 11108/93 15:59 11/09/93 12:59 brockett
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Notice that the assigned and the planned steps for designer badr are

rescheduled to both designers brockett and dampier.

E. CONCLUSION

Integrating planning and version control allows both parts to be more fully automated.

This technology may also enable a single manager to handle projects of larger size by

providing dczision support and taking care of low level details.
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