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VIII. Presentations

I. SUMMARY

The objectives of the research program described in this report are to investigate the
interactions of hyperthermal energy (10-100 eV) and low energy (keV) ions with clean
and adsorbate-covered metal surfaces. A particular emphasis is placed on the study of
ion-surface charge exchange processes. Charge exchange, the transfer of electrons between
the scattering ion and surface atoms, is an essential step in many gas-surface dynamical
processes, such as dissociation, energy transfer, trapping, and adsorption. For understand-
ing surface reactions in the space environment (e.g., surface reactions in low earth orbit)
it is of particular interest to understand charge transfer and collision dynamics at 10 eV
and lower. The hyperthermal energy range is also widely used in surface processing tech-
niques such as reactive ion etching, ion beam-assisted thin film deposition, and surface
modifications by plasma processing and deposition.

Our goal is to obtain experimental information about the basic mechanisms of the
charge transfer process. The experiments are accompanied by theoretical calculations to
identify the physical properties of the system that influence charge transfer probabilities.
Ultimately this knowledge will be integrated with a more complete description of scattering
at hyperthermal energies in order to understand the role that charge transfer plays in
determining the collision dynamics.

We have obtained results in the following areas, some of which were covered in our

progress report submitted in March 1993, and others that will be covered in detail
below:

1. The development and testing of a time-of-flight spectrometer for energy- and angle-

resolved detection of neutral and charged low and hyperthermal energy alkalis.}?
(Covered in 1993 report.)

2. Measured velocity-dependent neutralization probabilities for Li, Na, and K scattering g/ -~
from clean Cu(001). These data were compared to calculated neutralization proba- (O
bilities derived from a “one-electron” model of the resonant charge transfer process.
This model, developed by Brako and Newns, describes the relatively simple case where
transfer occurs primarily to one electronic level in the scattered particle. This work o
demonstrates that the neutralization probabilities are very sensitive to the energies e

and lifetimes of atomic resonances near the surface. The experiments provide im- “°4e8 __
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portant experimental tests of charge transfer models, and theoretical calculations of
atomic state lifetimes and energies.>® We have also demonstrated that the neu-
tralization probability for 5-1200 eV Na scattering from Cu(001) is sensitive to the
component of the scattered particle’s velocity that is parallel to the surface. This
behavior was initially unexpected and can be understood using a modified version of
the one-electron model discussed above. (Covered in 1993 report.)

. In general, charge transfer involves the simultaneous interaction of several atomic
states with the surface electronic states. To understand these processes in detail, we
have made measurements of branching ratios to different final electronic states for Lit
scattering from alkali-covered Cu(001) surfaces. In the final state we observed Lit,
Li~, Li(2s) (ground state neutrals), and Li(2p) (excited state neutrals). With theorist
Brad Marston from Brown University, we are analyzing these data using a multi-state
charge transfer model. Unlike the one-electron model discussed above, this model can
treat the case where multiple final states are formed via charge transfer processes.
This work provides insights into the dynamics of the multi-channel charge transfer
processes. We are developing a monochromator system that will enable us to look for

additional excited states in the scattered flux. (Recent progress from this work will
be reported below.)

. Results have been obtained for scattering O7 from clean and adsorbate-covered Cu(001),
and for scattering of O* from clean Cu(001). We have observed the formation of O~
and O resulting from O collisions with clean and adsorbate-covered surfaces. Fol-
lowing calibration of our ion detector, we have made quantitative measurements of
the O~ /O* yields for O* scattering from clean Cu(001). (These results were covered
in the 1993 report.)] We are analyzing these yields using models developed by Peter
Nordlander and Brad Marston. Planned modifications to the alkali neutral detector
will enable us to directly detect scattered neutral oxygen, which becomes the dominant
channel for the scattered particles at low energies.

. We have observed trajectory-dependent neutralization for Nat scattering from clean
Cu(001). For 50eV and 7.5eV incident Na energies, we have observed neutralization
probabilities that vary from 0.07 to 0.5 for particles that have the same outgoing
velocity and angle, but different collisional histories. These results represent the first
report of trajectory-dependent neutralization from a clean surface. Modeling indicates
that the different surface atomic displacements produced in the different types of
collisions can explain the dramatic variation in neutralization with collision type.
(Recent progress from this work will be reported below.)

. Ultimately our goal is to incorporate our understanding of charge transfer into a more
complete description of the dynamics of scattering at hyperthermal energies, i.e., to
determine the role that charge transfer plays in energy transfer to the surface and
particle trapping. Below we discuss planned experiments (initially with Nat, O+,

and OF ions), using the apparatus developed with this grant, that will address these
issues.




II. RESEARCH OBJECTIVES
Our research objectives under grant number AFOSR-91-0137 are as follows:

1. To develop instrumentation for quantitative measurements of branching ratios to dif-
ferent final electronic states of hyperthermal energy atoms and molecules scattered
from clean and adsorbate-covered surfaces.

2. To use these measured branching ratios to probe basic mechanisms of charge transfer
for alkalis scattered from clean copper surfaces. Charge transfer calculations are used
to extract information about the energies and lifetimes of atomic electronic resonances
near surfaces, and to probe the dynamics of multi-channel charge transfer processes.

3. To extend the knowiedge we have gained about nonadiabatic charge transfer pro-
cesses for the relatively simple alkali-Cu systems to more complex systems, such as
oxygen scattering from metal surfaces. These latter cases require more sophisticated
experimental and theoretical treatments.

4. To explore the role that charge transfer plays in influencing the dynamics of hyper-
thermal scattering from surfaces, in particular particle trapping.

III. STATUS OF RESEARCH

Recent results from this research are outlined briefly below and can be found described
in more detail elsewhere (relevant references are given).

Charge Transfer Dynamics in Ion-Surface Collisions - Motivation:

Electron transfer between the particle and surface by one of a number of processes (e.g.,
resonant electron tunneling, Auger, direct radiative transfer) can result in a change in
the particle’s charge state.® Charge transfer processes are a fundamental step in a num-
ber of surface processes, including dissociative chemisorption, trapping, and laser-induced
desorption.

Charge transfer processes are also important in understanding the dynamics of ion-
surface collisions at hyperthermal energies (i.e., few eV to several hundred eV). A change
in charge state, say from positive ion to neutral atom, alters the particle-surface potential
and changes the energy transferred to the surface, the energy and angular distributions of
the scattered particles, and trapping thresholds and mechanisms. This is particularly true
at energies below approximately 50 eV, where the ion-surface image attraction represents a
significant fraction of the total scattering potential. In the case of molecular scattering, the
same issues apply, with the additional factor that charge transfer can promote dissociation,
leading to the production and scattering of molecular fragments.

Charge transfer events are very sensitive to the details of the electronic structure of
the specific particle and surface in question. As an atom or molecule approaches a surface,
its electronic levels, which are narrow in energy far from the surface, become broadened,
shifted, and hybridized resonances near the surface. The lifetimes and energies of these
resonances are rapidly varying functions of particle-surface separation z. Thus, at different
z, a given resonance is degenerate with different states in the substrate. For example, in the

3




case of a metal substrate, the energy shift may mean that the resonance lies predominantly
above the Fermi level on some parts of the trajectory, and below it on others. The lifetimes
and energies of different resonances, and whether they are degenerate with filled or empty
states in the substrate, are factors which lie at the root of many particle-surface dynamical
interactions, whether they be scattering, adsorption, desorption, etc.!®~8 The resonance
energies and lifetimes are difficult to calculate®~% and difficult to access directly by most

experimental techniques. They can, however, be studied by scattering experiments, such
as those presented below.

When a particle approaches or leaves the surface at non-zero velocity, at any given
instant the system may or may not be in the adiabatic electronic ground state, depending
on various time scales in the collisions. In the hyperthermal energy range the time scales
of the collisions can be comparable to the time scales of electron transfer (resonance life-
times) between the particle and surface, making it possible to nonadiabatically populate
different final electronic states on the outgoing trajectory. The faster the scattered parti-
cle, the closer to the surface (where the lifetimes are shortest) the final electronic state is
determined. Thus, the branching ratios to different final electronic states will vary with
velocity. In the “standard model” of resonant charge transfer,?!0 it is assumed that the
important velocity component is that which is perpendicular to the surface, v, , since the
particle-surface coupling is assumed to be a function of z. For a given incident species,
the branching ratios will also be sensitive to changes in the Fermi energy (i.e., changes
in the work function A®) of the substrate. For example, lowering the work function will
change where the Fermi level crossings occur, and may bring higher lying atomic states

into resonance with occupied surface states. This latter type of experiment is discussed
below.

Many-body effects in resonant neutralization for Li and Na
scattering from alkali-covered Cu(001)

For Lit scattering from alkali-covered Cu(001) we have measured branching ratios
for scattering into different final electronic states; in particular Li*, Li~, Li(2s) (neutral
ground state), and Li(2p) (neutral excited state).!!”14 In the 1993 interim report, pre-
liminary results were presented. The key results are highlighted here along with recent
progress toward modeling these results and extending the measurements.

Experimental results:

Figure 1 is a plot of the measured probabilities with which an impinging 400eV Lit
ion scatters from the Cs/Cu(001) surface as a positive ion (P*) or a negative ion (P~)
versus the work function shift induced by the deposition of Cs.!1:12:14 The 400 eV Lit+
ions impinge at an angle of §; = 65°, measured with respect to the surface normal, and
along the (100) azimuth. The detected particles have been scattered into a final angle of
05 = 64°, also measured with respect to the surface normal. For the clean surface, P+
is 0.67 (v, = 0.02 a.u.). As the work function decreases from its clean surface value of
$=4.59 eV (A® = 0.0 eV) to a value of about 2.6 eV (A® ~ —2.0 eV), Pt decreases,
with a corresponding increase in the probability P° with which the Lit ion will scatter as
a neutral atom (ground state or otherwise). In this range of work function values, P~ is

4




less than a few percent. However, as the work function further decreases, P~ begins to
increase at the expense of P°. For work function values less than about 2.6 eV, P+ is less
than a few percent.

In addition to the overall charge state fractions presented above, we have determined
the relative yield of Li* ions scattered into the Li(2p) state by measuring the rate at which
photons corresponding to the Li(2p)—Li(2s) transition (A=673 nm) are produced.!!14
A plot of the relative yield is shown in figure 2 for 400eV incident Li* (open circles). (The
absolute yields of the Li(2p) states are estimated to be less than 1%.) When the surface is
clean, we observe no photons to within the sensitivity of our detector. However, as the work
function decreases, the photon yield increases, reaches a peak value, and then decreases.
The distinctive feature of these data is the peak in the yield at a work function shift of
about —1.8 eV. Also shown in figure 2 is the photon yield for 100eV incident Li* (open
triangles), which also shows a peak in the photon yield as a function of decreasing work
function. When the energy is decreased from 400eV to 100eV, the photon yield decreases
by about an order of magnitude and shifts to lower work function shifts. A similar peak
has been observed when 1 keV Lit was scattered at grazing angles from Cs/W(110).15:16

Modeling:

To model these experiments we require a charge transfer calculation which can treat
the simultaneous interactions of several atomic resonances with the surface electronic
states. Such a many body calculation must include excited atomic states and affinity levels.
Brad Marston (at Brown University) has developed such a code. His calculation employs
a 1/n expansion (equivalent to a variational expansion of the many-body wavefunction in
particle-hole pairs) to study the dynamics of charge-transfer involving degenerate orbitals.
This expansion has been employed with success in the Kondo problem, and by Brako and
Newns who earlier applied it to the charge transfer problem.!” Marston has extended their
treatment by including level crossings, excited atomic states and affinity levels. Input to
the model includes the energies and lifetimes of the atomic resonances outside the surface.
Details of the calculations are given elsewhere.!4

Discussion:

In figure 1 the solid curves represent charge state fractions calculated using Marston’s
multiple-states model. Energies and lifetimes of the Li atomic states were taken from cal-
culations by Nordlander and Tully (we have also used Li~ lifetimes calculated by Gauyacq
and Teillet-Billy).1%:1° Shown in figure 2 are the calculated Li(2p) yields. The two curves
in figure 2 are for 400eV and 100eV Li scattering. The calculated curve for 400eV has
been normalized to the data.

The model reproduces the absolute yields of positive and negative ions, and qualita-
tively reproduces the peak in the photon yield, the decrease in the photon yield as the ion
energy is decreased from 400eV to 100eV, and the shift in the peak that occurs when the
beam energy decreases from 400eV to 100 eV. Note that the calculated peaks in figure 2 are
narrower than the experimental ones; we believe that this is a result of adsorbate-induced
inhomogeneities in the surface electrostatic potential caused by the alkali adsorbates, which
is not included in the calculation.

Given the agreement between the measured and calculated yields, we can now use
the model to extract information about the dynamics of the charge transfer process. A
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detailed analysis is quite lengthy2? and will not be given here. Rather, key results are
summarized below.

1. The charge state yields, i.e., yields of Lit and Li~ (see figure 1), can be understood
by considering the relative energies of the Fermi level and the Li(2s) (ionization) and
Li(2s2) (affinity) levels. The Fermi level of clean Cu(001) lies 4.59¢V below the vacuum
level. For a Li atom far from the surface, the Li(2s) level lies 5.4eV below the vacuum
level, while the Li(2s?) lies 0.62eV below the vacuum. For scattering from the clean
surface, the adiabatic ground state is for the Li to scatter as a neutral. However, due
to the finite velocity of the scattered particles and the shift in energy of the Li(2s)
level near the surface, a significant Li* yield is observed in the scattered flux. As the
work function decreases (by adsorbing Cs onto the Cu surface), the Li(2s) level lies
further below the Fermi level, and more neutralization occurs. This trend continues
until essentially no Li* is observed in the scattered flux. At very low work functions,
it becomes energetically possible to fill the Li(2s2) level, which results in scattering of
Li—. The Li~ yield increases with decreasing work function.

2. The Li(2p) (see figure 2), in particular the peak versus A®, requires a more compli-
cated explanation. Since the Li(2p) level lies 3.54eV below the vacuum, from energetic
considerations, it is not expected to form in Li scattering from clean Cu(001). As the
work function decreases, the Li(2p) yield increases as expected. Based simply on en-
ergetic considerations, one would expect the Li(2p) yield to increase monotonically
with decreasing work function. However, both the experiment and calculations give a
peak in the Li(2p) yield with decreasing work function.

The ezistence of the peak in the Li(2p) yield is a manifestation of many-body effects in
the charge transfer. At the lowest work functions (i.e., largest A®), a “competition”
develops between the Li(2p) and Li~ states; thus the increase in the formation of
negative ions results in a decrease in the negative ion yield. A more detailed analysis
of the model indicates that there are additional interactions of the Li(2p) state with
Li states other than the affinity level.20

The dynamics of the formation of the excited Li(2p) state are complex. However, the
following key conclusions can be drawn:

a. The finite velocity of the scattered particle is essential for the formation of scat-
tered Li(2p); the Li(2p) is an excited state of the system, and will only form nona-
diabatically because of the finite velocity of the scattered particies. Note that the
Li(2p) yield decreases as the Li energy decreases from 400eV to 100eV,i.e., the
system becomes more adiabatic with decreasing energy.

b. The relative energies of the atomic state and the Fermi level are important in the
formation of the Li(2p) peak. Significant population of the Li(2p) level cannot
occur until the work function decreases significantly from its clean surface value.

c. Whether the Li(2p) survives in the scattered flux will also depend on competition
with other states, such as the Li~ state.

We have also made preliminary measurements of the formation of Na(3p) (excited
state neutrals) in the scattering of 400eV Nat from Cs-covered Cu(001). A peak in the




yield of Na(3p) versus A® is observed. These results, as well as the corresponding multi-
state calculation, are shown in figure 3. As expected from the discussion above, since the
Na(3p) level is higher in energy than the Li(2p) level (by about 0.5 eV) the peak in the
Na(3p) yield is shifted to lower work functions (larger A®). We are in the process of
making more careful measurements of the Na(3p) yields.

A new monochromator system has been developed in our lab; we are currently using
it to search for the formation of higher-lying excited states of scattered Li.

Trajectory-dependent charge transfer for Na*t scattering from Cu(001)

Motivation:

We have observed trajectory-dependent charge transfer in Na* scattering from Cu(001).

To our knowledge, this is the first report of trajectory-dependent charge transfer in alkali
scattering from clean (i.e., adsorbate-free) metal surfaces. In scattering of 7.5eV and 50eV
Na* from Cu(001), we have measured neutralization probabilities ranging from 0.07 to
0.5 for two Na trajectories leaving the surface with the same speed and direction, but
with different collisional histories. This is in contrast to earlier work showing that, for the
Na/Cu system in the same velocity range, the neutralization scales with final perpendicu-
lar velocity, and is independent of collision history.® Modeling indicates that the different
surface atomic displacements produced in the different types of collisions can explain the
dramatic variation in neutralization with collision type.

Experiments:

A 50 eV mass-selected, monoenergetic beam of Na* was scattered from Cu(001) along
the (100) azimuth. Figure 4 shows a time-of-flight spectrum for the scattered particles for
0; = 30° and 85 = 35°, both measured from the surface normal. The Cu(001) crystal was
held at a temperature of 160 K during these measurements to reduce surface atom thermal
motions. The scattered particle intensity is plotted as a function of the normal component
of the scattering velocity v, in atomic units (1 au=2.2x10® cm/s). The dotted curve in
figure 4 shows the scattered ions, while the solid curve shows the scattered neutrals. The
open circles show the neutral fraction, obtained by taking the ratio of scattered neutral
flux to the total flux (ions plus neutrals). Figure 5 shows similar measurements (i.e., same
scattering geometry and surface temperature) for 7.5 eV incident Na*.

In figure 4, the neutral fraction over most of the scattered velocities (v; > .003) is on
the order of a few percent. The neutral fraction for the lowest velocity peak (centered on
vy = .002) in figure 5 is on the order of 0.5. In contrast to this, in figure 5 the neutral
fraction for the peak centered on v, = .002 is on the order of .1 to .2. This is a somewhat
surprising result since previous charge transfer experiments on the Na/Cu system, as well
as charge transfer models, predict that the neutralization probability will depend on the
velocity of the scattered particle. Note that the two peaks in figures 4 and 5, both centered
on v = .002, have almost identical outgoing velocities and angles.

Modeling:

In this discussion we will focus primarily on the two peaks in figures 4 and 5 that
are centered on v; = .002. Due to the difference in incident energies, i.e., 50eV and
7.5eV, respectively, these peaks correspond to different types of scattering trajectories. A
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detailed analysis of these trajectory types can be obtained using our classical trajectory
code SAFARI, with scattered potentials that have been shown to work over a wide energy
range.22-25

In figure 4, the lowest velocity peak, centered on v; = .002 au, corresponds to collisions
involving first and second layer atoms, such as those shown in figures 3e and 3f. Trajectory
3f is the dominant trajectory type in the peak. The particles in this peak have final energies
on the order of 3 eV, after having transferred approximately 47 eV to a few surface atoms.

Trajectory analysis of the spectra in figure 5 indicates that the peak centered on
vy = .002 au is dominated by quasi-double collisions with top-layer surface atoms (i.e.,
there is no penetration of the top layer). The scattered particles have approximately 3 eV
of energy, having transferred ~4 eV to two top-layer surface atoms.

In figure 1, the intensity peak between .004 < v; < .006 corresponds to Na scattering
from the top layer of the Cu(001) crystal; they include quasi-single and quasi-double
collisions involving momentum transfer to primarily one or two surface atoms, respectively,
along top layer (100) chains of atoms. Also included are “zig-zag” collisions involving top
layer collisions with atoms on adjacent (100) chains. Side and top views of these trajectories
are shown in figures 3a-3d.

Discussion:

As mentioned above, the unexpected result found in these studies is that the two peaks
centered at v) ~ .002 au in figures 4 and 5 differ significantly in neutralization probability,
yet they correspond to nearly identical exit trajectories (i.e., same final velocities and
angles). According to widely accepted theories of alkali ion-metal scattering, one expects
the charge transfer to depend only on the outgoing trajectory. This expectation arises
from the following considerations: at the distance of closest-approach the Na atomic levels
are strongly hybridized with the surface electronic states. Thus their lifetimes are short
compared to the timescale of the atomic motion, and the Na atoms are in electronic
equilibrium with the surface, independent of the incident trajectory or charge state. The
final charge state of the scattered Na is then determined on the outgoing trajectory. For a
Na leaving an unperturbed surface, which we typically assurae to be the case, one would
expect neutral fractions on the order of a few percent at the velocities we use in these
experiments.

Why then do we observe neutral fractions of 0.5 for the low velocity peak in figure
4?7 We believe the explanation lies in the coupling of the charge transfer and collision
dynamics. Recall that this peak is dominated by second layer scattering trajectories,
similar to that shown in figure 3f, in which there has been a large energy transfer to a
small number of surface atoms. This energy transfer can result in atoms recoiling from
their lattice sites, creating lattice defects; the Na leaves the surface through a perturbed
region created by the collision itself. Thus the surface can no longer be modeled as a
perfect Cu(001) crystal, but as one that has an atomic scale defect in the vicinity of the
departing Na particle. Associated with this defect will be a perturbed local electrostatic
potential, which can be approximated by an electrostatic dipole, similar to that around an
adsorbed atom on the surface. This dipole locally mimics a work function decrease, which
results in increased neutralization. Using a model of the single-electron charge transfer
process, we have estimated that a dipole moment on the order of .75D is required to
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give the observed neutralization. This is consistent with dipole moments that have been
estimated for atomic-scale surface defects from other types of measurements.26

In summary, we believe that we have demonstrated, for the first time, a coupling of
the charge transfer and collision dynamics for alkali scattering from a clean metal surface.

Future work:

In ongoing and future work, we will continue our studies of multi-channel charge
transfer dynamics. This includes the above-mentioned measurements of the excited state
formation of Na(3p) and the higher-lying excited states of Li. We also plan to continue

our studies of charge transfer in oxygen scattering. The collaboration with Marston in
interpreting these results will continue.

As stated in the introduction to this report, our goal is to incorporate our understand-
ing of charge transfer processes into an integrated picture of the dynamics of hyperthermal
ion scattering from surfaces. Clearly the ion-surface scattering potential is a function of
the charge state of the incident ion. One obvious feature of the alkali-metal potential is the
attractive interaction close to the surface due to the induced image charge in the metal.
The neutral species will not induce an image charge. At low incident energies, this induced
image charge has a dramatic effect on the scattered energies and angles, the energy trans-
ferred to the surface, and the trapping of the scattered particle in the attractive ion-surface
potential well.22 We are beginning experimental studies of trapping and embedding be-
havior in hyperthermal ion-surface collisions. The initial trapping measurements will be
made for Na* and O* incident on clean Cu(001). These two species are similar in mass,
thus we expect their scattering dynamics to be similar. 1lowever, they have very different
charge transfer behavior and scattering potentials, which may dramatically influence their
trapping probabilities.
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Figure 1: Measured and calculated values of the positive and negative charge state fractions for scattered
Li versus the work function shift AP induced by cesium adsorbates. Li* ions with an incident energy of
400eV impinge on a Cu(001) surface along the (100) azimuth with an incident angle of 6; = 65° measured
with respect to the surface normal. Particles scattered into §; = 64° are detected. A$=0.0 corresponds
to the clean surface with $=4.59¢V. The calculated charge state fractions were obtained using Marston’s
multi-state charge transfer model with alkali state energies and lifetimes from Nordlander and Thully.
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Figure 2: Measured and calculated values of the relative yield of excited neutral atoms in the Li(2p) state
versus the work function shift A® induced by cesium adsorbates. Li* ions with incident energies of 400eV
and 100 eV impinge on a Cu(001) surface along the (100) asimuth with an indicent angle of 6; = 68°
measured with respect to the surface normal. Photons corresponding to the Li(2p)——Li(2s) traasition
(A = 673nm) are detected. The calculated values were obtained using Marston’s malti-state charge transfer
model with alkali state energies and lifetimes from Nordlander and Tully. The calculated curve with the
larger magnitude corresponds to 400eV scattering, and is normalized to the data.
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PFigure 3: Measured and calculated values of the relative yield of excited neutral atoms in the Na(3p) state
versus the work function shift A® induced by cesium adsorbates. Nat ions with incident energies of 400eV
impinge on a Cu(001) surface along the (100) azimuth with an indicent angle of 6; = 65° measured with
respect to the surface normal. Photons corresponding to the Na(3p)— Na(3s) transition (A = 589nm) are
detected. The calculated values were obtained using Marston’s multi-state charge transfer model with alkali
state energies and lifetimes from Nordlander and Tully. The calculated curve is normalised to the data.
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Figure 4: Neutral (solid curve) and ion (dotted curve) spectra for 50eV Na* scattered from Cu(001) along
the (100) azimuth, with 6; = 30° and 6; = 35°. Also shown (circles with statistical error bars) is the
neutralisation probability versus perpendicular velocity of the scattered particles. The velocity is given in
atomic units; 1 au=2.2 x 10%cm/s. Note the much larger neutralisation probability for the low velocity peak.
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Figure 5: Neutral (solid curve) and ion (dotted curve) spectra for 7.5¢V Na* scattered from Cu(001) along
the (100) azimuth, with ; = 30° and 6, = 35°. Also shown (circles with statistical error bars) is the
neutralisation probability versus perpendicular velocity of the scattered particles. At the same final velocity,
this set of spectra shows a much smaller neutralisation probability than the low velocity peak in figure 4.
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Figure 6: Scattering trajectories for 50eV Na*t scattered from Cu(001) along the (100) asimuth, with
; = 30° and 6, = 35°. In each panel the upper curve is a side view of the trajectory, while the lower curve

is a top-down view looking directly into the crystal surface. The open circles represent foreground atoms
while the asterisks represent the next layer atoms.
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41) Energy and Charge Transfer Mechanisms in Ion-Surface Collisicns,
B.H. Cooper, Liverpool Surface Science Research Centre, Seminar, University of
Liverpool, June 1990.

42) Hyperthermal Energy Ion Scattering as a Probe of Charge Transfer at Surfaces,
B.H. Cooper, invited talk at the Particle-Solid Gordon Conference, Plymouth,
New Hampshire, July 1990.

43) Energy and Charge Transfer Mechanisms in Ion-Surface Collisions,
B.H. Cooper, invited talk at the Gas-Surface Dynamics Symposium of the Amer-
ican Chemical Society, Washington, DC, August 1990.

44) Energy and Charge Transfer Mechanisms in Ion-Surface Collisions at Hyperthermal
Energies,
B.H. Cooper, invited talk at the Workshop on Surface Reactions in the Space
Environment, Evanston, Illinois, September 1990.

45) Ion-Surface Interactions and Scattering Dynamics,
B.H. Cooper, General Physics Colloquium, Cornell University, December 1990.
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46) Ion-Surface Interactions and Scattering Dynamics,

B.H. Cooper, Colloquium, Laboratory for Research on the Structure of Matter

and Department of Materials Science and Engineering, University of Pennsylva-
nia, December 1990.

47) Ion-Surface Interactions and Scattering Dynamics,

B.H. Cooper, invited talk at the Center for Chemical Physics - Surface Science

Division, National Institute of Standards and Technology, Gaithersburg, MD,
December 1990.

48) Hyperthermal Na* Scattering Distributions from Cu(001): The Role of the Attractive
Interaction,

C.A. DiRubio and B.H. Cooper, contributed talk at the American Physical Soci-
ety Meeting, Cincinnati, OH, March 1991.

49) Cross Sections for Non-Adiabatic Resonant Charge Transfer for Li, Na, and K on
Cu(001),

G.A. Kimmel, J.B. Marston, and B.H. Cooper, contributed talk at the American
Physical Society Meeting, Cincinnati, OH, March 1991.

50) Non-Adiabatic Charge Transfer in O* and OF Scattering from Clean and Adsorbate-
Covered Cu(001),

C.A. Keller and B.H. Covper, contributed talk at the American Physical Society
Meeting, Cincinnati, OH, March 1991.

51) A Many-Body Theory of Charge Transfer in Hyperthermal Atomic Scattering,
J. Brad Marston, Cliff Richardson, Ernie Behringer, Greg A. Kimmel, and Bar-

bara H. Cooper, contributed talk at the American Physical Society Meeting,
Cincinnati, OH, March 1991.

52) Formation of Excited States in Li*-Surface Collisions Via Resonant Charge Transfer,

E.R. Behringer, D. Andersson, and B.H. Cooper, contributed talk at the Ameri-
can Physical Society Meeting, Cincinnati, OH, March 1991.

53) Surface Self-Diffusion on Au(111) Observed by Scanning Tunneling Microscopy,

D.R. Peale and B.H. Cooper, contributed talk at the American Physical Society
Meeting, Cincinnati, OH, March 1991.

54) Non-Adiabatic Resonant Neutralization of Alkali Ions Scattered from Cu(100),
G.A. Kimmel, J.B. Marston, and B.H. Cooper, invited talk at the European
Science Foundation Workshop on Charge Transfer Phenomena at Surfaces (pre-

sented by G. Kimmel for B. Cooper), Noordwijkerhout, The Netherlands, May
1991.

55) Low Energy Ion-Surface Interactions,

C.A. DiRubio, G.A. Kimmel, J.B. Marston, and B.H. Cooper, invited talk at the
10th International Conference on Ion Beam Analysis (presented by C. DiRubio
for B. Cooper), Eindhoven, The Netherlands, July 1991.
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56) The Dynamics of Hyperthermal Alkali Ion-Surface Interactions,
B.H. Cooper, D. Andersson, E.R. Behringer, C.A. DiRubio, and G.A. Kimmel,
invited talk at the 12th European Conference on Surface Science (presented by
E. Behringer for B. Cooper), Stockholm-Uppsala, Sweden, September 1991.

57) Charge Transfer and Trapping Dynamics in Hyperthermal Ion-Surface Collisions,
B.H. Cooper, invited talk at the 6th Annual Workshop on Surface Reactions in
the Space Environment, Evanston, Illinois, September 1991.

58) Multi-Channel Charge Transfer Reactions at Surfaces,

B.H. Cooper, D. Andersson, E.R. Behringer, G.A. Kimmel, C. Keller, and J.B.
Marston, talk at the AFOSR Molecular Dynamics Contractors Conference, Irvine,
California, October 1991.

59) Dynamics of Hyperthermal Ion-Surface Collisions,

March Meeting of the American Physical Society, Indianapolis, IN, March 1992,
Maria-Goeppert Mayer Award Talk.

60) Women in Physics: The View from a Research University,

March Meeting of the American Physical Society, Indianapolis, IN, March 1992,
CSWP sponsored panel discussion on Women Physicists: Observations of the
Changing Mileu - Now and Then.

61) STM Observations of Adsorbate-Promoted Mass Flow on the Au(111) Surface,
D.R. Peale, J.G. Mclean, B.H. Cooper, contributed talk at the 1992 March Meet-
ing of the American Physical Society, Indianapolis, IN, March 1992.

62) What Happens When Low Energy Ions Collide With Surfaces: From the Space Shuttle
to Surface Processing,

Colgate University, Physics Department Seminar, April 1992.

63) What Happens When Low Energy Ions Collide with Surfaces: From the Space Shuttle
to Surface Processing,

General Electric, Colloquium, Schenectady, NY, April 1992.

64) Ion-Surface Charge Transfer Dynamics,

American Physical Society, Annual Meeting of the Division of Atomic, Molecular,
and Optical Physics, Chicago, IL, May 1992.

65) Mass Flow and Stability of Nanoscale Features on Au(111): The Role of Adsorbates,

DOE Sponsored Workshop on Surface Diffusion and the Growth of Materials,
Santa Fe, NM, June 1992.

66) Charge Transfer in Ion-Surface Scattering,

Ninth International Workshop on Inelastic Ion Surface Collisions, Aussois, France,
September 1992.

67) Charge State-Resolved Scattering Measurements: Probing the Dynamics of Hyper-
thermal Energy Atom-Surface Interactions,
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Seventh Annual Workshop on Surface Reactions in the Space Environment, Skokie,
IL, September 1992.

68) Positive to Negative Scattered Ion Ratios in Nonadiabatic O+ Scattering from Cu(001),
C.A. Keller and B.H. Cooper, March Meeting of the American Physical Society,
Indianapolis, IN, March 1992.

69) The Influence of Charge Exchange and Surface Vibrations on Hyperthermal Alkali
Ion Scattering Distribution from Cu(001),
C.A. DiRubio, G.A. Kimmel, and B.H. Cooper, March Meeting of the American
Physical Society, Indianapolis, IN, March 1992.

70) The Dynamics of Low Energy Lit Scattered from Cu(001),

E.R. Behringer and B.H. Cooper, March Meeting of the American Physical So-
ciety, Indianapolis, IN, March 1992.

71) Adsorbate Dependence of the Formation of Excited States in Alkali Ion-Surface Col-
lision,
D.R. Andersson, E.R. Behringer, B.H. Cooper, and J.B. Marston, March Meeting
of the American Physical Society, Indianapolis, IN, March 1992.

72) Charge Transfer in Low Energy Collisions of Lit with Adsorbate-covered Cu{001),
E.R. Behringer, D.R. Andersson, B.H. Cooper, and J.B. Marston, 52nd Physical
Electronics Conference, Irvine, CA, June 1992,

73) Velocity Dependence of Final State Formation in Low Energy Li*-Surface Collisions,
D.R. Andersson, E.R. Behringer, B.H. Cooper, and J.B. Marston, 39th National
Symposium of the American Vacuum Society, November 1992, Chicago, IL.

74) Mass Flow and Stability of Nanoscale Features on Au(111),
Fall Meeting of the Materials Research Society, Boston, MA, December 1992.

75) What Happens when Hyperthermal Ions Collide with Surfaces,
Rice University, Physics Department Colloquium, Houston, TX, April 1993.

76) Multi-Channel Charge Transfer Dynamics in Atom-Surface Scattering,
Workshop on Vibronic Processes in Gas Phase and Surface Scattering, Pousada
de Palmela, Portugal, May 1993.

77) Energy and Charge Transfer Dynamics in Hyperthermal Energy Ion-Surface Colli-
sions,
Laboratoire des Collisions Atomiques et Moleculaires, Laboratory Seminar, Uni-
versite Paris-Sud, Orsay, France, May 1993.

78) Materials Science at a Surface,

Cornell Materials Science Center Summer Research Experience for Undergradu-
ate Program, Ithaca, NY, June 1993.

79) Ion-Surface Collisions: Probing the Dynamics of Energy and Charge Transfer,
Caltech Physics Colloquium, October 1993.
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80) Ion-Surface Interactions: Applications to Thin Film Growth,
B.H. Cooper, talk at the AFOSR Surface Chemistry Contractor’s Conference,
Irvine, CA, October 1993.

81) Scanning Tunneling Microscopy forMa,tqrxals Analysis,
Cornell College of Human Ecology, Department of Textiles and Apparel Collo-
quium, April 1994.

82) Atom-Surface Interactions: Probing Dynamics with Ion Scattering,
Brown University Physics Department Colloquium, Providence, RI, April 1994.
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