AD-A281 358
L




Volume ||

Ada Implementation
Guide

Software Engineering With Ada

DTIC QUALITY IWN&ir. 0 1. o

April 1994
ﬁk))@(g 4-1 8856
SRR

DEPARTMENT OF THE NAVY

Naval Information Systems Management Center

94 6 17 047




SEH ATADC. Cenrie &/éat

Contents
VOLUME 11

Appendix A: HELPFULSOURCES ................. .c.i.uuuinnn.
Al Government SOUICES . . ... ..o i vt iitientenenreeennnnnnnnnnns
All Organizations ...............c0iiiiiiniiennnennnn.
Ada Joint Program Office . ... ........................
Ada9X Project . . ... ... i e e e
AdaBoard .......... ... ... e i i
Ada Information Clearinghouse . .......................
Ada ValidationOffice ..............................
National Institute of Standards and Technology .............
DON Software Executive Official ......................
DON Ada Representative ....................c0c0u..
Space and Naval Warfare Systems Command ..............
Next Generation Computer Resources . .. .................
Commander, Naval Computer and Telecommunications
Command (COMNAVCOMTELCOM) ...................
Commandant of the Marine Corps . .....................
Naval Center for Cost Analysis ........................
Software Technology Support Center ....................
Software Engineering Institute . . .......................
Software Technology for Adaptable, Reliable Systems
(STARS) ... it i ittt e i e i
Al2 Training . ......coiiii ittt i e e e e e

Ada Language System/Navy ...................c.c0.....
Ada Software Engineering Education and Training Team ......
AdaSAGE ........ ... . i e,
Air Force Institute of Technology ......................
Common Ada PSE Interface Set (CAIS) ..................
Computer Sciences School (Marine Corps) ................
Computer Science School (Army) ......................
National Audiovisual Center ..........................
National Defense University ..........................
Naval Postgraduate School ...........................
Software Engineering Institute . .. ......................
United States Air Force Academy ......................
United States Air Force Technical Training School . .. ........
United States Army Engineering College .................

602° 3968) Lolean., 7HMEPY




A.l3

A.l4

A.lS5

United States Military Academy ....................... A-15
United States Naval Academy ......................... A-15
Publications ............ccoiiiiiiniininnnnnnnn. A-16
Defense Technical Information Center ................... A-16
National Technical Information Service .................. A-16
Standardization Documents Order Desk .................. A-16
U.S. Government Printing Office . ...................... A-17
Ada9X Publications ................. ..., A-17
Adaand CH ... ... . i i i i e e e A-17
Ada Information Clearinghouse Newsletter . ............... A-17
AdaSlices .......... it i i e e A-18
Ada Software Engineering Education and Training

PublicReport ........... ... ...ttt innennn.. A-18
Bridge ...... ... i i i e e e A-18
CHIPS . ... i i it ittt eenareannens A-19
Crosstalk, The Journal of Defense Software Engineering . ... ... A-19
DACS Newsletter . .............ciiitiiiinnnnennnn. A-19
Institute for Defense Analyses . ........................ A-20
High Order Language Control Facility Ada-JOVIAL

Newsletter . .......0ii ittt ennneannaans A-20
NISMC Newsletter . .........c00iiiiriininnnnnnnnn A-20
STARS Newsletter . . . .. ...ttt A-21
BulletinBoards ............... ...t iiiiinen.... A-21
Ada X Project .. ......iiiiiiiii it ittt e A-21
AJPO Host and Ada Information Clearinghouse

BulletinBoard ............. ... ... A-21
Ada Technical Support Bulletin Board Servwe .............. A-22
STSC Bulletin Board System ......................... A-23
Cost Bulletin Board System .......................... A-25
National Technical Information Service .................. A-26
Repositories ..........oiiiiiiiiinnniinnnnnnennn. A-26
Ada Software Repository .............. .o, A-26
Air Force Defense Software Repository System ............. A-28
Associate Director, MCSD ........................... A-28
Central Archive for Reusable Defense Software Program .. ... .. A-28
Command, Control, Communications, and Intelligence

Reusable Software System ........................... A-29
Common Ada Missile Components Effort ................. A-29
Data and Analysis Center for Software ................... A-30
Defense Software Repository System .................... A-30
National Aeronautics and Space Administration’s AdaNET .. ... A-30
Navy WideReuse Center ............................ A-31




A2

A3

Reusable Ada Products for Information Systems

Development . . ... ..., A-31
Software Technology for Adaptable, Reliable
Systems Repository . .......... ..., A-32
A.1.6  Conferences and Special Interest Groups . . ................ A-32
ASEET Symposium . ............coiitriinernnneann. A-32
DON AdaUsers Group . .........cuoviieeneennnnnn... A-32
STARSWorkshop ......... ..., A-33
Software Technology Conference . . ..................... A-33
A.1.7  Operational Development Support Tools . ................. A-33
Ada Language System/Navy .......................... A-33
AdaSAGE . ... . . i e e A-34
NAVAIR Software Engineering Environment Tool Set ... ... .. A-34
Tool Box PC ... ... . i i i i i i i e, A-34
Ada Information Clearinghouse .............................. A-35
A.2.1  Public Access to the AdalC Bulletin Board . ............... A-38
A.2.2  Access to Ada Information on the Defense Data Network . ... .. A-40
A23 Info AdaDIgESt .. ...ttt A1
A2.4 Document Reference Sources ......................... A4l
A25 AdalCFileDirectory .............ciiitiiennn... A-42
Other SoUrces ... ......ciiiiiiiiiiitentenineeenennnnenanss A-51
A3l Training ... ...cii ittt e e e A-51
AdaWorks .. ....... ... i e e A-51
AISYS .« ottt A-51
EVB Software Engineering, Inc. ....................... A-52
Fastrak Training Inc. .............. ... ... ... ....... A-52
ReiferConsultantsInc. .. ..............oivetinnvnnnn. A-52
Texel Company . .......... ...t inennnen. A-52
Universities and Colleges (Civilian)- . ... ................. A-53
A32 Publications ..............c0iiiiiiiie it A-54
AdaDATA Newsletter . ......... ... ..., A-54
AdaLetters. . ........ i ittt i A-55
AdaNewsletter . ....... ... ittt nennnnennn. A-55
AdaRendezvous ............ ... i, A-55
AdaStrategies . . . ...ttt i i A-56
CAUWGReport ......... ..ottt A-56
FRAWGNewsletter . ............. ... ciiiiiinnn.. A-56
Software EngineeringNotes ... ....................... A-56
SPCQuarterly .. ...........cciiiiiiiiiiinnnnn. A-57
A33 Repositories ............0iiitiiiiii i e e A-57
COSMIC, University of Georgia ....................... A-57
EVB Software Engineering, Inc. ....................... A-57
v




IWG Corp. .. ittt i et i it e e e A-58
MassTech, Inc. ......... . . it A-58
Rockwell International Corporation . .................... A-58
Wizard Software .. ........... .00ttt A-58
A.3.4 Conferences and Special Interest Groups . . . ............... A-59
SIGAda .......c.iiiiiii ittt i e A-59
Tri-AdaConference .............. .. .. A-59
Washington Ada Symposium . . ........................ A-60
A.3.5 Operational Development Support Tools . ................. A-60
ObjectMaker . . ...ttt A-60
EVB Software Engineering, Inc. ....................... A-60
Appendix B: DOD/DON SOFTWAREPOLICIES .................... B-1
Appendix C: THE MATURITY FRAMEWORK ..................... C-1
C.l  Initial PrOCeSS . . oo v v i iniine et iinnee e caecnnananansonn, C-2
C2 Repeatable Process ........... ... iiiiiiniinnnn.. C4
Appendix D: COST ESTIMATIONSTUDIES ....................... D-1
Appendix E: EXAMPLE OF METRIC WORDING FOR USE IN A
CONTRACTUAL DOCUMENT ...............cvenn.. E-1
Appendix F: SOFTWARE TOOLDESCRIPTIONS ................... F-1
Appendix G: APPLICATION PORTABILITY PROFILE (APP) SERVICES . G-1
G.1 Operating System Services . . .. ......ovvvein it eneneennnen. G-1
G.1.1 KemelOperations API ...............cciiiiiiennn.. G-1
G.1.2  Operating System Commands and Utilities API ............. G-1
G.1.3  Operating System Real-time Services API ................. G-1
G.14  Operating System Security API ........................ G-1
G.2 Human-Computer Interface Services ........................... G-1
G.2.1  Graphical User Interfface API . ........................ G-2
G.2.2  Graphical User Interface Toolkit API .................... G-2
G.3  Software Engineering Services .. ...........c.citiiiinnann. G-2
G.3.1 Programming Language Ada .......................... G-2
G.3.2 Integrated Software Engineering Environment .............. G-2
G.3.3  Other Programming Languages ........................ G-2
G4 DataManagement Services ..............c.itueiitnnernnaan.. G-3
G.4.1 Relational Database Management System Interface ........... G-3
G.4.2 Data Dictionary or Directory System .................... G-3
G43 Distributed Data Access . ...............ciiiii... G-3
vi




G.5 DataInterchange Services . .............. .. .. .. . L. G-?
G.5.1 Datalnterchange .............. ... . ... ... ... G
G.52 DocumentInterchange .............................. G~
G.5.3  Page Description Language . .. .................. ..... G4
G.54 Manuscript Markup Interchange . .. ............... ..... G-4
G.5.5 GraphicsDatalnterchange ........................... G4
G.5.6  Graphic Product Data Interchange . ..................... G-4
G.5.7 Product Life Cycle Data Interchange . ................... G-4
G.5.8  Electronic Datalnterchange .......................... G4
G.59 Spatial Datalnterchange ............................. G-5
G.6 Graphics Services . ... ... ... i i G-5
G.6.1 Two-Dimensional Graphics API . .. ..................... G-5
G.6.2 Interactive and Three-Dimensional Graphics API ............ G-5
G.7 Network Services . .. ......cuiiiiiiieinntneeennenennnnnn. G-5
G.7.1  Communication API for Protocol Independent Interfaces .. ... .. G-5
G.7.2 Communication API for OSI Services ................... G-5
G.73  FileTransfer APl ............ ... . . . i, G-5
G.74 Communications Protocols for OSI . .................... G-5
G.7.5 Communication API for Integrated Digital, Video, and Voice . G-6
G.7.6  Communication API for Integrated Digital, Video, and Voice . G-6
G.7.7 RemoteProcedureCall . ............................. G-6
G.7.8  Transparent Network Access to Remote Files .. ............ G-6
G.79 Network Management .....................cc00uv.... G-6
G.7.10 Electronic Messaging API . .. ......................... G-6
G.7.11 Directory Services APl . ... .......... ... ... ... G-7
G.8 Security Services . .......... .ttt e e e G-7
G.9 Management ServiCes . ... ....... .t iiitittien e e G-7
G.10 NIST APP Specifications Evaluations .......................... G-7
vil




Appendix H: Ada BINDINGPRODUCTS ..........................
Appendix I: LESSONSLEARNED .............. ... ...
I.1 Stratcom—Computer Center, Offutt Air ForceBase . . .. .............
12  Wells Fargo Nikko Investment Advisors . .......................
1.3 B-2 Aircrew Training Devices ................ ... ...
1.4  Boeing Military Aircraft (Wichita, Kansas) . .. ....................
LS Coulter Electronics: AdaforCytometry ........................
16 AN/UYS-2A Project . ... .....vtvnmininnnnnooeeeeeinennnnns
1.7 Ada Experience at the Naval Research and Development Center . .......
1.8 Tactical Aircraft Mission Planning System . . .....................
1.9  Advanced Field Artillery Tactical Data System . ...................
LI0  AN/BSY-2 ottt iiiit i iiienenettannseeenoeneeneennenean
I.11  AdaLanguage System/Navy . . . . ...cciittteentteenenene..
I.I2 Avionics Project . . ... ...t it i e
1.13 PEO-SSAS,PMS-414, SEALANCE . . .. ...... .t
1.14 Navy World Wide Military Command and Control System

(WWMCCS) Site-Unique Software (NWSUS) Project Mission .........
1.15  Event-Driven Language/COBOL-to-Ada Conversion Program ..........
1.16  Shipboard Gridlock System With Auto-Correlation .................
1.17 Combat Control System MK2 ... ......... .0,
1.18 P-3C Update IV AdaDevelopment . ..............c.cuiiviunnnn
1.19 Standard Financial System Redesign ................ .. ... .. ...,
1.20 Reconfigurable Mission Computer Project .......................
I.21 Intelligent Missile Project . .......... ... ... i i,
Appendix J: FY91 Ada TECHNOLOGY INSERTION PROGRAM

PROJECTS ... . ittt inaeiinnennns
J.1 Education . ...........ii ittty
J2  Bindings ........ it it e i e
J3  Technology .........i ittt tinnnnanss
Appendix K: NAVY AND MARINE CORPS Ada PROJECTS ...........
Appendix L: Ada LANGUAGE FEATURES THAT SUPPORT
SOFTWAREENGINEERING .........................

L.l AdaPackage ............citumuniniinnineeernnnnneennnnns
L2 Strong Typing .........c.ttiiiiiniiiiiriiannnieennnnns

L2.1 TypesasBuildingBlocks ................... ... ......

L.2.2  Creation of Objects From Types .......................
il




L.2.3  Handling of Objects in Homogeneous and

Hete 'geneous Environments . . .. ...................... L-5
L.2.4  Elimmation of Illegal Expressions and Assignment
Statements . ............. ..t i e e L-6
L.2.5 Elimination of Constraint Errors at Compile Time ........... L-6
L.2.6 Elimination of Constraint ErrorsatRun Time .............. L-7
L3  EXCepUOmS . . ... iiiii it i i i e e e L-7
L4 Gemerics ......oiiiiii it i e e L-8
L.5 Ada Library (Separate Compilation) ........................... L-9
L6 AdaTasking .......... .. ittt L-9
L.7  Features That Facilitate to Software Engineering . . ................. L-10
Attachment 1. Example—Package Specification: Parcel
Abstraction Example . . .. ... ... ... ... . i i e, L-11
Attachment 2. Package Specification and Package Body: Queue
Example ....... ... e e L-13
Attachment 3. Generic Package: Generic Queue Example . . ... ....... L-15
Appendix M: SUPPLEMENTARYREADING ....................... M-1

Appendix N: COMPARISON OF Ada TO ASSEMBLY: F-15 STRUCTURAL

FILTEREXAMPLE ......... ... . ... ... i N-1

Acronyms and Abbreviations




List of Figures and Tables

Figures

I-1 LessonsLeamed Matrix ........... .. .. i,
L-1 AdaPackage ................. ittt
Tables

A-l  AdalC Directories . . . ... .ot i ittt i e et e e e
G-1  Evaluation of NIST APP Specifications .........................
x




Appendix A
HELPFUL SOURCES

This appendix provides sources to help the Department of the Navy (DON) Program
Manager become knowledgeable about Ada-related issues. Information is provided on
several Government sources, including the Ada Information Clearinghouse (AdalC),
which is sponsored by the Ada Joint Program Office (AJPO) and other sources. The
sources listed are not exhaustive, and the information regarding these sources may have
changed since the publication of this document. DON does not endorse these sources,
and Department of Defense’s (DOD’s) use of Ada does not imply in any manner that the
DOD endorses or favors any commercial Ada product. These products are listed to
inform Program Managers of what is available. Program Managers must use their own
judgments about the value of the services. Additional sources can be added to this list
for future editions of this guide by contacting the DON Ada Representative.

A.1 GOVERNMENT SOURCES

Government sources are organized into seven categories: organizations, training,
publications, bulletin boards, repositories, conferences and special interest groups, and
operational development support tools. The type of information contained in each of the
categories is as follows:

¢ Organizations—DOD, DON, and Marine Corps organizations that focus on Ada
policy, technical guidance, and programs with DON-wide applicability

* Training—sources of training and information about training for various types of
personnel

* Publications—sources of newsletters and other publications

¢ Bulletin Boards—sources that maintain a public bulletin board directed at the Ada
community

¢ Repositories—sources of reusable components and libraries

¢ Conferences and Special Interest Groups—information on regularly scheduled
expositions, workshops, and symposia as well as conferences

¢ Operational Development Support Tools—information on environments and tools
currently used by the DOD community

Ads implementation Guide A-1




Helptul Sources

The amount of Ada-related information available from these sources is too vast to
reproduce in this appendix. However, an address, telephone number, electronic mail
address (if available), and short description are provided for each source. Often, the
easiest way to obtain information from these sources is by electronic mail, but contact
by mail, telephone, or facsimile is also possible.

A.1.1 Organizations

Ada Joint Program Office
1211 South Fern Street
Room C107
Arlington, VA 22202
(703) 614-0209
DSN: 224-0208

The Ada Joint Program Office (AJPO), which consists of a deputy director from each
Service and a chairperson, is responsible for managing the effort to implement,
introduce, and provide life-cycle support for the Ada programming language. The AJPO
sponsors AdalC, a primary source of Ada information.

Ada 9X Project
Project Manager
Phillips Laboratory/VTES
3550 Aberdeen Avenue, S.E.
Kirtland AFB, NM 87117-5776
(505) 846-0461
Internet: anderson@plk.af.mil

This project is responsible for revisions to the American National Standards
Institute/Military Standard (ANSI/MIL-STD)-1815A to reflect current essential
requirements with minimum negative impact and maximum positive impact on the Ada
community.

Ada Board
Ada Joint Program Office
1211 South Fern Street
Room C107
Arlington, VA 22202
(703) 614-0209

A-2 Department of the Navy




Helpful Sources

The Ada Board provides AJPO with balanced advice and ‘~formation on the technical
aspects related to official interpretations of the Ada lang:..ze standard and on issues
associated with Ada validation and software environment activities.

Ada Information Clearinghouse
AdaIC
P.O. Box 46593
Washington, D.C. 20050-6593
(703) 685-1477
1-800-232-4211 (1-800-AdalC-11)
Internet: adainfo@ajpo.sei.cmu.edu
FAX: (703) 685-7019
Compuserve: 70312,3303

Ada Joint Program Office
OUSD(A)/DDRE/AJPO
Room 3E118, The Pentagon
Washington, D.C. 20301-3081
(703) 614-0215
FAX: (703) 685-7019

The latest information about Ada is available to you free of charge from AJPO’s Ada
Information Clearinghouse (AdalC). The AdalC makes available information on a
variety of topics ranging from the use of Ada within DOD and industry to tools and
compilers for Ada developers, and from DOD policies regarding Ada to reusable Ada
software. .

The AJPO sponsors the AdaIC. The AJPO is responsible for informing the community
about Ada, facilitating the language’s implementation in the services, and maintaining the
integrity of the language.

The telephone hotline numbers are 1-800-232-4211 outside the Washington, D.C. area, -
and (703) 685-1477 in the Washington, D.C. area. For answers to your Ada questions,
call the AdaIC, Monday through Friday. from 8:00 a.m. to 5:00 p.m., Eastern Time.

Ada Validation Office
Institute for Defense Analyses
1801 North Beauregard Streat
Alexandria, VA 22311
(703) 845-6639

Ads Implementation Guide _ A-3




Helpful Sources

This office implements compiler validation policy and oversees development of the Ada
Compiler Validation Capability (ACVC).

National Institute of Standards and Technology
Software Standards Validation Group
Building 225, Room A-266
Gaithersburg, MD 20899
(301) 975-3274
Attn.: Amold Johnson

The National Institute of Standards and Technology (NIST) provides Federal Information
Processing Standards (FIPS) for the Ada language. NIST also is an Ada validation
facility and coordinates with AJPO for conformance testing, policies, and procedures.

DON Software Executive Official
Commander, Naval Information System Management Center
Crystal Plaza 5, Room 334
2211 Jefferson Davis Highway
Arlington, VA 22202
(703) 602-2103

The DON Software Executive Official (SEO) is the point of contact for all DON software
and software-related issues.

DON Ada Representative
AST Software and Systems
Naval Information System Management Center (NISMC)
Building 166, Washington Navy Yard
Washington, D.C. 20374
(202) 433-4903/3499

This office is the point of contact for all Ada and Ada-related issues.

Space and Naval Warfare Systems Command
Code 224-1
5 Crystal Park
Suite 700
Washington, D.C. 20363-5100
(703) 602-9188

A-4 B Department of the Navy




Helpful Sources

The Space and Naval Warfare Systems >mmand (SPAWAR) is the point of contact for
DOD-STD-2176A, Defense System oftware Development; computer resources
management and interface standards for weapon systems applications (Secretary of the
Navy Instruction [SECNAVINST] 5200.32A and Secretary of the Navy Note
[SECNAVNOTE] 5200); and Navy representation on the Joint Logistics Commanders
Joint Policy Coordinating Group on Computer Resources Management (JLC-JPCG-

CRM).

Next Generation Computer Resources
Space and Naval Warfare Systems Command
Code 311-2
5 Crystal Park
Suite 700
Washington, D.C. 20363-5100
(703) 609-9096

This office is the point of contact for all next generation computer issues.

Commander, Naval Computer and Telecommunications Command
(COMNAVCOMTELCOM)

Ada Program Manager

4401 Massachusetts Avenue, N.W.

Washington, D.C. 22036-5460

(202) 282-0221

DSN: 292-0221

FAX: (202) 282-2684

This command is the headquarters for the Naval Computer and Telecommunications
Stations (NCTSs). Through the Ada Technical Support Bulletin Board, the Naval
Computer and Telecommunications Command (NAVCOMTELCOM) provides support
for Ada projects and technical information to the Ada community at large. NCTC chairs
the AdaSAGE Configuration Management Board, manages the Navy-wide Reuse Center,
and publishes CHIPS.

Commandant of the Marine Corps
Director (CTAE-13)
MARCOR COMTELACT
3255 Meyers Avenue
Quantico, VA 22134-5048
(703) 640-4897
Intemmet: depasquale@mqgl.usmc.mil

Ads Implementation Guide ‘ A-5




Helpful Sources
This source is the primary point of contact for Marine Corps Ada program development.

Naval Center for Cost Analysis
Head, Automated Information Systems Division
Pentagon
Room 4A538
Washington, D.C. 20350-1100
Attn.: Stephen Gross
(703) 746-2342
DSN: 286-2342
FAX: (703) 746-2390

The Naval Center for Cost Analysis (NCA) was established 6 August 1985 by decision
of the Secretary of the Navy with the following mission: "To provide independent cost
and financial analyses to support the Secretary of the Navy . . . [and to] Ensure
credible cost estimates of the resources required to develop, procure, and operate military
systems and forces in support of planning programming, budgeting and acquisition

management."”

NCA is a field office of the Assistant Secretary of the Navy (Financial Management). l
It is located in the Crystal City area of Arlington, Virginia, -ar the Pentagon. NCA

supports the Office of the Secretary of Defense (OSD) in sati.cying Title 10 U.S. Code '
§2434, which requires independent life-cycle cost estimates, including the cost of '
research and development, procurement, and operations and support of major weapons

systems such as ships, aircraft, missiles, and electronic systems. NCA also conducts '
financial analyses of defense contractors and economic analyses of acquisition issues.

Software Technology Support Center
Ogden Air Logistics Center
TISAC
Hill AFB, UT 84056

The Software Technology Support Center (STSC) acts as a focal point for the U.S. Air
Force on software tools, methods, and environments. Its activities include a bulletin
board, an annual software conference, a monthly newsletter, consulting services, reports
on various software topics, information on software repositories, and other software
support services. The STSC provides quantitative evaluations of technology, tailored to
specific customer requirements, on a fee-for-service basis. The STSC also has several
technology insertion projects and is working directly with specific customers in selecting
new technology and inserting the technology. Among the reports on software topics are
a software manager’s guide, a project management technology report, a reengineering
technology report, and tool reports on various domains from Computer-Aided Software

A—-6 Department of the Nm

|



Helpful Sources

Engineering (CASE) tools to documentation tools. Information on software repositories
is a special examination being conducted by the STSC. It will result in a report and a
number of activities with various customers.

Software Engineering Institute
Customer Relations
Camegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
FAX: (412) 268-5758

The Software Engineering Institute (SEI) is a Federally Funded R- ~ch and
Development Center (FFRDC) sponsored by DOD through the Advanc -esearch
Projects Agency (ARPA). The SEI provides leadership in advancing the ..aie of the
practice of software engineering to improve the quality of systems that depend on
software. The SEI’s four areas of focus are software process, software risk management,
real-time distributed systems, and software engineering techniques. To increase the
number of highly qualified software engineers, the SEI also seeks to improve software
engineering education within academia, Government, and industry.

In response to computer security threats, ARPA established the Computer Emergency
Response Team (CERT) Coordination Center at the SEI to support Internet users. The
members of the CERT Coordination Center work with the Internet user community and
technology producers to address and prevent computer emergencies.

To accelerate the dissemination of new technologies and methods, the SEI offers U.S.
organizations from academia, Government, and industry several methods of interacting
with the institute. Information on the subscriber program, technical reports, continuing
education courses, and symposia may be obtained by calling or writing to the Customer
Relations Office.

Software Technology for Adaptable, Reliable Systems (STARS)

801 North Randolph Street, Suite 400

Arlington, VA 22203

(703) 351-5300

Internet: (for newsletter) newsletter@stars.ballston. paramax.com
(for ASSET) STARSBBS@source.asset.com
INFO@source.asset.com

For more information:

Joel Trimble—E-mail trimble@stars.ballston. paramax.com or above address

Ada Impismentation Guide , A-7




Helpful Sources

The STARS Program is a major ARPA/Software and Intelligent Systems Technology
Office (SISTO) effort to provide more capable, efficient and productive methods of
developing software for DOD. STARS’ goals are to (1) improve productivity; (2)
improve quality and reliability; (3) promote development and application of reusable
software; and (4) promote adaptability, evolvability, and interoperability through the use
of standard interfaces and open architectures, both of the application software and of the
Software Engineering Environments (SEEs), which support that application software.

The technology areas STARS supports include SEE frameworks, software reuse
mechanisms, and tailorable software process models. STARS includes the national Asset
Source for Software Engineering Technology (ASSET) software reuse library effort.

STARS maintains an affiliates program to provide an opportunity for the DOD software
community to participate in STARS technical activities. The three levels of affiliates
(e.g., individual representatives of Government agencies, universities, vendors) are as
follows:

e Information affiliates who receive the STARS newsletter, attend STARS
conferences, (STARS 9X), have access to the STARS bulletin board, and attend
STARS technology demonstrations at the STARS Technology Center

¢ Technology transition affiliates who attend technical exchange working group
meetings; voluntarily participate in selected receptor organizations; and are
involved in alpha/beta testing, feedback, lessons learned, and product evolution

e Prime affiliates who work directly with STARS prime contractors in relevant
technical activities such as technology transition, production evaluation, and tool
development.

The parent sponsoring organizations are responsible for labor, travel, and other expenses
associated with participating in the affiliates program.

A.1.2 Training

Ada Language System/Navy
ALS/N Training
NCCOSC RDTE DIV 924
53560 Hull Street
San Diego, CA 92152-5800
(619) 553-0949

A-8 Department of the Navy




--l--.--_--—-

Helpful Sources

Traini~ 2 provided at this source includes Ada Language System/Navy (ALS/N) courses
pertai:..ng to Ada/M (UYK-44(V) target), Ada L (AN/UYK-43(V)), PPl (AN/AYK-14
(V) target), and Common Ada Baseline/Project Support Environment (CAB/PSE) tools
(@ VAX/VMS host with associated PSE tools). Training is available by request in
conjunction with ALS/N quarterly meetings, and on-site training is available.

Ada Software Engineering Education and Training Team
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
Attn.: Cathryn McDonald
(703) 845-6626
(719) 472-3131
(202) 282-0833

The Ada Software Engineering Education and Training (ASEET) team is composed of
representatives from the Army, Air Force, Navy, Marine Corps, other DOD agencies,
and academia. The team conducts workshops and symposia for Ada educators within
DOD and academia and coordinates the activities of DOD organizations engaged in
meeting the Ada education and training needs. The team is also available, as funding
permits, to present 1- day or half-day introductory and advanced tutorials on Ada and
software engineering. It also conducts an annual Ada symposium that focuses on
education and training issues. An ASEET resource library of educational materials is
located at AJPO. ASEET also has established an Ada Materials Library that contains
copies of all team-developed tutorials and many other Ada documents and textbooks.

Team members are located all across the continental United States and could serve as
local resources to answer questions on Ada or to direct inquiries to non-local sources.

The team has tri-Service representation on four working groups that address education
and training on requirements, courseware, professional development, and coordination.
Major tasks include the following:

¢ Identifying education and training requirements within DOD

® Conducting Ada research projects

* Managing Ada course materials

® Performing Ada certification study

* Providing a database of ASEET research data and final reports

* Providing a DOD focal point for Ada software engineering education and training.

Adas Implementation Guide A-9




AdaSAGE

Department of Energy

Idaho National Engineering Laboratory
Idaho Falls, Idaho

(208) 526-0656

The Idaho National Engineering Laboratory (INEL) offers training and support through
a hot line subscription service.

Alir Force Institute of Technology
Wright Patterson AFB
Ohio 45433
(513) 255-6027

The Air Force Institute of Technology curreatly teaches the following courses that use
Ada as an implementation language:

* Introduction to Data Structures and Program Design-Principles and
methodologies used to design and implement small programs.

¢ Advanced Information Structures-Structure of data and the efficient and effective
manipulation (algorithms) of such structures.

¢ Operating Systems-Concepts and principles of computer operating systems. The
objective is to give the student an understanding of operating systems and the
necessary skills to evaluate and trade-off desirable features of operating systems
given specific user and resource requirements.

® Software Analysis and Design-Examination of the object-oriented paradigm and
the formal specification of software. Object-oriented design and formal
specification.

¢ Software Systems Engineering-Basic principles and techniques underlying object-
oriented and object-based generation of software.

¢ Analysis and Maintenance of Software Systems-Basic principles and techniques
underlying the measurement and analysis of software systems as well as the
principles and techniques underlying the maintenance of existing software.

¢ Algorithms for Parallel Processing-Understanding of classical results for parallel

design and analysis and provides practical insights into efficient and effective
implementation on contemporary parallel computational machines.

A-10 Department of the Navy

- Es ms . . :
) B TP N I Oy B W A AN S Ny o




Helpful Sources

e Compiler Theory and Implementation-Theoretical foundauon of formal
languages and compiler theory.

* Principles of Embedded Software-Mathematical and computer science principles
for the specification, design, implementation, and analysis of embedded software
systems.

o Design of Fault Tolerant Software-Basic mathematical principles, data structures,
and algorithms associated with the design of fault-tolerant software systems.

¢ Formal-Based Methods in Software Engineering-The mathematical and computer
science theory used as the basis for developing formal-based methods for

specifying, generating, and validating or verifying software.

Common Ada PSE Interface Set (CAIS)
CAIS-A
Commander
Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, CA 92152-5000
Attn.: CAIS-A Training Coordinator
(619) 553-6858

A 5-day training class is available that provides hands-on experience for Ada tool
designers. (Knowledge of the Ada programming language is a prerequisite.) Training
will be available on a VMS system and on a Sun 3 running under UNIX. Also available
are the following:

* CAIS-A Self-Study Guide
® CAIS-A Tool Writers Guide.

Computer Sciences School
Head, Application Programming Instructional Department (APID)
Marine Corps Combat Development Command (MCCDC)
3255 Meyers Avenue
Quantico, VA 22134-5051
(703) 640-2962
DSN: 278-2962
(703) 640-3759

The Computer Sciences School (CSS) currently offers the following Ada-related training
courses:

Ada Implementation Guide _ A-11




Helpful Sources

¢ Entry-level Ada Programming Course. This course is designed for the student
who has no previous programming experience or training. Programming concepts
and principles are taught along with the basics of Ada programming. Additionally,
subjects, such as TSO, JCL, and IBM utilities, are taught to expose students to
tools they may need as programmers. This course is 8 weeks long (41 training

days) and is offered four or five times a year.

¢ Ada Programming Course. This course is designed to teach the basics of the Ada
programming language to programmers who are currently working in a language
other than Ada. However, programming experience is not a requirement to attend
the course. The course is 4 weeks long (20 training days) and is offered three

times a year.

¢ Advanced Programming Techniques (APT) Course. This course is not a typical
programming course. No syntax is taught. Instead, the course teaches software
project management principles in conjunction with software analysis and Object-
Oriented Design (OOD) techniques. This course is 3 weeks long (15 programming
days) and is offered three times a year.

Personnel interested in attending a course taught at CSS should contact the Academics
Officer, Training and Operations Section (TOPS), DSN 278-2891 or COMM (703) 640-
2891, for specific information on registering for a course.

Other Points of Contact (POCs) are:

¢ Marine Corps—Steve Bruzek, 4000 MOS Sponsor at DSN 241-3593 or COMM
(703) 614-3593

® Navy—Navy DP Detailer at DSN 223-3537 or COMM (703) 693-3537

¢ All civilians and other service personnel—SSgt Riegal, Quota Control Manager,
Training and Education Division at DSN 278-3071 or COMM (703) 640-3071.

Computer Science School
Chief of Operations
Army Computer Science School
U.S. Army Signal Center & Fort Gordon
Fort Gordon, GA 30905
(706) 791-2586

The Army Computer Science School currently offers a 2-week (10-training-day) course
in Structured Programming in Ada for Active and Reserve Component commissioned and

A-12 Department of the Navy



Helpful Sources

warrant officers and non-commissioned officers in grades E-6 and above and DOD
civilians in grades GS-07 and above, Active-duty or Res:-ve Data Processors should
contact the Navy DP Detailer, NMPC-406, DSN 223-3537 or COMM (703) 693-3537.
Other Navy personnel and civilians interested in enrolling should contact Navy's ATTRS
POC, Ms. Holder, OPNAV-112G1, DSN 225-8665 or COMM (703) 695-8665 to enroll
through ATTRS, or contact Chief of Operations, Army Computer Science School, DSN
780-2326 or COMM (706) 791-2326. The Army Computer School also teaches Ada as
part of the Systems Automation Officer course, and students use Ada in their software

engineering project.

National Audiovisual Center
8700 Edgeworth Drive
Capitol Heights, MD 20743-3701
Attn.: Customer Service Department
(301) 763-1891
FAX: (301) 763-6025

A series of Ada training tapes sponsored by the AJPO is available for purchase through
the National Audiovisual Center of the Department of Commerce. The tapes include the
following:

¢ Introduction to Ada (3 tapes; about 3 hours; order no. A18336; $150)

® Ada from a Management Perspective (2 tapes; about 80 minutes;
order no. A18337; $100)

o Software Engineering in Ada (19 tapes; about 8 hours, 20 minutes;
order no. A18338; $500).

Additional information on these tapes is available from the AdalC.

National Defense University
Information Resources Management Curriculum
Fort McNair, Washington, D.C.
(202) 287-9340

‘ Ada is examined in the Programming Languages course in the Advanced Management
Program.

[ Naval Postgraduate School
Monterey, CA 93943-4444
| (408) 656-2591

Ade Implementation Guide A-13




Helpful Sources
The Naval Postgraduate School teaches Ada in the following courses:

Structured Programming with Ada

Data Structures

Software Methodology (the process of software development)
Software Engineering (formal methods)

Software Engineering with Ada (task, real-time issues)
Computers in Combat Systems

Software Tools and Environments.

Software Engineering Institute
Camnegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
FAX: (412) 268-5758
Internet: education@sci.cmu.edu

The SEI has collected six software "artifacts,” called EM1-EM6, targeted at teaching
software engineering. Artifact EM1, for example, is a 10,000-line Ada style checker
packaged with exercises to teach software maintenance. SEI also produces many
technical reports, including the following, which are highly recommended:

® Ada Adoption Handbook: A Program Manager’s Guide
® Ada Adoption Handbook: Compiler Evaluation and Selection.

United States Air Force Academy
Headquarters, USAFA/DFCS
2354 Fairchild Drive, Suite 6K41
USAFA, CO 80840
(719) 472-3131
FAX: (719) 472-3338
Internet: dcook@kirk.usafa.af. mil
POC: CAPT David Cook

The U.S. Air Force Academy teaches Ada to computer science majors in the
Foundations of Computer Science course. Majors also use Ada in the Programming
Languages course and the Algorithms and Data Structures course. Additionally, a
2-week course open to anyone is taught during the summer (June/July). Space is limited;
therefore, early registration is advised. There is no charge for the course, but all
students must pay their own travel and per-diem costs.

A-14 Department of the Navy




United States Air Force Technical Training School
Keesler Air Force Base
Biloxi, MS
(601) 377-53719
DSN: 597-5319

The U.S. Air Force Technical Training School teaches Ada in its Fundamentals of Ada
Programming/Software Engineering course and its Ada Applications Programmer course.

United States Army Engineering College
Rock Island Arsenal
Rock Island, IL 61299-7040
Attn.: AMXOM-RS
(309) 782-0488/0- 29/0487

The U.S. Army Engineering College provides a 2-week Ada overview free to
Government employees (Course No. AMEC-140). Additionally, four to five courses that
run 41 training days per year include entry-level Ada programming. They are currently
developing software project management geared toward OOD in FY94.

United States Military Academy
Westpoint, NY 10996
(914) 938-5607
FAX: (914) 938-5438
Internet: DT2283@eecs].eecs.usma.edu
POC: CAPT Crabtree

The United States Military Academy first introduces Ada to computer science majors in
their second year in the course Analysis of Programming Languages. The following
year, they take Software Engineering with Ada for a full semester. This course
introduces the students to software engineering and focuses on how Ada supports the
principles and goals of software engineering. The course treats software engineering
concepts in detail. The OOD paradigm is introduced and practiced in programming
assignments.

United States Naval Academy
Computer Science Department
572 Holloway Road
Annapolis, MD 21402
(410) 267-2797/8
FAX: (410) 267-2686
Internet: eun@csserrera.scs.usna.navy.mil

Ada implsmentation Guide ) A-15




Helpful Sources

DSN: 281-3007
POC: Dr. E.K. Park

The U.S. Navil Academy teaches Ada to computer science majors in their senior year
in the Software Engineering and Advanced Software Engineering courses.

All of the major Ada compiler vendors have training available directly through their
offices.

A.1.3 Publications

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145
Attn.: FDRA
(703) 274-7633

The Defense Technical Information Center (DTIC) distributes documents only to
military, Government, or defense contractors who are registered users of DTIC. Most
unclassified documents that are submitted to DTIC are also forwarded to the National
Technical Information Service (NTIS) and are available to the public.

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

NTIS, a self-supporting agency of the U.S. Department of Commerce, provides free
publications and directories of Government databases and software components. The
Application Portability Profile (APP) and FIPS are available from NTIS.

Standardization Documents Order Desk
Building 4, Section D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Special Assistance Desk: (215) 697-2179
DSN: 442-2179
Customer Service: (215) 697-2667

A-16 Department of the Navy




Helpful Sources

This desk is the central distributor of all ~’litary standard documents, including the
standard for the Ada language reference mz:.ual (ANSI/MIL-STD-1815A-1983). DOD
standards, specifications, handbooks, and data items can be ordered by using the
Telephone Order-Entry System (TOES). Access TOES by calling (215) 697-1187 (DSN
442-1187), Monday through Friday, 7:00 a.m. to 4:30 p.m. Eastern Time.

U.S. Government Printing Office
Superintendent of Documents
Washington, D.C. 20402-9371
(202) 783-3238

The Superintendent of Documents can provide the APP.

Ada 9X Publications
Phillips Laboratory/VTES
3550 Aberdeen Avenue, S.E.
Kirtland AFB, NM 87117-5776
(505) 846-0461

The Ada 9X Project Office maintains a mailing list for Ada 9X documents. To be placed
on the mailing list or to receive hard copies of Ada 9X documents, send an E-mail
message to the following address: keeneyr@plk.af.mil. For access to electronic versions
of Ada 9X documents, leave a message at action@ajpo.sei.cmu.edu

Adaand C++
Software Technology Support Center
Ogden Air Logistics Center
TISAC
Hill AFB, UT 84056
(801) 777-7703

This report describes studies that compared Ada to C++. An electronic summary of -
this report is available on the AdaIC Bulletin Board. The report is also available through

DTIC and NTIS.

Ada Information Clearinghouse Newsletter
AdalC
P.O. Box 46593
Washington, D.C. 20050-6593
1-800-232-4211

Ada implementstion Guide , A-17




Helpful Sources

The AdalC quarterly newsletter contains current news from the AJPO about the Ada
program, Ada conference reports, and articles on projects using Ada. If you would like
to receive the newsletter, call the AdalC and request a free subscription.

Ada Slices
MITRE Corporation
1120 NASA Road 1
Houston, TX 77057
(713) 335-8541

This newsletter is published by MITRE, an FFRDC. 1t is a product of the Association
for Computing Machinery (ACM) Special Interest Group on Ada’s (SIGAda’s)
Performance Issues Working Group (PIWG) and is available free of charge.

Ada Software Engineering Education and Training Public Report
Ada Software Engineering Education and Training Team
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
Attn.: Resource Staff Member
(703) 845-6626

ASEET publishes a DOD ASEET Public Report annually. The report contains an update
and description of the latest efforts of the ASEET Team in identifying training and
education requirements within DOD and the methodology and materials needed to fulfill
those requirements. Copies of the report may be obtained from the AdalC.

Bridge
Eileen Forrester
Managing Editor, Bridge
Software Engineering Institute
Camnegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-6377
Internet: bridge-editor@sei.cmu.edu

This magazine reports on SEI projects and activities. To obtain a subscription, send a
written request to the editor.

A-18 B Department of the Navy




Helpful Sources

CHPPS
%456 Fourth Avenue, Suite 200
Naval Computer and Telecommunications Area Master Station, Atlantic (NCTAMS

LANT)

Norfolk, VA 23511-2199
(804) 444-8704

DSN 564-8704

CHIPS is a microcomputer magazine for mid-level users. It contains primarily product
reviews, microcomputer contract information, and articles of general interest to the
microcomputer community.

Crosstalk, The Journal of Defense Software Engineering
Software Technology Support Center
Ogden ALC/TISE
Hill AFB, UT 84056
Attn.: Customer Service
(801) 777-2237
DSN: 458-2237
FAX: (801) 777-8069
Internet: bbliss@oodis01.hill.af. mil

Crosstalk, The Journal of Defense Software Engineering, is published to help improve
the effectiveness of software used by DOD. The journal provides information about
software tools, methods, and environments for DOD software development and support
activities, contractors who develop software for the military, and vendors who produce
CASE tools for the defense market. Crosstalk frequently features articles on various
aspects of Ada, from work on Ada 9X to techniques for converting from COBOL to Ada
when reengineering management information systems. STSC distributes Crosstalk
without charge to individuals actively involved in the defense software development
process. To request to be added to the mailing list, write to the above address. To
request other reports on software development tools and other topics, call (801) 777-7703
or DSN 458-7703.

DACS Newsletter
Barbara Radzisz
Editor, DACS Newsletter
Data & Analysis Center for Software
P.O. Box 120
Utica, NY 13503
(315) 734-3696

Ada Implementation Guide . A-19




Helpful Sources

DACS Newsletter is the current awareness publication of the Data and Aralysis Center
for Software (DACS). It serves as a centralized source for current, readily available data
and information on software engineering and software technology.

Institute for Defense Analyses
Computer & Software Engineering Division
1801 North Beauregard Street
Alexandria, VA 22311
(703) 845-2000 (General)
(703) 845-2059 (References)

The institute is an FFRDC the primary sponsor of which is the Office of the Secretary
of Defense (OSD). All publications prepared by the institute are available through DTIC
or NTIS.

High Order Language Control Facility Ada-JOVIAL Newsletter
645 C-CSG/SCSL
Wright-Patterson AFB, OH 45433-5707
(513) 255-4472
DSN 785-4472
langed@ss1.sews.wpafb.af. mil

To support the DOD and Air Force standardization efforts, information is disseminated
about Ada and JOVIAL (J73), standardization and language control activities, training,
compilers, compilers and tools, development efforts, applications, and user services.

NISMC Newsletter
Ms. Alcinda Wenberg
NISMC
Building CPS
Jefferson Davis Highway
Arlington, VA 22203
(703) 602-2542

This monthly newsletter provides information on Naval Information System Management
Center (NISMC) initiatives, status of DON policy, and upcoming DON activities.

A-20 Department of the Navy




STARS Newsletter
801 North Randolph Street
Suite 400
Arlington, VA 22203
(703) 351-5300
newsletter@stars.ballston. paramax.com

The STARS newsletter contains articles covering software reuse technology, software
process technology, and software engineering environment framework technology. Itis
published twice per year and is free of charge.

A.1.4 Bulletin Boards

Ada 9X Project
Project Manager
Phillips Laboratory/VTES
3550 Aberdeen Avenue, S.E.
Kirtland AFB, NM 87117-5776
(505) 846-0461
anderson@plk.af.mil

Information can be obtained from the ADA 9X Bulletin Board by calling 1-800-
Ada-9X25 or (301) 459-8939 or by using the electronic address shown above. To access
the bulletin board by modem, use the following settings:

e Baud rate = 300, 1200, or 2400
® Parity = none
e Data bits = 8
e Stop bits = 1

AJPO Host and Ada Information Clearinghouse Bulletin Board
1211 South Fern Street
Room C107
Arlington, VA 22202
(7G3) 614-0209

The AJPO sponsors two bulietin boards that serve as a primary source for Ada
information. The gjpo host is accessible electronically on the Intenet. The AdalC
Bulletin Board (AdalC BB) is accessible by modem. Section A.2 provides details for
accessing either bulletin board. The agjpo host and the AdaIlC BB contain duplicate
information.

Ads implementation Guide A A-21




Helpful Sources

Ada Technical Support Bulletin Board Service
Navai Computer and Telecommunications Area Master Station Atlantic
(NCTAMS LANT)
Norfolk, VA
(804) 444-7841
DSN 564-7841

To access by modem, use the following settings:

Baud rate = 300, 1200, or 2400
Parity = none
Data bits = 8
Stop bits = 1

NAVCOMTELCOM sponsors an Ada Technical Support Bulletin Board System (BBS)
maintained by NCTAMS LANT.

The main purpose of the BBS is to offer microcomputer Ada programmers in the joint
Services, Government contractors, and the academic community a means for obtaining
answers to their questions about the Ada programming language. The BBS is targeted
to programmers in the AIS domain and to software creation on these systems.

The BBS offers several services:

® Ada Question and Answer Service. BBS users can ask questions about the Ada

language and extensions (e.g., pragmas) that might be included in a particular
implementation. Additionally, user code can be uploaded for evaluation. Such
evaluations can include checks for proper usage of Ada features, Ada style, and
compilation errors that will not go away.

Compiler Vendor Comment Service. BBS users can comment on DOS-based Ada
implementations. = Comments can report either problems with existing
implementations or suggest enhancements that would benefit the DOS-Ada
community. These comments will be provided to the appropriate compiler
vendors. The goal is to use this service to improve DOS-based Ada compilers.
A secondary benefit is to make potential users aware of possible problems with
particular DOS-based Ada compiler implementations.

Ada Limited Debugging Assistance. BBS users can upload small amounts of code
to be debugged. The submitted code must be limited to a few program units.

A-22 Department ofv the Navy




Helpful Sources

o AdaSAGE Question and Answer Service. Many DOS-Ada application developers
use AdaSAGE for Database Management System (DBMS) functions. This service
is for AdaSAGE users. Users will be able to ask one another questions about

AdaSAGE.

¢ AdaSAGE Comment Service. BBS users can comment on Ada application
development using AdaSAGE. Comments can either report problems with
AdaSAGE or suggest enhancements that would benefit future versions of
AdaSAGE. These comments will be collected and presented periodically at
AdaSAGE enhancement meetings. Users may also request AdaSAGE

enhancements.

e Ada Example Set. This collection of code shows Ada features. BBS users can
download the code, study it, and ask questions about it. Users also can upload

code that shows Ada features.

e News. The BBS will list Ada news, events, and interesting Ada products and their
points of contact.

The service is free and available to the public. However, the limited debugging service
is available to bona fide Government employees and their contractors.

STSC Bulletin Board System
Ogden Air Logistics Center
TISE
Hill AFB, UT 84056
(801) 774-6509
DDN: Telnet 137.241.33.1 or stscbbs.o00.aflc.af. mil

The STSC sponsors the Electronic Customer Services (ECS), which is divided into the
Bulletin Board System (BBS) and the Central Database (CDB). The purpose of ECS is
to present the latest software information and knowledge to software practitioners in the
DOD, industry, and academia.

To access the ECS by modem, use the following settings:

Baud rate = 300, 1200, 2400, or 9600
Parity = none
Data bits = 8
Stop bits = 1

Adas Implementation Guide A-23




Helpful Sources

The BBS offers information and news on a variety of software topics. The entries on the
main menu are as follows:

® Ada Information. Presents the most recent Ada information, policy, news and
trends.

o USAF Software Policy and Regulations. Abstracts applicable software policies and
regulations including POC or author, office of responsibility, address, phone
number, and latest date of publication.

o Notes. Allows users to leave a note, make a comment, or present their views to
the STSC and other BBS customers on any software subject. The STSC will then
put the notes into the appropriate BBS domain for subsequent viewing and
comment.

o Crosstalk, The Journal of Defense Software Engineering. Lists every issue of the
STSC’s journal of software engineering. Hard copies are available on request.

® DOD Corporate Information Managemert (CIM). Presents most recent
information from high-level DOD software management.

o Information Technology Policy Board (ITPB). Presents most recent information
on and activities of this CIM-sponsored board.

e Conferences, Meetings, Seminars. Contains a comprehensive calendar of software
activities sponsored by the Government, industry, academia, and international
agencies.

® Other Bulletin Board Systems. Lists BBSs sponsored by the Government, industry,
and academia.

® Other Sofiware Organizations. Lists software organizations sponsored by the
Government, industry, and academia.

‘o Software Technical Domains. Contains domains such as system simulation,
requirements tracing, design, coding, testing and integration, documentation,
project management, configuration management, quality, metrics, environments,
and databases.

o Software Engineering Topics. Includes education, goals, and logistics (softlog),
methods, metrics, processes, quality reengineering, and reuse.

A-24 Department of the Navy




- - -v

Helpful Sources

® Software News. Gives access to an electronic newspaper featuring news and
information from the software community.

® Software Periodicals and Books. Presents a list of the software periodicals,
newspapers, journals, magazines, and newsletters published by the Government,
industry, and academia.

o Software Technology Conference. Presents news about the annual Software
Technology Conference (STC) held each April in Salt Lake City, Utah.

e STSC Documents. Lists all of the documents and reports generated or sponsored
by the STSC. Hard copies will be sent on request.

® White Papers. Contains technical proposals from the software community at large.

® Upload Files to the STSC. Contains instructions on how to upload files to the
STSC.

The CDB is a repository of software tool information. It gives descriptions of tools,
addresses of vendors, and the ability to query for selected tool domains.

Cast Bulletin Board System
Air Force Cost Center
1111 Jefferson Davis Highway, Suite 403
Arlington, VA 22202
(703) 746-5840
DSN: 286-5840
Air Force Cost Bulletin Board POC: Ray Scheuring
(703) 746-5875 or 5876
1-800-344-3602

The Cost BBS provides an automated means of exchanging information, and uploading
and downloading cost models and factors. If you have models or information you would
like to have included, contact the system operator or leave a message on the bulletin
board.

To access the Cost BBS, you must have an IBM-compatible microcomputer,
communications software that allows XMODEM (checksum), XMODEM (CRC), ASCII,
YMODEM or KERMIT file transfer protocols, and a Hayes-compatible modem.
Communications settings are as follows:

Ads implementation Guide , A-25




¢ Baud rate = 1200 or 2400
® Parity = none
¢ Data bits = 8
® Stop bits = |

National Technical Information Service
5285 Port Royal Road

Springfield, VA 22161
(703) 321-8020

The NTIS Bulletin Board provides information on Computer-aided Acquisition and
Logistics Support (CALS), CIM (e.g., Technical Reference Model), and more.
Communications settings are as follows:

e Baud rate = 1200 or 2400
® Parity = none
e Data bits = 8
® Stop bits = 1

A.1.5 Repositories

Ada Software Repository
ada-sw-request@wsmr-simtel20.army. mil

The Ada Software Repository (ASR) contains Ada programs, software components, and
educational material that has been established on the Defense Data Network (DDN).
This repository has been accessible to any host computer on the DDN since 26
November 1984.

ASR is a free source of Ada programs and information. By employing the File Transfer
Protocol (ftp) program, users of DDN hosts are able to scan the directories of the
repository and transfer files to their hosts. If the files are Ada programs, they may then
compile these programs and use them as they desire. Modifying these programs may be
within their rights, and they may freely distribute these programs as they wish, subject
to the restrictions specified in the prologue of each piece of software.

All members of the Ada community are encouraged to extract information and programs
from the repository and to make contributions to it. The only restrictions that apply to
access and use of this software are presented in the Distribution and Copyright section
of the prologue associated with each piece of software.

A-28 Department of the Navy




Helpful Sources

ASR is one of several repositories located on the SIMTEL20 DDN host computer at
White Sands Missile Range, New Mexico. SIMTEL20 is owned and operated by the
Operations and Systems Integration Division of the Information Systems Command of

the U.S. Army.

ASR maintains source code from approximately 10,000 Ada programs. These programs
are maintained by the domains of Artificial Intelligence (Al), Benchmarks,
Communications, Reusable Software Components, Documentation, Graphics, Project
Management, Ada Software Development Tools, and many others. The ASR is available
through ftp and on magnetic tape, floppy disk, and CD-ROM.

An introduction to the ASR can be obtained by using the following commands on a
system that supports ftp on the DDN:

> ftp wsmr-simtel20.army.mil
when asked for login name, type in anonymous
when asked for password, type in your user-id

fip>ls —provides listing of login directory
fip> get SIMTEL20-ADA.INF —copies file to your local directory
fip > quit —returns control to UNIX
Tape copies are available from:

The DECUS Program Library

219 Boston Post Road BP02
Mariboro, MA 01752
(508) 480-3418

MS-DOS high-density diskette copies are available from:
Advanced Software Technology, Inc.
P.O. Box 937
Medford, NY 11763
(516) 289-6646

CD-ROM copies are available from:
ALDE Publishing
P.O. Box 35326
4830 West 77th Street
Minneapolis, MN 55435
(612) 835-5240
FAX: (612) 835-3401

Ada Implementation Guide A-27




Helpful Sources

An electronic mailing list exists on SIMTEL20 for those who are interested in accessing
and contributing software to the ASR. To subscribe to this mailing list, send a request

to the electronic mail address above.

Air Force Defense Software Repository System
SSC/SSB Building 856, Room 265
Maxwell AFB, Gunter Annex, AL 36114-5000
(205) 416-5857
DSN: 596-5857
FAX: (205) 416-5964

The Air Force Defense Software Repository System (AFDSRS) is a repository of Air
Force and commercial reusable software assets, including functional requirements, design
specifications, architectures, design diagrams, source code, documentation, and test
suites. AFDSRS is accessible by modem or the DDN and is linked to the Defense
Information Systems Agency (DISA) Center for Software Reuse Operations (CSRO)
library, which offers access to all DOD components.

Associate Director, MCSD
AMSEL-RD-SE-BCS-MC (C2MUG)
Fort Leavenworth, KS 66027
AUTOVON: 552-7550
FTS: 753-7550
(913) 684-7550

The C2MUG Software Catalog for mathematics and various Ada functions is available
to all echelons of the U.S. military and elements of the Federal Government. Software
components are primarily for microcomputers.

Central Archive for Reusable Defense Software Program
CARDS
1401 Country Club Road, Suite 201
Fairmont, WV 26554
(304) 363-1731
CARDS Hotline: 1-800-828-8161 or (304) 367-0421
E-mail for Hotline: hotline@cards.com (Internet)
Cards Program Sponsor: ESC/AVS, Hanscom AFB, (617) 377-9369
DSN 478-9369

The Central Archive for Reusable Defense Software (CARDS) program is a concerted

DOD effort to move advances in the techniques and technology of architecture-centered,
domain-specific software reuse into mainstream DOD software procurements. CARDS

A-~-28 Department of the Navy




Helpful Sources

is applying the latest technology to provide an implementation :ramework for reuse
libraries in domains of interest to the DOD. CARDS is currently applying the
framework to a Command Center Domain Library. CARDS is working closely with the
Portable Reusable Integrated Software Modules (PRISM) program, which is integrating
Commercial-Off-The-Shelf (COTS) and Government-Off-The-Shelf (GOTS) products to
perform 80% of the general functions of normal command center operations. The
CARDS program is currently developing several reuse handbooks.

Command, Control, Communications, and Intelligence Reusable Software System
Mr. Ron Crepeau
NRaD
271 Catalina Boulevard
San Diego, CA 92152-5000
(619) 553-3990
crepeau@nosc. mil

The Command, Control, Communications, and Intelligence Reusable Software System
(CRSS) is a repository of Navy Command and Control (C2) assets, including source and
executable code, documentation, and graphical representations. The library has been
developed under the Operations Support System (OSS) project to promote rapid
prototyping of C2 systems. Replication of the CRSS is available on magnetic media or
by modem.

Common Ada Missile Components Effort
Data and Analysis Center for Software
¢/o Kaman Sciences Corporation
P.O. Box 120
Utica, NY 13503
(315) 336-0937

Common Ada Missile Packages (CAMP) are operational flight software parts written in
Ada for tactical missiles. CAMP consist of 454 reusable Ada components. The software
is distributed on ANSI standard labeled 9-track 1600-bits-per-inch tapes. Additionally,
videotapes on Ada reuse are available, such as "Common Ada Missile
Packages—Leading the Way in Software Reuse.” This videotape provides an overview
of Ada, software reuse, and the CAMP program.

Ada Implementation Guide | A-29




Helpful Sources

Data and Analysis Center for Software
258 Genesee Street
Suite 101
Utica, NY 13502
(315) 734-3664

Although not an interactive repository, Data and Analysis Center for Software (DACS)
provides several products and services. Of importance are the following: the Ada
Compiler Evaluation System (ACES), (a set of Ada benchmarks), CAMP (a collection
of reusable Ada packages), a set of benchmarks, and a cataloging facility in addition to

various technical reports.

Defense Software Repository System
DISA/JIEO/CIM Software Reuse Program
500 North Washington Street, Second Floor
Falls Church, VA 22046
(703) 536-6900/7485

The DISA Joint Interoperability and Engineering Organization (JIEO) and CIM Software
Reuse Program (SRP) is an eclement of the DOD Sofiware Reuse Initiative under
DISA/JIEO/CIM. The DISA/JIEO/CIM mission is to provide software reuse products
and reusable software, training, and access to the Defense Software Repository Systcm
(DSRS). The SRP includes support of DOD Software Reuse Centers at the Service and
agency levels throughout DOD to coordinate software reuse efforts and maximize cross-

domain sharing.

National Aeronautics and Space Administration’s AdaNet
AdaNet
c/o MountainNet
Eastgate Plaza, 2nd Floor
P.O. Box 370
Dellslow, WV 26531-0370
(304) 296-1458
1-800-444-1458

AdaNet’s primary purpose is to increase U.S. productivity, economic growth, and
competitiveness through development of a life-cycle repository for software engineering

products, processes, interfaces, and related information services. AdaNet is sponsored
by NASA, and there is no charge for an account.

AdaNet provides the following information and services:

A-30 Department of the Navy




Helpful Sources

Access to Ada source code libraries

Bibliographic references to Ada and software engineering publications
Descriptions of public and commercial repositories of Ada software
Directories of Ada and software engineering commercial products
Electronic forums on topics such as software reuse and CALS
Listings of international Ada professional organizations

Monthly listings of relevant conferences and seminars

References to public and private Ada information services.

Navy Wide Reuse Center
Project Manager, Navy Wide Reuse Center
Washington Navy Yard
Building 196
Code N53, Room 4508
Washington, D.C. 20374
POC: Angus Faust
(202) 433-0718
nhis.navy.mil

The Navy Wide Reuse Center (NWRC), which was dedicated on 16 March 1992, will
provide a comprehensive reuse support environment for all Navy domains. The center
will serve as a repository for all Navy reusable components and provide interfaces to
other DOD and non-DOD repositories as well as information on commercially available
reusable components. NWRC uses the DSRS hosted on a DEC MicroVAX computer.
DSRS is accessible through DDN, modem dial-up, and selected Local Area Networks
(LANs). An account on the system is required and should be requested through the
above address.

Reusable Ada Products for Information Systems. Development
U.S. Army
Army Reuse Center
Fort Belvoir, VA 22060-5456
Attn.: USAISEC Stop-H10
(703) 285-9007
DSN: 356-9007

The Reusable Ada Products for Information Systems Development (RAPID) Program is
a total Ada software reuse program established at the U.S. Army Information System
Software Center (ISSC) Software Development Center, Washington (SDC-W). This
program has become the basis for the DSRS under the DISA CIM. Under this system,
a repository has been established for each Service. The NWRC serves as the repository

Ada Implementation Guide _ A-31




Helpful Sources

for all Navy reusable components and provides an interface to the central repository and
other service repositories under the DSRS.

Software Technology for Adaptable, Reliable Systems Repository
blanchard@stars. startech.com

STARS maintains a repository of Ada binding to Motif, Ada binding to Ada/Xt Windows
Intrincints, Reuse Library Framework (RLF), and many more.

Tape copies are available from:
Asset Source for Software Engineering Technology (ASSET)
2611 Cranberry Square
Bldg. 2600, Suite 2
Morgantown, WV 26505
(304) 594-1762

MS-DOS high-density diskette copies are available from:
Advanced Software Technology, Inc.
P.O. Box 937
Medford, NY 11763
(516) 758-6545

A.1.6 Conferences and Special Interest Groups

ASEET Symposium
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 825-6626

The ASEET Team Coordinator Working Group (CWG) sponsors the annual ASEET
Symposium. The symposium enables DOD personnel to learn about new education and
training methods from industry, academia, and DOD organizations.

DON Ada Users Group
DON Ada Users Group-Chair
- Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, CA 92152-5000
(619) 553-2303
FAX: (619) 553-5799

A-32 - Department of_ the Navy




Helpful Sources

The DON Ada Users Group has been chartered to provide information and support to the
DON on use of the Ada programming language and Ada-related issues associated with
software development and maintenance. Regular meetings are held in conjunction with
national conferences in the Ada community, such as those sponsored by Tri-Ada and

SIGAda.

STARS Workshop
IDA/CSED
5111 Leesburg Pike
Falls Church, VA 22041
(703) 845-3520

The STARS Joint Program Office holds workshops to publicize and disseminate
information on various contract efforts.

Software Technology Conference
Software Technology Support Center
Ogden ALC/TISE
Hill AFB, UT 84056
(801) 777-7703

The annual STC is held each April in Salt Lake City, Utah. This conference, sponsored
by the STSC and the Headquarters of each Service, is a forum for sharing technology
solutions and bringing together the DOD Government and contractor software community
to exchange ideas and information.

A.1.7 Operational Development Support Tools

Ada Language System/Navy
Naval Sea Systems Command (PMS-412)
NC-3
2531 Jefferson Davis Highway
Washington, D.C. 20362-5101
(703) 602-8204

The ALS/N is a software development environment and Run-Time Environment (RTE)
system that is being developed for the current generation of DON standard computers,
the AN/UYK-43(V), AN/UYK-44(V), and AN/AYK-14(V). ALS/N has a users’ group
and a bulletin board available upon request and target-based training available through
the project office.

Ads Implementation Guide . A-33




Helpful Sources

AdaSAGE
Department of Energy
Idaho National Engineering Laboratory (INEL)
Idaho Falls, ID
(208) 526-0656
Internet: jij@mica.inel.gov

AdaSAGE is a Government-owned development reuse tool utilized by all DOD
components. The tool consists of utilities that support user-developed interfaces, reports,
and data and their relationships. These utilities facilitate user-directed rapid prototyping.
AdaSAGE is free and is supported by a Joint Service Configuration Management Board.
Enhancements may be requested by leaving a message on the Ada Technical Support
Bulletin Board listed in A.1.4.

NAVAIR Software Engineering Environment Tool Set
Charles Koch
Code 7033
Naval Air Development Center (NADC)
Warminster, PA 18974-5000
(215) 441-2752

The Naval Air Systems Command (NAVAIR) Software Engineering Environment
(NASEE) Working Group contracted for 12 software tools for use throughout the
software life cycle. NAVAIR has made these tools a standard for its Software Support
Activities (SSAs). The NADC provides information on the NASEE Working Group and
on ways to obtain these tools.

Tool Box PC
Software Technology Support Center
Hill AFB, UT 84056
1-800-477-2449

This tool, written in Ada, is an interactive catalog application tool that has Ada and other
Government- and commercially owned software languages. This system is designed for
managers’ use. The program is available free to the public on 5%- and 3'%-inch disks.
The Air Force supports this program through the STSC.

A-34 Department of the Navy




Helpful Sources

A.2 Ada INFORMATION CLEARINGHOUSE

The latest information about Ada is available free of charge from the AJPO’s AdalC.
The AdalC makes available information on a variety of topics ranging from the use of
Ada within DOD and industry to tools and compilers for Ada developers, and from DOD
policies regarding Ada to reusable Ada software.

The AJPO sponsors the AdalC. The AJPO is responsible for informing the community
about Ada, facilitating the language's implementation in the services, and maintaining the

integrity of the language.

The telephone hot line numbers are 1-800-ADA-IC11 (232-4211) or (703) 685-1477. For
answers to your Ada questions, call the AdalC, Monday through Friday, from 8:00 a.m.

to 5:00 p.m., Eastern Time.

Informational Flyers
More than 100 different informational flyers or reports are available from the AdalC.

Flyer topics include:

Ada Validated Compilers

Ada News and Current Events

Ada Usage

AJPO’s Ada Technology Insertion Program (ATIP)
Ada 9X project

On-line sources of Ada information

Ada bibliographies

Ada Compiler Validation and Evaluation
Resources for Ada Education and Training

Ada Software, Tools, and Interfaces

Ada Regulations, Policies, and Mandates

Ada Historical Information

Standards and Available Ada Bindings Products.

These flyers are available electronically on two ATPO-sponsored computer systems: the
AJPO host computer on the Internet, and the AdaIC Bulletin Board. Paper copies of the
flyers are provided upon request.

The Validated Compilers List is one of the most frequently requested flyers. This list,
which is updated monthly, contains information on all compilers that have currently
active validation certificates.

Ads Implementation Guide _ A-35




Helpful Sources

On-Line Information
Most AdalC flyers and other publications are available on-line on the AJPO host

computer and on the AdalC Bulletin Board. These electronic sources also have other
files, such as those whose length or complexity preclude easy distribution in paper-copy
form. In addition, the AJPO provides information related to the Ada 9X project on a

dedicated bulletin board and on the AJPO host.

The AJPO Host on the Internet
For those with access to the Internet, ATPO makes a variety of Ada information available

on the AJPO host computer on the Internet. Its name is ajpo.sei.cmu.edu.

The AJPO host can be accessed by the File Transfer Program (FTP), which allows a user
to transfer files to and from a remote network host site. FTP should work for any host

on the Internet.

A sample FTP connection follows.

[your-prompt] ftp ajpo.sei.cmu.edu execute ftp from your remote site

name: anonymous login using “anonymous"”

password: guest enter password of "guest”

fip> cd public change to the "public" subdirectory

ftp> dir view a list of accessible subdirectories

ftp> cd [sub-directory] change to the subdirectory of your
choice ,

ftp> dir view a list of available files

ftp> get filel.hlp [newname.hlp]) get "filel.hlp" from ftp and copy it to

"newname.hlp” on your machine

ftp> mget filel ... fileN get multiple files from ftp and load them
onto your machine with the same names

ftp> bye logout when finished

For more information on the AJPO host, type "get README" and "get README.FTP"
after an ftp connection is made.

For those without Internet access, the AdalC Bulletin Board is available on a 24-hour
dial-up basis.

A-36 Department of the Navy




AdalC Bulletin Board -
Commercial: (703) 614-0215
AUTOVON: 224-0215

The AdalC Bulletin Board contains most of the information provided on the AJPO host
computer—plus on-line databases.

The bulletin board can be accessed by dialing one of the numbers listed above. Users
should set their telecommunications package with the following parameters:

¢ Baud rate = 300 through 9600 baud

® Data bits = 8

¢ Parity = none

® Stop bits = 1.

The first time you log on, you will be prompted to register for an account.

The [D]oors feature of this bulletin board provides users with the capability to search six
AdalC databases:

¢ The Validated Ada Compilers (VCL) [D]oor provides full text searching of the
Validated Compiler list by host and by target where different from host.

¢ The Ada Programming Tools (TOOLS) [D]oor contains information about more
than 200 Ada vendors, their more than 300 Ada products, and the hardware on
which they run.

¢ The Current Ada Articles (NEWS) [D]oor provides full text searching of AdalIC'’s
abstracts of Ada-related articles that have been published in trade and technical
journals.

¢ The Ada Bibliography (BIBS) [D]oor provides users with a comprehensive
bibliography of Ada-related publications.

® The Bibliography/Abstracts (ABS-BIB) [D]oor provides users with a bibliography
of Ada-related documents as well as an abstract for each bibliographic citation.

¢ The Ada Education (CREASE) [D]oor provides access to the AdalC’s "Catalog of
Resources for Education in Ada and Software Engineering,” Version 6.0, 1992.

Ads implementation Guide ‘ A-37




AdaSX Bulletin Board
1-800-Ada-9X25 (1-800-323-9925)
(301) 459-8939

The Ada9X Project’s electronic bulletin board is a comprehensive, one-stop source of
information concerning the Ada9X project. All of the revision requests that were
submitted to the project are available for viewing and/or downloading from the bulletin
board. In addition, most of the project reports and all of the Ada9X project
announcements are available.

The Ada9X Bulletin Board can be accessed by dialing one of the numbers listed above.
Users should set their telecommunications package with the following parameters:

Baud rate = 300 through 2400
Data bits = 8
Parity = none
Stop bits = 1

Databases

In addition to the database available for searching on the AdalC Bulletin Board, the
AdalC also maintains a database of Ada projects. The Ada Usage database was
developed to track how Government, education, and industry are using Ada in software
development efforts. Currently, there are more than 650 efforts described in the
database.

Ada Usage information can be obtained only with the voluntary cooperation of the
project. If you are currently involved in an Ada development project or if you have
completed a project using Ada, we would like to add your information to our database.

Written Inquiries
If you prefer to send a written inquiry or would like to share any Ada-related information
with us, send mail to:

Adalnformation Clearinghouse
P.O. Box 46593
Washington, D.C. 20050-6593

A2.1 Public Access to the AdaIC Bulletin Board (ada-rbbs.hlp extract)

The AdalC Bulletin Board is a publicly available source of information on the Ada
language and Ada activities. Sponsored by the AJPO and maintained by AdaIC, this
bulletin board is used to announce current events and general activities and provide a

A-38 Department of the Navy




Helpful Sources

cur-snt listing of validated Ada compilers. Access to the bulletin board requires a
computer terminal and modem or a PC and modem.

The AdalC Bulletin Board system can be accessed by dialing (703) 614-0215 or (301)
459-3865. Users should set their telecommunications package with the following

parameters:

Baud rate = 300, 1200, or 2400
Parity = none
Data bits = 8
Stop bits = 1

Currently, the following 12 directories are available:

¢ The Ada Information Directory—an alphabetical listing of all available information

files, with a contents description for each one

The Language Reference Manual Directory—the Ada Language Reference Manual
(ANSI/MIL-STD-1815A-1983) in its entirety

The Approved Ada Commentaries Directory—approved commentaries responding
to questions, problems, and/or inconsistencies and perceived inconsistencies
regarding the Ada Language Reference Manual (ANSI/MIL-STD-1815A-1983)

The Ada Language Rationale Directory—the rationale for the design of the Ada
Programming Language in its entirety

The CAIS Document Directory—CAIS documents (October 1986)
The AdalC Newsletter Directory—past AdalC newsletters

The CREASE Directory—AJPO’S Catalog of Resources for Education in Ada and
Software Engineering, Version 5.0, in its entirety

The Miscellaneous Directory—files such as those used to decompress compressed
files

Directories 9 and 10—a guidebook and reference manual, respectively, for the
evaluation and validation of Ada programming support environments

Ada impiementstion Guide A A-39




Helpful Sources

® Directory 11—the NASA-Goddard Ada Style Guide, which was proposed as the
basis for a military handbook

* Directory 12—a catalog of the ASR and the ASR User’s Handbook.

Files are available in either compressed or uncompressed (ordinary ASCII text file)
format. Most are available in both.

A.2.2 Access to Ada Information on the Defense Data Network (ada-ddn.hlp extract)
The public directory on the agjpo host computer is an official source of information on
the Ada language and Ada activities. Sponsored by AJPO and maintained by AdaIC, this
computer directory is used to announce current events and general activities and to
provide a current listing of validated Ada compilers.

This directory is available only to authorized users of the DDN. However, AdalIC also
maintains a bulletin board at (703) 614-0215 and (301) 459-3865. For information, see
the AdalC handout, "Public Access to the Ada Information Bulletin Board* (AdaIC from
G/VS1, file ADA-RBBS.HLP).

The DDN is a collection of approximately 80 different computer networks representing
DOD facilities, research centers, and academic institutions throughout the free world.
All of the networks are packet-switching systems with interconnections at various
locations. DOD controls access to the DDN. To obtain access to the DDN, it is first
necessary to have an account or access to an account on one of the several thousand host
computers that make up the system.

The following set of commands provides an example of the use of ftp to transfer a file
from the qgjpo host to a local host. The file is in the directory
public/ada-info/val-comp.hip.

> ftp ajpo.sei.cmu.edu
when asked for login name, type in anonymous
when asked for password, type in your user id

ftp>ls —provides listing of login directory

ftp> cd public —changes directory to the public directory
ftp> cd ada-info —changes directory to the ada-info directory
ftp> get val-comp.hlp —copies file to your local directory

ftp> quit —returns control to UNIX

As of 17 March 1992, directories in the public directory include acvc-current,
ada-adoption-hbk, ada-comment, ada-info, ada-lsn, ada-ui, ada9x, adanews, adastyle,
artdata, asis, cais, crease50, ev-info, infoada, kitdata, Irm, pcis, piwg, rationale, and

A—40 Department of the Navy




Helptul Sources

wbs.sw. These files correspond to those shown in Table A-1. This appendix provides
the primary Ada information files in the AdalC File Directory.

A.2.3 Info_Ada Digest
DDN users can also access the Info_Ada Digest (to send discussions to the digest, use

info_ada@ajpo.sei.cmu.edu). To request that you be added to the discussion list, use
info_ada_requests@ajpo.sei.cmu.edu. Alternatively, the same discussions are available
through USENEWS news group comp.lang.ada.

DDN users can also access the Ada_Ed Digest. To send discussions, use ada-
ed@east.pima.edu. To request that you be added to the discussion list, use ada-ed-

requests@east.pima.edu.
The Ada electronic mailing list includes the following:

® Ada announcements

¢ Open forum for discussion

¢ QOpen forum for questions

¢ Requests for information to the entire Ada community.

A.2.4 Document Reference Sources
In addition to the information available from AdalC, many documents are available from
sources described below. This information is taken from the AdalC Document Reference

List.

Government Printing Office
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402
(202) 783-3238

The Government Printing Office (GPO) distributes the Reference Manual for the Ada
Programming Language to the general public and industry for $16 a copy. Mail orders
may be sent to the above address with payment included. Telephone orders are accepted
with a VISA or Master Card number or a GPO deposit account number. For additional
information, call the number noted above.

Government Source Codes
SElI= Software Engineering Institute
AJPO = Ada Joint Program Office
WPAFB = Wright Patterson Air Force Base

Ada Implementation Guide ‘ A—41




CECOM = Communications Electronic Command
USAF = United States Air Force

A.2.5 AdaIC File Directory
The information in Table A-1 was listed in the AdalC Bulletin Board in March 1992.

It details the types of information available from AdalC.
Table A-1. AdaIC Directories

Directory Numbers and General Description of Contents*

1 Ada Information Files 8 Miscellaneous—

2 Language Reference Manual Unzipping Utilities

3 Approved Ada Commentaries 9 APSE E&V Guidebook V2.0
4 Ada Language Rationale 10 APSE E&V Reference Manual
5 CAIS Document 11 Proposed Ada Style Guide

6 AdalC Newsletter 12 ASR User's Handbook &

7 Catalog of Resources for Directory

Education (CREASE)

* To list Directory, type 1:1
For a list of all available files on the system, download director.zip

AdalC Information Files—Directory 1
This directory contains electronic copies of the flyers and other documents offered by
AdalIC. In addition, it contains electronic copies of several DOD directives relating to

the Ada programming language.

The files below are listed with the extension *.HLP". When you use the download
command, you will be prompted for the filename. If you give the filename with the
-HLP extension, you will get an ordinary ASCII text file. However, to reduce the time
required for downloading to your computer, most of the files listed below are also
available in compressed (ZIPped) format. To download a file in compressed format,
substitute .ZIP for the .HLP extension.

To view these ZIPPED files, you need an unzipping utility, which is available on this
and many other bulletin boards. (See Directory 8 and Bulletin 2.)

A-42 Department of the Navy




3405-1

3405-2

9XDDN

9XNEWS

9XORDER

ABSTRACT

ACEC

ACVC

ADA-BIB

ADA-CALR

Updated

7/18/89

7/10/89

7/09/91

2/10/92

11/05/91

12/20/91

8/15/91

4/29/91

10/15/91

1/30/92

Ada impiementation Guide

18644

7709

6144

6144

20480

61440

2048

10240

Contents

Text of 4/2/87 DOD Directive

3405.1, Computer Programming
Language Policy

Text of 3/30/87 DoD Directive
3405.2 mandating use of Ada
language in computers integral to
weapon systems

Access to Ada 9X information on
DDN

Copy of the most recent Ada 9X
Report to the Public

How to order Ada 9X documents
Abstracts of Ada-related articles

How to obtain the Ada Compiler
Evaluation Capability (ACEC),
DOD’s compiler-performance test
package

How to obtain a copy of the latest
Ada Compiler Validation Capability
(ACVC), the validation test suite

How to obtain the AJPO’S Ada
Bibliography, Volumes I, II, and IIl
(1983-1986) and description

List of upcoming conferences,
symposia, and programs on Ada




ADA-DDN

ADA-PROD

ADA-RBBS

ADA-USE

ADABOOKS

ADACPLUS

ADAIC

ADANET

ADATODAY

ADAYEST

AEO-SEO

AF-IMP89

8/06/91

8/07/91

2/06/92

3/14/91

2/10/92

12/20/91

2/06/92

3/15/91

2/06/92

2/04/92

1/14/92

7/18/89

6144

22528

6144

164839

40960

24576

14336

4096

24576

36864

4096

29081

Helpful Sources

How to access ajpo.sei.cmu.edu, the
ajpo host on the DDN

List of articles and books on Ada
costing, sizing, and productivity

How to access the AdalC Bulletin
Board at (703) 614-0215 or (301)
459-3865

Summary of the Ada Usage
Database, which lists reported Ada
projects from around the world

Books relating to the Ada
Programming Language

Summary of Ada versus C++
Business Case Analysis Report

A description of services offered by
AdalC

Text of AdaNet's Executive
Summary describing its on-line
services

On-line newsletter of current events
and developments relating to Ada

Items archived from Ada Today
(ADATODAY.HLP)

Current list of Software Executive
Officials (formerly AEO)

Text of 1/1/89 Air Force Ada
Implementation Plan

Department of the Navy




AF-INT91

AF-POLS88

AF-POL90

AI-ADA

AJPO-891

ARCHIVES

ASEETLIB

ATIP-F89

BENCHMRK

BINDINGS
CLAS-SEM

8/12/91

11/05/88

12/21/90

8/12/91

10/28/91

11/02/89

7/16/90

4/10/91

4/24/91

7/30/91

2/04/92
2/06/92

Ada Implementation Guide

2048

41809

10868

24576

6144

18341

17928

16446

18432

12288

73728
51200

Helpful Sources

Text of Air Force 1991
Interpretation of Congressional
Mandate

Text of 11/9/88 Air Force policy on
programming languages

Text of 8/7/90 Air Force policy on
programming languages

Ada and Al documents available
from DTIC and NTIS

Article announcing that SPC’s guide
would be AJPO’s suggested Ada
style guide (with ordering
information)

Items archived from Ada Yesterday
(ADAYEST.HLP) that are more
than 1 year old

Text of 7/16/90 Army Ada
Implementation Plan

Training-related materials in the
ASEET Materials Library at the
AdalC

Projects assisted by the Ada
Technology Insertion Program in
FY89 '

How to obtain various benchmark
performance test suites

Available Ada bindings

Classes and seminars relating to the
Ada language

A-45




CREASE

CREASFOR

DEF-MCCR

DOCU-REF

DOORS

EMBDSYS

FAA_ADA

GENINTRO

GLOSSARY

GRAMMAR

HISTADA

11/27/91

3/04/83

12/05/91

7/09/91

9/09/91

11/07/89

10/10/91

8/11/90

10/04/89

11/26/91

2048

4795

20480

6144

34816

6207

2048

47056

37569

26624

Helptul Sources

How to obtain AJPO's April 1988
CREASE Version 5.0

Ada Education Survey form for
CREASE Ver. 6.0

Text of 3/4/83 DOD guidelines for
acquiring computer resources
(defines mission-critical computer
resources)

List of Ada-related documents
available through DTIC/NTIS and
information on how to obtain them

AdalC Databases Available, On-line
Ada Products and Tools, and Ada
Pragma Support

Abstracts of documents and articles
on Ada and embedded systems

Text of 10/20/89 FAA Action
Notice for mandating the use of Ada
in acquisition and major
modifications

Cover letter to accompany General
Information Packet

Ada-related terms and their
meanings

"A LALR(1) Grammar for ANSI
Ada" by Gerry Fisher and Phillipe
Charles, 1983

"The History of Ada"—March 1984
article by Robert DaCosta

Department of the Navy




IMP- "JIDE

ISO-STAT

LADY-LOV

MAIL_DDN

MANDAT90

MARIMPS88

NATO-ADA

NAVIPLY]

OODBIB

REALTIME

11/26/91

11/26/91

11/25/91

11/26/91

8/20/91

1/28/92

3/09/88

11/26/91

11/26/91

9/05/91

6/19/91

Ada Implementation Guide

2048

10240

10240

51200

6144

32563

2048

20480

34816

40960

Helpful Sources

How to obtain the Ada Compiler
Validation Capability Implementers’
Guide (1986)

Background information on the
ISO’s acceptance of Ada as an
international standard

Article on life of Ada Lovelace by
Carol L. James and Duncan E.
Morrill with note on the naming of
the Ada language '

How to obtain the Ada Language
Reference Manual, ANSI/
MIL-STD-1815A 1983

A list of UNIX public-access sites
that can be used to send E-mail to
hosts on the DDN

Text of the Congressional Ada
mandate—plus some background

Text of 9 Jan 1988 Marine Corps
Ada Implementation Plan

Text of 1985 AJPO announcement of
NATO’s adoption of Ada as a
common High Order Language
(HOL) in military systems

Interim Department of the Navy
Policy on Ada, 24 Jun 1991

List of articles and documents on
Ada and Object-Oriented Design
(OO0D)

List of publications on Ada used in
real time jobs

A-47




REPOSTRY

REUSCODE

REUSEPUB

SERIALS

SUCCESS

TNG-TAPE

TRADEMRK

VAL-COMP

VAL-DOC

VAL-NOV

11/26/91

2/06/92

9/16/91

11/26/91

11/05/91

10/17/91

11/25/91

4/23/91

2/05/92

7/03/91

12/01/90

14336

16384

24576

12288

2048

34816

20480

6144

123280

2048

145846

Helpful Sources

How to obtain programs and tools
from the Ada Software Repository
on SIMTEL20

Sources of Ada source code,
reusable components, and software
repositories

List of publications relating to the
reuse of Ada source code

List of serial pubiications that
feature information on the Ada
language and the Ada community

Ordering information and order form
to order version 2 of Ada Quality
and Style

Reprint of article from Military &
Aerospace Electronics

Description and ordering information
for a 19-tape series of Ada training
videotapes

Text of 1987 AJPO announcement
that Ada trademark is replaced by
certification mark

List of the currently validated Ada
compilers

Instructions on how to obtain the
Ada Compiler Validation Procedures

List of validated Ada compilers as of
Nov 90—kept for information

purposes

Department ofv the Navy




Helpful Sources

VAL-PROC 9/19/90 55320 Text of the Ada Compiler Validation
Procedures, Version 2.1, August
1990

VALCOVER 4/16/91 2048 Cover letter to accompany
Validation packet

VALFACIL 12/04/91 2048 List of Ada Validation Facilities
(AVFs) performing Ada Compiler
Validation Capability tests

VSR-DOCU 7/03/91 24576 List of Validation summary Reports
(VSRs)—results from testing of
compilers—and how to order info.

from DTIC/NTIS

WITHDRWN 8/05/91 8192 Tests that have been withdrawn from
the validation test suite, ACVC 1.11

X-SURVEY 11/01/91 12288 X/Ada binding user questionnaire of
the X/Ada Study Team at GHG

i
i
]
i
]
]
i
]
i
] Corporaton
i
i
i
i
1
i
1
]
]

Ada Implementation Guide A-49




HELPFUL GOVERNMENT SOURCES MATRIX

Ada AND C+ + A17

Ada SLICES A-18

Ada SOFTWARE A2 X

REPOSITORY

Ada TECH B-BOARD A2 X X

Ada VALIDATION OFFICB A3 X X

Ade9X PROJECT A2 X p

AdalC A3 X X X X

AdaSAGE A-10 X X X

AJPO A2 b ¢ X X b ¢

ALS/N A8 X X X
tsssr A9 p 4

CAIS A-1l X X X

CRSS A2

DACS A-19 X

DON Ada A4 b4 X X

REPRESENTATIVE

DON Ada USERS GROUP AR X X X p
{ NAsEE PoC A4 x X

NATIONAL AUDIOVISUAL A-13 X

CENTER

NATIONAL TECH. INFO. A-16

SERVICE

NAVCOMTELCOM Ada AS ) ¢ X X

REP.

NAVY WIDE REUSE A3l X

CENTER

RAPID A31 X

SE1 A6 X X

SPAWAR 224-1 A4 X

STARS AT X

STNDS DOCS ORDER DESK | A-16 b 4

U.S.ARMY ENG. COLLEGE | A-1§ X

USMC Ads REP. AS X X




Helpful Sources

A3 OTHER SOURCES

The information on commercial and nonprofit organizations cited below is provided to
help the DON Program Manager become knowledgeable about Ada-related issues. These
sources are not endorsed by the DON. They are provided to augment the list of
Government sources in Section A.1 and to he!~ Program Managers become familiar with
the wide array of available sources.

Other sources (e.g., organizations, training, publications, tools) to be considered for
inclusion in future editions of the Ada Implementation Guide should be sent to the

following address:

Commander

Space and Naval Warfare Systems Command
SPAWAR 2241 (CDR M. Romeo)

2451 Crystal Drive

Washington, D.C. 20363-5100

AJ3.1 Training

AdaWorks
261 Hamilton Avenue
Suite 320E
Palo Alto, CA 94301
Attn.: Richard Riehle
(415) 328-1815
FAX: (415) 328-1112
Intemnet: riehler@ajpo.sei.cmu.edu

AdaWorks trains DOD personnel in all aspects of Ada software development. Courses
range from introductory through advanced Ada and include material tailored to the
special needs of Management Information Systems (MIS) and/or COBOL programmers
and analysts, scientific and embedded systems developers, and experienced software
engineers. AdaWorks also provides Ada and software engineering training by giving
project experience through a mentoring process.

Alsys
5959 Comerstone Court West

San Diego, CA 92121
(619) 457-2700

Alsys has been a major Ada compiler vendor for the last 9 years. It has developed a set
of training courses tailored to the installation and use of its compiler technology.

Ads Implementation Guide A-51




EVB Software Engineering, Inc.
5303 Spectrum Drive
Frederick, MD 21701
Attn.: Jennifer Jaynes Lott
(301) 695-6960
FAX: (301) 695-7734

EVBpmvidasevenleoumincludinz,butnotﬁmiﬁedm,AdaPmmminx. OOD and
requirement analysis, XWindows, and software reuse in Ada and software development.

Fastrak Training Inc.
Quarry Park Place
9175 Guilford Road
Suite 300
Columbia, MD 21046-1802
(301) 924-0050

Fastrak presents both on-site and public courses in software engineering, object-oriented
technology, and the Ada language.

Reifer Consultants Inc.
Marketing Manager
Reifer Consultants Inc.
P.O. Box 4046
Torrance, CA 90510
(310) 373-8728
FAX: (310) 373-9845

Reifer Consultants Inc., founded in August 1980, focuses primarily on consulting in Ada
transition metrics, risk analysis, and cost estimating. They market a software sizing
model and an Ada costing package. Training for these packages is provided through
public and on-site seminars.

Texel Company
‘Victoria Plaza, Building 4, no. 9
615 Hope Road
Eaton, NJ 07724
(201) 992-0232

Texel specializes in Ada education and training consulting, Independent Validation and
Verification (IV&YV), and application development.

A-52 Department of'tho Navy




\

Helpful Sources
Universities and Colleges (Civilian)

The following universities and colleges are currently teaching Ada as the first language
to their entering majors (Feldman, 92):

Allan Hancock College, California

Birmingham Southern College, Alabama

California State University, Long Beach, California
California State University, Northridge, California
California Polytechnic State University, San Luis Obispo, California
Cypress College, California

Embry-Riddle Aeronautical University, Florida
Florida Institute of Technology, Florida

Fayetteville State University, North Carolina

The George Washington University, Washington, D.C.
Indiana-Purdue University, Ft. Wayne, Indiana
LeMoyne College, New York

Marion County Technical Center, West Virginia
Marshall University, West Virginia

Muskingum College, Ohio

Norwich University, Vermont

Oklahoma City University, Oklahoma

Otterbein College, Ohio

Saint Mary College, Kansas

Sam Houston State University, Texas

San Diego Mesa College, California

Southern Arkansas University, Arkansas

State University of New York at Plattsburgh, New York
Stockton State College, New Jersey

University of Dayton, Ohio

University of New Orleans, Louisiana

University of South Dakota, South Dakota

University of South Florida, Florida

University of Washington, Washington

West Virginia University, West Virginia

The following universities and colleges first introduce Ada in their CS2 or Data
Structures courses (Feldman, 92):

Briar Cliff College, Iowa

California Polytechnic State University, Pomona, California
California State University, Fullerton, California

Ada implementation Guide A-53




College of West Virginia, Beckley, West Virginia
Daniel Webster College, New Hampshire
Florida International University, Florida
Gallaudet University, Washington, D.C.
Georgia State University, Georgia

Indiana University, New Albany, Indiana
Lenoir Rhyne College, North Carolina

Mesa State College, Colorado

Monterey Peninsula College, California
Murray State University, Kentucky

National University, California

Northern Arizona University, Arizona
Northern Kentucky University, Kentucky
Northeast Missouri University, Missouri
Oglethorpe University, Georgia

Ohio University, Athens, Ohio

Pennsylvania State University, Harrisburg, Pennsylvania
Portland State University, Oregon

Rose Hulman Institute of Technology, Indiana
Southwest Baptist College, Missouri
Shippensburg University, Pennsylvania

United States Air Force Academy, Colorado
University of Alaska, Fairbanks, Alaska
University of Missouri, Columbia, Missouri
University of Richmond, Virginia

University of Scranton, Pennsylvania

Western New England College, Massachusetts

A.3.2 Publications

AdaDATA Newsletter
International Resource Development, Inc.
P.O. Box 1716
New Canaan, CT 06840
(203) 966-2525

This monthly newsletter covers market trends and commercial developments in Ada
software, services, and equipment. The cost of a subscription is $445 per year.

A-54 Department of the Navy




Ada Letters
Association for Computing Machinery, Inc.
1515 Broadway
New York, NY 10036
(212) 869-7440
Attn.: Membership Services
Internet: acmhelp@acmvm.bitnet

This bimonthly publication for the ACM SIGAda has been published since 1981. The
newsletter contains technical Ada articles as well as a calendar of Ada events. (A
subscription costs $20 per year for ACM members and $35 per year for nonmembers.
Annual ACM membership dues are $79 for nonstudents and $24 for students. It costs

$42 per year to become a SIGAda member only.)

Ada Newsletter
Raytheon Equipment Division
Tim Boutin, Editor
MS 5-2-508
Sudbury, MA 01776
(508) 440-3607

This newsletter tracks developments in the Ada language through conference reports and
provides vendor news articles and a listing of Ada events. There is no charge for this
publication.

Ada Rendezvous
Texas Instruments Incorporated
David G. Struble
Software Engineering Department
MS 8489
P.O. Box 869305
Plano, TX 75086
(214) 575-5346

Ada Rendezvous is a free annual publication. Articles span multiple areas of interest,
including results of Ada compiler evaluations for embedded targets, review of Ada tools,
and technical information contributed by Ada developers. Such articles provide guidance
to application programmers on how to use Ada with specific hardware architectures and
microprocessor designs. Ada Rendezvous also addresses evolving Government and DOD
issues that affect existing and proposed contracts with Ada requirements.

Ads Iimplementation Guide _ A-55




Helpful Sources

Ada Strategies
Ralph E. Crafts, Editor and Publisher

Route 2, Box 713

Harpers Ferry, WV 25425
(304) 725-6542

This monthly newsletter covers Ada business strategies and contract-evaluation
guidelines. It provides information on Ada policy and trends and on Congressional and
funding issues as well as insight concerning current legislation. The annual cost is $100

for Government subscribers.

CAUWG Report
Alsys, Inc.
67 South Bedford Street
Burlington, MA 01803-5152
(617) 270-0030

This newsletter for members of ACM SIGAda’s Commercial Ada Users Working Group
(CAUWG) contains news and comments. It is available to the public at no charge.

FRAWG Newsletter
Martin Marietta Aerospace
MS L0420
P.O. Box 179
Denver, CO 80201
(303) 971-6731

This newsletter is a publication of the Front Range Ada Working Group (FRAWG).

There is no charge for this publication.

Software Engineering Notes
Association of Computing Machinery, Inc.
1515 Broadway
New York City, NY 10036
(212) 869-7440
acmhelp@acmvm.bitnet

A-56 Department of the Navy




Helpful Sources

This quarterly is an informal publication of the ACM Special Interest Group on Software
Engineering (SIGSOFT), which is concerned with the design and development of high-
quality software. (A subscription costs $16 per year for ACM members and $38 for
affiliate nonmembers. Annual ACM membership dues are $75 for nonstudents and $22
for students.)

SPC Quarterly
SPC Building
2214 Rock Hill Road
Herndon, VA 22070
(703) 742-8877

The SPC Quarterly is published by the Software Productivity Consortium (SPC) for
unlimited distribution to its member companies, as well as to commercial, government,
and academic organizations. SPC helps its member companies to develop the processes,
methods, tools, and services needed to significantly improve the design and
implementation of high-quality, software-intensive systems. Its methods seek to make
the Ada software developer more productive. Use of these inethods helps bridge the gap
between well-established software engineering principles and the actual practice of
programming in Ada. There is no charge for this publication.

A.3.3 Repositories

COSMIC, University of Georgia
382 East Broad Street
Athens, GA 30602
(706) 542-3265
FAX: (706) 542-4807

COSMIC distributes NASA-developed software including string, numerical, service, and
linear algebra subprograms. Many are oriented to avionics applications. Source code
is provided with the software purchase, and a free brochure is available.

EVB Software Engineering, Inc.
5303 Spectrum Drive
Frederick, MD 21701
1-800-877-1815
(301) 695-6969
FAX: (301) 695-7734

Generic Reusable Ada Components for Engineering (GRACE™) is a library of 275 Ada
software components based on commonly used data structures such as strings, trees, and

Ada Implementation Guide - ‘ A-57




Helpful Sources

graphs. Each component includes complete design documentation, source code, and at
least one test program. GRACE is completely portable. Its only requirement is a
validated Ada compiler. Free samples are available.

IWG Corp.
1940 Fifth Avenue
Suite 200
San Diego, CA 92101
(619) 531-0092
FAX: (619) 531-0095

Proplink is an Ada program for analysis of communication link propagation paths from
Extremely Low Frequency (ELF) to Extremely High Frequency (EHF) using fast-running
models.

MassTech, Inc.
3108 Hillsboro Road
Huntsville, AL 35805
(205) 539-8360
FAX: (205) 533-6730

Math Pack contains over 320 Ada mathematical subprograms in 19 reusable generic Ada
packages. It includes linear algebra, linear system solutions, integration, differential
equations, eigensystems, interpolation, probability functions, Fourier transforms, and
transcendental functions. Purchase includes source code, documentation, on-line help,

and telephone support.

Rockwell International Corporation
Manager, Software Engineering Process Group
M/S 460-220
3200 East Renner Road
Richardson, TX 75082-2402
(214) 705-0000

Rockwell International Corporation maintains a database server that contains the Ada
tools set. It also maintains two libraries. One contains the implementor’s tools and the

other is a library of implemented software.

Wizard Software
2171 South Parfet Court
Lakewood, CO 80227
(303) 986-2405

A-58 Department of the Nivy




Helpful Sources

Booch components feature data types and tools for sorting, searching, and character
matching. Each abstraction has multiple implementations and follows OOD. Source
code is provided. A version in C++ is also available. These products are zlso
marketed in Europe and Japan.

A.3.4 Conferences and Special Interest Groups

SIGAda
Mr. Mark Gerhardt
ESL, Inc. MS GI1
495 Java Drive
Sunnyvale, CA 94088-3510
(408) 752-2459
(408) 738-2888 (switchboard)

SIGAda is a professional society dedicated to the dissemination of information about all
aspects of the Ada programming language, including standardization, implementation,
usage, policy, management, and education. It sponsors meetings several times a year
and also publishes a bimonthly newsletter, Ada Lerters. Originally known as AdaTEC,
SIGAda was established under the auspices of ACM in 1981. In addition to the national
SIGAda organization, there are approximately 50 chartered local SIGAda chapters. Most
of these local chapters hold technical meetings on a monthly basis. The point of contact
for each local chapter is published in Ada Lerters. The Washington, D.C., chapter of
SIGAda holds an annual symposium on Ada.

Tri-Ada Conference
Danieli & O’Keefe Associates, Inc.
Chiswick Park
490 Boston Post Road
Sudbury, MA 01776
(508) 443-3330
1-800-833-7555 (in the United States and Canada only)
FAX: (508) 443-4715

Tri-Ada, SIGAda’s major annual conference and exposition, combines the availability of
lectures about the technology and management of the latest developments in the Ada
community with in-depth presentations on project experience. The conference offers
tutorials, birds-of-a-feather sessions, and the opportunity to see the Ada products and
services available in the marketplace. In addition, information gathered in the coffee
klatches and informal gatherings, which always occur at these meetings, is not obtainable

Ada Implementation Guide ‘ A-59




Helpful Sources

in any other way. Tri-Ada presents a unique opportunity to be immersed in the
happenings in the world of Ada so that organizations can become or continue to be at the
forefront of Ada understanding and use.

Washington Ada Symposium
Washington, D.C. SIGAda

(301) 286-7631
Ed Seidewitz

At the Washington Ada Symposium (WAdaS), information is presented on software
engineering dealing with commercial industry, Government, military, scientific,
academia, weapons, and administration with regard to Ada.

A.3.§ Operational Development Support Tools

ObjectMaker
Mark V Systems Limited
16400 Ventura Boulevard, Suite 303
Encino, CA 91436
(818) 995-7671

ObjectMaker (formerly Adagen) is a CASE tool that supports object-oriented
diagramming methods for requirements analysis and top-level and detailed design. User-
interface and diagram types are tailorable. Optional language modules automatically
generate compilable code (C, C+ +, or Ada) from detailed deslgn diagrams and support
reverse engineering. The language module reverse engineering toolset takes legal code
(C, C++, or Ada) back to muluple-level nested, and detailed design-level diagrams.

This is powerful for reuse and reengineering as well as documenting as-built code and
component libraries. Older methods supported include data flow diagrams, real-time
extensions, entity relationship, state transition, and structure charts. ObjectMaker is
available on Digital Equipment Corporation, Sun, Apollo, Hewlett-Packard, MIPS, and
Data General Aviion workstations as well as on Macintoshes and IBM PCs.

EVB Software Engineering, Inc.
5303 Spectrum Drive
Frederick, MD 21701
Attn.: Jennifer Jaynes Lott
(301) 695-6960
FAX: (301) 695-7734

GRAMMI is an Ada user interface toolkit that supports the development of Ada
Graphical User Interfaces (GUIs) using the XWindows system. GRAMMI supports the

A-60 Department of the Navy




Helpful Sources

rapid prototyping and evolutionary development of Ada user interface software with an
integrated set of tools that helps users to interactively build screens and generate the
resulting Ada code. GRAMMI User Interfaces are designed to support the full features
of Ada programs, including Ada tasking and exception handling.

HERAGRAPH is a two- or three-dimensional graphics application framework that
enables the development of high-performance, interactive graphics applications. Use of
HERAGRAPH's reusable graphical objects, Motif style user interface components, and
application framework frees users to concentrate on developing the functionality of their
applications. Written in Ada, HERAGRAPH provides an industrial-strength solution for
the development of today’s modern and complex graphics applications on both DOS and
UNIX/XWindows platforms. HERAGRAPH has been used successfully in a variety of
interactive, high-performance graphics applications. Domains include Geographic
Information Systems (GISs), Range Control Applications, Railway and Transportation
Control systems, Interactive Graphical Database Editor applications, Graphical
Simulation Systems, and Graphical Training Systems.

REUSE LIBRARY TOOLSET (RLT) is an integrated set of tools that supports the
definition, population, and searching of a software reuse library. Software components
in RLT are classified using a faceted/attribute classification schema. Defining and
populating a reuse library with RLT is performed entirely through a point-and-click GUI.
The search and retrieval screens are automatically generated. There are no cryptic
commands to learn or files to edit. RLT can be used to maintain large repositories of
reusable software, yet it is easy enough for individual engineers to organize their own
personalized libraries.

EVB Object-Oriented Development Method/CASE Tool Support. This tool is supported
by Paradigm Plus by ProtoSoft. Paradigm Plus is a configurable CASE tool that uses
the object-oriented model to provide support to a wide range of software engineering
activities throughout the software life cycle. The tool is in use in more than 200
installations world wide. On the EVB edition of Paradigm Plus, EVB provides all
customer support for the product. Questions about methodologies are answered directly
by the source, assuring you of accurate answers at all times. This tool provides all the
graphical notations and rules necessary to develop Ada systems using the EVB object-
oriented approach.

Ada Implemertation Guide A-61




Helpful Sources

i
g
S
m
a




Appendix B
Department of the Navy Standards, Policies and

Procedures

This appendix provides a list of DOD/DON software policies in the following categories:

DOD Directives, Instructions, and Standards
DON Policies including:
Secretary of the Navy Instructions
Naval Operations Instructions
Marine Corps Orders
Naval Air Systems Command Instructions
Naval Sea Systems Command Instructions
Space and Naval Warfare Systems Command Instructions
AV Documents
Military Standards

Ada Implementation Guide B—1




1'000S aqQoa

_.ﬁ_oaaoo& uopsmbos
) UM PIIRII08SE SIUNWNIOP U PuUl PUe ‘SIUBWINIOP
uopisnbos ‘sjuawnoop suswasmbal -.N.m.-ﬁ.é sapiaosd
pue SaynRUIPs W-T' *JUo}sIIW UOHRIUIWINCOP
Egn_ﬁ_ puv ‘sapijande gyg-aad ‘siujod

UOISIOIP JUCISIHIW 3y JO UOISSNISIP PRIIIRP YBnoays 10005

aaoqg 03 duepns wusuwaiddns Bv_aoL uopOnIcY) SIYL

1663 €

saumpadoig
pue sapdjod wawalsuriy
uopsimboy asudpQq

T'000s 10OA

*POSSAIPPR OS[¥ AV SMIJAI
senpawio) gvd Pu® (AVQ) psvog uonisimboy x.ﬂwm
Y} 0) FARVIR SUNPIV0LJ "PAQUISIP Are ‘AB3jeLs oy
pajojin ‘sjusuissasse Apiqeplogye ‘siujod :ogov 08D
pue ‘saseyd uopsnbor ‘saandnus uopeziueiio uopjsy

pautjweans Sunuaaol sapyjod 'apHIRAC spRWAIMbas
Kioynyms uaym 3daoxas ‘sweaBoad uopsmboe asuagep soflvw-uou
pue Jofew SuiSeuvwt 03 aaneas suopdudsap Limqisuodsas
pue ‘suopiuyap ‘sainpadasd ‘sapyjod sapiaoad aapdaup sy

16 @2 €T

uopsiboy asuajeq

1'000s aaoda

LOviLsav

awva

F1LIL

HIEWNNN

€6 12qUIBAON S

SHIOI'TOd FAVMIIOS NOA/aod




‘TOgI8
aaoaq 4q ...Smu._
(951Y) swaisds
UORBULIOJU] PRRWIOINY
-3jqeyidde saBuoj oN g8um{ oz | jo wawaSeuepy L3 1'oz6. aaoa
PRRUOD A} pU ‘(MOS) .anwwhh_ zen_% lu_nu
. M JO 3 915 MY ‘S| 8N
Penuod o4 sagidde L ‘swaisds aremyos jo uoddns weiBoig
pue ...!.Eo_!uv\:o_.!-ﬁ- uopeydde Supmp wuSosd Ayrend) aremyos wass
T000S 1GOa Aypenb azemyjos v 10§ suswasnbas saysyquIse prvpuns sy g8idvez | osuapq piwpums Lmpw 891z-als-aoa
sandwod Bups (D) Iup) aremyos mndwios pue Supos
‘sspparpe uljeep Iﬂuu\m...._s__»m. ‘sisAoue ..5..!...“
auemyos ‘uSisap pue sisdeun syuRwaumbas waeds
:pessaippe osfe ase s¥doy dypeds asopy poddns vogsuen
pue quawaBeunur uopeMSyuco asemios ‘sucyeniEAd
pnpoid asemyos Bupsay uopeyjenb [euioy BupseuSus
pue wawalvuwnw wawdoppaap 08 "Jﬂaﬂv ose
ase sjuawasmbes Supmopiog ayy eusy SupseuiSug
‘V667-Q1S“TIN YiMm uopdunfuco uj 3sn 30 papuajuj
s} paepunIs sj ‘auidofasap waefs [woy Jof (TYAD)
“YUP 960 QIS IIN WS w1 sivewanbay weg PN Ay pus (SMOS) ROM JO
SUANKG [MPEQU0D ‘(S1DSD) swa] UoRenSYUaD aremyos
Bndwo) jo wawdopaap apy 0y aapwRL 2ouepms £13)50 Os[e judwdopaaaq
Y _‘sussisds aremyos jo uoddng pus 4uswidopasp ‘uopsnboe aremyog wasis
T000S 1G0a Suunp peyjdde aq oy syuswasnbas saysquiee paepums s 88 Q6T | wsuajeq piepuwnig LI v912-als-aoa
v LOviisav aiva TLIL WIAWNN

'-l'llll"ill.‘l'l"
| N .




"(16D) Jo souvzuSoo sy apum (s5]) swRAs

e 10 fmmbers o et et P

UORSWIIOJU] JSUJ(] ) SIYSHGEIS UORONISU] SIYL wBror UOREWLIC)U] U] 10008 13O

‘saanpacosd
vopmuawadui] pus * sis{euy 1991, ‘uwy] 9] ‘sjenuna
VUTERURN pus sandwo) ‘see) pug/saen
RN Puv JXMYOS ng/waisks oy JOj SUOR
“ad) wopduseaq e suswmdop Supmorio; ays Jof SPISpURS UOPWUINON(]
yup o0 (1) ReeumaBeavyy sfoky 471 10 UCRAL _..Eeu“m_%.ua
969 QISTIN 95 | 30j UORBWMINOOP ¥l JO uojsiA UoR I oy
pue wawdopaap a3 J0j 8_._13-“‘ Ml_u»W% piepunis spy ], 88 YO 1€ aoa pepusis Lennw vSseaL-als-aoa
sampavold

feacuddy auocysaiy

. -Eu-a 333“ ...!"_ows.-z
T LD A1 (s]V) swawis

aaoda 4a vnluuz -sqeyidde sa8uof onN 06 %N £ UORPULIOJU] paiswioIny ToTeL 1aoa

N v e IOVULISaV aiva TLLLL WIAWNN




welqns pue 5%....35..&%‘5?&%%_5 _&u.o.:.ss.n
PU® majA 3y J0j saunpadasd saysyiqeIse uoRONISY} SILL €6 uef 31 UOHBULIOJU] PajewIoINY cozie Igoa

-
4

swaisis
UORVULIOJU] PRIRWIOINY

"
§§
Ea

‘1026, AAOQ sovday b@

10008 3AOA | sumpacosd pue ‘spinqisuodsas ¢ c6ue( ¥l | jo wawaSeuwyy apAOy1y 1'ozis aaod
afenSum
SupnuweiSosd ssndwoo vowwod gy A._Omg £>104 a8enSuw)
10008 AGOA Y14 aoqg asuis ay se yqy sysiiqnes .a_u.:...._ sy 8dvy SupwuresBorg sanduro) 1'sove 1aoa
- LOVILISaV awva TLLLL WANNN

l-.l"'l""l'll""ﬁ



"YT000S ISNIAVND3S
.—w__!wo.au atqeandde s28uof o ggadv ¢1 £>04 voppmboy V90IZr ISNIAVNDAS

‘YT 0005 AVNDAS
pogeouT) -s1qeaidde sa8uof oN Bmzl »0) 0 uSisng TE 00Ty ISNIAVNDES

‘suoispep WawRacsdury woddns 0y pasnbes
spsAjeun WO UoLduny pasnbas sy sauyap pue sjejeue
es300ud 305 (00} payswicine (43q[) aSenSuvy uopuyeq wawaacsdur]
1'0008 GAOA wasds paresSaw] ayy jo asn a sareuSisap uopdnusuy SPYL 9630014 [euoROuUN ysq 1’0208 KJOa

SLNBIINOOMNOLLINELENS
oomeou: IOVHISAV 1LvVa TLLLL YAIWNN




aremyog

._ooaaﬁou_._"a:m neq

"VZ0005 ISNIAVNDES TU2HUYDRL, JO JuauRTerEW
panRous) -3yqeaqidde sa8uo] oN 88 ue{ 67 puv uopysinboy 6017y ISNIAVNOIS

sewmbes £AvN ([ymy 01 (SIGN) sway [wiuawdojaaapuou

"VZ 000§ ISNIAVNDES Jo asn 3y ySnonp uopisinboe feparew aapday atowoid o [epaep AaeN

Aq peqraouw) | sappiqisuodsas suSisse puw sopjjod saysiqusa uciPnLsuy sy g uef9] jo uopsinboy aapdeyg VZ'0ITr ISNIAVNDIS
SANBIINCONOLLIN
comCLINLIS LDViIsaV aLva TLLLL YIEWNNN




L

$aINpadosd

-uoysmbos wwiBosg uopsmboy
T000S 1aod asuajep 10§ saunpecosd NOQ siuawaidury uoponIsuy SiyL w%6>2aé sofepy-uop pue Jofey VZ000S ISNIAVND3S

‘YT 0005 LSNIAVNDES swesBoig uopysmboy
pofaoueS -aquoyidde sauo oN ggdas 91 solepy-uoN pus sofepy D1'0005 ISNIAVNDIS

"V 0005 ISNIAVNDAS wesBorg
Aq pagraoun) “9quyidde sa8uoq oN B9 SupseuiBug anjes NOG HT'8S8¥ LSNIAVNOIS

s LOVHISaV aiva TLLLL WEEWNON




YIS ISNIAVYNOES
dU1£7S ISNIAVND3S
¥ 0ETS ISNIAVNDAS

‘ssauBoud uy sy 3§ Jo uoisjal v “Supuuerd wesBSosd
10 sapiiqisuodsas pus sapyjod sapiaasd uoponnsuy sy,

S8POIL

Sujuueyg wesBosg
$32UN053Yy UOfIVULIOJU]

V6'0€TS ISNIAVNDIS

20N \bdat M08 %

66V-ALLS- 1IN
198-dl1s-aoa
188-A1S"1IN

925 g81-AIS 1IN
€L6-GQLS"TIIN
J881'0Z¥S LISNIAVNOIS
T6£TS LSNIAVNDIS
$917-4l1s-aod
Y911-alsaoda
JL'I€LS ISNIAVNDIS
T'0C18 iaoa

1'0Z18 aaod

YT 0005 ISNIAVND3IS
0005 Ia0d

1’0005 aaoda

"papnyul 81 N-7°0005

Pu® Z°000S 1GOQ ©) X3PUI-$501> JUNUTRUSUI 2NOSA
nduiod y ‘sprepumys soejsaug spnposd asinosas ndwod
PIseq-{PIAWWIOD JO 35N Ay saziseydwa Lojjod ayy yoeoadde
swasds uado uw uo poseq saxunosas nduiod jo uopes

ay3 203 L5110d uonisnboe GO sapiacsd uopnusuy spYY,

g6 Ao ¢

sanosay sandwo)

10j $2INPIJ0IJ PUe SR04
wawaBeuey uopisinboy

VTE'00ZS ISNIAVNDIS

"VT0005 ISNIAVNDES
4q payjaoue)

"?fqeofidde 1a8uoj oN

98 JeN €

uaurdin e swaysdg
10§ (§ID :wwh_w sopsi8oy

paimaBau] jo uasweleuep
pue uopsinboy

V6£°0005 ISNIAVNOIS

JOVILSEV

aiva

21LIL

HAGWNNN




6

‘ssa00ud ayy
dAjem puv sapiqisuodsas saysiiquisy ‘sopdpund SuusauiBua
aemyos usapow pue afenSuej uSisap weiSoud paseq-epy
pue/ue jo asn pue sia(idwod epy Jo uopepijeA saum
Py 03 uonjsuvy jo [vo8 aues Suoj ayy Sutaapyoy ‘uonesydde
TOELY LSNIAVNDAS 3y JO 3L 3Jif Y1 JA0 ARDIYD-1$00 2IOW §f (3INSO[IUD
610105 aaoa | us wi pawsyp) JOH paacidde sayjoue jo asn ssajun suonesydde
AI'€ETS ISNIAVNDIS |  3ay10 [v Joj sepy aumbas pue (suopdaoxs awios itm) swaiss
v./91Z-als-aod [82RU>-UOISSIW J0j RPY JO 35N sajepusW ‘STOH PIepuers
AU 1€2S ISNIAVNDES paacudde (¢) pue ‘sjo0) asemyos paseq-epy (2) ‘asemyos
7€°002S 1SNIAVNDES (IGN) w2y} jeuawdopaspuou (1) ouassjeid jo sapio
810005 ISNIAVNDAS Sumojioj ays Buisn ‘pedusy pue sis00 apA>-ayy] jo sisAjeur uo
TS0V€Aaod |  paseq pasmnbos aq asemyos 1 saypoads 3] “T'SOFE AR £Loyiod a8en8ur
'S0V AA0d | aOa Pu® I'SO¥E aapdIq GOQ suawaidwy uopdnsuy sy L $8AON € SupwweiBorg sandwo) THELS ISNIAVNOES
‘SuWNI0P spiepunls
1'09SE ISNIAVNDES jo uopesedaid ayy 0p SUOKNLIEU} SUFEIUCO PUT pIepusss UOREUBUINIG( SWASAS
82°002S LSNIAVYNOIS aoq 3y jo uopBudWRdW] NO(] SISSTOSIP uoppnsul siyj, 6Luef ST ejeg pajewoiny qoqQ a1'€€TS ISNIAVNOIS
selaiy (s)) wasAs
*Nod uopeuniojuy Joj weiSoig
OI'1€ZS ISNIAVNDES uj s1afoud 5] Joj ureaSosd vy v saysjiquis uopOnLsu sy S8 PO 91 (VD) adueinssy Ayjend) 1'7€2S ISNIAVNDIS
S LOVALSEV aiva ALLLL WIAWNNN




S

ot

Buyynis Ul 8§ VT'6625 ISNIAVNDES YoIp ¥V "sjusuop
wwiBosd ayy Supnsoxe 1oj sapiqisuodsas feuoneziuesio

suraysfg

82002 Aaod 81 SuYRP pue Joj saulPpind pus sepjiod Yuoj s1s UORBULIOJU] paiswiony

Ts1zs iaoa ‘wesfoid Lindas S[y NOQ Y3 $3YSTGRIS? UORIAXISU] SYL 68 AON S1 AaepN a3y jo ywewpedaq T6£TS ISNIAVNDES
"NOQ UIY¥Mm $aunosas saindwiod jo uopnqinsipas

30 uopeziuNaa pus ‘Suueys quawaBeuew Liojuaauy uawaSsuep
1°0s6. 4aoa 105 saunpaoosd pue sapjjod sysiqeIsd UoRINNSU] SIYL 68dv £ saanosay sndwo) OU'8EeS ISNIAVNDIS

‘NOQ ut sadinosas . S32Jnosdy
JU'1625 ISNIAVND3S | day 20) Supoesuod o3 Supwias sapijod sasjaas uogonasuy sy 08 PO SI day ioy Supenuod d1'962s ISNIAVNDES

SLNEFENOOWNOLLIN
v o LOVULSEV aiva FLLLL WHAWAN

, .

l



111

‘YT000S JAVNO3S

£yog wawmaBeusyy

pajsue) ajqeopdde sa8uoq o 8 4LeN 11 uopen8yuod NOG TOELY ISNIAVND3S
wwSorg
MIAY JuwSeuepy !
£0vLL 1a0a "weaSoid ma1A3y NI NOQ SYSHA®ISd UORINISU] SHLL 68 VO 61 $32IN083Y UORBULIOJU] 11°0€ZS ISNIAVNDES
OL'I€ZS ISNIAVNDES ‘sSupaopy
YT 000S AVNDIS ofspaq wwiBorg sdio) os.“u pue AawpN Suponpuod
Z000s 1a0d 10j saunpacaid sapracud pue s magaaa uopismbow ayy sSunaepy uospeq wesBourg
1'000s Aaod Jo Supuppwsesss Sujpseias aoueping sapracad uoponssuy sy wm9l sdiop) supepy pue LaeN | D881°02¥S ISNIAVNDES
SANBINOOMOLLIN
CONOLLINBISN LOVilLsav aiva TLLIL YAAWNN




41

¥ VNJO
v o00s *wzk_sﬁu sjquopidde 1a8uof oN 8das uopen{eAg pue 363}, J01°096€ ISNIAVNJO

.g.gm JSNIAVNDHS J2pun suopdajes aoumosas sandwod saxnosay iandwio)
soddns o3 aouspind se sy pasdacow snpad ays pue (151S0) 40j $3Inpadosq pus P04
VIE00ZS ISNIAVNDIS | s spiepumg aoejiau] swxedg uado ayy sapjacad ayou sy ©6 LS 0T waweBvusyy uopisinbOy 007S ALONAVNDIS
68 un(Z payep 1€z
88 AON 8 piep 1£ZS
S8 PO 91 pawep 9¢7S S9¢TS
SANON AVNDIS € 4'1€26 spou) ol o
spolaid wiasdg uopeuuojul
ssauBoud uy uoisiaasy “spoalosd 105 siawaumbay
T®I8 K10a | si 405 (eacudde Supurerqo pue SuiBeuews o5 auydpsip prepuess pacsddy pue Lojjog
1'ozis aaoa ) e WOT 03 3aRw Ojjod ays sagepdn uoponasuy sy wmfol wawaleuepy 3pL-3y17 IV'IETS ISNIAVNOIS
SINBNNOONOLLIN
v LViLsaV aLva FLLLL YFEWAN




111

330% uopisinboy pue
‘WawidopA3a(d ‘Yoieasdy

‘QTy'000S LSNIAVNIO
4q pajjaoue) ayy Jopun paSeuepy
swaisdg AaeN Joj sa2unosay
Z000S 1A0Aa sanduio)) [ERHED-UOISSIN
1'000S aaod 9gdag pz | jo woawaBeuepy apPLD-a51] 82°002S ISNIAVNJO
‘UOHEN[eAT pUE }$3] pue {(gJV) aureseg weiSolg
uonisinboy “(ssdj) sspvwuwing weiolg paresSan] (vzo0)
sisdjsuy ssauaandayyg [vuonesadp puw 3500 ‘UopRIUWINIOP
swuawasnbal ‘s3jal (sgYV) spavog maazy uopsinboy
uo souepin8 sapjacig .&.88 nmz_».«zum_m Pue $3p38 AP
10§ saunpacoad uopeuawajdu) anbjun-AaeN sassaippe 000G, ssad0lg uopispboy
aoq ‘uoisiaas Suywioodn ue uj pauya Bujaq e pue 13345 ay3 uy sapjpiqisuodsay
VZ000S ISNIAVNDES uj upswal suojuod uopepu wesBoud ayy, T000S @Oa 4q pue 9[04 AVNJO
T'000S I40Q | Popassadns usaq AjSey sey voponaisu siyL °1'000S ARG !:38%_ uopisinboy puw
10005 GGOd Q0oqQ ut 2ouvpmy [eeual ayy soyydwie uoiPRISUY S £64dv 61 ‘wawdopasq ‘youvasay | ATY'000S ISNIAVNJO
‘weiSoig
a3 jJo Pnpuod Joj sapifiqisuodsas 10/puv $Yse) duBUARUIRW
J0 awuBisse ayy 1o saunpadosd pue sapyod Yim ‘paysiiqeise
e sdiysuopejas wawaeusw puv ‘SARENSUIWPE ‘pusuIIo)
‘payepdn ase poddns sy 40 waysds Supesado ay; up pesn
wawidmmbe M_Q saunpadosd aoueuajurely ‘swiay Supsoddns pus
waqehs uodeam ay; jo wed sj 1) auempaey 1334 jo Sugpuey
19y o._.\»_. ‘FOUBUNUIRN UOHEBIAY [BARN [[® JO JudwaSvuvwl wesSosg aduvuaurepy
Sujwsanod Apoyine pue JUAUNOOP djseq ) 8} UOHINIISUS SIYL 8 Aoy 92 UOHUIAY [eARN 4T 06y ISNIAVNJO
SANBNNOOMNOLLIN
qavm o IOViLSaV aLva FLLLL WWANNN

—




n

‘reacadde puv mapaas
dWNDOYD) usyd wawaleurpy 324)-9j17 seunosay sandwo)
JOJ SUIWN SURUoD osfe 3| ‘wesSoud Saunosas
swndwod v ﬁ._ ySIiquIsd SIPNPUY syl swaishs uwwu
J05 weaSoud (7D :&m__.m onsi8o] paiwsaug ue Supysjquise ssaocaug uopsinboy ayy uy
05 saanpaoasd pue £ogjod saysiiquse uopnnIsU} SPL L8 ue{ 01 | yoddng sopsiBo paywaSaug @61°000S ISNIAVNJO
swisdg auvjaepy [SARN
1R, J0) sivawainbay
WM [SARY Ainqesadosaug
9108 Payge Kpesape 1w sanss; Ayriquiadosaiuy aajosas SPISPUBS UOHEJUNIIOD)
$'069Y AAOA | o Aawp 10 ysomaues) JwaaSeunws ¥ sapiacid uoponneuy spyL 06 AsW ¥Z pus asequieq S01¥6 ISNIAVNJO
‘Tnuspy Liandes NOQ
T6ETS ISNIAYNDES M puUv AUN0S AV U0 8JUq JMRNIIXD UIKIUOD SNSOPUF wesSoig fiundeg
1'$1Z§ aaod J....ﬁuﬂ._ﬂ. sulljesw pue spI0MIBU PUB SPIARE QY |[¢ 20) Sujssadasg mng Sprwoiny
$2°002S Aaod Aandes Qv NOQ Y3 SysfIquIse uondnlsuy siyL WBinve AN ayy jo wawuedaq V1'6€ZS ISNIAVNJO
SLNBNOOMNOLLON
v LOVuLsav aiva FLLLL WHANNAN

,-ll""'-|"ll"--|




1}

‘swdisfs
gu“!t&.—zoo__!sci o Sujpuny pue wewaSeusw
a1 Sujpaeia suogepep Lfod mau sayspqnd upaImq sPEL

‘{eacsdde puv mataas (JNDTID) Weld IwewaSeusyy 9A>-3y1]
e emeBoul momnnas. s s Sumenerems g
S\L wod ¢ Supysyiquise 8w=_u£
ssa00ud spyj ‘suzaisds Luwws o5 wesSoud g7f ue dn Sujnge

Joj saanpacosd pue Lood R SIYSTGEISS UORINLSU] SIYL

‘uoddng saunosay sndwio) s
SR 6] Jo WO ‘swRishs Aamp uo sipne HY Suponpucd
s0j sampadosd pus sapijod saysHqRIed UoHINLSUY SYL

ovilsav

Sugpung pue Juewalvueyy

UeMyos [eRR], upejing sdio) sups

46¥°000S ISNIAYNJO

respaddy pue

uoddng sopsiSoy pey ug €'601¥ ISNIAVNJO




9

TYELS ISNIAVNDAS 'sdio)

TE°00ZS ISNIAVND3IS dupey ayy uy muuvé $3uN0s3Y Jaindwio) [EORUD-uolsSIN sdio)
620005 aaod 40 uoddns apf>-agy pue quawaBeurws ‘uopsmboe UM Y} U} $32IN06I)Y
T'S0ve aaod a3 Joj Aof1od saysiiquse 3| THELS B ZC00ZS LSNIAVNDES Rndwo) [$RUD-uoissiN .
1'so¥e aaod ‘62°000S ‘T¥1'SO¥E AQOQ $Hudwajdw) Japio Py 98 3 0€ Jo WwawaBeueyy VET00ZS OO

‘uawmdnba
puv [es8u jo uonemSyuoo ayy Supfjosucy pue Supuawnsop
10§ ASojopoyu >pewaisds v apiacad 0y pue sdio)

upvW ) UlEM juauRSeuew uopesnSyuod Juawssidul [enuep
03 pasmnbau saunpacasd pue Loyjod ayy sapjacad sapuo syl 68 ue(¥ | uewaSeusyy uonmnSyuoy g'0c1vd OON
‘swiasds

uoddns Supuyen sy puv swasds reoROw pRY Pereudisop

jo uauadinbe puw sweiBaid 1andwiod jo poddns JuaweSeuvw
uopwnSyuod 10 sIRIfIqisucdsal suBisse pur saunpacasd

pus saprjod saquosaid (QDW) 8piO sdio) aupepy spL LL PO L1 | wawaSeusyy uopenByuo) Toety OON

- Jha IOVIISaV aLva TLLLL YEAWNN




[

4}

UM ) U AVMYOs swneLs JaV
Supuowatdus; pue Bupinbor ‘Supenjess un...a. Bulypsnf

aremyos Waeds Jav o)
Bujuuwd 3oj saunpacoid PiePUNS SIYSHGRISS JOPIO S ¥ Ae 1€

jRuRlsusyy uopemiyuo) ¥'¥€2S OON
spafosd surasds uopwuioju; jo JuawaSvusnu spaloag
pue ‘uopyesado (dury ‘wawdopasp ayy Supuancs SWREAg UORMIICHU]
suopenSas pue A>yjod sdio) aupepy saysqRISe JapI0 ST, 28935 21 | 1305 youwaSvunyy apphy-o51 U'iezsd OON

‘sdio) supepy

P URIM $a8quIEp Jo JusuwiaSeuna pus ‘uopnuausadi
yuawmdogaasp ‘uSisep ap o) sagidde i se uopensuwIpe wep
s0j sopIqisuodsas puv uoneZIUERio A SYSIqNS JOPIO0 SIYL e88nyg | uopensupupy sseg weg

S1°0€7s OON

ppvem Lvulsay aiva HUL YWHANWNN




‘sulisds uogruniojuj [euopesado pus Suydojaaap jo yoddns uy
ABMJOs WNSAS pue JvMpary jo s A pue ‘uopesado waisds
‘wawmdoaaap swasds ssasppe sapiiqisuodsal pauSisse ay)

*$30N0eal uopeuuojuy Supioddns puw swasds uopeuLIOguy swRisds uopeuLIojuf

30 W Sis1a40 wRwaBvurw Joj sappiqusuodsas suSisse sapso sy 88 MW 9L | jo wSissano wawaSeuepy €1LZS OON
Supuueyy
‘Supuunid weaBozg ppil 205 sanfiqisuodsas wwlosg ..UEL.“:-Z

suSiese puv saapeiqo pue au_—oka".i_a-sﬂ 39pi0 Sy, 9g dag 62 $3AN0EY UOHEULIOJU] TS OON

[eRnga) j9e 3oy suoyedtiqnd Jo uopnquIsp pue Juswdopalp

a3y Aq Logjod gy 9d10) supey jo uonmuawaidusy wwfolg suPEPMY pue
ap sopm8 osw 3] “wiwSosq SUIPPMY puv sprvpumS (WD) spispung juswaSeunyy
wawaSeuvyy $0IN0Y UOHPULIOJU] ) SSHqUISD pio spyL 9g das 61 $32UN083Y UOpULIOJU] 1S OON
SAENRONOLIN LIS JOVHISAV aLva TLLIL WHAWNN

)
' G A U GhE I Uh on @) R B U G N R O o8 W em




6l

‘suvyj uoddng

sonsi8on [euopwiadg pue ‘suvy 571 ‘WINO NuswAnbay wawdnbg
§71 Jo uopnquisip 10 uoyeraedaid l0j seunioj pue Pue swasds [epNvUCRY
suoponusuj apjacid sunsopPud ‘OH puswiwo) ¢ 10 suvlg woddng
ah._szz.s_sbﬁsxursﬁi pue su sopsiSo euopesado
uoddns sopsiSoq ayy jo uopwsedasd pue y ojpAp 3 10) pue suvlj woddng sonsiBoy ]
VT 0005 ISNIAVNDES | swewasmbas pus sam ) syednwosd uoponasuy sy gzun{g | pawaBag pas AawN V1'000¥ ISNRIIVAVN

ampans JIVAVN a3 4q suvid 193 jo reacadde pus
iszzgsxeuus..?:.s&e-as& “uopIn[RAY
pue w2, 205 Aiqs [suopouny o ! Supeys su pajeusisep
318 90-UIY PUs SO-IV SIRINQISU pafosd ﬁ.ﬂs o
208 5% POURLDPI puv pautep a1¢ sa8euvpy uopismboy Jo/pue
B Pojoig ‘3010 walold wewdopasq padurApy

Y Jo sayes ) “adoos 1ol .o_.su...._...zzﬁz
uppm sapiqisuodsas SujuSisse soj pue Supuauserdui

01°096€ ISNIAVNJO 10§ 01°096€ JSNIAVNJO suoddns uoponnsus ¥ivAVN SLL 68 Lo 0¢ UOREN[UAT PUv %aL, G7096€ ISNRIIVAVN

...3...“% 10 ‘Aipey ‘% ..M.i. day ue jo .rs.sz.u
3 03 3u 98 AJHNI9S I3[0 pue ‘Bupuue]

£>uafupuoo Jﬁhumﬂ..c“. %si ‘qempacosd ‘are vo. ‘arempiey
‘SUCHPURWD ‘SUCHEUNWIWD ‘A)undes L-ﬂ&.-m ujssuppe 4q
Awmoos 4qv s0j saunpaoosd puw £pi0d saysiiqnse pio sy 1sus(z enuely Liundeg gqv 1'01ssd CON

arva FLLIL WHANNN




‘[oA3] widjsLs 50

wuodwiod RyR ¢ sisdjeue aBusyd jo adods pue saanpasoad
wowaSeuew uonwnSyuod s1aye 3 1ERP Ul paUINO

AW NPANS PRJUCO ¥ URRIM PISPURS I JO UoiSN|U]
ay 4q pasnbas suoppde dypads (VIgr-ALS-a0Q) wawds

v ue J0j. L[iqisuodsal Jo siseq A UO OM] AJ) UIBMP] Vis-ais 1N

Fouaiagip aul SRR L “VIgHAUSTIN PUY VesIaLS-0OA pue V08r-als-daod

VISr-ais-lin Jo siuawasnbay [01U0) uoRENBYUC) Y SupuswRidw] 30§ joxuo) uopwINSyuoH
v08r-ais-aod puw Supdees 105 aoueping oyeds sapjacsd uoponnisuy spylL cg dag 1 jo uopeyuawajduuy 4€°STv ISNNMIVAVN

‘PRNSUCD
aq pinoys sSuppvw asemyos uj siySu paypayy, jo asn
P $9852PPR PIYM (W)6'301-L VA PUe suopulRp sapjaoad

WPrm 1056 ¥VQ "6I1-QLS IIN PUt (SIVQD) suopemBay weq [euyR)
UORISMDOY 25u3j3 YilM 36N J0J pOpuAU} §1 3] WP uj sy8py paypapu
()6'701-, 4va | ss00id pue ‘Suemyos ‘wempavy 32400 3 “sopualy ppLy puv jo uopisiboy usuxm
1096 ¥Va | YIVAVN £q wep [efuipay uj sy 1 poyutiun jo uopisinbos ap PU® BiRq JO JWAWAINIGI] ]
W91-QIS”NIN | J0jsain sapiacad pue S\SI|qRS UORINLISU} SPLL, 6LAsN 1| 105 oupEpmD puv ofiog | @VI'00ZY ISNRIIVAVN

uoddns asemyos juswmfojdep-1sod ayy Suunp usueSeuna
uopemSByuod sassAppe 9°06ZS ISNRIIVAVN ‘1wawlordap
[eRiu; pue Eo...%_!ﬁv wxeds ySnosyy ssacosd jonuc)
uopenSyu0) 3ILMYOS A SAUYIP uopdNnsU Y] ‘suodas
169} pue sujjaseq pnpoid euy ap YSnoay ‘uswidopasp
¥daouoo up ueyg weuraBeueyy uopung ABMYO0S A Woy
PasaAaco Aeriuns e saunpacosd juswafeuvw uopemByucd
alemyos wingds ap Jo ajff (vuonesado ay puv Juswdopasp
aes-{my ySnoayy vopuyap xdaouod wioly swayy uopwsnSyuod
EMPITY O L Y A 859400 3| ‘sopinS su suwgy

ardures supslucd puw sassaooud Ay aexENyy} 03 SUVPMOY
SUJRIU0D )] ‘UMYOS puv M pIvy JIVAVN 20§ sa8uwyd
uopenSyuoo pioods pus uawaiduy ‘senjess 0y saapacosd

€L6-A1S"1IIN | 303 swawasnbas Supnpug ‘ssacoud juaweSeuvwr uopeanSyuoco [enuely udwaleuepyy
90C7S ISNNIIVAVN | a3 jo punoafiyoeq sassuayaudwioo v sapacsd uoponaneuy sy, owef1g uopenSyuod JYIVAVN OU'0ELY ISNIIIVAVN
SAMINNCONOLLINEISN
auvis LOVILSaV ava HLLIL WWANNN




1T

uoddns aja4>-31] asemyyos jeuoyyesado 104

wawnsop Supwiaac8 ayy awodaq fleys JWOIS W ‘saSeuepy
uopisinboy 0 1aloig ayy 4q jvacsdde uodn -wewdojasp
aquas-{|ny 3oy panss} () sjesodaly soj wanboy Aue

uj papnpuf 3q JW'IS 94 Uj PaqLIsp syuawasinbal ayy ey
Kioyepuwws ¢f )| “waisds uodwam a3 Jo AL ayy adwiod ayy
305 suawasnbas asemyjos jsuonesado ayy saeSPPE JNI'TS sueyd

Yl ‘ed O JUIUCO PUR JPULIC M 30§ SUORINIISU] wauBeuey apL-051
PofI®Ip %o aunsopud uy “(SJNTS) Susld E»E&ME azemyog jo uopeivdalg
PLD-0J17] ATMYOS JO OUPUNUTRUW PUB UOHEI 10 sjuawsaambay
VYT 000S ISNIAVND3S ) 20§ 9[qisucdsal SHPRJARDY SIYPUIPY UOHINIISUY SIYL 9mfi1z pue Lijiqisuodsay 6 0€ZS ISNRIIVAVN

-28unyp 1 v £q pajusumdop aq IIm swasds

YIVAVN PopiRY U} 31emyos o 03 saBuwyd upeimq al

¥ jo aiqns ayy aq Avw swakeis YIVAVN POPRY Jo wauodwiod
asemyos 3y, wewdmbe pardasoe-JIVAVN Jo suopsadsuy
PWII-2U0 pue suopwYipow jo Sujpaooas pue yuysydwodow
a1y SuRdalIp Joj WNIpPIW POZUOINE B3 §] WIRISAS

aL eyl “uRishs .mb 3ARaIIq (YR L OH JIVAVN 4 wajeds aapang

VZ000S ISNIAVNDAS | Suy san pue £ojjod ayy saquOsIp uoONSUY SIYL 06 usf 91 feuy»L JIVAVN TI'SIZS ISNRIVAVN

oo fizeo “J0IIU00 JO
UOHUUJWIP J13y) PUR SPIeZRY JO UOR 03 uojuaye
spauip weaSaud Lroyes wasds ay) ‘sanyipey pus ‘uawdinbe

‘swaedsqns ‘swaisds ioj poddns 8 ua L1ajes waishe

8798-Q1S 1IN sapiaosd YIVAVN PRM 10j s sofidde uopdnsuy weSoag
VZ 0005 ISNIAVND3S ] ﬁ&.«% uppim #sad0.d Ajayes wageds jeuso; e ioj Awyog winshs pusunuo)
T000S ISNIGOQ | *enmqisu tese puv Lgjod saysjiquise uopdnusu} YL 6 %a 01 Y [eARN O€001S ISNNIIVAVN

e v e LOviLsav aLva FLLIL YAAWNN




S'0€ZS ISNRMIVAVN 4q pasmbas
Asnojaad gNDTS M Boa_ﬁ._ dADTID L dWOTED)
suvlj ..Bﬂ.mvws.- 3LD-3j17 saunosyy sandwio)

pue (sDMYD) sdnas Suppiop secinosay senduio)) 0
siuawasnbas saysiiqeIsa 3] ‘siudwaundaid .ﬁEm»..:ro\ES%

wawdinby/waisks
uodeap

purwIwIo) swNshg Y
[SABN JO Me] S¥ S3UN0SNY
@ndwio) [eHLD-UOISSIN

VZ000S ISNIAVNDES | uodwam jo ued sv YOO jo 1uawidoppasp sy soj Affiqisuodsas jo Juawidopaag 3y (yuQ)
S0€7S ISNIIVAVN suSjsse puw ‘saunpaooad ‘Loyjod sepjaaad uopdnnsug syl 10j sampadalqd pue Lofjod 11°062s ISNIIIVAYN
*A10823%> peuopuny/
Aq yoddns aremyjos pauSisse aq 03 sapjaRoe £AuN sxsusisep sapjapdy Woddng ammajos
Anpeoypads 3] “woddns pue ‘SuopsAIpP ‘SUCHOUNS ‘Sucisspl SwIdisdg puewwo)) swdisdg
nay 03 Sujupersad sdyysuopeias Supesado pus ‘sapfiqisuodsas I}y [eARN jo uopesado
sampacoid ‘Axjod sareSinwoid pue sapiappe woddns pue Juawysiquisy a3
VT 0005 ISNIAVNDAS aremyos Joj syuswasmbar sy saysfIqNISe UORINSUY STYL €8uUn[yl |  Joj sampadaly pue ASNjod 6'0€TS ISNRIIVAVN
‘Aressaoauun sj 3 aa18e sopjape pue suopeziueSio paagye
[[® $53[UN UOKINPOXRU] 391 3102q GYIS UL JO UOHEALD
AP 0P Y] s1sul (S HIVAVN) Ui 3q 03 ANPNRS majaal
eussoj v yons sa3pnf so8suews uopysinbor Jo0 paload ayy uaym
saswyd yuouwdopaap o_g__”ﬂ“a uopepleA ayy Suunp sgyds s puswiwio) swxneig
ysfiqwise 03 ssafeunyy uopisiboy 1o Paforg $3uIp UopdNLSU} 31V [RARN Spivog majasy
SIYL ‘siuawmdop 3duvping gyDs JO 18Y] © pue PUNP a8ueyH) asemyjog saounosay
GYDS ue apjacid sansopug (sgyds) § mapaay aSumy> sandwio) [espM-uossIN
2IBMYOS JO JUNUYSTIGRISD 3Y} 10] $2PIAGIA UORONAISU] STy ], £gun{ y1 JO JudwIysHqRIsy 9'067S ISNRIIVAVN
SANININCOMNOLLIN LIS LOVILSaV aiva H1LLL HAAWNN




11

(VESAYN)
puRwIuIO) SWAKAS 935 [easN a3 jo swesSosd uoyysy
D01'096€ ISNIAVNJO 10j saunpacaud pue sapijod ayy saqusasd uoponNsuy SpEL sgudvz uopen[RAg pue 1931, QT 096€ ISNIVASAVN

pue Buposs SuiSopaied (q) pus ‘uvopwynULP; UoREINSYUC pue ‘azemyos sanduio)
(w) :j0 sasodund i05 ssagnuapy E%E_.o pue wasks quawdinbg ‘swiaisids ]
Suyuieiqo 10y sampasosd pue £Lpj0d saquosasd uoponysuy sy 6Un[ 9L | 10§ s30§IORIJ UOHEIYIIUIP] IT'0EIY ISNIVASAVN

*PoIBUIPIOOd
Apadoid aq wnu yewdinbe yons 10§ uopenSyuco

uj saSuwyd> pasodoid Aue ‘vopippe uj ‘washs uoisspu

s jo uvd se sapTPe 8....._“.1. (339) wawdinby pouspuing
WIUILIAACS Jo upew a3 139 siYL ‘Aouafe
Eﬂ:&e areudosdde ayy ySnonpy payioddns aq jsnus wiaysds
suodwom apjdwiod ® Supnipsuco wewdinbe jo sway snopwy
-woddns jo 24> gy 8 wawdnbe parcidde-aojatag
o 3P Ut JIVAVN pue sopuale asayg

jo seupqsuodsas ayy suerda 3 ‘sapiAde praY pareusisap
30 aouwziuBoo ayy sapun ind are padopasap Sulaq Juawdinbo
(JIVAVN) PUSWUIo) SWwiaisAS J1y [SASN JO Sl DIym wwiBoig

VYT 0005 ISNIAVNDIS Aq saunpaoasd ay3 supdxe pue saysIquIee uoRINusu; SHY ], 8%a Aapdy ppi wezugo) OF1'00¥S ISNRIIVAVN

N e vasnuLs JLOViisaV aiva TLLLL WHENNAN -




1 {4

"6.91-CIS-TIN Suisn swsds sof aepdosdde
8} uopeofidde )] ‘uonisinboe wnsAs arEMYos YYM VIS
¥ J0j saowad Juowdojasap azemyos punos AW 03 Qe

9q PUT PURSIIPUR 0} J3Y JO WY Mof[e o) SaSvuryy weSolg apiny wswaeueyy
QIVMVJS) Puswiuio) swnsks aseuep [vASN pus aoeds oA JIwmyos (1)
691-A1S1IN ay 03 uoleusIojuy apiacad 0} s ov__..m spp jo asodmd ayj 6LIN L onduo) YYMVdS €T00TS ISNRIVMVIS

V91T pue

%_N.n._w.mmn Suisn swiasAs soj ayspdaidde sy uoyeoydde
8] ‘sPN aremyaes sandwod %ovvoeﬁ jo wawdopasp wawaSeusyy
a3 uo siseyduia zepnopred Su “uawaSeuvws vopsinbow uopismboy saoumosay

sounosas smdwod 0y pa YUM pusmimo)) suisds ;ndwoy purwwo)
Juonda[g [eavN 343 jo Loyjod djseq paysiqeise uopdNLISU] S 06 Aer ¥1 Swashg Sjuolalg [RACN TT00TS ISNRIVMVJS

sureiSorg
"SIIun yoye s pus sdpys o) aremyos Supaarpp sandwo) pappaquig
0§ saunpaoosd pus Lgjod saysjiquse uopdnysuy Sy L [eARN JO L13aljaqg 1'095¢ ASNIVAESAVN
vy s LOVILSEVY BLvVa HLLL HAWNAN




114

SWIRNSAS Y MV IS 30§ 10300 30

UOHEUW JI3Y3 U SPIZeY JO UOR} 2 0) UojuINe
QP Eﬂww_u. £1ayes washs *sapyey pue ‘syuswidmbe

‘swaysdsqns

‘swaisds s0) :&ou.“.s SupesurBua L1ajvs wajeds

sopiacid JIVAVN Yorym sof sweaSosd o) safdde uoponasuy

o.Fﬂ;é..._._.E.ﬁemfzg_.sé.é wesSog
SMpqIsu sulisse pue Log10d seysfiqeise uopdINLS} sy | 18 AON 6 Ayajeg swiashs yYMVdS O5'001S ISNRIVMVdS
f
68 VO If uopenpuag pue 3l | G€'096¢ ISNIEVMVdS
"SWNshs YYMVJS sojazag yoddng
30j syewasmbas AAeN YW 03 SIEN ‘swsasy uswdopasp-uou pue ‘uawdnby ‘swayesds
Jo asn ayy ySnonp uonisnbos [PHEW AR owasd o) AVMVJS Jo uopisinboy
VZ 0005 ISNIAVNDAS !.ae._..u! suSiisse puv sapyjod sayspqesa uoponusuy sy ssdvy SARDAYY J0j SAUNPId0LY 9T 002y ISNDIVMVIS
SANIRIRCONOLLINGL6M JOvilsav aiva FIL YHANAN




n

u-ﬂ-—%..!u_—om
M_x< VdS Ut surisds YION-uou ‘sapmiqisuodsas ‘swansds .
Supmbos so5 sampacasd pue _B SHSTIGUIS UOLINNSU] STYL 83dvy UORPULIOJU] P3XASE} UON VI€TS ISNRIVMVdS

’ SIUALIP A Jo auo s} poddns suopismboy waisds
saonosa: sandwiod V1 ¥VYMVdS Suponpuco 30§ $AINPI0I UOHEIYFID) ]
105 saanpaoosd puw £yjod sIYSTIqRISd UoPINLISU] STYL 88 Ae I¢ pus uamesdssy S1 | VEL'000F ISNRIVMVJS

weafosd Lyjapoe poddng saomosas sandwioo o
» Supysiiqnse sapnpwy sIYL 'Jv VvdS Wiim wesBosd gyp ue sapfiqisuodsay pue Lopod
dn Sups so5 sampaeoosd pue M._B SIYSTIQWISd UORONIISU] SIY L Mz ng sonsiSo] paymaSau] a9J 000k ISNRIVMVJIS

bty e LOViLsav aLva F1L HAGWNN

-




Q

"PIPNE AP Y Jo uo §f Uoddns suopismboy umisds
saounosas sanduio) ‘supne Jv1 AVMVdS Suponpuco 30§ $24npad0LJ UORIYIID)
Joj sampaocasd pue Lofjod saystiqurse uopINRSUY SIYL 8 Ao Ic pue Juawssassy 6771 | VEI'000¥ ISNRIVMVYAS
Sunes .E-..wo&b uoddns ssonosas sndwioo
. qnse sapnpul AJJA[OR SIYL AVMYVIS UM
weaBosd (577)) soddng sonsiSo) paresSaiu] ue Supysqese sepmqisuodsay puv LHyod
30) sampaoosd pue £ogj0d soysyiquse uopNLSUY SYL e8I 1Z | uoddng sopsiSory parwasSa] a9000y ISNRIVMVAS

“papnjou; ose 5 sjuawasmbas

WOMD uo | “sw AVYMVS 30} wesBaud sam
U —5.!_.@::8 v Suponpuoo pue Sudopasp puv £>y104 .:gnwﬂﬂnﬂr}
05 saunpeoosd pue £oyjod savsiquse uoponsUT SIYL sgidv uopwnSyuo) YYMVdJS VEOEIY ISNRIVMVYJS

L s LOViLsav aiva T1LL UHAWNN




‘pensqe wesSoud sandwod v jo aupno ue

pue azemyos (sandwoo) s JUOIAY JOJ UORBIUIUMIOP UO swasig

UOHSULIOJU] JAISUNXD 3] ‘swasds >ypads 105 yeunio) suodeap, 10§ suopeoypPadg

a1 Jo asn a3 Jo sopdwrena Yym sagraBoy .ﬁ%_z pue Jouvuniosad wamis

06-A1S-TIN | 196-QLS" 1IN vodn paseq ‘vopeoypads oM [[R3240 duojAY puswiwo) Swaiels
196-CLS“IIN |  uv 20j Jwwioy uonEayads dseq Sy SUTRUGD JUITIOP SRYL esun(y JV [eARN 30§ yuLiof 800001 AY

‘usalf sunay souvuniopad uy éﬁ&& ssayy jo uopdposep

[SUopOUNY Y sw reuopiesado pue swesfosd
t&m_tﬂahﬁoaﬁcv&. nq 1.»..3&8 syndwod uo =3.-E§£8~=»
{UO 30U Jo sIjdwIexd [RIaADE SUPEIUCD 3 ° sduvULIOIg
pus ‘saqey ‘Sujpiom .-m-..w!!— jo sapduing >ypeds r._!k:m ..!--‘\% syuojay Su 1 wauniddng
Aq wawnoop weunicy 000I-AY 3 suswarddns yaumdop spyl un(z | 10 sydesfinieg jo sagdwrexy V00001 AV
“uflisep ay3 uj QOH) Jo 0 gy
pue s1088300:doDjw Jo nSEE!w.NM 3 03 aAneRd —.o!ahu
#] [eMa9N ‘UORIPP® Uj ...-Exu PuR SuUNPNLS SNq PR}
Aww yng wiep adep] aquoydde ssuyep pue ‘(ersip ‘adw)
BIPOUS AIBMYOS SIULOP ‘UOHRIUIUINIOP aIeMYos Jo Suppvu suop®Y _..vw
93 U0 UOREULIOJU] SIPNIPU] JBuLI0) Y] ‘suondo sqeiieAt pur SUBULIOJA] JUD
asn sy supepdxe !w-..unu yoeg uawdinbe 305 uonwoyads JUOIAY PURWIWIO)) S\IAIEAS
) jo JeuLIo) a3 s3piacad Juamndop spyL €8 AON ¥1 JIV [SARN 10§ PuUlI0g VY00O0Z AV
vy, uise LViLsaVY arva ghing HAANNN

.-l""'-l"--'-'--l




“Wdopasp assmyos 10§ s5gM Jo wRwdopadp

a3 J0j saptacud 3] ‘sopaSaies ySujuwew cyuy paremuIMOe
3q uw 81900 pue pauurwid aq uw sR8pnq .-.M._i £q auppno
dpawnu v ojuj sopeiSof sy pus wxnsds suodwam apydwod

® AUNPNLS ) FHOM JO SIUILDD POULSP Y A Isay L
70005 G0Q “(SSAM) SURPING UMOPYUG RIOM SUFSII0O PIEPUTIS ST €6 MW ST | ampnng umopyeaig oM a4 VIss-aisin

)y Uy
s IIN JO uoiSIA yeip ¥ .aﬁae_.._.u_ﬁ....__.ﬂ.i&
SRES JO SUTW © $8 s3uNpadosd [eusaIu} [enplAjpu}
I »E?gﬁﬁuzss&.iﬁss.
s ® yasaud o3 61 pIepues sy Jo [RuaTTpUny 9y,
*SPWIUCD JUNDUIBA0Y) 10§ suopeidde Ansnpug-juaw
.sla.wzangiuumnzﬁaanoni!ss! .
piepums s ‘sw uopismbos ssuasep jo uoddns u
T000S 1G0A | woip Suisseuifua swaisds ayy Supuyep uj jauuosiad sopenucd

voIz-ais-aod PUB JUIWLIZA0Y) 151988 03 PadORAIP UIaq SEY PISpURS STYL vehep 1| wewaSeusyy SupseuiBug dvsn) Vesr-ais N
"PUBIIIOD) SWSAS J1Y [eA
i 205 syuamamdosd waeds uodwam jo yoddns uy vo.uo_a_o_u
T000s 1GOA 3q 0] SHIPW ALMIOS JO 136 JISEq ¥ SIUYIP UORINIISU} SIYL unfgr | uPK aemyos oY | 1'6EZS UORINAISU] NOIAY

om0 IOVULSEV aLva FLLLL WHAWAN




“Suppew oy v} 8§ mav ais‘in
surﬂu.g.r?ﬁosﬁohaéﬁﬁﬁﬂ

70005 13OA uopesedaud aip s0y sopdwsd yios 1198 prepums S sgunfy s30[oRIg UopwYPIds VOos-ais1IN

&!».B_x:;_u:uo!na.sz E.Mt.!g 3295..8
paieias Joj syuswsasnbas aremyos Supemone u oA GOA
PoYIun ® apiacud ospe [1m prepueis ] "Aipmdes puw ‘sena
gi?&é.»ﬁ?ﬁ?.ﬁ?ﬁ%v

PopPIY: wo)

j snoprea SupsseurBugy
ujipusy ‘(FSVD) Bujssasppe Aq (SE6L
PUR V/912-G1S-GOQ) SPA¥PURS JWALND INO Pu
Sopesd A Jo ams, GO PUBAPE [[Im pIvpums | sﬁ pue .a..s.ss._sonm
awMmyyos &5&2 30§ [ nPRIueO 9| ago_ﬂaa MY
Tym ..!...m_wmai._ 8§ pue gOa MM prepuns sp(L asuapq pispung ninn yuqa s6r-ais-iN

.a_.s
Sﬂzgsgv.g-bg é
"V912-AUIS-aO Jo saswyd snopea ay3 03 pu

ApySnos sxee; asayL “sprezey Liajus aremyjos Jo siskieue ap suawasinboy
SuppaeSa (sYSE SIS QOE) SASW USAIS SUTRIUCO PISPUNIS ST L s weiBos] Kwajes washs azes-ais-1In

SANBIINCONOLLIN NSNS
v LOVELSaV sLva L WHAWNN




"€L6-(ALSTIN

Y#m 30URPICIOR uj PNPUcO ) pasnbas aq Aews sopenuod
WABUIIA0D) N} ‘ISAIMOY ‘36N [SUINUY 8 UL

) Jo5 Aediseq sy paepums spy), “uoddns ..!..ihﬂnw

pue 3> yyy wawdopasp aremyos ayy moySnony sen

20§ sadpowd sapnpuy 3 pasinbau se ‘ssuanasnbes

T000s Ia0a | weueSsusw uop PAI-WAS souyap pivpums spL 763dv /1 | wowaSeuepy uopemSyuod €L6-Q1S 1IN

e on oo Ko o
pus OS] “PIepURS £ BPY A Aepdn ) uojsjA
X6 ¥PY Apusumy ‘cg wpy 0§ UopEsyads aBenSuvy ap
§1 L Yool Ui 8} uogsjaal aup Jo eacaddn Q5] g6l
j0 159 3 U} (OS]) UORVZIPIPUNS J0) UOREZIY
[SUORBWIRNU] PUB (JSN'V) JIIASU] SPIRPUNS [VUOREN
T000s iGod - yes xﬂ___:s__zses_:ek.ﬂﬂ!. ap afen8un
0005 X6 SPV YUip 3] ‘UOISIA JIPUN 6} wpy
1's0¥¢ daoa ‘Apusam) °gg wpy 05 .s..acunh.u.m uey wpY 3y 8§ SRLL esuefzz SujunuwiBoig wpy VSISI-ALIS IIN/ISNV

. J01R1U0O Puv JUAWUIIACS
u&&gﬁﬂ:ﬂv_kuo.-_ “PU ¥ jO syuusasnbas .
Z000S 13Oa 2| \pim aousydwiod aunese 03 J010e53u00 ¥ £q uresSosd sivawasnbay
#91z-ais-aod Ayrenb v jo Jwawysiiqeise oy sasmbas uopedyieds syl €9 Q91 wwBaig Liend V8586 01N

v LOVYISaV aLva FLLL WHANNN




Appendix C
The Maturity Framework

The maturity framework for characterizing the status of a software process identifies five
maturity levels. This framework is intended for use in conjunction with an assessment
methodology and a management system. Assessment provides a way to identify the
organization's specific maturity status, and the management system establishes a structure
for actually implementing the main actions needed to improve the organization.

A maturity level is a well-defined evolutionary plateau on the path toward becoming a
mature software organization. Each level is a layer in the foundation for continuous
process improvement. The five maturity levels in the Software Engineering Institute
(SEI) Capability Maturity Model (CMM) are defined as follows:

Initial—At this level, the organization typically does not provide a stable
environment for developing and maintaining software. The software process is
constantly changed or modified as the work progresses. Until the process is under
statistical control, orderly progress in process improvement is impossible.

Repeatable—Basic project management processes are established to track
commitments, cost, schedule, changes, and functionality. The necessary process
discipline is in place to repeat earlier successes on projects with similar
applications.

Defined—The software process for both management and engineering activities is
documented, standardized, and integrated into an organization-wide software
process. All projects use a documented and approved version of the organization’s
process for developing and maintaining software. At this point, it is probable that
advanced technology can be usefully introduced.

Managed—Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood
and controlled using detailed measures. At this level, the most significant quality
improvements begin to appear.

Optimized—With a measured process in place, the foundation exists for continuing
improvement and optimization of the process. Continuous process improvement is
enabled by quantitative feedback from the process and from testing innovative
ideas and technology.

Ada Implementation Guide _ C-1



The Maturity Framework

The subsections below contain additional information on the Initial and Repeatable
Processes.

C.1 INITIAL PROCESS
The following paragraphs on the Initial Process are from the Carnegie-Mellon

University/Software Engineering Institute (CMU/SEI) publication, Characterizing the
Software Process: A Maturity Framework, by Watts Humphrey (CMU/SEI-87-TR-11,
June 1987.)

The Initial Process could properly be called ad hoc or chaotic. Here, the
organization typically operates without formalized procedures, cost estimates, and
project plans. Tools are not well integrated with the process or uniformly
applied. Change control is lax and there is little senior management exposure or
understanding of the problems and issues. Since problems are often deferred or
even forgotten rather than solved, software installation and maintenance often

present serious problems.

While organizations at the Initial Process may have formal procedures in place
for project control, there is no management mechanism to assure that they are
used. The best test is to observe how such an organization behaves in a crisis.
If it abandons established procedures and reverts to merely coding and testing, it
is likely to be at the Initial Process. In essence, if the process is appropriate, it
must be used in a crisis and if it is not appropriate, it should not be used at all.

One key reason why organizations behave in this chaotic fashion is that they have
not gained sufficient experience to understand the consequences of such behavior.
Since many effective software actions such as design and code reviews or test
data analysis do not appear to directly support shipping the product, they seem
expendable. It is much like driving an automobile. Few drivers with any
experience will continue driving for very long when the engine warning light
comes on, regardless of their rush. Similarly, most drivers starting on a new
journmey will, regardless of their hurry, pause to consult a map. They have
learned the difference between speed and progress. In software, coding and
testing seem like progress but they are often only wheel spinning. While they
must be done, there is always the danger of going in the wrong direction.
Without a sound plan and a thoughtful analysis of the problems, there is no way
to know.

Organizations at the Initial Process can advance to the Repeatable Process by
instituting basic project controls. The most important are:

Cc-2 Department of the Navy




The Maturity Framework

1. Project Management. The fundamental role of a project management
system is to ensure effective control of commitments. This control
requires adequate preparation, clear responsibility, a public declaration,
and a dedication to performance. Software project management starts with
an understanding of the magnitude of the job to be done. In all but the
simplest projects, a plan must be developed that lays out the most
attainable schedule and the resources required. In the absence of such an
orderly plan, the commitment to a schedule will be no more than an
educated guess.

l 2. Management Oversight. A suitable disciplined software development
organization must have corporate oversight. This oversight includes
l reviewing and approving all plans for major developments before the
organization commits to the development officially. Quarterly reviews for
each project must be conducted to determine facility-wide process
I compliance and quality of performance in the field; track schedule cost
trends and computing service; and check quality and productivity goals.
The lack of such reviews typically results in uneven and generally
l inadequate implementation of the process as well as frequent

overcommitments and cost surprises.

3. Product Assurance. A product assurance group is charged with assuring
management that the software development work is being done as it should
be. To be effective, the assurance group must report directly to senior
management and must have sufficient resources to monitor performance
of all key planning, implementation, and verification activities. The size
of the product assurance group generally is between 5% and 10% of that
of the development organization.

4. Change Control. Control of changes in software development is
fundamental to maintaining business and financial control as well as to
technical stability. To develop high-quality software on a predictable
schedule, the requirements must be established and maintained with
reasonable stability throughout the development cycle. Changes will have
to be made, but they must be managed and introduced in an orderly way.
Although occasional changes are essential, evidence indicates that most
changes can be deferred and phased in at a subsequent point. If change
is not controlled, orderly testing is impossible and no quality plan can be
effective.

C.2 REPEATABLE PROCESS
Organizations at the Repeatable level can advance to the Defined level by

Ada Implementation Guide _ C-3




l

The Maturity Framework

instituting additional process controls. The most important controls are as
follows:

Standard processes for developing and maintaining software across the
organization, as well as software engineering and software management
processes, must be documented and must be integrated into a coherent
whole. The organization must start exploiting effective software
engineering practices when standardizing those software processes. A
well-defined software process will provide a good view of technical
progress on all projects as a result of the integration of all engineering
activities related to those projects.

The organization must establish and make effective use of a Software
Engineering Process Group (SEPG) to facilitate process definition and
improvement efforts.

The organization must establish an organization-wide training program to
ensure that all practitioners and managers acquire the necessary knowledge
and skills required to perform their tasks successfully.

The organization must establish good control of product lines, cost,
schedule, and functionality and methodically track software quality and
improvement. These control measures will help all personnel to arrive at
a common understanding of processes, roles, and responsibilities.

Department of the Navy




Appendix D
Cost Estimation Studies

In April 1989, the Illinois Institute of Technology Research Institute (IITRI)
completed a study, sponsored by the Ada Joint Program Office (AJPO), for the U.S.
Air Force Cost Center (AFCSTC) and the U.S. Army Cost and Economic Analysis
Center (USACEAC). The study assessed the accuracy of the software cost models
for Ada software cost estimation. The six cost estimation models reviewed were as

follows:
o -Specific Models:

- Ada COCOMO (Initial Operating Capability)
- SoftCost-Ada

¢ Non-Ada-Specific Models:

PRICE §

SYSTEM-3

SPQR/20

Software Architecture Sizing and Estimating Tool (SASET).

An essential part of the research was a test case study in which the costs models were
applied to a database of eight completed Ada projects. The analysis compared the
projections on schedule and level of effort from each model as well as nominal run
results to the actual project resources expended by the software developer. Results
for each model were evaluated for accuracy and consistency in each of the following
categories:

¢ Overall effort

e Overall schedule

* Government contracts

¢ Commercial contracts

¢ Command and control applications
¢ Tools and environment applications.

Model results were also evaluated based on the approach to the project and the
personnel’s experience with Ada. Interestingly, no correlation was found between the
performance of the models and language considerations of the models described in
the study. The test case study results demonstrated the benefits of using cost models
to help the estimator predict resource requirements for a new development, but they

Ada implementation Guide B , D—~1



Cost Estimation Studies

did not validate the need for Ada-specific models. Although SoftCost-Ada was the
most accurate model on all dimensions, non-Ada-specific models were comparable
in terms of accuracy and consistency. Of greater interest, however, is that the results
suggest users should consider the following factors to determine which models should
be applied to estimate Ada software costs:

e The amount of information available about the project and the developing
organization

¢ The customer
e The type of application.

Before the IITRI study, the MITRE Cost Analysis Technical Center (CATC)
conducted research to study the "early returns” of developing software in Ada. The
research showed that the productivity for first-time Ada developments was not
significantly different from that for non-Ada developments, Constructive Cost Model
(COCOMO) semidetached developments, which supported the early claims of
programming language comparability. This research provided calibrated equations
and recommended guidelines for estimating the costs and schedule for Ada projects
that are considered to be organic and semidetached developments.

Subsequently, in 1991, a follow-on research effort was initiated to expand the CATC
database of embedded Ada projects, to develop new models for estimating level of
effort and duration of Ada developments, and to expand the CATC'’s knowledge of
the issues and cost impacts of programming in Ada. This research produced
improved parametric models and equations for estimating the level of effort for Ada
software developments and developed improved methods for quantifying the errors
in these models. The study also developed appropriate guidelines for estimating
costs and schedules of embedded Ada developments.

The most significant finding of this study was that productivity was better on
embedded software developments where Ada was used as the programming language
than on developments where non-Ada languages, such as FORTRAN, JOVIAL, or
C+ +, were used. The calibrated level-of-effort models for Ada and non-Ada show
significant differences in their respective predictions of level of effort for large
projects. Although this result is based on a limited data set, the findings support
claims that, for large projects, Ada software is less costly to develop than non-Ada
software.

D-2 Department of the Navy




Cost Estimation Studies

For embedded Ada developments, the following coefficients should be used when
using the COCOMO equations for estimating software development cost and
duration:

SM = 8.2 KEDSI
M = 4.8 SM0.29

where,
SM = development effort in staff-months
CM = project duration in calendar months

KEDSI = software size in thousand of delivered source instructions (KEDSI
ranges from 16 to 415)

The linear form of the level-of-effort model for embedded Ada developments
represents a significant difference from traditional level-of-effort models for non-Ada
software developments. For large Ada projects, the non-Ada level-of-effort models
significantly overestimate the development effort. Although additional data on large
Ada projects are needed, these findings strongly indicate that developing large
programs may be less costly in Ada than in other High Order Languages (HOLs).

The MITRE research also resulted in the development of new schedule equations
that incorporate software size as the independent variable. For embedded Ada
developments, the following model can be used as an alternative method for
estimating software development duration:

CM = 11.8 KEDSI0.23

It should be noted that the above equations were developed using a limited set of -
projects ranging in size from 16 to 415 KEDSI. The application of these models to
projects outside this range should be avoided.

For semidetached Ada developments, the following equations should be used for
estimating software developments costs and duration:

SM = 7.4 KEDSI (KEDSI ranges from 2 to 72)

CM = 6.0 SM0.22
CM = 103 KEDSI0.20

Ada Implementation Guide D-3




Cost Estimation Studies

Again, the calibrated equations for semidetached developments were based on
projects spanning a software size range from 2 to 72 KEDSI; therefore, analysts
should exercise caution if using these semidetached equations for estimating outside
of this range.

It is important to note that the software size inputs to the level-of-effort models and
new models for estimating schedule are based on Ada statements (terminal
semicolons) rather than physical lines of code. For sizing purposes, one Ada
statement can be considered equivalent to one statement in other HOLs such as
FORTRAN and JOVIAL. When analysts obtain sizing estimates for use in the
estimating models, care should be taken to ensure that the inputs are in Ada
statements or terminal semicolons rather than in lines of code. Where possible,
analogies should be used when specific project information is available.

When little information is known about the project, or if a quick, rough estimate is
needed, productivity can be used to estimate software development effort. For these
cases, the database of Ada projects indicates a productivity range of approximately
75 to 160 Equivalent Delivered Source Instructions Per Staff-Month (EDSI/SM) for
embedded Ada and approximately 110 to 230 EDSI/SM for semidetached Ada.
When an average productivity rate is used to develop rough point estimates of effort,
an average productivity of 122 EDSI/SM is appropriate for embedded projects,
whereas an average productivity of 160 EDSI/SM is a, ropriate for semidetached
projects. Again, it is strongly recommended that the database of Ada projects be
used to develop an analogy when specific project information is available.

In addition to the software estimation models identified by the IITRI and MITRE
studies, several other models are currently used and recommended for use by
programs within the Department of the Navy. The following automated models are
popular among the acquisition and development communities for forecasting program
software costs because of their ease of use, reliability, and validity:

SASET

Revised Intermediate COCOMO (REVIC)

Software Evaluation and Estimation of Resources (SEERO)
COSTAR

SEERO SEM (Software Estimation Model)

SEERO SSM (Software Sizing Model).

SEERO is a registered trademark of SEER Technologies Division, Galorath
Associates, Incorporated, Marina del Rey, California.

D-4 Department of the Navy




Cost Estimation Studies

SASET is available upon request to programs for their use. Also, SASET is being
modified to accommodate Function Point analysis. The Navy Center for Cost
Analysis (NCA) can provide programs with the points of contact in the other Services
who have other software cost estimating models, such as REVIC. The National
Acronautics and Space Administration’s (NASA’s) version of AdaCOCOMO,
COSTMODL, also is available; however, the U.S. Air Force point of contact does
not give it high marks for Automated Information Systems (AISs). Also, NASA’s
AdaCOCOMO is tuned for tactical applications. NCA also does the Independent

Cost Estimates for Navy AIS programs.

Ada Implementation Guide D-§




Department of the Navy

Cost




G U SN O AP 0D B SN R AR 0 B OD B G B Y B

Appendix E
Example of Metric Wording for Use in a Contractual

Document

Software Management Metrics Requirements

The contractor shall include graphs of Software Management Metrics (SMM) in the
Software Developmental Status Report (SDSR). The x-axis of each graph shall contain
the calendar months of the program and shall depict the times of System Requirements
Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and
Critical Design Review (CDR). Should SMM data change as SDSRs are presented, the
contractor shall always show the original estimate together with the current estimate and
indicate the changes since the last estimate.

SMM data shall be depicted for all software, regardless of whether the prime contractor
and/or subcontractors (if any) are involved in the development and whether the software
is newly developed, existing, or reused.

The information shown shall be as specified below.
1. Software Size

The contractor shall use an automated tool to estimate the size of the software that needs
to be developed and shall report this estimated size.

During actual software development, the contractor shall report the Source Lines of Code
(SLOC) elements in accordance with the information-provided in the attachment to this
appendix (to be supplied by contracting organization). SLOC metrics shall be provided
for each Configuration Item (CI) for each programming language used. The contractor
shall utilize an automated Code Counting Program (CCP) to provide the SLOC metrics
results.

On a single graph, the contractor shall show the current values of total, new, reused, and
modified SLOC counts.

2. Design Complexity
As software is developed, for each programming language used, the contractor shall use

the appropriate static analyzer of the Verilog Logiscope tool to show flow graphs, call
graphs, and Kiviat diagrams for each CI.

Ads Implementation Guide . E-1




Metric Wording Example
3. Software Personnel

The contractor shall record the number of engineering and management personnel
supporting software development in experience categories of 1 through 3 years, 4 through
8 years, and 9 or more years. Software system planning, requirements definition,
design, coding, testing, documentation, configuration management, and Quality
Assurance (QA) personnel shall be included.

Each contractor development organization must provide graphs showing planned and
actual personnel in the various experience categories.

4. Software Volatility

The contractor shall provide three different graphs showing software volatility on the y-
axis. One graph shall contain the total number of "shall® statements (requirements) in
the Software Requirements Specifications (SRSs) and the cumulative number of
requirements changes (including additions, deletions, and modifications). A second
graph shall contain new and cumulative Software Requirements Changes (SRCs), which
are the number of unresolved requirement and/or design issues. A third graph shall
depict Software Action Items (SAIs) that have been open from 1 to 45 days, 46 to 90
days, or over 90 days.

5. Computer Software Unit Development Progress

The contractor shall graph the progress made in Computer Software Unit (CSU)
development against initial plans. This progress shall be reported to show monthly
planned versus actual progress of the number of CSUs designed, tested, and integrated.

6. Testing Progress

The contractor shall record and graph the progress of CI and system testing against initial
plans and the degree to which the software is meeting requirements. One graph shall
depict the number of CI tests planned and passed, together with the number of system
tests planned and passed. A second graph shall depict the number of new Software
Problem Reports (SPRs) per month and the SPR density, which is the cumulative number
of SPRs per 1,000 SLOC. A third graph shall depict the cumulative number of open
SPRs and the number of SPRs that have been open from 1 through 45 days, 46 through
90 days, or over 90 days.

E-2 Department of the Navy




Moetric Wording Example

7. Build Release Metric

The contractor shall present a graph that contains each build, or release, of the software,
showing the number of originally planned versus currently planned CSUs for each

release.
8. Computer Resource Utilization

The contractor shall record the utilization of each target computer resource, including
memory (all types), Input/Output (1/O) channels, I/O bandwidth, processor throughput
under various extreme system loads, expected "normal” system load (including 1/0), and
memory use during processing times. Utilization metrics shall be proposed by the
contractor and approved by the Government. The data shall show the planned versus
actual utilization for each target computer resource. In addition, the contractor shall
report on availability and use of host development station(s) to show planned versus

actual usage.

Ads Implementation Guide v E-3




1

Metric Wording Example

Department of the Navy

E—-4



.IIIII' lllllll' |IIIII' 'IIII. 'IIIII' 'IIIII'\

Appendix F
Software Tool Descriptions

Editor

The editor is a tool for text manipulation. When computers were in their infancy,
source program text was entered by paper tape or punched card. Today, editors are
sophisticated interactive screen/window-management tools. Modern editors are used
not only for creating or modifying source text but also for viewing or modifying files
produced by other tools.

An editor is used primarily to create or modify source program text. The product
of the editor is a file that contains the source program statements. Because these
program files will always have to be compiled, the advantage was recognized of
having a language-specific editor, a tool with some built-in specific language
requirements. These editors simplify the entering of program text and sometimes
perform on-line error checking.

In its most elementary form, a language-specific editor may have special options to
assist in formatting the source text. An example for FORTRAN would be
automatically starting a line in column 7 whenever the first character was alphabetic,
thus preventing text from being placed in the field reserved for line numbers.

Another form of a language-specific editor is the "syntax-directed editor,” which is
tightly linked to the programming language. Most modern languages require opening
and closing statements for structured programming constructs. A syntax-directed
editor can provide templates for these constructs. For example, the following
template could be rapidly placed on the screen after typing "if™:

if <condition>
then
else

.
cesey

endif;

Ads implementation Guide F-—-1




Software Tool Descriptions

In addition, the syntax-directed editor can check the structure of the source text for
compliance with the rules of the language. Thus, the efficiency of the
edit-compilation process is improved because many programming errors are
eliminated before compilation.

Compiler

A compiler is a program that translates a High Order Language (HOL) source
program into its relocatable code equivalent. The term "host" refers to the computer
that translates the source program, and the term “target” refers to the computer that
will execute the compiled code. The term "cross-compiler” refers to the case in which
the target computer is different from the host computer. In many DON applications,
a source program is cross-compiled on a host computer (generally a commercial
machine) for a militarized target computer that is embedded in a system.

Compilers are usually multiple pass programs that may process the source program
or some intermediate form several times before completion. The output of the
earlier stages is referred to as intermediate code. In some host computer systems,
the intermediate code is used by other tools.

Compilers for real-time applications must produce code to fit in limited storage
space. In addition, the execution speed on the target computer must allow all of the
required functions to be computed in the assigned time.

Assembler

An assembler is a program that translates an Assembly source program into
relocatable code. Note that, usually, a one-to-one correspondence exists between an
Assembly source statement and a machine instruction. Assemblers allow the
programmer to use relative addressing and then specify a starting location rather
than having to specify each address in absolute terms. Most assemblers also allow
the use of labels and other defined values and locations.

Assembly has been used frequently in Mission-Critical Computer Resources (MCCR)
applications because it allows the programmer to optimize storage space and
execution time. However, Assembly programs are difficult to test and expensive to
maintain. Today, the use of Assembly is generally restricted to routines with
exceptionally high performance requirements and to hardware-diagnostic software.

Linker
Source program modules, whether in Assembly or a HOL, usually are translated
separately into modules of relocatable code. Once translated, the modules must be

F-2 Department of the Navy




Software Tool Descriptions

...:iked toge+her before execution. A linker is a program that creates a load module
from one o: more independently translated modules by resolving the cross-references
among the modules.

Relocating Loader

Relocatable code contains relative addresses of machine instructions and data. This
defers the assignment of absolute addresses until the program is ready for execution
and allows the flexibility of placing the program in any contiguous block of storage.
The linker creates a load module that leaves all addresses in relative form although
it has resolved the cross-references between modules. The relocating loader is a
program that executes on the host computer and translates the relative addresses into
the absolute addresses; its output is an execution module. A bootstrap loader
executes on the target computer and copies the execution module into its storage.

Run-Time Environment

The Run-Time Environment (RTE) resides on the target machine and provides a
variety of services for application programs. Typical RTE functions are dynamic
storage management, exception processing, input and output, and task scheduling.
Because this environment is used for all application programs, it should be small and
fast to minimize the overhead. The RTE usually is modularized according to the
particular services it provides and is automatically configured when the execution
module is created. Thus, if an application program does not need a particular
service, that module is automatically omitted from the RTE.

Simulator/Emulator

When code is produced for a target computer that is different from the host, the
problem of how to test the code must be considered. Testing on the target computer
is usually difficult because the computer may still be under development, it may be
being integrated with other embedded subsystems; or the number of target machines
may be insufficient to support all of the programmers. Moreover, most embedded
target computers have poor tools to support testing.

One solution to this problem is to build a software simulator or emulator of the
target computer that executes on the host computer. A software emulator accepts
the same data, executes the same instructions, and achieves the same results as the
target machine. A simulator imitates selected features of the target computer but
is not required to achieve identical results. The best tool is a target computer
emulator that can operate in either batch or interactive mode. The execution speed
of an emulator may be significantly slower than that of the target computer, but the
emulator has many advantages. For example, the emulator can be time shared and
used by everyone on the host computer. In addition, because the emulator is on the
host computer, it is easy to generate test data, load the module and test data into the

Ada Implementation Guide F-3




Software Tool Descriptions

emulator, and monitor the test while in progress. Long tests can be run in batch
mode during off-peak hours.

In-Circuit Emulator

An in-circuit emulator provides the user with a means of executing a software
program located in external Random Access Memory (RAM) rather than internal
Read Only Memory (ROM) or Erasable Programmable Read Only Memory
(EPROM). This allows easy and rapid modification of the programs being debugged
during the testing cycle. When connected to the prototype system through the
microprocessor socket, an in-circuit emulator can emulate, test, and trace the
prototype system operation. The internal state of the microprocessor, including
RAM, accumulator, internal working registers, and stack and status registers, can be
observed and modified. Some in-circuit emulators allow the recording of data bus
operations. This feature allows the engineer to capture N events before or after a
failure or predefined occurrence.

Symbolic Debugger

A symbolic debugger allows a programmer to test a module by controlling the
program execution on a target computer emulator or the target computer itself.
With the symbolic debugger, the programmer can address the variables by using their
source program symbols or names. The facilities usually provided include stopping
execution at selected locations, moving by single steps in increments of source
statements, watching the value of specified variables, tracing execution, examining the
contents of variables, evaluating expressions, displaying the current sequence of
routine calls, displaying the source corresponding to any part of the program,
executing debug command procedures at break points, and calling procedures that

are program parts.

Pretty Printer

A pretty printer is a program that automatically applies standard rules for formatting
program source code. It will accept an input file and format the text to match a style
guide. For example, a pretty printer for a block-structured language will produce a
listing in which the indentation level of each block shows its nesting level. A pretty
printer helps the programmer read and comprehend the program. After extensive
program modifications, for example, it helps eliminate confusion about the program
structure and nesting levels.

Host-to-Target Exporter
If the target machine is different from the host machine, it is necessary to have a tool

to transmit the execution module from the host to the target. Standard
communications software and hardware may be used, but these are rarely available
for embedded machines.

F—4 Department of the Navy




Software Tool Descriptions

It is desirable to have a flexible, high-bandwidth communications link between the
host and target. If the link has a "pass-through” capability, then an interactive user
of the host computer can run tests on the embedded computer from the same
terminal. High bandwidth is desirable because large volumes of data must be
exchanged between the host and target; for example, diagnostic software is typically
sent to the target to test the target hardware, and test data and test results are also
exchanged. A high-bandwidth communications link will reduce the time it takes to
do these tasks and allow more time for testing.

Computer-Aided Software Engineering

Computer-Aided Software Engineering (CASE) refers to software tools that help
automate parts of the software process across the-life cycle. These tools are
considered a part of a Project Support Environment (PSE). CASE tools support the
activities associated with a specific part of the system software life cycle, such as
requirements specification, coding, and testing. CASE tools also can support project
management activities across the life cycle. Recently, many tools have emerged that
support software requirements specification and high-level design. CASE tools can
help users organize, document, and generate a specification. Some of the more
advanced tools also can execute simulations of the specification and, to a certain
degree, generate Ada code or code fragments that fulfill the developed requirements
and design. Although many CASE tools will examine the specification and high-level
design for consistency and completeness, current CASE tools have widely varying
degrees of functionality and maturity. The future of CASE tools is bright and the
potential benefits great. Many tools are immature, however, and contractors’ claims
regarding the capabilities of their tools are often exaggerated. Some CASE tools
have difficulty scaling-up to support large software developments (e.g., more than
100,000 Source Lines of Code [SLOC]). Finally, few CASE tools are compatible with
each other with regard to method of data transfer or integrated execution.

Many CASE issues are similar to issues surrounding the introduction of Ada. CASE
will help impose discipline on the software process, provide better visibility into the
software, and encourage the use of modern methods and practices. Three primary
benefits of using CASE on a project are improved product documentation, improved
project communication, and enforcement of a consistent design and requirements
methodology.

Many of the issues surrounding the adoption and use of CASE are organizational,
not technical, issues. The organization must have a well-defined software engineering
methodology in place before the benefits of CASE tools can be realized. Use of
CASE tools often requires a pervasive change in an organization. First, an absolute

Ada Implementation Guide B F-§




Software Tool Descriptions

and strong management support of and commitment to CASE use are needed.
Second, selection of high-quality personnel and extensive training are necessary.
Third, the resistance to change must be overcome.

In some cases, the initial adoption of CASE requires a large capital investment and,
most likely, schedule expansion. This up-front cost in terms of dollars and schedule
will be recovered when the lower maintenance costs are realized.

CASE tools are emerging on the market that maintain the specification at a high
level and automatically generate Ada code. The intent is to make all changes at the
specification level and not at the code level. This technology promises to provide
many benefits to software engineering. CASE will surely have an increasing impact
on programs developed in Ada and the Ada software development environment.

F-6 Department of the Navy




\

Appendix G
Application Portability Profile (APP) Services

This appendix identifies current and emerging standards associated with the service
areas addressed in the National Institute of Science and Technology (NIST)
Application Portablility Profile (APP) and DOD Technical Architecture Framework

for Information Management (TAFIM).

G.1 OPERATING SYSTEM SERVICES _
The following subsections discuss some recommended operating system services.

G.1.1 Kernel Operations API

FIPS PUB 151-2 Portable Operating System Interface (POSIX)—System Application
Programming Interface (API). Kernel operations provide low-level services necessary
to create and manage processes, execute programs, define and communicate signals,
define and process system clock operations, manage files and directories, and control
Input/Output (I/O) processing to and from external devices.

G.12 Operating System Commands and Utilities API

Planned FIPS PUB on POSIX—Part 2. Commands and utilities include mechanisms
for operations at the operator level, such as comparing, printing, and displaying file
contents; editing files; pattern searching; evaluating expressions; logging messages;
moving files between directories; sorting data; executing command scripts; scheduling
signal execution processes; and accessing environment information.

G.1.3 Operating System Real-time Services API

Amendment 1: Realtime Extension P1003.4 Draft 12. This document provides the
operating system extensions needed to allow incorporation of real-time application
domains into the Open Systems Environment (OSE). The extensions define the
application’s interface to basic system services for I/0, file system access, and process

management.

G.1.4 Operating System Security APl

Security Interface for POSIX (IEEE P1003.6 Draft 11). Security considerations are
specified in terms of data encryption mechanism, access control, reliability control,
system logging, fault tolerance, and audit facilities.

G2 HUMAN-COMPUTER INTERFACE SERVICES
The following subsections discuss the recommended Human-Computer Interface
(HCI) services.

Ada Implementation Guide _ G-1




Application Portability Profile (APP) Services

G.2.1 Graphical User Interface API

Proposed FIPS PUB User Interface Component of the APP (MIT XWindow System).
The MIT XWindow System is the Federal standard for Graphical User Interfaces
(GUIs) in the OSE. Its software has proven to be highly portable between various
hardware platforms and operating systems. Because of its client-server architecture,
the X client application can run on one system while the X server can be running on

another system on a network.

G.22 Graphical User Interface Toolkit API

Draft Standard for Information Technology—XWindow System Graphical User
Interface—Part 1: Modular Toolkit Environment (IEEE P1295.1). This specification
supports writing portable applications with GUIs based on the XWindow System. It
defines a source-code-level interface to an XWindow System toolkit GUI
environment based on the OSF Motif Application Environment Specification User

Environment volume.

G.3 SOFTWARE ENGINEERING SERVICES
The following subsections discuss certain recommended software engineering services.

G.3.1 Programming Language Ada

FIPS PUB 119 Ada. Ada is a general-purpose, high-level programming language.
In addition, it provides strong data-typing, concurrence, and significant
code-structuring capabilities. It is particularly suited to embedded real-time systems,
distributed systems, highly reliable software development, and reuse of proven code.

G.3.2 Integrated Software Engineering Environment

Portable Common Tools Environment (PCTE): Abstract Specification, Standard
ECMA-149, European Computer Manufacturing Association (ECMA). Integrated
Software Engineering Environments (ISEEs) and tools include systems and programs
that assist in the automated development and maintenance of software. These
include, but are not limited to, tools for requirements specifications and analysis, for
design work and analysis, for creating and testing program code, for documenting, for
prototyping, and for group communication. The interfaces among these tools include
services for storing and retrieving information about systems and exchanging this
information among the various programs in the development environment. PCTE
can provide for this data repository functionality.

G3.3 Other Programming Languages
See the NIST APP for FIP-PUBs on Other Programming Languages.

G-2 Department of the Navy




- R o UE O BN B B B =R B

Application Portabliility Profile (APP) Services

G.4 DATA MANAGEMENT SERVICES
The following subsections discuss certain recommended data management services.

G.4.1 Relational Database Management System Interface

Planned FIPS PUB 127-2 Database Language Structured Query Language (SQL). FIPS
SQL provides data management services for definition, query, update, administration,
and security of structured data stored in a relational database. A relational database
is appropriate for general-purpose data management, especially applications requiring
flexibility in data structures and access paths; it is particularly desirable where there
is a substantial need for ad hoc data manipulation for data restructuring. The
security interface for granting and revoking privileges does not specify a secure
DBMS; only its interface.

G.4.2 Data Dictionary or Directory System

FIPS PUB 156 Information Resource Dictionary System (IRDS). Data dictionary or
directory services consist of utilities and systems necessary to catalog, document,
manage, and use metadata (information about data).

G.4.3 Distributed Data Access

Remote Database Access (RDA) ISO/IEC 9579:1993. RDA is used to establish a
remote connection between an RDA client, acting on behalf of an application
program or a client data manager, and an RDA server, interfacing to a process that
controls data transfers to and from a database. The goal is to promote the
interconnection of applications and the interoperability of Database Management
Systems (DBMSs) among heterogeneous environments.

G.5 DATA INTERCHANGE SERVICES
The following subsections discuss certain recommended data interchange services.

G.5.1 Data Interchange

Open Document Architecture (ODA)/Open Document Interchange Format (ODIF)/
Open Document Language (ODL) [ODA/ODIF/ODL] ISO 8613:1989. ODA is a
framework that enables users to interchange the logical structure, content,
presentation style, and layout structure of documents from one application to
another. ODIF is an encoding scheme for documents suitable for interchange
between applications. ODL is a generic Standard Generalized Markup Language
(SGML) encoding for ODA documents to enter an SGML database or publishing
environment.

Ada implementation Guide , G-3




Application Portability Profile (APP) Services

G.52 Document Interchange
FIPS PUB 152 Standard Generalized Markup Language (SGML). SGML is a
generalized grammar used to write data type definitions for describing document

types and styles.

G.S3 Page Description Language

Planned FIPS for Standard Page Description Language (SPDL) ISO/IEC DIS 10180.
SPDL defines a language for representing images that are to be displayed on a
screen, printed on an output device, or transmitted through communications media

from one application to another.

G.5.4 Manuscript Markup Interchange

Electronic Manuscript Preparation and Markup (EMPM) American National Standards
Institute/National Information Standards Organization (ANSI)/(NISO) Z39.59-1988.
EMPM is a specialized document type definition that includes an
architecture-encoded SGML suitable for the interchange of the logical structure of

books, articles, and serials.

G.5.5 Graphics Data Interchange

Computer Graphics Metafile (CGM), FIPS PUB 128. Graphics data are specified in
terms of a file format that can be created independently of device requirements and
translated into the formats needed by specific output devices, graphic systems, and
computer systems.

G.5.6 Graphic Product Data Interchange

FIPS PUB 177 Initial Graphics Exchange Specification (IGES). 1GES standardizes the
representation of specific types of complex graphic objects and attributes for data
interchange. Information typically associated with computer-aided design and
manufacturing (CAD/CAM) can be described.

G.5.7 Product Life Cycle Data Interchange

Standard for the Exchange of Product Model Data (STEP) Draft Proposed ISO 10303.
STEP is an advanced form of representing complex data objects for interchange. It
is used in total life cycle descriptions of engineered products that can be
implemented on advanced manufacturing systems. This includes specifications of
products throughout the stages of their lifetimes.

G.5.8 Electronic Data Interchange

FIPS PUB 161 Electronic Data Interchange (EDI). EDI is a procedure in which
instances of documents to be interchanged between separate organizations are
converted to strictly formatted sequences of data elements and transmitted as

messages between computers.

G-4 Departmant of the Navy




---—-——-----‘

Application Portabillty Profile (APP) Services

G.59 Spatial Data Interchznge

FIPS PUB 173 Spatial Datc “ransfer Standard (SDTS). This standard is mandatory
in the acquisition and de ..opment of Government applications and programs
involving the transfer of dig.:u!l spatial data among heterogeneous computer systems.

G.6 GRAPHICS SERVICES
The followint subsections discuss selected recommended graphics services.

G.6.1 Two-Dimensional Graphics APl

FIPS PUB 120-1 Graphical Kernel System (GKS). GKS fulfills the requirement for
a language to program two-dimensional graphical objects that will be displayed or
plotted on appropriate devices (raster graphics and vector graphics devices).

G.6.2 Interactive and Three-Dimensional Graphics API

FIPS PUB 153 Programmer’s Hierarchical Interactive Graphics System (PHIGS).
PHIGS fulfills the requirements for a language to program two-dimensional and
three-dimensional graphical objects that will be displayed or plotted on appropriate
devices in interactive, high-performance environments, and for managing hierarchical
database structures containing graphics data.

G.7 NETWORK SERVICES
The following subsections discuss certain recommended network services.

G.7.1 Communication API for Protocol Independent Interfaces
Protocol Independent Interfaces (Plls) IEEE P1003.12, Draft 2.0. PII defines the
protocol-independent application interfaces to enable one process to communicate
with another local process or a remote process over a network.

G.7.2 Communication AP] for OS] Services

Open Systems Interconnection (OSI) Association Control Service Element
(ACSE)/Presentation Application Program Interfaces IEEE P1238. OSI ACSE
provides an API between applications and the OSI and presentation services.

G.7.3 File Transfer API

OSI API for File Transfer, Access, and Management (FTAM) IEEE P1238.1. FTAM
is designed for use as a standard application interface for file transfer, access, and
management applications.

G.7.4 Communications Protocols for OSI

FIPS PUB 146-1 Government Open System Interconnection Profile (GOSIP) Version
2. GOSIP protocols provide interoperability among applications in a heterogeneous
network. GOSIP is based on the Open Systems Interconnection (OSI) standards, the

Ads implementation Guide A G-§




Application Portabliity Profile (APP) Services

worldwide consensus standards for multivendor data communications based on OSI
protocols.

G.7.8S Communication API for Integrated Digital, Video, and Voice

Application Software Interface (ASI) Version 1 for accessing and administering
Integrated Services Digital Network (ISDN) services. ASI focuses on the definition of
a common application interface for accessing and administering ISDN services
provided by hardware commonly referred to in the vendor community as Network

Adaptors (NAs).

G.7.6 Communication AP] for Integrated Digital, Video, and Voice

NIST Planned FIPS on Integrated Services Digital Network (ISDN). The proposed
FIPS PUB compiles the existing North American ISDN User’'s Forum (NIUF)
agreements for ISDN as developed and approved in the NIUF as of November 1990.

G.7.7 Remote Procedure Call
OSF Distributed Computing Environment (DCE) Remote Procedure Call (RPC)

Componens. Distributed computing services include specifications for remote
procedure calls and distributed real-time support in heterogeneous networks.

G.7.8 Transparent Network Access to Remote Files

Transparent File Access (TFA) IEEE P1003.8, Draft 7. TFA includes capabilities for
managing files and transmitting data through heterogeneous networks in a manner
that is transparent (i.c., does not require knowledge of file location or of certain

access requirements) to the user.

G.7.9 Network Management
FIPS PUB 179 Government Network Management Profile (GNMP), Version 1.0. The
GNMP is the standard reference for all Federal Government agencies to use when

acquiring Network Management (NM) functions and services for computer and
communications systems and networks.

G.7.10 Electronic Messaging API

X.400-Based Electronic Messaging Application Program Interface (API) IEEE P1224.1,
Draft 3. X.400 provides electronic mail interoperability among heterogeneous
computer systems. X.400 is an international standard protocol definition. This API
defines an interface between the user of a mail system and the mail system.

G-6 Department of the Navy




Application Portabllity Profile (APP) Services

G.7.11 Directory Services API

Directory Services Application Program Interface (API) X.500 IEEE P1224.2. X.500
provides the interoperability of dictionary services among heterogeneous computer
systems. The Directory Services (DS) API defines a standard directory service user
agent interface to support application portability at the source-code level.

G.8 SECURITY SERVICES
No specifications are defined to support security services.

G.9 MANAGEMENT SERVICES
No specifications are defined to support management services.

G.10 NIST APP SPECIFICATIONS EVALUATIONS

The NIST APP evaluates recommended specifications for each of the APP services
and summarizes some of the pros and cons of selecting each specification. The
information is provided to managers, technical project leaders, and users to assist
them in evaluating these specifications for inclusion in application or organizational
profiles. Each specification is evaluated according to how well it meets the
requirements of a specific criterion. The criteria are Level Of Consensus (LOC),
Product AVailability (PAV), CoMPleteness (CMP), MATurity (MAT), STaBility
(STB), De Facto Usage (DFU), and PRoblems/Limitations (PRL). Definitions of
these criteria are provided in the NIST APP. Table G-1 presents the evaluations for
selected specifications.

Ada implementation Guide G-~7




Tabie G-1. Evelustions of NIST APP Specifications
CMP MAT SIB DEU B

Operating System Services
FIPS PUB 151-2 POSIX
POSIX SHELL IEEE 1003.2-1982
Realk-Time IEEE P1003.4
Security IEEE P1003.6

Human-Computer interface Services
Proposed FIPS PUB 158-1 XWindow

System
Draft XWindow Tookk IEEE P1295.1

Software Engineering Setvices
FIPS PUB 1198 Ada
FIPS PUB 160 C
FPS PUB 21-3 COBOL
FIPS PUB 69-1 FORTRAN
FIPS PUB 109 Pascal
ECMA PCTE

Data Management Services
Planned FIPS PUB 127-1 SQL
FIPS PUB 158 RDS
RDA

Duta imerchange Services
ODA/ODFF/ODL 1SO 8813
FIPS PUB 152 SGML
SPOL ISO 10180
EMPM ANSINISO 239.59
FIPS PUB 161 EDI
FIPS PUB 128 CGM
FIPS PUB 177 IGES
STEP ISP 10303
FIPS PUB 173 SDTS

Graphics Services
FIPS PUB 120-1 GKS
FIPS PUB 153 PHIGS

Network Servicss
" PHAP! EEE 01003.12
ASCE [EEE P1238
FTAM IEEE P1238.1
FIPS PUB 148-1 GOSIP 2
ISDN AS!
1SDN
DCE RPC
TFA [EEE P1003.8
FIPS PUB 179 GNMP
X.400 AP IEEE P1224.1
X.500 AP1 IEEE P1224.2

LEGEND -+ High evaluation

L0c PAY

L - N - B

O' ¢+ 4+t [-N-X 2 L3R 3K K 2% 2K

+ 4

OO+ ' 'O+

L I I 3

L 2R 3 2K 2R J

+ Ot e e

+

"'Q"'QO'

0 Average evaluation

Application Portabiiity Profile (APP) Services

L - 1
[~ X 3K 2 J

LR B B N
O+ + 4+ 4+ 4

QO+ 4
+ +

4 '+ +eO
+ 40+ 44+4+40

[- X J

+ ¢

$+40+"'00%F "
+4 044 "O++4+*' 'O

- Low evaluation

T 24+ O024+4+0

A - X 2K 4

(-2 2K 3K 2% 2N 4

(-X- X3

+ 4

+$+4+4T000OQFO

+ +
+ +
* -
+ 0
+ +
+ +
+ +
+ +
+ +
- 0
- (]
- 0
- 0
. 0
+ 0
+ +
+ +
+ +
+ +*
+ +
‘ -
0 0
0 0
0 +
- 0
0 +
+ +

Dopamnmtoftholhvy




Appendix H
Ada Binding Products

&

S

&

3

Ingres Corpomation

Integrated Computer Solutions

Intermetrics

MaseTech

Objective Interface Systemms, Inc.

Oracle Corporation

RR Software, Inc.

Rational

SU Corporation

Sidicon Graphics

Software Technology, Inc.

Sunrise Software International

| Verdix Corporation

Key: * Indicates Ads binding product is available

Adas implementation Guide




Ada Binding Products
Department of the Navy




Appendix |
Lessons Learned

Historically, the Department of Defense (DOD) has failed to take advantage of past
experiences in developing software systems. The process of reviewing past experiences
and formulating new decisions based on these experiences should be ongoing. It must
start from the beginning of the process and continue through development and into
deployment. The software process also should be adjusted for overall system size,
technical complexity, and development phase.

This appendix describes decisions and evaluations made about software system
developments that have led to lessons learned by the users of Ada in the commercial and
Government sectors. Figure I-1 presents a matrix of the lessons learned by project in
the following areas:

Standards and policy

Project management

Development process

Corporate knowledge and software development
Training

Resources and facilities

Support environment and tools

Reuse

Project costs.

In some cases, the information presented in the project descriptions came from internally
developed evaluations; in others, the information is based on externally developed
assessments. Note that, except for editorial changes, the descriptions are reproduced
here as submitted by the originators.

As the examples show, different projects often experienced similar problems and applied
similar remedies. Frequently, a series of non-software-related errors culminated in the
production of the wrong set of software components. The lessons learned from these and
other project experiences may help managers of new projects to avoid such problems.

Ads Implementation Guide -1




3 \;\%x

%

N
X

R

A
-

R

Try © limit the mamber of
vagisbiss in e developmant
process on the first project

Do a0t blame all problems on the
sofiware or Ads

Select a small dosbie project for
the first Ada sffort

Easure thet management
undarstands thet twols support

software euginesring, 80t

Esswre thet menagemant focuses
on e eoginsering aspecss of Ada,
808 oa Ads 88 & programxing

Department of the Navy




Figure I-1. Lessons

Leamed Matrix

7

/™

Vo

LA

“ff” &

E/ 2/

Use s waill-dafined, repentabis
process end methods for
doveloping sad maintsining
sobware

X X|X | X

X| X

10

Implement an active Baining
program in both Ada aad sofiwars

11

Ensure that adequels 7es0wross are

12

Have adequats configuration

13

Assems soltware euginesring
copabilitias before he project gets
under way

14

Do-tq-aum
developars overnight

15

Do ot fisld products befors they
are ready

16

Tailor the Dats Isem Descriptions
from MIL-STD-2167A

17

Do ut asgiect documentation

Ada Implementation Guide




Figure I-1. Lessons Learned Matrix

{;f

4”

A

F /ffx 7

18

Foducss s well os remse

X

X

19

Beware of the soltware pant
mosived from ewtsids sepositories

20

Do 8ot malie spot fi%es Withoug
proper changs coasrol

21

Have a tast swasagy thet includes
ngnssion nsting

Have 2 thorough ilegration pisn

Essure the Project Manager hes
sathority to direct offors aad

Clearly defins ths rols of the
Program Manager

Ensure that the Project Masager of
an Ada project is liserats in
softwars enginsering snd Ade

26

Establish s sysuam archisscture snd
stick with it

-4

Department of the Navy




Figure I-1. Lessons Learned Matrix

7

j‘v’

fa“‘ ,{,f‘p 7 /i .
7 x’/ C/fxﬂfg &

27

Apply configuation messgement
and Quality Asswrance (QA) o all
pars of the system regerdiess of
he language

28

Do ot ficod the wam with
uairained people and axpect them
o got wained “free” on the job

Enswre that wpper mensgernent asd
CM parsonne] understand that they
do 80t 8ead 10 know how ©
program in Ads 1 EARgS projects
wrines ia Ade

Provide periodic updass o non-
Ada groups ounsids the project

To we Ada effectively,
must be commitied 10 Ada

Ads requires an up-frost
investmant, patisace o wait for the
wp-frant invesunent, and patience
© walt for the pay back

are almost insvitsbls

Ada must be s0ld, ead axisting
eavirouments (end other
languages) must be “wn-s0ld”

Ada Implementation Guide




Figure I-1. Lessons Leamned Matrix

#
o
/8

fx*’?fff/xf G/

Support sad commitment from
ather developers and usars should
grow over time as the lsagusge has
tims 20 prove ftself

X

Teols ead adeqeats hardware ©©
num the twols ars seeded

Twining is s must

vital with both extersally
developed and intaraally developed
9 Ada can and should be wsed with
othor langueges
X

Department of the Navy




Figure I-1. Lessons Learned Matrix

1 Look ot the languags and the
comstucts 10 be used and decids ca
a8 eaviromment

2 Evalugts your nseds and hen

ovalunts the compilers that rvm en
your particuler platform

3 Lask at extaraal software programs

hat have 0 werk with your
pasticular program

Ada Implementation Guide




Figure I-1. Lessons Learned Matrix

7/

2,
7 cf;{;x’fé@f

4 Ll-h-hun
method for soosssing sxtersal
hardware inserfaces if the project
equipment has such imerfaces

X|X X

s Ramember that “optimization”
should minisise ihs cods sizs not
Just sumove “dead cods®

Department of the Navy




Ada implementation Guide




Figure I-1. Lessons Leamed Matrix

X
2 Tor wiming

X X X

X X
X} X| X
XX ]| X
X1X}|X
X

1-10 Department of the Navy




Figure I-1. Lessons Leamed Matri

&
!f“"‘" /. X//f% &,,c

3 | Coondinstion Suquenily wosives
the oot stention slbough & s ans
of he mave imperunt offons X x

4 | Vv herpe projeces, & is mendetory
that o8 adequutnly sined, qualified
Teshnioal Disective Autherity
esublished wnd fanceion for the

Suvstion of s projecs

5 Sefswers dovelupment planaing
and weniiering mast bs dous fem
e cnmt of Pull-Soals
Developmant and should ks 2 x x x
phossd appresch (Ls., “bulld o

__.-.u-),

G | Bven e bass emate plans requive
changes éwing sxecution

“h.“-xy

Ada implementation Guide »




it is eritical w have & semsemnbie
lovel of parfrmance within the
ol ont

Each dovelopmant afiert should be
menaged wnder the ssmamption et
thare will be & formal greductiea
delivary 39 DON and & soparste
DON-coatrelisd pest-deploymant
phase

Resmiresments spast bs wndarstond,
ond both Sormnl and informal
chacks en e progress o ment
thass goals sumet bs conducind
heeughout dovelopment

Beceuss pest-deployment suppent
‘will bs DON's ruspensbilisy, & s
oviical 19 bulld an adequate in-
house toam that is thormughly
familinr with e product befors
acouplesce

Lack of full program funding
commiansst snd support will have
a eagative impact on dsvelopusat
plms. Be prupared © cither sher
e cowne of and/er axmad
dulivary schadules

Producing o high-quality seftware-
basnd product thet merts I
opecified vequibep eats &5 & difficak
-k

No product is wuly axscised and
camted wnsil & vesches the targst
[ ]

1-12

Department of the Navy




)

Figure I-1

. Lessons Learned Matrix

A

ff J__ e"’

Ada Implementation Guide

I-13




Figure I-1. Lessons Learned Matrix

&
‘/Lm

x)

y*

/ ?
2

&

7,

Ll /&

9 Do ast disregand critical MIL-STD
e moducs i s cantract
saquiraments, tad adecastely plen
Sor and enscuts the Goverament's
wole b aanwe quality end dalivery

X

X

10 Baswss tht sdequens dovelupmens

11 Do ast ist events cziarmal ©© the

schaduls isfiance the program.
Develep input end output critarie
for mejor suilestonss end odhare 0
them. R is very assy % build the
wiung sshware

12 Where pemible, we veal
production hasdwars and/or
commarcial pretetypes 10 decrenss
the ameunt and scops of simmistion

13 Do ast approve systoms until
reguirmests e et becnus when
SYNER requiNunenis are 88t et
and “es-bull” sysums s
approved, ths contactor is

1-14

Department of the Navy




Figure I-1. Lessons Learned Matrix

outnaen vgending $s ws of thind-
Pty sslwuse and the way B s » Yo
std end idetifiad

8 l-mnu—q— [
dovelopmant

Ada implementation Guide

i—15




Figure I-1. Lessons Learned Matrix

77

7 e

T4 47

f@" «‘ffff f!ff 7

X

X

XX

Progranners sexuire 4 10 9 mosihs

of waining befors they becoms
' X X
3 [ Milicwry wwmsiors ofien resukt in s
loss of invesenent in Ada Waining
X X
4 | Sywems wigiaally wrines in
Innguages that pradate Ads thet
fopebubat ey X |x | x
[ Adin Saciliveins ress
X | X | X X
6 Adn lsnds isolf % efficiont coding
aad high progyammer productivity X X

—-18

Department of the Navy




Figure I-1. Lessons Learned Matrix

Y/

7/

‘@ S
£/

Develapmant wols ere essential

X

X

X

X

cmmining | ]
wuthods snd wels 8 bs wead chould be
asweind. Quamtinative svalustion of
e axpanded veommess shovld kad o
eunr enimans for e wask
commanplatd

‘Ths Ade cods iteslf will bave
mejor architectural and design
impact en & sysiem; therelon, the
o mmnt bs worked on
simubansvnly

A project should alweys vy
bulld o istle and st & listie,
Sullding and msting the barder
things (st (s.5, symem services
d commsunications)

A project should always asampt %0
inveive s production hasdwars s
early in the program as feasibie

The wam must bs wall mained in
s wes of supplied Wols, and the
tonks must work as advertised

Adhemacs 10 good enginsering
prections is necesary whaa
dusigning the systom and itz
bardwem and soltwan

Ads Implementation Guide

&

2
j@f@ff/lsdf@"/ &

1-17




Figure I-1. Lessons Learned Matrix

Y.

%

’f’f?’}% 77

P AIL)

7,

X

X

“The eed 10 imserfece with sther
languegs pregrums mey constirein
e type of Ads fectures that can be
wed

To enswre programming
wniformity, s style guide
should be deveioped sad wsed
across al] developer wams

cmrve is Slower

Incressed facilities and memory are
seguired (o accommodate Ada code

-18

Department of the Navy




Figure I-1. Lessons Learned Matrix

&
jl.enal

VA

#

72

Sems sshtware dovelopment ol
v immetwe snd heve 5ot base
proven for many epplications

X

X

X

‘Tellering of DOD software
dovelopment standards must b
addvassed t» acosmmoduts Ade-
wmique capabilision

Abhough the sduption of Ads was
envisisned to mbasce he sehware
dovelopment process, s of Ade
@oes pot guarantes sound solware
enginsering practics

Swics csafiguration masegement
and contrel are vaquired © enferce
disciplins ®© counter complexity-
induced sondusien

skillad in Ade is kmised

Tha evailabls pooi of developens

Fow compilurs sud suppont wobs
are availabis to suppent
infermation systams dovelopment
i the IBM eavircamests thet we

Systems doveloped in Ada mey bs
meve maintninsbis thes Sose
wrine in COBOL

In principle, pontabilisy is enewred
by doveloping cods in Ads;
howevar, in praceios, partabllisy i
]

Ada Iimplementation Guide

-1



Lessons
Department of the Navy




Lessons Leamed

1.1 STRATCOM—COMPUTER CENTER, OFFUTT AIR FORCE BASE
STRATCOM—Computer Center has been using Ada since 1989 in many programs and
projects. The center has built small systems (3,000 lines of code) and some medium
systems (over 50,000 lines of code). Lessons learned from this work, which is mainly
in intelligent databases, are described below.

Lesson 1: Visualize Ada as supporting an engineering approach to sofiware.

Lesson 2: Do not anticipate that use of Ada will decrease development time, particularly
on the first few projects.

Lesson 3: Try to limit the number of variables in the development process (e.g., beta
copies of software, new tools) on the first project. Using too many variables will make
it difficult to trace problems.

Lesson 4: Do not blame all problems on the sofiware or Ada. Ada will often be blamed
for anything and everything (whether it deserves the blame or not). Management often
attributes to Ada other problems encountered in the use of Graphical User Interfaces
(GUIs) or Database Management Systems (DBMSs).

Lesson S: Select a small doable project for the first Ada effort.

Lesson 6: Use tools. The days of the “all-I-need-is-a-compiler” are over. Software
engineering is a complicated business. Tools can be a "force multiplier” that helps the
engineer boost productivity, establish consistency across software modules, and enhance
understanding. Use of flowcharts is no longer sufficient.

Lesson 7: Ensure that management understands that tools support software engineering,
not programming. Management should move from managing just programmers to
helping engineers engineer software solutions.

Lesson 8: Ensure that management focuses on the engineering aspects of Ada, not on
Ada as a programming language. As a language, Ada appears to be complicated, but
Ada’s intricacies support sound software engineering principles. Viewed in isolation,
Ada is often seen as overwhelming. In the perspective of large systems software
development, however, the features of the language take on a much more valuable
meaning.

Lesson 9: Use a well-defined, repeatable process and methods for developing and
maintaining software.

Ada Implementation Guide 1-21




Lessons Leamed
Lesson 10: Implemen: an active training program in both Ada and software engineering.

Lesson 11: Ensure that adequate resources (e.g., hardware capacity, disk space, tools)
are available.

Lesson 12: Have adequate configuration management. A well-structured approach to
development of a large project will require several program units, especially in an object-
oriented environment. Proper management of these units is crucial when a multiperson
team is updating the modules.

Lesson 13: Assess software engineering capabilities before the project gets under way.
Management should know what the organization’s weaknesses are and how they will
affect an intense Ada or software engineering project.

Lesson 14: Do not expect to transform maintenance personnel into developers overnight.

Lesson 15: Do not field products before they are ready. Management tends to scrutinize
Ada projects more closely than other projects (perhaps because it expects them to fail).
This scrutiny often leads to delivering products before they are fully tested.

Lesson 16: Tailor the Data liem Descriptions (DIDs) from Military Standard (MIL-
STD)-21674.

Lesson 17: Do not neglect documentation. Well-written Ada is a must, but the code is
not totally self-documenting. Requirements, design, and other life-cycle management
documents also are needed to give the total development picture. You must provide a
vehicle to update documentation (e.g., flowcharts, data flow diagrams) that is detached
from the code as the code changes.

Lesson 18: Use Commercial-Off-The-Shelf (COTS) products as well as reuse
repositories, where available. Bindings to existing software products should be written,
tested, and then reused. Avoid reinventing what has been done before. A little research
into existing software may save time in the long run.

Lesson 19: Beware of the software part received from outside repositories. Many parts
contain useless code. Real applications need code that is done well and rigorously tested.

Lesson 20: Do not make spot fixes without proper change control.
Lesson 21: Have a test strategy that includes regression testing,

Lesson 22: Have a thorough integrarion plan.

1—-22 Department of the Navy

rmmememcceeem—————-




Lessons Leamed
Lesson 23: Ensure the Project Manager has authority to direct efforts and resources.
Lesson 24: Clearly define the role of the Program Manager.

Lesson 25: Ensure that the Project Manager of an Ada project is literate in software
engineering and Ada.

Lesson 26: Establish a system architecture (e.g., open system, client-server) and stick
with it.

Lesson 27: Apply configuration management and Quality Assurance (QA) to all parts
of the system (e.g., requirements, design, Ada code, database code, COTS products)

regardless of the language.

Lesson 28: Do not flood the team with untrained people and expect them to get trained
“free” on the job.

Lesson 29: Ensure that upper management and configuration management personnel
understand that they do not need to know how to program in Ada to manage projects
written in Ada. To be effective, however, personnel does need to understand a little
about Ada and software engineering.

Lesson 30: Provide periodic updates to non-Ada groups outside the project. People not
involved in Ada projects tend to ignore the Ada projects. '

L2 WELLS FARGO NIKKO INVESTMENT ADVISORS

Wells Fargo Nikko Investment Advisors (WFNIA) is a joint venture between Wells
Fargo (California) and Nikko Securities (Japan). WFNIA, a leader in the institutional
investment management service industry, manages large 'sums of money at very low
percentage rates. The computer software it uses is an important competitive differential.
The paragraphs below summarize the lessons learned from WFNIA efforts.

Lesson 1: 7o use Ada effectively, management at the highest level must be committed
to Ada.

Lesson 2: Ada requires an up-front investment, patience to wait for the up-front
investment, and patience 1o wait for the pay back.

Lesson 3: Some criticism, pessimism, and panic are almost inevitable. Management
must be able to see through the storm to the goal ahead.

Ada Implementation Guide . 1-23




Lessons Leamed

Lesson 4: Ada must be sold, and existing environments (and other languages) must be
“un-sold. *

Lesson S: Support and commitment from other developers and users should grow over
time as the language has time to prove itself.

Lesson 6: Tools and adequate hardware to run the tools are needed.

Lesson 7: Training is a must. Ada-specific training and, more important, software
engineering training are required.

Lesson 8: A software repository foundation is vital with both externally developed and
internally developed software.

Lesson 9: Ada can and should be used with other languages. When Ada is mixed with
other languages, the Ada portion should be approximately 85%.

L3 B-2 AIRCREW TRAINING DEVICES
Aviation Week & Space Technology reports:

The Air Force/contractor team is developing the B-2 simulators concurrently with

the aircraft in a program that stresses close ties between aircraft and simulator

personnel and ease of modification of the aircraft.

From the training perspeciive alone, the program presents three major challenges:
® To develop the simulators and aircraft concurrently

¢ To have the simulators ready for use before the first aircraft

¢ To ensure the simulators match the current aircraft, but are designed to be
updated easily.

(Aviation Week & Space Technology, 20 August 1990, pages 34-42)

Stealth Training

The B-2 is the penetrating bomber of the future. The aircraft incorporates low-
observable or "stealth” technologies to reduce its detectable signature in a wide array of

SEensSor spectra.

i—-24 Department of the Navy




Lessons Leamed

Training the aircrews to effectively ©'~ and apply a stealth aircraft presents unique
challenges. To solve those challenges, the U.S. Air Force turned to CAE-Link, just as
it did earlier for the F-117A stealth fighter/bomber and for the SR-71 Blackbird Program.

The Aircrew Training Devices (ATDs) being developed by CAE-Link for the B-2
Advanced Technology Bomber total training system “provide fidelity and training
capability beyond any device yet developed,” according to the Air Force ATD Program
Manager.

The B-2 ATD program has taken a revolutionary approach to training concurrency, and
the simulators bemg developed represent the largest rnl-nme simulation application of
the Ada programming language.

Under a competitively won contract, CAE-Link is producing three Weapon System
Trainers (WSTs), two Mission Trainers (MTs) and a System Support Center (SSC).
Northrop, the aircraft prime manufacturer, has overall responsibility for aircrew and
maintenance training.

The Electronic Combat Environment for the B-2 ATDs provides a high-density
environment of up to 12,000 threats per mission, selected from a threat library of 800
types such as radar emitters, surface-to-air missiles, antiaircraft, and other aircraft. Of
the 12,000 threats, up to 2,000 may be located in the 50,000-square-mile mission area,
and 256 may be active within the radar horizon of the aircraft. In effect, B-2 aircrews
will be able to fly simulated training missions anywhere in the world against any
contemporary mission environment.

This high-fidelity, real-time threat environment features dynamic reaction, weapon
deployment with realistic missile flyouts, terrain occulting, and networking effects. In
addition to the automatic reaction to the flight of -the B-2 through the environment,
commands are accepted in real time from the instructional system to change the operation
of threats or to control the overall execution of the simulation. Examples of the
commands accepted are as follows:

® Move, copy, add, delete threats

Set threats to specific modes (search, track, launch, off)
Inhibit or activate threats

Inhibit or initiate weapon launch

Initiate airborne interceptor attacks.

The real-time threat environment is supported by an off-line threat database that includes
location, operational tactics, networking, signal parameters, weapon characteristics,
moving platform attributes, and Electronic Counter-Countermeasures (ECCM)

Ada Implementation Guide . 1-25




Lessons Leamed

capabilities. The threat database uses Government-provided standard intelligence tapes
as a primary source of input data. This facilitates automation of the scenario-generation
process by providing an automatic threat laydown with global coverage, which is suitable
for mission rehearsal. The tape update capability also provides a rapid and convenient
means of maintaining currency with the latest data available from the intelligence
community. A full-screen edit capability is provided to allow manual creation, tailoring,
and verification of threat data.

The B-2 computational system is by far the largest real-time simulation application of
Ada to date. It is capable of handling 60 Million Instructions Per Second (MIPS). By
comparison, the B-2 simulator has seven times the computing capacity of a B-52 WST.

The B-2 ATD system has more than 1.7 million lines of Ada code. In addition, the
simulator uses 1.7 million of the 2 million lines of aircraft code to operate the Aircraft
Control Unit Emulators (ACUEs). The emulators, commercial versions of the Paramax
aircraft onboard computers, have slightly enhanced capability and memory. (Software
for the B-2 aircraft is not written in Ada.)

Concurrent Computer Corporation is supplying CAE-Link with Model 3280MPS
superminicomputers with 19 processors per simulator. The 3280s are connected by high-
speed distributed bus links so that they can share memory, processors, and other
resources—more than 60 times faster than a Local Area Network (LAN) connection
would permit. Initially, only one-half the computational system will be used with 50%
as spare; the architecture also permits 100% expansion.

Lesson 1: In the early Design Phase, capacity and performance estimates should target
resources that provide at least a factor of 2 reserve. Such reserve capacity will limit the
risk of contention’s developing later.

When the decision was made in 1984 to use Ada in the B-2 simulators, the Ada language
had only recently been frozen and a validated Ada compiler did not exist.

Lesson 2: When COTS language development products are 1o be used, project staff
should expend as much effort as possible to determine which products best meet project
needs. Technical, management, and business-sensitive issues and concerns need to be
identified and evaluated, and contingencies need to be developed where problems persist.

Specially trained CAE-Link Ada developers, working as a team with experts provided
by the Government and the Software Engineering Institute (SEI), wrote the software.
CAE-Link brought in experts from Camegie-Mellon University and others to validate the

system independently.

1—~26 Department of the Navy




Lessons Leamed

Initially, it was difficult to learmm how to apply Ada. The B-2 ATD, however, is now
reaping many of the prized benefits of the DOD’s new standard language. The B-2
training program has a proven set of integrated Ada-based tools and a disciplined,
repeatable process that fully supports all life-cycle phases. The investment in committing
to Ada is paying for itself again and again in the modification process.

Lesson 3: If well-thought-out engineering and management plans are implemented with
enough resources, the project will be successful. Moreover, a proven methodology can
be used repetitively to evolve the currens and new systems, based on the low-risk reused

assets.

The B-2 Ada tool set includes a specially developed Ada-based configuration management
tool and a closely integrated load-build tool. Both tools were written in Ada and meet
CAE-Link’s standard policies. These tools are mature today; however, process
improvement is considered a normal part of the continuing CAE-Link process. "Our
attitude,” says CAE-Link B-2 Program Manager Keith Hickling, "is that improvement
is always possible.” For example, in the early stages of the program it took nearly 6
months to train an Ada engineer; today, however, the training time is closer to 6 weeks,
and the goal is to reduce it to only 3 weeks.

"We are also continually looking at ways to improve engineering productivity,” Hickling
points out. Software metrics are key. "Metrics help us isolate the right process areas
to improve.” Improvements are then planned as part of the normal engineering change
process, resulting in a process that continually gets better. "We are training our
engineers faster, they are becoming productive sooner, and we are increasing our
reusable Ada software. This reduces cost of modifications for the B-2 ATD and benefits
the company and the customer."”

The B-2 ATD program has proven -that the benefits of Ada are genuine, "but only,”
Hickling notes, "if the front-end investment is made in a sound software process, tool-
set, and training."”

1.4 BOEING MILITARY AIRCRAFT (WICHITA, KANSAS)

Boeing is involved in many military and commercial aircraft ventures. Lessons learned
from these ventures are related to the engineering support area, which supports the
software tools and research needs for the aircraft development programs. The paragraphs
below summarize lessons learned as they relate to:

¢ Portability (Lessons 1 and 2)

o Separate Compilation (Lesson 3)
¢ Readability (Lesson 4).

Ads Implementation Guide , 1-27




Lessons Leamed

L4.1 Portability

Lesson 1: Careful technical management of the development of code directives,
guidelines, and formulations enables project staff to maximize the amount of fully
portable code that is produced. The portability of Ada programs between
implementation is now good and has improved considerably since the initial releases of
Ada implementations. What is significant relative to other languages is that the class of
problems that can be written without requiring implementation-dependent code is larger
than in most other languages. This class includes tasking and time-dependent programs.

Lesson 2: The availability of a large suite of formal validation tests and use of an
independent testing organization help ensure the basic qualifications of vendor-supplied
products. Use of these tests and an independent team do not replace project staff’s
detailed analysis and testing, but they do help eliminate marginal products. This
validation process will become more important as we move to Ada 94 and other object-

based languages (e.g., C++).

The Ada Compiler Validation Capability (ACVC) tests and the Language Control Board
have been fairly successful in avoiding the creation of incompatible versions of Ada.
This reduction in the number of incompatible versions helps promote portability. Some
problems still exist in this area. For example, some implementations do not support
preemptive priority scheduling, presumably because the ACVC tests do not test for it.
The situation in Ada, however, is much better than in many other languages (e.g., C,
C++, and FORTRAN).

1.4.2 Separate Compilation

Ada provides for the separate compilation of units and will enforce strong typing between
separately compiled units. This is a significant advance over the independent compilation
of other languages in which type checking is often lost between units (or deferred until
run time). A compilation system can provide an automatic recompilation facility to
prevent dependent units from becoming out of date. Although this facility is not
available on all implementations, the checking and reporting on errors when obsolete
units are encountered is universal and very helpful.

Lesson 3: Lessons learned with respect to portability (see Lessons 1 and 2) also apply
to separate compilation. An Ada programmer quickly leams to take for granted the
separate compilation and the type-safe checking it provides and can easily forget how
difficult it is to track down errors when using “independent” compilation in other
languages. Neither the fact that Ada’s separate compilation facility becomes invisible to
users nor the fact that it was one of the explicit goals of the language the achievement
of which is not surprising should detract from the value that the facility provides.

1-28 Department of the Navy




Lessons Leamed

L.4.3 Readability

Lesson 4: Controlled use of Ada language constructs results in uniform and minimally
complex code, thus maximizing readability. 1t is possible to write some very obscure
code in Ada by using overloading and derived types and multiple levels of generic units.
In general, however, the language permits most programming tasks to be coded in a
fairly straightforward way. This language power facilitates development of readable
programs. Programmers do not often have to "code around” limitations in the language
(or use vendor-specific extensions) as is too often necessary in other languages (e.g.,
doing dynamic allocation in FORTRAN, operating on unconstrained types in standard
Pascal, writing functions in COBOL).

LS COULTER ELECTRONICS: Ada FOR CYTOMETRY
Coulter Electronics develops machines to analyze blood. The paragraphs below
summarize lessons learned on three small Ada projects that run on a Personal Computer

(PC) platform.

Lesson 1: Look at the language and the constructs to be used and decide on an
environment.

Lesson 2: Evaluate your needs and then evaluate the compilers that run on your
Dparticular platform.

Lesson 3: Look at external software programs that have to work with your particular
program,

Lesson 4: Ensure that the compiler has a method for accessing external hardware
interfaces if the project equipment has such interfaces.

Lesson 5: Remember that "optimization™ should minimize the code size not just remove
*dead code.*

Lesson 6: Recognize that reuse can be a major facior in code development if looked at
Jrom the beginning.

L.6 AN/UYS-2A PROJECT

The AN/UYS-2A, which is under the direction of the Naval Sea Systems Command
(NAVSEA) PMO-428, is a programmable, data flow, high-throughput, modular Navy
standard signal processor. The AN/UYS-2A consists of a family of signal processors
that meets the diverse environmental requirements of ship, shore, submarine, and aircraft
Anti-Submarine Warfare (ASW) platforms. Because of its design, the AN/UYS-2A is
easier to program and costs less over the system life cycle than the previous system. The

Ada Implementation Guide ) i-29




Lessons Leamed

AN/UYS-2A is a Standard Embedded Computer Resource (SECR) and is not designed
to meet or counter any specific threat on a stand-alone basis.

The basic AN/UYS-2A is composed of different combinations of seven Functional
Elements (FEs): Arithmetic Processors (APs), Input Signal Conditioner (ISC), Global
Memories (GMs), Input/Output Processors (ICPs), a Command Program Processor
(CPP), a Scheduler (SCH), and a Data Transfer Network (DTN). Additional functional
clements may be added to the basic AN/UYS-2A processing capabilities. These elements
can be matched to each weapon system’s requirements by selecting the combination of
APs, GMs, IOPs, and ISCs that best satisfy the requirements of the individual weapon
system. The AN/UYS-2A is also modular at the logistics level. That is, each of the
seven functional elements is built from a common set of format E Standard Electronic
Module (SEM) cards. Although the terminology has changed from SEM to Digital
Electronic Module (DEM), many documents still use the term SEM. The terms are

interchangeable.

Lesson 1: When selecting a host computer as the Applicction Development Facility,
ensure the selected host computer supports Ada so that application developers do not
need to purchase multiple hosts to develop application softiware. The SEM B AN/UYS-
2’s CPP used an embedded AN/UYK-44(V) card set that ran the Navy's Compiler
Monitor System-2 (CMS-2) language. Because the CMS-2 language software
development tools reside on the VAX environment, the decision was made to select the
VAX 11/780 as the ADF host computer. The SEM B AN/UYS-2's CPP uses a Motorola
68020 architecture and was required to use Ada as the AN/UYS-2 Command Program
language. Unfortunately, an Ada M68020 cross-compiler was not available for the VAX
11/780; therefore, the decision was made to use a Telesoft Ada compiler environment
running on a Sun platform.

Lesson 2: When selecting Ada products, ensure that the Ada vendor can provide a full
spectrum of products (i.e., hosts, cross compilers, Run-time Kernels). Avoid using
multiple vendors when possible. The Ada environment selected was a combination of
Telesoft’s compiler and Ready’s Run-Time Ada (RTAda) extensions. The chronological
sequence of events was as follows:

® RTAda was purchased from Ready Systems.

® Ready Systems contracted with Telesoft for the Ada compiler and run-time

interface code.
¢ Ready Systems modified the run-time code to support the Ada Run-Time Executive
(ARTX).
1-30 Department of the Navy




Lessons Leamed

e Ready Systems integrated, sold, and maintained the RTAda product for AN/UYS-
2A.

¢ The internal contract agreement between Ready Systems and Telesoft expired on
31 December 1990.

Ready Systems stopped selling and supporting the RTAda product.
The AN/UYS-2 customer could not purchase the RTAda product or services.

AT&T contracted with Telesoft to develop a Teleseft Run-Time Environment
(TeleAdaExec). -

Lesson 3: Select a well-established Ada vendor who demonstrates willingness to help
software developers move code to new versions of their compilers. The Telesoft compiler
was upgraded several times during the SEM B AN/UYS-2A development effort. Version
1.3 was upgraded to 4.1A and 4.1A to 4.1C. Although the modifications enhanced the
compiler by providing more complete data and path checking and greater code efficiency,
they resulted in additional compiler restrictions. Consequently, some Command Program
Ada code had to be rewritten so that it would be compatible with the newer compiler

version.

Lesson 4: Establish a close working relationship with the Ada vendor and define project
needs as early as possible. Plan Ada upgrades in a systematic and controlled manner.
On the AN/UYS-2A project, special efforts were made in working with Telesoft to
determine the direction of future compiler upgrades. Project management and staff also
tried to communicate to Telesoft the evolving program needs and concerns.

1.7 Ada EXPERIENCE AT THE NAVAL RESEARCH AND DEVELOPMENT
CENTER

In 1988, the support staff and the contractor of the Naval Research and Development

(NRaD) Center Code 924 began the transition from use of CMS-2 and its traditional

software architecture to Ada and an object-based design philosophy. This change was

prompted by the decline of the then-current product line into a caretaker status, without

funds to match the magnitude of knowledge needed to protect Government interests.

The situation presented a rare opportunity both to accept the challenge of transitioning
from CMS-2 to Ada and to document that experience. Contracting was being performed
under a time-and-materials contract, thereby simplifying statistical measurements because
such contracts are monitored on a labor-hour basis. The new software products to be
implemented in Ada included CMS-2 source analysis tools; data reduction programs; and
real-time, interactive PC-based products. It should be noted that comparing the statistical

Ada Implementation Guide B , 1-31




Lessons Leamed

numbers of one project to another is difficult because there are so many variables. It is
better to compare baseline to baseline within a given project. Even then there can be

distortions.

The paragraphs below summarize the lessons learned from a management perspective
rather than from a programmer’s perspective. Programmers would be more interested

in language-specific application lessons.

Lesson 1: The transition to object-based design and use of Ada enhanced productivity.
It decreased integration time because there were fewer errors and less need to rework
code. The older CMS-2 software engineering process as applied to systems
programming in NRaD yielded a productivity rate of 250 Source Lines Of Code Per Staff
Month (SLOC/SM). Transitioning to Ada and adopting an object-based approach
increased the productivity rate by 24% (i.e., 310 SLOC/SM). The expressive power of
Ada also increased productivity. Function Point (FP) productivity tables show that an
FP implemented in CMS-2 requires approximately 105 SLOC, whereas Ada only
requires 70 SLOC. The productivity advantages became apparent to the NRaD support
staff as a result of Ada’s support of abstraction and encapsulation and the rapidity with
which the Integration and Test Phase of a given implementation was completed.

An analysis of the errors encountered during the production process showed a 21%
reduction in errors. Although industry samplings show even greater reduction (i.e.,
24%), further analysis is required to ensure that the basis for comparison is consistent.
Code 924 staff believe that their figure represents a more arduous test process. Factors
contributing to this improvement are the level of error checking in Ada compilers, use
of Ada features that support a self-documenting style, and implementation of information-
hiding concepts that reduce the side effects found from the use of traditional common

stores.

Lesson 2: The use of automated tools and Ada have enhanced our ability to maintain
developed products and their documentation. Maintainability has been greatly enhanced.
Use of a software engineering process that combines the use of Ada as a Program Design
Language (PDL) and emphasis on code readability has allowed errors to be corrected
rapidly. Development and use of an Ada Reuse Library Browser (ARLB) further
enhanced maintainability. The ARLB allows the programmer to rapidly traverse call
trees and WITH dependencies to focus on individual package bodies where source and
design representation modifications are made interactively. The ARLB, supported by
disciplined programming standards, has led to automated design document production
derived from the Ada source library.

Lesson 3: Project managemen: should expect that at least 50% of the development time
will be spens in the Requirements Analysis and Design Phases. Deriving the objects and

1-32 Department of the Navy




Lessons Leamed

their associated operations into Ada package specifications is an iterative process
requiring considerable time and interaction among the lead designers. Elaborating a
design to implement those objects and operations, using an Ada PDL, into the Ada
package bodies represents an additional up-front investment. Patience was required
because the overall design process consumed 50% of the implementation time. After
coding began, however, it progressed rapidly and integration occurred quickly with fewer
errors. The overall schedule (in months) seemed to be the same as that for a CMS-2
program; however, a smaller staff was required. We are not sure whether increasing the
number of staff members would shorten the schedule.

Lesson 4: Aritude is a key factor in transitioning engineering personnel to modern
software engineering and Ada. Success will only come from a well-motivated team that
is committed to the tool, technology, and project.

Training is critical to preventing the application of Ada in the context of traditional CMS-
2 design disciplines. The Ada language was designed to support more modern software
engineering approaches and should be used in that context. The critical paradigm shift
is one from the classical hierarchy of processes to one of object orientation. For most
programmers, this shift can be achieved in 4 to 9 months through a combination of
classroom training and on-the-job experience. New college graduates adapt quickly.
Many of the older CMS-2 programmers may never make the transition. Older
programmers should not be forced into a position of resistance to change. To be
successful, the job must be in the hands of believers.

Traditional CMS-2 systems have been built with a specific computer in mind. The
software was dependent on the machine-sensitive constructs of the language of
implementation and the service calls of the chosen executive. Dialect difference between
implementations of purported standard languages and operating systems have limited the
market of the implemented systems to hardware supported by the compiler or operating
system vendor. With Ada’s rigorous standards, code has benefited from the ability to
draw software components from a common library and use compilers of multiple vendors
to place its products on a variety of target hardware—an important consideration in an -
era of migration from gray boxes to the richer mix of architectures in the commercial
arena.

1.8 TACTICAL AIRCRAFT MISSION PLANNING SYSTEM

The Tactical Aircraft Mission Planning System (TAMPS) is hosted on the Navy’s
standard Desktop Computer (DTC-2). With the release of the New Tactical Advanced
Computer (TAC-3) as an upgrade replacement for the DTC-2, Naval Air Warfare
Center, Aircraft Division Warminster (NAWC-AD WAR) is tasked to evaluate the
TAMPS software portability to the TAC-3 platform.

Ada Implementation Guide _ 1-33




Lessons Leamed

The subsections below identify problems associated with porting TAMPS software from
the DTC-2 to the TAC-3 platform and illustrate the magnitude of each problem.

1.8.1 TAMPS TAC-3 Hardware and Software Configuration

The TAC-3 hardware suite, delivered to the NAWC TAMPS laboratory on 13 July 1992,
consisted of the Hewlett-Packard (HP) 9000 Series 750 with 128 megabytes (MB) of
memory, two 1.2-gigabyte (GB) disk drives, one 4-millimeter (mm) Digital Audio Tape
(DAT) drive, and one monitor. The TAC-3 software included the HP-UX Operating
System, the Irvine Compiler Corporation (ICC) Ada compiler, an HP-UX FORTRAN
compiler, and an HP-UX C compiler. This system configuration is only sufficient to
recompile and to evaluate TAMPS code portability. A complete hardware suite is
required to evaluate TAMPS executability after all compilation errors have been

resolved.

1.8.2 TAMPS Evaluation Results

NAWC used the TAMPS 5.0x3 source code to evaluate its portability from the DTC-2
to the TAC-3 platform. The evaluation task was divided into the following areas:
Hardware, Operating System, Compiler and Support Software, and Peripheral and
Device Driver. The subsections below list problems uncovered for this task for each
area and provide impact assessments.

1.8.2.1 TAMPS Hardware Assessment

Because the internal data representation of the two machines is the same, the TAMPS
databases can be transferred to the TAC-3 hardware and used without any conversion.
NAWC wrote a routine to read or write data onto a file on the DTC-2 and used the same
routine to read the data back onto the TAC-3. The results showed that the internal data
representation on both systems was the same. BTG, Inc. (i.e., the TAC-3 technical
support contractor) confirmed our results.

The TAC-3 graphics processors support two independent workstations and a DBA station
with X11R4 libraries, which will satisfy TAMPS requirements. TAMPS software,
however, needs to be tesied on the TAC-3 hardware to confirm that all TAMPS graphics
requirements will run without further software modifications.

1.8.2.2 TAMPS Software Assessment

After the TAC-3 hardware suite was set up, NAWC began TAMPS software assessment.
The HP-UX Operating System (System V), ICC Ada compiler, HP-UX FORTRAN
compiler, HP-UX C compiler, and X11R4 libraries were used to assess TAMPS code.

The Ada, C, and FORTRAN compilers were installed and verified. Then the required
libraries were created as indicated in TAMPS makefiles. Because the "makefile®
commands on the two systems were different, new TAMPS makefiles were written to

-

1-34 Department of the Navy




Lessons Leamed
recompile TAMPS on HP-UX.

The HP Window Manager (Vuewm) and X11R4 libraries supplied with HP-UX were
tested by running standard X-based applications. In addition, the manual pages for the
Vuewm were compared with those of the Motif Window Manager for discrepancies. A
list of system calls in TAMPS was gathered by the UNIX “grep® command. The
parameters and usage of the system calls were compared to determine the differences.
Ada, FORTRAN, and C files were recompiled, and error listings were examined to
determine the problems and solutions.

Because of the incompatibilities between the ICC Ada compiler and the Sun Ada
compiler, NAWC is acquiring the Alsys Ada compiler to perform another TAMPS Ada
code assessment at the NAWC laboratory.

Lesson 1: Before selecting vendor products, it is important to test them extensively to
ensure that they meet a project’s specific needs.

1.8.2.3 Operating System

The operating environment, Vuewm, is an X11 window manager based upon the Motif
Window Manager (mwm, version 1.1). Vuewm is an integral part of the HP Visual
User Environment (HP VUE). It communicates with and facilitates access to the other
components in the environment. Vuewm provides the same window management and
limited session management functionality as mwm. It allows the user to control window
size, position, state (iconic or normal), input focus ownership, and the like. TAMPS will
be able to run in this environment with little problem.

Most of the system calls used in TAMPS (DTC-2/BSD Operating System) are compatible
with those in the TAC-3 (System V Operating System) except for the following types of

problems:

¢ Different constants

¢ Function names

¢ Unsupported asynchronous Input/Output (1/0)
¢ System calls that are not in TAC-3.

All shared memory calls are compatible between the DTC-2 and the TAC-3 svstem.
This area needs to be tested when all of the other problems are resolved to confirm that
TAMPS will run without further software modifications.

1.8.2.4 Compiler and Support Software

Of the 55 C files within TAMPS code, 44 files were compiled without errors and 11 files
(or 20%) could not be compiled because of the following types of problems:

Ads Implementation Guide 1-3%




Lessons Leamed

* Different library functions
¢ The nonportable code for system functions in the Computer Software Configuration

Items (CSCls).

For all C implementations, new code had to be generated to handle the library functions
and nonportable code problems.

All TAMPS FORTRAN code has been recompiled in the TAC-3 system with the HP-UX
FORTRAN compiler. Of the 3,453 FORTRAN files within TAMPS code, 3,392 files
(98%) were compiled without errors and 61 files (or 2%) could not be compiled.
Problems found while recompiling TAMPS FORTRAN code are as follows:

1-36

Overlapping data initializations. The FORTRAN compiler does not allow a
variable to be initialized more than once in a data statement.

Error due 1o the alignment in the common block. Integer variable must start at an
odd address.

Explicit definition of format statement needed.

Character string referenced out of range. A character string is defined with a
length N and later used with a length of N+m.

Nonlogical expression in IF/DO WHILE statement. An integer variable is used as
a logical variable.

Nonpositive label. A label of zero is used in TAMPS code. A label must be
within the range of 1 to 99999.

Argument with the same name as INTRINSIC function. TAMPS code uses the
INTRINSIC function "FLOAT" as one of the arguments in a parameter to a
subroutine.

Adjustable array in common block. In a few places, TAMPS code defined an
array in a common block as:

- Integer length
- Common XXX / Array YYY(LENGTH) /.

Department of the Navy




Lessons Leamed

This FORTRAN compiler cannot figure out the size of LENGTH because it is
declared but undefined at this time. Therefore, it cannot declare the array YYY.

These FORTRAN problems have a minimal impact on TAMPS code.

All TAMPS Ada code has been recompiled in the TAC-3 system with the Ada compiler
from ICC. A few of the problems with TAMPS Ada code were serious because of the
incompatibility between the DTC-2 Sun Ada compiler and the TAC-3 ICC Ada compiler.
Independent research had shown that many users were having trouble with the ICC
product. Two basic modifications were required before Ada code could be compiled
with the ICC Ada compiler. First, the ICC Ada compiler treated "subtype integer” in
the same way as it did "standard.integer”. Therefore, the basic integer types in the
"basic_data_types pkg.ada” package were redefined. Second, the "LANGUAGE"
package was Sun Ada compiler’s unique package, and all pragma statements referencing
the LANGUAGE package need to be commented out.

After completion of the above basic modifications, 2,969 Ada source files remained
within TAMPS code: 352 files that were compiled without errors and 2,617 files (or
88%) that could not be compiled. These errors result from the different implementations
of the two compilers.

Lesson 2: Many details in the implementation process are not controlled by MIL-STD-
1815A or the associated validation suite for the Ada language. Project staff should
perform sufficiently detailed analysis of particular implementations so that they can
correctly assess impact when changing configurations.

The following paragraphs list all general problems found while recompiling TAMPS Ada
code:

® Misalignmen:. An integer field declaration in a record must lie in a word

boundary.

® Dynamic Generic Instantiation. UNCHECKED_CONVERSION cannot be
instantiated with dynamically sized type with the ICC Ada compiler.

® Unsupported Machine_Code Package. TAMPS uses inline expansion of low- level
machine code provided by the Sun Ada compiler’s "Machine_Code” package. The
ICC compiler does not provide a Machine_Code package for the TAC-3 platform.

® Unsupported ERRNO Package. TAMPS uses the error package "ERRNO," which

is specific to Sun’s Ada compiler. This package is not provided with the ICC Ada
compiler.

Ada Implementation Guide . 1-37




Lessons Lesmed

Unsupported System “+ " Function. Function "+" in Sun’s system package does
not comply with MIL-STD-1815A. This function is an extension provided by the
Sun Ada compiler but not by the ICC Ada compiler.

Unsupported System.No_Addr Type. The type "No_Addr" in Sun’s system
package does not comply with MIL-STD-1815A. This type is an extension
provided by the Sun Ada compiler but not by the ICC compiler.

Calendar.Local_Time Package. The "Local_Time" package within the Calendar
Package does not comply with MIL-STD-1815A. TAMPS modifies a body part
of the Calendar.Local_Time package and incorporates it into the standard Calendar
package. Problems occurred when attempts were made to incorporate it into the

Calendar package provided by the ICC compiler.

Disallowed Zero-Length Field in Record. In TAMPS code, a field length of zero
in a variant record is defined as null. The ICC compiler interprets it as a missing
field and indicates it as an error.

Unincorporated Parent Package Name. When a function is defined in a separate
procedure, the ICC Ada compiler requires the parent package name must be "with®
into the function code. The Sun Ada compiler does not have this requirement.

Unsupported VADS Configuration Package. TAMPS uses a Verdix Ada
Development System (VADS) Configuration Package Specification for Sun4 BSD
UNIX. This package specification defines and describes the components that the
user must provide to configure the VADS self-hosted Run-Time Environment
(RTE) for a user application program. Users have the choice of using the Sun-
supplied memory allocation packages or implementing their own algorithms.
MDMSC should try to avoid ali machine or compiler dependencies in the TAMPS
code.

The problems associated with the incompatibilities of the two compilers required NAWC
to use another vendor product, (i.e., the Alsys Ada compiler) to reduce the impacts on
the TAMPS Ada code.

Lesson 3: Staff should do up-front technical evaluations.

Other areas of concern related to porting projects include the following:

1-38

Department of the Navy




¢ File structure and handling systems that are in use
¢ Peripheral and device drivers movement
e Special application software packages.

L9 ADVANCED FIELD ARTILLERY TACTICAL DATA SYSTEM

The Advanced Field Artillery Tactical Data System (AFATDS) is a system of computers,
printers, dxsplays, and software that helps Army commanders plan, direct, and control
artillery fire in combat situations. AFATDS was intended to replace the former Tactical
Fire Direction (TACFIRE) system.

AFATDS was a concept evaluation effort that began in May 1984 with Magnavox
Electronic Systems as the prime contractor. - The paragraphs below summarize the
lessons learned during this effort.

Lesson 1: Anticipate trouble with the Ada development tools/environment, no matter who
is supplying them or when you get them. Especially expect problems with the ability of
the Ada Run-Time Executive to meer all of the project needs. The Army had required
Ada as the High Order Language (HOL). During the Source-Selection Phase, only three
validated compilers were available, none of which could down-line load to a target
processor that met the AFATDS-derived requirements. The language, methodology, and
tools were new; the approach was to be “software first.”

Lesson 2: Budget for training. Be prepared for and include additional funds for
training over a long period of time. Note that for this training to be most effective, it
must be accomplished just before or during the development effort. Magnavox
recognized that real-time expertise in Ada did not exist and immediately went to the Ada
community to establish a comprehensive, long-term Ada and software engineering
training program. Magnavox also proceeded to hire selected consultams and
subcontractors to handle specialty items (e.g., database design). - S

Lesson 3: Anticipate that original estimates for support hardware and facilities will have
to be revised. In this project, original estimates quadrupled for support hardware and
Jaciliries. Magnavox also purchased multiple mainframe and workstation computing
systems; however, these resources proved insufficient but were relatively easy to

upgrade.

Lesson 4: To accomplish the project successfully, ensure that both the contractor and
Government teams are knowledgeable about and undersiand the rationale for all
software-related topics. At that time, none of the DOD policy standards had been
updated (this is still true today in many cases), and very few people on the Government
side understood their ramifications. The Army had taken a sound, long-term view when
it awarded this contract, but early into implementation, the pressure of outside scrutiny

Ada Implementation Guide 4 -39




Lessons Leamed

began to erode that resolve. This, coupled with limited understanding of Ada and its
software engineering ramifications, caused serious disconnects to develop between the
contractor and the Army acquisition team (e.g., “Where's the code?” syndrome).

Lesson S: Have the team develop a viable technical/management plan and adhere to it
so that requirements and design can be implemented correctly. Although it will take
longer to begin writing the actual code, it will be worth it because fewer design problems
will be encountered during test and integration. Some of the hardest work will be
associated with trying to handle the externai nay sayers.

Lesson 6: Report major problems up the line as encountered. Magnavox and the Army
Program Office were never assertive in promoting their initiatives. Had they been, many
of the external groups might not have felt compelled to investigate, and more time would
have been available to resolve the technical problems. Others can benefit from lessons
learned only if they are informed about them. Such publicity could have helped the
AFATDS project and provided insight to other projects that were beginning.

Lesson 7: Do not mistakenly blame software development for failure. Careful scrutiny
of many projects frequently shows that things other than sofiware developmen: are
responsible for failure. For AFATDS, three formal General Accounting Office (GAO)
evaluations were performed and reported on during 1986-87: GAO/NSIAD-86-184FS,
GAO/NSIAD-86-212FS, and GAO/NSIAD-87-198BR. None of these reports identified
Ada as a problem. Major impact items included the reduction in scope because of budget
constraints, the changing of requirements to accommodate different equipment and
software, and the Army’s ability to manage this activity.

L1.10 AN/BSY-2

The AN/BSY-2 Submarine Combat System (SCS) is the suite of hardware, software, and
equipment that will be used on the Department of the Navy’s (DON’s) next-generation,
attack-class submarine, the SSN-21. General Dynamics Electric Boat Division is
building the first hull in this series, which will be ready in 1994.

Lesson 1: When external schedule constraints exist, the level of planning and execution
analysis becomes much more critical. This was especially true for BSY-2 because of the
estimated volume of software and separately defined hull completion dates. The
AN/BSY-2 software is beinz developed under DOD-STD-2167A in an effort that has
combined aspects of the Concept Evaluation, Demonstration and Validation (DEMVAL),
and Full-Scale Development (FSD) Phases of the life cycle. Commencing in 1985, a
draft set of DON-generated SCS requirements was used for the System Design Definition
(SDD) activity. Leading up to FSD and contract award, the two successful bidders, IBM
and General Electric, worked with the Navy team to solidify requirements, develop
design approaches, analyze ongoing prototyping efforts, identify critical items, fine tune

1—-40 Department of the Navy




Lessons Leamed

the FSD Statement of Work (SOW), and generate three separate Source Lines of Code
(SLOC) preliminary size estimates for the AN/BSY-2 System.

The other lessons leatned on AN/BSY-2 fall into six distinct categories: contract,
coordination, process, schedule, standards, and tools. Multiple lessons are presented for
cach of these areas. Note that the lessons do not apply exclusively to an Ada
development and that they are presented randomly within each category ( i.e., no
attempt has been made to rank them).

Lesson 2: Most of the “lessons learned” are related to the contract requirements. The
SOW should require regular reports on the status of all commercial products delivered
as part of the system. This update should include information such as vendor, version
number, performance statistics, licensing agreements, and plans for future modifications.
In addition, when the same type of documentation is to be produced by multiple
developers, implementation of a standardized style guide should be referred to in the
SOW. Furthermore, a provision should be included to allow deliverables to be
transmitted in an electronic format. On systems that have classified information,
installation and use of encrypted links between developer sites should be mandatory.

To ensure that requirements flow down adequately, the prime contractor should be
required to provide copies and/or updates of all subcontract agreements to the acquisition

agency.

To be fully effective, software Quality Assurance (QA) should be totally independent and
organized to avoid a double chain of command (i.e., having a development program in
the place of corporate QA).

Identification, reporting, and close monitoring of available metrics should begin early in
development. The level of detail should increase in tandem with advanced development.
Metrics should be analyzed thoroughly, and results should be incorporated into quarterly
program assessments. Progress or regression relative to the program plan baseline
should be a key element in this assessment. Separate analyses conducted by DON for
comparison purposes produced additional benefits for AN/BSY-2 when results of these
analyses were shared with the developer.

To ensure that the metrics data received are comparable across all development teams,
a uniform SLOC counting methodology must be defined and followed.

Lesson 3: Coordination frequently receives the least antention although it is one of the
more imporiant efforts. Early in the contract, direct lines of communication should be
established among key participants: acquisition agency, developer, technical agency,
Independent Verification and Validation (IV&V) agency, quality personnel, and COTS

Ada Impiementation Guide : 1—-41




Lessons Leamed

software vendors. Such “"shortcut® communiques result in more efficient problem
identification and resolution, which have an overall positive effect on cost and schedule.

Informal networking among groups of like interest will increase the effectiveness of each
group. Regularly scheduled communication tends to short-circuit problems while
providing a broader perspective to participants. For example, AN/BSY-2 holds a
monthly user group meeting to discuss problems, workarounds, and successes with the
operating system. The vendor’s active participation at these meetings has increased
responsiveness to and visibility of AN/BSY-2 needs.

The prime contractor should maintain tight control of subcontractor efforts through
weekly monitoring and quarterly audits. Furthermore, attendance at technical and

working group meetings should be mandatory for all team members.

Lesson 4: For large projects, it is mandatory that an adequately sized, qualified
Technical Directive Authority (TDA) Oversight Group be established and function for the
duration of the project. Very early in development, the contractor should detail each
process proposed for use in the program. These processes should be defined in
approved, baselined documentation. DIDs need to include more stringent, detailed
guidelines. Multidisciplinary contract agency representatives should then closely review
each process in software development and in related areas (configuration management,
QA, testing) for adequacy, consistency, and completeness. Contractor modifications to
these processes should be presented during formal reviews and entered into the baseline

document only upon approval.

A streamlined waiver request process should be established for reporting proposed
contract deviations to language and/or contract requirements. Waiver packages should
be initiated every 6 months, depending on program size and life span.

A comprehensive Ada training program should be developed to address
application-specific requirements. This program should be capable of transitioning
seasoned engineers yet flexible enough to instruct entry-level programmers.

Ada methodologies (e.g., exception handling) should be defined early in development.
Partial tasking should be considered as an alternative for reducing rendezvous time.
Establishing global error models well in advance of detailed design will result in a more

robust system.

Ada guidelines and procedures should be established primarily by the program’s resident
Ada experts. These lessons learned should be provided in an Ada style guide as an
appendix to the software Standards and Procedures Manual. For example, compilation
dependencies can be reduced and debugging smoothed by avoiding subprogram nesting.

1—-42 Department of the Navy




Lessons Leamed

This think tank of Ada experts should also be convened to resolve complex, persistent,
Ada design problems. For example, enhancement of time-critical processes can be
effected through expert application of Rate Monotonic Scheduling techniques.

Lesson §: Software development planning and monitoring must be done from the onset
of FSD and should take a phased approach (i.e., "build a little, test a little”). Ada
software development schedules should allow for longer Requirements and Design Phases
and shorter Test and Integration Phases. The schedule should contain Critical Design
Reviews (CDRs) to correspond to the incrementally developed software. In addition,
testing should use manageable units at phased steps with explicit success criteria.

The delivery schedule for software plans, standards, and procedures should show
compressed early deliveries. Multiple early deliveries should accelerate establishment
of a baseline. These planning documents should be baselined and under formal
configuration control no later than at the close of the Preliminary Design Phase.
Conversely, software requirements specifications should have fewer deliveries, a longer
document review cycle, and a baseline before preliminary design.

Product Readiness Reviews (PRRs) should be held early in development. These reviews
have a positive, cohesive effect and provide a close, systemwide look at processes,
products, personnel, and facilities. Implementation of an action item system is key to
PRR effectiveness.

The developer should identify critical-path software items (e.g., shared system services).
Close management of this process should ensure early delivery and test of these
functions.

Lesson 6: Even the best-made plans require changes during execution.  AN/BSY-2
used DOD-STD-2167A for software development guidance. - The intent of this standard,
however, is to provide a software development superset from which extraneous
requirements can be eliminated. AN/BSY-2 staff carefully tailored this standard, mindful
that it is easier to provide relief from requirements than to "buy" them in later. The
contracting office should remain open to negotiations on tailoring DOD standards as
phases unfold, technology advances, and/or lessons are learned. As an example, support
software documentation has been reduced from the full suite to design notebooks and
operator or maintenance manuals.

As part of tailoring the standards, a cross-check should be performed against the SOW.

Checking requirements in the SOW for potential ambiguities or even conflicts within the
military standards may avoid costly rework during later phases.

Ada Implementation Guide 1-43




Lessons Leamed

Lesson 7: For large efforts thas are geographically dispersed, the goal should be to
strive for commonality of development environment, tools, procedures, and product
structure. The contracting agency should require standardization of support tools across
the program. Although the up-front cost is greater, long-term benefits gained from such
commonality make it a worthwhile investment. Use of common tools allows problems
to be identified and workarounds made only once and results entered into a shared
electronic reporting system. In addition, data exchanges among development teams are
less time-consuming and more efficient, thus reducing the risk of error.

For large projects, it is imperative that the configuration management system be capable
of supporting rapid turnaround during the Integration and Test Phases. The system
should provide configuration management of all software support tools as well as the
development code. In addition, a version control process must be established and
enforced by the prime contractor for these tools.

A common database should be established to electronically track requirements down
through software requirements specifications and hardware unit specifications and, later,
into test. Use of this method will enhance traceability and ensure flowdown of
requirements. A common database should also be created to track connectivity of
software interfaces. Consistency checks should be run for early detection of misaligned
interfaces.

Commercial support tools may require modifications to handle large Ada developments,
and non-Ada commercial code slated for incorporation into the product may create
interface and performance problems. Additional time and resources should be factored
into development plans to allow for these potential stumbling blocks. (Computer
resources should also be supplemented to account for the increase in demand that
traditionally occurs during Ada developments.)

Compiler benchmarks should be evaluated before compiler selection is finished.
(Compilation time should be factored in as an additional consideration.) The developer
should know the weaknesses as well as the strengths of the Ada constructs (e.g., link
library sizes and nesting of generics) as used in the compiler and/or Ada Programming
Support Environment [Ada PSE]. Binding approaches should be established and
benchmarked early in the development.

Use of an Ada standards checking tool is highly recommended. Using a standards

checker not only encourages production of high-quality code but also reduces staff efforts
and enhances maintainability.

=44 Department of the Navy




Lessons Learned

1.11 ADA LANGUAGE SYSTEM/NAVY

The Ada Language System/Navy (ALS/N) FSD program implements Ada for use with
DON’s standard embedded computers: AN/UYK-43(V), AN/UYK-44(V), and the P31
AN/AYK-14(V). Since January 1989, DON has mandated the use of ALS/N as the
first-line support software consideration for the DON standard processors. Although
ALS/N is a support software effort, it also is a large software-based systems development
effort. The ALS/N development project has produced more than 1 million lines of Ada
code that also support DOD-STD-2167A documentation.

The DON Ada Standard Embedded Composite Resource (SECR) effort began in the early
1980s and closely monitored the other Service efforts, such as the Army Ada Language
System (ALS) effort and the Air Force Ada Integrated Environment (AIE) effort. The
DON goals were to avoid reinventing the wheel and to maximize the benefits of the Ada
reuse and portability concepts for developing support software. In 1984, DON opted to
establish the baseline with the Army ALS and proceeded to develop specific
SECR-retargeted compilers and tools.

Lesson 1: For DON SECR applications, top priority must be given to the real-time
performance of the generated code. Performance requirements must be formally
specified, and performance capabilities must be tested before product acceptance and
deployment. Because of the number and severity of the problems encountered, the Army
paid little attention to performance issues for the support environment and the targeted
real-time environment.

Lesson 2: Although actual software code production is only a relatively small portion
of the total life cycle, it is critical to have a reasonable level of performance within the
tool set. At a minimum, the tol set must meet both programmer functional and
configuration management needs. The Army ALS tool set had been implemented in Ada
but operated on the VAX/VMS host environment through an additional layer called the
Kemel Ada Programming Support Environment (KAPSE). This arrangement made tool
performance unacceptably slow. The Navy, therefore, redirected the contractor to
eliminate the KAPSE requirement.

Lesson 3: Each development effort should be managed under the assumption that there
will be a formal production delivery to DON and a separate DON-controlled
Post-Deployment Phase. To ensure continuous development oversight, DON laboratory
personnel were provided to fa tate the transition to life-cycle support.

Lesson 4: Requirements must be understood, and both formal and informal checks on
the progress 1o meet these goals must be conducted throughout development. The Air
Force used an independent test team in this effort and spent 15% of the budget on it.
This team performed Technical Directive Authority (TDA)-type testing that included full

Ada implementation Guide ‘ _ 1—-45




Lessons Leamed

knowledge and understanding of the product internals. Concurrently, a separate IV&YV
agent performed "black box" testing to evaluate formally the specified requirements.
Expenditures for this support were approximately 5% of the total budget.

Lesson S: Because post-deployment support will be DON'’s responsibility, it is critical
to build an adequate in-house team that is thoroughly familiar with the product before
acceptance. The ALS/N development has actively funded various Navy laboratories
(e.g., Naval Surface Weapons Center [NSWC], Naval Avionics Center [NAC], Naval
Undersea Command [NUSC], Naval Air Development Center [NADC], and Naval Ocean
Systems Center [NOSC]) to participate in the program and also involved the Navy’s
life-cycle agent (i.e., Fleet Combat Direction System Support Activity [FCDSSA], San
Diego).

Lesson 6: Lack of full program funding commirment and support will have a negative
impact on development plans. Be prepared to either alter the course of and/or extend
delivery schedules. Always try to maintain the best possible product quality and
maximize life-cycle supportability within the program constraints. The vagaries of
year-to-year funding support tend to disrupt large undertakings that involve many
elements such as laboratories, prime contractors, subcontractors, IV&V, and independent
test organizations. All parties have to be motivated, good informal communication
mechanisms must be in place, and all development efforts must be carried out according
to an agreed-to plan that can accommodate a certain degree of flexibility.

Lesson 7: Producing a high-quality software-based product that meets its specified
requirements is a difficult task. ALS/N provides a software means to upgrade deployed
SECR processor-based systems indefinitely. ALS/N also can be considered as the
front-line consideration for new systems developments because DON has 100%
ownership or change control rights. Many U.S. commercial companies provide Ada
compiler technology. Investment costs for those technologies that have been
commercially successful are consistent with DON expenditures for ALS/N. However,
few of these commercial Ada technologies specifically addressed real-time performance
to the degree of ALS/N capabilities, which is required for Mission-Critical Computer
Resources (MCCR) applications. In fact, two out of every three DON dollars have been
spent on DON standard RTE needs. The ALS/N FSD program has produced compilers
and run-time operating systems that will meet many of the performance requirements as

specified.

Lesson 8: No product is truly exercised and tested until it reaches the target user
community. It is best to phase systems into deployment through beta testing and friendly
users before public release. Currently, four DON Research and Development (R&D)
centers use ALS/N in a test and evaluation mode. The DON MCCR waiver process now

1-46 Department of the Navy




- - - \
|
|

Lessons Leamed

includes ALS/N consideration as part of the standard acquisition formula for both new
starts and upgrades.

L12 AVIONICS PROJECT
The avionics project is a major system upgrade for an airborne Command, Control, and

Intelligence (C2I) application that targets existing platform and potential forward fit into
next-generation aircraft. The upgrade is to improve acoustic and nonacoustic processing
capabilities as well as signal processing, detection and classification, multistation
integrated systems, data buses, and communications.

Lesson 1: Ensure that software production or cost modeling includes adequate time for
the Requirements or Design Phase before accepting externally generated completion
dates. The contract was awarded in July 1987 with a prototype scheduled for delivery
in July 1990. An optimistic production of 1.2 million SLOC is projected.

Lesson 2: Be sure that requirements are fully defined and are traceable to test
mechanisms. Include necessary Government visibility into the process. Beware of
shortcuts and bad engineering practices, especially when there is a prime
contractor-subcontractor team organization. The Firm Fixed Price (FFP) contract
included production options. The contract options were tied to calendar exercise dates,
without a requirement to demonstrate performance capabilities.

Lesson 3: Do not plan to use equipment that is under development unless absolutely
necessary. Apply a risk engineering approach to those items that must be used, place
items on a critical path, and monitor them closely. The contract included the planned
use of "in-development” Government-Furnished Equipment (GFE) and Contractor-
Fumished Equipment (CFE).

Lesson 4: Always assume thar everything could go wrong and perform full risk
engineering and management.

Lesson 5: Use a hands-on managemen: approach from both the prime and Government
perspectives and delir.zate clear lines of authority and responsibility for contractual
requiremenss, especially for large projects. In addition, do not take a hands-off approach
to subcontractor management.

Lesson 6: Specify in the contract requirements that capabilities must be established
early, with adequate resources and authority. Closely monitor progress. A plan must be
developed for handling distributed development environments and deliverables exchanges.
Such planning must have been contractually required and completed, and it must receive
some degree of Government approval and monitoring before the program is executed.
A "sell-off” from a subcontractor to the prime contractor must address all contingencies

Ads implementation Guide . 1—-47




Lessons Leamed

when the prime contractor-to-DON delivery requires changes, retesting or documentation,
and the like. Configuration management and QA should be standardized and coordinated
across the whole effort. Formal, standardized software development procedures should
be specified in the contract and approved before being implemented. Lack of such
formal, standardized procedures cannot be condoned, especially across larger projects.
The procedures should be monitored to ensure that the documented process is being

implemented.

Lesson 7: Do not disregard the critical elements of the MIL-STDs unless it is technically
and managerially necessary to use alternative means. Develop a system-wide integration
plan and follow it. During the development of the avionics project plan, a systemwide
integration plan was not developed.

Lesson 8: Ensure that the schedule can accommodate slack and the possibility of
independent DON test time for interim products. Also ensure that the resources are
available to support regression testing. The avionics schedule contains no plan for slack
or for resources to support regression testing.

Lesson 9: Do not disregard critical MIL-STD interim products in the comsract
requirements, and adequately plan for and execute the Government’s role to ensure
quality and delivery. Mutually agreed-to criteria for major milestones must be met, or
action item work plans must be created for unmet criteria.

Lesson 10: Ensure that adequate development support facilities exist. Existence of these

Jacilities should be contractually specified and monitored during the Product Readiness
Review (PRR). Contingency plans should be available when and if problems develop.
Inadequate facility estimates, combined with no forward-looking projection analysis and
unavailability of contingency plans, resulted in severe problems as the interim product
grew in size.

Lesson 11: Do not let events external to the schedule influence the program. Develop
input and oustput criteria for major milestones and adhere to them. It is very easy to
build the wrong software. During the avionics project, time spent in the Requirements
or Design Phase was insufficient to mature the software baseline.

Lesson 12: Where possible, use real production hardware and/or commercial prototypes
to decrease the amount and scope of simulation. The simulator software must be treated
as critical-path material if it is to be used during development. Simulator software also
should be documented as operational software because it will be critical when mission
requirements are being tested. (For example, the system may function in a simulator
environment but fail in the real world.)

1—-48 Department of the Navy




Lessons Leamed

Lesson 13: Do not approve systems until requirements are met because when system
requirements are not met and “as-built® systems are approved, the contractor is no
longer responsible for fixing the system. The system should not be approved until
requirements are met. Design information should not be placed in Software
Requirements Specifications (SRSs) and Interface Requirements Specifications (IRSs).

L.13 PEO-SSAS, PMS-414, SEA LANCE

The SEA LANCE Anti-Submarine Warfare Standoff Weapon (ASWSOW) was being
developed to provide Vertical Launching System surface combatants and nuclear power
attack submarines with a standoff-range missile for use against hostile submarines.
Before partial program termination in December 1989, the program was in Full-Scale

Development (FSD).

SEA LANCE is a long-range ASW missile system developed to complement
ship-launched torpedoes and helicopter-borne weapons by providing a quick-kill
opportunity at long ranges. SEA LANCE also can be launched in a buoyant protective
capsule that floats to the surface from a submarine torpedo tube. The tactical missile
employs seven embedded processors for providing guidance, navigation, and flight
control functions. These tactical processors are the Guidance Electronics Unit (GEU),
which uses a Motorola 68020/68881 processor; the Inertial Measurement Unit (IMU),
which uses a Zilog Z8002 processor; the Pulse Driver Unit (PDU), which uses an
INTEL 8797 processor; and four Fin Actuator Units (FAUs), each of which uses an
INTEL 8797 processor. Software has been developed under the guidelines of
DOD-STD-1679 for each of these subsystems, the most extensive development effort
being for the Guidance, Navigation, and Control Program (GNCP) in the GEU.

SEA LANCE system software consists of the embedded GNCP; three embedded small
systems software programs (IMU, PDU, FAU); two embedded instrumentation/flight
termination system programs; and ' missile “test' set, support, simulation, and
adaptor/interface electronics software. Ada was used as the PDL and the high-order
implementation language only for the development of the GNCP. The following
languages were used in all of the other SEA LANCE software development efforts:
IMU—Z8000 Assembly; PDU—PL/M 96; FAU—PL/M 96; Arm and Control
Unit—PL/M 96; Instrumentation Data Unit—68020 Assembly; missile test set
software—Pascal; support software—Pascal, FORTRAN, and Assembly; simulation
software—FORTRAN and specialized languages. All discussion and lessons learned are
concerned only with the GNCP.

The GNCP is a digital computer program totally contained in nonvolatile memory, which
resides in the missile’s GEU. It consists of approximately 20,000 SLOC (100,000
physical SLOC). The GNCP was being developed in accordance with the guidelines of
DOD-STD-1679 using the VADS. Before program termination, the GNCP had

Ads Impleimentation Guide 1—-49




Lessons Leamed

successfully passed through program milestones such as Preliminary Design Review
(PDR) in August 1984, a Delta-PDR in February 1988, an In-Process Review (IPR) in
March 1989, and numerous Technical Interchanges between 1983 and 1989. Draft
versions of a test specification, test plan, and test procedures were developed in parallel
to the design. The GNCP was developed, tested, and integrated at the module and
system levels in the contractor’s Computer Program Development Laboratory (CPDL),
Operational Mock-Up (OMU) Laboratory, and System Integration Laboratory (SIL).
Performance and most preflight testing of the GNCP was done in the SIL to fully
exercise each function specified by the performance specification. The GNCP guided the
test missiles along two near-perfect trajectories in the only two SEA LANCE Contractor

Test and Evaluation flight tests in February 1990.

Because the GNCP had not yet reached CDR at the time of program termination, DON
never approved or accepted it. As part of the partial termination efforts, the GNCP
design of record was documented in accordance with DON direction and archived.

As part of the partial termination efforts, a DON/Boeing study is in process. This study
shows the impact of switching to the newer defense software development standards
(DOD-STD-2167A and DOD-STD-2168). The study is being conducted in accordance
with tt e guidelines of Military Handbook (MIL-HDBK)-287.

Lesson 1: Use a consistent methodology throughout the program Requirements, Design,
and Coding Phases to facilitate tracing requirements to the code. SEA LANCE used a
functional decomposition method in developing the requirement specifications, then used
an Object-Oriented Design (OOD) methodology when developing the design specification
and the code. The two methods had to be combined. Because SEA LANCE was a
fire-and-forget weapon, the traceability of every performance requirement was considered
extremely important. Use of two design methods made it difficult to trace the
requirements from the Performance Specification into the Design Specification and then
into the code itself.

Lesson 2: Use a common PDL across the project. On medium- to large-scale systems,
the PDL will contain a wide variety of differing coding techniques and code fragments.
SEA LANCE used Ada as its PDL. It was learmed that when Ada was used as a PDL,
the software development and uniform coding standards should be enforced on the PDL
as well as on the actual Ada code.

Lesson 3: Include and enforce a requiremens for a minimum ratio of 50/50
commenis-to-code in the contract, sofrware development plan, or coding guide. Although
Ada is more readable than many other languages, it still requires a liberal use of
comments to describe what is going on and why. Generally, Government code reviewers
needed more review time because of the lack of comments.

1-50 Department of the Navy




Lessons Learned

Lesson 4: Use an automated formar wtility or equivalens software tool to ensure unjform
code appearance. This can be imposed through either QA or configuration management.
The SEA LANCE contractor did not always use a printer format utility or other
automated tools to ensure uniform appearance of the code. As a result, many Ada
specifications and bodies had a unique appearance, depending upon the individual coder.

Lessoa 5: Develop a style guideline for the Ada code and PDL before doing any design
work. The SEA LANCE contractor developed most of the PDL without a formalized
Ada coding guideline. The result was a PDL that sometimes differed from module to

module in appearance, style, and coding format.

Lesson 6: Use software metrics from the beginning and define basic terminology between
Ada and the selected software development standard. The minimal use of software
metric tools and the defining of basic terms in the early development process gave rise
to conflicts between the contractor and the Government as to what constituted a module,
a line of code, or the difference between a PDL line of code and an operational line of

code.

Lesson 7: Hammer our documentation requirements and licensing agreements between
the Government and the contractors regarding the use of third-party sofiware and the way
it is 10 be tested and identified. The SEA LANCE contractor employed a proprietary
third-party ARTX, and the Government had trouble obtaining documentation on the inner
workings and testing of the Run Time Executive software.

Lesson 8: Early in the development process, have the contractor provide a detailed list
of tools that will be used in the development process for the PDL/code and specify the
Jormat that will be used for transfer of source code, executable code, and software
documentation to the Government. (Note that DOD-STD-1679 did not require a
Computer Resource Integrated Software Document [CRISD].) The Government had some
difficulty finding compatible computers to load in contractor-transferred software listings.
It also proved difficult to identify the exact format of software deliverables and the exact
configurations of the contractor-used development tools.

L14 NAVY WORLD WIDE MILITARY COMMAND AND CONTROL SYSTEM
(WWMCCS) SITE-UNIQUE SOFTWARE (NWSUS) PROJECT MISSION

Lesson 1: It is always safer to build and test incrementally. Space and Naval Warfare
Systems Command (SPAWAR) PMW 161-5 is responsible for modernizing eight existing
site-unique COBOL 1968 applications with approximately 300,000 lines of Ada source
code on the NWSUS project. These applications are operational on the WWMCCS
Honeywell DPS8 mainframe and are being reengineered using Ada OOD with
DOD-STD-2167A because Honeywell is phasing out maintenance of COBOL 1968. This

Ads Implementation Guide 1—-51




I

Lessons Leamed

is within the WWMCCS Automatic Data Processing (ADP) Moderization (WAM)
Program. The NWSUS project, which is divided into three increments, is in the third
year of a S-year effort. The first increment consists of six smaller applications with the
larger applications in the later increments.

Lesson 2: Planning for and designing in reuse yield long-term benefits. The project is
in accordance with DOD-STD-2167A/2168 tailored for OOD. The existing COBOL
applications are used to capture requirements. Development is performed on a Rational
R-1000 model 40 with Honeywell DPS8 and IBM PC/XT clones as targets. With one
exception, the applications are Management Information Systems (MISs), and the
development makes extensive use of a common set of reuse components. .

Lesson 3: For large sofiware undertakings, use of automated tools is mandatory. The
2167A documentation is being developed on the Rational, and a Computer-Aided
Software Engineering (CASE) tool has been developed to validate the completeness and
consistency of the requirements, design, object/class specifications, and Ada
specifications. Two "4GL-like" productivity tools, used in conjunction with the reuse
components to create application screens and reports, are used for rapid prototyping and
to support the generation and standardization of the user interface.

Lesson 4: Until the design baseline has been approved and frozen, it is inadvisable to
initiate full-blown coding. An initial CDR was completed for Increment 1 in April 1990,
and a second CDR to review redesign caused by a change of target was conducted later.
Development of many of the reuse components was completed. Full development of the
Increment 1 Configuration Items (Cls) began and was completed in FY92.

A full Object-Oriented Requirements Analysis (OORA) and specification for the
Increment 2 CIs were completed at the System Design Review (SDR), which was very
successful. Both the site customer and SPAWAR commented on the effectiveness of
OORA. The CDR occurred in October 1991.

Lesson §: If a risk engincering approach (i.e., awareness, identification, technical
managemens If alternative solutions) is taken to development, then it is possible to
undertake technologically challenging developments. Conventional wisdom says that a
project with a new application area, a new programming language, or new personnel will
have trouble. NWSUS had all three; consequently, the project has had its share of
problems. The problems spanned development methodology and standards, target
development environment (both Ada compiler problems and problems with the
compiler/operating system bindings), Ada training and startup, software reuse, contract
structure, and management. However, NWSUS has managed to survive these problems
and is currently in a productive mode.

1-52 Department of the Navy




The following lists some of the problems encountered and their solutions or

workarounds.

Problem

Ada compiler was unavailable for
Honeywell DPS8, and WWMCCS
Information System (WIS) Workstation
target was unavailable at contract start.

Functional analysis was required for the
first increment.

The contract assumed that all Cls were
the same, and a hard split between
design and code hindered Ada OOD.

Contract and management of reuse
between applications initially was weak
and/or missing.

DPS8 Ada compiler was late and not
mature; the WIS Workstation was
canceled.

Initial training was affected by the
*3-week syndrome."

Ads Implementation Guide

Resolution

The Rational was selected as the host
development environment for all
applications. Testing is first done on the
Rational and then on the target.

The functional analysis approach did not
work out well. Full object- oriented
analysis was used for the second
increment, and that approach has been
very beneficial.

The contract structure was modified to
reflect the diversity of the ClIs and the
R&D nature of the project and to allow
an efficient mechanism for reuse
components and prototyping.

An internal approach was used to
support reuse on a level-of-effort Work
Breakdown Structure (WBS). DON
recognized- the need 'in the contract
update.

The workstation target was changed to a
PC. Redesign is under way for the new
target and for a solution of the problems
encountered with the DPS8 Ada
compiler.

Initial training was too compressed and
not project specific. NWSUS now uses
a part-time, 2-month, in-house training
seminar with a "lab session” that uses
project deliverables.




Lessons Leamed

OOD proved to be labor intensive during Ada OOD proved to be a very effective
the first increment. development approach because it gives
much more visibility and control of the
analysis and design. The drawback is
that this requires much more effort. We
found no available CASE tools that
supported it, and too much had to be
done manually. The validation process
was automated for the second increment.

1.15 EVENT-DRIVEN LANGUAGE/COBOL-TO-Ada CONVERSION
PROGRAM

From 1987 to 1989, the Marine Corps replaced its aging inventory of ruggedized IBM
Series-1 minicomputers with hardened IBM-compatible microcomputers. The transition
required that all of the systems originally programmed for execution on the Series-1 be
ported to the microcomputer. Approximately 25 systems were written in Event-Driven
Language (EDL) or COBOL. At about the same time, Ada was introduced as the
standard programming language for DOD. The close proximity of the two events
provided the Marine Corps with an opportunity to gain valuable expertise in the new
DOD standard programming language through reverse engineering of well-known
systems. At the time, the Marine Corps had no in-house Ada programmers and no
expertise in its associated design methodologies.

The reprogramming effort was divided among three Marine Corps Central Design
Programming Activities (CDPAs) along functional boundaries. In the process of the
reprogramming effort, the Marine Corps learned several lessons.

Lesson 1: Training is essential for both technical and management personnel. To take
full advantage of Ada, designers and analysts must be familiar with the principles of
software engineering and the way Ada supports those principles. Because few Marines
had knowledge of Ada design methodologies at the outset, the tendency was to recode
the original system designs in Ada. The original system designs were often derived
directly from the existing EDL/COBOL code. Because neither of those languages
contains all of the Ada constructs, the advantages of Ada did not always materialize.

Lesson 2: Programmers require 4 to 9 months of training before they become proficient.
It takes 4 to 9 months of formal and on-the-job training before a programmer becomes
proficient in Ada. However, after that initial training period, the programmer should be
capable of producing code very rapidly when given a good design and programming
library.

1—-54 Department of the Navy




Lessons Leamed

Lesson 3: Military transfers often result in a loss of investment in Ada training.
Because proficiency in Ada can take as much as 9 months to attain, a newly trained
programmer is productive only for a portion of his or her tour. Unless steps are taken
to ensure reassignment to another Ada shop, the training investment is likely to be lost.

Lesson 4: Systems originally written in languages that predate Ada that must be
converted to Ada should be redesigned, not translated. After the first few projects, it
was evident that inefficiencies in the original designs were being duplicated in the Ada
translations.

Lesson 8: Ada facilitates reuse. During the conversion effort and on subsequent
projects, the Marine Corps found that on an average project, only 45% of the code had
to be written from scratch; the other 55% came from reuse. Reusable code generally
came from previous projects and development tools (e.g., AdaSAGE). In recent
projects, the Marine Corps has consulted Ada software repositories for reusable code in
an effort to reduce development time and effort wherever possible.

Lesson 6: Ada lends itself to efficient code and high programmer productivity. The
syntactical structure of Ada helped the Marine Corps implement many of the software
engineering principles. Modularity, information hiding, localization, and abstraction
were easily implemented.

Lesson 7: Development tools are essential. Initially, lack of a good tool kit hindered
the conversion effort. In-house tools were built to overcome Ada file limitations and to
enhance screen management. Shortly thereafter, the Marine Corps funded the
development of AJaSAGE, which reduced development time by as much as 50%.

Lesson 8: Development and maintenance time can be significantly reduced by applying
software engineering principles and capitalizing on reuse. “The Marine Corps estimates
that from 15% to 60% reduction in development and maintenance time are being
achieved when software engineering principles and reuse are applied.

L.16 SHIPBOARD GRIDLOCK SYSTEM WITH AUTO-CORRELATION

The Shipboard Gridlock System with Auto-Correlation (SGS/AC) application plays a
fundamental role in the coordination of multiplatform shipboard systems by processing
the ships’ data and remote track data within a common positional frame of reference.
This application performs gridlock processing to correct for sensor and navigational
errors while correlating the identified tracks from remote systems. This software-based
application is characterized by hard deadlines; multiple external interfaces; and
time-critical, computationally intensive processing. The SGS/AC is deployed on the
Aegis cruiser/destroyer class of surface ships.

Ada Implementation Guide . i1~-55




Lessons Leamed

Lesson 1: Before commitment is made to large projects, the methods and tools to be
used should be exercised. Quantitative evaluation of the expended resources should lead
to better estimates for the work contemplated. This project is being performed by the
Naval Surface Warfare Center (NAVSWC). It can be characterized as a DEMVAL
development effort that parallels the SGS/AC program implemented in CMS-2 for either
the AN/UYK-20(V) or the AN/UYK-44(V) target processors. This parallel effort uses
ALS/N as the host development tool set and targets an AN/UYK-44(V) processor
configuration. An additional objective of the effort is to generate a comprehensive
comparative analysis of the CMS-2 and Ada developments that includes quantitative data
and information pertinent to future Aegis-class combat direction system upgrades.

Lesson 2: The Ada code itself will have major architectural and design impact on a
system; therefore, the two must be worked on simultaneously. From the outset, it was
recognized that to simply translate CMS-2 code to Ada would be technically feasible but
would not produce any long-term benefit.

Lesson 3: A project should always try to build a lintle and test a little, building and
testing the harder things first (e.g., system services and communications). The new
design effort attempted to minimize the run-time overhead, include portability in the
design, manage interfaces to get best-case response under worst-case loads, and maximize
robustness and predictability. A multiphased build plan was initiated.

Lesson 4: A project should always attempt to involve the production hardware as early
in the program as feasible. Successful simulator and emulator runs mean nothing when
the delivered code does not work on the real hardware. Acceptance requirements must
be set correctly, or development schedule reserve must be allocated to absorb such
difficulty. Things will go wrong, and this should be anticipated. / -evelopment is
being carried out on VAXs, with DEC Ada being used during the ea.  "ode and Test
Phases. The target AN/UYK-44(V) processor requires special cards to run the Ada
code. The particular configuration was unavailable until well into the project.

Lesson 5: The team must be well trained in the use of the supplied tools, and the tools
must work as advertised. The ability to fully define a working set of integrated tools
early in development and to acquire them as they are needed is critical. For example,
a symbolic debugger is an absolute necessity.

Lesson 6: Adherence to good engineering practices is necessary when designing the
system and its hardware and sofiware. Although this project is a relatively small
software undertaking, establishing and enforcing sound software design methodology and
development processes, such as coding standards, documentation production, and code
reviews, help overcome lapses in memory, personnel turnover, lack of focus, and lack
of requirements to trace verified design or code.

1-56 Department of the Navy




Lessons Leamed

Lesson 7: Until more technological progress is achieved, the potential for large-scale
software component reuse is limited. This project has shown that achieving real-time
developments requires meeting hard deadlines and getting close to the target machine,
which often conflicts with the concept of code component reuse.

L.17 SUBMARINE COMBAT CONTROL SYSTEM MK2

The Submarine Combat Control System (SCCS) Program focuses on consolidating the
various Combat Control and Defensive Weapon Systems (DWSs) software configurations
that are in use on deployed SSN-688 and SSN-726 class submarines. These vessels
constitute both the defensive (attack) and strategic platforms for the DON submarine
force. The SCCS upgrade will either upgrade or replace obsolete general-purpose
computers, peripherals, display consoles, and weapons simulators. This software
upgrade provides a common software package for both classes of submarine and
incorporates operational and maintenance-related enhancements. The SCCS Program also
includes the development of systems to support crew training and land-based testing.

The software for the SCCS consists of new development software and firmware,
modified Government-Furnished Software (GFS) and firmware, and unmodified
commercial software and firmware.

Most of the modified GFS software has been written in either DON-standard CMS-2
HOL or in ULTRA-32 Assembly. The project mission is to develop a maintenance
capability that improves the chances for coordinating evolutionary change in these
shipboard systems.

The new portion of the SCCS MK2 program involves integrating a replacement
human-computer interface display console and associated Ada application software into
the existing deployed systems. The approximate language mix is as follows:

Language SLOC
CMS-2 & ULTRA-32 2M (GFS/modified)
Ada 581K (new)

C 279K (commercial)
FORTRAN 149K (retained)

The Ada SI.OC are being developed under DOD-STD-2167A requirements. The

CMS-2, FORTRAN, and ULTRA-32 software were all developed under DOD-STD-
1679A.

The paragraphs below summarize the lessons learned about Ada on this project.

Ada implementation Guide 1-57




Lessons Learmned

Lesson 1: Ada experience and training are needed. The majority of experienced
personnel in this defense area had little or no experience with Ada and modem software
engineering practices. It was necessary to evaluate bidders on their in-place Ada
expertise and on their ability and/or plans to acquire or build on that base. To properly
monitor or manage the development, in-house capabilities had to be built up in these
areas. It is especially important to use hands-on training as close to development as
possible or during development.

The relative immaturity of candidate Ada products, coupled with the specific need to
handle many foreign language interfacing requirements, meant that the developer team
needed a very close relationship with their candidate Ada development tool suppliers.

Lesson 2: Support sofiware, practices, and products need constant attention. This
undertaking required that the chosen contractor be capable of using automated tools to
manage and technically execute this large programming development. To that end,
source selection criteria were established and used during the source selection process.

Each project has to generate its own Computer Resources Life-Cycie Management Plan
(CRLCMP) and Integrated Logistics Support Plan (ILSP) before the Defense Acquisition
Board (DAB) Milestone I. However, unless the Government defines the total
development environment fully and requires its use as part of the proposal, difficulty will
ensue as differences develop between the methodology, tools, and equipment used by the
developer and those specified by the Program Office. Typically, the parties involved will
have opposing agendas. Coupled with the inability of many tools to scale up to
programming-in-the-large or even to exchange data structures efficiently, this diversity
will create problems that all parties will need to address and work out on a continuing
basis. Examples of areas where this problem resolution may be required include tool
standardization; data exchange; version management; electronic communication; data
rights; documentation uniformity; configuration management; error identification,
analysis, and elimination; product ownership; component integration; and testing.

Lesson 3: The need to interface with other language programs may constrain the type
of Ada features that can be used. The Ada language design run-time concept does not
map directly to the hard real-time environment within the MK2 system. Therefore,
attempts must be made to overlay the Ada model on top of the inherited real-time
operating system, which has necessitated eliminating certain Ada features (e.g., tasking).
Other Ada features not used include generics, dynamic allocation, and full-range data
typing. Performance also has suffered, and portability has been minimized. The need
to interface with other language programs may result in a loss of the advantages of strong
Ada typing and may affect debugging, testing, certification, and the like.

i1-58 Department of the Navy




Lessons Leamed

Lesson 4: To ensure programming uniformity, a style guide should be developed and
used across all developer teams. Use of a common style guide will enhance overall
maintainability of developed code. It also will help control Ada feature utilization, and
the code can be automatically checked by applying a preprocess tool. The use of a
“pretty printer" postprocessing mechanism for human-readable outputs could also enhance
software maintainability.

1.18 P-3C UPDATE IV Ada DEVELOPMENT

The objective of the P-3C UPDATE IV Program is to develop a fully integrated,
distributive bus, data processing system with improved mission avionics systems. The
full weapon system is to be tailored for both retrofit into P-3C predecessor aircraft and
forward fit into successor Maritime Patrol Aircraft. The program successfully
progressed through the DEMVAL Phase between November 1984 and April 1987. After
the Milestone II decision in July 1987, Boeing was awarded an FFP contract for FSD to
develop and fabricate the system, qualify vendors, install the system into a P-3C
platform, and conduct vendor flight tests by July 1990. The schedule called for
Government testing of the flying test bed between July 1990 and February 1992 with
subsequent approval for full production to be granted in April 1992.

The program includes the distributive bus data processing Distributed Processor/Display
Generator Unit (DP/DGU) system, which consists of six Motorola 68020-based processor
modules/DGUs tied together by a dual 1553B bus architecture. Major mission systems
avionics include the AN/UYS-2 acoustic processor, the Motorola 68020-based
AN/ALR-66(V) 5 Electronic Support Measures (ESM) system, and the AN/APS-137 (V)
3 Inverse Synthetic Aperture Radar. The data processing system and ESM are CFE, and
the acoustic processor and the radar are GFE.

The program has been delayed by both hardware and software development difficulties.
Boeing was expected to deliver the flying test bed to the Government between October
1992 and February 1993.

As one of the first large Ada developments (over 1 million SLOC), the P-3C Update IV
program has been a pioneer in the use of Ada. Boeing personnel have made several
correct choices in developing software in a new programming language for which the
software development environment was immature or limited. First, Boeing’s choice of
using the VADS was a good one. VERDIX has been a leader in the development of Ada
software engineering tools, and VADS was one of the best Ada software development
environments available at the time of program initiation. Equally good was the choice
of the Ready Systems kemnel as the core for the operating system. Finally, Boeing's
naming convention for Top Level and Lower Level Computer Software Components
(TLCSCs/LLCSCs), packages, units, and identifiers has also been beneficial. The
naming convention has been very useful in tracing requirements to design and code and

Ads Implementation Guide B I-59




Lessons Leamed

is helpful when reading the PDL and computer source code. The paragraphs below
summarize the lessons learned about Ada use in this program.

Lesson 1: Ada code requires more up-front time and effort, and the learning curve is
slower. The software size and development schedule estimates were understated by all
parties during the initial phase of the program. The table below lists SLOC estimates at
program initiationi, at completion of PDR, and in August 1991,

The final SLOC total should exceed August 1990 estimates by more than 10% before
completion of software development. The initial sizing estimates will be in error by
approximately 100% at program completion.

The Boeing estimates for the software development schedule were predicated on available
non-Ada HOL usage. Individual task estimates were too short and did not anticipate the
increased up-front work in Ada design and coding that was needed. This fact and a
slower than anticipated learning curve for coders resulted in a realized progress rate of
85% of plan for coding, testing, and integration activities.

Lesson 2: Increased facilities and memory are required to accommodate Ada code. The
physical number of hardware tools was initially insufficient to support a software
development of this magnitude. This lack of hardware capacity was experienced in all
areas of the software development environme.:., from the Sun workstations used during
initial code and testing to the System Avionics Integration Laboratory (SAIL) used for
system integration. More Sun workstations were needed to avoid bottlenecks in coding,
both in the SDL and at the subvendor locations involved in tactics and correlation
programming efforts. The Boeing SDL grew from two Sun 3/280 server stations with
33 Sun client workstations in the fall of 1987 to five Sun 3/280 server stations with 45
Sun client workstations in the fall of 1990. -

The SDL mainframes used for the target hardware software build process could not
construct a software build in an acceptable period. Initial software program builds took
up to 1 week to compile and link. The SDL initially contained one VAX 11/785, one
VAX 11/750, and two VAX 8700s. To accommodate the software development
demands, the SDL was upgraded by the fall of 1990 to include one VAX 11/785, one
VAX 11/750, two VAX 6000/440s, and one VAX 8600. Disk storage capacity was also
increased to approximately 40 gigabytes (GB). This increase in hardware capacity has
reduced system build time to approximately 8 hours.

Initial plans called for target integration to be conducted on a single SAIL that contained
as much actual UPDATE IV hardware as possible, including the full DP/DGU system.
A DON SAIL was held at Boeing instead of being delivered to DON to accommodate
the effect of the integration overload on the Boeing SAIL.

1-60 Department of the Navy




Item (CSCI)
DP/DGU

Minimum Mode
Software (MMS)

Electronic Support
Measure (ESM)
Unit (AIU)
AN/OYS-2
Symm Avwma
leontory (SAIL)
Integration Test
Software (ITS)

Software
Development
Laboratory (SDL)

Only)

TOTAL

Best and Final
Offer (BAFO)
(April 1987)

383,530

52,340

37,320

218,600

5,000

37,500

803,190

June 1988

468,654
37,900

58,000

68,900

38,000

172,870

96,900

45,500

986,724

August 1991

565,431

52,764

55,516

97,371

147,500

211,766

109,359

62,800

1,302,507 -

Lesson 3: Some sofiware development tools are immature and have not been proven for
many applications. Immaturity and/or unavailability of software development tools also
complicated early software development efforts. A comprehensive Ada support
environment was unavailable for early development work. Available tools were
immature and were not integrated into a comprehensive package. In addition, available
tools were very resource intensive, which exacerbated the previously mentioned hardware

problems.

Ada Implementation Guide

1-61




Lessons Leamed

The Sun workstation software build installations initially required 1 week and contained
numerous errors because of excessive operator intervention. Upgraded Sun workstation
software and software tool/automation development resulted in eventual turnaround times
of 1 day. Error reduction was excellent as a result of the automated tools.

The initial SDL VAX systems were plagued with software and hardware faults, which
resulted in numerous system crashes and an average downtime of 1/2 day per week. By
applying pressure to Digital Equipment Corporation, fixes were put in place over a
period of 1 year, which resulted in mature, stable system performance.

The VERDIX compiler was selected for use after available compilers were screened by
the procedures recommended in 1987. However, numerous early software and hardware
errors were encountered before stable performance was achieved. As late as January
1991, the VERDIX Ada compiler with the version 6.0 program was found to have an
optimizer error. After the compiler was corrected, the UPDATE IV program required
a total recompile to remove inefficiencies scattered throughout.

Lesson 4: Tailoring of DOD sofiware development standards must be addressed to
accommodate Ada-unique capabilities. Although DOD-STD-2167A does not require that
software development efforts follow the traditional waterfall model associated with DOD
software developments, it does not provide guidance on alternatives. Ada forces more
detailed design earlier in the software developments than do previous languages because
of the Ada package specifications and the strong data types imposed by Ada. These
factors encourage a pseudo "rapid prototyping” approach rather than the traditional
waterfall during the design phases.

DOD-STD-2167A does not address distributed processor systems or multiple CI
developments. Ada was designed specifically for a modular approach to large software
developments. For example, DOD-STD-2167A does not adequately address testing
among multiple CIs or the Integration Phase issues. DOD-STD-2167A documentation
neither reflects Ada terminology or structure nor addresses an appropriate approach to
documentation development.

Lesson 5: Although the adoption of Ada was envisioned 10 enhance the software
development process, use of Ada does not guaranzee sound software engineering practice.
Specific areas where Ada does not substitute for sound engineering practices include:

* Establishment of system and software requirements. A Requirements Analysis
Phase must be conducted to produce appropriate system-level requirements that are
then allocated to hardware and/or software as appropriate. Participation by both
contractor and Government systems engineering personnel throughout this
evolution is critical to program success.

1—62 Department of the Navy




Lessons Leamed

o Enforcement of control poimnts. The contract must require and the Government
must enforce a variety of control points. These control points must take into
account Ada-unique development approaches where the approach differs from the
traditional DOD-STD-2167A waterfall model. Allowing the contractor to proceed
past these control points, even if he does so "at risk,"” imposes significant risk on
successful program completion.

e Configuration management. Use of Ada does not preclude Government
requirements for establishing and controlling the functional, allocated, and product
baselines. Use of Ada may complicate control of the software allocated baseline
by inviting inclusion of design detail into the software requirements documents.
Although Ada forces more detailed design earlier in the software development
process, the temptation to include this detail into the software allocated baseline
must be avoided.

o Testing. The mapping of Ada constructs to DOD-STD-2167A “units,” "modules,”
and "system" is imprecise and can lead to inadequate testing of Ada code. The
DOD-STD-2167A premise of fully qualifying a software entity at one level of
abstraction before combining that entity into larger integrated components should
be maintained. A software entity should not be considered fully qualified solely
because the higher-level entity into which it is incorporated successfully passes its
qualification requirements.

Lesson 6: Strict configuration management and control are required 1o enforce discipline
to counter complexity-induced confusion. Lack of familiarity with Ada, a slow learning
curve for new coders, and schedule delays reemphasize the absolute requirement to
maintain strict software and hardware control within all facilities. With differing levels
of coding, unit and package testing, informal integration testing, and formal systems
testing occurring in the respective facilities; strict configuration management within the
facilities and within the software development library was mandated. The Government
audited the initial Software Development Folders (SDFs) and found them deficient.
Replication of numerous informal tests could not be accomplished from the SDFs, as
written.

1.19 STANDARD FINANCIAL SYSTEM REDESIGN

The Standard Financial System (STANFINS) is part of the total U.S. Army accounting
system and serves as a field-level system for general funds servicing posts, camps, and
stations. The original STANFINS was a batch processing system written in COBOL.
A STANFINS Redesign project (STANFINS-R) was undertaken to overhaul the system
and make it interactive.

Ads Implementation Guide . 1-63




Lessons Leamed

STANFINS-R consists of two subsystems—Subsystems I and II—to be developed
independently. This large system is designed to handle mainstream accounting
applications such as the general ledger, accounts receivable, fixed assets, and cost
accounting standards. The system consists of 500 programs with approximately 2 million
lines of code, and it generates 147 reports. The contract for developing Subsystem II,
which originally was viewed as a large COBOL project, was awarded to the Computer
Sciences Corporation (CSC) in the fall of 1986. However, the contract was modified in
the spring of 1988, and Ada was designated as the development language. The first pilot
teams were formed in the spring of 1988, and the actual writing of code and Ada
bindings began in the fall of- 1988. Software development testing and software
qualification testing started in the summer and fall of 1989, respectively. Most of the
system tests have been completed, and part of the project is operational.

The project was developed in an automated program support environment composed of
six Rational R-1000 machines. The code was eventually ported to the target
environment, an IBM mainframe running OS/VMS.

Despite delays in the implementation schedule and budget overruns, the STANFINS-R
project indicates that there are several advantages to using Ada in information systems
development. For example, programmer productivity has been quite high (594 lines of
code per staff month), almost double that of typical COBOL projects, and the quality of
the software, as evidenced by the test results, appears to be uniformly high.

In many ways, STANFINS-R is a prototypical information systems project from which
many lessons, including those described below, can be learned about Ada use.

Lesson 1: The available pool of developers skilled in Ada is limited. When making
projections about project costs, the issue of the limited number of available personnel
skilled in Ada and the need for training should be considered. STANFINS-R originally
was conceived as a COBOL project. When denial of the waiver resulted in a switch to
Ada as the development language, it became apparent that the available pool of
developers with Ada/MIS experience was small. The existing staff of COBOL
programmers had to be trained in Ada, which caused delay in project execution.

Lesson 2: Few compilers and suppont tools are available for information systems
development in the IBM environments thast use Ada. STANFINS-R demonstrated that
Ada is a viable language for developing information systems in environments where
COBOL has been the dominant development language. However, the IBM environment,
which is the primary environment for developing such systems, is poorly supported in
terms of compilers and support tools. STANFINS-R was the first Ada application of its
kind and size to be developed to run on an IBM OS/VMS environment. Because of the
lack of available tools to support Ada in this environment, a set of support tools, such

1—64 Department of the Navy




Lessons Leamed

as code generators and screen painters, had to be developed as part of the project.
Moreover, the compiler, which was developed by Intermetrics but had not been
validated, did not provide support for a CI-based teleprocessing monitor; therefore, the
contractor had to write one. In addition, the DBMS package chosen for the project (i.e.,
Datacom DB) did not contain a suitable Ada interface; therefore, a hook had to be
written. For Ada to be a feasible language for use in developing information systems,
the issue of availability of compilers and support tools must be addressed. Most Ada
vendors do not offer products in this environment. The dominant compiler in this
environment (offered by Intermetrics) has not been validated. The unavailability of
suitable compilers has been a significant factor inhibiting the use of Ada in information
systems and has created an adverse cycle of events. On the one hand, because Ada is
not the preferred language in information system development, vendors have little
incentive to offer products to work on the platforms on which such applications are
traditionally developed. On the other hand, the paucity of suitable products works to
limit the conmsideration of Ada in developing information systems. Successful
implementation of the mandate to use Ada will require a suitable resolution of this cycle.
A plausible way to address this problem would be to create appropriate incentive
structures that will encourage vendors to develop such products.

Lesson 3: Systems developed in Ada may be more maintainable than those written in
COBOL. Although it is too early to state definitively that Ada maintenance requirements
are lower than those for COBOL, preliminary evidence indicates this may be so. Part
of STANFINS is operational and has a maintenance staff of six programmers, a much
smaller team than would be required to maintain a system of similar size that uses
COBOL.

Lesson 4: In principle, poriability is ensured by developing code in Ada; however, in
practice, pontability is limited. Porting the code from the Rational environment to the
target environment was problematic. For a variety ‘of reasons, parts of the code that
worked well on the Rational environment did not work in the target environment. For
example, nested generics would not work on the target although they tested and compiled
on the development machine. Executable code sharing could not be implemented on the
target, ther:by causing the executable sizes to grow to unmanageable proportions. Other
features, such as representation specifications, Unchecked_Conversion, and Pragma
Inline, were not implemented in the target compiler.

Developers in this project had significant problems with porting code from the
development environment to the target environment. What compiled on the Rational R-
1000 also compiled on the IBM mainframe using OS/MVS. However, lack of compiler
support for the teleprocessing monitor and interfaces to the DBMS necessitated the
creation of low-level functionally limited code, thereby limiting portability to other

Ada Implementation Guide . 1-65




Lessons Leamed

environments without significant modifications. Thus, while most of the code can be
ported to a VAX/VMS environment, for example, complete portability would require
significant alterations.

Lesson 5: Ada has special advantages that make reuse more feasible and enables the
benefits of reuse 10 be realized at several levels. At one level are specific packages and
templates that can be used in other parts of the project or in other projects. While the
same could, in principle, be accomplished with code written in COBOL, the use of
generics and packages gives Ada a special advantage over COBOL that makes such reuse
much more feasible. There was significant use of these templates at STANFINS. The
issue of reuse can also be viewed in terms of tools that are developed for specific
projects but with suitable modifications can be used in other projects. The STANFINS
project, for example, entailed the development of Program Structure Language
(PSL)/Program Structure Analysis (PSA) tools for writing design specifications. These
tools can plausibly be modified and reused in other projects. A follow-up project, the
Standard Army Financial Accounting and Reporting System (STARFIARS), demonstrates
reusability at both levels. Although STARFIARS is likely to be at least 33% larger than
STANFINS, the project is scheduled to take 50% less time than STANFINS. The
rationale for this fast-paced schedule is twofold: STANFINS provided a useful leaming
curve from which STARFIARS will benefit, and more important, the implementation of
STANFINS has created system templates and tools that can be reused to create the new
system with greater productivity.

Lesson 6: Tailoring of DOD sofiware development standards must be addressed to
accommodate Ada-unique capabilities. The documentation required for STANFINS-R,
which was prepared according to the requirements mandated in AIS DOD-STD-7935-A,
was inordinately large. While the exact figure is difficult to ascertain, a conservative
estimate is that every line of code generated at least 10 lines of documentation. The
voluminous documentation clearly limits its usefulness and points to the need to
reexamine current documentation standards.

1.20 RECONFIGURABLE MISSION COMPUTER PROJECT

The Reconfigurable Mission Computer (RMC) Project sought to demonstrate that
modularity in both hardware and software would reduce the cost of developing new or
upgrading existing embedded systems. The thrust of the project was to exploit hardware
and software commonality in different embedded systems.

Lesson 1: For small technology demonstration projects, anticipate a lack of Ada
compilers for small, embedded computers that use advanced microprocessors. Primary
constraints on missile general-purpose data processors are size, power, and cycles per
second. There is always a drive to use the most advanced microprocessors available to
get as much performance as possible in as small a space as possible while consuming the

1—-66 Department of the Navy




Lessons Leamed

least power possible. Ada compiler vendors, however, are not going to market a
compiler until they can determine that it is financially realistic to do so. Small
technology demonstrations that want to use Ada in the software development may be
restricted to using processors for which a commercial Ada compiler exists.

Lesson 2: Plan on allocating a portion of the CPU utilization to the inefficiencies of
using a modular design approach and design implementation in Ada. The RMC project
goals included creating portable Ada programs, running them on several platforms,
measuring the code change required, and learning what it took to make an Ada program
portable. A modular design based on Abstract Data Types was used to hide machine
interfaces. We also hid the "goodies” the compiler vendors offered outside of the Ada
language behind our own package interfaces. The results were a reduction in
performance that can be made up with a higher throughput CPU. However, any
throughput increase realized by upgrading platforms is usually given to the analyst to
develop more capable algorithms. A modular design in Ada can reduce code, test, and
modification times and is well worth the extra overhead incurred.

Lesson 3: Plan on throwing away some or all of the first software designed. After the
first design and implementation of demonstration software in Ada, it was felt that the
implementation would be improved the next time. Fortunately, we had the luxury of
doing just that, and we understood and implemented a much better software system the
second time. It is not necessary to wait until all of the tools and hardware are in place
to begin coding. As much of the design as possible should be implemented as soon as
possible. A commercial prototype or similar system should be used to gain
understanding of the system, and the first cut should be used to verify that the
requirements can be met.

Lesson 4: Dedicate an individual or group (depending on the size of the project) to the
Ada-hardware interface. Ada touches the "iron” in several places: the target debug
monitor for on-target program development; the kemel for time, memory, and processor
management; and device drivers used by the application. A person or group needs to be
familiar with hardware registers, ports, memory locations, and the low-level facilities
available in Ada. Evolving hardware architectures and compiler upgrades make this an
absolute necessity.

1.21 INTELLIGENT MISSILE PROJECT

The purpose of this project, which is funded by the Office of Naval Technology under
the Missile Support Technology block NW2A, is to develop generic software techniques
and to design tools that will allow the use of knowledge-based Artificial Intelligence (AI)
paradigms for control and decision-making functions in missiles. These capabilities are
to be implemented in Ada. Having these features will yield more adaptive and
autonomous missile operation.

Ada Implementstion Guide . 1-67




Lessons Learned

A simple, forward-chaining inference engine was developed and tested on several
computers. Next, a decision-tree type of expert system was developed along with a tool
(in Ada) to generate the Ada decision tree. (None of the commercial expert system
shells could do this at the time.) Finally, a hybrid system was developed that combined
the flexibility of an inference engine with the speed of a decision tree. Execution
performance was measured for all three types of systems. The decision tree was the
fastest, and the hybrid system was a close second.

Lesson 1: System analysis must be conducted at the beginning to ensure that adequate
resources (e.g., compilers, hardware platform) will be available for meeting the system
requirements. The tendency to favor particular hardware or compiler systems just
because they are available must be avoided. Choosing a particular CPU simply because
it is available can lead to problems that could have been avoided by performing adequate
system analysis. One problem encountered was that the CPU needed an Assembly
program to be downloaded and run to "kickstart” the CPU so that Ada code could be
downloaded and executed. The CPU was hardwired to have a certain memory
configuration that was incompatible with the mandatory location of the Ada code.

Similarly, using a compiler that already is on hand without ensuring it can do the job also
will lead to delays. In this case, the compiler had been validated for a particular single-
board computer. Although the vendor stated that it should work with the chosen target
board, the vendor would not provide any help because compilers for other CPUs had a
much higher priority. This happened in spite of the fact that the highest level of
maintenance available had been purchased for this project.

Lesson 2: Although Ada has many features, it does not have every feature from every
language, for example, Ada is restricted in the type of Al systems for which it can be
used. Because it is a procedural language, Ada has some restrictions, particularly with
regard to certain Al applications. In LISP, an arbitrary string of characters can be
handled in three different ways: as text, as a variable, or as a function to be called.
This ability, which is very useful for building production-type expert systems, results
from LISP’s being not only a language but also an environment. Because Ada is only
a language, there are restrictions on the types of production expert systems that can be
implemented.  Although it would be possible to implement the equivalent LISP
environment in Ada, LISP is too slow and big for a missile system, which was the reason
for its not being used in the first place.

1—-68 Department of the Navy




Appendix J
FY91 Ada Technology Insertion Program Projects

This appendix provides a brief description of the Ada Technology Insertion Program
(ATIP) projects funded in FY91. The projects fall into three primary
categories—education, bindings, and technology. For more information on these
projects, contact the Ada Joint Program Office at (703) 614-0209.

J.1 EDUCATION
Of the 14 projects funded, one addresses Ada education. It is the "Undergraduate

Curriculum and Course Development in Software" given by the Advanced Research
Projects Agency (ARPA).

This program will support the development of educational materials using Ada that
will be widely distributed to and used by educators. It will enhance the software
engineering content of courses and course sequences in computer science curricula
and will demonstrate, through pilot implementations, the feasibility and viability of
a comprehensive undergraduate curriculum in software engineering using Ada.

J2 BINDINGS
The eight bindings projects are grouped into the following categories:

Government Open Systems Interconnection Profile (GOSIP)
Management Information System (MIS) Mathematical Binding
Military Standard (MIL-STD)-1553

Portable Operating System Interface for UNIX (POSIX)
Structured Query Language (SQL)

XWindows.

Ada Application Program Interface to GOSIP Network Services
Defense Information Systems Agency (DISA) (Formerly DCA)

GOSIP is a family of protocols that supports network services. Although Ada

bindings to GOSIP exist, this project will develop a robust Ada/GOSIP binding for
standardizing the interface of Ada applications to GOSIP network services.

Decimal Arithmetic
U.S. Air Force

Compiler vendors support decimal arithmetic but in nonstandard ways. This project
will standardize a mechanism for realizing COBOL-style exact decimal arithmetic in

Ada Implementation Guide I B




FY91 ATIP Projects

Ada 83. I* will provide sufficient functionality to handle financial applications with
at least 18 digits of precision. It will offer early availability with Ada 83 compilers,
notational convenience, ease of transition to Ada 9X, and run-time efficiency.

Generic Avionics Data Bus Toolkit
U.S. Navy

This project will offer a standard software interface that can be reused for various
MIL-STD multiplex data buses with minimal changes. The initial software will focus
on the MIL-STD-1553B protocol because this protocol is the most prevalent, but it
will be designed to be configured for expansion to other types of data buses. An
integrated MIL-STD-1553B monitor with debugging tools is planned.

POSIX/Ada Real-Time Bindings
U.S. Air Force/Navy

POSIX defines a collection of system services that provide portable application
interfaces to operating systems. The POSIX effort is divided into several areas that
cover the range of operating system services. These include basic system services,
real-time services, security services, user command interface, user graphical interface,
network services, mail services, and system administration. This project will develop
draft Ada bindings for the real-time service area (POSIX 1003.4 and 1003.4a
standards), work with the Institute of Electrical and Electronics Engineers (IEEE)
standards organization to promote the use of these drafts as a starting point for
development of standard Ada bindings, and develop a test prototype implementation
of Ada tasking using the 1003.4 (real-time) and 1003.4a (threads) services.

Ada SQL Interface Standardization
Defense Advanced Research Projects Agency (DARPA)

SQL is a set of standards associated with relational databases and data dictionaries.
The SQL Ada Module Description Language (SAMeDL) provides an interface
technology for Ada applications accessing SQL database management systems
(DBMSs). The ATIP will fully document both the SAMeDL as a language and its
supporting methodology, respond to the needs of the standardization process, and
coordinate efforts of potential vendors of SAMeDL processors as well as identify
needs of potential SAMeDL customers to assist the transition to the SAMeDL.

J-2 Department of the Navy

-----------‘-




FY91 ATIP Projects

A SAMeDL Pilot Project on SIDPERS-3
U.S. Air Force/Army

A SAMeDL tool set will be developed consisting of a SAMeDL Module Manager
and a SAMeDL compiler. These tools will target a designated database running on
an Everex Personal Computer (PC) under UNIX. Both an existing application and
a new application will be developed using this tool set. This effort is designed to
prove that the SAMeDL tool set has the robustness, maturity, and potential for
reusability to be employed as the Ada/SQL binding of choice on any large
Department of Defense (DOD), Ada Management Information System (MIS)

program.

Common Ada XWindow Interface
U.S. Navy

XWindows is a de facto industry standard that provides a Graphical User Interface
(GUI). Popular toolkit extensions to XWindows include Open Look (used by AT&T,
Sun, and others) and Open Software Foundation (OSF) Motif (used by IBM, Digital
Equipment Corporation, Hewlett-Packard, Apollo, and others). This project will
design and produce a Common Ada XWindow Interface (CAXI) to both the Open
Look and Motif toolkits. The interface will be written in Ada and will allow
application programs to use either toolkit without modification to the application
program. This will increase the portability of Ada applications and provide flexibility
in the selection of hardware.

An Interactive Ada/XWindows User Interface Generator.
U.S. Army

This project proposes to develop a general-purpose Ada/XWindows User Interface
Generator that automatically generates Ada source code. Using this tool, a
developer will be able to interactively develop a functioning user interface by
selecting user interface primitives and arranging them on the screen. This tool is
intended to reduce the bottleneck imposed upon Ada systems developers when
developing window-based user interfaces based on the XWindows system and the

Motif toolkit.

J3 TECHNOLOGY
The five projects in the technology category deal with the following:

¢ Engineering environments
¢ Prototyping

Ads Implementation Guide . J-3




FY91 ATIP Projects

e Reuse
® Security.

AdaSAGE Enhancements
U.S. Air Force/Army/Navy

AdaSAGE is an applications development set of utilities designed to facilitate rapid
and professional construction of systems in Ada. The Department of Energy
developed AdaSAGE at the Idaho National Engineering Laboratory. Applications
may vary from small to large multiprogram systems using special capabilities. These
capabilities include database storage and retrieval (SQL compliant), graphics,
communications, formatted windows, on-line help, sorting, and editing. AdaSAGE
operates on various systems including MS-DOS platforms, UNIX System V, and
0S/2. A developer using the Ada language and the AdaSAGE development system
can design a product tailored to a specific requirement that offers outstanding
performance and flexibility. The ATIP proposal provides enhancements to
AdaSAGE requested by the user community and supports the creation of a
computer-aided training program.

ATLAS/Ada-Based Enhancements for Test (ABET)
U.S. Air Force

ABET is an Air Force and IEEE effort to provide an international standard for an
automatic test environment for maintenance activities. Ada is the language to be
used for implementing this standard. ABET will intelligently incorporate Ada into
the test arena by providing a set of layered standards to the test community.

A Computer-Aided Prototyping System for Real-Time Software
U.S. Air Force

The program will demonstrate a high-technology, low-cost approach to providing the
latest software prototyping tools for real-time Ada programs. It provides the
opportunity to use the thesis efforts of students at the Naval Postgraduate School,
who are DOD personnel familiar with Ada and its embedded applications.

Reusable Ada Products for Information Systems Development (RAPID)
U.S. Army

RAPID is an Ada reuse program that includes an automated library tool for
configuration, identification, and retrieval of reusable Ada software components and
a staff that supports and trains developers in reusability and sound software
engineering principles. Its mission is to ensure that the DOD objective of reusable,

J—-4 Department of the Navy




FY81 ATIP Projects

maintainable, and reliable Ada software is achieved. It provides a total reuse
program supporting the entire software development life.

Ada Reuse in a Trusted Message Processing System for Real-Time Software
U.S. Navy

This project will investigate Ada reuse in developing software that satisfies the
Orange Book B2-Level security requirement. The system will be fielded as the
Submarine Message Buffer (SMB) System, supporting personnel with two levels of

security clearance.

Ada Implementation Guide , J-5




FY91 ATIP Projects
Department of the Navy

J-6




. R U ok o B em &8 P @

Appendix K
Navy and Marine Corps Ada Projects

A database of Navy and Marine Corps projects that use Ada has been assembled for
reference by Program Managers who are planning to use or currently are using Ada.
The database includes the following information:

* Project Name

Project Description

Application Area, (i.e., Command and Control [C2], Command, Control and
Communications [C3], Command, Control, Communications, Computers, and

Intelligence [C4]], Electronic Warfare [EW], Space, Communication, Armament,
Ordnance, Acoustic, Navigation, Financial, Personnel, Contracting, Material

Management, Medical, Depot Maintenance, Tool, Database Management System
[DBMS], Graphical, Education, Simulation, Other)

Sponsor/Developer

Point of Contact and Phone Number

Program Status (in planning, developed, completed, or canceled)

Source Lines of Code (SLOC)

Host System

Target System.

Because this database is very large, its contents have not been included in this version .
of the Ada Implementation Guide. 1t is available either on disk as a Lotus 1-2-3 file or
in hard copy. To obtain a copy, please fill out the attached order form.

If you would like your project to be considered for inclusion in this database, please
provide the information listed on the order form.

Ada implementation Guide ) K~-1




Navy and Marine Corps Ada Projects
Department of the Navy

K-2




Navy and Marine Corps Ada Projects
ORDER FORM

Program Name

Prog. Manager

Address

City, St & Zip

Please send:

(1) Copy of DON Ada Projects Database on disk (Lotus 1-2-3
File) and/or

(1) Hard copy of DON Ada Projects Database

To have your project considered for inclusion in this database, please provide
the following information:

. Project Name

. Project Description (brief & concise)

° Application Area, (i.e., C2, C3, C41, EW, Space,
Communication, Armament, Ordnance, Acoustic,
Navigation, Financial, Personnel, Contracting, Material
Management, Medical, Depot Maintenance, Tool, DBMS,
Graphical, Education, Simulation, Other)

o Sponsor/Developer

o Point of Contact and Phone Number

o Program Status (in planning, developed, completed, or
canceled)

. Source Lines of Code (SLOC)

. Host System

° Target System.

Please send this order form and/or project information to:

Space & Naval Warfare Systems Command
SPAWAR 3241 (CDR M. Romeo)

2451 Crystal Drive (CPK-5, 700)
Washington, DC 20363-5208

Ada Iimplementation Guide




Navy and Marine Corps Ads Projects
Department of the Navy

K-—-4




a G U aR B o0 O @b U O R N gh R B e e

Appendix L
Ada Language Features That Support Software

Engineering

Ada has several features that directly support software engineering. This appendix
discusses in great technical detail those features that are considered important, including
Ada packages, strong typing, exceptions, generics, Ada library (separate compilation),
and tasking.

L.1 Ada PACKAGE

Many people consider the Ada package to be the most important feature in the language
to support the goals and principles of software engineering. Hence, it is a primary factor
in producing software that is reliable, of high quality, within budget, and on schedule.

The Ada package consists of two parts: a package specification and a package body.
The package specification identifies "what" the package is going to do; the package body
contains the "how" and provides implementation details of the code hidden from the
application. The package specification identifies how any Ada application can interface
with the package. In a sense, the package specification is a legal contract with Ada
applications. The package body contains the code to conduct the real work of the
package. As Figure L-1 depicts, an Ada application must go through the package
specification in order to benefit from the code in the body. The specification identifies
the only way that an Ada application can interface with the package body.

Typically, an Ada application is a main program with 'a collection of packages.
Attachment 1 to this appendix contains a sample of an Ada package specification. This
sample provides an abstraction of the parcel. -

Once appropriate abstractions are created with the package feature, the abstractions can
be used by the main Ada program or other packages. Attachment 2 to this appendix,
which uses a queue example, provides a simple example of a compiete package with both
the package specification and the package body. The parcel abstraction package is
imported for use in the queue example.

These examples of packages demonstrate all of the software engineering principles:

Ads Implementation Plan . -1




Ads Feature Examples

Ada Application

-

[ ]

Package Spec

y

Package Body

Figure L-1. Ada Package

® Abstraction. The package provides an excellent mechanism to create abstract data

L-2

types that map to the real world. The objects and operations identified for the
parcel post abstraction in the example in Attachment 1 support the requirements
of the application clearly. This reduces logic errors in implementing the package
body, and more important, in using the abstraction in the main program. Ada
packages support data abstraction, which allows the creation of objects that
correspond to real-world entities. The result -is maintainable systems and the
generation of code that can be reused.

Information Hiding. The unnecessary detail of how the package is used is hidden
from the application. This hiding prevents the application from accessing internal
data structures. The package specification serves as a clean interface to the
package body and hides all data structures within the body. This hiding prevents
a programmer from directly accessing the data structures, which can cause two
serious problems:

- Violation of Data Integrity. The first serious problem is that the integrity of
the data could be violated. For example, a programmer could decide that an
object to be placed on the First In First Out (FIFO) queue has high priority.
Attachment 2 provides a queue example. Instead of using the desired

Department of the Navy




Ads Festure Examples

ENQUEUE procedure, the programmer adjusts the front and back pointers in
the queue, placing the new item at the front of the queue. When done
incorrectly, this could destroy the integrity of the database. As a "hack," this
violation would typically not be documented and not be adequately tested. If
a legitimate requirement exists to place objects at the top of the queue, a
special procedure should be designed as part of the package to provide this

capability.

-~ Undocumented, Untested Interface. The second serious problem associated
with directly accessing the data structures is that this direct access provides an
undocumented coupling to the data structures that would not be updated should
the package body be updated. An update to the data structures to improve
performance, add new functionality, or correct an error could result in having
code somewhere else in the application that no longer can work as intended.
At best, this code may have no effect on the data structure. At worst, this
code may totally destroy the information maintained in the data structure and
invalidate it for other use. This scenario is exactly what happened in 1992 to
the code that controlled the switching circuits for the telephone lines to New
York City and most of New England. The misplacement of queue pointers
caused the telephone system to crash for many hours. This would not have
happened had the application been coded in Ada with effective use of
packages. Fortunately, in Ada, the only interface to the package body is
through the package specification. Consequently, the Ada package is a highly
important feature for high-quality, reliable code that results in reduced costs
during initial software development and later during life-cycle maintenance.

® Completeness. The package body can be easily tested to verify that it completely
satisfies the requirements identified in the package specification. Because the only
purpose of the package body is to implement the interface defined in the package
specification, the package body can be easily evaluated to ensure it completely
supports the interface. This minimizes the otherwise frequent surprises found
during integration where requirements are not satisfied.

® Confirmabiliry. The package body can be easily tested to confirm that it correctly
implements the package specification. Because the only interface to the code in
the package body is through the package specification, the testing problem is
simplified and results in correct code that can be easily integrated into other
compilable program units.

® Modularity. The package structure provides an excclient mechanism for
implementing interfaces and supporting the migration to Open Systems
Environments (OSEs)/Open Systems Architecture (OSA). Ada is recognized by

Ads Implementstion Plan L-3




Adas Feature Examples

the National Institute of Standards and Technology (NIST) as having a strong
strategic value in migrating towards OSE (U.S. Department of Commerce, 1991).

L.2 STRONG TYPING

Perhaps the second most important capability in the Ada language is the feature of strong
typing coupled with the associated Ada exception. Together, they provide a capability
to build high-quality software by automatically identifying many programmer €rrors
during software development at compile and execution times. For applications with
relighility, fault-tolerance, and safety-critical requirements, this capability provides a
mechanism to return to some known, safe state when a system error occurs. This section
discusses strong typing; the next section addresses Ada exceptions.

L.2.1 Types as Building Blocks

An Ada type characterizes a set of values and a set of operations applicable to those
values. Ada provides a variety of types that can be used as building blocks to create
real-world abstractions. For example, Command and Control (C2) applications usually
process tracks that represent an aircraft, ship, or submarine. Important information is
maintained on each track, including identification, geographical latitude and longitude,
altitude, and time of last position report. The following type definitions may be used to
create a simple abstract track type:

type identification is (friend, foe, unknown);

type latitude is digits 12 range -90.0 .. +90.0; —in degrees
type longitude is digits 12 range -180.0 .. +180.0;  —in degrees
type altitude is range -1000 .. +50000; —in feet

Associated with each type is a set of type-specific operations (e.g., addition and
multiplication for integers and reals). These types can be used as building blocks for
compound user-defined types such as arrays and records. The record is used to define

the following simple logical track type:

type track_type is
record
ID: identification; —track ID
lat: latitude; —track latitude
long: longitude; —track longitude
alt: altitude; —track altitude
L-4 Department of the Navy




Ada Feature Exampies

time: calendar.time; —time track position
—Jast updated
—time imported from package calendar
where it is defined

end record;

L.2.2 Creation of Objects From Types
A type is only a template from which objects can be created with a known set of values

and a known set of operations. Objects can now be created from the above type
definitions:

X1,X2: latitude;
Y1,Y2: longitude;
AB: track _type;

These objects can now be assigned values such as:

X1:= 57.0; —X1 becomes 57.0 degrees North
X2:= X1-60.0; —X2 becomes 3.0 degrees South
Y1:= -145.0; —Y1 becomes 145.0 degrees West

A:= (friend, X1, Y1, 32_000, calendar.clock);
~ID becomes "friend"
~—Ilat becomes the value of X1
~—long becomes the value of Y1
~alt becomes 32,000 feet
—time becomes current time (result of function clock in package

calendar)

An alternative method of expressing this last assignment statement clearly associates the
component objects of A:

A:= (D => friend, —ID becomes “friend"
lat => X1, ~lat becomes the value of X1
long =>YI, —long becomes the value of Y1
alt => 32_000, —alt becomes 32,000 feet

time = > calendar.clock); —time becomes current time

This method improves the understandability of the code for both programmers and
nonprogrammers.

Ada Implementation Plan _ L-56




Ada Feature Examples

L.2.3 Handling of Objects in Homogeneous and Heterogeneous Environments
Once objects have been defined, the use of these objects as a single entity facilitates use
within the application, for example:

B := A; — The objects in record B (of track_type) are set to those of record A. This is
equivalent to:

B.ID := A.ID;
B.lat := A.lat;
B.long := A.long;
B.alt := A.alt;
B.time := A.time;

This convenient notation provides the most efficient means for handling the object within
homogeneous computing environments for assignments, bus transfers, Input/Output (/0),
and other operations. A pack/unpack facility provides support for interfacing the object
to heterogeneous computing environments. In this way, the object can be handled
efficiently with one’s own computer. When the object is ready to be communicated to
a different computer system, it can be "packed” into the agreed-upon interface or
message format.

L.2.4 Elimination of Illegal Expressions and Assignment Statements

Strong typing eliminates errors by preventing illegal expressions and illegal assignmenis
of different types at compile time. For example, what is the result of adding five apples
to six oranges? In normal mathematical situations, this is undefined. Hence, the
following is undefined in reality and, in Ada, would be declared illegal at compile time:

X1+Y1 —illegal expression
—adding a latitude to a longitude is undefined

Y2:=X1; ~—illegal assignment statement
—assigning a latitude to a longitude is also undefined

The prevention of illegal expressions and illegal assignments at compile time reduces
many common logic errors found in most other languages. Although adding latitude to
longitude is normally undefined and undesired, the user may choose to define such an
operation in Ada.

L.2.5 Elimination of Constraint Errors at Compile Time

In addition, strong typing eliminates errors by providing constraint checking to ensure
that all range values associated with the type definition are satisfied. For example,
objects of type latitude are assigned to range from -90 degrees South to +90 degrees

L-6 Department of the Navy




Ada Feature Examples

North. In normal mathematical situations, a value outside of this range would have no
meaning. Hence, the following statements would be illegal:

X1 := 127.0; —illegal as 127 degrees exceeds the range constraint of 90
degrees North

L.2.6 Elimination of Constraint Errors at Run Time
Constraint errors may be identified at compile time and also at run time (during program
execution). The following statement is legal for values of X1 less than and equal to 75

degrees; it is illegal when X1 is greater than 75 degrees:
X2 := X1 + 15.0; —possibly illegal—only known at run time

Constraint checking during run time is important during software development and testing
because it aliows errors to be easily detected and code corrected or handled, as
appropriate. Constraint checking is also important during execution in the mission
environment. Should errors be detected, an exception can be raised that allows the
software to take the appropriate action.

L.3 EXCEPTIONS

Ada exceptions were included in the language to support reliability, fault tolerance, and
safety critical requirements. During the execution of a program, all sorts of errors can
occur that could result in grave consequences. A zero divide could cause a computer to
crash during critical terrain-following maneuvers; an out-of-bound index to a database
could cause the entire database to be corrupted; an out-of-bound index to an array could
cause a weapon to be launched against friendly forces; and an exceeded capacity limit
could cause a weapon to miss the target. Errors can result from hardware faults,
network faults, capacity limits, or software logic. Some errors are easy to predict; others
are next to impossible. Regardless of the cause of the error, the exception feature in Ada
provides an excellent mechanism to programmatically recover and return to some known,
safe state and continue processing. This is important for many applications where the
mission would be at risk if the computer had to be shut down and rebooted.

Without exceptions, programmers would have to test for each possible error condition
‘and would occasionally miss a possible error. In Ada, a set of predefined exceptions
exists that can automatically identify typical processing errors. It is also possible for the
user to define additional error conditions that can be detected. When an error condition
is detected, an exception is raised. Should an exception handler be defined for the
exception, an appropriate action could be taken to return the program to a known safe
state. If an exception handler is not defined, the program will crash just as a FORTRAN

or C program does.

Ada Implementation Plan L-7




Ada Feature Examples

Examples of predefined exceptions are shown with the parcel abstraction example in
Attachment 1, the queue example in Attachment 2, and the queue generic example in

Attachment 3.

L.4 GENERICS
Generics are the building blocks of reusable software systems. Reuse is not only

important for economies across applications but also can be very important within a
single application.

The example of the queue, presented in Attachment 2, can be a necessary artifact to
many portions of a single application. The queue, as presented in the attachment, is not
very applicable for general use. It is only useful for objects of type PARCEL_TYPE
going to a queue containing a maximum of 100 objects. In the past, such a queue could
only be reused by hard coding the desired type and size. Making the necessary changes
by hard coding such code is extremely error prone when code is complex or nontrivial.
Ada provides an elegant solution. This queue can be made useful to other requirements
in the same application by converting it into a generic. A generic provides a template
from which new Ada code can be built. Conversion to a generic requires minor changes
to the package specification and package body, some generic parameters, and a generic
instantiation. A generic instantiation is a formal Ada construct that creates a logical
instance of the generic code by filling in the template with the generic parameters.

The queue example in Attachment 2 has been converted to a generic queue example in
Attachment 3. This example establishes generic parameters for (1) the type of item to
be managed by the queue and (2) the size of the queue. The example shows the generic
instantiation necessary to create an instance equivalent to the queue of Attachment 2. It
also exemplifies the way this generic queue can be used to create a queue for any type
of any size (up to system limits).

The power of this generic queue is considerable. Queues can now be built for any
desired type for any desired size and used over and over again even within the same
application. This generic can be instantiated to process parcels for shipping, radar
messages, E-mail messages, financial data, stock quotes, or any data type desired and
for any quantity up to hardware limits.

Once the generic is built and thoroughly tested, the cost of reusing the code is
significantly reduced. Most errors will be detected and corrected when the code is first

developed. This means that the cost and risk to a subsequent user will be less than that
of developing the code from scratch.

L-8 Department of the Navy

-




Ada Feature Examples

Furthermore, reuse of code results in higher-quality applications. As the code is reused
and corrected for each instantiation, fewer defects will be found by subsequent users.
Corrections made by subsequent users can be reapplied to an earlier application during

the next upgrade.

L.5 Ada LIBRARY (SEPARATE COMPILATION)

Ada provides a library mechanism that supports integration and programming-in-the-large
requirements. Library units, such as package specifications, package bodies, and main
programs, are managed separately. Consequently, each library unit can be compiled
separately when the package specifications are known. This is important for developing
large systems. Such an application can be divided among many developers by defining
appropriate interfaces using the Ada package. Dummy code or stubs can be used to
simulate the interface for testing and prototyping purposes. Later during integration, the
completed, developed code can be very easily integrated because all portions of the code
were developed by using the same interfaces.

The package body can be separately compiled from the package specification. This also
supports integration by reducing the time necessary to rebuild a complete system. In the
past, should an error be found in the system, the entire system had to be recompiled and
linked. This frequently took days. Most execution errors are typically found in the
detailed implementation in the package body. In Ada, when such errors are corrected,
only the package body needs to be recompiled and the system relinked. Because this
should be a very small part of the system, a complete, recompiled system can be
generated rather quickly.

In addition, procedures and functions can be compiled either as part of a library unit or
separately. This provides a considerable amount of flexibility when developing the
design of an application and supporting early prototypes.

L.6 Ada TASKING

Ada tasking provides a capability to support logical parallel processing within an Ada
application. The Ada tasking model provides an excellent and portable capability to
maintain separate threads of control, synchronize asynchronous activities when necessary,
and communicate among these separate threads of control. Tasking is a rather advanced
language feature not found in other languages. When tasking is used, a special Run-
Time Environment (RTE) is evoked to schedule tasks, process interrupts, and provide
other services. It can be highly valuable to a wide variety of applications including real-
time applications, simulation, prototyping, and networking. To use tasking effectively,
one must understand the Ada tasking model and have a design methodology that supports
the model. It is recommended that compilers be carefully evaluated because some Ada
compiler implementations provide far superior support for tasking than others.

Ada Implementation Plan L-9




Ada Feature Examples

The Ada tasking model may be inappropriate for some applications because the overhead
to support logical parallel processing may not justify the benefits obtained. Many
organizations find that interrupt-driven sequential processing satisfies all requirements,
and tasking is unnecessary. When the application is hosted on an operating system or
executive, it may be practical not to use tasking in favor of the run-time provided by the
environment. Common sense should prevail as to whether the Ada tasking model is

appropriate for a given application.

The Ada tasking model for Ada 9X will be enhanced to directly support parallel
processing with parallel processors and highly distributed environments. Section 7.1
provides additional information on Ada 9X.

L.7 FEATURES THAT FACILITATE SOFTWARE ENGINEERING

The above-described features of packages, strong typing, exceptions, generics, separate
compilation, and tasking are important facilitators to software engineering. In addition,
there are many other features in the Ada language, too numerous to detail here, including
subtypes, access types, attributes, representation clauses, 1/0, visibility, and program
libraries.  Although the Ada language is a comerstone of software engineering,
supporting quality, cost, and schedule benefits, Ada is only a facilitator. One must be
educated and trained to use Ada with software engineering. Section 8 of Volume I
provides guidance for obtaining the necessary education and training within an
organization. Without the knowledge and skills to use these Ada-provided software
engineering features, a programmer is likely to write programs in the same style of other
languages, resulting in code with the same inefficiencies of other languages.

L—-10 Department of the Navy




Ads Feature Examples

Attachment 1 :
Example —Package Specification: Parcel

Abstraction Example

A simple example of an Ada package can be demonstrated with an automated post office
example. Suppose the post office built a system to automatically process parcels for
shipping. The design for such a system may be object oriented with abstractions for the
parcel, the customer, money collection, and parcel routing. A package could be created
for each of these abstractions with a main program to control the overall processing
requirements. Each package would have a package specification and a package body.

The following shows an example of an Ada package specification. It is an abstraction
of a parcel for shipping in the post office system. This abstraction provides a physical
description of the length, width, height, and weight of the parcel. It includes shipping
data on origination post office, destination post office, and method of shipment. It
includes operations on the parcel such as get physical data, get shipping data, and
compute shipping cost.

The main program may use the operations provided through the following code:

GET_PARCEL_PHYSICAL_DATA (physical_data);
GET_PARCEL_SHIPPING_DATA (shipping_data);
COMPUTE_PARCEL_SHIPPING_COST (physical_data, shipping_data,
shipping_cost);

The Ada package specification is an interface between the main program and the code
that does the real work. The body of the PARCEL POST package would contain the
necessary code to implement the operations of GET_PARCEL_PHYSICAL DATA,
GET_PARCEL_SHIPPING_DATA,andCOMPUTE_PARCEL_SHIPPING_COST. The

exceptions INVALID ZIP CODE, PARCEL EXCEEDS WEIGHT LIMITS, and
PARCEL_EXCEEDS _ SIZE_ ,_LIMITS may be raised when error conditions are detected. -
The exception INVALID ZIP CODE exception would be raised when an invalid
destination (or origin) zip ‘code is detected for the parcel. The exception
PARCEL_EXCEEDS_WEIGHT_LIMITS would be raised when the parcel exceeds the
maximum limit of 50 pounds The PARCEL _EXCEEDS_SIZE_LIMITS would be raised
when the parcel exceeds the post office size Timits. In each case, application mterfacmg
with the parcel abstraction would handle the exceptions. In the case of the excessive
weight and size limits, the application may tell the customer that the parcel is rejected
and return it to the customer. In the case of an invalid zip code, the application may
request another zip code from the customer. The package specification for the parcel
abstraction is as follows:

Ads Implementation Plan _ L—-11




Ads Feature Examples
package PARCEL_ABSTRACTION is
type INCHES is new float;
type POUNDS is new float;
type PARCEL_PHYSICAL DESCRIPTION is
record
LENGTH: INCHES; —length of parcel in inches
WIDTH: INCHES; —width of parcel in inches
HEIGHT: INCHES; —height of parcel in inches
WEIGHT: POUNDS; —weight of parcel in pounds
end record;

type MODE_OF_SHIPMENT is (SURFACE, AIR); —shipping options
type ZIP_CODE is new integer range 0 .. 99999; —standard postal zip code
type PARCEL_SHIPPING_DESCRIPTION is

record

FROM: ZIP_CODE; —origination post office
TO: ZIP_CODE; —destination post office
SHIPMENT: MODE_OF_SHIPMENT;
end record;
type DOLLAR is new float; —cost of shipping parcel post in dollars
type PARCEL_TYPE is
record

physical_data: PARCEL_PHYSICAL_DESCRIPTION;
shipping_data: PARCEL_SHIPPING_DESCRIPTION;
shipping_cost: DOLLAR := 0.0;
end record;
procedure GET_PARCEL_PHYSICAL_DATA (
physical_data: out PARCEL_PHYSICAL_DESCRIPTION);

procedure GET_PARCEL_SHIPPING_DATA (
shipping_data: out PARCEL_SHIPPING_DESCRIPTION);

procedure COMPUTE_PARCEL_SHIPPING_COST (
physical_data: in PARCEL  PHYSICAL_DESCRIPTION;
shipping_data: in PARCEL _ _ SHIPPING DESCRIP'HON
shipping_cost: out DOLLAR),

exception: INVALID_ZIP_CODE;
exception: PARCEL_EXCEEDS_WEIGHT_LIMITS;
exception: PARCEL_EXCEEDS_SIZE_LIMITS;

end PARCEL_ABSTRACTION;

L-12 B Department of the Navy




Ada Festure Examples

Attachment 2
Package Specification and Package Body: Queue

Example

A simple example of a complete package can be demonstrated with the implementation
of a queve. A queue is a frequently used software mechanism to buffer (or synchronize)
data from one process to another. It is also known as a FIFO buffer. It is similar in
concept to a queue of customers waiting to be serviced at a bank. Basically, the queue
has two operations: enqueue and dequeue. When a new customer arrives, the customer
eaters the queue or is "enqueued.” When the customer finally reaches the bank teller,
the bank teller takes the customer off of the queue or "dequeues” the customer for
processing.

A package specification for a queue for data of type PARCEL (defined in Attachment 1,
the parcel abstraction example) capable of holding 100 objects is described in the
following example. Such a queue may be used in a distributed automated application to
process parcels for routing to their destination post office. Please note that the package

PARCEL_ABSTRACTION is imported for use by the QUEUE package through the
"with" and “use” clause on the first line.

There are two exceptions. The UNDERFLOW exception is raised when there is an
attempt to dequeue an object and the queue is empty. The response here for an exception
handler could be to process something else and come back to process objects in this
queue later. The OVERFLOW exception is raised when the capacity limits are
exceeded, in this case 100 objects in the queue. When there is an attempt to enqueue the
101st object into the queue, there is no space for the new object. In other languages,
data are usually lost. In Ada, the exception handler could preserve the data and cause
the process dequeuing objects off the queue to have a higher priority.

with PARCEL_ABSTRACTION; use PARCEL_ABSTRACTION;

package QUEUE is
procedure ENQUEUE (parcel_object: in PARCEL_TYPE);
—enqueues parcel_object of type PARCEL_TYPE onto queue
procedure DEQUEUE (parcel_object: out PARCEL_TYPE);
—dequeues parcel_object of type PARCEL_TYPE from queue
UNDERFLOW: exception;
—exception raised when queue is empty
OVERFLOW: exception;
—exception raised when capacity limits are reached
end QUEUE;

Ads Implementation Plan L-13




Ads Festure Examples
The package body to support such a package specification may look like:

package body QUEUE is

queue: array (0 .. 99) of PARCEL_TYPE;
—note name queue is overloaded

front: natural := 0; —front of the queue

back: natural :=0; —back of the queue

procedure DEQUEUE (parcel_object: out PARCEL_TYPE) is

if front = back then
raiss UNDERFLOW;
else
parcel_object: = queue(front);
front: = (front+1) mod 100;
end if;
end DEQUEUE;

procedure ENQUEUE (parcel_object: in PARCEL_TYPE) is
begin
if (back+1) mod 100 = front then
raise OVERFLOW;
else
back: = (back+1) mod 100;
queue(back): = parcel_object;
end if;
end ENQUEUE;

end QUEUE;

Procedures DEQUEUE and ENQUEUE would be used by the application using the
package with parameters for an object A of type PARCEL_TYPE as:

ENQUEUE (A); —enqueues object A
DEQUEUE (A); —dequeues object A

L—14 Department of the Navy




---------‘

Adas Feature Examples

Attachment 3 :
Generic Package: Generic Queue Example

This example demonstrates the use of Ada generics. For ease of comparison, this

example provides a generic capability to the queue provided in Attachment 2. To convert
the queue presented in Attachment 2 to a generic, the size of the queue and a place-
holder for the type are established as generic parameters immediately before the package

specification:

generic
SIZE : positive; —any positive to be instantiated
type ANY_TYPE is private; —ANY_TYPE to be instantiated
package QUEUE is

procedure DEQUEUE (any_object: out ANY_TYPE);
procedure ENQUEUE (any_object: in ANY_TYPE),
UNDERFLOW: exception;
OVERFLOW: exception;

end QUEUE

Both the SIZE and ANY_TYPE would be provided later as parameters. The package
specification has been modified to reflect the new type ANY_TYPE:

The package body is modified to reflect both the new type ANY_TYPE and the queue
SIZE:

package body QUEUE is

type table is array (positive range < >) of ANY_TYPE;
queue: table(0..(SIZE-1));

front: natural := 0;

back: natural :=0;

procedure DEQUEUE (any_object: out ANY_TYPE) is
begin
if front = back then
raise UNDERFLOW;
else
any_object: = queue(front);
front: = (front+1) mod SIZE;
end if;
end DEQUEUE;

Ads Implementstion Plan v L-15




Ads Festure Examples
procedure ENQUEUE (any_object: in ANY_TYPE) is

if (back+1) mod SIZE = front then
raise OVERFLOW;

back: = (back+1) mod SIZE;
queue(back): = any_object;
end if;
end ENQUEUE;

end QUEUE;

To instantiate the queue for a size of 100 objects of type PARCEL_TYPE, the following
generic instantiation is made:

else

package PARCEL_QUEUE is new QUEUE (100, PARCEL_TYPE);
To instantiate the queue for a size of 1,000 objects of type TRACK_TYPE, the following
generic instantiation is made:

package TRACK_QUEUE is new QUEUE (1000, TRACK_TYPE);
Procedures DEQUEUE and ENQUEUE are used as above, the calling application not

evenknomngthatthmproceduresarefmmanmstannatedpackage With A being an
object of type PARCEL TYPEandeemganobJectoftypeTRACK TYPE, then the

following operations can be made:

ENQUEUE (A); —enqueues object A into the PARCEL_QUEUE
ENQUEUE (B); ~—enqueues object B into the TRACK_QUEUE
DEQUEUE (A); —dequeues object A from the PARCEL_QUEUE

DEQUEUE (B); —dequeues object B from the TRACK_QUEUE

L—-16 Department of the Navy

L LT P epepepeppp——




Appendix M
Supplementary Reading

This appendix lists publications, including Software Engineering Institute (SEI)
reports on data rights, that are useful to Program Managers. Reports that have
Defense Technical Information Center (DTIC) numbers are available from DTIC
and the National Technical Information Service (NTIS) at the following addresses:

DTIC Defense Technical Information Center
Attn.: FDRA Cameron Station
Alexandria, VA 22304-6145

NTIS National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

SEI reports that have a DTIC number (i.e., ADA followed by six digits) may be
obtained directly from:

Software Engineering Institute .
Attn.: Publications Requests

Carnegie-Mellon University

Pittsburgh, PA  15213-3890

SEI affiliates and Governmental organizations may order documents directly from
SEI by submitting a written request, accompanied by a mailing label with the
requestor’s address, to the above address.

Data Rights Reports

Martin, A. and K. Deasy. Seeking the Balance Between Government and Industry
Interests in Software Acquisition. Volume I: A Basis for Reconciling DOD and Industry
Needs for Rights in Software (CMU/SEI-87-TR-13, ADA185742). Pittsburgh, PA:
Carnegie-Mellon University, 1987.

Martin, A. and K. Deasy. The Effect of Software Support Needs on DOD Software

Acquisition Policy: Part 1: A Framework for Analyzing Legal Issues (CMU /SEI-87-
TR-2, ADA178971). Pittsburgh, PA: Carnegie-Mellon University, 1987.

Ada implementation Guide M-1




Supplementary Reading

Samuelson, P. Understanding the Implications of Selling Rights in Software to the
Defense Department: A Joumey Through the Regulatory Maze (SEI-86-TM-3,
ADA175166). Pittsburgh, PA: Carnegie-Mellon University, 1986.

Samuelson, P. Comments on the Proposed Defense and Federal Acquisition Regulations
(SEI-86-TM-2, ADA175165). Pittsburgh, PA: Carnegie-Mellon University, 1986.

Samuelson, P. Adequate Planning for Acquiring Sufficient Documentation About and
Rights in Software to Permit Organic or Competitive Maintenance (SEI-86-TM-1,
ADAL175167). Pittsburgh, PA: Carnegie-Mellon University, 1986.

Samuelson, P. and K. Deasy. Intellectual Property Protection for Software (SEI-CM-14-
2.1). Pittsburgh, PA: Carnegie-Mellon University, 1989.

Samuelson, P., et al. Proposal for a New “Rights in Software” Clause for Software

Acquisitions by the Department of Defense (CMU/SEI-86-TR-2, ADA182093).
Pittsburgh, PA: Carnegie-Mellon University, 1986.

M-2 Department of the Navy




\

Appendix N
Comparison of Ada to Assembly: F-15 Structural

Filter Example

Coding in High Order Languages (HOLs), such as Ada, has important benefits when
compared to coding in Assembly. These benefits were demonstrated for the

computation of the Structural Filter as part of the F-15 integrated flight control
system, which was flown in September 1984. The formula for the S-Plane

Representation of the Structural Filter was:

0.4807S* + 83.5533S + 3894

S? + 1258 + 3894
This formula converts to the difference equation representation of:

STFL = 056503 * PRESTRU - 033991 * PREMISTRU + 0.089533 *
PREM2STRU + 0.87711 * STFM1 - 0.19182 * STFLM2

The Ada representation of the difference equation is nearly equivalent:

STFL:= 056503 * PRESTRU - 033991 * PREMISTRU + 0.089533 *
PREM2STRU + 0.87711 * STFM1 - 0.19182 * STFLM2;

The only necessary changes are the ":=" for the assignment and the semicolon to
terminate the statement. Contrast this with the Assembly version that was in the
previous version of the F-15:

LDL RRI10,PCAS24; % RR8 Contains PRESTRU
CALL FMUL; % 0.56503 * PRESTRU
LDL RR6, RRS; % Store Result for Later Use

LDL RRS, PREMISTRU;
LDL RRI10, PCAS2S;

CALL FMUI; % 03391 * PREMISTRU

LDL RRI10,RRS; % Prepare for Subtraction

LDL RR8RR6;

CALL FSUB; %0 RR6-[0.33991 * PREM1STRU]
LDL RR6,RRS; % Store Result for Later Use

LDL RRS8,PREM2STRU;
LDL RR10,PCAS26;

Ads Implementation Guide . N-1




CALL FMUL;

LDL RRI10,RR6;
CALL FADD;

LDL RR6, RRS;
LDL RRS8,STFLM];
LDL RR10,PCAS27;
CALL FMUI;

LDL RR10,RR6;
CALL FADD;

LDL RR6,RRS;
LDL RRS8,STFLM2;
LDL R10,PCAS28;
CALL FMUI;

LDL RRI10,RRS;
LD RR8,RR6;
CALL FSUB;

LDL STFLRRS
CALL FMUL;

Comparison of Ada to Assembly
% 0.089533 * PREM2STRU
% RR6 + [0.089533 * PREM2STRU]
% Store Result for Later Use
% 0.87711 * STFLM1
% RR6 + [0.87711 * STFLM1]
% Store Result for Later Use
% 0.19182 * STFLM2
% Prepare For Subtraction
% RR6 - [0.19182 * STFLM2]
% 0.089533 * PREM2STRU

This Assembly example uses a floating-point algorithm; had a fixed-point one been
used, it would have been twice as long.

Department of the Navy




LIST OF ACRONYMS AND ABBREVIATIONS

AAS
ABET
ACEC
ACES
ACM
ACSE
ACUE
ACVC
AdalC
AdaIC BB
AdaJUG
Ada PSE
ADP
AES
AFATDS
AFB
AFCEA
AFDSRS
AFSC
AFSPACECOM
Al

AIE

AlIS

AIU
AJPO
ALS
ALS/N
AMMWS
AMPS
ANSI
AP

AP

APB

APl
APID
APP
APT
ARB
ARLB

Ada Implementation Guide

Advanced Automation System

Ada-Based Environment for Test

Ada Compiler Evaluation Capability

Ada Compiler Evaluation System

Association for Computing Machinery
Association Control Service Element

Aircraft Control Unit Emulator

Ada Compiler Validation Capability

Ada Information Clearinghouse

Ada Information Clearinghouse Bulletin Board
Ada Joint (Services) Users Group

Ada Programming Support Environment
Automatic Data Processing

Ada Evaluation System

Advanced Field Artillery Tactical Data System
Air Force Base

Armed Forces Communications and Electronics Association
Air Force Defense Software Repository System
Air Force Systems Command

Air Force Space Command

Artificial Intelligence

Ada Integrated Environment

Automated Information System

Acoustic Interface Unit

Ada Joint Program Office._. .

Ada Language System

Ada Language System/Navy

Advanced Millimeter Wave Seeker

Advanced Message Processing System
American National Standards Institute
Acquisition Plan

Arithmetic Processor

Acquisition Program Baseline

Application Programming Interface
Application Programming Instructional Department
Application Portability Profile

Advanced Programming Technique
Acquisition Review Board

Ada Reuse Library Browser




ARPA
ARTX
ASEET
ASI
ASIS
ASP
ASR
ASSET

ASWSOW
AT&T
ATCCS
ATD

ATE

ATF
ATIP
ATIS
ATRIM
AVF

BAFO
BBS
BMS
BP

C2
C31
C4al

CAB
CACM
CAD
CAl
CAIS
CALS
CAM
CAMP
CARDS
CASE
CAS REPS

Acronyms and Abbrevistions

Advanced Research Projects Agency

Ada Run-Time Executive

Ada Software Engineering Education and Training
Application Software Interface

Ada Semantic Interface Specification

Acquisition Strategy Plan

Ada Software Repository

Asset Source for Software Engineering Technology
Advanced Systems Technology

Anti-Submarine Warfare

Anti-Submarine Warfare Standoff Weapon
American Telephone & Telegraph

Army Tactical Command and Control System
Aircrew Training Device

Automated Test Equipment

Advanced Tactical Fighter

Ada Technology Insertion Program

A Tool Integration Standard

Aviation Training and Readiness System

Ada Validation Facility

Best and Final Offer
Bulletin Board System
Broadcast Message Server
Backplane

Command and Control

Command, Control, and Intelligence

Command, Control, Communications, and Intelligence
Command, Control, Communications, Computers, and
Intelligence

Common Ada Baseline

Computer-Aided Design

Computer-Aided Instruction

Common Ada PSE Interface Set

Computer-aided Acquisition and Logistics Support
Computer-Aided Manufacture

Common Ada Missile Packages

Central Archive for Reusable Defense Software Program
Computer-Aided Software Engineering

Casualty Reporting System

Department of the Navy




CAUWG
CAXI
ccal
CCITT

CCp

CCs
CDA
CDB
CDIF
CDPA
CDR
CDRL
CECOM
CERT
CERT/CC
CFE

CGI
CGM

CI

CIF

CIM
CLNP
CLOC
CMM
CMP
CMS-2
CMU
CMU/SEI
CNO
COBOL
COE
COEA
COMNAVCOMTELCOM

COMSPAWARSYSCOM
CONOPS

CORBA

COTS

CPDL

CPP

CPS

Ada Implementation Guide

Acronyms and Abbreviations

Commercial Ada Users Working Group

Common Ada XWindow Interface

Command, Control, and Intelligence

International Consultative Committee for Telegraph and
Telephone

Code Counting Program

Combat Control System

Central Design Activity

Central Data Base

CASE Data Interchange Format

Central Design Programming Activity

Contract Data Requirements List

Communications Electronics Command

Computer Emergency Response Team

Computer Emergency Response Team Coordination Center
Contractor-Furnished Equipment

Computer Graphics Interface

Computer Graphics Metafile

Configuration Item

Central Issue Facility

Corporate Information Management

Connectionless Network Protocol

Compiled/Assembled Lines of Code

Capability Maturity Model

CoMPleteness

Compiler Monitor System-2

Carnegie-Mellon University

Camegie-Mellon University/Software Engineering Institute
Chief of Naval Operations

Common Business Oriented Language

Common Operating Environment

Cost and Operational Effectiveness Analysis
Commander, Naval Computer and Telecommunications
Command

Commander, Space and Naval Warfare Systems Command
Concept of Operations

Common Object Request Broker Architecture
Commercial Off-The-Shelf

Computer Program Development Laboratory
Command Program Processor

Competitive Prototyping Strategy




Acronyms and Abbrevistions

CPU Central Processing Unit
CRADA Cooperative Research and Development Agreement '
CREASE Catalog of Resources for Education in Ada and Software

Engineering
CRISD Computer Resource Integrated Software Document '
CRLCMP Computer Resources Life-Cycle Management Plan
CRM Computer Resources Management
CRSS C31I Reusable Software System l
CRWG Computer Resources Working Group
CsC Computer Sciences Corporation
CsCI Computer Software Configuration Item '
CSRO Center for Software Reuse Operations
CSsS Centralized Structure Store .
CSS Computer Sciences School
CSuU Computer Software Unit
CWG Coordinator Working Group '
D&V Demonstration & Validation
DAB Defense Acquisition Board '
DACS Data and Analysis Center for Software
DAR Defense Acquisition Regulations
DARPA Defense Advanced Research Projects Agency .
DAT Digital Audio Tape
DBMS Database Management System
DC Device Coordinate |
DCDS Distributed Computing Design System
DCE Distributed Computing Environment
DCP Decision Coordinating Paper .
DDI Directorate of Defense Information-
DDN Defense Data Network
DDR&E Director of Defense Research and Engineering I
DDRS DOD Data Repository System
DEIl Data Elements in the Source
DEM Digitized Electronic Module '
DEMVAL Demonstration and Validation
DFCS Digital Flight Control System '
DFU De Facto Usage
DID Data Item Description
DISA Defense Information Systems Agency '
DMRD Defense Management Review Decision
DOD Department of Defense
DODD Department of Defense Directive l

Department of the Navy




DODI
DON
DPI
DP/DGU
DRPM
DS
DSRS
DTC2

DTIC
DUS
DWS

Adas implsmentation Guide

Acronyms and Abbrevistions

Department of Defense Initiative

Department of the Navy

Data Processing Installation

Distributed Processor/Display Generator Unit
Direct Reporting Program Manager
Directory Service

Defense Software Repository System

Desk Top Computer 2

Data Transfer Network

Defense Technical Information Center
Design Unit Specification

Defensive Weapon System

Electronic Counter-Countermeasures
Embedded Comment Lines in Data

Embedded Comment Lines in Source
Electronic Countermeasures

European Computer Manufacturing Association
Electronic Customer Services

Electronic Data Interchange

Event-Driven Language

Equivalent Delivered Source Instructions
Electronic Manuscript Preparation and Markup
Extended Memory Reach

Engineering Notebook :

Erasable Programmable Read Only Memory
Enhanced Processor

Entity Relationship -Attribute -

Electronic Systems Division

Electronic Support Measure

Fourth Generation Language

Federal Aviation Administration

Federal Acquisition Regulations

Fin Actuator Unit

Fleet Combat Direction System Support Activity
Functional Description

Functional Element

Firm Fixed Price

Federally Funded Research and Development Center
First In First Out




FMSO

FPI
FRAWG

FTAM

43RSS

GAO
GB
GEU
GFE
GFS
GIS
GKsS
GM
GNCP
GNMP
GOSIP

GPEF
GPPF
GPO
GRACE™
GSIS

GUI
HOL

HP VUE
HPBP
HPP

IBM
I-CASE
ICC
ICE

Acronyms and Abbrevistions

Federal Information Processing Standards
Flight Instrument Trainer

Fleet Material Support Office

Function Point

Functional Process Improvement

Front Range Ada Working Group
Full-Scale Development

File Transfer, Access, and Management
File Transfer Program

File Transfer Protocol

AN/UYK-43(V) Run-Time Support System

General Accounting Office

Gigabyte

Guidance Electronics Unit

Govemment-Furnished Equipment
Government-Furnished Software

Geographic Information System

Graphical Kernel System

Global Memory

Guidance, Navigation, and Control Program
Government Network Management Profile
Government Open Systems Interconnection Profile
Government-Off-the-Shelf

Generic Package of Elementary Functions

Generic Package of Primitive Functions
Government Printing Office

Generic Reusable Ada Components for Engineering
Graphics System Interface Standard

Ground Controller Training System

Graphical User Interface

High Order Language

Hewlett-Packard

Hewlett-Packard Visual User Environment
High-Performance Backplane
High-Performance Processor

International Business Machines

Integrated Computer-Aided Software Engineering
Irvine Compiler Corporation

Independent Cost Estimate

Department of the Navy




IOP
IPR

IPSE
IRAC
IRDS

ISA
ISC
ISDN
ISEA
ISEE
ISO
ISSC
ITPB

IV&V

JCS
JIAWG

JLC-JPCG-CRM

Ada implementation Guide

Acronyms snd Abbrevistions

Integrated System Definition Language
International Electro-Technical Committee
Institute of Electrical and Electronics Engineers
Initial Graphics Exchange Specification
Improved Guard Rail Five

Integrated Logistics Support

Integrated Logistics Support Plan

Inertial Measurement Unit

Idaho National Engineering Laboratory
Information System Security

In Processing

Input/Output

Initial Operating Capability

Input/Output Processor

Information Planning and Organizing
In-Process Review

Integrated Project Summary

Integrated Project Support Environment
International Requirements and Design Criteria
Information Resource Dictionary System
Information Resources Management

Interface Requirements Specification
Information System

Instruction Set Architecture

Input Signal Conditioner

Integrated Services Digital Network
In-Service Engineering Activity

Integrated Software Engineering Environment
International Organization for Standardization
Information System Software Center
Information Technology Policy Board
Integrated Test Software

Independent Verification and Validation

Joint Chiefs of Staff

Joint Integrated Avionics Working Group

Joint Interoperability and Engineering Organization
Joint Logistics Commanders Joint Policy Coordinating
Group on Computer Resources Management

Joint Technical Committee




MCCDC
MCCR
MCCRES
MCO

MIL-HDBK

NA
NAC
NADC
NAPI

NAPUG
NARDAC
NASA
NASEE
NATO

Acronyms and Abbrevistions

1,000
Kemel Ada Programming Support Environment

Local Area Network

Logistics Requirements Funding Plan

Minimal Ada Programming Support Environment
MATurity

Megabyte

Marine Corps Combat Development Command
Mission-Critical Computer Resources

Marine Corps Combat Readiness Evaluation System
Marine Corps Order

Mission Element Need Statement

Message Edit Processing System

Message Handling Service

Military Handbook

Military Standard

Marine Corps Integrated Maintenance Management System
Millions of Instructions per Second

Management Information System

Millimeter

Man-Machine Interface

Minimum Mode Software

Memorandum of Agreement

Military Off-The-Shelf -

Master’s in Software Engineering

Mission Trainer

Network Adaptor

Naval Avionics Center

Naval Air Development Center

North American Portable Common Tool Environment
North American PCTE User's Group

Navy Regional Data Automation Center

National Aeronautics and Space Administration
NAVAIR Software Engineering Environment

North Atlantic Treaty Organization

Degartment of the Navy

1



NAUG

NAVAIR
NAVCOMTELCOM
NAVDAC
NAVSEA
NAVSUP
NAVSWC
NAWC-AD-WAR
NCA

NCCOSC

NCs

NCTAMS

NCTAMS LANT
NCTAMS EASTPAC
NCTC
NCTS
NDC
NDI
NGCR
NISBS
NIST
NISMC
NISO
NIUF
NM
NOSC
NRaD
NSWC
NTCSS
NTIS
NTSC
NUSC
NWRC
NWSUS

OAS
OASD
OoCD
OFPS
OMG
OMU

Ads implementation Guide

Acronyms and Abbrevistions

Navy Ada Users Group

Naval Air Systems Command

Naval Computer and Telecommunications Command
Navy Data Automation Command

Naval Sea Systems Command

Naval Supply Systems Command

Naval Surface Warfare Center

Naval Air Warfare Center, Aircraft Division, Warminster
Naval Center for Cost Analyses

Naval Command, Control, and Ocean Surveillance Center
Network Computing Service

Naval Computer and Telecommunications Area Master
Station

NCTAMS Atlantic

NCTAMS Eastern Pacific

Naval Computer and Telecommunications Command
Naval Computer and Telecommunications Station
Normalized Device Coordinate

Nondevelopmental Item

Next Generation Computer Resources

NATO Interoperable Submarine Broadcast System
National Institute of Standards and Technology
Naval Information System Management Center
National Information Standards Organization

North American ISDN Users’ Forum

Network Management

Naval Ocean Systems Center

Naval Research and Development

Naval Surface Weapons Center

Naval Tactical Combat Support System

National Technical Information Service

Navy Training and Simulation Center

Naval Undersea Command

Navy Wide Reuse Center

Navy WWMCCS Site-Unique Software

Offensive Avionics System

Office of the Assistant Secretary of Defense
Operational Concept Document

Operational Flight Program Size

Object Management Group

Operational Mock-up




(0.0)))
ooP
OORA
OPE
OPNAVINST
OPR
ORG
oS

OSA
OSD
OSE
OSF
OSI
OSISL
OSs
OSSWG

PAV
PC
PCIS
PCTE
PDL
PDR
PDS
PDSS
PDU

PHIGS
PII
PIMB
PIWG
PMC

PSESWG

10

Object-Oriented Programming
Object-Oriented Requirements Analysis
Open Systems Environment

Naval Operations Instruction

Office of Primary Responsibility
Organization Chain of Command
Operating System

Open Systems Architecture

Office of the Secretary of Defense
Open Systems Environment

Open Software Foundation

Open Systems Interconnection

Open Systems Interface Standards List
Operations Support System

Operating Systems Standards Working Group

Product AVailability

Personal Computer

Portable Common Interface Set

Portable Common Tool Environment

Program Design Language

Preliminary Design Review

Post-Deployment Support

Post-Deployment Software Support

Pulse Driver Unit

Program Executive Office

Programmer's Hierarchical Interactive Graphics System
Protocol Independent Interface

PCTE Interface Management Board

Performance Issues Working Group

Project Management Charter

Point of Contact

Program Objective Memorandum

Portable Operating System Interface for Computer Systems
Planning, Programming, and Budgeting System
Portable Reusable Integrated Software Modules
PRoblems/Limitations

Product Readiness Review

Project (or Programming) Support Environment
Project Support Environment Reference Model

Project Support Environment Standard Working Group

Depertmaent of .the Nﬁy




PSA

QA

RACS

RCL
RDA
RDBMS
RDT&E

REVIC

RLT

RMC
ROI
ROM

RSC
RTAda
RTE

SAE
SAFENET
SAI
SAIL
SAME
SAMeDL
SASET
SASSY
SCAI
SCCS
SCE
SCH

Ads Implementation Guide

Acronyms snd Abbreviations

Program Structure Analysis
Program Structure Language

Quality Assurance

Research and Development

Registration and Access Control System
Requirements and Design Criteria
Random Access Memory

Reusable Ada Products for Information Systems
Development

RAPID Center Library

Remote Database Access

Relational Database Management System
Research, Development, Test, and Evaluation
Resources

Revised Intermediate COCOMO
Request for Proposals

Reuse Library Framework

Reuse Library Toolset

Rate Monotonic Analysis
Reconfigurable Mission Computer
Return on Investment

Read Only Memory

Remote Process Communication

Remote Procedure Call

Reusable (Ada) Software Component
Run-Time Ada

Run-Time Environment - -

Software Architectures Engineering

Survivable Adaptable Fiber-optic Embedded Network
Software Action Item

System Avionics Integration Laboratory

SQL Ada Module Extension

SQL Ada Module Description Language

Software Architecture Sizing and Estimating Tool
Supported Activities Supply System

Space Command & Control Architecture Infrastructure
Submarine Combat Control System

Software Capability Evaluation

Scheduler

1"




SCL
SCMP
SCp
SCRB
SCS
SDC-W
SDD
SDE

SDF
SDIO
SDL

SDP

SDP
SDR
SDSR
SDTS
SECNAVINST
SECNAVNOTE
SECR
SEE

SEI

SEM
SEMP
SEO
SEOC
SEPG
SES
SGS/AC
SGML
SIGAda
SIGSOFT
SIL

SIP
SISTO
SLCMP
SLOC
SLOC/SM
SLOCWC
SMB
SMM
SMP
SOwW

12

Acronyms and Abbreviations

Stand-alone Comment Lines

System Configuration Management Plan
System Concept Paper

Software Change Review Board
Submarine Combat System

Software Development Center, Washington
System Design Definition

Software Development Environment
Software Development Folder

Strategic Defense Initiative Organization
Software Development Laboratory
Software Development Plan

System Division Paper

System Design Review

Software Development Status Report
Spatial Data Transfer Standard

Secretary of the Navy Instruction
Secretary of the Navy Note

Standard Embedded Computer Resource
Software Engineering Environment
Software Engineering Institute

Standard Electronic Module

System Engineering Management Plan
Software Executive Official

Software Executive Official Council
Software Engineering Process Group.
Senior Executive Service

Shipboard Gridlock System with Auto-Correlation
Standard Generalized Markup Language
Special Interest Group on Ada

Special Interest Group on Software Engineering
System Integration Laboratory

System Integration Plan

Software and Intelligent Systems Technology Office
Software Life-Cycle Management Plan
Source Lines of Code

Source Lines of Code per Staff Month
Source Lines of Code Without Comments
Submarine Message Buffer

Software Management Metrics

Software Master Plan

Statement of Work

Department of the Navy




SPA
SPAWAR
SPC

SPD

SPDL

SP1

SPO

SPR

SQAP

SQL

SRC

SRP

SRR

SRS

SSA

SSC

SSS
STANFINS
STANFINS-R

STSC

SUP
SWAP
SWAP-WG
SWG
SWTP
SYSCOM

TAC
TACAMO
TACFIRE
TAFIM
TADSTAND
TAMPS

TC

TC

TCL

Ads implementation Guide

Acronyms and Abbreviations

Software Process Assessment

Space and Naval Warfare Systems Command
Software Productivity Consortium

Software Process Definition

Standard Page Description Language
Software Process Improvement

System Programming Office

Software Problem Report

Software Quality Assurance Plan

Structured Query Language

Software Requirements Change

Software Reuse Program

Software Requirements Review

Software Requirements Specification
Software Support Activity

System Support Center

System/Segment Specification

Standard Financial System

Standard Financial System Redesign
Standard Army Financial Accounting and Reporting System
Software Technology for Adaptable, Reliable Systems
STaBility

Software Technology Conference

Standard for the Exchange of Product Model Data
Software Technology Initiative

Software Technology Support Center
Support Planning

Software Action Plan

Software Action Plan Working Group
Special Working Group

Software Technology Plan

Systems Command

Tactical Advanced Computer

Take Charge and Move Out

Tactical Fire Direction

Technical Architecture For Information Management
Tactical Digital Standard

Tactical Aircraft Mission Planning System

Target Capacity

Technical Committee

Total Comment Lines

13




TCP/TP

TDA
TDT
T&E

TeleAda EXEC

TFA

TLCSC/LLCSC

TLOC
TOES
TOPS
TQM
TSGCEE

UIMS

USMC
USTAG
UsSw

VADS
VDI
VHSIC
VRC
VSR

WAdaS
WAM

WwC

WST
WPAFB
WWMCCS

14

Acronyms snd Abbreviations

Transmission Control Protocol/Internet Protocol
Technical Directive

Technical Directive Authority

Theater Display Terminal

Testing and Evaluation

Telesoft Run-Time Environment

Test and Evaluation Master Plan

Test and Evaluation Plan

Transparent File Access

Top Level/Lower Level Computer Software Component
Total Lines of Code

Telephone Order-Entry System

Training and Operations Section

Total Quality Management

Tri-Service Group on Communications and Electronics
Equipment

User Interface Management System

Unit Level Logistics System

U.S. Marine Corps

United States Technical Advisory Group
Undersea Warfare

Unit Under Test

Verdix Ada Development System
Virtual Device Interface

Very High-Speed Integrated Circuit
Virtual Reference Coordinate
Validation Summary Report
Virtual Terminal

Visual User Environment

Washington Ada Symposium

WWMCCS ADP Modemization

Work Breakdown Structure

World Coordinate

Wells Fargo Nikko Investment Advisors

WWMCCS Information System

Weapon System Trainer

Wright Patterson Air Force Base

World Wide Military Command and Control System

Department of the Navy




