
A aa a-
S

I !/ A --

I
Volume II

I
I!

I

Ii

Ada Implementation
GuideI

Software Engineering With Ada

I
DTIC QUALn1T :1 1 '.

I
April 1994

*ýS94-18856

JJ DEPARTMENT OF THE NAVY

Naval Information Systems Management Center

04 6 17 0410

I

I Contonts

VOLUME I

Appendix A: HELPFUL SOURCES A-13 A.1 Government Sources A-1
A.1.1 Organizations A-2

Ada Joint Program Office A-2
Ada 9X Project A-2
Ada Board A-2
Ada Information Clearinghouse A-3
Ada Validation Office A-3
National Institute of Standards and Technology A-4
DON Software Executive Official A-4
DON Ada Representative A-4
Space and Naval Warfare Systems Command A-4
Next Generation Computer Resources A-5
Commander, Naval Computer and Telecommunications
Command (COMNAVCOMTELCOM) A-5
Commandant of the Marine Corps A-5
Naval Center for Cost Analysis A-6
Software Technology Support Center A-6
Software Engineering Institute A-7
Software Technology for Adaptable, Reliable Systems
(STARS) A-7

A.1.2 Training .. A-8
Ada Language System/Navy A-8
Ada Software Engineering Education and Training Team A-9

SAdaSAGE A-10
Air Force Institute of Technology A-10
Common Ada PSE Interface Set (CAIS) A-I I
Computer Sciences School (Marine Corps) A-I I
Computer Science School (Army) A-12
National Audiovisual Center A-13
National Defense University A-14
Naval Postgraduate School A-14
Software Engineering Institute A-14 .
United States Air Force Academy A-14
United States Air Force Technical Training School A-I1

i United States Army Engineering College A-15 0

l 6t• ')A"plot' i Co4

I

I
United States Military Academy A-15
United States Naval Aca d e my.............. A-15 is

A.l.3 Publications A-16
Defense Technical Information Center A-16
National Technical Information Service A-16
Standardization Documents Order Desk A-46
U.S. Government Printing Office A-17
Ada 9X Publications A-17
Ada and C+ A-17
Ada Information Clearinghouse Newsletter A-17
Ada Slices A-1 8
Ada Software Engineering Education and Training
Public Report A-I8
Bridge ... A- 18
CHIPS ... A-19
Crosstalk. The Journal of Defense Software Engineering A-19 3
DACS Newsletter A-19
Institute for Defense Analyses A-20
High Order Language Control Facility Ada-JOVIAL
Newsletter A-20
NISMC Newsletter A-20
STARS Newsletter A-21

A.1.4 Bulletin Boards A-21
Ada 9X Project A-21
AJPO Host and Ada Information Clearinghouse
Bulletin Board A-21
Ada Technical Support Bulletin Board Service A-22
STSC Bulletin Board System..........................A-23I
Cost Bulletin Board System A-25
National Technical Information Service.................... A-26

A.1.5 Repositories A-26 I
Ada Software Repository A-26
Air Force Defense Software Repository System A-28
Associate Director, MCSD A-28 i
Central Archive for Reusable Defense Software Program A-28
Command, Control, Communications, and Intelligence
Reusable Software System A-29
Common Ada Missile Components Effort A-29
Data and Analysis Center for Software A-30
Defense Software Repository System A-30
National Aeronautics and Space Administration's AdaNET A-30
Navy Wide Reuse Center A-31

IVI

I .

I
Reusable Ada Products for Information Systems
Development A-31
Software Technology for Adaptable, Reliable3 Systems Repository A-32

A.1.6 Conferences and Special Interest Groups A-32
ASEET Symposium A-323 DON Ada Users Group A-32
STARS Workshop A-33
Software Technology Conference A-33U A.1.7 Operational Development Support Tools...................A-33
Ada Language System/Navy A-33
AdaSAGE A-34
NAVAIR Software Engineering Environment Tool Set A-34
Tool Box PC A-34

A.2 Ada Information Clearinghouse A-35
A.2.1 Public Access to the AdaIC Bulletin Board A-38
A.2.2 Access to Ada Information on the Defense Data Network A-40
A.2.3 Info Ada Digest A-41
A.2.4 Document Reference Sources A-41
A.2.5 AdaIC File Directory A-42

A.3 Other Sources .. A-51
A.3.1 Training .. A-51

AdaW orks A-51
Alsys .. A.51
EVB Software Engineering, Inc A-52
Fastrak Training Inc A-52
Reifer Consultants Inc A-52
Texel Company A-52
Universities and Colleges (Civilian) A-533 A.3.2 Publications A-54
AdaDATA Newsletter A-54
Ada Letters A-55
Ada Newsletter A-55
Ada Rendezvous A-55
Ada Strategies A-56
CAUWG Report A-56
FRAWG Newsletter A-56
Software Engineering Notes A-56
SPC Quarterly A-57

A.3.3 Repositories A-57
COSMIC, University of Georgia A-57
EVB Software Engineering, Inc A-57

V

I
I

IW G Corp A-58
MassTech, Inc A-58
Rockwell International Corporation A-58
Wizard Software A-58

A.3.4 Conferences and Special Interest Groups A-59
SIGAda. .. A-59
Tri-Ada Conference A-59
Washington Ada Symposium A-60

A.3.5 Operational Development Support Tools A-60
ObjectMaker A-60
EVB Software Engineering, Inc........................ A-60

Appendix B: DOD/DON SOFTWARE POLICIES B-I

Appendix C: THE MATURITY FRAMEWORK C-I
C.I Initial Process .. C-2
C.2 Repeatable Process C-4

Appendix D: COST ESTIMATION STUDIES D-1

Appendix E: EXAMPLE OF METRIC WORDING FOR USE IN A
CONTRACTUAL DOCUMENT E-I 1

Appendix F: SOFTWARE TOOL DESCRIPTIONS F-1

Appendix G: APPLICATION PORTABILITY PROFILE (APP) SERVICES . G-1
G. 1 Operating System Services G-I

G.1.1 Kernel Operations API G-1
G. 1.2 Operating System Commands and Utilities API G-1
G.1.3 Operating System Real-time Services API G-1
G.1.4 Operating System Security API G-1 I

G.2 Human-Computer Interface Services G-I
G.2.1 Graphical User Interface API G-2
G.2.2 Graphical User Interface Toolkit API G-2 I

G.3 Software Engineering Services G-2
G.3.1 Programming Language Ada G-2
G.3.2 Integrated Software Engineering Environment G-2
G.3.3 Other Programming Languages G-2

G.4 Data Management Services G-3
G.4.1 Relational Database Management System Interface G-3
G.4.2 Data Dictionary or Directory System G-3
G.4.3 Distributed Data Access G-3

AI

I

I
I

IG.5 Data Interchange Services G-"-
G.5.1 Data Interchange G
G.5.2 Document Interchange G

G.5.3 Page Description Language G-4
G.5.4 Manuscript Markup Interchange G-4
G.5.5 Graphics Data Interchange G-4
G.5.6 Graphic Product Data Interchange G-4
G.5.7 Product Life Cycle Data Interchange G-4
G.5.8 Electronic Data Interchange G-4
G.5.9 Spatial Data Interchange G-5

G.6 Graphics Services .. G-5
G.6.1 Two-Dimensional Graphics API G-5
G.6.2 Interactive and Three-Dimensional Graphics API.............G-5

G.7 Network Services .. G-5
G.7.1 Communication API for Protocol Independent Interfaces G-5
G.7.2 Communication API for OSI Services G-5
G.7.3 File Transfer API G-5
G.7.4 Communications Protocols for OSI G-5
G.7.5 Communication API for Integrated Digital, Video, and Voice ... G-6
G.7.6 Communication API for Integrated Digital, Video, and Voice ... G-6
G.7.7 Remote Procedure Call G-6
G.7.8 Transparent Network Access to Remote Files G-6
G.7.9 Network Management G-6
G.7.10 Electronic Messaging API G-6

- 0.7.11 Directory Services API G-7
G.8 Security Services .. G-7
G.9 Management Services G-7
G.10 NIST APP Specifications Evaluations G-7

IA

.l

Ii

I
I

Appendix H: Ada BINDING PRODUCTS H-I

Appendix I: LESSONS LEARNED I-I
1.1 Stratcom-Computer Center, Offutt Air Force Base 1-21
1.2 Wells Fargo Nikko Investment Advisors 1-23

1.3 B-2 Aircrew Training Devices 1-24

1.4 Boeing Military Aircraft (Wichita, Kansas) 1-27

1.5 Coulter Electronics: Ada for Cytometry 1-29 I
1.6 AN/UYS-2A Project 1-29
1.7 Ada Experience at the Naval Research and Development Center 1-31
1.8 Tactical Aircraft Mission Planning System 1-33
1.9 Advanced Field Artillery Tactical Data System 1-39
1.10 AN/BSY-2 .. 1-40
I.11 Ada Language System/Navy 1-45 I
1.12 Avionics Project ... 1-47

1.13 PEO-SSAS, PMS-414, SEA LANCE 1-49
1.14 Navy World Wide Military Command and Control System

(WWMCCS) Site-Unique Software (NWSUS) Project Mission 1-51
1.15 Event-Driven Language/COBOL-to-Ada Conversion Program 1-54
1.16 Shipboard Gridlock System With Auto-Correlation 1-55
1.17 Combat Control System MK 1-57
1.18 P-3C Update IV Ada Development 1-59
1.19 Standard Financial System Redesign 1-63
1.20 Reconfigurable Mission Computer Project 1-66
1.21 Intelligent Missile Project 1-67

Appendix J: FY91 Ada TECHNOLOGY INSERTION PROGRAM
PROJECTS J-1

J. I Education ... J-1
J.2 Bindings .. J-I
J.3 Technology .. J-3

Appendix K: NAVY AND MARINE CORPS Ada PROJECTS K-i

Appendix L: Ada LANGUAGE FEATURES THAT SUPPORT
SOFTWARE ENGINEERING L-1

L.1 Ada Package ... L-I
L.2 Strong Typing .. L-4

L.2.1 Types as Building Blocks L-4
L.2.2 Creation of Objects From Types L-5

I
viiiI

I

I

I
L.2.3 Handling of Objects in Homogeneous and

Hete ,geneous Environments L-5
L.2.4 Elimamation of Illegal Expressions and Assignment

Statements L-6
L.2.5 Elimination of Constraint Errors at Compile Time L-6
L.2.6 Elimination of Constraint Errors at Run Time L-7
LL.3 Exceptions ... L-7

L.4 Generics .. L-8
L.5 Ada Library (Separate Compilation) L-9
L.6 Ada Tasking ... L-9
L.7 Features That Facilitate to Software Engineering L-10

Attachment 1. Example-Package Specification: Parcel
Abstraction Example L-1 I
Attachment 2. Package Specification and Package Body: Queue
Example .. L- 13
Attachment 3. Generic Package: Generic Queue Example L-15

Appendix M: SUPPLEMENTARY READING M-1

Appendix N: COMPARISON OF Ada TO ASSEMBLY: F-15 STRUCTURAL

FILTER EXAMPLE N-I

Acronyms and Abbreviations

I
I
I
I
I
1

II

I
I

List of Figures and Tables

Figures

1-I Lessons Learned Matrix 1-2 3
L-I Ada Package ... L-2

Tables

A-I AdaIC Directories .. A-42 3
G-1 Evaluation of NIST APP Specifications G-8

I
I
I
I
I
I
I
I
I
I
U

x I
I

Appendix A
HELPFUL SOURCES

"This appendix provides sources to help the Department of the Navy (DON) Program
Manager become knowledgeable about Ada-related issues. Information is provided on
several Government sources, including the Ada Information Clearinghouse (AdaIC),
which is sponsored by the Ada Joint Program Office (AJPO) and other sources. The
sources listed are not exhaustive, and the information regarding these sources may have
changed since the publication of this document. DON does not endorse these sources,
and Department of Defense's (DOD's) use of Ada does not imply in any manner that the
DOD endorses or favors any commercial Ada product. These products are listed to
inform Program Managers of what is available. Program Managers must use their own
judgments about the value of the services. Additional sources can be added to this list
for future editions of this guide by contacting the DON Ada Representative.

A.1 GOVERNENT SOURCES
Government sources are organized into seven categories: organizations, training,
publications, bulletin boards, repositories, conferences and special interest groups, and
operational development support tools. The type of information contained in each of the
categories is as follows:

"* Orpg-anitn-DOD, DON, and Marine Corps organizations that focus on Ada
policy, technical guidance, and programs with DON-wide applicability

"* Training-sources of training and information about training for various types ofpersonnel

"* Pubflcation--sources of newsletters and other publications

"* Bulletin Boards-sources that maintain a public bulletin board directed at the Ada
community

"• Repositories-sources of reusable components and libraries

"* Conferences and Special Interest Groups-information on regularly scheduled
expositions, workshops, and symposia as well as conferences

"* Operational Development Support Tools-information on environments and tools
currently used by the DOD community

Ada I i teon GMie A-i

1
Helpful Sources

The amount of Ada-related information available from these sources is too vast to
reproduce in this appendix. However, an address, telephone number, electronic mail
address (if available), and short description are provided for each source. Often, the
easiest way to obtain information from these sources is by electronic mail, but contactby mail, telephone, or facsimile is also possible.

A.1.1 Organizations

Ada Joint Program Office
1211 South Fern Street
Room C107 I
Arlington, VA 22202
(703) 614-0209
DSN: 224-0208

The Ada Joint Program Office (AJPO), which consists of a deputy director from each
Service and a chairperson, is responsible for managing the effort to implement,
introduce, and provide life-cycle support for the Ada programming language. The AJPO
sponsors AdaIC, a primary source of Ada information.

Ada 9X Project
Project Manager
Phillips Laboratory/VTES
3550 Aberdeen Avenue, S.E.
Kirtland AFB, NM 87117-5776
(505) 846-0461
Internet: anderson~plk.af.mil

This project is responsible for revisions to the American National Standards
Institute/Military Standard (ANSI/MIL-STD)-1815A to reflect current essential
requirements with minimum negative impact and maximum positive impact on the Ada I
community.

Ada Board
Ada Joint Program Office
1211 South Fern Street
Room C107 I
Arlington, VA 22202
(703) 614-0209 3

I
A--2 Department of the NavyI

I

a
I Helpful Sources

I The Ada Board provides AJPO with balanced advice and ,formation on the technical
aspects related to official interpretations of the Ada lang'..e standard and on issues
associated with Ada validation and software environment activities.

I Ada Information Clearinghouse
AdaIC
P.O. Box 46593
Washington, D.C. 20050-6593
(703) 685-1477
1-800-232-4211 (1-800-AdaIC-11)
Internet: adainfobajpo.sei.cmu.edu
FAX: (703) 685-7019
Compuserve: 70312,3303

Ada Joint Program Office3 OUSD(A)/DDRE/AJPO
Room 3E118, The Pentagon
Washington, D.C. 20301-3081
(703) 614-0215
FAX: (703) 685-7019

3 The latest information about Ada is available to you free of charge from AJPO's Ada
Information Clearinghouse (AdaIC). The AdaIC makes available information on a
variety of topics ranging from the use of Ada within DOD and industry to tools and
compilers for Ada developers, and from DOD policies regarding Ada to reusable Ada
software.

I The AJPO sponsors the AdaIC. The AJPO is responsible for informing the community
about Ada, facilitating the language's implementation in the services, and maintaining theu integrity of the language.

The telephone hotline numbers are 1-800-232-4211 outside the Washington, D.C. area,
and (703) 685-1477 in the Washington, D.C. area. For answers to your Ada questions,
call the AdaIC, Monday through Friday. from 8:00 a.m. to 5:00 p.m., Eastern Time.

Ada Validation Office
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 845-6639

3 Ads Implementation Guide A-3

I

I
Helpful Sources

This office implements compiler validation policy and oversees development of the Ada
Compiler Validation Capability (ACVC).

National Institute of Standards and Technology
Software Standards Validation Group
Building 225, Room A-266
Gaithersburg, MD 20899
(301) 975-3274
Attn.: Arnold Johnson

The National Institute of Standards and Technology (NIST) provides Federal Information
Processing Standards (FIPS) for the Ada language. NIST also is an Ada validation
facility and coordinates with AJPO for conformance testing, policies, and procedures.

DON Software Executive Official
Commander, Naval Information System Management Center
Crystal Plaza 5, Room 334 I
2211 Jefferson Davis Highway
Arlington, VA 22202
(703) 602-2103

The DON Software Executive Official (SEO) is the point of contact for all DON software
and software-related issues.

DON Ada Representative
AST Software and Systems l
Naval Information System Management Center (NISMC)
Building 166, Washington Navy Yard 5
Washington, D.C. 20374
(202) 433-4903/3499

This office is the point of contact for all Ada and Ada-related issues.

Space and Naval Warfare Systems Command 1
Code 224-1
5 Crystal Park
Suite 700 U
Washington, D.C. 20363-5100
(703) 602-9188 1

I
A--4 Departnmut. o1teNv

I

I

SHelpful Sources

I The Space and Naval Warfare Systems 3mmand (SPAWAR) is the point of contact for
DOD-STD-2176A, Defense System Atware Development; computer resources
management and interface standards for weapon systems applications (Secretary of the' Navy Instruction [SECNAVINST] 5200.32A and Secretary of the Navy Note
[SECNAVNOTE] 5200); and Navy representation on the Joint Logistics Commanders
Joint Policy Coordinating Group on Computer Resources Management (JLC-JPCG-

I CRM).

Next Generation Computer Resources
Space and Naval Warfare Systems Command
Code 311-2
5 Crystal Park
Suite 700
Washington, D.C. 20363-5100
(703) 609-9096

I This office is the point of contact for all next generation computer issues.

Commander, Naval Computer and Telecommunications Command
(COMNAVCOMTELCOM)

Ada Program Manager
4401 Massachusetts Avenue, N.W.
Washington, D.C. 22036-5460
(202) 282-0221
DSN: 292-0221
FAX: (202) 282-2684

If This command is the headquarters for the Naval Computer and Telecommunications
Stations (NCTSs). Through the Ada Technical Support Bulletin Board, the Naval
Computer and Telecommunications Command (NAVCOMTELCOM) provides support
for Ada projects and technical information to the Ada community at large. NCTC chairs
the AdaSAGE Configuration Management Board, manages the Navy-wide Reuse Center,
and publishes CHIPS.

Commandant of the Marine Corps
Director (CTAE-13)
MARCOR COMTELACT
3255 Meyers Avenue
Quantico, VA 22134-5048
(703) 640-4897
Internet: depasquale@mqgl.usmc.mil

Ads Implementation Guide A-5

I

I
HWPftU Swurmcs i

This source is the primary point of contact for Marine Corps Ada program development.

Naval Center for Cost Analysis
Head, Automated Information Systems Division
Pentagon 5
Room 4A538
Washington, D.C. 20350-1100
Attn.: Stephen Gross i
(703) 746-2342

DSN: 286-2342
FAX: (703) 746-2390

The Naval Center for Cost Analysis (NCA) was established 6 August 1985 by decision
of the Secretary of the Navy with the following mission: "To provide independent cost I
and financial analyses to support the Secretary of the Navy. .. [and to] Ensure
credible cost estimates of the resources required to develop, procure, and operate military
systems and forces in support of planning programming, budgeting and acquisition U
management."

NCA is a field office of the Assistant Secretary of the Navy (Financial Management). 5
It is located in the Crystal City area of Arlington, Virginia, - ar the Pentagon. NCA
supports the Office of the Secretary of Defense (OSD) in satLo'ing Title 10 U.S. Code
§2434, which requires independent life-cycle cost estimates, including the cost of
research and development, procurement, and operations and support of major weapons
systems such as ships, aircraft, missiles, and electronic systems. NCA also conducts 3
financial analyses of defense contractors and economic analyses of acquisition issues.

Software Technology Support Center
Ogden Air Logistics Center
TISAC
Hill AFB, UT 84056 j

The Software Technology Support Center (STSC) acts as a focal point for the U.S. Air
Force on software tools, methods, and environments. Its activities include a bulletin
board, an annual software conference, a monthly newsletter, consulting services, reports
on various software topics, information on software repositories, and other software
support services. The STSC provides quantitative evaluations of technology, tailored to i
specific customer requirements, on a fee-for-service basis. The STSC also has several
technology insertion projects and is working directly with specific customers in selecting
new technology and inserting the technology. Among the reports on software topics are I
a software manager's guide, a project management technology report, a reengineering
technology report, and tool reports on various domains from Computer-Aided Software

A-6 Department of fhe Navy

I

I Engineering (CASE) tools to documentation tools. Information on software repositories
is a special examination being conducted by the STSC. It will result in a report and a
number of activities with various customers.

I Software Egin-eer I Institute
Customer Relations
Carnegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
FAX: (412) 268-5758

The Software Engineering Institute (SEI) is a Federally Funded R rch and
Development Center (FFRIC) sponsored by DOD through the Advan. esearch
Projects Agency (ARPA). The SEI provides leadership in advancing the .,Ate of the
practice of software engineering to improve the quality of systems that depend on
software. The SEI's four areas of focus are software process, software risk management,real-time distributed systems, and software engineering techniques. To increase the
number of highly qualified software engineers, the SEI also seeks to improve software
engineering education within academia, Government, and industry.

In response to computer security threats, ARPA established the Computer Emergency
Response Team (CERT) Coordination Center at the SEI to support Internet users. The
members of the CERT Coordination Center work with the Internet user community and
technology producers to address and prevent computer emergencies.

To accelerate the dissemination of new technologies and methods, the SEI offers U.S.
organizations from academia, Government, and industry several methods of interacting
with the institute. Information on the subscriber program, technical reports, continuing
education courses, and symposia may be obtained by calling or writing to the Customer

I Relations Office.

Software Technology for Adaptable, Reliable Systems (STARS)
801 North Randolph Street, Suite 400
Arlington, VA 22203
(703) 351-5300
Internet: (for newsletter) newsletter@stars.ballston.paramax.com

(for ASSET) STARSBBS@source.asset.com
INFO@source.asset.com

For more information:
Joel Trimble-E-mail trimble@stars.ballston. paramax.com or above address

3 Ads Implementation Guide A-7

I

I
Helpful Sources I

The STARS Program is a major ARPA/Software and Intelligent Systems Technology
Office (SISTO) effort to provide more capable, efficient and productive methods of
developing software for DOD. STARS' goals are to (1) improve productivity; (2)
improve quality and reliability; (3) promote development and application of reusable
software; and (4) promote adaptability, evolvability, and interoperability through the use 1
of standard interfaces and open architectures, both of the application software and of the
Software Engineering Environments (SEEs), which support that application software. 1

The technology areas STARS supports include SEE frameworks, software reuse
mechanisms, and tailorable software process models. STARS includes the national Asset
Source for Software Engineering Technology (ASSET) software reuse library effort.

STARS maintains an affiliates program to provide an opportunity for the DOD software
community to participate in STARS technical activities. The three levels of affiliates 'I
(e.g., individual representatives of Government agencies, universities, vendors) are as
follows: 3

"* Information affiliates who receive the STARS newsletter, attend STARS
conferences, (STARS 9X), have access to the STARS bulletin board, and attend
STARS technology demonstrations at the STARS Technology Center

"* Technology transition affiliates who attend technical exchange working group
meetings; voluntarily participate in selected receptor organizations; and are
involved in alpha/beta testing, feedback, lessons learned, and product evolution

"* Prime affiliates who work directly with STARS prime contractors in relevant I
technical activities such as technology transition, production evaluation, and tool
development. I

The parent sponsoring organizations are responsible for labor, travel, and other expenses

associated with participating in the affiliates program. a
A.1.2 Training 1

Ada Language System/Navy
ALS/N Training
NCCOSC RDTE DIV 924
53560 Hull Street
San Diego, CA 92152-5800
(619) 553-0949

A-8 Departmnt of the Navy 3
I

I

I Helpful Source

I Train:-, provided at this source includes Ada Language System/Navy (ALS/N) courses
perta:..ng to AdaIM (UYK-44(V) target), Ada L (AN/UYK-43(V)), PPI (AN/AYK-14
(V) target), and Common Ada Baseline/Project Support Environment (CAB/PSE) toolsI (a VAX/VMS host with associated PSE tools). Training is available by request in
conjunction with ALS/N quarterly meetings, and on-site training is available.

I Ada Software Engineering Education and Training Team
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
Attn.: Cathryn McDonald
(703) 845-6626
(719) 472-3131
(202) 282-0833

The Ada Software Engineering Education and Training (ASEET) team is composed of
representatives from the Army, Air Force, Navy, Marine Corps, other DOD agencies,
and academia. The team conducts workshops and symposia for Ada educators within
DOD and academia and coordinates the activities of DOD .ganizations engaged in
meeting the Ada education and training needs. The team is also available, as funding
permits, to present I- day or half-day introductory and advanced tutorials on Ada andI software engineering. It also conducts an annual Ada symposium that focuses on
education and training issues. An ASEET resource library of educational materials isI located at AJPO. ASEET also has established an Ada Materials Library that contains
copies of all team-developed tutorials and many other Ada documents and textbooks.

Team members are located all across the continental United States and could serve as
local resources to answer questions on Ada or to direct inquiries to non-local sources.

The team has tri-Service representation on four working groups that address educationand training on requirements, courseware, professional development, and coordination.
Major tasks include the following:

e Identifying education and training requirements within DOD
* Conducting Ada research projects: Managing Ada course materials
0 Performing Ada certification study
* Providing a database of ASEET research data and final reports
0 Providing a DOD focal point for Ada software engineering education and training.

Ada Implenwtation Guide A-9

I

AdaSAGE
Department of Energy
Idaho National Engineering Laboratory
Idaho Falls, Idaho
(208) 526-066 3

The Idaho National Engineering Laboratory (INM) ofters training and support through
a hot line subscriptim service. 3
Air Force Institute of Technology

Wright Patterson AFB 3
Ohio 45433
(513) 255-6027 £

The Air Force Institute of Technology currently teaches the following courses that use
Ada as an implementation language: 3

"* Introduction to Data Structures and Program Design-Principles and
methodologies used to design and implement small programs.

"* Advanced Information Structures-Structure of data and the efficient and effective
manipulation (algorithms) of such structures.

"* Operating Systems-Concepts and principles of computer operating systems. The
objective is to give the student an understanding of operating systems and the
necessary skills to evaluate and trade-off desirable features of operating systems
given specific user and resource requirements.

"* Software Analysis and Design-Examination of the object-oriented paradigm and
the formal specfication of software. Object-oriented design and formal
specification. I

"* Software Systems Engineering-Basic principles and techniques underlying object-
oriented and object-based generation of software. i

" Analysis and Maintenance of Software Systems-Basic principles and techniques
underlying the measurement and analysis of software systems as well as the
principles and techniques underlying the maintenance of existing software.

" Algorithms for Parallel Processing-Understanding of classical results for parallel I
design and analysis and provides practical insights into efficient and effective
implementation on contemporary parallel computational machines. I

A-10 Depoament of Oh No

I

I

i Hlpful Sources

& Compiler Theory and Implementation-Theoretical foundauan of formal3 languages and compiler theory.

- Principles of Embedded Software-Mathematical and computer science principles
for the specification, design, implementation, and analysis of embedded software
systems.

1 * Design of Fault Tolerant Software-Basic mathematical principles, data structures,
and algorithms associated with the design of fault-tolerant software systems.

1- Formal-Based Methods In Software Engineering-The mathematical and computer
science theory used as the basis for developing formal-based methods for

j. specifying, generating, and validating or verifying software.

Common Ada PSE Interface Set (CAIS)
CAIS-A
Commander
Naval Ocean Systems Center£ 271 Catalina Boulevard
San Diego, CA 92152-5000
Attn.: CAIS-A Training Coordinator
(619) 553-6858

A 5-day training class is available that provides hands-on experience for Ada tool
designers. (Knowledge of the Ada programming language is a prerequisite.) Training
will be available on a VMS system and on a Sun 3 running under UNIX. Also available
are the following:

"* CAIS-A Self-Study Guide
"" CAIS-A Tool Writers Guide.

Computer Sciences School
Head, Application Programming Instructional Department (APID)
Marine Corps Combat Development Command (MCCDC)
3255 Meyers Avenue
Quantico, VA 22134-5051
(703) 640-2962
DSN: 278-2962
(703) 640-3759

The Computer Sciences School (CSS) currently offers the following Ada-related training
courses:

Ads Implementation Guide A-11

i n m J gm I II i m m m um n nin

I
Helpful Sources 3

" Entry-level Ada Programming Course. This course is designed for the student
who has no previous programming experience or training. Programming concepts
and principles are taught along with the basics of Ada programming. Additionally,
subjects, such as TSO, JCL, and IBM utilities, are taught to expose students to
tools they may need as programmers. This course is 8 weeks long (41 training
days) and is offered four or five times a year.

"* Ada Programming Course. This course is designed to teach the basics of the Ada
programming language to programmers who are currently working in a language I
other than Ada. However, programming experience is not a requirement to attend
the course. The course is 4 weeks long (20 training days) and is offered three if
times a year.

" Advanced Programming Techniques (APT) Course. This course is not a typical I
programming course. No syntax is taught. Instead, the course teaches software
project management principles in conjunction with software analysis and Object-
Oriented Design (OOD) techniques. This course is 3 weeks long (15 programming I
days) and is offered three times a year.

Personnel interested in attending a course taught at CSS should contact the Academics I
Officer, Training and Operations Section (TOPS), DSN 278-2891 or COMM (703) 640-
2891, for specific information on registering for a course. 3
Other Points of Contact (POCs) are:

"* Marine Corps-Steve Bruzek, 4000 MOS Sponsor at DSN 241-3593 or COMM H
(703) 614-3593

"* Navy-Navy DP Detailer at DSN 223-3537 or COMM (703) 693-3537

"* All civilians and other service personnel-SSgt Riegal, Quota Control Manager, 3
Training and Education Division at DSN 278-3071 or COMM (703) 640-3071.

Computer Science School I
Chief of Operations
Army Computer Science School
U.S. Army Signal Center & Fort Gordon
Fort Gordon, GA 30905(706) 791-2586 3

The Army Computer Science School currently offers a 2-week (10-training-day) course
in Structured Programming in Ada for Active and Reserve Component commissioned and i

A-12 Departnent of the Navy o

I

I

Helpful Sources

warrant officers and non-commissioned officers in grades E-6 and above and DOD
civilians in grades GS-07 and above, Active-duty or Rest.--ve Data Proessors should
contact the Navy DP Detailer, NMPC-406, DSN 223-3537 or COMM (703) 693-3537.
Other Navy personnel and civilians interested in enrolling should contact Navy's A'TRS
POC, Ms. Holder, OPNAV-I12G1, DSN 225-8665 or COMM (703) 695-8665 to enroll
through ATTRS, or contact Chief of Operations, Army Computer Science School, DSN
780-2326 or COMM (706) 791-2326. The Army Computer School also teaches Ada as
part of the Systems Automation Officer course, and students use Ada in their software
engineering project.

National Audiovisual Center
8700 Edgeworth Drive
Capitol Heights, MD 20743-3701
Attn.: Customer Service Department
(301) 763-1891
FAX: (301) 763-6025

A series of Ada training tapes sponsored by the AJPO is available for purchase through
the National Audiovisual Center of the Department of Commerce. The tapes include the
following:

0 Introduction to Ada (3 tapes; about 3 hours; order no. A18336; $150)

* Ada from a Management Perspective (2 tapes; about 80 minutes;
order no. A18337; $100)

0 Software Engineering in Ada (19 tapes; about 8 hours, 20 minutes;
order no. A18338; $500).

Additional information on these tapes is available from the AdaIC.

National Defense University
Information Resources Management Curriculum
Fort McNair, Washington, D.C.
(202) 287-9340

Ada is examined in the Programming Languages course in the Advanced Management
Program.

Naval Postgraduate School
Monterey, CA 93943-4444
(408) 656-2591

Ads Implementation Guide A-13

I
HIelph Souw=e f

The Naval Postgraduate School teaches Ada in the following courses:

"* Structured Programming with Ada i
"* Data Structures
"* Software Methodology (the process of software development)
"* Software Engineering (formal methods)
"* Software Engineering with Ada (task, real-time issues)
" Computers in Combat Systems 3
"* Software Tools and Environments.

Software Engineering Institute 3
Carnegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800 I
FAX: (412) 268-5758
Internet: education@sci.cmu.edu 3

The SEI has collected six software "artifacts," called EMI-EM6, targeted at teaching
software engineering. Artifact EMI, for example, is a 10,O00-line Ada style checkerpackaged with exercises to teach software maintenance. SEI also produces many a
technical reports, including the following, which are highly recommended:

"* Ada Adoption Handbook. A Program Manager's GuideI
"* Ada Adoption Handbook. Compiler Evaation and Selection.

United States Air Force Academy
Headquarters, USAFA/DFCS
2354 Fairchild Drive, Suite 6K41 5
USAFA, CO 80840
(719) 472-3131
FAX: (719) 472-3338 3
Internet: dcook@kirk.usafa.af.mil
POC: CAPT David Cook

The U.S. Air Force Academy teaches Ada to computer science majors in the
Foundations of Computer Science course. Majors also use Ada in the Programming
Languages course and the Algorithms and Data Structures course. Additionally, a 5
2-week course open to anyone is taught during the summer (June/July). Space is limited;
therefore, early registration is advised. There is no charge for the course, but all
students must pay their own travel and per-diem costs.

A-14 Departmentof Na1y

I

United State Air Force Technical Training School
Keeslcr Air Force Base
Biloxi, MS
(601) 377-5379
DSN: 597-5379

The U.S. Air Force Technical Training School teaches Ada in its Fundamentals of Ada
Programming/Software Engineering course and its Ada Applications Programmer course.

United Stats Army E Cole
Rock Island Arsel
Rock Island, IL 61299-7040
Attn.: AMXOM-RS
(309) 782-0488/089/0487

The U.S. Army Engineering College provides a 2-week Ada overview free to
Government employees (Course No. AMEC-140). Additionally, four to five courses that
run 41 training days per year include entry-level Ada programming. They are currently
developing software project management geared toward OOD in FY94.

United States Military Academy
Wesqmint, NY 10996
(914) 938-5607
FAX: (914) 938-5438
Internet: DT2283*lecsl.eecs.usma.edu
POC: CAPT Crabtree

The United States Military Academy first introduces Ada to computer science majors in
their second year in the course Analysis of Programming Languages. The following
year, they take Software Engineering with Ada for a full semester. This course
introduces the students to software engineering and focuses on how Ada supports the
principles and goals of software engineering. The course treats software engineering
concepts in detail. The OOD paradigm is introduced and practiced in programming
assignments.

United States Naval Academy
Computer Science Department
572 Holloway Road
Annapolis, MD 21402
(410) 267-2797/8
FAX: (410) 267-2686
Internet: eunA.scs.usna.navy.mil

Ada Implenntatlan Guide A-15

I
HwpfU Sources I

DSN: 281-3007
POC: Dr. E.K. Park I

The U.S. Nav-4 Academy teaches Ada to computer science majors in their senior year
in the Software Engineering and Advanced Software Engineering courses. 3

*S *' *t *

All of the major Ada compiler vendors have training available directly through their

offices.

A.1.3 Publications

Defense Technical Information Center I
Cameron Station
Alexandria, VA 22304-6145
Attn.: FDRA I
(703) 274-7633

The Defense Technical Information Center (DTIC) distributes documents only to 5
military, Government, or defense contractors who are registered users of DTIC. Most
unclassified document- that are submitted to DTIC are also forwarded to the National
Technical Information Service (NTIS) and are available to the public.

National Technical Information Service 3
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

NTIS, a self-supporting agency of the U.S. Department of Commerce, provides free 3
publications and directories of Government datbases and software components. The
Application Portability Profile (APP) and FIPS are available from NTIS.

Standardization Documents Order Desk
Building 4, Section D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Special Assistance Desk: (215) 697-2179
DSN: 442-2179 I
Customer Service: (215) 697-2667

A-16 Departimt of the Navy 3

I

5 Helpful Sources

I This desk is the central distributor of all r-Alitary standard documents, including the
standard for the Ada language reference ma:.-431 (ANSI/MIL-STD-1815A-1983). DOD
standards, specifications, handbooks, and data items can be ordered by using theU Telephone Order-Entry System (TOES). Access TOES by calling (215) 697-1187 (DSN
442-1187), Monday through Friday, 7:00 a.m. to 4:30 p.m. Eastern Time.

U.S. Government Printing Office
Superintendent of Documents
Washington, D.C. 20402-93713 (202) 783-3238

The Superintendent of Documents can provide the APP.

U Ada 9X Publications
Phillips Labomtory/VTES1 3550 Aberdeen Avenue, S.E.
Kirtland AFB, NM 87117-5776
(505) 846-0461

The Ada 9X Project Office maintains a mailing list for Ada 9X documents. To be placed
on the mailing list or to receive hard copies of Ada 9X documents, send an E-mail
message to the following address: keeneyr@plk.af.mil. For access to electronic versions
of Ada 9X documents, leave a message at action@ajpo.sei.cmu.edu

I Ada and C+ +
Software Technology Support Center
Ogden Air Logistics Center
TISAC
Hill AFB, UT 840561 (801) 777-7703

This report describes studies that compared Ada to C+ +. An electronic summary of
this report is available on the AdaIC Bulletin Board. The report is also available through
DTIC and NTIS.

Ada Information Clearinghouse Newsletter
AdaIC
P.O. Box 46593
Washington, D.C. 20050-6593
1-800-232-4211

3 Ada Implementation Guide A- 17

I

Helpful Sources1

The AdaIC quarterly newsletter contains current news from the AJPO about the Ada
program, Ada conference reports, and articles on projects using Ada. If you would like
to receive the newsletter, call the AdaIC and request a free subscription.

Ada Slices 3
MITRE Corporation
1120 NASA Road I
Houston, TX 77057 1
(713) 335-8541

This newsletter is published by MITRE, an FFRDC. It is a product of the Association 3
for Computing Machinery (ACM) Special Interest Group on Ada's (SIGAda's)
Performance Issues Working Group (PIWG) and is available free of charge.

Ada Software Engineering Education and Training Public Report
Ada Software Engineering Education and Training Team
Institute for Defense Analyses 1
1801 North Beauregard Street
Alexandria, VA 22311
Attn.: Resource Staff Member I
(703) 845-6626

ASEET publishes a DOD ASEET Public Report annually. The report contains an update i
and description of the latest efforts of the ASEET Team in identifying training and
education requirements within DOD and the methodology and materials needed to fulfill
those requirements. Copies of the report may be obtained from the AdaIC.

Bridge 3
Eileen Forrester
Managing Editor, Bridge
Software Engineering Institute I
Carnegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-6377
Internet: bridge-editor@sei.cmu.edu

This magazine reports on SEO projects and activities. To obtain a subscription, send a £
written request to the editor.

i

A-18 Department of the Navy 3

I

I

I Helpful Sources

crnrs
.-456 Fourth Avenue, Suite 200
Naval Computer and Telecommunications Area Master Station, Atlantic (NCTAMS
LAND)
Norfolk, VA 23511-2199
(804) 444-87043 DSN 564-8704

CHIPS is a microcomputer magazine for mid-level users. It contains primarily product
reviews, microcomputer contract information, and articles of general interest to the
microcomputer community.

Crosstalk, The Journal of Defense Software Engineering
Software Technology Support Center
Ogden ALC/TISE
Hill AFB, UT 84056
Attn.: Customer Service
(801) 777-2237
DSN: 458-2237
FAX: (801) 777-8069g Internet: bblissooodisO I.hill.af.mil

Crosstalk, The Journal of Defense Software Engineering, is published to help improve
the effectiveness of software used by DOD. The journal provides information about
software tools, methods, and environments for DOD software development and support
activities, contractors who develop software for the military, and vendors who produce
CASE tools for the defense market. Crosstalk frequently features articles on various
aspects of Ada, from work on Ada 9X to techniques for converting from COBOL to Ada
when reengineering management information systems. STSC distributes Crosstalk
without charge to individuals actively involved in the defense software developmentprocess. To request to be added to the mailing list, write to the above address. To
request other reports on software development tools and other topics, call (801) 777-7703

i or DSN 458-7703.

DACS Newsletter
Barbara Radzisz
Editor, DACS Newsletter
Data & Analysis Center for Software
P.O. Box 120
Utica, NY 13503
(315) 734-3696

3 Ads Implementation Guide A-19

I

U
Helpful Sources 5

DACS Newsletter is the current awareness publication of the Data and Analysis Center
for Software (DACS). It serves as a centralized source for current, readily available data I
and information on software engineering and software technology.

Institute for Defense Analyses
Computer & Software Engineering Division
1801 North Beauregard Street
Alexandria, VA 22311 I
(703) 845-2000 (General)(703) 845-2059 (References) g

The institute is an FFRDC the primary sponsor of which is the Office of the Secretary
of Defense (OSD). All publications prepared by the institute are available through DTIC
or NTIS.

High Order Language Control Facility Ada-JOVIAL Newsletter
645 C-CSG/SCSL I
Wright-Patterson AFB, OH 45433-5707
(513) 255-4472
DSN 785-4472
langed~ssl.sews.wpafb.af.mil

To support the DOD and Air Force standardization efforts, information is disseminated I
about Ada and JOVIAL (J73), standardization and language control activities, training,
compilers, compilers and tools, development efforts, applications, and user services. 3
NISMC Newsletter

Ms. Alcinda Wenberg 5
NISMC
Building CP5
Jefferson Davis Highway I
Arlington, VA 22203
(703) 602-2542 g

This monthly newsletter provides information on Naval Information System Management
Center (NISMC) initiatives, status of DON policy, and upcoming DON activities. i

I
A--20 Department of the Navy 1

I

I

3 HdPkA kmWC

I STARS Newsletter
801 North Randolph Street
Suite 400

SArlington, VA 22203
(703) 351-5300
e e s .ballston.pamax.com

I The STARS newetter contains articles covering software reuse technology, software
process technology, and software engineering environment ftraework technology. It is

I published twice per year and is free of charge.

A.1.4 Bulletin Boards

I Ada 9X Project

Phillips Laboratory/VTES
3550 Aberdeen Avenue, S.E.
Kirtland AFB, NM 87117-57763 (505) 846-0461
andermn@plk.af.mil

3 Information can be obtained from the ADA 9X Bulletin Board by calling 1-800-
Ada-9X25 or (301) 459-8939 or by using the electronic address shown above. To access
the bulletin board by modem, use the following settings:

"* Baud rate - 300, 1200, or 2400
"" Parity = none
I Data bits - 8
"* Stop bits - I

I AJPO Host and Ada Information Clearinghouse Bufletin Board
1211 South Fern Street
Room C107Arlington, VA 22202
(703) 614-0209

I The AJPO sponsors two bulletin boards that serve as a primary source for Ada
information. The ajpo host is accessible electronically on the Internet. The AdaIC
Bulletin Board (AdaIC BB) is accessible by modem. Section A.2 provides details for
accessing either bulletin board. The ajpo host and the AdaIC BB contain duplicate
information.

3 Adf ImpleWentation Guide A-21

I

U
H4d)U SOUR=e

Ada Technical Support Bulletin Board Service
Navali Computer and Telecommunications Area Master Station Atlantic 5
(NCTAMS LANI)
Norfolk, VA
(804) 444-7841 1
DSN 564-7841

To access by modem, use the following settings: 3
"* Baud rate - 300, 1200, or 2400
" Parity - none 3
"* Data bits = 8
"* Stop bits 1 -5'

NAVCOMTELCOM sponsors an Ada Technical Support Bulletin Board System (BBS)
maintained by NCTAMS LANT. 3
The main purpose of the BBS is to offer microcomputer Ada programmers in the joint
Services, Government contractors, and the academic community a means for obtaininganswers to their questions about the Ada programming language. The BBS is targeted I
to programmers in the AIS domain and to software creation on these systems.

The BBS offers several services: I
" Ada Question and Answer Service. BBS users can ask questions about the Ada

language and extensions (e.g., pragmas) that might be included in a particular
implementation. Additionally, user code can be uploaded for evaluation. Such
evaluations can include checks for proper usage of Ada features, Ada style, and
compilation errors that will not go away.

"* Compiler Vendor Comment Service. BBS users can comment on DOS-based Ada
implementations. Comments can report either problems with existing
implementations or suggest enhancements that would benefit the DOS-Ada
community. These comments will be provided to the appropriate compiler I
vendors. The goal is to use this service to improve DOS-based Ada compilers.
A secondary benefit is to make potential users aware of possible problems with
particular DOS-based Ada compiler implementations.

"* Ada Lumited Debugging Assistance. BBS users can upload small amounts of code
to be debugged. The submitted code must be limited to a few program units.

A-22 Depsnrnmt of fth ft"

I

U�Hepfu Sounc

"" AdaSGE Quetion and Answer Service. Many DOS-Ada application developers
use AdaSAGE for Database Management System (DBMS) functions. This service
is for AdaSAGE users. Users will be able to ask one another questions about

3 AdaSAGE.

"* AdaSAGE Comment Service. BBS users can comment on Ada application
development using AdaSAGE. Comments can either report problems with
AdaSAGE or suggest enhancements that would benefit future versions of
AdaSAGE. These comments will be collected and presented periodically at3 AdaSAGE enhancement meetings. Users may also request AdaSAGE
enhancements.

S* Ada Eample Set. This collection of code shows Ada features. BBS users can
download the code, study it, and ask questions about it. Users also can upload
code that shows Ada features.

"* News. The BBS will list Ada news, events, and interesting Ada products and their
points of contact.

The service is free and available to the public. However, the limited debugging service
is available to bona fide Government employees and their contractors.

STSC Bulletin Board System
Ogden Air Logistics Center

3 TISE
Hill AFB, UT 84056
(801) 774-6509I
DDN: Telnet 137.241.33.1 or stscbbs.oo.aflc.af.mil

The STSC sponsors the Electronic Customer Services (ECS), which is divided into the
Bulletin Board System (BBS) and the Central Database (CDB). The purpose of ECS is
to present the latest software information and knowledge to software practitioners in the1DOD, industry, and academia.

To access the ECS by modem, use the following settings:

" Baud rate = 300, 1200, 2400, or 9600
"* Parity = none3 Data bits = 8
"* Stop bits = I

Ada Implementation Guide A-23

I

Th BBS offers information and news on a variety of software topics. The entries on the
main menu are as follows: I

" Ada I)Iformadon. Presents the most recent Ada information, policy, news and

motrecnends.on nw

" USAF Soft war Policy and Regultions. Abstracts applicable software policies and
regulations including POC or author, office of responsibility, address, phone
number, and latest date of publication.

"• Notes. Allows users to leave a note, make a comment, or present their views to 3
the STSC and other BBS customers on any software subject. The STSC will then
put the notes into the appropriate BBS domain for subsequent viewing and
comment.

" Crosstak, The Journal of Defense Software Engineering. Lists every issue of the
STSC's journal of software engineering. Hard copies are available on request.

"* DOD Corporate Information Management (alm). Presents most recent
information from high-level DOD software management.

"* lnobrmation Technology Policy Board (rIPB). Presents most recent information
on and activities of this CIM-sponsored board.

"• Comferences, Meetings, Seminars. Contains a comprehensive calendar of software
activities sponsored by the Government, industry, academia, and international
agencies.I

"* Other Bulletin Board Systems. Lists BBSs sponsored by the Government, industry,
and academia.

"* Other Sojft re Organizations. Lists software organizations sponsored by the
Government, industry, and academia.

o Software Technical Domains. Contains domains such as system simulation,
requirements tracing, design, coding, testing and integration, documentation,
project management, configuration magement, quality, metrics, environments, I
and databases.

" Software Engineering Topics. Includes education, goals, and logistics (softlog), I
methods, metrics, processes, quality reengineering, and reuse.

A
A--24 Deparmenlt of the Navy 3

I

I
*HdpMW Sor

* Software News. Gives access to an electronic newspaper featuring news and
information from the software community.

e Software Periodicals and Books. Presents a list of the software periodicals,
newspapers, journals, magazines, and newsletters published by the Government,
industry, and academia.

e Software Technology Conference. Presents news about the annual Software
Technology Conference (STC) held each April in Salt Lake City, Utah.

1 * S7SC Docwenrs. Lists all of the documents and reports generated or sponsored

by the STSC. Hard copies will be sent on request.

I e White Papers. Contains technical proposals from the software community at large.

* Upload Files to the STSC. Contains instructions on how to upload files to the
STSC.

I The CDB is a repository of software tool information. It gives descriptions of tools,
addresses of vendors, and the ability to query for selected tool domains.

*Cad Bulletin Board System
Air Force Cost Center

I111 Jefferson Davis Highway, Suite 403
Arlington, VA 22202
(703) 746-5840
DSN: 286-5840
Air Force Cost Bulletin Board POC: Ray Scheuring
(703) 746-5875 or 5876
1-800-344-3602

The Cost BBS provides an automated means of exchanging information, and uploading
I and downloading cost models and factors. If you have models or information you would

like to have included, contact the system operator or leave a message on the bulletin
board.

I To access the Cost BBS, you must have an IBM-compatible microcomputer,
communications software that allows XMODEM (checksum), XMODEM (CRC), ASCII,
YMODEM or KERMIT file transfer protocols, and a Hayes-compatible modem.
Communications settings are as follows:

Ada Implementation Guide A-25

I

"* Baud rat = 1200 or 2400

"* Parity = none
"* Data bits = 8
"* Stop bits = I

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161 3
(703) 321-8020

The NTIS Bulletin Board provides information on Computer-aided Acquisition and 3
Logistics Support (CALS), CIM (e.g., Technical Reference Model), and more.
Communications settings are as follows: g

"* Baud rate = 1200 or 2400
"* Parity - none
"* Dam bits -8
"* Stop bits = I

A.1.5 Repositories I
Ada Software Repository

ada-sw-request~wmr-simtel2O.army.mil i
The Ada Software Repository (ASR) contains Ada programs, software components, and
educational material that has been established on the Defense Data Network (DDN).
This repository has been accessible to any host computer on the DDN since 26
November 1984. 3
ASR is a free source of Ada programs and information. By employing the File Transfer
Protocol (ftp) program, users of DDN hosts are able to scan the directories of the
repository and transfer files to their hosts. If the files are Ada programs, they may then
compile these programs and use them as they desire. Modifying the programs may be
within their rights, and they may freely distribute these programs as they wish, subject
to the restrictions specified in the prologue of each piece of software.

All members of the Ada community are encouraged to extract information and programs 5
from the repository and to make contributions to it. The only restrictions that apply to
access and use of this software are presented in the Distribution and Copyright section
of the prologue associated with each piece of software.1

I
A--26 Dgpartment of the Navy g

I

I

I Helpful Sources

I ASR is one of several repositories located on the SIMTEL20 DDN host computer at

White Sands Missile Range, New Mexico. SIMTEL20 is owned and operated by the
Operations and Systems Integration Division of the Information Systems Command of

i the U.S. Army.

ASR maintains source code from approximately 10,000 Ada programs. These programs

are maintained by the domains of Artificial Intelligence (AI), Benchmarks,
Communications, Reusable Software Components, Documentation, Graphics, Project
Management, Ada Software Development Tools, and many others. The ASR is available1 through ftp and on magnetic tape, floppy disk, and CD-ROM.

An introduction to the ASR can be obtained by using the following commands on a
I system that supports ftp on the DDN:

> ftp wsmr-simtel20.army.mil
when asked for login name, type in anonymous
when asked for password, type in your user-id
ftip>Is -provides listing of login directory
ftp>get SIMTEL20-ADA.INF -copies file to your local directory
ftp > quit -returns control to UNIX

I Tape copies are available from:
The DECUS Program library
219 Boston Post Road BPO2
Marlboro, MA 01752
(508) 480-3418

I MS-DOS high-density diskette copies are available from:
Advanced Software Technology, Inc.
P.O. Box 937
Medford, NY 11763
(516) 289-6646

CD-ROM copies are available from:
ALDE Publishing
P.O. Box 35326
4830 West 77th Street
Minneapolis, MN 55435
(612) 835-5240
FAX: (612) 835-3401

Ads Implementation Guide A-27

U
Helpfid Sources 3

An electronic mailing list exists on SIMTEL20 for those who are interested in accessing
and contributing software to the ASR. To subscribe to this mailing list, send a request
to the electronic mail address above.

Air Force Defense Software Repository System 3
SSC/SSB Building 856, Room 265
Maxwell AFB, Gunter Annex, AL 36114-5000
(205) 416-58573
DSN: 596-5857
FAX: (205) 416-5964 3

The Air Force Defense Software Repository System (AFDSRS) is a repository of Air
Force and commercial reusable software assets, including functional requirements, design
specifications, architectures, design diagrams, source code, documentation, and test I
suites. AFDSRS is accessible by modem or the DDN and is linked to the Defense
Information Systems Agency (DISA) Center for Software Reuse Operations (CSRO)
library, which offers access to all DOD components.

Associate Director, MCSD
AMSEL-RD-SE-BCS-MC (C2MUG) I
Fort Leavenworth, KS 66027
AUTOVON: 552-7550 3
FTS: 753-7550
(913) 684-7550

The C2MUG Software Catalog for mathematics and various Ada functions is available I
to all echelons of the U.S. military and elements of the Federal Government. Software
components are primarily for microcomputers. I
Central Archive for Reusable Defense Software Program

CARDS
1401 Country Club Road, Suite 201
Fairmont, WV 26554
(304) 363-1731 ICARDS Hotline: 1-800-828-8161 or (304) 367-0421

E-mail for Hotline: hotlineacards.com (Internet)
Cards Program Sponsor: ESC/AVS, Hanscom AFB, (617) 377-9369 U
DSN 478-9369

The Central Archive for Reusable Defense Software (CARDS) program is a concerted 1
DOD effort to move advances in the techniques and technology of architecture-centered,
domain-specific software reuse into mainstream DOD software procurements. CARDS £
A--2 Department of the Navy 3

I

Helpmu Sources

is applying the latest technology to provide an implementation -ramework for reuse
libraries in domains of interest to the DOD. CARDS is currently applying the
framework to a Command Center Domain Library. CARDS is working closely with the
Portable Reusable Integrated Software Modules (PRISM) program, which is integrating
Commercial-Off-The-Shelf (COTS) and Government-Off-The-Shelf (GOTS) products to
perform 80% of the general functions of normal command center operations. The
CARDS program is currently developing several reuse handbooks.

Command, Control, Communications, and Intelligence Reusable Software System
Mr. Ron Crepeau
NRaD
271 Catalina Boulevard
San Diego, CA 92152-5M00
(619) 553-3990
crepeau@nosc.mil

The Command, Control, Communications, and Intelligence Reusable Software System
(CRSS) is a repository of Navy Command and Control (C2) assets, including source and
executable code, documentation, and graphical representations. The library has been
developed under the Operations Support System (OSS) project to promote rapid
prototyping of C2 systems. Replication of the CRSS is available on magnetic media or
by modem.

Common Ada Missile Components Effort
Data and Analysis Center for Software
c/o Kaman Sciences Corporation
P.O. Box 120
Utica, NY 13503
(315) 336-0937

Common Ada Missile Packages (CAMP) are operational flight software parts written in
Ada for tactical missiles. CAMP consist of 454 reusable Ada components. The software
is distributed on ANSI standard labeled 9-track 1600-bits-per-inch tapes. Additionally,
videotapes on Ada reuse are available, such as "Common Ada Missile
Packages-Leading the Way in Software Reuse." This videotape provides an overview
of Ada, software reuse, and the CAMP program.

Ada Implementation Guide A-29

I
Helphld Sources

Data and Analysis Center for Software
258 Genesee Street 3
Suite 101
Utica, NY 13502
(315) 734-3664 !

Although not an interactive repository, Data and Analysis Center for Software (DACS)
provides several products and services. Of importance are the following: the Ada
Compiler Evaluation System (ACES), (a set of Ada benchmarks), CAMP (a collection
of reusable Ada packages), a set of benchmarks, and a cataloging facility in addition to
various technical reports.

Defense Software Repository System
DISAIJIEO/CIM Software Reuse Program I500 North Washington Street, Second Floor

Falls Church, VA 22046
(703) 536-6900/7485

The DISA Joint Interoperability and Engineering Organization (JIEO) and CIM Software
Reuse Program (SRP) is an element of the DOD Software Reuse Initiative under
DISA/JIEO/CIM. The DISA/JIEO/CIM mission is to provide software reuse products
and reusable software, training, and access to the Defense Software Repository System
(DSRS). The SRP includes support of DOD Software Reuse Centers at the Service and
agency levels throughout DOD to coordinate software reuse efforts and maximize cross-
domain sharing. 3
National Aeronautics and Space Administration's AdaNet

AdaNet I
c/o MountainNet
Eastgate Plaza, 2nd Floor
P.O. Box 370
Dellslow, WV 26531-0370
(304) 296-1458
1-800-444-1458

AdaNet's primary purpose is to increase U.S. productivity, economic growth, and
competitiveness through development of a life-cycle repository for software engineering I
products, processes, interfaces, and related information services. AdaNet is sponsored
by NASA, and there is no charge for an account.

AdaNet provides the following information and services:

I
A--30 D~eparment of the Navy 3

I

I
I Helpful Sources

i Access to Ada source code libraries
* Bibliographic references to Ada and software engineering publications
* Descriptions of public and commercial repositories of Ada software
* Directories of Ada and software engineering commercial productsI Electronic forums on topics such as software reuse and CALS
* Listings of international Ada professional organizations
* Monthly listings of relevant conferences and seminars
* References to public and private Ada information services.

Navy Wide Reuse Center
Project Manager, Navy Wide Reuse Center
Washington Navy Yard
Building 196
Code N53, Room 4508
Washington, D.C. 20374
POC: Angus Faust
(202) 433-0718
nhis.navy.mil

The Navy Wide Reuse Center (NWRC), which was dedicated on 16 March 1992, will
provide a comprehensive reuse support environment for all Navy domains. The center
will serve as a repository for all Navy reusable components and provide interfaces to
other DOD and non-DOD repositories as well as information on commercially available
reusable components. NWRC uses the DSRS hosted on a DEC MicroVAX computer.
DSRS is accessible through DDN, modem dial-up, and selected Local Area Networks
(LANs). An account on the system is required and should be requested through theU above address.

Reusable Ada Products for Information Systems Development
U.S. Army
Army Reuse Center
Fort Belvoir, VA 22060-5456
Attn.: USAISEC Stop-Hl0
(703) 285-9007
DSN: 356-9007

I The Reusable Ada Products for Information Systems Development (RAPID) Program is
a total Ada software reuse program established at the U.S. Army Information System
Software Center (ISSC) Software Development Center, Washington (SDC-W). This
program has become the basis for the DSRS under the DISA CIM. Under this system,
a repository has been established for each Service. The NWRC serves as the repository

A
3 Ada Implementation Guide A--31

I

I
Helpful Sources 3

for all Navy reusable components and provides an interface to the central repository and
other service repositories under the DSRS.

Software Technology for Adaptable, Reliable Systems Repository
blanchard@stars.startech.com 3

STARS maintains a repository of Ada binding to Motif, Ada binding to Ada/Xt Windows

Intrincints, Reuse Library Framework (RLF), and many more. 3
Tape copies are available from:

Asset Source for Software Engineering Technology (ASSET) i
2611 Cranberry Square
Bldg. 2600, Suite 2
Morgantown, WV 26505
(304) 594-1762

MS-DOS high-density diskette copies are available from: 3
Advanced Software Technology, Inc.
P.O. Box 937
Medford, NY 11763 I
(516) 758-6545

A.1.6 Conferences and Special Interest Groups I
ASEET Symposium

Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311 3
(703) 825-6626

The ASEET Team Coordinator Working Group (CWG) sponsors the annual ASEET
Symposium. The symposium enables DOD personnel to learn about new education and
training methods from industry, academia, and DOD organizations.

DON Ada Users Group
DON Ada Users Group-Chair
Naval Ocean Systems Center I
271 Catalina Boulevard
San Diego, CA 92152-5000
(619) 553-2303 I
FAX: (619) 553-5799

A
A--32 Department of the Navy 3

I

I

I Helpful Sources

The DON Ada Users Group has been chartered to provide information and support to the
DON on use of the Ada programming language and Ada-related issues associated with
software development and maintenance. Regular meetings are held in conjunction with
national conferences in the Ada community, such as those sponsored by Tri-Ada and
SIGAda.

3 STARS Workshop
IDA/CSED
5111 Leesburg Pike
Falls Church, VA 22041
(703) 845-3520

The STARS Joint Program Office holds workshops to publicize and disseminate
information on various contract efforts.

3 Software Technology Conference
Software Technology Support Center
Ogden ALC/TISE
Hill AFB, UT 84056
(801) 777-7703

3 The annual STC is held each April in Salt Lake City, Utah. This conference, sponsored
by the STSC and the Headquarters of each Service, is a forum for sharing technology
solutions and bringing together the DOD Government and contractor software community
to exchange ideas and information.

3 A.1.7 Operational Development Support Tools

Ada Language System/Navy
Naval Sea Systems Command (PMS-412)
NC-3
2531 Jefferson Davis Highway
Washington, D.C. 20362-5101
(703) 602-8204

The ALS/N is a software development environment and Run-Time Environment (RTE)
system that is being developed for the current generation of DON standard computers,
the AN/UYK-43(V), AN/UYK-44(V), and AN/AYK-14(V). ALS/N has a users' group
and a bulletin board available upon request and target-based training available through
the project office.

I
3 Ada Implementation Guide A--33

I

U

HeIptA Sources

AdaSAGE
Department of Energy 3
Idaho National Engineering ILaboratory (INL)
Idaho Falls, ID
(208) 526-0656 1
Internet: jj@mica.inel.gov

AdaSAGE is a Government-owned development reuse tool utilized by all DOD
components. The tool consists of utilities that support user-developed interfaces, reports, I
and data and their relationships. These utilities facilitate user-directed rapid prototyping.
AdaSAGE is free and is supported by a Joint Service Configuratio Management Board.
Enhancements may be requested by leaving a message on the Ada Technical Support
Bulletin Board listed in A. 1.4.

NAVAIR Software Engineering Environment Tool Set
Charles Koch
Code 7033 I
Naval Air Development Center (NADC)
Warminster, PA 18974-5000
(215) 441-2752

The Naval Air Systems Command (NAVAIR) Software Engineering Environment
(NASEE) Working Group contracted for 12 software tools for use throughout the
software life cycle. NAVAIR has made these tools a standard for its Software Support
Activities (SSAs). The NADC provides information on the NASEE Working Group and
on ways to obtain these tools.

Tool Box PC
Software Technology Support Center I
Hill AFB, UT 84056
1-800-477-2449

This tool, written in Ada, is an interactive catalog application tool that has Ada and other
Government- and commercially owned software languages. This system is designed for 3
managers' use. The program is available free to the public on 5 'A- and 3½-inch disks.
The Air Force supports this program through the STSC.

A
I

A--34 Departmntm of the Navy

I

I
3 Helpful Sources

I A.2 Ada INFORMATION CLEARINGHOUSE
The latest information about Ada is available free of charge from the AJPO's AdaIC.
The AdaIC makes available information on a variety of topics ranging from the use of
Ada within DOD and industry to tools and compilers for Ada developers, and from DOD
policies regarding Ada to reusable Ada software.

The AJPO sponsors the AdaIC. The AJPO is responsible for informing the communityabout Ada, facilitating the language's implementation in the services, and maintaining the
integrity of the language.

I The telephone hot line numbers are 1-800-ADA-ICII (232-4211) or (703) 685-1477. For
answers to your Ada questions, call the AdaIC, Monday through Friday, from 8:00 a.m.3to 5:00 p.m., Eastern Time.

Informational Flyers
More than 100 different informational flyers or reports are available from the AdaIC.
Flyer topics include:

3 Ada Validated Compilers
* Ada News and Current Events
e Ada UsageI AJPO's Ada Technology Insertion Program (ATIP)
* Ada 9X project
* On-line sources of Ada information3 Ada bibliographies
* Ada Compiler Validation and Evaluation
* Resources for Ada Education and TrainingU Ada Software, Tools, and Interfaces
* Ada Regulations, Policies, and Mandates
* Ada Historical Information
* Standards and Available Ada Bindings Products.

These flyers are available electronically on two AJPO-sponsored computer systems: theAJPO host computer on the Internet, and the AdaIC Bulletin Board Paper copies of the
flyers are provided upon request.

I The Validated Compilers List is one of the most frequently requested flyers. This list,
which is updated monthly, contains information on all compilers that have currently3 active validation certificates.

A
3 Ada Implementation Guide A--35

I

I
Holpful Sources

On-line Information
Most AdaIC flyers and other publications are available on-line on the AJPO host
computer and on the AdaIC Bulletin Board. These electronic sources also have other
files, such as those whose length or complexity preclude easy distribution in paper-copy
form. In addition, the AJPO provides information related to the Ada 9X project on a
dedicated bulletin board and on the AJPO host.

The AJPO Host on the Internet
For those with access to the Internet, AJPO makes a variety of Ada information available
on the AJPO host computer on the Internet. Its name is ajpo.sei.cmu.edu.

The AJPO host can be accessed by the File Transfer Program (FTP), which allows a user
to transfer files to and from a remote network host site. FTP should work for any host
on the Internet.

A sample FTP connection follows.

[your-prompt] ftp ajpo.sei.cmu.edu execute ftp from your remote site

name: anonymous login using *anonymous'

password: guest enter password of "guest*

ftp > cd public change to the 'public- subdirectory 3
ftp > dir view a list of accessible subdirectories

ftp > cd [sub-directory] change to the subdirectory of your
choice

ftp > dir view a list of available files,

ftp> get filel.hlp [newname.hlp] get "filel.hlp" from ftp and copy it to I
"newname.hlp" on your machine

ftp> mget filel ... fileN get multiple files from ftp and load them I
onto your machine with the same names

ftp> bye logout when finished 3
For more information on the AJPO host, type -get README" and "get README.FTP"
after an ftp connection is made.

For those without Internet access, the AdaIC Bulletin Board is available on a 24-hour
dial-up basis.

A-36 Department of the Navy

Imn

I .

IHepfl Sources

AdaIC Bulletin Board
Commercial: (703) 614-0215
AUTOVON: 224-0215

EThe AdaIC Bulletin Board contains most of the information provided on the AJPO host
computer-plus on-line databases.

U The bulledn board can be accessed by dialing one of the numbers listed above. Users
should set their telecommunications package with the following parameters:

e Baud rate 300 through 9600 baud
SData bits 8

* Parity =noneI " Stop bits - 1.

The first time you log on, you will be prompted to register for an account.

The [D]oors feature of this bulletin board provides users with the capability to search six
AdaIC databases:

"* The Validated Ada Compilers (VCL) [Dloor provides full text searching of the
Validated Compiler list by host and by target where different from host.

" The Ada Programming Tools (TOOLS) [D]oor contains information about more
than 200 Ada vendors, their more than 300 Ada products, and the hardware on
which they run.

"" The Current Ada Articles (NEWS) [D]oor provides full text searching of AdaMC's
abstracts of Ada-related articles that have been published in trade and technicaljournals.

I * The Ada Bibliography (BIBS) [Djoor provides users with a comspehensive
bibliography of Ada-related publications.

I * The Bibliography/Abstracts (ABS-BIB) [DPoor provides users with a bibliography
of Ada-related documents as well as an abstract for each bibliographic citation.

1 M The Ada Education (CREASE) [D]oor provides access to the AdalC's "Catalog of
Resources for Education in Ada and Software Engineering, Version 6.0, 1992.

3 Ada hinementation GuMe A-37

i

I

Ada9X Bulletin Board
1400-Ada-9X25 (1-00-323-9925) 3
(301) 459-8939

The Ada9X Project's electronic bulletin board is a compre ive, one-sop ource of
information concerning the Ada9X project. All of the revision requests that wen
submitted to the project are available for viewing and/or downloading from the bulletin
board. In addition, most of the project reports and all of the Ada9X project
annMunemes are available.

The Ada9X Bulletin Board can be accessed by dialing one of the numbers listed above.
Users should set their telecommunications package with the following parameters:

"* Baud rate - 300 through 2400 3
" Data bits- 8
"* Parity - none 3
"* Stop bits = I

Databases
In addition to the database available for searching on the AdaIC Bulletin Board, the
AdaIC also maintains a database of Ada projects. The Ada Usage database was
developed to track how Government, education, and industry are using Ada in software
development efforts. Currently, there are more than 650 efforts described in the I
database.

Ada Usage information can be obtained only with the voluntary cooperation of the U
project. If you are currently involved in an Ada development project or if you have
completed a project using Ada, we would like to add your information to our database.

Written Inquiries
If you prefer to send a written inquiry or would like to share any Ada-relatW information 3
with us, send mail to:

AdaInformation Clearinghouse 3
P.O. Box 46593
Washington, D.C. 20050-6593 3

A.2.1 Public Access to the AdaIC Builetin Board (ada-rbbs.hlp extact)
The AdaIC Bulletin Board is a publicly available source of information on the Ada
language and Ada activities. Sponsored by the AJPO and maintained by AdaiC, this U
bulletin board is used to announce current events and general activities and provide a

I
A--38 Depatmen of t he, a~vy 3

I

I

U Ndph Sources

cure-nt listing of validated Ada compilers. Access to the oulletin board requires a
computer terminal and modem or a PC and modem.

I The AdaIC Bulletin Board system can be accessed by dialing (703) 614-0215 or (301)
459-3865. Users should set their telecommunications package with the following
parameters:

I * Baud rate 300, 1200, or 2400
0 Parity=none
* Data bits = 8
* Stop bits - I

3 Currently, the following 12 directories are available:

" The Ada Information Directory-an alphabetical listing of all available information3 files, with a contents description for each one

" The Language Reference Manual Directory-the Ada Language Reference Manual

3 (ANSIMIL-STD-1815A-1983) in its entirety

* The Approved Ada Commentaries Directory-approved commentaries responding
to questions, problems, and/or inconsistencies and perceived inconsistencies
regarding the Ada Language Reference Manual (ANSI/MIL-STD-1815A-1983)

3 * The Ada Language Rationale Directory-the rationale for the design of the Ada
Programming Language in its entirety

I * The CAIS Document Directory-CAIS documents (October 1986)

* The AdaIC Newsletter Directory-past AdaiC newsletters

* The CREASE Directory-AJPO'S Catalog of Resources for Education in Ada and3 Software Engineering, Version 5.0, in its entirety

• The Miscellaneous Directory-files such as those used to decompress compressed3 files

* Directories 9 and 10-a guidebook and reference manual, respectively, for the3 evaluation and validation of Ada programming support environments

Ada Implementation Guide A-39

U

I

"* Directory 11-the NASA-Goddard Ada Style Guide, which was proposed as the
basis for a military handbook 3

"* Directory 12-a catalog of the ASR and the ASR User's Handbook.

Files are available in either compressed or uncompressed (ordinary ASCII text file) 3
format. Most are available in both.

A.2.2 Access to Ada Information on the Defense Data Network (ada-ddn.hlp extract)
The public directory on the ajpo host computer is an official source of information on
the Ada language and Ada activities. Sponsored by AJPO and maintained by AdaIC, this i
computer directory is used to announce current events and general activities and toprovide a current listing of validated Ada compilers.

This directory is available only to authorized users of the DDN. However, AdaIC also
maintains a bulletin board at (703) 614-0215 and (301) 459-3865. For information, see
the AdaIC handout, "Public Access to the Ada Information Bulletin Board" (AdaIC from I
G/V51, file ADA-RBBS.HLP).

The DDN is a collection of approximately 80 different computer networks representing I
DOD facilities, research centers, and academic institutions throughout the free world.
All of the networks are packet-switching systems with interconnections at various
locations. DOD controls access to the DDN. To obtain access to the DDN, it is first I
necessary to have an account or access to an account on one of the several thousand host
computers that make up the system. 3
The following set of commands provides an example of the use of ftp to transfer a file
from the ajpo host to a local host. The file is in the directory 3
public/ada-info/val-comp.hlp.

> ftp ajpo.sei.cmu.edu
when asked for login name, type in anonymous
when asked for password, type in your user id
ftp > Is -provides listing of login directory
ftp > cd public -changes directory to the public directory
ftp> cd ada-info -changes directory to the ada-info directory
ftp> get val-comp.hlp --copies file to your local directory 3
ftp > quit -returns control to UNIX

As of 17 March 1992, directories in the public directory include acvc-current, 3
ada-adoption-hbk, ada-comment, ada-info, ada-lsn, ada-ui, ada9x, adanews, adastyle,
ardata, asis, cais, crease50, ev-info, infoada, kitdata, Inn, pcis, piwg, rationale, and 3
A-40 Department of tho Navy 3

I

I H~pfti Sources

I wbs.sw. These files correspond to those shown in Table A-i. This appendix provides
the primary Ada information files in the AdaIC File Directory.

A.2.3 Info Ada Digest
DDN users can also access the InfoAda Digest (to send discussions to the digest, use
info_ada@fjpo.sei.cmu.edu). To request that you be added to the discussion list, useI info ada req• jpo.sei.cmu.edu. Alternatively, the same discussions are available
through USENEWS news group comp.lang.ada.

DDN users can also access the AdaEd Digest. To send discussions, use ada-ed@east.pima.edu. To request that you be added to the discussion list, use ada-ed-
requests@east.pima.edu.

I The Ada electronic mailing list includes the following:

S* Ada announcements
* Open forum for discussion
* Open forum for questionsI Requests for information to the entire Ada community.

A-2.4 Document Reference Sources
In addition to the information available from AdaIC, many documents are available from
sources described below. This information is taken from the AdaIC Document Reference

Government Printing Office
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

I (202) 783-3238

The Government Printing Office (GPO) distributes the Reference Manual for the Ada
Programming Language to the general public and industry for $16 a copy. Mail orders
may be sent to the above address with payment included. Telephone orders are accepted
with a VISA or Master Card number or a GPO deposit account number. For additional
information, call the number noted above.

Government Source Codes
SEI= Software Engineering Institute
AJPO = Ada Joint Program Office
WPAFB = Wright Patterson Air Force Base

I

U
Hp

CECOM - Communications Electronic Command
USAF - United States Air Force 3

A.2.5 AdaIC File Directory
The information in Table A-I was listed in the AdaIC Bulletin Board in March 1992.
It details the types of information available from AdaIC.

Table A-i. AdaIC Directories 3
Directory Numbers and General Description of Contents*

1 Ada Information Files 8 Miscellaneous-
2 Language Reference Manual Unzipping Utilities
3 Approved Ada Commentaries 9 APSE E&V Guidebook V2.0
4 Ada Language Rationale 10 APSE E&V Reference Manual
5 CAIS Document 11 Proposed Ada Style Guide I
6 AdaIC Newsletter 12 ASR User's Handbook &
7 Catalog of Resources for Directory

Education (CREASE)

*To list Directoy, type 1:1
For a list of all available files on the system, download director.zip

AdaIC Information F'des-Directory I
This directory contains electronic copies of the flyers and other documents offered by
AdaIC. In addition, it contains electronic copies of several DOD directives relating tothe Ada programming language. 3
The files below are listed with the extension ".HLP*. When you use the download
command, you will be prompted for the filename. If you give the filename with the I
.HLP extension, you will get an ordinary ASCII text file. However, to reduce the time
required for downloading to your computer, most of the files listed below are also
available in compressed (ZIPped) format. To download a file in compressed format, I
substitute .ZIP for the .HLP extension.

To view these ZIPPED files, you need an unzipping utility, which is available on this I
and many other bulletin boards. (See Directory 8 and Bulletin 2.)

I
A--42 Danetof teNavy 3

I

H,,tl#t• SOMm"s

File NaeIUWAW i Q

3405-1 7/18/89 18644 Text of 4/2/87 DOD Directive
3405.1, Computer Programming
Language Policy

3405-2 7/10/89 7709 Text of 3/30187 DoD Directive
3405.2 mandating use of Ada
language in computers integral to
weapon systems

9XDDN 7/09/91 6144 Access to Ada 9X information on
DDN

9XNEWS 2/10/92 6144 Copy of the most recent Ada 9X
Report to the Public

9XORDER 11/05/91 4096 How to order Ada 9X documents

ABSTRACT 12/20/91 20480 Abstracts of Ada-related articles

ACEC 8/15/91 61440 How to obtain the Ada Compiler
Evaluation Capability (ACEC),
DOD's compiler-performance test
package

ACVC 4/29/91 40960 How to obtain a copy of the latest
Ada Compiler Validation Capability
(ACVC), the validation test suite

ADA-BIB 10/15/91 2048 How to obtain the AJPO'S Ada
Bibliography, Volumes 1, 11, and MI
(1983-1986) and description

ADA-CALR 1/30/92 10240 List of upcoming conferences,
symposia, and programs on Ada

Ada Implementation Guide A-43

I
Helpful Sources 3

ADA-DDN 8/06/91 6144 How to access ajpo.sei.cmu.edu, the
ajpo host on the DDN l

ADA-PROD 8/07/91 22528 List of articles and books on Ada
costing, sizing, and productivity 3

ADA-RBBS 2/06/92 6144 How to access the AdaIC Bulletin
Board at (703) 614-0215 or (301) 3
459-3865

ADA-USE 3/14/91 164839 Summary of the Ada Usage
Database, which lists reported Ada
projects from around the world g

ADABOOKS 2/10/92 40960 Books relating to the Ada
Programming Language 3

ADACPLUS 12/20/91 24576 Summary of Ada versus C++
Business Case Analysis Report 3

ADAIC 2/06/92 14336 A description of services offered by
AdaIC 3

ADANET 3/15/91 4096 Text of AdaNet's Executive
Summary describing its on-line 3
services

ADATODAY 2/06/92 24576 On-line newsletter of current events
and developments relating to Ada

ADAYEST 2/04/92 36864 Items archived from Ada Today l
(ADATODAY.HLP)

AEO-SEO 1/14/92 4096 Current list of Software Executive 3
Officials (formerly AEO)

AF-IMP89 7/18/89 29081 Text of 1/1/89 Air Force Ada I
Implementation Plan

A
I

A-4Department of the Navy I

I

I

3 Helpful Sources

AF-INT9I 8/12/91 2048 Text of Air Force 1991
Interpretation of Congressional
Mandate

SAF-POL88 11/09/88 41809 Text of 11/9/88 Air Force policy on
programming languages

SAF-POL90 12/21/90 10868 Text of 8/7/90 Air Force policy on
programming languages

SAI-ADA 8/12/91 24576 Ada and Al documents available
from DTIC and NTIS

I AJPO-891 10/28/91 6144 Article announcing that SPC's guide
would be AJPO's suggested Ada

* style guide (with ordering
information)

3 ARCHIVES 11/02/89 18341 Items archived from Ada Yesterday
(ADAYEST.HLP) that are moreU than 1 year old

ARMIMP9O 7/16/90 17928 Text of 7/16/90 Army Ada5 Implementation Plan

ASEETLIB 4/10/91 16446 Training-related materials in the
ASEET Materials Library at the
AdaIC

ATIP-F89 4/24/91 18432 Projects assisted by the Ada
Technology Insertion Program in
FY89

SBENCHMRK 7/30/91 12288 How to obtain various benchmark

performance test suites

SBINDINGS 2/04/92 73728 Available Ada bindings

CLAS-SEM 2/06/92 51200 Classes and seminars relating to the
Ada language

I
3 Ada Implementation Guide A--45

I

I
Helpful Sources

CREASE 11/27/91 2048 How to obtain AJPO's April 1988
CREASE Version 5.0 3

CREASFOR Ada Education Survey form for
CREASE Ver. 6.0 i

DEF-MCCR 3/04/83 4795 Text of 3/4/83 DOD guidelines for
acquiring computer resources
(defines mission-critical computer
resources)

DOCU-REF 12/05/91 20480 List of Ada-related documents
available through DTIC/NTIS and
information on how to obtain them 3

DOORS 7/09/91 6144 AdaIC Databases Available, On-line
Ada Products and Tools, and Ada i
Pragma Support

EMBDSYS 9/09/91 34816 Abstracts of documents and articles I
on Ada and embedded systems

FAA-ADA 11/07/89 6207 Text of 10/20/89 FAA Action I
Notice for mandating the use of Ada
in acquisition and major
modifications I

GENINTRO 10/10/91 2048 Cover letter to accompany General
Information Packet

GLOSSARY 8/11/90 47056 Ada-related terms and their
meanings I

GRAMMAR 10/04/89 37569 "A LALR(I) Grammar for ANSI 3
Ada" by Gerry Fisher and Phillipe
Charles, 1983

HISTADA 11/26/91 26624 "The History of Ada--March 1984
article by Robert DaCosta

A
A--46 Department of the NavyI

I

I

3 Helpful Sources

IMP."JIDE 11/26/91 2048 How to obtain the Ada Compiler
Validation Capability Implementers'
Guide (1986)

I ISO-STAT 11/26/91 10240 Background information on the
ISO's acceptance of Ada as an3 international standard

LADY-LOV 11/25/91 10240 Article on life of Ada Lovelace by
Carol L. James and Duncan E.
Morrill with note on the naming of
the Ada language

U LRM 11/26/91 4096 How to obtain the Ada Language
Reference Manual, ANSI/3 MIL-STD-1815A 1983

MAIL DDN 8/20/91 51200 A list of UNIX public-access sites
that can be used to send E-mail to
hosts on the DDN

SMANDAT90 1/28/92 6144 Text of the Congressional Ada
mandate-plus some background

3 MARIMP88 3/09/88 32563 Text of 9 Jan 1988 Marine Corps
Ada Implementation Plan

I NATO-ADA 11/26/91 2048 Text of 1985 AJPO announcement of
NATO's adoption of Ada as a
common High Order Language
(HOL) in military systems

NAVIPL91 11/26/91 20480 Interim Department of the Navy
Policy on Ada, 24 Jun 1991

OODBIB 9/05/91 34816 List of articles and documents on
Ada and Object-Oriented Design
(OOD)

U REALTIME 6/19/91 40960 List of publications on Ada used in
real time jobs

Ada Implementation Guide A-47

I

I
Helpful Sources 3

REPOSTRY 11/26/91 14336 How to obtain programs and tools
from the Ada Software Repository
on SD0TEL2O

REUSCODE 2/06/92 16384 Sources of Ada source code,
reusable components, and software U
repositories

REUSEPUB 9/16/91 24576 List of publications relating to the
reuse of Ada source code

SERIALS 11/26/91 12288 List of serial publications that
feature information on the Ada
language and the Ada community

STYL-ORD 11/05/91 2048 Ordering information and order form
to order version 2 of Ada Quality I
and Style

SUCCESS 10/17/91 34816 Reprint of article from Military & I
Aerospace Electronics

TNG-TAPE 11/25/91 20480 Description and ordering information n

for a 19-tape series of Ada training
videotapes 3

TRADEMRK 4/23/91 6144 Text of 1987 AJPO announcement
that Ada trademark is replaced by
certification mark

VAL-COMP 2/05/92 123280 List of the currently validated Ada 3
compilers

VAL-DOC 7/03/91 2048 Instructions on how to obtain the 3
Ada Compiler Validation Procedures

VAL-NOV 12/01/90 145846 list of validated Ada compilers as of 3
Nov 90--kept for information
purposes

U
A--48 Department of the Navy 3

I

i

3 Helpfil Sources

VAL-PROC 9/19/90 55320 Text of the Ada Compiler Validation
Procedures, Version 2.1, August
1990

I VALCOVER 4/16/91 2048 Cover letter to accompany
Validation packet

I VALFACIL 12/04/91 2048 List of Ada Validation Facilities
(AVFs) performing Ada Compiler

i Validation Capability tests

VSR-DOCU 7/03/91 24576 List of Validation bummary Reports
(VSRs)-results from testing of
compilers-and how to order info.
from DTIC/NTIS

AWTHDRWN 8/05/91 8192 Tests that have been withdrawn from
the validation test suite, ACVC 1.11

X-SURVEY 11/01/91 12288 X/Ada binding user questionnaire of
the X/Ada Study Team at GHGICorporation

i
U
I
I
i
II

I

II

I
HELPFUL GOVERNMENT SOURCES MATRIX

SOURCE PM s m , o P COW. TO=

Ads AND C+ + A-17 X

Ada SLICES A-I8 X

Ada SOFFWARE A-26 X X
REOSTORtYIII

Ad& TEC B4-0AID A-22 x X I
Ads VALIDATION OFFICE A-3 x X

Ad9mX ROJUCT A-2 X X

AdslC A-3 X X X X X X X

AdaSAGE A-10 X X X

AIPO A-2 X X X X X X X

ALS/N A4 X x X

ASEKr A-9 X X X
CAIS A-il X X X

CRSS A-29 X

DACS A-19 X X

DON Ads A-4 X x X X X X
REPRESENTATIVE --

DON Ada USERS GROUP A-32 X X X X X X

NASEE POC A-34 X X I
NATIONAL AUDIOVISUAL A-13 X
CENTER

NATIONAL TECH. INFO. A-16 X
SERVICE

NAVC(AELO Ada A-$ x X X X

REP.I
NAVY WIDE REUSE A-31 x X
CENTE

RAPID A-31 X X

SEI A4 X X X X

SPAWAR 224-1 A-4 X

STARS A-7 X X X X

STNDS DOCS ORDER DESK A-16 X X

U.S.ARMY ENG. COLLEG A-IS X

USMC A REP. A-5 X

I
I
I
I

I

5Helpful Soures

I A.3 OTHER SOURCES
The information on commercial and nonprofit organizations cited below is provided to
help the DON Program Manager become knowledgeable about Ada-related issues. Thse
sources are not endorsed by the DON. They are provided to augment the list of
Government sources in Section A. I and to he'> Program Managers become familiar with
the wide array of available sources.

I Other sources (e.g., organizations, training, publications, tools) to be considered for
inclusion in future editions of the Ada Implementation Guide should be sent to the
following address:

Commander
Space and Naval Warfare Systems Command
SPAWAR 2241 (CDR M. Romeo)
2451 Crystal Drive
Washington, D.C. 20363-5100

A.3.1 Training

AdaWorks
261 Hamilton Avenue
Suite 320E
Palo Alto, CA 94301
Attn.: Richard Riehle
(415) 328-1815
FAX: (415) 328-1112
Internet: riehler@ajpo.sei.cmu.edu

AdaWorks trains DOD personnel in all aspects of Ada software development. Courses
range from introductory through advanced Ada and include material tailored to the
special needs of Management Information Systems (MIS) and/or COBOL programmers
and analysts, scientific and embedded systems developers, and experienced software
engineers. AdaWorks also provides Ada and software engineering training by giving
project experience through a mentoring process.

I 5959 Cornerstone Court West
San Diego, CA 92121
(619) 457-2700

Alsys has been a major Ada compiler vendor for the last 9 years. It has developed a set3- of training courses tailored to the installation and use of its compiler technology.

3 Ada Implementation Guide A-51

I

I

EV' Software Engneeng, I.
5303 Spectrum Drive
Frederick. MD 21701
Attn.: Jennifer Jaynes Lot
(301) 695-960
FAX: (301) 695-7734

EVB provides several courses including, but not limited to, Ada Programming, OOD and
m t analysis, XWindows, and software reuse in Ada and software ment.

hsrk Training Im 3
Quarry Park Place
9175 Guilford Road
Suite 300
Columbia, MD 21046-1802
(301) 924-0050 I

Fastrak presents both on-site and public courses in software engineering, objec-oriented
technology, and the Ada language. 3
Reiter Consultants Inc.

Marketng Manag"per
Relier Consultants Inc.
P.O. Box 4046
Torrance, CA 90510
(310) 373-8728
FAX: (310) 373-9845

Reifer Consultants Inc., founded in August 1980, focuses primarily on consulting in Ada I
transition metrics, risk analysis, and cost estimating. They market a software sizing
model and an Ada costing package. Training for these packages is provided through
public and on-site seminars.

Texel Company 3
Victoria Plaza, Building 4, no. 9
615 Hope Road
Eaton, NJ 07724I
(201) 992-0232

Texel specializes in Ada education and training consulting, Independent Validation and 3
Verification (IV&V), and application development.

I

I

I

Helpful Source

Umlymiti. and Colleges (Civilian)

The following universities and colleges are currently teaching Ada as the first language
to their entering majors (Feldman, 92):

Allan Hancock College, California3 Birmingham Southern College, Alabama
SState University, Long Beach, California
California State University, Northridge, California
California Polytechnic State University, San Luis Obispo, California
cypress College, California
Embry-Riddle Aeronautical University, Florida
Florida Institute of Technology, Florida
Fayetteville State University, North Carolina
The George Washington University, Washington, D.C.
Indiana-Purdue University, Ft. Wayne, Indiana
L&Moyne College, New York
Marion County Technical Center, West Virginia
Marshall University, West Virginia
Muskingum College, Ohio
Norwich University, Vermont

I Oklahoma City University, Oklahoma
Otterbein College, Ohio
Saint Mary College, Kansas
Sam Houston State University, Texas
San Diego Mesa College, California
Southern Arkansas University, Arkansas
State University of New York at Plattsburgh, New York
Stockton State College, New Jersey
University of Dayton, Ohio
University of New Orleans, Louisiana
University of South Dakota, South Dakota
University of South Florida, Florida
University of Washington, Washington
West Virginia University, West Virginia

I The following universities and colleges first introduce Ada in their CS2 or Data
Structures courses (Feldman, 92):

I Briar Cliff College, Iowa
California Polytechnic State University, Pomona, California3 California State University, Fullerton, California

Ada Implementation Guide A-53

I
NSdPM SmOm 3

Colle of West Virginia, Beckley, West Virginia
Daniel Webster College, New Hampshire n
Florida Internatonal University, Florida
Gallaudet University, Washington, D.C.
Georgia State University, Georgia
Indiana University, New Albany, Indiana
Lenoir Rhyne College, North Carolina
Mesa State College, Colorado 3
Montere Peninsula College, California
Murray State University, Kentucky
National University, California i
Northern Arizona University, Arizona
Northern Kentucky University, Kentucky
Northeast Missouri University, Missouri I
Oglethorpe University, Georgia
Ohio University, Athens, Ohio
Pennsylvania State University, Harrisburg, Pennsylvania I
Portland State University, Oregon
Rose Hulman Institute of Technology, Indiana
Southwest Baptist College, Missouri
Shippensburg University, Pennsylvania
United States Air Force Academy, Colorado
University of Alaska, Fairbanks, Alaska
University of Missouri, Columbia, Missouri
University of Richmond, Virginia
University of Scranton, Pennsylvania
Western New England College, Massachusetts

A.3.2 Publications

AdaDATA Newsletter 3
Intentional Resource Development, Inc.
P.O. Box 1716
New Canaan, CT 06840 3
(203) 966-2525

This monthly newsletter covers market trends and commercial developnts in Ada 3
software, services, and equipment. The cost of a subscription is $445 per year.

A
l

A--H Dopartmwt of tho Navy 3

I

Hdft Sounm~

kda Letters
Association for Computing Machinery, Inc.

1515 Broadway
New York, NY 10036
(212) 869-7440
Attn.: Membership Services

Internet: acmhelp~acmvm.bitnet

This bimonthly publication for the ACM SIGAda has been published since 1981. The

newsletter contains technical Ada articles as well as a calendar of Ada events. (A

subscription costs $20 per year for ACM members and $35 per year for nonmembers.

Annual ACM membership dues are $79 for nonstudents and $24 for students. It costs

$42 per year to become a SIGAda member only.)

Ada Newsletter
Raytheon Equipment Division
Tim Boutin, Editor
MS 5-2-508
Sudbury, MA 01776(508) 440-3607

This newsletter tracks developments in the Ada language through conference reports and

provides vendor news articles and a listing of Ada events. There is no charge for this

publication.

Ada Rendezvous
Texas Instruments Incorporated
David G. Struble
Software Engineering Department
MS 8489
P.O. Box 869305
Plano, TX 75086

1 (214) 575-5346

Ada Rendezvous is a free annual publication. Articles span multiple areas of interest,

including results of Ada compiler evaluations for embedded targets, review of Ada tools,

and technical information contributed by Ada developers. Such articles provide guidance

to application programmers on how to use Ada with specific hardware architectures and

microprocessor designs. Ada Rendezvous also addresses evolving Government and DOD

issues that affect existing and proposed contracts with Ada requirements.

I Ada Implementation Guide A-55

I

I
Hlpful Sources

Ada Straties
Ralph E. Crafts, Editor and Publisher
Route 2, Box 713
Harpers Ferry, WV 25425
(304) 725-6542 3

This monthly newsletter covers Ada business strategies and contract-evaluation
guidelines. It provides information on Ada policy and trends and on Congressional and
funding issues as well as insight concerning current legislation. The annual cost is $100 i
for Government subscribers.

CAUWG Report U
ALsys, Inc.
67 South Bedford Street
Burlington, MA 01803-5152
(617) 270-0030 3

This newsletter for members of ACM SIGAda's Commercial Ada Users Working Group
(CAUWG) contains news and comments. It is available to the public at no charge. 3
FRAWG Newsletter

Martin Marietta Aerospace
MS L0420 [
P.O. Box 179
Denver, CO 80201
(303) 971-6731

This newsletter is a publication of the Front Range Ada Working Group (FRAWG). m
There is no charge for this publication.

Software Engineering Notes i
Association of Computing Machinery, Inc.
1515 Broadway
New York City, NY 10036
(212) 869-7440
acmhelp@acmvm.bitnet

I
U

A--K Doparm~mt of tho NavyI

I

Helpful Sources

This quarterly is an informal publication of the ACM Special Interest Group on Software
Engineering (SIGSOFT), which is concerned with the design and development of high-
quality software. (A subscription costs $16 per year for ACM members and $38 for
affiliate nonmembers. Annual ACM membership dues are $75 for nonstudents and $22
for students.)

SPC Quarterly
SPC Building
2214 Rock Hill Road
Herndon, VA 22070
(703) 742-8877

The SPC Quarter/y is published by the Software Productivity Consortium (SPC) for
unlimited distribution to its member companies, as well as to commercial, government,
and academic organizations. SPC helps its member companies to develop the processes,
methods, tools, and services needed to significantly improve the design and
implementation of high-quality, software-intensive systems. Its methods seek to make
the Ada software developer more productive. Use of these uiethods helps bridge the gap
between well-established software engineering principles and the actual practice of
programming in Ada. There is no charge for this publication.

A.3.3 Repositories

COSMIC, University of Georgia
382 East Broad Street
Athens, GA 30602
(706) 542-3265
FAX: (706) 542-4807

COSMIC distributes NASA-developed software including string, numerical, service, and
linear algebra subprograms. Many are oriented to avionics applications. Source code
is provided with the software purchase, and a free brochure is available.

EVB Software Fngineering, Inc.
5303 Spectrum Drive
Frederick, MD 21701
1-800-877-1815
(301) 695-6969
FAX: (301) 695-7734

Generic Reusable Ada Components for Engineering (GRACE'n) is a library of 275 Ada
software components based on commonly used data structures such as strings, trees, and

Ada Implementation Guide A-57

I
Helpful Sources I

graphs. Each component includes complete design documentation, source code, and at
least one test program. GRACE is completely portable. Its only requirement is a
validated Ada compiler. Free samples are available.

IWG Corp.
1940 Fifth Avenue
Suite 200
San Diego, CA 92101 3
(619) 531-0092
FAX: (619) 531-0095

Proplink is an Ada program for analysis of communication link propagation paths from
Extremely Low Frequency (ELF) to Extremely High Frequency (EHF) using fast-running
models.

MassTech, Inc.
3108 Hillsboro Road
Huntsville, AL 35805
(205) 539-8360
FAX: (205) 533-6730

Math Pack contains over 320 Ada mathematical subprograms in 19 reusable generic Ada
packages. It includ,.s linear algebra, linear system solutions, integration, differential I
equations, eigensystems, interpolation, probability functions, Fourier transforms, and
transcendental functions. Purchase includes source code, documentation, on-line help,
and telephone support.

Rockwell International Corporation 3
Manager, Software Engineering Process Group
M/S 460-220
3200 East Renner Road
Richardson, TX 75082-2402
(214) 705-0000

Rockwell International Corporation maintains a database server that contains the Ada
tools set. It also maintains two libraries. One contains the implementor's tools and the
other is a library of implemented software.

Wizard Software
2171 South Parfet Court I
Lakewood, CO 80227
(303) 986-2405 n

A-58 Department of the Navy 3

U

I
Helpful Sources

Booch components feature data types and tools for sorting, searching, and character
matching. Each abstraction has multiple implementations and follows OOD. Source
code is provided. A version in C+ + is also available. These products are zlso
marketed in Europe and Japan.

A.3.4 Conferences and Special Interest Groups

I SIGAda
Mr. Mark Gerhardt
ESL, Inc. MS GI
495 Java Drive
Sunnyvale, CA 94088-3510
(408) 752-2459
(408) 738-2888 (switchboard)

SIGAda is a professional society dedicated to the dissemination of information about all
aspects of the Ada programming language, including standardization, implementation,
usage, policy, management, and education. It sponsors meetings several times a year
and also publishes a bimonthly newsletter, Ada Letters. Originally known as AdaTEC,
SIGAda was established under the auspices of ACM in 1981. In addition to the national
SIGAda organization, there are approximately 50 chartered local SIGAda chapters. Most
of these local chapters hold technical meetings on a monthly basis. The point of contact
for each local chapter is published in Ada Letters. The Washington, D.C., chapter of
SIGAda holds an annual symposium on Ada.

Tri-Ada Conference
Danieli & O'Keefe Associates, Inc.
Chiswick Park
490 Boston Post Road
Sudbury, MA 01776
(508) 443-3330
1-800-833-7555 (in the United States and Canada only)
FAX: (508) 443-4715

Tri-Ada, SIGAda's major annual conference and exposition, combines the availability of
lectures about the technology and management of the latest developments in the Ada
community with in-depth presentations on project experience. The conference offers
tutorials, birds-of-a-feather sessions, and the opportunity to see the Ada products and
services available in the marketplace. In addition, information gathered in the coffee
klatches and informal gatherings, which always occur at these meetings, is not obtainable

Ada Implementation Guide A-59

I

I
Helpful Sources 3

in any other way. Tri-Ada presents a unique opportunity to be immersed in the
happenings in the world of Ada so that organizations can become or continue to be at the
forefront of Ada understanding and use.

Washington Ada Symposium
Washington, D.C. SIGAda
(301) 286-7631
Ed Seidewitz

At the Washington Ada Symposium (WAdaS), information is presented on software
engineering dealing with commercial industry, Government, military, scientific, I
academia, weapons, and administration with regard to Ada.

A.3.5 Operational Development Support Tools I
ObjectMaker

Mark V Systems Limited
16400 Ventura Boulevard, Suite 303
Encino, CA 91436
(818) 995-7671

ObjectMaker (formerly Adagen) is a CASE tool that supports object-oriented
diagramming methods for requirements analysis and top-level and detailed design. User-
interface and diagram types are tailorable. Optional language modules automatically
generate compilable code (C, C + +, or Ada) from detailed design diagrams and support i
reverse engineering. The language module reverse engineering toolset takes legal code
(C, C+ +, or Ada) back to multiple-level, nested, and detailed design-level diagrams.
This is powerful for reuse and reengineering as well as documenting as-built code and
component libraries. Older methods supported include data flow diagrams, real-time
extensions, entity relationship, state transition, and structure charts. ObjectMaker is
available on Digital Equipment Corporation, Sun, Apollo, Hewlett-Packard, MIPS, and
Data General Aviion workstations as well as on Macintoshes and IBM PCs.

EVB Software Engineering, Inc. i
5303 Spectrum Drive
Frederick, MD 21701
Attn.: Jennifer Jaynes Lott i
(301) 695-6960
FAX: (301) 695-7734 i

GRAMMI is an Ada user interface toolkit that supports the development of Ada
Graphical User Interfaces (GUIs) using the XWindows system. GRAMMI supports the

A-60 Department of the Navy i

I

I

U Helpful Sources

rapid prototyping and evolutionary development of Ada user interface software with an
integrated set of tools that helps users to interactively build screens and generate the
resulting Ada code. GRAMMI User Interfaces are designed to support the full features3 of Ada programs, including Ada tasking and exception handling.

HERAGRAPH is a two- or three-dimensional graphics application framework that
enables the development of high-performance, interactive graphics applications. Use of
HERAGRAPH's reusable graphical objects, Motif style user interface components, and
application framework frees users to concentrate on developing the functionality of their
applications. Written in Ada, HERAGRAPH provides an industrial-strength solution for
the development of today's modem and complex graphics applications on both DOS and
UNIXIXWindows platforms. HERAGRAPH has been used successfully in a variety of
interactive, high-performance graphics applications. Domains include Geographic
Information Systems (GISs), Range Control Applications, Railway and Transportation
Control systems, Interactive Graphical Database Editor applications, Graphical5 Simulation Systems, and Graphical Training Systems.

REUSE LIBRARY TOOLSET (RLT) is an integrated set of tools that supports the
definition, population, and searching of a software reuse library. Software components
in RLT are classified using a faceted/attribute classification schema. Defining and
populating a reuse library with RLT is performed entirely through a point-and-click GUI.
The search and retrieval screens are automatically generated. There are no cryptic
commands to learn or files to edit. RLT can be used to maintain large repositories of
reusable software, yet it is easy enough for individual engineers to organize their own
personalized libraries.

EVB Object-Oriented Development Method/CASE Tool Support. This tool is supported
by Paradigm Plus by ProtoSoft. Paradigm Plus is a configurable CASE tool that uses
the object-oriented model to provide support to a wide range of software engineering
activities throughout the software life cycle. The tool is in use in more than 200
installations world wide. On the EVB edition of Paradigm Plus, EVB provides all
customer support for the product. Questions about methodologies are answered directly
by the source, assuring you of accurate answers at all times. This tool provides all the
graphical notations and rules necessary to develop Ada systems using the EVB object-
oriented approach.

I

IAda Impleme~r~ation Guide A--61

I

I
MSP$W Swarm

a
.3
I
I
U
I
I
I
U
I
I
a
I
I
I

A-62 Department of Et* Navy

I

I
I

I Appendix B

Department of the Navy Standards, Policies and
U Procedures

I This appendix provides a list of DOD/DON software policies in the following categories:

DOD Directives, Instructions, and Standards
DON Policies including:

Secretary of the Navy Instructions
Naval Operations Instructions
Marine Corps Orders
Naval Air Systems Command Instructions
Naval Sea Systems Command Instructions
Space and Naval Warfare Systems Command Instructions
AV Documents
Military Standards

II
I
I
I
I
I
I
I
3 Ada Implementation Guide B--1

II

06 ,~1 I

tooiil~i
, •a}a

HI 1
o I!

'Ic LH I

-~ I

II

tloil

INDV

I C f4

* 6!

I,, athh lif i•

- I
I U

iii 3 1'Ii ____ I
_____________________ II _____________________

Ilimit 'I I�t'II0 I

______________ ______________ IIi'i
I

- _____________ aI�iIJ Ii

3 I
- I

.'1 i
�Ei Iliii !jJi ii

I11111 ii _______________

- I

I I
Ii g Ia

Is 11 11

t I a.

I *1

I *

- I
I

S
Ii I

- _________ _________ ii I
11.1 1

I
ii"I IJIl j II
Jill I I I

*1 i I
A A BAliii ______________ U I

4 I
- - I
Ii.. 3 1 I

ii 2 1 1
IL I I

- I
'4

C4 1
Ii 1 3

_____________________ I _____________________

I$
Sa

I1111 ii i

- I

j I
I I ,I

I~ I
S• • I

°•g
t I I

SI I

U m

* aI
�iiiiE*ii�!

_________________ �Ii�i�! �U

I

I:
�1 II

U -

.gi 1�1�
_______________ _______________ ii 0

I

I':

I �U

_________________ �.U _________________

z

60S.

- .-6

ar
i-I. -II Am m

0

T~
'

-C4

II sit3I

iiL

I

I I
"ill • I

till |1

* I

iii 1 .3 ,

I-______ ______

N q.iI� I ___________

z z

I ________ ________

E.I
iiI

I t �qq

wJ�I�I iii
111 5. .2

- 1.1!! 31

p...: a..I LII S

*''i: � .3

£-
U

__________ p..

I _

Ii.I 'ii LII I
I F� flji .1511

ff�fi
* _____________ I-

I;, I N
II ____

- I

!)4ii'• Ii : L

- ! _ -'_-_____ J _iI ii Ii
,!l 2410

I1 I
*I;ri~i." •1,

_ iii,

tSims

°(j 2j; I
C~ o

l ! I

. . . .6iq

*6
z

I ut Ii

Iii,,ii

gp I. _~t+h .Ii 114

3•9~ i| I

MII

ISH

~~f ill" I

iIs

aJ

iii I ii I

-i Ii I

IiI

3 L

Il

I | I

I jl

* I~LL

"SO do1

ii U

SI Ii*F , I I

.11 ii

- []I

I!

I

I __ ___ ___ ___ ___ ____ ___ _ _ ___ __lie_

II I' l

*. 11,1

IcI

I Is

* i

I ! I I Ii II
%q.0 as 5

II

U i f! i -

I! ." I.

Lo o I I

r. 3g1

Mu A.i I u.di~I OR_______ _________

hill,

z,

mlA I I

UU

aleI

ij i ii• i

zd6.9

"get

I

E1 L
83

3II

ILII
*, SE ii I•.

-jIIII

:IjIn ' li!i LL. L.i oI

SI

I li
zti oIi z II

31131

Iiz

ill

Iilf
I

z 1 •9 '

,•ilI

f kar°

I -______ ______

I
Ii' ________

II ______g 3.u I
IT 1.1 I

�'1 ii. I
t 1 � *1

aU 13:

* IIU "I I,.1
I Jil JI�i Ii'

iii
* ____________ ____________ E�4

3 � U
"rn

I-Ew�

I� Iii dt III
* 41

__ ij� ii �IiI
I.
ill I

3: 3: 3:
Si

- I

II IU
_____ _____ _____ I

q�I I
ii I

III. Ii I
* LII4 I

ii�i I
I,

1111 11 'II F.! 3
- �u i 18 a8.

a I

�II ii I
ii'I I

Iii II '4 I�iI _________ iii
- __________ .5� __________

U
VIi

I
- I

=I I

' ii

~ '•. p i'ii

S!~i

- I
I

ii I I
I �I I I
.3' *1� U
23 �IIIIii

C

II 1ILj lilip I
(S

�if�ji
________________ ________________ 111

_______________ at;. �ih� a

I

:1 I I
- ____________ I. I

I I

ii I j U
_____ I i

-4 I

I i
I !Ii i

L *1

I

All.- IIp1 ful
I1II

SI

- - I
I I

__ __ _ __ __ i I
- U. U!

I
I

I Appendix C
The Maturity Framework

The maturity framework for characterizing the status of a software process identifies fiveI maturity levels. This framework is intended for use in conjunction with an assessment
methodology and a management system. Assessment provides a way to identify the
organization's specific maturity status, and the management system establishes a structure

I for actually implementing the main actions needed to improve the organization.

A maturity level is a well-defined evolutionary plateau on the path toward becoming aI mature software organization. Each level is a layer in the foundation for continuous
process improvement. The five maturity levels in the Software Engineering Institute
(SEl) Capability Maturity Model (CMM) are defined as follows:

1 * Initial-At this level, the organization typically does not provide a stable
environment for developing and maintaining software. The software process is
constantly changed or modified as the work progresses. Until the process is under
statistical control, orderly progress in process improvement is impossible.

3 Repeatable-Basic project management processes are established to track
commitments, cost, schedule, changes, and functionality. The necessary process
discipline is in place to repeat earlier successes on projects with similar3 applications.

Defined--The software process for both management and engineering activities is
documented, standardized, and integrated into an organization-wide software
process. All projects use a documented and approved version of the organization's
process for developing and maintaining software. At this point, it is probable that
advanced technology can be usefully introduced.

"" Managed-Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood
and controlled using detailed measures. At this level, the most significant quality3 improvements begin to appear.

" Optimized-With a measured process in place, the foundation exists for continuing
improvement and optimization of the process. Continuous process improvement is
enabled by quantitative feedback from the process and from testing innovative
ideas and technology.

Ads Implementation Guide C-1

I
The Maturity Framework 5

The subsections below contain additional information on the Initial and RepeatablePm

C.A INITIAL PROCESS
The following paragraphs on the Initial Process are from the Carnegie-Mellon
University/Software Engineering Institute (CMU/SEI) publication, Ohracteizing the
Softwar Process. A Maturity Franewrk, by Watts Humphrey (CMU/SEI-87-TR- 11,
June 1987.)

The Initial Process could properly be called ad hoc or chaotic. Here, the
organization typically operates without formalized procedures, cost estimates, and I
project plans. Tools are not well integrated with the process or uniformly
applied. Change control is lax and there is little senior management exposure or
understanding of the problems and issues. Since problems are often deferred or
even forgotten rather than solved, software installation and maintenance often
present serious problems.

While organizations at the Initial Process may have formal procedures in place
for project control, there is no management mechanism to assure that they are
used. The best test is to observe how such an organization behaves in a crisis.
If it abandons established procedures and reverts to merely coding and testing, it
is likely to be at the Initial Process. In essence, if the process is appropriate, it
must be used in a crisis and if it is not appropriate, it should not be used at all.

One key reason why organizations behave in this chaotic fashion is that they have 3
not gained sufficient experience to understand the consequences of such behavior.
Since many effective software actions such as design and code reviews or test
data analysis do not appear to directly support shipping the product, they seem I
expendable. It is much like driving an automobile. Few drivers with any
experience will continue driving for very long when the engine warning light
comes on, regardless of their rush. Similarly, most driver starting on a new I
journey will, regardless of their hurry, pause to consult a map. They have
learned the difference between speed and progress. In software, coding and
*sting seem like progress but they are often only wheel spinning. While they I
must be done, there is always the danger of going in the wrong direction.
Without a sound plan and a thoughtful analysis of the problems, there is no way
to know.

Organizations at the Initial Process can advance to the Repeatable Process by
instituting basic project controls. The most important are:

C-2 Department of the Navy 3
I

1
I The Maturity Framework

1. Project Management. The fundamental role of a project management
system is to ensure effective control of commitments. This control
requires adequate preparation, clear responsibility, a public declaration,
and a dedication to performance. Software project management starts with
an understanding of the magnitude of the job to be done. In all but the
simplest projects, a plan must be developed that lays out the most
attainable schedule and the resources required. In the absence of such an
orderly plan, the commitment to a schedule will be no more than an
educated guess.

I 2. Management Oversight. A suitable disciplined software development
organization must have corporate oversight. This oversight includes
reviewing and approving all plans for major developments before the
organization commits to the development officially. Quarterly reviews for
each project must be conducted to determine facility-wide process
compliance and quality of performance in the field; track schedule cost
trends and computing service; and check quality and productivity goals.
The lack of such reviews typically results in uneven and generally
inadequate implementation of the process as well as frequent
overcommitments and cost surprises.

1 3. Product Assurance. A product assurance group is charged with assuring
management that the software development work is being done as it should
be. To be effective, the assurance group must report directly to senior
management and must have sufficient resources to monitor performance
of all key planning, implementation, and verification activities. The size
of the product assurance group generally is between 5% and 10% of that
of the development organization.

4. Change Control. Control of changes in software development is
fundamental to maintaining business and financial control as well as to
technical stability. To develop high-quality software on a predictable
schedule, the requirements must be established and maintained with
reasonable stability throughout the development cycle. Changes will have
to be made, but they must be managed and introduced in an orderly way.
Although occasional changes are essential, evidence indicates that most
changes can be deferred and phased in at a subsequent point. If change
is not controlled, orderly testing is impossible and no quality plan can beI effective.

C.2 REPEATABLE PROCESS
Organizations at the Repeatable level can advance to the Defined level by

Ads Implementation Guide C-3

I

U
The Maturity Framework

instituting additional process controls. The most important controls are as
follows: 3

"Standard processes for developing and maintaining software across the
organization, as well as software engineering and software management 3
processes, must be documented and must be integrated into a coherent
whole. The organization must start exploiting effective software
engineering practices when standardizing those software processes. A
well-defined software process will provide a good view of technical
progress on all projects as a result of the integration of all engineering

activities related to those projects.
" The organization must establish and make effective use of a Software

Engineering Process Group (SEPG) to facilitate process definition and
improvement efforts.

" The organization must establish an organization-wide training program to I
ensure that all practitioners and managers acquire the necessary knowledge
and skills required to perform their tasks successfully. 3

"* The organization must establish good control of product lines, cost,
schedule, and functionality and methodically track software quality and
improvement. These control measures will help all personnel to arrive at
a common understanding of processes, roles, and responsibilities.

I
I
I
I
U
I

C--4 Department of the Navy 3

I

I
I

I Appmdnx D
Cost Estimation Studies

In April 1989, the Illinois Institute of Technology Research Institute (HTRI)I completed a study, sponsored by the Ada Joint Program Office (AJPO), for the U.S.
Air Force Cost Center (AFCSTC) and the U.S. Army Cost and Economic Analysis
Center (USACEAC). The study assessed the accuracy of the software cost models
for Ada software cost estimation. The six cost estimation models reviewed were as
follows:

3 * Ada-Specific Models:

- Ada COCOMO (Initial Operating Capability)3 - SoftCost-Ada

* Non-Ada-Specific Models:
I - PRICE S

- SYSTEM-3
- SPQR/20
- Software Architecture Sizing and Estimating Tool (SASET).

An essential part of the research was a test case study in which the costs models were
applied to a database of eight completed Ada projects. The analysis compared the
projections on schedule and level of effort from each model as well as nominal run
results to the actual project resources expended by the software developer. Results
for each model were evaluated for accuracy and consistency in each of the following
categories:

"* Overall effort
"" Overall scheduleI Government contracts
* Commercial contracts
* Command and control applications
* Tools and environment applications.

Model results were also evaluated based on the approach to the project and the
personnel's experience with Ada. Interestingly, no correlation was found between the
performance of the models and language considerations of the models described in
the study. The test case study results demonstrated the benefits of using cost models
to help the estimator predict resource requirements for a new development, but they

3 Ada Implmentauon Guide D-1

U

I

Cost Estimation Studies

did not validate the need for Ada-specific models. Although SoftCost-Ada was the
most accurate model on all dimensions, non-Ada-specific models were comparable
in terms of accuracy and consistency. Of greater interest, however, is that the results
suggest users should consider the following factors to determine which models should
be applied to estimate Ada software costs:

"* The amount of information available about the project and the developing

organization 3
"• The customer

"• The type of application.

Before the IITRI study, the MITRE Cost Analysis Technical Center (CATC) I
conducted research to study the "early returns" of developing software in Ada. The
research showed that the productivity for first-time Ada developments was not
significantly different from that for non-Ada developments, Constructive Cost Model
(COCOMO) semidetached developments, which supported the early claims of
programming language comparability. This research provided calibrated equations
and recommended guidelines for estimating the costs and schedule for Ada projects
that are considered to be organic and semidetached developments.

Subsequently, in 1991, a follow-on research effort was initiated to expand the CATC
database of embedded Ada projects, to develop new models for estimating level of
effort and duration of Ada developments, and to expand the CATC's knowledge of
the issues and cost impacts of programming in Ada. This research produced
improved parametric models and equations for estimating the level of effort for Ada
software developments and developed improved methods for quantifying the errors
in these models. The study also developed appropriate guidelines for estimating
costs and schedules of embedded Ada developments.

The most significant finding of this study was that productivity was better on
embedded software developments where Ada was used as the programming language
than on developments where non-Ada languages, such as FORTRAN, JOVIAL, or I
C+ +, were used. The calibrated level-of-effort models for Ada and non-Ada show
significant differences in their respective predictions of level of effort for large
projects. Although this result is based on a limited data set, the findings support I
claims that, for large projects, Ada software is less costly to develop than non-Ada
software. 3

D
D--2 Department of the Navy 3

I

I..

I Cost Estimation Studies

I For embedded Ada developments, the following coefficients should be used when
using the COCOMO equations for estimating software development cost and
duration:

ISM = 82 KEDSI

3 CM = 4.8 SM0.29

where,

I SM = development effort in staff-months

3 CM = project duration in calendar months

KEDSI = software size in thousand of delivered source instructions (KEDSI3 ranges from6to 415)

The linear form of the level-of-effort model for embedded Ada developments
represents a significant difference from traditional level-of-effort models for non-Ada
software developments. For large Ada projects, the non-Ada level-of-effort models
significantly overestimate the development effort. Although additional data on large
Ada projects are needed, these findings strongly indicate that developing large
programs may be less costly in Ada than in other High Order Languages (HOLs).

U The MITRE research also resulted in the development of new schedule equations
that incorporate software size as the independent variable. For embedded Ada
developments, the following model can be used as an alternative method for
estimating software development duration:

CM = 11.8 KEDSIO.23

It should be noted that the above equations were developed using a limited set of
projects ranging in size from 16 to 415 KEDSI. The application of these models to
projects outside this range should be avoided.

For semidetached Ada developments, the following equations should be used for
estimating software developments costs and duration:

SM = 7.4 KEDSI (KEDSI ranges from 2 to 72)
CM = 6.0 SM022
CM = 10.3 KEDSI0.20

Ada Implementation Guide D-3

I

I
Cost Estimation Studies

Again, the calibrated equations for semidetached developments were based on
projects spanning a software size range from 2 to 72 KEDSI; therefore, analysts
should exercise caution if using these semidetached equations for estimating outside
of this range.

It is important to note that the software size inputs to the level-of-effort models and
new models for estimating schedule are based on Ada statements (terminal
semicolons) rather than physical lines of code. For sizing purposes, one Ada I
statement can be considered equivalent to one statement in other HOLs such as
FORTRAN and JOVIAL When analysts obtain sizing estimates for use in the
estimating models, care should be taken to ensure that the inputs are in Ada I
statements or terminal semicolons rather than in lines of code. Where possible,
analogies should be used when specific project information is available.

When little information is known about the project, or if a quick, rough estimate is
needed, productivity can be used to estimate software development effort. For these
cases, the database of Ada projects indicates a productivity range of approximately
75 to 160 Equivalent Delivered Source Instructions Per Staff-Month (EDSI/SM) for
embedded Ada and approximately 110 to 230 EDSI/SM for semidetached Ada.
When an average productivity rate is used to develop rough point estimates of effort,
an average productivity of 122 EDSI/SM is appropriate for embedded projects,
whereas an average productivity of 160 EDSI/SM is a, ropriate for semidetached
projects. Again, it is strongly recommended that the database of Ada projects be
used to develop an analogy when specific project information is available.

In addition to the software estimation models identified by the JITRI and MITRE
studies, several other models are currently used and recommended for use by
programs within the Department of the Navy. The following automated models are 3
popular among the acquisition and development communities for forecasting program
software costs because of their ease of use, reliability, and validity:

"* SASET
"* Revised Intermediate COCOMO (REVIC)
"* Software Evaluation and Estimation of Resources (SEERO) I
"* COSTAR
"* SEER6 SEM (Software Estimation Model)
"* SEER6 SSM (Software Sizing Model).

SEER6 is a registered trademark of SEER Technologies Division, Galorath
Associates, Incorporated, Marina del Rey, California.

D-4 Department of the Navy

I

I

I Cost Estimtion Studis

I SASET is available upon request to programs for their use. Also, SASET is being
modified to accommodate Function Point analysis. The Navy Center for Cost
Analysis (NCA) can provide programs with the points of contact in the other Services
who have other software cost estimating models, such as REVIC. The National
Aeronautics and Space Administration's (NASA's) version of AdaCOCOMO,
COSTMODL, also is available; however, the U.S. Air Force point of contact does

I not give it high marks for Automated Information Systems (AISs). Also, NASA's
AdaCOCOMO is tuned for tactical applications. NCA also does the Independent
Cost Estimates for Navy AIS programs.

II
I
I
I
I
I
I
I
I
I
U

SAds Implementation Guide D-$

I

I
Cost Estlmmilon Studios

I
I
I
I
I
I
I
I
I
I
I
I
I
U
I

D-6 Depurtaust of Ui. Navy

I

I
I

I Appendix E
Example of Metric Wording for Use in a Contractual

I Document

I Software Management Metrics Requirements

The contractor shall include graphs of Software Management Metrics (SMM) in the
Software Developmental Status Report (SDSR). The x-axis of each graph shall contain
the calendar months of the program and shall depict the times of System Requirements
Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and
Critical Design Review (CDR). Should SMM data change as SDSRs are presented, the
contractor shall always show the original estimate together with the current estimate and
indicate the changes since the last estimate.

SMM data shall be depicted for all software, regardless of whether the prime contractorI and/or subcontractors (if any) are involved in the development and whether the software
is newly developed, existing, or reused.

U The information shown shall be as specified below.

1. Software Size

5 The contractor shall use an automated tool to estimate the size of the software that needs
to be developed and shall report this estimated size.

I During actual software development, the contractor shall report the Source Lines of Code
(SLOC) elements in accordance with the information-provided in the attachment to this

I appendix (to be supplied by contracting organization). SLOC metrics shall be provided
for each Configuration Item (CI) for each programming language used. The contractor
shall utilize an automated Code Counting Program (CCP) to provide the SLOC metrics

I results.

On a single graph, the contractor shall show the current values of total, new, reused, andU modified SLOC counts.

2. Design Complexity

As software is developed, for each programming language used, the contractor shall use
the appropriate static analyzer of the Verilog Logiscope tool to show flow graphs, call
graphs, and Kiviat diagrams for each CI.

5 Ada Implementation Guide E--I

I

I
Metric Wording Example

3. Software Personnel

The contractor shall record the number of engineering and management personnel
supporting software development in experience categories of I through 3 years, 4 through
8 years, and 9 or more years. Software system planning, requirements definition, I
design, coding, testing, documentation, configuration management, and Quality
Assurance (QA) personnel shall be included.

Each contractor development organization must provide graphs showing planned and

actual personnel in the various experience categories.

4. Software Volatility

The contractor shall provide three different graphs showing software volatility on the y- I
axis. One graph shall contain the total number of "shall" statements (requirements) in
the Software Requirements Specifications (SRSs) and the cumulative number of
requirements changes (including additions, deletions, and modifications). A second
graph shall contain new and cumulative Software Requirements Changes (SRCs), which
are the number of unresolved requirement and/or design issues. A third graph shall
depict Software Action Items (SAIs) that have been open from I to 45 days, 46 to 90
days, or over 90 days.

5. Computer Software Unit Development Progress

The contractor shall graph the progress made in Computer Software Unit (CSU)
development against initial plans. This progress shall be reported to show monthly
planned versus actual progress of the number of CSUs designed, tested, and integrated.

6. Testing Progress

The contractor shall record and graph the progress of CI and system testing against initial i
plans and the degree to which the software is meeting requirements. One graph shall
depict the number of CI tests planned and passed, together with the number of system 3
tests planned and passed. A second graph shall depict the number of new Software
Problem Reports (SPRs) per month and the SPR density, which is the cumulative number
of SPRs per 1,000 SLOC. A third graph shall depict the cumulative number of open
SPRs and the number of SPRs that have been open from I through 45 days, 46 through
90 days, or over 90 days.

I
I

I"r

I Metric Wording Exampl

I 7. Build Release Metric

The contractor shall present a graph that contains each build, or release, of the software,
I showing the number of originally planned versus currently planned CSUs for each

release.

I S . Computer Resource Utilization

The contractor shall record the utilization of each target computer resource, including
I memory (all types), Input/Output (1/0) channels, 1/0 bandwidth, processor throughput

under various extreme system loads, expected unormal" system load (including I/0), and
memory use during processing times. Utilization metrics shall be proposed by the3 contractor and approved by the Government. The data shall show the planned versus
actual utilization for each target computer resource. In addition, the contractor shall
report on availability and use of host development station(s) to show planned versus

Iactual usage.

I
I
U
I
I
I
I

3Ada Implementation Guide E-3

Im

I
Metric Woed�ig Ezample

I
I
U
I
I
U
I
I
I
I
I
I
I
I
I

E-4 Department of the Navy

I

I
I

I Appendix F

Software Tool Descriptions

Editor
The editor is a tool for text manipulaton When computers were in their infancy,
source program text was entered by paper tape or punched card. Today, editors are
sophisticated interactive screen/window-management tools. Modem editors are used
not only for creating or modifying source text but also for viewing or modifying files
produced by other tools.

An editor is used primarily to create or modify source program text. The product
of the editor is a file that contains the source program statements. Because these
program files will always have to be compiled, the advantage was recognized of

I having a language-specific editor, a tool with some built-in specific language
requirements. These editors simplify the entering of program text and sometimes
perform on-line error checking.

I In its most elementary form, a language-specific editor may have special options to
assist in formatting the source text. An example for FORTRAN would be
automatically starting a line in column 7 whenever the first character was alphabetic,
thus preventing text from being placed in the field reserved for line numbers.

I Another form of a language-specific editor is the "syntax-directed editor," which is
tightly linked to the programming language. Most modem languages require opening
and closing statements for structured programmin constructs. A syntax-directed3 editor can provide templates for these constructs. For example, the following
template could be rapidly placed on the screen after typing "if':

if <condition>
then

i ~..,.

else

endif;

I
IAda Implamentalion Guide F--I

I

Software Tool DeserIons

In addition, the syntax-directed editor can check the structure of the source text for
compliance with the rules of the language. Thus, the efficiency of the
edit-compilation process is improved because many programming errors are
eliminated before compilation.

Compiler
A compiler is a program that translates a High Order Language (HOL) source
program into its relocatable code equivalent. The term "host" refers to the computer I
that translates the source program, and the term "target" refers to the computer that
will execute the compiled code. The term "cross-compiler" refers to the case in which
the target computer is different from the host computer. In many DON applications, I
a source program is cross-compiled on a host computer (generally a commercial
machine) for a militarized target computer that is embedded in a system.

Compilers are usually multiple pass programs that may process the source program
or some intermediate form several times before completion. The output of the
earlier stages is referred to as intermediate code. In some host computer systems,
the intermediate code is used by other tools.

Compilers for real-time applications must produce code to fit in limited storage I
space. In addition, the execution speed on the target computer must allow all of the
required functions to be computed in the assigned time.

Assembler
An assembler is a program that translates an Assembly source program into
relocatable code. Note that, usually, a one-to-one correspondence exists between an
Assembly source statement and a machine instruction. Assemblers allow the
programmer to use relative addressing and then specify a starting location rather i
than having to specify each address in absolute terms. Most assemblers also allow
the use of labels and other defined values and locations.

Assembly has been used frequently in Mission-Critical Computer Resources (MCCR)
applications because it allows the programmer to optimize storage space and
execution time. However, Assembly programs are difficult to test and expensive to I
maintain. Today, the use of Assembly is generally restricted to routines with
exceptionally high performance requirements and to hardware-diagnostic software.

Linker
Source program modules, whether in Assembly or a HOL, usually are translated
separately into modules of relocatable code. Once translated, the modules must be

F-2 Department of the Navy 3
I

I

I Softare Tool Deearp

..:ked togc#her before execution. A linker is a program that creates a load module
from one or more independently translated modules by resolving the cross-references
among the modules.

I Relocating Loader
Relocatable code contains relative addresses of machine instructions and data. This
defers the assignment of absolute addresses until the program is ready for execution
and allows the flexibility of placing the program in any contiguous block of storage.
The linker creates a load module that leaves all addresses in relative form although
it has resolved the cross-references between modules. The relocating loader is a
program that executes on the host computer and translates the relative addresses into
the absolute addresses; its output is an execution module. A bootstrap loader
executes on the target computer and copies the execution module into its storage.

Run-Time Environment
The Run-Time Environment (RTE) resides on the target machine and provides a
variety of services for application programs. Typical RTE functions are dynamic
storage management, exception processing, input and output, and task scheduling.
Because this environment is used for all application programs, it should be small and
fast to minimize the overhead. The RTE usually is modularized according to the
particular services it provides and is automatically configured when the execution
module is created. Thus, if an application program does not need a particular
service, that module is automatically omitted from the RTE.

I Simulator/Emulator
When code is produced for a target computer that is different from the host, the
problem of how to test the code must be considered. Testing on the target computer
is usually difficult because the computer may still be under development, it may be
being integrated with other cmbedded subsystems, or the number of target machines
may be insufficient to support all of the programmers. Moreover, most embedded
target computers have poor tools to support testing.

One solution to this problem is to build a software simulator or emulator of the
target computer that executes on the host computer. A software emulator accepts
the same data, executes the same instructions, and achieves the same results as the
target machine. A simulator imitates selected features of the target computer but
is not required to achieve identical results. The best tool is a target computer
emulator that can operate in either batch or interactive mode. The execution speed
of an emulator may be significantly slower than that of the target computer, but the
emulator has many advantages. For example, the emulator can be time shared and
used by everyone on the host computer. In addition, because the emulator is on the
host computer, it is easy to generate test data, load the module and test data into the

Ada Implementation Guide F-3

I

I
Softwre Tool DesaIpdon.

emulator, and monitor the test while in progress. Long tests can be run in batch
mode during off-peak hours.

In-Circuit Emulator
An in-•cicuit emulator provides the user with a means of executing a software 3
program located in external Random Access Memory (RAM) rather than internal
Read Only Memory (ROM) or Erasable Programmable Read Only Memory
(EPROM). This allows easy and rapid modification of the programs being debugged I
during the testing cycle. When connected to the prototype system through the
microprocessor socket, an in-circuit emulator can emulate, test, and trace the
prototype system operation. The internal state of the microprocessor, including I
RAM, accumulator, internal working registers, and stack and status registers, can be
observed and modified. Some in-circuit emulators allow the recording of data bus
operations. This feature allows the engineer to capture N events before or after a I
failure or predefined occurrence.

Symbolic Debugger I
A symbolic debugger allows a programmer to test a module by controlling the
program execution on a target computer emulator or the target computer itself.
With the symbolic debugger, the programmer can address the variables by using their
source program symbols or names. The facilities usually provided include stopping
execution at selected locations, moving by single steps in increments of source
statements, watching the value of specified variables, tracing execution, examining the
contents of variables, evaluating expressions, displaying the current sequence of
routine calls, displaying the source corresponding to any part of the program,
executing debug command procedures at break points, and calling procedures that
are program parts.

Pretty Printer
A pretty printer is a program that automatically applies standard rules for formatting
program source code. It will accept an input file and format the text to match a stylei

guide. For example, a pretty printer for a block-structured language will produce a
listing in which the indentation level of each block shows its nesting level. A pretty
printer helps the programmer read and comprehend the program. After extensive
program modifications, for example, it helps eliminate confusion about the program
structure and nesting levels.

Host-to-Target Exporter
If the target machine is different from the host machine, it is necessary to have a tool
to transmit the execution module from the host to the target. Standard I
communications software and hardware may be used, but these are rarely available
for embedded machines.

F-4 Department of the Navy 3
I

I
I Software Tool Descriptions

I It is desirable to have a flexible, high-bandwidth communications link between the
host and target. If the link has a "pass-through" capability, then an interactive user
of the host computer can run tests on the embedded computer from the same

I terminal. High bandwidth is desirable because large volumes of data must be
exchanged between the host and target; for example, diagnostic software is typically
sent to the target to test the target hardware, and test data and test results are also

I exchanged. A high-bandwidth communications link will reduce the time it takes to
do these tasks and allow more time for testing.

Computer-Aided Software Engineering
Computer-Aided Software Engineering (CASE) refers to software tools that help
automate parts of the software process across the life cycle. These tools are3 considered a part of a Project Support Environment (PSE). CASE tools support the
activities associated with a specific part of the system software life cycle, such as
requirements specification, coding, and testing. CASE tools also can support project
management activities across the life cycle. Recently, many tools have emerged that
support software requirements specification and high-level design. CASE tools can
help users organize, document, and generate a specification. Some of the more
advanced tools also can execute simulations of the specification and, to a certain
degree, generate Ada code or code fragments that fulfill the developed requirements
and design. Although many CASE tools will examine the specification and high-level
design for consistency and completeness, current CASE tools have widely varying
degrees of functionality and maturity. The future of CASE tools is bright and the
potential benefits great. Many tools are immature, however, and contractors' claims
regarding the capabilities of their tools are often exaggerated. Some CASE tools
have difficulty scaling-up to support large software developments (e.g., more than
100,000 Source Lines of Code [SLOC]). Finally, few CASE tools are compatible with
each other with regard to method of data transfer or integrated execution.

Many CASE issues are similar to issues surrounding the introduction of Ada. CASE
will help impose discipline on the software process, provide better visibility into the
software, and encourage the use of modern methods and practices. Three primary
benefits of using CASE on a project are improved product documentation, improved
project communication, and enforcement of a consistent design and requirements
methodology.

Many of the issues surrounding the adoption and use of CASE are organizational,
not technical, issues. The organization must have a well-defined software engineering3 methodology in place before the benefits of CASE tools can be realized. Use of
CASE tools often requires a pervasive change in an organization. First, an absolute

Ad& Implementation Guide F-5

.

I
Software Tool Deatao" s 3

and strong management support of and commitment to CASE use are needed.
Second, selection of high-quality personnel and extensive training are necessary.
Third, the resistance to change must be overcome.

In some cases, the initial adoption of CASE requires a large capital investment and,
most likely, schedule expansion. This up-front cost in terms of dollars and schedule
will be recovered when the lower maintenance costs are realized.

CASE tools are emerging on the market that maintain the specification at a high
level and automatically generate Ada code. The intent is to make all changes at the
specification level and not at the code level. This technology promises to provide
many benefits to software engineering. CASE will surely have an increasing impact
on programs developed in Ada and the Ada software development environment.

I
U
U
I
I
I
I
I
I
I

F--6 Department of the Navy 3

I

I
I

I App dlx G
Application Portability Profile (APP) Services

This appendix identifies current and emerging standards associated with the service
areas addressed in the National Institute of Science and Technology (NIST)
Application Portablility Profile (APP) and DOD Technical Architecture Framework
for Information Management (TAFIM).

I G.A OPERATING SYSTEM SERVICES
The following subsections discuss some recommended operating system services.

I G.1.1 Kernel Operations API
FIPS PUB 151-2 Portable Operating System Interface (POSIX)-System Application
Programming Interface (API). Kernel operations provide low-level services necessary
to create and manage processes, execute programs, define and communicate signals,
define and process system clock operations, manage files and directories, and control
Input/Output (I/O) processing to and from external devices.

G..2 Operating System Commands and Utilities API
Planned FIPS PUB on POSIX-Part 2. Commands and utilities include mechanisms
for operations at the operator level, such as comparing, printing, and displaying file
contents; editing files; pattern searching; evaluating expressions; logging messages;
moving files between directories; sorting data; executing command scripts; scheduling
signal execution processes; and accessing environment information.

G.13 Operating System Real-time Services API
Amendment 1: Realtime Extension P1003.4 Draft 12. This document provides the
operating system extensions needed to allow incorporation of real-time application
domains into the Open Systems Environment (OSE). The extensions define the
application's interface to basic system services for I/O, file system access, and process.
management.

G.L4 Operating System Security API
Security Interface for POSIX (IEEE P1003.6 Draft 11). Security considerations are
specified in terms of data encryption mechanism, access control, reliability control,
system logging, fault tolerance, and audit facilities.

I G.2 HUMAN-COMPUTER INTERFACE SERVICES
The following subsections discuss the recommended Human-Computer Interface
(HCI) services.

Ads ImplmWentation Guide G-1

I

Application PortabilUty Profie (APP) Sevicee

G.2.1 Graphical User Interface API
Proposed FIPS PUB User Interface Component of the APP (MIT XWmdow System).
The MIT XWindow System is the Federal standard for Graphical User Interfaces
(GUIs) in the OSE. Its software has proven to be highly portable between various
hardware platforms and operating systems. Because of its client-server architecture,
the X client application can run on one system while the X server can be running on I
another system on a network.

G.2.2 Graphical User Interface Toolkit API
Draft Standard for Information Technology--X Wmdow System Graphical User
Interface-Part 1: Modular Toolkit Environment (IEEE P1295.1). This specification
supports writing portable applications with GUIs based on the XWindow System. It
defines a source-code-level interface to an XWindow System toolkit GUI
environment based on the OSF Motif Application Environment Specification User U
Environment volume.

G.3 SOFTWARE ENGINEERING SERVICES I
The following subsections discuss certain recommended software engineering services.

G.. Programming Language Ada U
FIPS PUB 119 Ada. Ada is a general-purpose, high-level programming language.
In addition, it provides strong data-typing, concurrence, and significantcode-structuring capabilities. It is particularly suited to embedded real-time systems, I
distributed systems, highly reliable software development, and reuse of proven code.

G.3.2 Integrated Software Engineering Environment I
Portable Common Tools Environment (PCTE): Abstract Specification, Standard
ECMA-149, European Computer Manufacturing Association (ECMA). Integrated
Software Engineering Environments (ISEEs) and tools include systems and programs
that assist in the automated development and maintenance of software. These
include, but are not limited to, tools for requirements specifications and analysis, for
design work and analysis, for creating and testing program code, for documenting, for
prototyping, and for group communication. The interfaces among these tools include
services for storing and retrieving information about systems and exchanging this
information among the various programs in the development environment. PCTE
can provide for this data repository functionality. 3
G.3.3 Other Programming Languages
See the NIST APP for FIP-PUBs on Other Programming Languages. 3

G
G-2 Department of the Navy 3

I

I

U Applicatuon Portability Profi. (APP) Servicm

i GA DATA MANAGEMENT SERVICES
The following subsections discuss certain recommended data management services.

G.4.1 Relational Database Management System Interface
Planned FIPS PUB 127-2 Database Language Sbuctuwd Query LAngue (SQL). FIPS
SOL provides data management services for definition, query, update, administration,

I and security of structured data stored in a relational database. A relational database
is appropriate for general-purpose data management, especially applications requiring
flexibility in data structures and access paths; it is particularly desirable where there
is a substantial need for ad hoc data manipulation for data restructuring. The
security interface for granting and revoking privileges does not specify a secure
DBMS; only its interface.

I GA.2 Data Dictionary or Directory System
FIPS PUB 156 Information Resource Dictionary System (IRDS). Data dictionary or5 directory services consist of utilities and systems necessary to catalog, document,
manage, and use metadata (information about data).

I G.4.3 Distributed Data Access
Remote Database Access (RDA) ISO/IEC 9579:1993. RDA is used to establish a
remote connection between an RDA client, acting on behalf of an application
program or a client data manager, and an RDA server, interfacing to a process that
controls data transfers to and from a database. The goal is to promote the
interconnection of applications and the interoperability of Database Management
Systems (DBMSs) among heterogeneous environments.

G.5 DATA INTERCHANGE SERVICES
The following subsections discuss certain recommended data interchange services.

G.5.1 Data Interchange
Open Document Architecture (ODA)/Open Document Interchange Format (ODIF)/
Open Document Language (ODL) [ODA/ODIF/ODLI ISO 8613:1989. ODA is a
framework that enables users to interchange the logical structure, content,
presentation style, and layout structure of documents from one application to
another. ODIF is an encoding scheme for documents suitable for interchange
betmeen applications. ODL is a generic Standard Generalized Markup Language
S(SGML) encoding for ODA documents to enter an SGML database or publishing
environment.

I
I

IAda Implementation Guide 0-3

I

I
Appiaion Portablty Prom (A"P) Swvs 3

G.S.2 Document Interchange
FIPS PUB 152 Standard Generalized Markup Language (SGML). SGML is a
generalized grammar used to write data type definitions for describing document
types and styles.

G.S3 Page Description Language
Planned FIPS for Standard Page Descro Language (SPDL) I50/IEC DIS 10180.
SPDL defines a language for representing images that are to be displayed on a i
screen, printed on an output device, or transmitted through communications media
from one application to another.

G.5.4 Manuscript Markup Interchange
Electronic Manuscript Preparation and Markup (EMPM) American National Standards
Instiute/National Information Standards Oganizmaion (ANSI)/(NISO) Z39.59-1988.I
EMPM is a specialized document type definition that includes an
architecture-encoded SGML suitable for the interchange of the logical structure of
books, articles, and serials.

G(5 Graphics Data Interchange
Computer Graphics Metafile (CGM), FIPS PUB 128. Graphics data are specified in U
terms of a file format that can be created independently of device requirements and
tranlated into the formats needed by specific output devices, graphic systems, and
computer systems.

G.S.6 Graphic Product Data Interchange
FIPS PUB 1771nitial Graphics Exchange Specification (IGES). IGES standardizes the
representation of specific types of complex graphic objects and attributes for data
interchange. Information typically associated with computer-aided design and I
manufacturing (CAD/CAM) can be described.

G.5.7 Product life Cycle Data Interchange
Standard for the Exchange of Product Model Data (STEP) Draft Proposed ISO 10303.
STEP is an advanced form of representing complex data objects for interchange. It
is used in total life cycle descriptions of engineered products that can be I
implemented on advanced manufacturing systems. This includes specifications of
products throughout the stages of their lifetimes. I
G.S.8 Electronic Data Interchange
FIPS PUB 161 Electronic Data Interchange (EDI). EDI is a procedure in which
instances of documents to be interchanged between separate organizations are
converted to strictly formatted sequences of data elements and transmitted asmessages between computers. i

Q-4 Departmen ft ot NavY

i

I

I Applict Portabily Profi (APP) Swvicm

GM.i Spatial Data Interchange
FIPS PUB 173 Spatial Data "ransfer Standard (SDTS). This standard is mandatory
in the acquisition and de -.opment of Government applications and programs3 involving the transfer of dig,.a spatial data among heterogeneous computer systems.

G.A GRAPHICS SERVICES
I The followint subsections discuss selected recommended graphics services.

GA.1 Two-Dimensional Graphics API
FIPS PUB 120.1 Graphical Kernel System (GKS). GKS fulfills the requirement for
a language to program two-dimensional graphical objects that will be displayed or
plotted on appropriate devices (raster graphics and vector graphics devices).

I G.6.2 Interactive and Three-Dimensional Graphics API
FIPS PUB 153 Programmer's Hierarchical Interactive Graphics System (PHIGS).3 PHIGS fulfills the requirements for a language to program two-dimensional and
three-dimensional graphical objects that will be displayed or plotted on appropriate
devices in interactive, high-performance environments, and for managing hierarchical

I database structures containing graphics data.

G.7 NEIWORK SERVICES
The following subsections discuss certain recommended network services.

G.7.1 Communication API for Protocol Independent Interfaces
Protocol Independent Interfaces (Plls) IEEE P1003.12, Draft 20. PU defines the
protocol-independent application interfaces to enable one process to communicate
with another local process or a remote process over a network.

G.7.2 Communication API for OSI Services
I Open Systems Interconnection (OSI) Association Control Service Element

(ACSE)/Presentation Application Program Interfaces IEEE P1238. OSI ACSE
provides an API between applications and the OSI and presentation services.

I G.73 File Transfer API
OSI API for File Transfer, Access, and Management (FTAM) IEEE P123&1. FTAM
is designed for use as a standard application interface for file transfer, access, and
management applications.

G.7.4 Communications Protocols for OSI
FIPS PUB 146-1 Government Open System Interconnection Profile (GOSIP) Version
2. GOSIP protocols provide interoperability among applications in a heterogeneous
Snetwork. GOSIP is based on the Open Systems Interconnection (051) standards, the

3 Ads Implementation Guide G-5

I

AppUaUon Portabity Proffie (APP) Swvlos 3
worldwide consensus standards for multivendor data conications based on OSI
protocols. I
G.7.5 Communication API for Integrated Digital, Video, and Voice
A.ppication Software Interface (ASI) Version I for accessin and |iniuerb
Inteqated Services Digital Network (ISDN) services. ASI focuses on the definition of
a common application interface for accessing and adminitering ISDN services
provided by hardware commonly referred to in the vendor community as Network I
Adaptors (NAs).

G.7.6 Communication API for Integrated Digital, Video, and Voice 3
NIST Planned FIPS on Integrated Services Digital Network (ISDN). The proposed
FIPS PUB compiles the existing North American ISDN User's Forum (NIUF)
agreements for ISDN as developed and approved in the NIUF as of November 1990.

G.7.7 Remote Procedure Call
OSF Distributed Computing Environment (DCE) Remote Procedure Call (RPC)H3
Component. Distributed computing services include specifications for remote
procedure calls and distributed real-time support in heterogeneous networks.

G.7.8 Transparent Network Access to Remote Files
Transparent File Access (TFA) IEEE P1003.8, Draft 7. TFA includes capabilities for
managing files and transmitting data through heterogeneous networks in a manner I
that is transparent (i.e., does not require knowledge of file location or of certain
access requirements) to the user. 3
G.7.9 Network Management
FIPS PUB 179 Government Network Management Profile (GNMP), Version 1.0. The
GNMP is the standard reference for all Federal Government agencies to use when
acquiring Network Management (NM) functions and services for computer andcommunications systems and networks. i

G.7.10 Electronic Messaging API
X400-Based Electronic MessagingApplication Program Interface (API) IEEE P1224.1,
Draft 3. X.400 provides electronic mail interoperability among heterogeneous
computer systems. X.400 is an international standard protocol definition. This API
defines an interface between the user of a mail system and the mail system.

I
G--6 Department of th Navyi

I

I

3 Applicaion Portability Profile (APP) Suvie

G.7.11 Directory Services APIIDirctoiy Services Application Pmgrmn Interface (API) X.50 IEEE P1224.2. X.500
provides the interoperability of dictionary services among heterogeneous computer
systems. The Directory Services (DS) API defines a standard directory service user
agent interface to support application portability at the source-code level

G.8 SECURITY SERVICES
No specifications are defined to support security services.

G3 MANAGEMENT SERVICES
No specifications are defined to support management services.

G.1O NIST APP SPECIFICATIONS EVALUATIONS
The NIST APP evaluates recommended specifications for each of the APP services
and summarizes some of the pros and cons of selecting each specification. The
information is provided to managers, technical project leaders, and users to assist
them in evaluating these specifications for inclusion in application or organizational
profiles. Each specification is evaluated according to how well it meets the
requirements of a specific criterion. The criteria are Level Of Consensus (LOC),
Product AVailability (PAV), CoMPleteness (CMP), MATurity (MAT), STaBility
(STM), De Facto Usage (DFU), and PRoblems/Limitations (PRL). Definitions of5these criteria are provided in the NIST APP. Table G-1 presents the evaluations for
selected specifications.

I
I
I
i
I
I
i

3 Ads Impldenntation Guide G-7

I

I

Appicalof Poetbfty Proffi (APP) Swvke i
Tab G4. Evsbaisme of NWT APP ullNk•d I

-, AVaU m rmmm

FP PUPIS125P1 X - + ÷ ÷ + +

POSIX S1 IEEE 1002-1902 0 + +4 + +
Imde.Thlo EEE PIO3.4 0 0 + 0 -

Seud IEEEPIO.MOM 0 -

1 kim .4oi-ýr Illd 1t SWIW:lW
PIqq o d FIPS PUB 158-1X ~idow + 0 0 + + +"

Sh -- oDraft XWkmiow Tookkl IEE P120&1 + + 0 0 0 0

FPS PUS 119 Ada + + + + + + + 1
FISPUS 160 C + + + + + + +

FIPS PUB 21-3 COBOL + + + + + + +

FIP PUB M-1 FORTRAN + + + + 4 +

FIPS PUS" 1 + + + +
EGMA PCTE + 0 0

Dai Mw mgs Servce
P/mnd FIPS PUB 127-1 SO + + + + +
FIPS PJB 155 IM 0 - + . 0

RDA 0 0 - 0 0

ODtOIF/O0I O W13 + + 0 0 0
FIPS PUJB 12 SWIIL+0 +0

1PD s 10100 + + + + - 0i

WMANSlMISOZSB.5S + + + + 0
FIPS PUB 161 EDI .+ 4 + 0 + 0

FIPS PUS 120cGM + + +
FIPS PUB 177ES M + + 0 + + +

STEP ISP 100 - + + "

FIPS PUIO 173 SGTS + + + + +

FPS• PUB 120.1 GKS +I + + + + +

FIPS PJIB 153 PHIGS + + + 0 + +

PI API EEE 0100S.12 0 0 + -

ASCEEEE PI238

FTAM EEE P1238.1 0 - 0 - -

FIPS PUB 146-1GOSIP 2 + + + . 0 0
BI)NASl + 0 + 0 0 0

ISDN 0 0 0 0 0 +
DOE IP-0 - I
Y lFA llM• p1OM8 0 + + f I

FII=S PLO 179 ~NM + 0 + + 0
MOD0 APIEE M 1224.100 + 0 +

X.M0 API IEEE P1224,2 0 + + + + +

LEOBID +*t vkd Ameage evaluation - Low evaluatin

0-8 Departumet of the Nav 3
I

I APPendix H

Ada Binding Products

3 ~VENDORNAMJ

Amcdaa TechnoogyCwmu

AETrWi*0*

5D* EInga e CrpMlioo

IqhIwwCompunter ohai

MmTech - ---

RXSoitwam TemLog, -
Ssiuls sg wm- - --

ESn ng- - - - S

I SyteEgmn eahSp
KeW -D Indlcatm A" bindng pmduct is aailabLe

3Adale i~m.Wifte-tto Guide H-i

I
Ada Wndkls PmducW 3

I
I
a
I
I
I
I
I
I
I
£
I
I
I
I

H-2 Depadunest of the t4evy 3
I

I
!

I Appendix I

Lessons Learned

aistorically, the Department of Deense (DOD) has filed to take advantage of pan
experiens in developing software systems. Te process of reviewing past
and formulating new decisions based on these experiences should be ongoing. It must
start from the beginning of the process and continue through development and into
deployment. The software process also should be adjusted for overall system size,
technical complexity, and development phase.

This appendix describes decisions and evaluations made about software systemdevelopments that have led to lessons learned by the users of Ada in the commercial andGovernment sectors. Figure 1-1 presents a matrix of the lessons learned by project in

I the following areas:

"* Standards and policy
"" Project management
* Development process
* Corporate knowledge and software development
* Training
* Resources and facilities
* Support environment and tools

*ReuseI
*Project costs.

i In some cases, the information presented in the project descriptions came from internally
developed evaluations; in others, the information is based on externally developed
assessments. Note that, except for editorial changes, the descriptions are reproduced
here as submitted by the originators.

As the examples show, different projects often experienced similar problems and applied
similar remedies. Frequently, a series of non-software-related errors culminated in theproduction of the wrong set of software components. The lessons learned from these and

I other project experiences may help managers of new projects to avoid such problems.

Ada Implementation Guide I--

I

Lsonse Lusmd i
1.aw 1-. Lammn Learc Mawix

Team
x-x Q.,xx

pmumm t d m~ bsw x

3 T7w o om~ma.wd of

4 Doo~m gie~db d

x x xx xI

6 umww u~

U..-x x x x x x
7I

wmAftwapq x - x x -

1-2 Deptrbnofnt of the Navy3

I Lassons Learned

5 ~ ~Figure -1. Lum=Larned Matrix

///I4
9m

4

I ~ ~ ______

x x xýp~mb

12

13

14 bw

Do m-M I b& t-15

16 AM

157 mii- b~ ~y --- - - -

X XX

Ad xmlretlo Gud 1-

Lessors Lssmr 3
Fit=~ I-1. Teon eam ne lt Matrix

20

x x x

21 ~-

x x

x x xI

x x

2 5 V d ju ~ i~go t do- - -O - -W of

ngboofmdh inA& x x£

Eadfh a) - uc. ad26

1-4 DepwfMeM of the Navy3

3Lasom Lenfd

Fig=n I-1. Lesas= Learned Matrix

miGun~ amma(Am

"- ef --ofa - -

28 Dowmdwmf

29 emia fw bout

cpwpNmhhhbnpuj.X X
30 WSU&A&N amp j

I xs
30 NNf ll"N'Vo<

.*.. SIR:4'':N:'

2 Am,'

1 __ __ a~ auk xdP

4A&bown beWKmi sz1

3Ada Implementation Guide I-5

Leesoim Learnd3
Fig=r I-I. LemonLearned Marx

5 ~sIP musu

6 d_ Tek-~ wm - - - I
ow~ uw W x

be. x x

9 A ~ m m iib I d h e e d w m

xno I
.... -.-....

13 A~c~

__ _ x x xxI

dmm Ws Wed. p~fmj~spoboomo" x x x x xxI
3 u 0 adgeikm

U-momp-

x x x x x x x x xI

I-s DeMparment at thw Navy1

3 ~Lsonse Lowsmd
3 ~ ~Figure -l. LesonsLearned Matrix

.I.. ..

33
* xX
C~indmfAy~mbkm
mot =of is =am- - -

.. __
....

........... ..U...........
L5

...
<

..

3 Lm*tskw d -1Wini

3Ad@ lmplonmentatlon Guide 1-7

Lessofi Lssmr 3
Flpuc I.I. Lesmos amned Matrix

iZ b6d!m
xtx x

5 Rmmv bidw g~mbd

xg xgI

-- - - - --- -

3mpp~amhsmbwq~m

u~wmbý2 x x Ict~f
* IAvmiw

Tk .- - - - - - - - - - --- - I

ýG~pftftmýin X X

4 E*~adftb a d

~dponi m uh~sIIint a

I ad

i-s Department of the Navy3

*Leanor Lamned

3 Fipum 1-1. [Lou= awnued Mat&a

Ien

/- mcm

1 2-

x XX

II X XX

'S '

I~~ abyisxis x
2 wdlbflf~l

3 a a a a - - a -m~

3AMd IMplementaIonM~ Guide 1-9

Lessons Learned3

Rglwwc1-. LaiasLwwmd Mauk

2r x x XI

xoww" x
WWW- Iwmho

No Ixx I

xx
7 ft -md n dwdwmtwhI

1-10 Department of the Navy3

* Lessons Learned

3 ~Fiprm 1-1. 1~ma cowuwod Maft

IA

o

IJ
IAU

3~~ - - -- a

U _ __ ___ - - - - - -

OEM ~ a 13 X Xdf
mumaa fumeiL IN -o - - -

I ~ - IL --- - -

5 IdMdwdqMmfh XXXId ,,wlbd e
3Smtdk

3 ~Ada IIIemnato Guide II

Less"n LowearS

Fluz I-1. Leum= [sumS Mwri

A I

uma

amk~pm x x x
p-a

aamp~mm xx x x

x xx x xI

I I .impo

was*
7 P ' a' y uwe. I

OhNf&reb~ xxx xxx X X

-- x xI

1-12 Depfle of- the Navy3

-r" OI

* ~Less"n Learned

3 ~~F1iwml-I. Liaw= Lenarnd Mix

I l
'POJC

x x x x

obowy. wAp qln-U -d-

Iwp"a I
7 a - -- I- -Amv - -

d0*101maimfahmhe

xx x x xx
6 *a*_asosno

3Ads Inm ismwttn Guide 1-13

Lessons Learned3

Ripmr 1-1. Lcuams L~med Maiix

xj - ix I
bpimmuppepla X XX

dome ___ Itmyuybld
12 - x x x - - 1

so munim -=W - -hmlel

md*4W N x x

2~- - -- -m""' S"l

1-14 Deprten o te av

I ~Lern.. Lowmed

j ~Fiplpv-I. Lmaw= Learnad lMuffl

I4

Ix x xx

xx
7 Td 60* s---- --

womfm~maltm,- x
I ~ ~ mdPWbb x x x

onl bftdvhwmpmmmbm

II

I~~ TI lldvam aim - - -

I~xx
Ad Imlmntto -Guid-e-

Less"s Learned3

Figure 1-1. Lcowz Lawned Matrix

C/OW/
4 qp~d m &el aI

~b~h4Su X X X

5 a ~ -m am- -p -& -O&

ofx
________ Iilp~a

- D~to - - - -t - -olt

usAf Is noVAGfmTO

2 1

63&In W s~Mintooft~

h~~~~ dbm~U~xx

4ee~n of the Navy

U Lessons Learned

3 ~Figure 1-1. LuAinws Learnd Mauuix

Ic

x xx x x

OW - 04a$O -M- - - -

~ad bu~ XXXM&O IX

U6 AGýSYv M

£~~~~wm WhR Uo. --- ---

x x x

3AdsIpleenato Gi m z -1-1

Lessons Lssmwd3

Figre 1-1. Lesmons Lmed Matrix

:117 CXOMBATCON7ROL

2S~K go
7 w w w m m m

3 I~mwwgwt~hww~m uamo
MbdswkpOCýMdMIU" X X
-no dw lawn

4 - - - - - - -

smit-y ?aIBWMDbe moduseNT

Ah- mmqi m - - -- - - -

1-1S Depsitment of the Navy3

SLess" Lwemda ~ ~Figure -l. LemmasLcuiad Mazuix

IZ

I _ _uq m mi

3 mda~muinginm - -

6 minmomm

I - svs p - - - -m1 Mm-lAk~~

U x x x
Fm~sapu move - - - - - - -

hmwmdmwspu.pm~yI _ _

A&F

3 Ada I yfmdpleiA~menaln GieI

Ix

U
Lessons Lsinm� 3

I
I
I
I
I
I
U
I
U
I
I
I
I
U
I

1-20 Depsitnisnt of U Navy 3

I

I

U Lessons Learned

1.1 STRATCOM-COMPUTER CENTER, OFFUTT AIR FORCE BASE
STRATCOM-Computer Center has been using Ada since 1989 in many programs and
projects. The center has built small systems (3,000 lines of code) and some medium
systems (over 50,000 lines of code). Lessons learned from this work, which is mainly
in intelligent databases, are described below.

3 Lesson 1: Visualize Ada as supporting an engineering approach to software.

Lesson 2: Do not anticipate that use of Ada will decrease development time, particularly5 on the first few projects.

Lesson 3: Try to limit the number of variables in the developmnt process (e.g., beta
copies of software, new tools) on the first project. Using too many variables will make
it difficult to trace problems.

Lesson 4: Do not blame all problems on the software or Ada. Ada will often be blamed
for anything and everything (whether it deserves the blame or not). Management often
attributes to Ada other problems encountered in the use of Graphical User Interfaces
(GUIs) or Database Management Systems (DBMSs).

g Lesson 5: Select a small doable project for the first Ada effort.

Lesson 6: Use tools. The days of the "all-I-need-is-a-compiler* are over. Software
engineering is a complicated business. Tools can be a "force multiplier" that helps the
engineer boost productivity, establish consistency across software modules, and enhance
understanding. Use of flowcharts is no longer sufficient.

I Lesson 7: Ensure that management understands that tools support software engineering,
not programming. Management should move from managing just programmers to3 helping engineers engineer software solutions.

Lesson 8: Ensure that management focuses on the engineering aspects of Ada, not on
Ada as a programming language. As a language, Ada appears to be complicated, but
Ada's intricacies support sound software engineering principles. Viewed in isolation,
Ada is often seen as overwhelming. In the perspective of large systems software3 development, however, the features of the language take on a much more valuable
meaning.

3 Lesson 9: Use a well-defined, repeatable process and methods for developing and
maintaining software.

I
5 Ada Implementation Guide 1--21

I

1
Lesman Learned3

Lesson 10: Implement an active training program in both Ada and software engineering.

Lesson 11: Ensure that adequate resources (e.g., hardware capacity, disk space, tools)
are available.

Lesson 12: Have adequate configuration management. A well-structured approach to
development of a large project will require several program units, especially in an object-
oriented environment. Proper management of these units is crucial when a multiperson I
team is updating the modules.

Lesson 13: Assess software engineering capabilities before the project gets under way. 3
Management should know what the organization's weaknesses are and how they will
affect an intense Ada or software engineering project.

Lesson 14: Do not expect to transform maintenance personnel into developers overnight.

Lesson 15: Do not field products before they are ready. Management tends to scrutinize I
Ada projects more closely than other projects (perhaps because it expects them to fail).
This scrutiny often leads to delivering products before they are fully tested. 3
Lesson 16: Tailor the Data Item Descriptions (DIDs) from Military Standard (MIL-
S7D)-2167A. 3
Lesson 17: Do not neglect documentation. Well-written Ada is a must, but the code is
not totally self-documenting. Requirements, design, and other life-cycle management
documents also are needed to give the total development picture. You must provide a
vehicle to update documentation (e.g., flowcharts, data flow diagrams) that is detached
from the code as the code changes.3

Lesson 18: Use Commercial-Off-The-Shelf (COTS) products as well as reuse
repositories, where available. Bindings to existing software products should be written, I
tested, and then reused. Avoid reinventing what has been done before. A little researchinto existing software may save time in the long run. 3
Lesson 19: Beware of the software part received from outside repositories. Many parts

contain useless code. Real applications need code that is done well and rigorously tested. 3
Lesson 20: Do not make spot fixes without proper change control.

Lesson 21: Have a test strategy that includes regression testing. 1
Lesson 22: Have a thorough integration plan. 3
1-22 Department ofthe Navy

Lesson Learned

SLesson 23: Ensure the Project Manager has authority to direct effris and resources.

Lesson 24: Clearly define the role of the Program Manager.

I Lesson 25: Ensure that the Project Manager of an Ada project is literate in sofiware
engineering and Ada.

U Lemon 26: Establish a system architecture (e.g.. open system, client-server) and stick
with it.

Lesson 27: Apply configuration management and Qulity Assurance (WA) to all parts
of the system (e.g., requirements, design, Ada code, database code, COTS products)

Sregardless of the language.

Lemon 28: Do not flood the team with untrained people and expect them to get trained
S"ree on the job.

Lesson 29: Ensure that upper management and configuration management personnel
understand that they do not need to know how to program in Ada to manage projects
written in Ada. To be effective, however, personnel does need to understand a little
about Ada and software engineering.

Lesson 30: Provide periodic updates to non-Ada groups outside the project. People not3 involved in Ada projects tend to ignore the Ada projects.

L2 WELLS FARGO NIKKO INVESTMENT ADVISORS
Wells Fargo Nikko Investment Advisors (WFNIA) is a joint venture between Wells
Fargo (California) and Nikko Securities (Japan). WFNIA, a leader in the institutional
investment management service industry, manages large sums of- money at very low
percentage rates. The computer software it uses is an important competitive differential.
The paragraphs below summarize the lessons learned from WFNIA efforts.

3Lesson 1: To use Ada effectively, management at the highest level must be committed
to Ada.

3Leson 2: Ada requires an up-front investment, patience to wait Jbr the up-front
invesUment, and patience to wait for the pay back.

3Lesson 3: Some criticism, pessimism, and panic are almost inevitable. Management
must be able to see through the storm to the goal ahead.

U
5 Ad Implementation Guide 52

I

1

Lesson 4: Ada must be sold, and existing environments (and other languages) must be
"&$rsold. 3 1

Lemon 5: Suppon and commitmentnfrom other developers and users should grow over
time as the language has time to prove itself.

Lesson 6: Tools and adequate hardware to run the tools are needed.

Lesson 7: Training is a must. Ada-specific training and, more important, software
engineering training are required.

Lesson 8: A software repository foundation is vital with both externally developed and
internally developed software.I

Lesmon 9: Ada can and should be used with other languages. When Ada is mixed with
other languages, the Ada portion should be approximately 85

1.3 B-2 AIRCREW TRAINING DEVICES
Aviation Week & Space Technology reports: 1

The Air Force/contractor team is developing the B-2 simulators concurrently with
the aircraft in a program that stresses close ties between aircraft and simulator
personnel and ease of modification of the aircraft.

From the training perspecive alone, the program presents three major challenges: 3
"* To develop the simulators and aircraft concurrently

"* To have the simulators ready for use before the first aircraft

" To ensure the simulators match the current aircraft, but are designed to be
updated easily.

(Avation Week & Space Technology, 20 August 1990, pages 34-42) I
Stealth Trang

The B-2 is the penetrating bomber of the future. The aircraft incorporates low-
observable or *stealth* technologies to reduce its detectable signature in a wide array of
sensor spectra. 1

I
1--24 Department of the Navy 3

I

I Lessons Lmred

Training the aircrews to effectivel) f o and apply a stealth aircraft presents uniquechallenges. To solve those challenges, the U.S. Air Force turned to CAE-Link, just asit did earlier for the F-I 17A stealth fighter/bomber and for the SR-71 Blackbird Program.

I The Aircrew Training Devices (ATDs) being developed by CAE-Link for the B-2
Advanced Technology Bomber total training system "provide fidelity and training5 capability beyond any device yet developed," according to the Air Force ATD Program
Manager.

The B-2 ATD program has taken a revolutionary approach to training concurrency, and
the simulators being developed represent the largest real-time simulation application of
the Ada programming language.

Under a competitively won contract, CAE-Link is producing three Weapon System
Trainers (WSTs), two Mission Trainers (MTs) and a System Support Center (SSC).
Northrop, the aircraft prime manufacturer, has overall responsibility for aircrew and

maint nance training.IThe Electonic Combat Environment for the B-2 ATDs provides a high-density

environment of up to 12,000 threats per mission, selected from a threat library of 800
types such as radar emitters, surface-to-air missiles, antiaircraft, and other aircraft. Of
the 12,000 threats, up to 2,000 may be located in the 50,000-square-mile mission area,
and 256 may be active within the radar horizon of the aircraft. In effect, B-2 aircrews
will be able to fly simulated training missions anywhere in the world against any
contemporary mission environment.

This high-fidelity, real-time threat environment features dynamic reaction, weapon
deployment with realistic missile flyouts, terrain occulting, and networking effects. In
addition to the automatic reaction to the flight of -the B-2 through the environment,
commands are accepted in real time from the instructional system to change the operation
of threats or to control the overall execution of the simulation. Examples of the
commands accepted are as follows:

I * Move, copy, add, delete threats
* Set threats to specific modes (search, track, launch, off)
* Inhibit or activate threats
* Inhibit or initiate weapon launch
* Initiate airborne interceptor attacks.

The real-time threat environment is supported by an off-line threat database that includes
location, operational tactics, networking, signal parameters, weapon characteristics,
moving platform attributes, and Electronic Counter-Countermeasures (ECCM)

Ada Implementation Guide 1-25

UAsGud

I
Lessons Learned 3

capabilities. The threat database uses Government-provided standard intelligence tapes
as a primary source of input data. This facilitates automation of the scenario-generation
process by providing an automatic threat laydown with global coverage, which is suitable
for mission rehearsal. The tape update capability also provides a rapid and convenient
means of maintaining currency with the latest data available from the intelligence
community. A full-screen edit capability is provided to allow manual creation, tailoring,
and verification of threat data.

The B-2 computational system is by far the largest real-time simulation application of
Ada to date. It is capable of handling 60 Million Instructions Per Second (MIPS). By
comparison, the B-2 simulator has seven times the computing capacity of a B-52 WST.

The B-2 ATD system has more than 1.7 million lines of Ada code. In addition, the
simulator uses 1.7 million of the 2 million lines of aircraft code to operate the Aircraft I
Control Unit Emulators (ACUEs). The emulators, commercial versions of the Paramax
aircraft onboard computers, have slightly enhanced capability and memory. (Software
for the B-2 aircraft is not written in Ada.)

Concurrent Computer Corporation is supplying CAE-Link with Model 3280MPS
superminicomputers with 19 processors per simulator. The 3280s are connected by high- I
speed distributed bus links so that they can share memory, processors, and other
resources-more than 60 times faster than a Local Area Network (LAN) connectionwould permit. Initially, only one-half the computational system will be used with 50% I
as spare; the architecture also permits 100% expansion.

Lesson 1: In the early Design Phase, capacity and performance estimates should target I
resources that provide at least a factor of 2 reserve. Such reserve capacity will limit the
risk of contention's developing later. 5
When the decision was made in 1984 to use Ada in the B-2 simulators, the Ada language
had only recently been frozen and a validated Ada compiler did not exist. 5
Lesson 2: When COTS language development products are to be used, project staff
should epend as much effort as possible to determine which products best meet project
needs. Technical, management, and business-sensitive issues and concerns need to be
identified and evaluated, and contingencies need to be developed where problems persist.

Specially trained CAE-Link Ada developers, working as a team with experts provided
by the Government and the Software Engineering Institute (SEI), wrote the software.
CAE-Link brought in experts from Carnegie-Mellon University and others to validate the I
system independently.

I
1--26 Department of the Navy 3

I

I

U Lessons Learned

Initially, it was difficult to learn how to apply Ada. The B-2 ATD, however, is now
reaping many of the prized benefits of the DOD's new standard language. The B-2
training program has a proven set of integrated Ada-based tools and a disciplined,
repeatable process that fully supports all life-cycle phases. The investment in committing
to Ada is paying for itself again and again in the modification process.

Lesson 3: If well-thought-out engineering and management plans are implemented with
enough resources, the project will be successfid. Moreover, a proven methodology can
be used repetitively to evolve the current and new systems, based on the low-risk reused5 assets.

The B-2 Ada tool set includes a specially developed Ada-based configuration management3 tool and a closely integrated load-build tool. Both tools were written in Ada and meet
CAE-Link's standard policies. These tools are mature today; however, process
improvement is considered a normal part of the continuing CAE-Link process. "Our
attitude," says CAE-Link B-2 Program Manager Keith Hickling, "is that improvement
is always possible." For example, in the early stages of the program it took nearly 6
months to train an Ada engineer; today, however, the training time is closer to 6 weeks,
and the goal is to reduce it to only 3 weeks.

"We are also continually looking at ways to improve engineering productivity," -Hickling

points out. Software metrics are key. "Metrics help us isolate the right process areas
to improve." Improvements are then planned as part of the normal engineering change
process, resulting in a process that continually gets better. "We are training our
engineers faster, they are becoming productive sooner, and we are increasing our
reusable Ada software. This reduces cost of modifications for the B-2 ATD and benefits
the company and the customer."

The B-2 ATD program has proven -that the benefits of Ada are genuine, "but only,"
Hickling notes, "if the front-end investment is made in a sound software process, tool-
set, and training."

1.4 BOEING MILITARY AIRCRAFT (WICHITA, KANSAS)
Boeing is involved in many military and commercial aircraft ventures. Lessons learned
from these ventures are related to the engineering support area, which supports the
software tools and research needs for the aircraft development programs. The paragraphs
below summarize lessons learned as they relate to:

3 * Portability (Lessons 1 and 2)
* Separate Compilation (Lesson 3)
* Readability (Lesson 4).

" Ada Implementation Guide 1-27

U

I
Lessons Learned 3

1.4.1 Portability
Lmon 1: Carefid technical management of the development of code directives,
guidelines, and formulations enables project staff to maximize the amount of fidly I
portable code that is produced. The portability of Ada programs between
implementation is now good and has improved considerably since the initial releases of I
Ada implementations. What is significant relative to other languages is that the class of

problems that can be written without requiring implementation-dependent code is larger

than in most other languages. This class includes tasking and time-dependent programs.

Lesson 2: The availability of a large suite of formal validation tests and use of an

independent testing organization help ensure the basic qualifications of vendor-supplied 3
products. Use of these tests and an independent team do not replace project staffs

detailed analysis and testing, but they do help eliminate marginal products. This
validation process will become more important as we move to Ada 94 and other object-
based languages (e.g., C++).

The Ada Compiler Validation Capability (ACVC) tests and the Language Control BoardI
have been fairly successful in avoiding the creation of incompatible versions of Ada.
This reduction in the number of incompatible versions helps promote portability. Some
problems still exist in this area. For example, some implementations do not support
preemptive priority scheduling, presumably because the ACVC tests do not test for it.
The situation in Ada, however, is much better than in many other languages (e.g., C,
C+ +, and FORTRAN).

1.4.2 Separate Compilation 3
Ada provides for the separate compilation of units and will enforce strong typing between
separately compiled units. This is a significant advance over the independent compilation
of other languages in which type checking is often lost between units (or deferred until
run time). A compilation system can provide an automatic recompilation facility to
prevent dependent units from becoming out of date. Although this facility is not
available on all implementations, the checking and reporting on errors when obsolete 3
units are encountered is universal and very helpful.

Lesson 3: Lessons learned with respect to portability (see Lessons 1 and 2) also apply 3
to separate compilation. An Ada programmer quickly learns to take for granted the
separate compilation and the type-safe checking it provides and can easily forget how
difficult it is to track down errors when using independent" compilation in other
languages. Neither the fact that Ada's separate compilation facility becomes invisible to
users nor the fact that it was one of the explicit goals of the language the achievement
of which is not surprising should detract from the value that the facility provides.

1-28 Department of.the Navy 3
I

I Lessons Leamed

1.4.3 Readability
Lesson 4: Controlled use of Ada language constructs results in uniform and minimally
complex code, thus maximizing readability. It is possible to write some very obscure
code in Ada by using overloading and derived types and multiple levels of generic units.
In general, however, the language permits most programming tasks to be coded in a
fairly straightforward way. This language power facilitates development of readable3 programs. Programmers do not often have to "code around" limitations in the language
(or use vendor-specific extensions) as is too often necessary in other languages (e.g.,
doing dynamic allocation in FORTRAN, operating on unconstrained types in standard3 Pascal, writing functions in COBOL).

1.5 COULTER ELECTRONICS: Ada FOR CYTOMETRY
Coulter Electronics develops machines to analyze blood. The paragraphs below
summarize lessons learned on three small Ada projects that run on a Personal Computer
(PC) platform.

Lesson 1: Look at the language and the constructs to be used and decide on an
environment.

Lesson 2: Evaluate your needs and then evaluate the compilers that run on your3 particular platform.

Lesson 3: Look at external software programs that have to work with your particular3 program.

Lesson 4: Ensure that the compiler has a method for accessing external hardware
- interfaces if the project equipment has such interfaces.

Lesson 5: Remember that 'optimization 'should minimize the code size not just remove
"dead code."

Lesson 6: Recognize that reuse can be a major factor in code development if looked at3 from the beginning.

1.6 ANIUYS-2A PROJECT
Ile AN/UYS-2A, which is under the direction of the Naval Sea Systems Command
(NAVSEA) PMO-428, is a programmable, data flow, high-throughput, modular Navy
standard signal processor. The AN/UYS-2A consists of a family of signal processors
that meets the diverse environmental requirements of ship, shore, submarine, and aircraft
Anti-Submarine Warfare (ASW) platforms. Because of its design, the AN/UYS-2A is
easier to program and costs less over the system life cycle than the previous system. The

Ada Implementation Guide 1-29

I
Lessons Leard 3

AN/UYS-2A is a Standard Embedded Computer Resource (SECR) and is not designed
to meet or counter any specific threat on a stand-alone basis.

The basic AN/UYS-2A is composed of different combinations of seven Functional
Elements (FEs): Arithmetic Processors (APs), Input Signal Conditioner (ISC), Global
Memories (GMs), Input/Output Processors (IOPs), a Command Program Processor
(CPP), a Scheduler (SCH), and a Data Transfer Network (DTN). Additional functional
elements may be added to the basic AN/UYS-2A processing capabilities. These elements I
can be matched to each weapon system's requirements by selecting the combination of
APs, GMs, lOPs, and ISCs that best satisfy the requirements of the individual weapon
system. The AN/UYS-2A is also modular at the logistics level. That is, each of the I
seven functional elements is built from a common set of format E Standard Electronic
Module (SEM) cards. Although the terminology has changed from SEM to Digital
Electronic Module (DEM), many documents still use the term SEM. The terms are I
interchangeable.

Lesson 1: When selecting a host computer as the Application Development Facility, I
ensure the selected host computer supports Ada so that application developers do not
need to purchase multiple hosts to develop application software. The SEM B AN/UYS-
2's CPP used an embedded AN/UYK-44(V) card set that ran the Navy's Compiler
Monitor System-2 (CMS-2) language. Because the CMS-2 language software
development tools reside on the VAX environment, the decision was made to select the
VAX 11/780 as the ADF host computer. The SEM B AN/UYS-2's CPP uses a Motorola
68020 architecture and was required to use Ada as the AN/UYS-2 Command Program
language. Unfortunately, an Ada M68020 cross-compiler was not available for the VAX 3
11/780; therefore, the decision was made to use a Telesoft Ada compiler environment
running on a Sun platform.

Lesson 2: When selecting Ada products, ensure that the Ada vendor can provide a fidl
spectrum of products (i.e., hosts, cross compilers, Run-time Kernels). Avoid using
multiple vendors when possible. The Ada environment selected was a combination of I
Telesoft's compiler and Ready's Run-Time Ada (RTAda) extensions. The chronologicalsequence of events was as follows:

"* RTAda was purchased from Ready Systems.

"* Ready Systems contracted with Telesoft for the Ada compiler and run-time I
interface code.

" Ready Systems modified the run-time code to support the Ada Run-Time Executive I
(ARTX).

I
1--30 Department of the Navy 3

I

I

U Lessons Learned

* Ready Systems integrated, sold, and maintained the RTAda product for AN/UYS-
2A.

* The internal contract agreement between Ready Systems and Telesoft expired on
31 December 1990.

* Ready Systems stopped selling and supporting the RTAda product.

* The AN/UYS-2 customer could not purchase the RTAda product or services.

* AT&T contracted with Telesoft to develop a Telesoft Run-Time Environment
(TeleAdaExec).

Lesson 3: Select a well-established Ada vendor who demonstrates willingness to help
software developers move code to new versions of their compilers. The Telesoft compiler
was upgraded several times during the SEM B AN/UYS-2A development effort. Version
1.3 was upgraded to 4.1A and 4.1A to 4.1C. Although the modifications enhanced the
compiler by providing more complete data and path checking and greater code efficiency,
they resulted in additional compiler restrictions. Consequently, some Command Program
Ada code had to be rewritten so that it would be compatible with the newer compiler

i version.

Lesson 4: Establish a close working relationship with the Ada vendor and define project
needs as early as possible. Plan Ada upgrades in a systematic and controlled manner.
On the AN/UYS-2A project, special efforts were made in working with Telesoft to
determine the direction of future compiler upgrades. Project management and staff also
tried to communicate to Telesoft the evolving program needs and concerns.

1.7 Ada EXPERIENCE AT THE NAVAL RESEARCH AND DEVELOPMENT
CENTER

In 1988, the support staff and the contractor of the Naval Research and Development
(NRaD) Center Code 924 began the transition from use of CMS-2 and its traditional
software architecture to Ada and an object-based design philosophy. This change was
prompted by the decline of the then-current product line into a caretaker status, without
funds to match the magnitude of knowledge needed to protect Government interests.

The situation presented a rare opportunity both to accept the challenge of transitioning
from CMS-2 to Ada and to document that experience. Contracting was being performed
under a time-and-materials contract, thereby simplifying statistical measurements because
such contracts are monitored on a labor-hour basis. The new software products to be
implemented in Ada included CMS-2 source analysis tools; data reduction programs; and
real-time, interactive PC-based products. It should be noted that comparing the statistical

3 Ada Implementation Guide 1-31

I

I
Lessons Learned 3

numbers of one project to another is difficult because there are so many variables. It is
better to compare baseline to baseline within a given project. Even then there can be
distortions.

The paragraphs below summarize the lessons learned from a management perspective I
rather than from a programmer's perspective. Programmers would be more interested
in language-specific application lessons.

Lesson 1: The transition to object-based design and use of Ada enhanced productivity.
It decreased integration time because there were fewer errors and less need to rewoork

code. The older CMS-2 software engineering process as applied to systems 3
programming in NRaD yielded a productivity rate of 250 Source Lines Of Code Per Staff
Month (SLOC/SM). Transitioning to Ada and adopting an object-based approach
increased the productivity rate by 24% (i.e., 310 SLOC/SM). The expressive power of I
Ada also increased productivity. Function Point (FP) productivity tables show that an
FP implemented in CMS-2 requires approximately 105 SLOC, whereas Ada only
requires 70 SLOC. The productivity advantages became apparent to the NRaD support
staff as a result of Ada's support of abstraction and encapsulation and the rapidity with
which the Integration and Test Phase of a given implementation was completed. 3
An analysis of the errors encountered during the production process showed a 21 %
reduction in errors. Although industry samplings show even greater reduction (i.e.,
24%), further analysis is required to ensure that the basis for comparison is consistent.
Code 924 staff believe that their figure represents a more arduous test process. Factors
contributing to this improvement are the level of error checking in Ada compilers, use
of Ada features that support a self-documenting style, and implementation of information-
hiding concepts that reduce the side effects found from the use of traditional commonstores.I

Lesson 2: The use of automated tools and Ada have enhanced our ability to maintain

developed products and their documentation. Maintainability has been greatly enhanced.
Use of a software engineering process that combines the use of Ada as a Program Design
Language (PDL) and emphasis on code readability has allowed errors to be corrected
rapidly. Development and use of an Ada Reuse Library Browser (ARLB) further I
enhanced maintainability. The ARLB allows the programmer to rapidly traverse call
trees and WITH dependencies to focus on individual package bodies where source and
design representation modifications are made interactively. The ARLB, supported by I
disciplined programming standards, has led to automated design document production
derived from the Ada source library. 3
Lesson 3: Project management should expect that at least 50% of the development time
will be spent in the Requirements Analysis and Design Phases. Deriving the objects and 3
1-32 Department of the Navy 5

I

I

I Lessons Learned

I their associated operations into Ada package specifications is an iterative process
requiring considerable time and interaction among the lead designers. Elaborating a
design to implement those objects and operations, using an Ada PDL, into the Ada
package bodies represents an additional up-front investment. Patience was required
because the overall design process consumed 50% of the implementation time. After
coding began, however, it progressed rapidly and integration occurred quickly with fewer
errors. The overall schedule (in months) seemed to be the same as that for a CMS-2
program; however, a smaller staff was required. We are not sure whether increasing the
number of staff members would shorten the schedule.

i Lesson 4: Atiude is a key factor in transitoning engineering personnel to modem
software engineering and Ada. Success will only come from a well-motivated team that3 is committed to the tool, technology, and project.

Training is critical to preventing the application of Ada in the context of traditional CMS-
2 design disciplines. The Ada language was designed to support more modern software
engineering approaches and should be used in that context. The critical paradigm shift
is one from the classical hierarchy of processes to one of object orientation. For most
programmers, this shift can be achieved in 4 to 9 months through a combination of
classroom training and on-the-job experience. New college graduates adapt quickly.
Many of the older CMS-2 programmers may never make the transition. Older
programmers should not be forced into a position of resistance to change. To be
successful, the job must be in the hands of believers.

3 Traditional CMS-2 systems have been built with a specific computer in mind. The
software was dependent on the machine-sensitive constructs of the language of
implementation and the service calls of the chosen executive. Dialect difference between
implementations of purported standard languages and operating systems have limited the
market of the implemented systems to hardware supported by the compiler or operating
system vendor. With Ada's rigorous standards, code has benefited from the ability to
draw software components from a common library and use compilers of multiple vendors
to place its products on a variety of target hardware-an important consideration in an3 era of migration from gray boxes to the richer mix of architectures in the commercial
arena.

1.8 TACTICAL AIRCRAFT MISSION PLANNING SYSTEM
The Tactical Aircraft Mission Planning System (TAMPS) is hosted on the Navy's
standard Desktop Computer (DTC-2). With the release of the New Tactical Advanced3 Computer (TAC-3) as an upgrade replacement for the DTC-2, Naval Air Warfare
Center, Aircraft Division Warminster (NAWC-AD WAR) is tasked to evaluate the
TAMPS software portability to the TAC-3 platform.

Ada Implementation Guide 1-33

IAaGud

I
Lessons Leamed 3

The subsections below identify problems associated with porting TAMPS software from
the DTC-2 to the TAC-3 platform and illustrate the magnitude of each problem.

1.8.1 TAMPS TAC-3 Hardware and Software Configuration
The TAC-3 hardware suite, delivered to the NAWC TAMPS laboratory on 13 July 1992,
consisted of the Hewlett-Packard (HP) 9000 Series 750 with 128 megabytes (MB) of
memory, two 1.2-gigabyte (GB) disk drives, one 4-millimeter (mm) Digital Audio Tape
(DAT) drive, and one monitor. The TAC-3 software included the HP-UX Operating I
System, the Irvine Compiler Corporation (ICC) Ada compiler, an HP-UX FORTRAN
compiler, and an HP-UX C compiler. This system configuration is only sufficient to
recompile and to evaluate TAMPS code portability. A complete hardware suite is S
required to evaluate TAMPS executability after all compilation errors have been
resolved.

1.8.2 TAMPS Evaluation Results
NAWC used the TAMPS 5.0x3 source code to evaluate its portability from the DTC-2
to the TAC-3 platform. The evaluation task was divided into the following areas: I
Hardware, Operating System, Compiler and Support Software, and Peripheral and
Device Driver. The subsections below list problems uncovered for this task for each
area and provide impact assessments.

1.8.2.1 TAMPS Hardware Assessment
Because the internal data representation of the two machines is the same, the TAMPS
databases can be transferred to the TAC-3 hardware and used without any conversion.
NAWC wrote a routine to read or write data onto a file on the DTC-2 and used the same 3
routine to read the data back onto the TAC-3. The results showed that the internal data
representation on both systems was the same. BTG, Inc. (i.e., the TAC-3 technical
support contractor) confirmed our results.

The TAC-3 graphics processors support two independent workstations and a DBA station
with X11R4 libraries, which will satisfy TAMPS requirements. TAMPS software, I
however, needs to be tested on the TAC-3 hardware to confirm that all TAMPS graphicsrequirements will run without further software modifications. m

1.8.2.2 TAMPS Software Assessment
After the TAC-3 hardware suite was set up, NAWC began TAMPS software assessment.
The HP-UX Operating System (System V), ICC Ada compiler, HP-UX FORTRAN S
compiler, HP-UX C compiler, and X1lR4 libraries were used to assess TAMPS code.

The Ada, C, and FORTRAN compilers were installed and verified. Then the required I
libraries were created as indicated in TAMPS makefiles. Because the "makefile.
commands on the two systems were different, new TAMPS makefiles were written to

1-34 Department of the Navy 3
I

I

I Leons Leaned

I recompile TAMPS on HP-UX.

The HP Window Manager (Vuewm) and XI IR4 libraries supplied with HP-UX were
tested by running standard X-based applications. In addition, the manual pages for the
Vuewm were compared with those of the Motif Window Manager for discrepancies. A
list of system calls in TAMPS was gathered by the UNIX "grep" command. The
parameters and usage of the system calls were compared to determine the differences.
Ada, FORTRAN, and C files were recompiled, and error listings were examined to
determine the problems and solutions.

Because of the incompatibilities between the ICC Ada compiler and the Sun Ada
compiler, NAWC is acquiring the Alsys Ada compiler to perform another TAMPS Ada

Scode assessment at the NAWC laboratory.ScodeteNW

Lesson 1: Before selecting vendor products, it is important to test them extensively to
ensure that they meet a project's specific needs.

1.8.2.3 Operating System
The operating environment, Vuewm, is an XII window manager based upon the Motif
Window Manager (mwm, version 1.1). Vuewm is an integral part of the HP Visual
User Environment (HP VUE). It communicates with and facilitates access to the other
components in the environment. Vuewm provides the same window management and
limited session management functionality as mwm. It allows the user to control window
size, position, state (iconic or normal), input focus ownership, and the like. TAMPS will
be able to run in this environment with little problem.

Most of the system calls used in TAMPS (DTC-2/BSD Operating System) are compatible
with those in the TAC-3 (System V Operating System) except for the following types of
problems:

I * Different constants
* Function names
* Unsupported asynchronous Input/Output (I/O)
* System calls that are not in TAC-3.

All shared memory calls are compatible between the DTC-2 and the TAC-3 system.
This area needs to be tested when all of the other problems are resolved to confirm that
TAMPS will run without further software modifications.

1.8.2.4 Compiler and Support Software
Of the 55 C files within TAMPS code, 44 files were compiled without errors and 11 files
(or 20%) could not be compiled because of the following types of problems:

3 Ads Implementation Guide 1-35

I

1
Lusari Lmmgd3

e Different library functions
* The nonportable code for system functions in the Computer Software Configuration

Items (CSCIs).

For all C implementations, new code had to be generated to handle the library functions 3
and nonportable code problems.

All TAMPS FORTRAN code has been recompiled in the TAC-3 system with the HP-UX 3
FORTRAN compiler. Of the 3,453 FORTRAN files within TAMPS code, 3,392 files
(98 %) were compiled without errors and 61 files (or 2%) could not be compiled.
Problems found while recompiling TAMPS FORTRAN code are as follows:

"* Overlapping data initalizations. The FORTRAN compiler does not allow a
variable to be initialized more than once in a data statement.

"* Error due to the alignment in the common block. Integer variable must start at an

odd address.
"* Etplicit definition offormat statement needed. 3
" Oharacter string referenced out of range. A character string is defined with a

length N and later used with a length of N+m. 3
"* Nonlogical expression in IF/DO WHILE statement. An integer variable is used as

a logical variable. 3
"* Nonpositive label. A label of zero is used in TAMPS code. A label must be

within the range of I to 99999. 3
"* Argument with the same name as INTRINSICfunction. TAMPS code uses the

INTRINSIC function "FLOAT" as one of the arguments in a parameter to a I
subroutine.

" Adjustable array in common block. In a few places, TAMPS code defined an 3
array in a common block as:

- Integer length 3
- Common XXX / Array YYY(LENGTH)/.

I
I

1-36 Depurtment of the Navy 3

I

I

I ~Lessons Leammed

This FORTRAN compiler cannot figure out the size of LENGTH because it is
declared but undefined at this time. Therefore, it cannot declare the array YYY.

I These FORTRAN problems have a minimal impact on TAMPS code.

All TAMPS Ada code has been recompiled in the TAC-3 system with the Ada compilerI from ICC. A few of the problems with TAMPS Ada code were serious because of the
incompatibility between the DTC-2 Sun Ada compiler and the TAC-3 ICC Ada compiler.
Independent research had shown that many users were having trouble with the ICC
product. Two basic modifications were required before Ada code could be compiled
with the ICC Ada compiler. First, the ICC Ada compiler treated "subtype integer" in
the same way as it did Ostandard.integer. Therefore, the basic integer types in the3 sicdatatypespkg.ada package were redefined. Second, the "LANGUAGE"
package was Sun Ada compiler's unique package, and all pragma statements referencing
the LANGUAGE package need to be commented out.

After completion of the above basic modifications, 2,969 Ada source files remained
within TAMPS code: 352 files that were compiled without errors and 2,617 files (or
88%) that could not be compiled. These errors result from the different implementations
of the two compilers.

Lesson 2: Many details in the implementation process are not controlled by MIL-S7D-
1815A or the associated validation suite for the Ada language. Project staff should
perform sufficiently detailed analysis of particular implementations so that they can
correctly assess impact when changing configurations.

The following paragraphs list all general problems found while recompiling TAMPS Ada
code:

I Misalignment. An integer field declaration in a record must lie in a word
boundary.

* Dynamic Generic Instantiation. UNCHECKED-CONVERSION cannot be
instantiated with dynamically sized type with the ICC Ada compiler.

3 * Unsupported Machine-Code Package. TAMPS uses inline expansion of low- level
machine code provided by the Sun Ada compiler's "Machine-Code" package. The
ICC compiler does not provide a Machine-Code package for the TAC-3 platform.

0 Unsupported ERRNO Package. TAMPS uses the error package "ERRNO, which
is specific to Sun's Ada compiler. This package is not provided with the ICC Ada
compiler.

3 Ada Implementation Guide 1-37

I

I

" Unsupported System "+ 'Function. Function "+ 'in Sun's system package does
not comply with MIL-STD-1815A. This function is an extension provided by the
Sun Ada compiler but not by the ICC Ada compiler.

" Unsupported System.NoAddr 7ype. The type *No Addr" in Sun's system
package does not comply with MIL-STD-1815A. This type is an extension
provided by the Sun Ada compiler but not by the ICC compiler.

" Calendar.Local 7Tne Package. The "Local Time" package within the Calendar
Package does not comply with MIL-STD-1815A. TAMPS modifies a body part
of the Calendar.Local Time package and incorporates it into the standard Calendar I
package. Problems occurred when attempts were made to incorporate it into the
Calendar package provided by the ICC compiler. i

" Disallowed Zero-Length Field in Record. In TAMPS code, a field length of zero
in a variant record is defined as null. The ICC compiler interprets it as a missing
field and indicates it as an error.

" Unincorporated Parent Package Name. When a function is defined in a separate
procedure, the ICC Ada compiler requires the parent package name must be "with*
into the function code. The Sun Ada compiler does not have this requirement.

"* Unsupported VADS Configuration Package. TAMPS uses a Verdix Ada I
Development System (VADS) Configuration Package Specification for Sun4 BSD
UNIX. This package specification defines and describes the components that the
user must provide to configure the VADS self-hosted Run-Time Environment
(RTE) for a user application program. Users have the choice of using the Sun-
supplied memory allocation packages or implementing their own algorithms. 1
MDMSC should try to avoid all machine or compiler dependencies in the TAMPS

code.

The problems associated with the incompatibilities of the two compilers required NAWC
to use another vendor product, (i.e., the Alsys Ada compiler) to reduce the impacts on
the TAMPS Ada code.

Leson 3: Staff should do up-firnt technical evaluations. 3
Other areas of concern related to porting projects include the folloving:

1
I

1--38 Department of the Navy 3

I

Leson Looed

3 * File structure and handling systems that are in use
0 Peripheral and device drivers movement
0 Special application software packages.

L9 ADVANCED FIELD ARTILLERY TACTICAL DATA SYSTEM
The Advanced Field Artillery Tactical Data System (AFATDS) is a system of computers,
printers, displays, and software that helps Army commanders plan, direct, and control
artillery fire in combat situations. AFATDS was intended to replace the former TacticalI Fire Direction (TACFIRE) system.

AFATDS was a concept evaluation effort that began in May 1984 with Magnavox
Electronic Systems as the prime contractor. The paragraphs below summarize the
lessons learned during this effort.

Lesson 1: Anticipate trouble with the Ada development toolslenvironment, no matter who
is supplying them or when you get them. Especially expect problems with the ability of
the Ada Run-77me E&ecutive to meet all of the project needs. The Army had required
Ada as the High Order Language (HOL). During the Source-Selection Phase, only three
validated compilers were available, none of which could down-line load to a target
processor that met the AFATDS-derived requirements. The language, methodology, and3 tools were new; the approach was to be "software first."

Lesson 2: Budget for training. Be prepared for and include additional funds for
training over a long period of time. Note that for this training to be most effective, it
must be accomplished just before or during the development effort. Magnavox
recognized that real-time expertise in Ada did not exist and immediately went to the Ada

Scommunity to establish a comprehensive, long-term Ada and software engineering
training program. Magnavox also proceeded to hire selected consultants and
subcontractors to handle specialty items (e.g., database design).

Lesson 3: Anticipate that original estimates for support hardware and facilities will have
to be revised. In this project, original estimates quadrupled for support hardware and
facilities. Magnavox also purchased multiple mainframe and workstation computing
systems; however, these resources proved insufficient but were relatively easy to

* upgrade.

Lesson 4: To accomplish the project successfully, ensure that both the contractor and
Government teams are knowledgeable about and understand the rationale for all
sofiware-related topics. At that time, none of the DOD policy standards had been
updated (this is still true today in many cases), and very few people on the Government
side understood their ramifications. The Army had taken a sound, long-term view when
it awarded this contract, but early into implementation, the pressure of outside scrutiny

Ada Implementation Guide 1-39

I mm

I

Lessons Learned

began to erode that resolve. This, coupled with limited understanding of Ada and its
software engineering ramifications, caused serious disconnects to develop between the
contractor and the Army acquisition team (e.g., 'Where's the code?" syndrome).

Lesson 5: Have the team develop a viable technicallmanagement plan and adhere to it
so that requirements and design can be implemented correctly. Although it will take
longer to begin writing the actual code, it will be worth it because fewer design problems
will be encountered during test and integration. Some of the hardest work will be 3
associated with trying to handle the externai nay sayers.

Leson 6: Report major problems up the line as encountered. Magnavox and the Army I
Program Office were never assertive in promoting their initiatives. Had they been, many
of the external groups might not have felt compelled to investigate, and more time would
have been available to resolve the technical problems. Others can benefit from lessons
learned only if they are informed about them. Such publicity could have helped the
AFATDS project and provided insight to other projects that were beginning.

Lesson 7: Do not mistakenly blame software development for failure. Carefid scrutiny
of many projects frequently shows that things other than software development are
responsible for failure. For AFATDS, three formal General Accounting Office (GAO)
evaluations were performed and reported on during 1986-87: GAO/NSIAD-86-184FS,
GAO/NSIAD-86-212FS, and GAO/NSIAD-87-198BR. None of these reports identified
Ada as a problem. Major impact items included the reduction in scope because of budget
constraints, the changing of requirements to accommodate different equipment and
software, and the Army's ability to manage this activity. 3
1.10 AN/BSY-2
The AN/BSY-2 Submarine Combat System (SCS) is the suite of hardware, software, and
equipment that will be used on the Department of the Navy's (DON's) next-generation,
attack-class submarine, the SSN-21. General Dynamics Electric Boat Division is
building the first hull in this series, which will be ready in 1994.

Lesson 1: When external schedule constraints exist, the level ofplanning and execution
analysis becomes much more critical. This was especially true for BSY-2 because of the I
estimated volume of software and separately defined hull completion dates. The
AN/BSY-2 software is bein, developed under DOD-STD-2167A in an effort that has
combined aspects of the Concept Evaluation, Demonstration and Validation (DEMVAL),
and Full-Scale Development (FSD) Phases of the life cycle. Commencing in 1985, a
draft set of DON-generated SCS requirements was used for the System Design Definition
(SDD) activity. Leading up to FSD and contract award, the two successful bidders, IBM
and General Electric, worked with the Navy team to solidify requirements, develop
design approaches, analyze ongoing prototyping efforts, identify critical items, fine tune

1-40 Department of the Navy 3
I

I Lessons

I the FSD Statement of Work (SOW), and generate three separate Source Lines of Code
(SLOC) preliminary size estimates for the AN/BSY-2 System.

The other lessons learned on AN/BSY-2 fall into six distinct categories: contract,
coordination, process, schedule, standards, and tools. Multiple lessons are presented for
each of these areas. Note that the lessons do not apply exclusively to an AdaI development and that they are presented randomly within each category (i.e., no
attempt has been made to rank them).

Lesson 2: Most of the lessons learned" are related to the contract requirements. The
SOW should require regular reports on the status of all commercial products delivered
as part of the system. This update should include information such as vendor, version
number, performance statistics, licensing agreements, and plans for future modifications.
In addition, when the same type of documentation is to be produced by multiple
developers, implementation of a standardized style guide should be referred to in the
SOW. Furthermore, a provision should be included to allow deliverables to be
transmitted in an electronic format. On systems that have classified information,
installation and use of encrypted links between developer sites should be mandatory.

To ensure that requirements flow down adequately, the prime contractor should be
required to provide copies and/or updates of all subcontract agreements to the acquisition
agency.

I To be fully effective, software Quality Assurance (QA) should be totally independent and
organized to avoid a double chain of command (i.e., having a development program in
the place of corporate QA).

I Identification, reporting, and close monitoring of available metrics should begin early in
development. The level of detail should increase in tandem with advanced development.
Metrics should be analyzed thoroughly, and results should be incorporated into quarterly
program assessments. Progress or regression relative to the program plan baseline
should be a key element in this assessment. Separate analyses conducted by DON for
comparison purposes produced additional benefits for AN/BSY-2 when results of these
analyses were shared with the developer.

To ensure that the metrics data received are comparable across all development teams,
a uniform SLOC counting methodology must be defined and followed.

SfLeon 3: Coordinaton frequently receives the least attention although u is one of the
more important efforts. Early in the contract, direct lines of communication should be
established among key participants: acquisition agency, developer, technical agency,
Independent Verification and Validation (IV&V) agency, quality personnel, and COTS

5Ada Implementation Guide 1-41

I

I
Lessons Learnd 3

software vendors. Such "shortcut* communiques result in more efficient problem
identification and resolution, which have an overall positive effect on cost and schedule.

Informal networking among groups of like interest will increase the effectiveness of each
group. Regularly scheduled communication tends to short-circuit problems while
providing a broader perspective to participants. For example, AN/BSY-2 holds a I
monthly user group meeting to discuss problems, workarounds, and successes with the
operating system. The vendor's active participation at these meetings has increased
responsiveness to and visibility of AN/BSY-2 needs.

The prime contractor should maintain tight control of subcontractor efforts through 1
weekly monitoring and quarterly audits. Furthermore, attendance at technical and
working group meetings should be mandatory for all team members.

Lesson 4: For large projects, it is mandatory that an adequately sized, qualified
Technical Directive Authority (WDA) Oversight Group be established and function for the
duration of the project. Very early in development, the contractor should detail each I
process proposed for use in the program. These processes should be defined in
approved, baselined documentation. DIDs need to include more stringent, detailed
guidelines. Multidisciplinary contract agency representatives should then closely review 3
each process in software development and in related areas (configuration management,
QA, testing) for adequacy, consistency, and completeness. Contractor modifications to
these processes should be presented during formal reviews and entered into the baseline I
document only upon approval.

A streamlined waiver request process should be established for reporting proposed i
contract deviations to language and/or contract requirements. Waiver packages should
be initiated every 6 months, depending on program size and life span. 3
A comprehensive Ada training program should be developed to address
application-specific requirements. This program should be capable of transitioning 3
seasoned engineers yet flexible enough to instruct entry-level programmers.

Ada methodologies (e.g., exception handling) should be defined early in development. 3
Partial tasking should be considered as an alternative for reducing rendezvous time.
Establishing global error models well in advance of detailed design will result in a more
robust system. I
Ada guidelines and procedures should be established primarily by the program's resident
Ada experts. These lessons learned should be provided in an Ada style guide as an
appendix to the software Standards and Procedures Manual. For example, compilation
dependencies can be reduced and debugging smoothed by avoiding subprogram nesting. 3
1-42 Department of the Navy

I

I

ILessons Lemred

This think tank of Ada experts should also be convened to resolve complex, persistent,
Ada design problems. For example, enhancement of time-critical processes can be
effected through expert application of Rate Monotonic Scheduling techniques.

I Lesson 5: Software development planning and monitoring must be done from the onset
of FSD and should take a phased approach (i.e., 'build a little, test a little'). Ada
software development schedules should allow for longer Requirements and Design Phases
and shorter Test and Integration Phases. The schedule should contain Critical Design
Reviews (CDRs) to correspond to the incrementally developed software. In addition,3 testing should use manageable units at phased steps with explicit success criteria.

The delivery schedule for software plans, standards, and procedures should show
Scompressed early deliveries. Multiple early deliveries should accelerate establishment

of a baseline. These planning documents should be baselined and under formal
configuration control no later than at the close of the Preliminary Design Phase.
Conversely, software requirements specifications should have fewer deliveries, a longer
document review cycle, and a baseline before preliminary design.

Product Readiness Reviews (PRRs) should be held early in development. These reviews
have a positive, cohesive effect and provide a close, systemwide look at processes,
products, personnel, and facilities. Implementation of an action item system is key to
PRR effectiveness.

The developer should identify critical-path software items (e.g., shared system services).
Close management of this process should ensure early delivery and test of these
functions.

I Lesson 6: Even the best-made plans require changes during execution. AN/BSY-2
used DOD-STD-2167A for software development guidance. The intent of this standard,
however, is to provide a software development superset from which extraneous
requirements can be eliminated. AN/BSY-2 staff carefully tailored this standard, mindful
that it is easier to provide relief from requirements than to "buy" them in later. The
contracting office should remain open to negotiations on tailoring DOD standards as
phases unfold, technology advances, and/or lessons are learned. As an example, support
software documentation has been reduced from the full suite to design notebooks and
operator or maintenance manuals.

As part of tailoring the standards, a cross-check should be performed against the SOW.
Checking requirements in the SOW for potential ambiguities or even conflicts within the
military standards may avoid costly rework during later phases.

Ada Implementation Guide 1-43

I
Lessons Learned

Lesson 7: For large efforts that are geographically dispersed, the goal should be to
strive for commonality of development environment, tools, procedures, and product
structure. The contracting agency should require standardization of support tools across
the program. Although the up-front cost is greater, long-term benefits gained from such
commonality make it a worthwhile investment. Use of common tools allows problems 3
to be identified and workarounds made only once and results entered into a shared
electronic reporting system. In addition, data exchanges among development teams are
less time-consuming and more efficient, thus reducing the risk of error.

For large projects, it is imperative that the configuration management system be capable
of supporting rapid turnaround during the Integration and Test Phases. The system U
should provide configuration management of all software support tools as well as the
development code. In addition, a version control process must be established and
enforced by the prime contractor for these tools. 1
A common database should be established to electronically track requirements down
through software requirements specifications and hardware unit specifications and, later, 1
into test. Use of this method will enhance traceability and ensure flowdown of
requirements. A common database should also be created to track connectivity of
software interfaces. Consistency checks should be run for early detection of misaligned
interfaces.

Commercial support tools may require modifications to handle large Ada developments, 1
and non-Ada commercial code slated for incorporation into the product may create
interface and performance problems. Additional time and resources should be factored
into development plans to allow for these potential stumbling blocks. (Computer
resources should also be supplemented to account for the increase in demand that
traditionally occurs during Ada developments.)

Compiler benchmarks should be evaluated before compiler selection is finished.
(Compilation time should be factored in as an additional consideration.) The developer 1
should know the weaknesses as well as the strengths of the Ada constructs (e.g., link
library sizes and nesting of generics) as used in the compiler and/or Ada Programming
Support Environment [Ada PSE]. Binding approaches should be established and I
benchmarked early in the development.

Use of an Ada standards checking tool is highly recommended. Using a standards I
checker not only encourages production of high-quality code but also reduces staff efforts
and enhances maintainability. 1

1
!--44 Department of the Navy 3

I

I Lessons Learned

I I.11 ADA LANGUAGE SYSTEM/NAVY
The Ada Language System/Navy (ALS/N) FSD program implements Ada for use with
DON's standard embedded computers: AN/UYK-43(V), AN/UYK-44(V), and the P31
AN/AYK-14(V). Since January 1989, DON has mandated the use of ALS/N as the
first-line support software consideration for the DON standard processors. Although
ALS/N is a support software effort, it also is a large software-based systems development
effort. The ALS/N development project has produced more than 1 million lines of Ada
code that also support DOD-STD-2167A documentation.

The DON Ada Standard Embedded Composite Resource (SECR) effort began in the early
1980s and closely monitored the other Service efforts, such as the Army Ada Language
System (ALS) effort and the Air Force Ada Integrated Environment (ME) effort. The
DON goals were to avoid reinventing the wheel and to maximize the benefits of the Ada
reuse and portability concepts for developing support software. In 1984, DON opted to
establish the baseline with the Army ALS and proceeded to develop specific
SECR-retargeted compilers and tools.

Lesson 1: For DON SECR applications, top priority must be given to the real-time
performance of the generated code. Performance requirements must be formally
specified, and performance capabilities must be tested before product acceptance and
deployment. Because of the number and severity of the problems encountered, the Army
paid little attention to performance issues for the support environment and the targeted
real-time environment.

I Lesson 2: Although actual software code production is only a relatively snall portion
of the total life cycle, it is critical to have a reasonable level of performance within the
tool set. At a mtzinimum, the tool set must meet both programmer fiunctional and
configuration management needs. The Army ALS tool set had been implemented in Ada
but operated on the VAX/VMS host environment through an additional layer called the
Kernel Ada Programming Support Environment (KAPSE). This arrangement made toolperformance unacceptably slow. The Navy, therefore, redirected the contractor to
eliminate the KAPSE requirement.

I Lesson 3: Each development effort should be managed under the assumption that there
will be a formal production delivery to DON and a separate DON-controlled
Post-Deployment Phase. To ensure continuous development oversight, DON laboratory
personnel were provided to fa, 'tate the transition to life-cycle support.

Leson 4: Requirements must be understood, and both formal and informal checks on
the progress to meet these goals must be conducted throughout development. The Air
Force used an independent test team in this effort and spent 15% of the budget on it.
This team performed Technical Directive Authority (TDA)-type testing that included full

Ada Implementation Guide 1-45

I1-4

I

Lessons Loomed

knowledge and understanding of the product internals. Concurrently, a separate IV&V
agent performed "black box* testing to evaluate formally the specified requirements.
Expenditures for this support were approximately 5% of the total budget.

Lesson 5: Because post-deployment support will be DON's responsibility, it is critical
to build an adequate in-house team that is thoroughly familiar with the product before
acceptance. The ALS/N development has actively funded various Navy laboratories
(e.g., Naval Surface Weapons Center [NSWC], Naval Avionics Center [NAC], Naval I
Undersea Command [NUSC], Naval Air Development Center (NADC], and Naval Ocean
Systems Center [NOSC]) to participate in the program and also involved the Navy's
life-cycle agent (i.e., Fleet Combat Direction System Support Activity [FCDSSA], San I
Diego).

Lesson 6: Lack of full program funding commitment and support will have a negative i
impact on development plans. Be prepared to either alter the course of and/or extend
delivery schedules. Always try to maintain the best possible product quality and
maximize life-cycle supportability within the program constraints. The vagaries of
year-to-year funding support tend to disrupt large undertakings that involve many
elements such as laboratories, prime contractors, subcontractors, IV&V, and independent
test organizations. All parties have to be motivated, good informal communication
mechanisms must be in place, and all development efforts must be carried out according
to an agreed-to plan that can accommodate a certain degree of flexibility.

Lesson 7: Producing a high-quality software-based product that meets its specified
requirements is a difficult task. ALS/N provides a software means to upgrade deployed
SECR processor-based systems indefinitely. ALS/N also can be considered as the
front-line consideration for new systems developments because DON has 100%
ownership or change control rights. Many U.S. commercial companies provide Ada i
compiler technology. Investment costs for those technologies that have been
commercially successful are consistent with DON expenditures for ALS/N. However,
few of these commercial Ada technologies specifically addressed real-time performance I
to the degree of ALS/N capabilities, which is required for Mission-Critical Computer
Resources (MCCR) applications. In fact, two out of every three DON dollars have been
spent on DON standard RTE needs. The ALS/N FSD program has produced compilers I
and run-time operating systems that will meet many of the performance requirements as
specified.

Lesson 8: No product is truly exercised and tested until it reaches the target user
community. It is best to phase systems into deployment through beta testing and friendly
users before public release. Currently, four DON Research and Development (R&D)
centers use ALS/N in a test and evaluation mode. The DON MCCR waiver process now

D
1--46 Department of the Navy

I

I
I Lessons Learned

I includes ALS/N consideration as part of the standard acquisition formula for both new
starts and upgrades.

I 1.12 AVIONICS PROJECT
The avionics project is a major system upgrade for an airborne Command, Control, and
Intelligence (C21) application that targets existing platform and potential forward fit into
next-generation aircraft. The upgrade is to improve acoustic and nonacoustic processing
capabilities as well as signal processing, detection and classification, multistation
integrated systems, data buses, and communications.

Lesson 1: Ensure that software production or cost modeling includes adequate time for
the Requirements or Design Phase before accepting externally generated completion

I dates. The contract was awarded in July 1987 with a prototype scheduled for delivery
in July 1990. An optimistic production of 1.2 million SLOC is projected.

Lemon 2: Be sure that requirements are fidly defined and are traceable to test
mechanisms. Include necessary Government visibility into the process. Beware of
shortcuts and bad engineering practices, especially when there is a prime
contractor-subcontractor team organization. The Firm Fixed Price (FFP) contract
included production options. The contract options were tied to calendar exercise dates,
without a requirement to demonstrate performance capabilities.

Lesson 3: Do not plan to use equipment that is under development unless absolutely
necessary. Apply a risk engineering approach to those items that must be used, place
items on a critical path, and monitor them closely. The contract included the planned
use of "in-development" Government-Furnished Equipment (GFE) and Contractor-
Furnished Equipment (CFE).

Lesson 4: Always assume that everything could go wrong and perform full risk
engineering and management.

Lesson 5: Use a hands-on management approach from both the prime and Government
perspectives and delfiaare clear lines of authority and responsibility for contractual
requirements, especially for large projects. In addition, do not take a hands-off approach
to subcontractor management.

Lesson 6: Specify in the contract requirements that capabilities must be established
early, with adequate resources and authority. Closely monitor progress. A plan must be
developed for handling distributed development environments and deliverables exchanges.
Such planning must have been contractually required and completed, and it must receive
some degree of Government approval and monitoring before the program is executed.
A "sell-off" from a subcontractor to the prime contractor must address all contingencies

Ads Implementation Guide 1-47

I

I
Lessons Learned 3

when the prime contractor-to-DON delivery requires changes, retesting or documentation,
and the like. Configuration management and QA should be standardized and coordinated
across the whole effort. Formal, standardized software development procedures should
be specified in the contract and approved before being implemented. Lack of such
formal, standardized procedures cannot be condoned, especially across larger projects.
The procedures should be monitored to ensure that the documented process is being
implemented.

Lesson 7: Do not disregard the critical elements of the MIL-STDs unless it is technically
and managerially necessary to use alternative means. Develop a system-wide integration
plan and follow it. During the development of the avionics project plan, a systemwide
integration plan was not developed.

Lesson 8: Ensure that the schedule can accommodate slack and the possibility of I
independent DON test time for interim products. Also ensure that the resources are
available to support regression testing. The avionics schedule contains no plan for slack
or for resources to support regression testing.

Lesson 9: Do not disregard critical MIL-STD interim products in the contract I
requirements, and adequately plan for and execute the Government's role to ensure
quality and delivery. Mutually agreed-to criteria for major milestones must be met, or
action item work plans must be created for unmet criteria. I
Lesson 10: Ensure that adequate development support facilities exist. Existence of these
facilities should be contractually specified and monitored during the Product Readiness
Review (PRR). Contingency plans should be available when and Vf problems develop.
Inadequate facility estimates, combined with no forward-looking projection analysis and
unavailability of contingency plans, resulted in severe problems as the interim product 3
grew in size.

Lesson 11: Do not let events external to the schedule influence the program. Develop 3
input and output criteria for major milestones and adhere to them. It is very easy to
build the wrong software. During the avionics project, time spent in the Requirements
or Design Phase was insufficient to mature the software baseline.

Lesson 12: Where possible, use real production hardware and/or commercial prototypes
to decrease the amount and scope of simulation. The simulator software must be treated I
as critical-path material if it is to be used during development. Simulator software also
should be documented as operational software because it will be critical when mission
requirements are being tested. (For example, the system may function in a simulator I
environment but fail in the real world.)

I
1--48 Department of the Navyi

I

I

U Lessons Lomd

Lesson 13: Do not approve systems until requirements are met because when system
requirements are not met and "as-built systems are approved, the contractor is no
longer responsible for fixing the system. The system should not be approved until
requirements are met. Design information should not be placed in Software
Requirements Specifications (SRSs) and Interface Requirements Specifications (IRSs).

1 1.13 PEO-SSAS, PMS-414, SEA LANCE
The SEA LANCE Anti-Submarine Warfare Standoff Weapon (ASWSOW) was being
developed to provide Vertical Launching System surface combatants and nuclear power3 attack submarines with a standoff-range missile for use against hostile submarines.
Before partial program termination in December 1989, the program was in Full-Scale

i Development (FSD).

SEA LANCE is a long-range ASW missile system developed to complement
ship-launched torpedoes and helicopter-borne weapons by providing a quick-kill
opportunity at long ranges. SEA LANCE also can be launched in a buoyant protective
capsule that floats to the surface from a submarine torpedo tube. The tactical missile
employs seven embedded processors for providing guidance, navigation, and flight
control functions. These tactical processors are the Guidance Electronics Unit (GEU),
which uses a Motorola 68020/68881 processor; the Inertial Measurement Unit (IMU),
which uses a Zilog Z8002 processor; the Pulse Driver Unit (PDU), which uses an
INTEL 8797 processor; and four Fin Actuator Units (FAUs), each of which uses an
INTEL 8797 processor. Software has been developed under the guidelines of
DOD-STD-1679 for each of these subsystems, the most extensive development effort
being for the Guidance, Navigation, and Control Program (GNCP) in the GEU.

SEA LANCE system software consists of the embedded GNCP; three embedded small
systems software programs (IMU, PDU, FAU); two embedded instrumentation/flight
termination system programs; and missile -test set, support, simulation, and
adaptor/interface electronics software. Ada was used as the PDL and the high-order
implementation language only for the development of the GNCP. The following
languages were used in all of the other SEA LANCE software development efforts:
IMU-Z8000 Assembly; PDU-PLIM 96; FAU-PU/M 96; Arm and Control
Unit-PL/M 96; Instrumentation Data Unit-68020 Assembly; missile test set
software-Pascal; support software-Pascal, FORTRAN, and Assembly; simulationIsoftware-FORTRAN and specialized languages. All discussion and lessons learned are
concerned only with the GNCP.

The GNCP is a digital computer program totally contained in nonvolatile memory, which
resides in th3 missile's GEU. It consists of approximately 20,000 SLOC (100,000
physical SLOC). The GNCP was being developed in accordance with the guidelines of
DOD-STD-1679 using the VADS. Before program termination, the GNCP had

3 Ada Implementation Guide 1-49

Im

I

Lessons Learned

successfully passed through program milestones such as Preliminary Design Review
(PDR) in August 1984, a Delta-PDR in February 1988, an In-Process Review (IPR) in

March 1989, and numerous Technical Interchanges between 1983 and 1989. Draft
versions of a test specification, test plan, and test procedures were developed in parallel
to the design. The GNCP was developed, tested, and integrated at the module and I
system levels in the contractor's Computer Program Development Laboratory (CPDL),
Operational Mock-Up (OMU) Laboratory, and System Integration Laboratory (SIL).
Performance and most preflight testing of the GNCP was done in the SIL to fully 3
exercise each function specified by the performance specification. The GNCP guided the
test missiles along two near-perfect trajectories in the only two SEA LANCE Contractor
Test and Evaluation flight tests in February 1990. 1
Because the GNCP had not yet reached CDR at the time of program termination, DON
never approved or accepted it. As part of the partial termination efforts, the GNCP I
design of record was documented in accordance with DON direction and archived.

As part of the partial termination efforts, a DON/Boeing study is in process. This study I
shows the impact of switching to the newer defense software development standards
(DOD-STD-2167A and DOD-STD-2168). The study is being conducted in accordance
with tt-e guidelines of Military Handbook (MIL-HDBK)-287.

Lesson 1: Use a consistent methodology throughout the program Requirements, Design,
and Coding Phases to facilitate tracing requirements to the code. SEA LANCE used a
functional decomposition method in developing the requirement specifications, then used
an Object-Oriented Design (OOD) methodology when developing the design specification
and the code. The two methods had to be combined. Because SEA LANCE was a
fire-and-forget weapon, the traceability of every performance requirement was considered
extremely important. Use of two design methods made it difficult to trace the
requirements from the Performance Specification into the Design Specification and then
into the code itself.

Lesson 2: Use a common PDL across the project. On medium- to large-scale systems,
the PDL will contain a wide variety of differing coding techniques and code fragments.
SEA LANCE used Ada as its PDL. It was learned that when Ada was used as a PDL, I
the software development and uniform coding standards should be enforced on the PDL
as well as on the actual Ada code. I
Lesson 3: Include and enforce a requirement for a minimum ratio of 50/50
comments-to-code in the contract, software development plan, or coding guide. Although
Ada is more readable than many other languages, it still requires a liberal use of U
comments to describe what is going on and why. Generally, Government code reviewers
needed more review time because of the lack of comments. 3
1-50 Department of the Navy

I

II

I Lessons Loomed

Lemon 4: Use an automatedformat utility or equivalent software tool to ensure unifornn
code appearance. This can be imposed through either QA or configuration management.
The SEA LANCE contractor did not always use a printer format utility or other
automated tools to ensure uniform appearance of the code. As a result, many Ada
specifications and bodies had a unique appearance, depending upon the individual coder.

I Lesson 5: Develop a style guideline for the Ada code and PDL before doing any design
work. The SEA LANCE contractor developed most of the PDL without a formalized
Ada coding guideline. The result was a PDL that sometimes differed from module to

I module in appearance, style, and coding format.

Lesson 6: Use software metrics from the beginning and define basic terminology between
Ada and the selected software development standard. The minimal use of software
metric tools and the defining of basic terms in the early development process gave rise
to conflicts between the contractor and the Government as to what constituted a module,
a line of code, or the difference between a PDL line of code and an operational line of
code.

I Lesson 7: Hammer out documentation requirements and licensing agreements between
the Government and the contractors regarding the use of third-party software and the way
it is to be tested and identified. The SEA LANCE contractor employed a proprietary
third-party ARTX, and the Government had trouble obtaining documentation on the inner
workings and testing of the Run Time Executive software.

U Lesson 8: Early in the development process, have the contractor provide a detailed list
of tools that will be used in the development process for the PDL/code and specify the
format that will be used for transfer of source code, executable code, and software
documentation to the Government. (Note that DOD-STD-1679 did not require a
Computer Resource Integrated Software Document [CRISDJ.) The Government had some
difficulty finding compatible computers to load in contractor-transferred software listings.
It also proved difficult to identify the exact format of software deliverables and the exact
configurations of the contractor-used development tools.

1I 1.14 NAVY WORLD WIDE MILITARY COMMAND AND CONTROL SYSTEM
(WWMCCS) SITE-UNIQUE SOFTWARE (NWSUS) PROJECT MISSION

I Lesson 1: It is always safer to build and test incrementally. Space and Naval Warfare
Systems Command (SPAWAR) PMW 161-5 is responsible for modernizing eight existing
site-unique COBOL 1968 applications with approximately 300,000 lines of Ada source
code on the NWSUS project. These applications are operational on the WWMCCS
Honeywell DPS8 mainframe and are being reengineered using Ada OOD with
DOD-STD-2167A because Honeywell is phasing out maintenance of COBOL 1968. This

Ada Implementation Guide

U1-5

I
Lessons Loomed 3

is within the WWMCCS Automatic Data Processing (ADP) Modernization (WAM)
Program. The NWSUS project, which is divided into three increments, is in the third
year of a 5-year effort. The first increment consists of six smaller applications with the
larger applications in the later increments.

Lesson 2: Planning for and designing in reuse yield long-term benefits. The project is N
in accordance with DOD-STD-2167A/2168 tailored for OOD. The existing COBOL
applications are used to capture requirements. Development is performed on a Rational 3
R-1000 model 40 with Honeywell DPS8 and IBM PC/XT clones as targets. With one
exception, the applications are Management Information Systems (MISs), and the
development makes extensive use of a common set of reuse components..

Lesson 3: For large software undertakings, use of automaned tools is mandatory. The
2167A documentation is being developed on the Rational, and a Computer-Aided I
Software Engineering (CASE) tool has been developed to validate the completeness and
consistency of the requirements, design, object/class specifications, and Ada
specifications. Two "4GL-like" productivity tools, used in conjunction with the reuse I
components to create application screens and reports, are used for rapid prototyping and
to support the generation and standardization of the user interface.

Lesson 4: Until the design baseline has been approved and frozen, it is inadvisable to
iniuaoef4l-blown coding. An initial CDR was completed for Increment 1 in April 1990,
and a second CDR to review redesign caused by a change of target was conducted later. i
Development of many of the reuse components was completed. Full development of the
Increment 1 Configuration Items (CIs) began and was completed in FY92. I
A full Object-Oriented Requirements Analysis (OORA) and specification for the
Increment 2 CIs were completed at the System Design Review (SDR), which was very
successful. Both the site customer and SPAWAR commented on the effectiveness of
OORA. The CDR occurred in October 1991.

Lesson 5: If a risk engineering approach (i.e., awareness, identification, technical
management)f alternative solutions) is taken to development, then it is possible to
undertake technologically challenging developments. Conventional wisdom says that a I
project with a new application area, a new programming language, or new personnel will
have trouble. NWSUS had all three; consequently, the project has had its share of
problems. The problems spanned development methodology and standards, target i
development environment (both Ada compiler problems and problems with the
compiler/operating system bindings), Ada training and startup, software reuse, contract
structure, and management. However, NWSUS has managed to survive these problems n
and is currently in a productive mode.

1-52 Department of .the Navy 3

" " • n a

£

The following lists some of the problems encountered and their solutions or
workarounds.

I Problem Resolution

I Ada compiler was unavailable for The Rational was selected as the host
Honeywell DPS8, and WWMCCS development environment for all
Information System (WIS) Workstation applications. Testing is first done on the
target was unavailable at contract start. Rational and then on the target.

Functional analysis was required for the The functional analysis approach did not3 first increment. work out well. Full object- oriented
analysis was used for the second
increment, and that approach has been
very beneficial.

I
The contract assumed that all CIs were The contract structure was modified to
the same, and a hard split between reflect the diversity of the Cls and the

Sdesign and code hindered A da O OD . R& D nature of the project and to allow
an efficient mechanism for reuse
components and prototyping.

Contract and management of reuse An internal. approach was used to
between applications initially was weak support reuse on a level-of-effort Work
and/or missing. Breakdown Structure (WBS). DON

recognized- the need -in the contract
I update.

DPS8 Ada compiler was late and not The workstation target was changed to a
mature; the WIS Workstation was PC. Redesign is under way for the new
canceled. target and for a solution of the problems

encountered with the DPS8 Adacompiler.

Initial training was affected by the Initial training was too compressed and
" 3-week syndrome.* not project specific. NWSUS now uses

a part-time, 2-month, in-house training
seminar with a "lab session" that uses
project deliverables.

Ada Implementation Guide 1-53

SAIGud

I

Lessons Learned 3
OOD proved to be labor intensive during Ada OOD proved to be a very effective
the first increment. development approach because it gives

much more visibility and control of the
analysis and design. The drawback is
that this requires much more effort. We I
found no available CASE tools that
supported it, and too much had to be
done manually. The validation process I
was automated for the second increment.

1.15 EVENT-DRIVEN LANGUAGFICOBOL-TO-Ada CONVERSION
PROGRAM I

From 1987 to 1989, the Marine Corps replaced its aging inventory of ruggedized IBM
Series-1 minicomputers with hardened IBM-compatible microcomputers. The transition
required that all of the systems originally programmed for execution on the Series-1 be
ported to the microcomputer. Approximately 25 systems were written in Event-Driven
Language (EDL) or COBOL. At about the same time, Ada was introduced as the
standard programming language for DOD. The close proximity of the two events
provided the Marine Corps with an opportunity to gain valuable expertise in the new
DOD standard programming language through reverse engineering of well-known
systems. At the time, the Marine Corps had no in-house Ada programmers and no
expertise in its associated design methodologies.

The reprogramming effort was divided among three Marine Corps Central Design
Programming Activities (CDPAs) along functional boundaries. In the process of the I
reprogramming effort, the Marine Corps learned several lessons.

Lesson 1: Training is essential for both technical and management personnel. To take
full advantage of Ada, designers and analysts must be familiar with the principles of
software engineering and the way Ada supports those principles. Because few Marines1
had knowledge of Ada design methodologies at the outset, the tendency was to recode
the original system designs in Ada. The original system designs were often derived
directly from the existing EDL/COBOL code. Because neither of those languages I
contains all of the Ada constructs, the advantages of Ada did not always materialize.

Lesson 2: Programmers require 4 to 9 months of training before they become proficient. I
It takes 4 to 9 months of formal and on-the-job training before a programmer becomes
proficient in Ada. However, after that initial training period, the programmer should be
capable of producing code very rapidly when given a good design and programming
library./

1-54 Department of the Navy 3
I

I

I Lessons Learned

I Lemon 3: Military transfers often result in a loss of invesonent in Ada training.
Because proficiency in Ada can take as much as 9 months to attain, a newly trained
programmer is productive only for a portion of his or her tour. Unless steps are taken3 to ensure reassignment to another Ada shop, the training investment is likely to be lost.

Lemon 4: Systems originally written in languages that predate Ada that must be
converted to Ada should be redesigned, not translated. After the first few projects, it
was evident that inefficiencies in the original designs were being duplicated in the Ada
translations.

Lesson 5: Ada facilitates reuse. -During the conversion effort and on subsequent

projects, the Marine Corps found that on an average project, only 45 % of the code had
Sto be written from scratch; the other 55% came from reuse. Reusable code generally

came from previous projects and development tools (e.g., AdaSAGE). In recent
projects, the Marine Corps has consulted Ada software repositories for reusable code in
an effort to reduce development time and effort wherever possible.

Lesson 6: Ada lends itself to efficient code and high programmer productivity. The
syntactical structure of Ada helped the Marine Corps implement many of the software
engineering principles. Modularity, information hiding, localization, and abstraction
were easily implemented.

Lemon 7: Development tools are essential. Initially, lack of a good tool kit hindered
the conversion effort. In-house tools were built to overcome Ada file limitations and to
enhance screen management. Shortly thereafter, the Marine Corps funded the
development of AdaSAGE, which reduced development time by as much as 50%.

I Lesson 8: Development and maintenance time can be significantly reduced by applying
software engineering principles and capitalizing on reuse. The Marine Corps estimates
that from 15% to 60% reduction in development and maintenance time are being
achieved when software engineering principles and reuse are applied.

1.16 SHIPBOARD GRIDLOCK SYSTEM WITH AUTO-CORRELATION
The Shipboard Gridlock System with Auto-Correlation (SGS/AC) application plays a
fundamental role in the coordination of multiplatform shipboard systems by processing3 the ships' data and remote track data within a common positional frame of reference.
This application performs gridlock processing to correct for sensor and navigational
errors while correlating the identified tracks from remote systems. This software-basedU application is characterized by hard deadlines; multiple external interfaces; and
time-critical, computationally intensive processing. The SGS/AC is deployed on the
Aegis cruiser/destroyer class of surface ships.

3 Ada Implementation Guide 1-55

Im

a
Lessons Lemed 3

Lesson 1: Before commitment is made to large projects, the methods and tools to be
used should be exercised. Quantitative evaluation of the expended resources should lead
to better estimates for the work contemplated. This project is being performed by the
Naval Surface Warfare Center (NAVSWC). It can be characterized as a DEMVAL
development effort that parallels the SGSIAC program implemented in CMS-2 for either I
the AN/UYK-20(V) or the AN/UYK-44(V) target processors. This parallel effort uses
ALS/N as the host development tool set and targets an AN/UYK-44(V) processor
configuration. An additional objective of the effort is to generate a comprehensive 3
comparative analysis of the CMS-2 and Ada developments that includes quantitative data
and information pertinent to future Aegis-class combat direction system upgrades. a
Lesson 2: The Ada code itself will have major architectural and design impact on a
system, therefore, the two must be worked on simultaneously. From the outset, it was
recognized that to simply translate CMS-2 code to Ada would be technically feasible but I
would not produce any long-term benefit.

Lesson 3: A project should always try to build a little and test a little, building and 1
testing the harder things first (e.g., system services and communications). The new
design effort attempted to minimize the run-time overhead, include portability in the
design, manage interfaces to get best-case response under worst-case loads, and maximize
robustness and predictability. A multiphased build plan was initiated.

Lesson 4: A project should always attempt to involve the production hardware as early I
in the program asfeasible. Successful simulator and emulator runs mean nothing when
the delivered code does not work on the real hardware. Acceptance requirements must I
be set correctly, or development schedule reserve must be allocated to absorb such
difficulty. Things will go wrong, and this should be anticipated. / levelopment is
being carried out on VAXs, with DEC Ada being used during the ea, -ode and Test 5
Phases. The target AN/UYK-44(V) processor requires special cards to run the Ada
code. The particular configuration was unavailable until well into the project. l

Lesson 5: The team must be well trained in the use of the supplied tools, and the tools
must work as advertised. The ability to fully define a working set of integrated tools
early in development and to acquire them as they are needed is critical. For example, a
a symbolic debugger is an absolute necessity.

Lesson 6: Adherence to good engineering practices is necessary when designing the I
system and its hardware and software. Although this project is a relatively small
software undertmking, establishing and enforcing sound software design methodology and
development processes, such as coding standards, documentation production, and code I
reviews, help overcome lapses in memory, personnel turnover, lack of focus, and lack
of requirements to trace verified design or code. I

1-56 Department of the Navy 3

I

£

I Lessons Learned

I Lesson 7: Until more technological progress is achieved, the potential for large-scale
software component reuse us lumited. This project has shown that achieving real-time
developments requires meeting hard deadlines and getting close to the target machine,3 which often conflicts with the concept of code component reuse.

L17 SUBMARINE COMBAT CONTROL SYSTEM MK2I The Submarine Combat Control System (SCCS) Program focuses on consolidating the
various Combat Control and Defensive Weapon Systems (DWSs) software configurations
that are in use on deployed SSN-688 and SSN-726 class submarines. These vessels' constitute both the defensive (attack) and strategic platforms for the DON submarine
force. The SCCS upgrade will either upgrade or replace obsolete general-purpose
computers, peripherals, display consoles, and weapons simulators. This software
upgrade provides a common software package for both classes of submarine and
incorporates operational and maintenance-related enhancements. The SCCS Program also
includes the development of systems to support crew training and land-based testing.

The software for the SCCS consists of new development software and firmware,
modified Government-Furnished Software (GFS) and firmware, and unmodified3 commercial software and firmware.

Most of the modified GFS software has been written in either DON-standard CMS-2
HOL or in ULTRA-32 Assembly. The project mission is to develop a maintenance
capability that improves the chances for coordinating evolutionary change in these
shipboard systems.

The new portion of the SCCS MK2 program involves integrating a replacement
human-computer interface display console and associated Ada application software into
the existing deployed systems. The approximate language mix is as follows:

TLanguage SLOC
CMS-2 & ULTRA-32 2M (GFS/modified)
Ada 581K (new)
C 279K (commercial)
FORTRAN 149K (retained)

The Ada SLOC are being developed under DOD-STD-2167A requirements. The
CMS-2, FORTRAN, and ULTRA-32 software were all developed under DOD-STD-
1679A.

i The paragraphs below summarize, the lessons learned about Ada on this project.

Ads Implementation Guide 1-57

Is

I
Lessons Learned3

Lesson 1: Ada experience and training are needed. The majority of experienced
personnel in this defense area had little or no experience with Ada and modern software 3
engineering practices. It was necessary to evaluate bidders on their in-place Ada
expertise and on their ability and/or plans to acquire or build on that base. To properly
monitor or manage the development, in-house capabilities had to be built up in these j
areas. It is especially important to use hands-on training as close to development as
possible or during development.

The relative immaturity of candidate Ada products, coupled with the specific need to
handle many foreign language interfacing requirements, meant that the developer team
needed a very close relationship with their candidate Ada development tool suppliers.

Lesson 2: Support software, practices, and products need constant attention. This
undertaking required that the chosen contractor be capable of using automated tools to
manage and technically execute this large programming development. To that end,
source selection criteria were established and used during the source selection process.

Each project has to generate its own Computer Resources Life-Cycle Management Plan
(CRLCMP) and Integrated Logistics Support Plan (ILSP) before the Defense Acquisition
Board (DAB) Milestone I. However, unless the Government defines the total I
development environment fully and requires its use as part of the proposal, difficulty will
ensue as differences develop between the methodology, tools, and equipment used by the
developer and those specified by the Program Office. Typically, the parties involved will
have opposing agendas. Coupled with the inability of many tools to scale up to
programming-in-the-large or even to exchange data structures efficiently, this diversity I
will create problems that all parties will need to address and work out on a continuing
basis. Examples of areas where this problem resolution may be required include tool
standardization; data exchange; version management; electronic communication; data
rights; documentation uniformity; configuration management; error identification,
analysis, and elimination; product ownership; component integration; and testing.

Lesson 3: The need to interface with other language programs may constrain the type
of Ada features that can be used. The Ada language design run-time concept does not
map directly to the hard real-time environment within the MK2 system. Therefore, I
attempts must be made to overlay the Ada model on top of the inherited real-time
operating system, which has necessitated eliminating certain Ada features (e.g., tasking).
Other Ada features not used include generics, dynamic allocation, and full-range data I
typing. Performance also has suffered, and portability has been minimized. The need
to interface with other language programs may result in a loss of the advantages of strong
Ada typing and may affect debugging, testing, certification, and the like.

I
1--58 Department of the Navyi

I

I

I Lessons Lermed

I Lesson 4: To ensure programming uniformity, a style guide should be developed and
used across all developer teams. Use of a common style guide will enhance overall
maintainability of developed code. It also will help control Ada feature utilization, and
the code can be automatically checked by applying a preprocess tool. The use of a
"pretty printer" postprocessing mechanism for human-readable outputs could also enhance
software maintainability.

U 1.18 P-3C UPDATE IV Ada DEVELOIPMENT
The objective of the P-3C UPDATE IV Program is to develop a fully integrated,
distributive bus, data processing system with improved mission avionics systems. The
full weapon system is to be tailored for both retrofit into P-3C predecessor aircraft and
forward fit into successor Maritime Patrol Aircraft. The program successfully£ progressed through the DEMVAL Phase between November 1984 and April 1987. After
the Milestone H decision in July 1987, Boeing was awarded an FFP contract for FSD to
develop and fabricate the system, qualify vendors, install the system into a P-3C
platform, and conduct vendor flight tests by July 1990. The schedule called for
Government testing of the flying test bed between July 1990 and February 1992 withsubsequent approval for full production to be granted in April 1992.

The program includes the distributive bus data processing Distributed Processor/Display
Generator Unit (DP/DGU) system, which consists of six Motorola 68020-based processor
modules/DGUs tied together by a dual 1553B bus architecture. Major mission systems
avionics include the AN/UYS-2 acoustic processor, the Motorola 68020-based
AN/ALR-66(V) 5 Electronic Support Measures (ESM) system, and the AN/APS-137 (V)
3 Inverse Synthetic Aperture Radar. The data processing system and ESM are CFE, and
the acoustic processor and the radar are GFE.

* The program has been delayed by both hardware and software development difficulties.
Boeing was expected to deliver the flying test bed to the Government between October£ 1992 and February 1993.

As one of the first large Ada developments (over 1 million SLOC), the P-3C Update IV
program has been a pioneer in the use of Ada. Boeing personnel have made several
correct choices in developing software in a new programming language for which the
software development environment was immature or limited. First, Boeing's choice of
using the VADS was a good one. VERDIX has been a leader in the development of Ada
software engineering tools, and VADS was one of the best Ada software development
environments available at the time of program initiation. Equally good was the choice
of the Ready Systems kernel as the core for the operating system. Finally, Boeing's
naming convention for Top Level and Lower Level Computer Software Components
_ (TLCSCs/LLCSCs), packages, units, and identifiers has also been beneficial. The

I naming convention has been very useful in tracing requirements to design and code and

Ada Implementation Guide 1-59

I

I
Lessons Learned3

is helpful when reading the PDL and computer source code. The paragraphs below
summarize the lessons learned about Ada use in this program. I
Lesson 1: Ada code requires more up-fron time and effort, and the learning curve s
s$owr. The software size and development schedule estimates were understated by all
parties during the initial phase of the program. The table below lists SLOC estimates at
program initiation, at completion of PDR, and in August 1991.

The final SLOC total should exceed August 1990 estimates by more than 10% before
completion of software development. The initial sizing estimates will be in error by
approximately 100% at program completion.

The Boeing estimates for the software development schedule were predicated on available
non-Ada HOL usage. Individual task estimates were too short and did not anticipate the :
increased up-front work in Ada design and coding that was needed. This fact and a
slower than anticipated learning curve for coders resulted in a realized progress rate of
85 % of plan for coding, testing, and integration activities.

Lesson 2: Increased facilities and memory are required to accommodate Ada code. The
physical number of hardware tools was initially insufficient to support a software
development of this magnitude. This lack of hardware capacity was experienced in all
areas of the software development environme,.., from the Sun workstations used during 3
initial code and testing to the System Avionics Integration Laboratory (SAIL) used for
system integration. More Sun workstations were needed to avoid bottlenecks in coding,
both in the SDL and at the subvendor locations involved in tactics and correlation
programming efforts. The Boeing SDL grew from two Sun 3/280 server stations with
33 Sun client workstations in the fall of 1987 to five Sun 3/280 server stations with 45Sun client workstations in the fall of 1990. 4
The SDL mainframes used for the target hardware software build process could not
construct a software build in an acceptable period. Initial software program builds took
up to 1 week to compile and link. The SDL initially contained one VAX 111785, one
VAX 11/750, and two VAX 8700s. To accommodate the software development
demands, the SDL was upgraded by the fall of 1990 to include one VAX 111785, one I
VAX 11/750, two VAX 6000/440s, and one VAX 8600. Disk storage capacity was also
increased to approximately 40 gigabytes (GB). This increase in hardware capacity has ft
reduced system build time to approximately 8 hours.

Initial plans called for target integration to be conducted on a single SAIL that contained
as much actual UPDATE IV hardware as possible, including the full DP/DGU system.
A DON SAIL was held at Boeing instead of being delivered to DON to accommodate
the effect of the integration overload on the Boeing SAIL. 5
1-60 Department of the Navy

I

3 Lesson* Learned

Cmpos Most and Find Je 1968 AqusW 191
Software Offer (BAFO)I Ca~dm(Apri 1MS
its (CSCD)

DP/DGU 383,530 468,654 565,431

I Minimum Mod. 0 37,900 52,764
Software (dMS)

Elcronic uppost 52,340 58,000 55,516
Measure (•SM)

SAcoustic Intrfi 68,90 68,900 97,371

Unit (MIU)

3 AN/UYS-2 37,320 38,000 147,500

Systm Avionics 218,600 172,870 211,766

Laboratory (SA.L)

Integration Test 5,000 96,900 109,359
Software, (TS)

Software 37,=50 45,S00 62,800
Developmtoe
Laboratory (SDL)
(B0009-
Developed Code

Only)

TOTAL 803,190 986,724 1,302,507I
Leson 3: Some soJtware de opmenW tools arne i at and have not been provenfor
many app/icadow. Immaturity and/or unavailability of software development tools also
complicated early software development efforts. A comprehensive Ada support
environment was unavailable for early development work. Available tools were
immature and were not intqglred into a comprehensive package. In addition, available
tools were very resource intensive, which exacerbated the previously mentioned hardware
problems.

A
3 Ada Implemenatlon Gud 1--S1

1

a
Lessons Learned3

The Sun workstation software build installations initially required 1 week and contained
numerous errors because of excessive operator intervention. Upgraded Sun workstation
software and software tool/automation development resulted in eventual turnaround times
of 1 day. Error reduction was excellent as a result of the automated tools.

The initial SDL VAX systems were plagued with software and hardware faults, which
resulted in numerous system crashes and an average downtime of 1/2 day per week. By
applying pressure to Digital Equipment Corporation, fixes were put in place over a 3
period of I year, which resulted in mature, stable system performance.

The VERDIX compiler was selected for use after available compilers were screened by I
the procedures recommended in 1987. However, numerous early software and hardware
errors were encountered before stable performance was achieved. As late as January
1991, the VERDIX Ada compiler with the version 6.0 program was found to have an a
optimizer error. After the compiler was corrected, the UPDATE IV program required
a total recompile to remove inefficiencies scattered throughout. 3
Lesson 4: Tailoring of DOD software development standards must be addressed to
accommodate Ada-unique capabilities. Although DOD-STD-2167A does not require that
software development efforts follow the traditional waterfall model associated with DOD I
software developments, it does not provide guidance on alternatives. Ada forces more
detailed design earlier in the software developments than do previous languages because
of the Ada package specifications and the strong data types imposed by Ada. These m
factors encourage a pseudo 'rapid prototyping* approach rather than the traditional
waterfall during the design phases. 3
DOD-STD-2167A does not address distributed processor systems or multiple CI
developments. Ada was designed specifically for a modular approach to large software
developments. For example, DOD-STD-2167A does not adequately address testing
among multiple CIs or the Integration Phase issues. DOD-STD-2167A documentation
neither reflects Ada terminology or structure nor addresses an appropriate approach to
documentation development.

Leson 5: Although the adoption of Ada was envisioned to enhance the software 3
development process, use of Ada does not guarantee sound software engineering practice.
Specific areas where Ada does not substitute for sound engineering practices include:

&itablishment of system and sojfware requirements. A Requirements Analysis
Phase must be conducted to produce appropriate system-level requirements that are
then allocated to hardware and/or software as appropriate. Participation by both I
contractor and Government systems engineering personnel throughout this
evolution is critical to program success. I

1-62 Department of the Navy 3

I

I
I Less" Lerned

e Enforcement of control points. The contract must require and the Government

must enforce a variety of control points. These control points must take into

account Ada-unique development approaches where the approach differs from the

traditional DOD-STD-2167A waterfall model. Allowing the contractor to proceed

Ipast these control points, even if he does so *at risk," imposes significant risk on

successful program completion.

e * Configuration management. Use of Ada does not preclude Government

requirements for establishing and controlling the functional, allocated, and product

baselines. Use of Ada may complicate control of the software allocated baseline

by inviting inclusion of design detail into the software requirements documents.

Although Ada forces more detailed design earlier in the software development

process, the temptation to include this detail into the software allocated baseline

must be avoided.

I * Testing. The mapping of Ada constructs to DOD-STD-2167A "units," "modules,"
and "system" is imprecise and can lead to inadequate testing of Ada code. The

DOD-STD-2167A premise of fully qualifying a software entity at one level of

3 abstraction before combining that entity into larger integrated components should

be maintained. A software entity should not be considered fully qualified solely

because the higher-level entity into which it is incorporated successfully passes its

qualification requirements.

Lesson 6: Strict configuration management and control are reqduired to enforce discipline

I to counter complexty-induced confusion. Lack of familiarity with Ada, a slow learning

curve for new coders, and schedule delays reemphasize the absolute requirement to

maintain strict software and hardware control within all facilities. With differing levels

of coding, unit and package testing, informal integration testing, and formal systems

testing occurring in the respective facilities; strict configuration management within the

facilities and within the software development library was mandated. The Government
audited the initial Software Development Folders (SDFs) and found them deficient.

Replication of numerous informal tests could not be accomplished from the SDFs, as

ft written.

1.19 STANDARD FINANCIAL SYSTEM REDESIGN
The Standard Financial System (STANFINS) is part of the total U.S. Army accounting
system and serves as a field-level system for general funds servicing posts, camps, and

stations. The original STANFINS was a batch processing system written in COBOL.

A STANFINS Redesign project (STANFINS-R) was undertaken to overhaul the system

and make it interactive.

5 Ada Implementation Guide 1-63

I

I
Lessons Lenmd 3

STANFINS-R consists of two subsystems-Subsystems I and Ul-to be developed
independently. This large system is designed to handle mainstream accounting
applications such as the general ledger, accounts receivable, fixed assets, and cost
accounting standards. The system consists of 500 programs with approximately 2 million
lines of code, and it generates 147 reports. The contract for developing Subsystem II,
which originally was viewed as a large COBOL project, was awarded to the Computer
Sciences Corporation (CSC) in the fall of 1986. However, the contract was modified in
the spring of 1988, and Ada was designated as the development language. The first pilot
teams were formed in the spring of 1988, and the actual writing of code and Ada
bindings began in the fall of- 1988. Software development testing and software
qualification testing started in the summer and fall of 1989, respectively. Most of the I
system tests have been completed, and part of the project is operational.

"The project was developed in an automated program support environment composed of I
six Rational R-1000 machines. The code was eventually ported to the target
environment, an IBM mainframe running OS/VMS. i
Despite delays in the implementation schedule and budget overruns, the STANFINS-R
project indicates that there are several advantages to using Ada in information systems
development. For example, programmer productivity has been quite high (594 lines of I
code per staff month), almost double that of typical COBOL projects, and the quality of
the software, as evidenced by the test results, appears to be uniformly high. 1
In many ways, STANFINS-R is a prototypical information systems project from which
many lessons, including those described below, can be learned about Ada use. i
Lesson 1: The avilable pool of developen skilled in Ada is lbnited. When maldng
projections about project costs, the issue of the limited number of available personnel
skilled in Ada and the need for training should be considered. STANFINS-R originally
was conceived as a COBOL project. When denial of the waiver resulted in a switch to
Ada as the development language, it became apparent that the available pool of
developers with Ada/MIS experience was small. The existing staff of COBOLprogrammers had to be trained in Ada, which caused delay in project execution.

Lesson 2: Few compilers and support tools are avalable for i~formadon systems
development in the IBM environments that use Ada. STANFINS-R demonstrated that
Ada is a viable language for developing information systems in environments where |
COBOL has been the dominant development language. However, the IBM environment,
which is the primary environment for developing such systems, is poorly supported in
terms of compilers and support tools. STANFINS-R was the first Ada application of its I
kind and size to be developed to run on an IBM OS/VMS environment. Because of the
lack of available tools to support Ada in this environment, a set of support tools, such I

1-64 Department of *he Navy 5
I

j
I Liessns Learned

I as code generators and screen painters, had to be developed as part of the project.
Moreover, the compiler, which was developed by Intermetrics but had not been
validated, did not provide support for a Cl-based teleprocessing monitor; therefore, the

I contractor had to write one. In addition, the DBMS package chosen for the project (i.e.,
Datacom DB) did not contain a suitable Ada interface; therefore, a hook had to be
written. For Ada to be a feasible language for use in developing information systems,

i the issue of availability of compilers and support tools must be addressed. Most Ada
vendors do not offer products in this environment. The dominant compiler in this
environment (offered by Intermetrics) has not been validated. The unavailability ofR suitable compilers has been a significant factor inhibiting the use of Ada in information
systems and has created an adverse cycle of events. On the one hand, because Ada is
not the preferred language in information system development, vendors have little
incentive to offer products to work on the platforms on which such applications are
traditionally developed. On the other hand, the paucity of suitable products works to
limit the consideration of Ada in developing information systems. Successful
implementation of the mandate to use Ada will require a suitable resolution of this cycle.Sua
A plausible way to address this problem would be to create appropriate incentive
structures that will encourage vendors to develop such products.

Lesson 3: Systems developed in Ada may be more maintainable than those written in
COBOL. Although it is too early to state definitively that Ada maintenance requirements
are lower than those for COBOL, preliminary evidence indicates this may be so. Part
of STANFINS is operational and has a maintenance staff of six programmers, a much
smaller team than would be required to maintain a system of similar size that uses
COBOL.

Lesmon 4: In principle, portability is ensured by developing code in Ada, however, in
practice, portability is limited. Porting the code from the Rational environment to the
target environment was problematic. For a variety -of reasons, parts of the code that
worked well on the Rational environment did not work in the target environment. For
example, nested generics would not work on the target although they tested and compiled
on the development machine. Executable code sharing could not be implemented on the
target, ther.by causing the executable sizes to grow to unmanageable proportions. Other
features, such as representation specifications, Unchecked-Conversion, and Pragma
Inline, were not implemented in the target compiler.

Developers in this project had significant problems with porting code from the
development environment to the target environment. What compiled on the Rational R-
1000 also compiled on the IBM mainframe using OS/MVS. However, lack of compiler
support for the teleprocessig monitor and interfaces to the DBMS necessitated the£ creation of low-level functionally limited code, thereby limiting portability to other

Ada Implementation Guide 1-65

i

a I I

Lessons Learned3

environments without significant modifications. Thus, while most of the code can be
ported to a VAX/VMS environment, for example, complete portability would require I
significant alterations.

Lemon 5: Ada has special advantages that make reuse more feasible and enables the
benefu of reuse to be realized at several levels. At one level are specific packages and
templates that can be used in other parts of the project or in other projects. While the
same could, in principle, be accomplished with code written in COBOL, the use of
generics and packages gives Ada a special advantage over COBOL that makes such reuse
much more feasible. There was significant use of these templates at STANFINS. The
issue of reuse can also be viewed in terms of tools that are developed for specific I
projects but with suitable modifications can be used in other projects. The STANFINS
project, for example, entailed the development of Program Structure Language
(PSL)/Program Structure Analysis (PSA) tools for writing design specifications. These
tools can plausibly be modified and reused in other projects. A follow-up project, the
Standard Army Financial Accounting and Reporting System (STARFIARS), demonstrates
reusability at both levels. Although STARFIARS is likely to be at least 33 % larger than
STANFINS, the project is scheduled to take 50% less time than STANFINS. The
rationale for this fast-paced schedule is twofold: STANFINS provided a useful learning
curve from which STARFIARS will benefit, and more important, the implementation of
STANFINS has created system templates and tools that can be reused to create the new
system with greater productivity. i

Lesson 6: Tailoring of DOD software development standards must be addressed to
accommodate Ada-unique capabilities. The documentation required for STANFINS-R, 1
which was prepared according to the requirements mandated in AIS DOD-STD-7935-A,
was inordinately large. While the exact figure is difficult to ascertain, a conservative
estimate is that every line of code generated at least 10 lines of documentation. The a
voluminous documentation clearly limits its usefulness and points to the need to

reexamine current documentation standards.

1.20 RECONFIGURABLE MISSION COMPhUTER PROJECT
The Reconfigurable Mission Computer (RMC) Project sought to demonstrate that
modularity in both hardware and software would reduce the cost of developing new or I
upgrading existing embedded systems. The thrust of the project was to exploit hardware
and software commonality in different embedded systems. 3
Lesson 1: For small technology demonstration projects, anticipate a lack of Ada
compilers for small, embedded computers that use advanced microprocessors. Primary
constraints on missile general-purpose data processors are size, power, and cycles per
second. There is always a drive to use the most advanced microprocessors available toget as much performance as possible in as small a space as possible while consuming the I

1-66 Depaertent of. the Navy 1

I

£

ILessons Larned

least power possible. Ada compiler vendors, however, are not going to market acompiler until they can determine that it is financially realistic to do so. Small
technology demonstrations that want to use Ada in the software development may be

I restricted to using processors for which a commercial Ada compiler exists.

Lesson 2: Plan on allocating a portion of the CPU utilization to the inefficiencies ofI using a modular design approach and design inplementadion in Ada. The RMC project
goals included creating portable Ada programs, running them on several platforms,
measuring the code change required, and learning what it took to make an Ada program
portable. A modular design based on Abstract Data Types was used to hide machine
interfaces. We also hid the "goodies" the compiler vendors offered outside of the Ada
language behind our own package interfaces. The results were a reduction in

Sperformance that can be made up with a higher throughput CPU. However, any
throughput increase realized by upgrading platforms is usually given to the analyst to
develop more capable algorithms. A modular design in Ada can reduce code, test, and
modification times and is well worth the extra overhead incurred.

Lesson 3: Plan on throwing away some or all of the first software designed. After the
first design and implementation of demonstration software in Ada, it was felt that the
implementation would be improved the next time. Fortunately, we had the luxury of
doing just that, and we understood and implemented a much better software system the
second time. It is not necessary to wait until all of the tools and hardware are in place
to begin coding. As much of the design as possible should be implemented as soon as
possible. A commercial prototype or similar system should be used to gain
understanding of the system, and the first cut should be used to verify that the
requirements can be met.

B Lesson 4: Dedicate an individual or group (depending on the size of the project) to the
Ada-hardlwre interface. Ada touches the 1iron" in several places: the target debug
monitor for on-target program development; the kernel for time, memory, and processor
management; and device drivers used by the application. A person or group needs to be
familiar with hardware registers, ports, memory locations, and the low-level facilities
available in Ada. Evolving hardware architectures and compiler upgrades make this an
absolute necessity.

1.21 INTELLIGENT MISSILE PROJECT
The purpose of this project, which is funded by the Office of Naval Technology under
the Missile Support Technology block NW2A, is to develop generic software techniques

and to design tools that will allow the use of knowledge-based Artificial Intelligence (AI)
paradigms for control and decision-making functions in missiles. These capabilities are
to be implemented in Ada. Having these features will yield more adaptive and
autonomous missile operation.

Ada Implementation Guide 1-67

I
Lessons Lomed

A simple, forward-chaining inference engine was developed and tested on several
computers. Next, a decision-tree type of expert system was developed along with a tool
(in Ada) to generate the Ada decision tree. (None of the commercial expert system
shells could do this at the time.) Finally, a hybrid system was developed that combined
the flexibility of an inference engine with the speed of a decision tree. Execution
performance was measured for all three types of systems. The decision tree was the
fastest, and the hybrid system was a close second.

Lesson 1: System analysis must be conducted at the beginning to ensure that adequate
resources (e.g., compilers, hardware pkaform) will be available for meeting the system
requirements. The tendency to favor particular hardware or compiler systems just U
because they are available must be avoided. Choosing a particular CPU simply because
it is available can lead to problems that could have been avoided by performing adequate
system analysis. One problem encountered was that the CPU needed an Assembly I
program to be downloaded and run to "kickstart" the CPU so that Ada code could be
downloaded and executed. The CPU was hardwired to have a certain memory
configuration that was incompatible with the mandatory location of the Ada code.

Similarly, using a compiler that already is on hand without ensuring it can do the job also
will lead to delays. In this case, the compiler had been validated for a particular single-
board computer. Although the vendor stated that it should work with the chosen target
board, the vendor would not provide any help because compilers for other CPUs had amuch higher priority. This happened in spite of the fact that the highest level of
maintenance available had been purchased for this project.

Lesson 2: Although Ada has many features, it does not have every feature from every i
language; for example, Ada is restricted in the type of Al systems for which it can be
used. Because it is a procedural language, Ada has some restrictions, particularly with
regard to certain Al applications. In LISP, an arbitrary string nf characters can be
handled in three different ways: as text, as a variable, or as a function to be called.
This ability, which is very useful for building production-type expert systems, results
from LISP's being not only a language but also an environment. Because Ada is only
a language, there are restrictions on the types of production expert systems that can be
implemented. Although it would be possible to implement the equivalent LISP a
environment in Ada, LISP is too slow and big for a missile system, which was the reason
for its not being used in the first place. 3

1
1

1--68 Department of the Navy 1

I

B
I

i Appendix J
FY91 Ada Technology Insertion Program Projects

This appendix provides a brief description of the Ada Technology Insertion ProgramI (ATIP) projects funded in FY91. The projects fall into three primary
categories-education, bindings, and technology. For more information on these
projects, contact the Ada Joint Program Office at (703) 614-0209.

I J.1 EDUCATION
Of the 14 projects funded, one addresses Ada education. It is the "Undergraduate
Curriculum and Course Development in Software" given by the Advanced Research
Projects Agency (ARPA).

This program will support the development of educational materials using Ada that
will be widely distributed to and used by educators. It will enhance the software
engineering content of courses and course sequences in computer science curricula
and will demonstrate, through pilot implementations, the feasibility and viability of
a comprehensive undergraduate curriculum in software engineering using Ada.

J.2 BINDINGS
The eight bindings projects are grouped into the following categories:

I Government Open Systems Interconnection Profile (GOSIP)
* Management Information System (MIS) Mathematical Binding
* Military Standard (MIL.STD)-15533 Portable Operating System Interface for UNIX (POSIX)
* Structured Query Language (SQL)g * XWindows.

Ada Application Program Interface to GOSIP Network Servicesa[Defense Information Systems Agency (DISA) (Formerly DCA)

GOSIP is a family of protocols that supports network services. Although Ada
"bindings to GOSIP exist, this project will develop a robust Ada/GOSIP binding for
standardizing the interface of Ada applications to GOSIP network services.

Decimal Arithmetic
U.S. Air Force

Compiler vendors support decimal arithmetic but in nonstandard ways. This project
will standardize a mechanism for realizing COBOL-style exact decimal arithmetic in

3 Ada Implementation Guide J-1

I
FY91 ATIP Projects

Ada 83. It will provide sufficient functionality to handle financial applications with
at least 18 digits of precision. It will offer early availability with Ada 83 compilers,
notational convenience, ease of transition to Ada 9X, and run-time efficiency.

Generic Avionics Data Bus Toolkit
U.S. Navy

This project will offer a standard software interface that can be reused for various
MI.,-STD multiplex data buses with minimal changes. The initial software will focus
on the MIL-STD-1553B protocol because this protocol is the most prevalent, but it
will be designed to be configured for expansion to other types of data buses. An
integrated MIL-STD-1553B monitor with debugging tools is planned.

POSIX/Ada Real-Time Bindings 1
U.S. Air Force/Navy

POSIX defines a collection of system services that provide portable application 1
interfaces to operating systems. The POSIX effort is divided into several areas that
cover the range of operating system services. These include basic system services,
real-time services, security services, user command interface, user graphical interface,
network services, mail services, and system administration. This project will develop
draft Ada bindings for the real-time service area (POSIX 1003.4 and 1003.4a
standards), work with the Institute of Electrical and Electronics Engineers (IEEE)
standards organization to promote the use of these drafts as a starting point for
development of standard Ada bindings, and develop a test prototype implementation
of Ada tasking using the 1003.4 (real-time) and 1003.4a (threads) services.

Ada SQL Interface Standardization 5
Defense Advanced Research Projects Agency (DARPA)

SQL is a set of standards associated with relational databases and data dictionaries. 3
The SOL Ada Module Description Language (SAMeDL) provides an interface
technology for Ada applications accessing SQL database management systems
(DBMSs). The ATIP will fully document both the SAMeDL as a language and its I
supporting methodology, respond to the needs of the standardization process, and
coordinate efforts of potential vendors of SAMeDL processors as well as identify
needs of potential SAMeDL customers to assist the transition to the SAMeDL

JI
J--2 Department of th1av

I

SFY91 ATIPr0Ject

I A SAMeDL Pilot Project on SIDPERS-3
U.S. Air Force/Army

I A SAMeDL tool set will be developed consisting of a SAMeDL Module Manager
and a SAMeDL compiler. These tools will target a designated database running on
an Everex Personal Computer (PC) under UNIX. Both an existing application and

I a new application will be developed using this tool set. This effort is designed to
prove that the SAMeDL tool set has the robustness, maturity, and potential for
reusability to be employed as the Ada/SQL binding of choice on any large
Department of Defense (DOD), Ada Management Information System (MIS)
program.

5 Common Ada XWindow Interface
U.S. Navy

S XWindows is a de facto industry standard that provides a Graphical User Interface
(GUI). Popular toolkit extensions to XWindows include Open Look (used by AT&T,I Sun, and others) and Open Software Foundation (OSF) Motif (used by IBM, Digital
Equipment Corporation, Hewlett-Packard, Apollo, and others). This project will
design and produce a Common Ada XWindow Interface (CAXI) to both the Open

in Look and Motif toolkits. The interface will be written in Ada and will allow
application programs to use either toolkit without modification to the application
program. This will increase the portability of Ada applications and provide flexibilityg in the selection of hardware.

An Interactive Ada/XWlndows User Interface GeneratorS U.S. Army

This project proposes to develop a general-purpose Ada/XWindows User Interface
Generator that automatically generates Ada source code. Using this tool, a
developer will be able to interactively develop a functioning user interface by
selecting user interface primitives and arranging them on the screen. This tool is
intended to reduce the bottleneck imposed upon Ada systems developers when
developing window-based user interfaces based on the XWindows system and the
Motif toolkit.

I J.3 TECHNOLOGY
The five projects in the technology category deal with the following:

e Engineering environments
0 Prototyping

Ada Implementation Guid J-3

SAUGud

I
FY91 ATIP Projat

"* Reuse
"* Security. 3

AdaSAGE Enhancements
U.S. Air Force/Army/Navy

AdaSAGE is an applications development set of utilities designed to facilitate rapid
and professional construction of systems in Ada. The Department of Energy I
developed AdaSAGE at the Idaho National Engineering Laboratory. Applications
may vary from small to large multiprogram systems using special capabilities. These
capabilities include database storage and retrieval (SQL compliant), graphics,
communications, formatted windows, on-line help, sorting, and editing. AdaSAGE
operates on various systems including MS-DOS platforms, UNIX System V, and
OS/2. A developer using the Ada language and the AdaSAGE development system I
can design a product tailored to a specific requirement that offers outstanding
performance and flexibility. The ATIP proposal provides enhancements to
AdaSAGE requested by the user community and supports the creation of a I
computer-aided training program.

ATIAS/Ada-Based Enhancements for Test (ABET) I
U.S. Air Force

ABET is an Air Force and IEEE effort to provide an international standard for an I
automatic test environment for maintenance activities. Ada is the language to be
used for implementing this standard. ABET will intelligently incorporate Ada into
the test arena by providing a set of layered standards to the test community.

A Computer-Aided Prototyping System for Real-Time Software
U.S. Air Force

The program will demonstrate a high-technology, low-cost approach to providing the I
latest software prototyping tools for real-time Ada programs. It provides the
opportunity to use the thesis efforts of students at the Naval Postgraduate School,
who are DOD personnel familiar with Ada and its embedded applications.

Reusable Ada Products for Information Systems Development (RAPID)
U.S. Army

RAPID is an Ada reuse program that includes an automated library tool for
configuration, identification, and retrieval of reusable Ada software components and I
a staff that supports and trains developers in reusability and sound software
engineering principles. Its mission is to ensure that the DOD objective of reusable, I

J-4 Department of the Navy U
I

I

SFY191 ATIP Prolect

maintainable, and reliable Ada software is achieved. It provides a total reuse
program supporting the entire software development life.

Ada Reuse in a Trusted Message Processing System for Real-Time Software
U.S. Navy

This project will investigate Ada reuse in developing software that satisfies theOrange Book B2-Level security requirement. The system will be fielded as the
Submarine Message Buffer (SMB) System, supporting personnel with two levels of3 security clearance.

I
I
I
I
S

I
I
I
I

5 Ad Implementation Guide J-5

II

a
FY01 AlP Prajs�s 3

U
U
I
3
I
a
I
a
I
I
I
a
I
I
I

J-6 Depuubneui of the Navy 3
I

B
I

Appendix K

Navy and Marine Corps Ada Projects

3 A database of Navy and Marine Corps projects that use Ada has been assembled for
reference by Program Managers who are planning to use or currently are using Ada.I The database includes the following information:

* Project Name

0 • Project Description

e Application Area, (i.e., Command and Control [C2], Command, Control and
Communications [C3], Command, Control, Communications, Computers, and
Intelligence [C41], Electronic Warfare [EW], Space, Communication, Armament,
Ordnance, Acoustic, Navigation, Financial, Personnel, Contracting, Material
Management, Medical, Depot Maintenance, Tool, Database Management System
[DBMS], Graphical, Education, Simulation, Other)

I * Sponsor/Developer

S* Point of Contact and Phone Number

0 Program Status (in planning, developed, completed, or canceled)

* Source Lines of Code (SLOC)

5 Host System

0 Target System.

Because this database is very large, its contents have not been included in this version.
of the Ada Impkementaon Guide. It is available either on disk as a Lotus 1-2-3 file or
in hard copy. To obtain a copy, please fill out the attached order form.

If you would like your project to be considered for inclusion in this database, please
provide the information listed on the order form.

l

3 Ada Impemetto Guide K--1

11

a
Navy wd Marina Corps Ada Projacu 3

I
U
U
I
I
I
I
I
I
a
I
I
3
I
I

K-2 Departmant of the Navy 3
I

Iand Mari,. Corps Ada Proes

S ORDER FORM5 Program Name
Prog. Manager
Address

S~ city, St & zip

Please send:

(1) Copy of DON Ada Projects Database on disk (Lotus 1-2-3
File) and/or

(1) Hard copy of DON Ada Projects Database

I
To have your project considered for inclusion in this database, please provide
the following information:

S* Project NameI * Project Description (brief & concise)
• Application Area, (i.e., C2, C3, C41, EW, Space,

Communication, Armament, Ordnance, Acoustic,
Navigation, Financial, Personnel, Contracting, Material
Management, Medical, Depot Maintenance, Tool, DBMS,
Graphical, Education, Simulation, Other)S * Sponsor/Developer

• Point of Contact and Phone Number
"" Program Status (in planning, developed, completed, or

canceled)
"* Source Lines of Code (SLOC)
* Host System
* Target System.

a Please send this order form and/or project information to:

Space & Naval Warfare Systems Command1 SPAWAR 3241 (CDR M. Romeo)
2451 Crystal Drive (CPK-5, 700)
Washington, DC 20363-5208

Ada Inplementtlion Guide K-3

I

U
Navy - Marking Corps Ada Prujass 3

3
U
I
I
I
I
I
I
I
I
S
I
3
I
I

K-4 Dpartmmnt of tin Navy 3
I

j
S

I Appendix L

Ada Language Features That Support Software

I Engineering

5 Ada has several features that directly support software engineering. This appendix

discusses in great technical detail those features that are considered important, including
Ada packages, strong typing, exceptions, generics, Ada library (separate compilation),

tand sking.

Li Ada PACKAGE
Many people consider the Ada package to be the most important feature in the language

to support the goals and principles of software engineering. Hence, it is a primary factor

in producing software that is reliable, of high quality, within budget, and on schedule.

The Ada package consists of two parts: a package specOfiation and a package body.

The package specification identifies *what" the package is going to do; the package body

I contains the "how" and provides implementation details of the code hidden from the

application. The package specification identifies how any Ada application can interface

with the package. In a sense, the package specification is a legal contract with Ada

I applications. The package body contains the code to conduct the real work of the

package. As Figure L-I depicts, an Ada application must go through the package
specification in order to benefit from the code in the body. The specification identifies

the only way that an Ada application can interface with the package body.

Typically, an Ada application is a main program with a collection of packages.
Attachment I to this appendix contains a sample of an Ada package specification. This
sample provides an abstraction of the parcel.

I Once appropriate abstractions are created with the package feature, the abstractions can

be used by the main Ada program or other packages. Attachment 2 to this appendix,

which uses a queue example, provides a simple example of a complete package with both

the package specification and the package body. The parcel abstraction package is

imported for use in the queue example.

These examples of packages demonstrate all of the software engineering principles:

A
I
3 Adae Implemnmtaton Pnan L--1

I

I
Ads Feture Example.

j Ada Application !I

I Package Spec1

I Package Body jI I

Fqgre LW1. Ad Padca I

Abstraction. The package provides an excellent mechanism to create abstract data
types that map to the real world. The objects and operations identified for the
parcel post abstraction in the example in Attachment 1 support the requirements
of the application clearly. This reduces logic errors in implementing the package
body, and more important, in using the abstraction in the main program. Ada
packages support data abstraction, which allows the creation of objects that
correspond to real-world entities. The result -is maintainable systems and the
generation of code that can be reused.

Infotmaon Hiding. The unnecessary detail of how the package is used is hidden
from the application. This hiding prevents the application from accessing internal
data structures. The package specification serves as a clean interface to the I
package body and hides all data structures within the body. This hiding prevents
a programmer from directly accessing the data structures, which can cause two
serious problems:

- Violation of Data Integrity. The first serious problem is that the integrity of
the data could be violated. For example, a programmer could decide that an I
object to be placed on the First In First Out (FIFO) queue has high priority.
Attachment 2 provides a queue example. Instead of using the desired I

L-2 Deprtment of.the Navy 3

B

£

I Ads Feature Examples

ENQUEUE procedure, the programmer adjusts the front and back pointers in
the queue, placing the new item at the front of the queue. When done
incorrectly, this could destroy the integrity of the database. As a 'hack," this
violation would typically not be documented and not be adequately tested. If
a legitimate requirement exists to place objects at the top of the queue, a
special procedure should be designed as part of the package to provide this
capability.

Undocumented, Untested Interface. The second serious problem associated3 with directly accessing the data structures is that this direct access provides an
undocumented coupling to the data structures that would not be updated should
the package body be updated. An update to the data structures to improveSperformance, add new functionality, or correct an error could result in having
code somewhere else in the application that no longer can work as intended.
At best, this code may have no effect on the data structure. At worst, this
code may totally destroy the information maintained in the data structure and
invalidate it for other use. This scenario is exactly what happened in 1992 to
the code that controlled the switching circuits for the telephone lines to New
York City and most of New England. The misplacement of queue pointers
caused the telephone system to crash for many hours. This would not have
happened had the application been coded in Ada with effective use of
packages. Fortunately, in Ada, the only interface to the package body is
through the package specification. Consequently, the Ada package is a highly
important feature for high-quality, reliable code that results in reduced costs
during initial software development and later during life-cycle maintenance.

* Completeness. The package body can be easily tested to verify that it completely
satisfies the requirements identified in the package specification. Because the only
purpose of the package body is to implement the interface defined in the package
specification, the package body can be easily evaluated to ensure it completely
supports the interface. This minimizes the otherwise frequent surprises found
during integration where requirements are not satisfied.

3s- * Confinmability. The package body can be easily tested to confirm that it correctly
implements the package specification. Because the only interface to the code in5 the package body is through the package specification, the testing problem is
simplified and results in correct code that can be easily integrated into other
compilable program units.

* Modularity. The package structure provides an excellent mechanism for
implementing interfaces and supporting the migration to Open Systems
Environments (OSEs)/Open Systems Architecture (OSA). Ada is recognized by

Ada Implementation Plan L-3

Ada
Ads Featre Examples3

the National Institute of Standards and Technology (NIST) as having a strong
strategic value in migrating towards OSE (U.S. Department of Commerce, 1991). 3

L.2 STRONG TYPING
Perhaps the second most important capability in the Ada language is the feature of strongI
*Wia coupled with the associated Ada exception. Together, they provide a capability
to build high-quality software by automatically identifying many programmer errors
during software development at compile and execution times. For applications with I
reliability, fault-tolerance, and safety-critical requirements, this capability provides a
mechanism to return to some known, safe state when a system error occurs. This section

discusses strong typing; the next section addresses Ada exceptions. U
L.2.1 Types as Building Blocks
An Ada type characterizes a set of values and a set of operations applicable to those I
values. Ada provides a variety of types that can be used as building blocks to create
real-world abstractions. For example, Command and Control (C2) applications usually
process tracks that represent an aircraft, ship, or submarine. Important information is
maintained on each track, including identification, geographical latitude and longitude,
altitude, and time of last position report. The following type definitions may be used to
create a simple abstract track type:

type identification is (friend, foe, unknown);typel
type lotitude is digits 12 range -90.0 .. +90.0; -in degrees
type longitude is digits 12 range -180.0 .. +180.0; --in degrees

type altitude is range -1000 .. +50000; -in feet

Associated with each type is a set of type-specific operations (e.g., addition and
multiplication for integers and reals). These types can be used as building blocks for 3
compound user-defined types such as arrays and records. The record is used to define
the following simple logical track type:

type tracktype is

ID: identification; -track ID
lat: latitude; -track latitude
long: longitude; -track longitude
alt: altitude; -track altitude

II
L--4 Department of the Navy 5

I

I,

I Ada Feature Examples

5 time: calendar.time; -time track position
-last updated
-time imported from package calendar

Ien record; where it is defined

WL2.2 Creation of Objects From Types
A type is only a template from which objects can be created with a known set of values
and a known set of operations. Objects can now be created from the above type3 definitions:

XI,X2: latitude;
YI,Y2: longitude;
A,B: track type;

3 These objects can now be assigned values such as:

Xl: = 57.0; -Xl becomes 57.0 degrees North
X2:- Xl - 60.0; -X2 becomes 3.0 degrees South
Yl:= -145.0; -Y1 becomes 145.0 degrees West

5 A:=- (friend, Xl, YI, 32000, calendar.clock);
-ID becomes "friend*
-lat becomes the value of Xl
--long becomes the value of Y I

-alt becomes 32,000 feetg -time becomes current time (result of function clock in package
calendar)

An alternative method of expressing this last assignment statement clearly associates the
component objects of A:

A: (ID - > friend, --ID becomes "friend*
lat = > Xl, -lat becomes the value of Xl
long = > Yl, -long becomes the value of YI
alt = > 32 000, -alt becomes 32,000 feet
time = > calendar.clock); -time becomes current time

This method improves the understandability of the code for both programmers and
nonprogrammers.

I Ads Implementation Plan L-5

I

I
Ada Feature Examples 3

L.2.3 Handling of Objects in Homogeneous and Heterogeneous Environments
Once objects have been defined, the use of these objects as a single entity facilitates use
within the application, for example:

B : = A; - The objects in record B (of tracktype) are set to those of record A. This is I
equivalent to:

B.ID := A.ID; 3
B.lat := A.lat;
B.long : = A.long;
B.alt := A.alt; U
B.time : = A.time;

This convenient notation provides the most efficient means for handling the object within 3
homogeneous computing environments for assignments, bus transfers, Input/Output (I/O),
and other operations. A pack/unpack facility provides support for interfacing the object
to heterogeneous computing environments. In this way, the object can be handled
efficiently with one's own computer. When the object is ready to be communicated to
a different computer system, it can be 'packed" into the agreed-upon interface or 3
message format.

L.2.4 Elimination of Illegal Expressions and Assignment Statements
Strong typing eliminates errors by preventing illegal expressions and illegal assignmenis B
of different types at compile time. For example, what is the result of adding five apples
to six oranges? In normal mathematical situations, this is undefined. Hence, the
following is undefined in reality and, in Ada, would be declared illegal at compile time:

Xl + Y1 -illegal expression g
-adding a latitude to a longitude is undefined

Y2: -Xl; -illegal assignment statement 5
-assigning a latitude to a longitude is also undefined

The prevention of illegal expressions and illegal assignments at compile time reduces 3
many common logic errors found in most other languages. Although adding latitude to
longitude is normally undefined and undesired, the user may choose to define such an
operation in Ada.

L.2.5 Elimination of Constraint Errors at Compile Tune
In addition, strong typing eliminates errors by providing constraint checking to ensure
that all range values associated with the type definition are satisfied. For example,
objects of type latitude are assigned to range from -90 degrees South to +90 degrees 3
L-6 Department of the Navy 5

I

I
5 Ads Feature Examples

North. In normal mathematical situations, a value outside of this range would have no
meaning. Hence, the following statements would be illegal:

XI = 127.0; -illegal as 127 degrees exceeds the range constraint of 90
degrees North

3 L.2.6 Elimination of Constraint Errors at Run Time
Constraint errors may be identified at compile time and also at run time (during program
execution). The following statement is legal for values of XI less than and equal to 753 degrees; it is illegal when XI is greater than 75 degrees:

X2 :- XI + 15.0; -possibly illegal-only known at run time

Constraint checking during run time is important during software development and testing
because it allows errors to be easily detected and code corrected or handled, as
appropriate. Constraint checking is also important during execution in the mission
environment. Should errors be detected, an exception can be raised that allows thesoftware to take the appropriate action.

L.3 EXCEPTIONS
Ada exceptions were included in the language to support reliability, fault tolerance, and
safety critical requirements. During the execution of a program, all sorts of errors can
occur that could result in grave consequences. A zero divide could cause a computer to
crash during critical terrain-following maneuvers; an out-of-bound index to a database
could cause the entire database to be corrupted; an out-of-bound index to an array could
cause a weapon to be launched against friendly forces; and an exceeded capacity limit
could cause a weapon to miss the target. Errors can result from hardware faults,
network faults, capacity limits, or software logic. Some errors are easy to predict; others
are next to impossible. Regardless of the cause of the error, the exception feature in Ada
provides an excellent mechanism to programmatically recover and return to some known,safe state and continue processing. This is important for many applications where the
mission would be at risk if the computer had to be shut down and rebooted.

5 Without exceptions, programmers would have to test for each possible error condition
and would occasionally miss a possible error. In Ada, a set of predefined exceptions
exists that can automatically identify typical processing errors. It is also possible for the
user to define additional error conditions that can be detected. When an error condition
is detected, an exception is raised. Should an exception handler be defined for the3 exception, an appropriate action could be taken to return the program to a known safe
state. If an exception handler is not defined, the program will crash just as a FORTRAN
or C program does.

Ada Implementation Plan L-7

i

I
Ada Featr Examples

Examples of predefined exceptions are shown with the parcel abstraction example in
Attachment 1, the queue example in Attachment 2, and the queue generic example in
Attachment 3.

L.4 GENERICS I
Generics are the building blocks of reusable software systems. Reuse is not only
important for economies across applications but also can be very important within a
single application.

The example of the queue, presented in Attachment 2, can be a necessary artifact to
many portions of a single application. The queue, as presented in the attachment, is not
very applicable for general use. It is only useful for objects of type PARCEL'TYPE
going to a queue containing a maximum of 100 objects. In the past, such a queue could
only be reused by hard coding the desired type and size. Making the necessary changes U
by hard coding such code is extremely error prone when code is complex or nontrivial.
Ada provides an elegant solution. This queue can be made useful to other requirements
in the same application by converting it into a generic. A generic provides a template I
from which new Ada code can be built. Conversion to a generic requires minor changes
to the package specification and package body, some generic parameters, and a genericinstantiation. A generic instantiation is a formal Ada construct that creates a logical Iinstance of the generic code by filling in the template with the generic parameters.

The queue example in Attachment 2 has been converted to a generic queue example in
Attachment 3. This example establishes generic parameters for (1) the type of item to
be managed by the queue and (2) the size of the queue. The example shows the generic 3
instantiation necessary to create an instance equivalent to the queue of Attachment 2. It
also exemplifies the way this generic queue can be used to create a queue for any type
of any size (up to system limits).

The power of this generic queue is considerable. Queues can now be built for any
desired type for any desired size and used over and over again even within the same
application. This generic can be instantiated to process parcels for shipping, radar
messages, E-mail messages, financial data, stock quotes, or any data type desired and
for any quantity up to hardware limits.

Once the generic is built and thoroughly tested, the cost of reusing the code is
significantly reduced. Most errors will be detected and corrected when the code is first I
developed. This means that the cost and risk to a subsequent user will be less than that
of developing the code from scratch. 3

I
L--8 Department of te Navy 5

I

I

U Ada Feature Examples

Furthermore, reuse of code results in higher-quality applications. As the code is reused
and corrected for each instantiation, fewer defects will be found by subsequent users.
Corrections made by subsequent users can be reapplied to an earlier application during3 the next upgrade.

L.5 Ada LIBRARY (SEPARATE COMPILATION)
Ada provides a library mechanism that supports integration and programming-in-the-large
requirements. Library units, such as package specifications, package bodies, and main
programs, are managed separately. Consequently, each library unit can be compiled

Sseparately when the package specifications are known. This is important for developing
large systems. Such an application can be divided among many developers by defining
appropriate interfaces using the Ada package. Dummy code or stubs can be used to
simulate the interface for testing and prototyping purposes. Later during integration, the
completed, developed code can be very easily integrated because all portions of the codewere developed by using the same interfaces.

The package body can be separately compiled from the package specification. This also
supports integration by reducing the time necessary to rebuild a complete system. In the
past, should an error be found in the system, the entire system had to be recompiled and
linked. This frequently took days. Most execution errors are typically found in the
detailed implementation in the package body. In Ada, when such errors are corrected,
only the package body needs to be recompiled and the system relinked. Because this
should be a very small part of the system, a complete, recompiled system can be3 generated rather quickly.

In addition, procedures and functions can be compiled either as part of a library unit or
separately. This provides a considerable amount of flexibility when developing the
design of an application and supporting early prototypes.

.L6 Ada TASKING
Ada tasking provides a capability to support logical parallel processing within an Ada
application. The Ada tasking model provides an excellent and portable capability to
maintain separate threads of control, synchronize asynchronous activities when necessary,
and communicate among these separate threads of control. Tasking is a rather advanced
language feature not found in other languages. When tasking is used, a special Run-3 Time Environment (RTE) is evoked to schedule tasks, process interrupts, and provide
other services. It can be highly valuable to a wide variety of applications including real-
time applications, simulation, prototyping, and networking. To use tasking effectively,
one must understand the Ada tasking model and have a design methodology that supports
the model. It is recommended that compilers be carefully evaluated because some Ada
compiler implementations provide far superior support for tasking than others.

3 Ada Implementation Plan L-9

I

i

Ada Feature Examples 3
The Ada tasking model may be inappropriate for some applications because the overhead
to support logical parallel processing may not justify the benefits obtained. Many
organizations find that interrupt-driven sequential processing satisfies all requirements,
and tasking is unnecessary. When the application is hosted on an operating system or
executive, it may be practical not to use tasking in favor of the run-time provided by the I
environment. Common sense should prevail as to whether the Ada tasking model is
appropriate for a given application.

The Ada tasking model for Ada 9X will be enhanced to directly support parallel
processing with parallel processors and highly distributed environments. Section 7.1
provides additional information on Ada 9X.

L,7 FEATURES THAT FACILITATE SOFTWARE ENGINEERING
The above-described features of packages, strong typing, exceptions, generics, separate
compilation, and tasking are important facilitators to software engineering. In addition,
there are many other features in the Ada language, too numerous to detail here, including
subtypes, access types, attributes, representation clauses, I/O, visibility, and program I
libraries. Although the Ada language is a cornerstone of software engineering,
supporting quality, cost, and schedule benefits, Ada is only a facilitator. One must be
educated and trained to use Ada with software engineering. Section 8 of Volume I U
provides guidance for obtaining the necessary education and training within an
organization. Without the knowledge and skills to use these Ada-provided softwareengineering features, a programmer is likely to write programs in the same style of otherlanguages, resulting in code with the same inefficiencies of other languages.

I
I
I
I
I
I

L--10 Department of tlhe Navy 3

I

Ads Feare Example

Attachment I
Example-Package Specification: Parcel

i Abstraction Example

A simple example of an Ada package can be dem strated with an automated post officeI example. Suppose the post office built a system to automatically process parcels for
shipping. The design for such a system may be object oriented with abstractions for the
parcel, the customer, money collection, and parcel routing. A package could be createdI for each of these abstractions with a main program to control the overall processing
requirements. Each package would have a package specification and a package body.

S The following shows an example of an Ada package specification. It is an abstraction
of a parcel for shipping in the post office system. This abstraction provides a physicaldescription of the length, width, height, and weight of the parcel. It includes shipping
data on origination post office, destination post office, and method of shipment. It
includes operations on the parcel such as get physical data, get shipping data, and
compute shipping cost.

The main program may use the operations provided through the following code:

3 GETPARCEL PHYSICAL DATA (physicaldata);
GET PARCEL SHIPPING DATA (shippingdata);
COMPUTE PARCEL SHIPPING COST (physicaldata, shippingdata,

II ppmg-oU);

1The Ada package specification is an interface between the main program and the code
that does the real work. The body of the PARCEL POST package would contain the
necessary code to implement the operations of GETPARCEL PHYSICAL DATA,
GET PARCEL SHIPPING DATA,andCOMPUTE PARCEL SHIPPING COST. The
exceptions IN VALID ZIP CODE, PARCEL EXCEEDS WEIGHTLIMITS, and
PARCEL EXCEEDS SIZE IUMITS may be raised when error conditions are detected..
The eaception INVALIDZIP CODE exception would be raised when an invalid
destir on (or origin) zip code is detected for the parcel. The exception
PARCEL EXCEEDS WEIGHT LIMITS would be raised when the parcel exceeds the
maximum limit of 50 pounds. The PARCELEXCEEDS SIZE LIMITS would be raised
when the parcel exceeds the post office size limits. In each case, application interfacing
with the parcel abstraction would handle the exceptions. In the case of the excessive
weight and size limits, the application may tell the customer that the parcel is rejected
and return it to the customer. In the case of an invalid zip code, the application may
request another zip code from the customer. The package specification for the parcel
abstraction is as follows:

Ads Implementation Plan L- 11

HI

I
Ads Feetwe Example

paag PARCEL ABSTRACTION is
type INCHES is new float,
type POUNDS is new float;
type PARCELPHYSICALDESCRIPTION is

LENGTH: INCHES; -10118% of parcel in inches

WIDTH: INCHES; -width of parcel in inab
HEIGHT: INCHES; -weight of parcd in incha
WEIGHT: POUNDS; -weight of parcl in pomod

end mcod; I
ty MODE OFSHIPMENT is (SURFACE, AIR); -shippiqg options
type ZIP-CODE is new integer rnge 0.. 9999; --standard po@tal zp code
type PARCEL SHIPPINGDESCRIPTION is

recond
FROM: ZIP CODE; --oigination post office
TO: ZIP CODE; -destination post office
SHIPMENT: MODEOFSHIPMENT;

end record;
type DOLLAR is new float; --cos of shipping parcel post in dollars
" PARCEL TYPE is I

record
physicalsdat: PARCELPHYSICAL DESCRITfION;
Whippingdata PARCEL SHIPPING DESCRIPTION; I
shippingcast: DOLLAR :- 0.0;

end record;

procedure GET PARCEL PHYSICAL DATA (
physical da: out PARCEL PHYSICALDESCRIPTION);

procedure GET PARCEL SHIPPING DATA (I
shippingdatw: out PARCELSHIPPING DESCRIPTION);

procedure COMPUTE PARCEL SHIPPING COST (3
physical_0d9& in PARCEL PHYSICALDESCRIPTION;
shippingdatm: in PARCEL-SHIPPING DESCRIPTION;
shippingcost: out DOLLAR);

exeption: INVALID ZIP CODE;
exception: PARCEL EXCEEDS WEIGHT LIMITS; 3
exception: PARCELEXCEEDSSIZELIMITS;

end PARCEL-ABSTRACTION; 3

I
I

L-12 Deparmen of• th NayI

I

I

U ~Ada FeatUxe Examples

I Attachment 2
Package Specification and Package Body: Queue
Example

A simple example of a complete package can be demonstrated with the implementation
I of a queue. A queue is a frequently used software mechanism to buffer (or synchronize)

data from one process to another. It is also known as a FIFO buffer. It is similar in
concept to a queue of customers waiting to be serviced at a bank. Basically, the queue
has two operations: enqueue and dequeue. When a new customer arrives, the customer
enters the queue or is "enqueued.u When the customer finally reaches the bank teller,
the bank teller takes the customer off of the queue or "dequeues" the customer forI processing.

A package specification for a queue for data of type PARCEL (defined in Attachment 1,
the parcel abstraction example) capable of holding 100 objects is described in the
following example. Such a queue may be used in a distributed automated application to
process parcels for routing to their destination post office. Please note that the package3PARCEL ABTRACTION is imported for use by the QUEUE package through the
"with" and "use" clause on the first line.

3 There are two exceptions. The UNDERFLOW exception is raised when there is an
attempt to dequeue an object and the queue is empty. The response here for an exception
handler could be to process something else and come back to process objects in this
queue later. The OVERFLOW exception is raised when the capacity limits are
exceeded, in this case 100 objects in the queue. When there is an attempt to enqueue the
101st object into the queue, there is no space for the new object. In other languages,
data are usually lost. In Ada, the exception handler could preserve the data and cause
the process dequeuing objects off the queue to have a higher priority.

I with PARCELABSTRACTION; use PARCELABSTRACTION;

package QUEUE is
procedure ENQUEUE (parcelobject: in PARCELTYPE);

--enqueues parcel.object of type PARCELTYPE onto queue
procedure DEQUEUE (parcelobject: out PARCELJYPE);

-dequeues parcelobject of type PARCEL-TYPE from queue
UNDERFLOW: exception;

-exception raised when queue is empty
OVERFLOW: exception;

-- exception raised when capacity limits are reached3 end QUEUE;

3Ads Implementation Plan L-13

I

S
Ads Futurs Examples

The package body to support such a package specification may look like:

package body QUEUE is

queue: array (0 .. 99) of PARCELTYPE; 5
-note name queue is overloaded

front: natural : -0; -front of the queue
back: natural :-0; --back of the queue 3
procedure DEQUEUE (prcel.object: out PARCE_TYPE) is

if front = back then
Sraise UNDERFLOW;

purcelobject: - queue(front);
front: - (front+ 1) mod 100;

end if;-
end DEQUEUE;

procedure ENQUEUE (parcelobjet: in PARCELTYPE) is
begin

if(back+1) mod 100 - front then m
raise OVERFLOW;

else
back: - (back+ 1) mod 100;
queue(back): = parcelobject;

end if;
end ENQUEUE;

end QUEUE; 3
Procedures DEQUEUE and ENQUEUE would be used by the application using the
package with parameters for an object A of type PARCELTYPE as: g

ENQUEUE (A); --enqueues object A
DEQUEUE (A); -dequeues object A 3

L
I

L--14 Delartment of the Navy !

I

a
U Ads Fear Exarm p

I Attachment 3

Generic Package: Generic Queue Example

I This ample demonstrates the use of Ada generics. For case of comparison, this
example provides a generic capability to the queue provided in Attachment 2. To convert
the queue presented in Attachment 2 to a generic, the size of the queue and a place-
holder for the type are established as generic parameters immediately before the package
specification:

5 generic

SIZE : positive; -- any positive to be instantiated
type ANYTYPE is private; -ANY TYPE to be instantiated

package QUEUE is
procedure DEQUEUE (anyobject: out ANYTYPE);
procedure ENQUEUE (anyobject: in ANYJTYPE);
UNDERFLOW: exception;
OVERFLOW: exception;

end QUEUE

Both the SIZE and ANYTYPE would be provided later as parameters. The packageIspecification has been modified to reflect the new type ANYTYPE:

The package body is modified to reflect both the new type ANYTYPE and the queue
SIZE:

3 package body QUEUE is

type table is array (positive range < >) of ANYTYPE;
queue: table(0..(SIZE-1));
front: natural := 0;
back: natural :=0;

procedure DEQUEUE (anyobject: out ANY_TYPE) is
Sbegin3if front = back then

raise UNDERFLOW;Selse
e anyobject: = queue(front);

front: = (front+1) mod SIZE;
end if;

end DEQUEUE;

3 Ada Iimplemntaon Plan L--15

Iur

U
Ada Fr-teu Exons 3

procedure ENQUEUE (any_object: in ANY_TYPE) is

bgnif (back+ 1) mod SIZE = front then
raise OVERFLOW;
back- (back+ 1) mod SIZE;
queue(back): - anyobject;

end ifE-UE
end QUEUE ;

end QUEUE

To instantiate the queue for a size of 100 objects of type PARC TYPE, the foilowing
generic instantiation is made: I

package PARCEL_QUEUE is new QUEUE (100, PARCEL_TYPE);

To instantiate the queue for a size of 1,000 objects of type TRACK-TYPE, the following
generic instantiation is made: 3

package TRACKQUEUE is new QUEUE (1000, TRACKJTYPE);

Procedures DEQUEUE and ENQUEUE are used as above, the calling application not I
even knowing that these procedures are from an instantiated package. With A being an
object of type PARCEL TYPE and B being an object of type TRACKJTYPE, then the
foliowing operations can be made:

ENQUEUE (A); -. enqueues object A into the PARCELQUEUE
ENQUEUE (B); --enqueues object B into the TRACKQUEUE
DEQUEUE (A); -dequeues object A from the PARCELQUEUE
DEQUEUE (B); -dequeues object B from the TRACKQUEUE

I
I
I
I

L-16Depatmet f ha Nvy!

I
U

Supplementary Reading

This appendix lists publications, including Software Engineering Institute (SE)U reports on data rights, that are useful to Program Managers Reports that have
Defense Technical Information Center (DTIC) numbers are available from DTIC
and the National Technical Information Service (NTIS) at the following addresses:

I DTIC Defense Technical Information Center
Attn.: FDRA Cameron Station3 Alexandria, VA 22304-6145

NTIS National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

SEO reports that have a DTIC number (i.e., ADA followed by six digits) may be
obtained directly from:

3 Software Engineering Institute
Attn.: Publications Requests
Carnegie-Mellon University
Pittsburgh, PA 15213-3890

SEI affiliates and Governmental organizations may order documents directly from
SEO by submitting a written request, accompanied by a mailing label with the
requestor's address, to the above address.

I
Data Rights Reports

3 Martin, A. and K. Deasy. Seeking the Balance Between Goernment and Indust&y
Interests in Software Acquisition. Volume I: A Basis for Reconciling DOD and Industry3 Needs for Rights in Software (CMU/SEI-87-TR-13, ADA185742). Pittsburgh, PA:
Carnegie-Mellon University, 1987.

Martin, A. and K. Deasy. The Effect of Software Support Needs on DOD Software
Acquisition Policy: Part 1: A Framework for Analyzing Legal Issues (CMU/SEI-87-
TR-2, ADA178971). Pittsburgh, PA: Carnegie-Mellon University, 1987.

Ada I 10n a Guide M-1

U

U
Supplemeutu Redw ,Ing

Samuelson, P. Understandig the Implications of Selling Rights in Software to the
Defense Deparment: A Journey Throuh the Reidatry Maze (SEI-86-TM-3, U
ADA175166). Pittsburgh, PA: Carnegie-Mellon University, 1986.

Samuelson, P. Comments on the Proposed Defense and FederalAcquision Regulations
(SEI-86-TM-2, ADA175165). Pittsburgh, PA: Carnegie-Mellon University, 1986.

Samuelson, P. Adequate Planning for Acqwnng Sufficient Documentation About and I
Rights in Software to Peamit OQranic or Competitive Maintenance (SE4-86-TM-1,
ADA175167). Pittsburgh, PA: Carnegie-Mellon University, 1986. 1
Samuelson, P. and K Deasy. IntellectualPropeny Protection for Software (SEI-CM-14-
2.1). Pittsburgh, PA: Carnegie-Mellon University, 1989. 3
Samuelson, P., et al. Proposal for a New "Rights in Software" Clause for Software
Acquisitions by the Depatnment of Defense (CMU/SEI-86-TR-2, ADA182093).
Pittsburgh, PA: Carnegie-Mellon University, 1986.

MI
S
i

U

I
I
I
I

M--2 Depautnient ot the Navy 3

I

I

U Appendix N
Comparison of Ada to Assembly: F-15 Structural

* Filter Example

Coding in High Order Languages (HOLs), such as Ada, has important benefits when
compared to coding in Assembly. These benefits were demonstrated for the
computation of the Structural Filter as part of the F-15 integrated flight control3system, which was flown in September 1984. The formula for the S-Plane
Representation of the Structural Filter was:

3 0.4807S2 + 83.5533S + 3894

S; + 125S + 3894

This formula converts to the difference equation representation of:

3 STFL - 0.56503 * PRESTRU - 0.33991 * PREM1STRU + 0.089533 *
PREM2STRU + 0.87711 * STFM1 - 0.19182 * STFLM2

I The Ada representation of the difference equation is nearly equivalent:

3 STFL := 0.56503 * PRESTRU - 033991 PREMISTRU + 0.089533 *
PREM2STRU + 0.87711 * STFM1 - 0.19182 * STFLM2;

The only necessary changes are the ":=" for the assignment and the semicolon toterminate the statement. Contrast this with the Assembly version that was in the
previous version of the F-15:

I LDL RR10,PCAS24; % RR8 Contains PRESTRU
CALL FMUL; % 0.56503 * PRESTRU3 LDL RR6, RR8; % Store Result for Later Use
LDL RR8, PREM1STRU;
_LDL RR10, PCAS25;3 CALL FMUI; % 0.3391 * PREM1STRU
LDL RR10,RR8; % Prepare for Subtraction
LDL RR8,RR6;
CALL FSUB; % RR6-[0.33991 * PREM1STRU]
LDL RR6,RR8; % Store Result for Later Use
LDL RR8,PREM2STRU;
LDL RR10,PCAS26;

Ada Implementaion Guide N-i

I

CoMNM of Ads to Amb•y 3
CALL FMUL; % 0.089533 * PREM2STMU
LDL RR1ORR6;3
CALL FADD; % RR6 + [0.089533 * PREM2STRU]
LDL RR6, RR8; % Store Result for Later Use
LDL RR8,STFLM1; 5
LDL RRIOPCASZ7;
CALL FMUI; % 0.87711 * MII1
LDL RR10,RR6;
CALL FADD; % RR6 + [0.87711 * STFLM1]
LDL RR6,RR8; % Store Result for Later Use
LDL RR8,STFLM2; I
IDL R10,XCAS28;
CALL FMUI; % 0.19182 * STFLM2
LDL RR10,RR8; % Prepare For Subtraction I
LDL RR8,RR6;
CALL FSUB; % RR6 - [0.19182 * STFLM2]
LDL STF, RR8 I
CALL FMUL.; % 0.089533 * PREM2STRU

This Assembly example uses a floating-point algorithm; had a fixed-point one been I
used, it would have been twice as long.

N
I
I
I
I
I
I
I

N--2 Depaitmntm of thin Navy 3

I

I

LIST OF ACRONYMS AND ABBREVIATIONS

i AAS Advanced Automation System
ABET Ada-Based Environment for TestU ACEC Ada Compiler Evaluation Capability
ACES Ada Compiler Evaluation System
ACM Association for Computing Machinery

i ACSE Association Control Service Element
ACUE Aircraft Control Unit Emulator
ACVC Ada Compiler Validation Capability

I AdaIC Ada Information Clearinghouse
AdaIC BB Ada Information Clearinghouse Bulletin Board
AdaJUG Ada Joint (Services) Users Group

I Ada PSE Ada Programming Support Environment
ADP Automatic Data Processing
AES Ada Evaluation System
AFATDS Advanced Field Artillery Tactical Data System
AFB Air Force Base
AFCEA Armed Forces Communications and Electronics Association
AFDSRS Air Force Defense Software Repository System
AFSC Air Force Systems Command
AFSPACECOM Air Force Space Command
AI Artificial Intelligence
AME Ada Integrated Environment

i AIS Automated Information System
AIU Acoustic Interface Unit
AJPO Ada Joint Program Office-..

I ALS Ada Language System
ALS/N Ada Language System/Navy
AMMWS Advanced Millimeter Wave Seeker

I AMPS Advanced Message Processing System
ANSI American National Standards Institute
AP Acquisition Plan

MAP Arithmetic Processor
APB Acquisition Program Baseline
API Application Programming Interface

I APID Application Programming Instructional Department
APP Application Portability Profile
APT Advanced Programming Technique

I ARB Acquisition Review Board
ARLB Ada Reuse Library Browser

SAd Implementation Guide

I

I
Acronyms and Abbreiaion 3

ARPA Advanced Research Projects Agency
ARTX Ada Run-Time Executive i
ASEET Ada Software Engineeing Education and Training
ASI Application Software Interface
ASIS Ada Semantic Interface Specification
ASP Acquisition Strategy Plan
ASR Ada Software Repository
ASSET Asset Source for Software Engineering Technology
AST Advanced Systems Technology
ASW Anti-Submarine Warfare
ASWSOW Anti-Submarie Warfare Standoff Weapon I
AT&T American Telephone & Telegraph
ATCCS Army Tactical Command and Control System
ATD Aircrew Training Device I
ATE Automated Test Equipment
ATF Advanced Tactical Fighter
ATIP Ada Technology Insertion Program
ATIS A Tool Integration Standard
ATRIM Aviation Training and Readiness System 3
AVF Ada Validation Facility

BAFO Best and Final Offer
BBS Bulletin Board System
BMS Broadcast Message Server
BP Backplane

C2 Command and Control
C21 Command, Control, and Intelligence
C31 Command, Control, Communications, and Intelligence
C41 Command, Control, Communications, Computers, and

Intelligence
CAB Common Ada Baseline
CACM
CAD Computer-Aided Design I
CAI Computer-Aided Instruction
CAIS Common Ada PSE Interface Set
CALS Computer-aided Acquisition and Logistics Support I
CAM Computer-Aided Manufacture
CAMP Common Ada Missile Packages
CARDS Central Archive for Reusable Defense Software Program I
CASE Computer-Aided Software Engineering
CAS REPS Casualty Reporting System 3

2 D.pwnmeN oftte Navy 3
I

I

U ,tAcronyms and A i

I CAUWG Commercial Ada Users Working Group
CAXI Common Ada XWindow Interface
CC&I Command, Control, and IntelligenceU CCITT International Consultative Committee for Telegraph and

CCP Code Counting ProgramI CCS Combat Control System
CDA Central Design Activity
CDB Central Data Base

I CDIF CASE Data Interchange Format
CDPA Central Design Programming Activity
CDR Critical Design Review
CDRL Contract Data Requirements ListI CECOM Communications Electronics Command
CERT Computer Emergency Response Team
CERT/CC Computer Emergency Response Team Coordination Center
CFE Contractor-Furnished Equipment
CGI Computer Graphics Interface
CGM Computer Graphics Metafile
CI Configuration Itemi CIF Central Issue Facility
CIM Corporate Information Management
CLNP Connectionless Network ProtocolU CLOC Compiled/Assembled Lines of Code
CMM Capability Maturity Model
CMP CoMPletenessI CMS-2 Compiler Monitor System-2
CMU Carnegie-Mellon University
CMU/SEI Carnegie-Melion University/Software Engineering InstituteI CNO Chief of Naval Operations
COBOL Common Business Oriented Language
COE Common Operating Environment

I COEA Cost and Operational Effectiveness Analysis
COMNAVCOMTELCOM Commander, Naval Computer and Telecommunications

CommandI COMSPAWARSYSCOM Commander, Space and Naval Warfare Systems Command
CONOPS Concept of Operations
CORBA Common Object Request Broker Architecture

I COTS Commercial Off-The-Shelf
CPDL Computer Program Development Laboratory
CPP Command Program Processor
CPS Competitive Prototyping Strategy

Ads Implementation Guide 3

I

I
Acronyms and Abbrevietlonh 3

CPU Central Processing Unit
CRADA Cooperative Research and Development Agreement 3
CREASE Catalog of Resources for Education in Ada and Software

Engineering
CRISD Computer Resource Integrated Software Document I
CRLCMP Computer Resources Life-Cycle Management Plan
CRM Computer Resources Management
CRSS C3I Reusable Software System I
CRWG Computer Resources Working Group
CSC Computer Sciences Corporation
CSCI Computer Software Configuration Item I
CSRO Center for Software Reuse Operations
CSS Centralized Structure Store
CSS Computer Sciences School I
CSU Computer Software Unit
CWG Coordinator Working Group

D&V Demonstration & Validation
DAB Defense Acquisition Board
DACS Data and Analysis Center for Software
DAR Defense Acquisition Regulations
DARPA Defense Advanced Research Projects Agency 3
DAT Digital Audio Tape
DBMS Database Management System
DC Device Coordinate i
DCDS Distributed Computing Design System
DCE Distributed Computing Environment
DCP Decision Coordinating Paper
DDI Directorate of Defense Information-
DDN Defense Data Network
DDR&E Director of Defense Research and Engineering
DDRS DOD Data Repository System
DEl Data Elements in the Source
DEM Digitized Electronic Module I
DEMVAL Demonstration and Validation
DFCS Digital Flight Control System
DFU De Facto Usage
DID Data Item Description
DISA Defense Information Systems Agency
DMRD Defense Management Review Decision
DOD Department of Defense
DODD Department of Defense Directive

4 Deprmnt of te N•y

I

i
3 Acronyms mdA

I DODI Department of Defense Initiative
DON Dqptment of the Navy
DPI Data Processing InstalaonU DP/DGU Distributed Processor/Display Generator Unit
DRPM Direct Reporting Program Manager
DS Directory Service

I DSRS Defense Software Repository System
DTC 2 Desk Top Computer 2

I DTN Data Trnsfer Network
DTIC Defense Technical Information Center
DUS Design Unit Specification

I DWS Defensive Weapon System

ECCM Elecuonic Counter-Countermeasures
ECUD Embedded Comment Lines in Data
ECLS Embedded Comment Lines in Source
ECM Electronic Countermeasures
ECMA European Computer Manufacturing Association
ECS Electronic Customer Services
EDI Electronic Data Interchange
EDL Event-Driven Language
EDSI Equivalent Delivered Source Instructions
EMPM Electronic Manuscript Preparation and Markup
EMR Extended Memory Reach
ENBEngineering NotebookI EPROM Erasable Programmable Read Only Memory
EP Enhanced Processor
ERA Entity elationship -Attribute-

* ESD Electronic Systems Division
ESM Electronic Support Measure

I 4GL Fourth Generation Language
FAA Federal Aviation Administration
FAR Federal Acquisition RegulationsU FAU Fin Actuator Unit
FCDSSA Fleet Combat Direction System Support Activity
FD Functional Description

I FE Functional Element
F"P Firm Fixed Price
FFRDC Federally Funded Research and Development Center
FIFO First In First Out

3 Ada Implementation Guide 5

I

I
Acrrnims &Wd Abbieminm 3

FIPS Federal Information Processing Standards
FIT Flight Instrument Trainer
FMSO Fleet Material Support Office
FP Function Point
FPI Functional Process Improvement U
FRAWG Front Range Ada Working Group
FSD Full-Scale Development
FTAM File Transfer, Access, and Management I
Fl? File Transfer Program
ftp File Transfer Protocol
43RSS AN/UYK-43(V) Run-Time Support System

GAO General Accounting Office
GB Gigabyte
GEU Guidance Electronics Unit
GFE Government-Furnished Equipment
GFS Government-Furnished Software
GIS Geographic Information System
GKS Graphical Kernel System
GM Global Memory
GNCP Guidance, Navigation, and Control Program
GNMP Government Network Management Profile
GOSIP Government Open Systems Inteconeton Profile
GOTS Government-Off-the-Shelf
GPEF Generic Package of Elementary Functions
GPPF Generic Package of Primitive Functions
GPO Government Printing Office
GRACE'm Generic Reusable Ada Components for Engineering
GSIS Graphics System Interface Standard
GTRIMS Ground Controller Training System
GUI Graphical User Interface

HOL High Order Language
HP Hewlett-Packard I
HP VUE Hewlett-Packard Visual User Environment
HPBP High-Performance Backplane
HPP High-Performance Processor

IBM Intenional Business Machines
I-CASE Integrae Computer-Aided Software Engineering
ICC I Compiler Corporation
ICE Independent Cost Estimate -

Depwaneof. the Nay 3

I

AcronynowW an1d A vleom

IDEF Intgaed System Definition Language
IEC Innion Electro-Technical Committee

MEE Institute of Electrical and Eectronics Engineers
IGES Initial Graphics Exchange Specification
IGRV Improved Guard Rail Five
ILS Itg d Lgisics Support
ELM Inert Logic Supo Plan
MU Inertial Meament Unit
INL Idaho National Engineering LaboratoryI INFOSEC Information System Security
InProc In ProcessingIIo Input/Output
oC Initial Operating Capability

lOP Input/Output Processor
IPO Information Planning and Organizing
IPR In-Process Review
IPS Integrated Project Summary

I IPSE Integrated Project Support Environment
IRAC InteRationa Requirements and Design Criteria
IRDS Information Resource Dictionary SystemU IRM Information Resoures Magm t
RS Interý quiremets Scficaion

IS Informaion SystemEISA Instruction Set Architecture
ISC Input Signal Conditioner
ISDN Integrated Services Digital Network

I ISEA In-Service Engineering Activity
ISEE Integred Softwar ineering Environment
ISO Intrationl Organization -for StandardizationU ISSC Informatio System Software Center
1TPB Information Technology Policy Board
ITS Integate Test Software

I VIndependnt Verification and Validation

JCS Joint Chiefs of Staff
I JIAWO Joint Integrated Avionics Working Group

JEEO Joint Interoperability and Engineering on
JLC-JPCG-CRM Joint Logistics Commanders Joint Policy CoordinatingSGroup on Computer Reso ivuesM en
I JTC Joint Technical Committee

I
Ad mlmnulnG e7

I

I
Acronynwm . Abbolw 3

K 1,000
KAPSE Keel Ada Programming Support Environment 3
LAN Loca Area Network
LCM LiCy Mana en

eCSA L-Cýe Support Activity
LC LCvel of CoenuM I
LRFP Logistics rmnts Funding Plan

MAPSE Minimal Ada Programming Support Environment 3
MAT MATurity
MB Megabyt.
MCCDC Marine Corps Combat Development Command
MCCR Mission-Critical Computer Resources
MCCRES Marine Corps Combat Readiness Evaluafton System
MCO Marine Corps Order
MENS Mission Element Need Statement
MEPS Message Edit Processing System
MRS Message Handling Service
MIL-HDBK Military Handbook
MIL-STD Military Standard
MIMMS Marine Corps Integrated MainManament System
MIPS Millions of Instructions per Second
MIS Mangmnt Information System

MMWMnMahn Interface
MMS Minimum Mode Software
MOA of Agreement

".MOTS Military Off-The-Shelf
MSE Maste's in Software Engineering
MT Mission Trainer,

NA Network Adaptor
NAC Naval Avionics Center I
NADC Naval Air Development Center
NAPI North American Portable Common Tool Environment

Initiatie
NAPUG North American PCTE User's Group
NARDAC Navy Regional Data Automation Center
NASA National Aeronautics and Space Administration d
NASEE NAVAIR Software Engineering Environment
NATO North Atlantic Treaty Organization 3

S o.DeU.uwt of." ft" 5
I

U Acronyms and is

I NAUG Navy Ada Users Group
NAVAIR Naval Air Systems ComnWd
NAVCOMTELCOM Naval Computer and Telecommunications Command

I NAVDAC Navy Data Auktmation Command
NAVSEA Naval Sea Systems Commnwd
NAVSUP Naval Supply Systems Command

I NAVSWC Naval Surface Warfare Center
NAWC-AD-WAR Naval Air Warfare Center, Aircraft Division, Warminste
NCA Naval Center for Cost Analyses

I NCCOSC Naval Command, Control, and Ocean Surveillance Center
NCS Network Computing Service
NCTAMS Naval Computer and Telecommunications Area Master

Station
NCTAMS LANT NCTAMS Atlantic
NCTAMS EASTPAC NCTAMS Eastern Pacfic
NCTC Naval Compute and Telecommunications Command
NCTS Naval Computer and Telecommunications Station
NDC Normalized Device Coordinate
NDI Nondevelopmental Item
NGCR Next Generation Computer Resources
NISBS NATO Inteopable Submarine Broadcast System
NLST National Institute of Standards and Technology
NISMC Naval Information System Management Center
NISO National Information Standards Organization
NIUF North American ISDN Users' Forum
NM Network Managemet

i NOSC Naval Ocean Systems Center
NRaD Naval Research and Development
NSWC Naval Surface Weapons Center

I NTCSS Naval Tactical Combat Support System
NTIS Naional Technical Information Service
NTSC Navy Training and Simulation Center

I NUSC Naval Undersea Command
NWRC Navy Wide Reuse Center
NWSUS Navy WWMCCS Site-Unique Software

I OAS Offensive Avionics System
OA5J) Office of dte Assistant Secretary of Defense

I OCD Operational Concept Document
OFPS Operational Flight Programn Size
0MG Object Manaement Group
ohm Operational Mock-up

Ad@ hnplsm Guie 9

I
Acronynm &d Abbm•el 3

OOD Obje-Oriented Design
OOP Object-Orkiened iPr mng
OORA Object-Oriented -qents Analysis
OPE Open Systems Environment
OPNAVINST Naval Operations Instruction3
OPR Office of Primary esponsibility
ORG Orgniza Chain of Command
OS System
OSA Open Systems Architectm
OSD Office of the Secretary of Defente
OSE Open System Environment I
OSF Open Software Foundation
OSI Open Systems Intecnection
OSISL Open Systems Interface Standards Uist
OSS Operations Support System
OSSWG Operating Systems Standards Working Group 3
PAV Product AVailability
PC Compute
PCIS Portable Common Interface Set
PCTE Portable Common Tool Environment
PDL Progam Design Language
PDR Prmindary Design Review
PDS Post-Deployment Support
PDSS Post-Deployment Software Support
PDU Pulse Driver Unit
PEO Program Executive Office
PHIGS Programmer's Hearchical Interactive Graphics System i
PH Protocol Indepmdent Interface
PIMB PCIE Interface Management Board
P1WG Performance Issues Working Group I
PMC Project Manage-met Charter
POC Point of Contact
POM Program Objective Memorandum I
POSIX Portable Operating System Interface for Computer Systems
PPBS Planning, Programming, and Budgeting System
PRISM Portable Reusable Integrated Software Modules
PRL PRoblems/Uimitations
PRR Product Readiness Review
PSE Project (or Ptoramming) Support Environment I
PSERM Project Support Environment Reference Model
PSESWG Project Support Environment Standard Working Group 3

10 DuPwmtn.ntha o Navy 3
I

I.

i Acronyms nd

IPSA Program Structure Analysis
PSL Prlognr Structure Language

I QA Quality Asstrance

R&D Research and Development
IRACS Registation and Access Control System

RADC Rquireme and Design Criteria
RAM Rjandomm Acesmemory

I RAPID Reusable Ada Products for Information Systems
Development

RCL RAPID Center Library
I RDA Remote Database Access

RDBMS Relational Database Management System
RDT&E Research, Development, Test, and Evaluation
RES Resources
REVIC Revised Intermediate COCOMO
RFP eqest for Proposals
RLF Reuse Library Framework
RLT Reuse Library Toolset
RMA Rate Monotonic Analysis
RMC Reconfigurable Mission Computer
ROI Return on InvestmentIROM Read Only Memory
RPC Remote Process Communication
RPC Remote Procedure Call

i RSC Reusable (Ada) Software Component
RTAda Run-Time Ada
RTE Run-Time Environment .

I SAE Software Architectures Engineering
SAFENET Survivable Adaptable Fiber-optic Embedded NetworkISAI Software Action Item
SAIL System Avionics Integration Laboratory
SAME SQL Ada Module ExtensionISAMeDL SQL Ada Module Description Language
SASET Software Architecture Sizing and Estimating Tool
SASSY Supported Activities Supply System

I SCAI Space Command & Control Architecture Infrastructure
SCCS Submarine Combat Control System
SCE Software Capability Evaluation
SCH Scheduler

Ads- Gude1

I
Acranyns and tin

SCL Stand-alone Comment Lines
SCMP System Configuration Management Plan
SCP System Concept Paper
SCRB Software Change Review Board
SCS Submarine Combat System
SDC-W Software Development Center, Washington
SDD System Design Definition
SDE Software Development Environment
SDF Software Development Folder
SDIO Strategic Defense Initiative Organization
SDL Software Development laboratory I
SDP Software Development Plan
SDP System Division Paper
SDR System Design Review I
SDSR Software Development Status Report
SDTS Spatial Data Transfer Standard
SECNAVINST Secretary of the Navy Instruction
SECNAVNOTE Secrery of the Navy Note
SECR Standard Embedded Computer Resource
SEE Software Engineering Environment
SEI Software Engineering Institute
SEM Standard Electronic Module
SEMP System Eng Management Plan
SEO Software Executive Official
SEOC Software Executive Official Council
SEPG Software Engineering Process Group
SES Senior Executive Service
SGS/AC Shipboard Gridlock System with Auto-Correlation
SGML Standard Generalized Markup Language
SIGAda Special Interest Group on Ada
SIGSOFT Special Interest Group on Software Engineering I
SIL System Integration laboratory
SIP System Intgation Plan
SISTO Software and Intelligent Systems Technology Office I
SLCMP Software Life-Cycle Management Plan
SLOC Source Lines of Code
SLOC/SM Source Lines of Code per Staff Month I
SLOCWC Source Lines of Code Without Comments
SMB Submarine Message Buffer
SMM Software 9Ma ement 1 -Metrics
SMP Software Master Plan
SOW Satement of Work 3

12 Demnment of tew Navy

I

I Acronyms and Abbnovltlom

I SPA Software Process Assessment
SPAWAR Space and Naval Warfare Systems Command
SPC Software Productivity ConsortiumU SPD Software Process Definition
SPDL Standard Page Description Language
SPI Software Process ImprovementI SPO System Programming Office
SPR Software Problem Report
SQAP Software Quality Assurance Plan
SQL Structured Query Language
SRC Software Requirements Change
SRP Software Reuse Program3 SRR Software Requirements Review
SRS Software Requirements Specification
SSA Software Support Activity
SSC System Support Center
SSS System/Segment Specification

i STANFINS Standard Financial System
STANFINS-R Standard Financial System Redesign
STARFIARS Standard Army Financial Accounting and Reporting System
STARS Software Technology for Adaptable, Reliable Systems
STB STaBility
STC Software Technology Conferencer STEP Standard for the Exchange of Product Model Data
STI Software Technology Initiative
STSC Software Technology Support Center
SUP Support PlanningISWAP Software Action Plan
SWAP-WG Software Action Plan Working GroupI SWG Special Working Group
SWTP Software Technology Plan
SYSCOM Systems Command

I TAC Tactical Advanced Computer
TACAMO Take Charge and Move Out

I TACFIRE Tactical Fire Direction
TAFIM Technical Architecture For Information Management
TADSTAND Tactical Digital Standard
TAMPS Tactical Aircraft Mission Planning System
TC Target Capacity
TC Technical Committee
TCL Total Comment Lines

Ada Implentaton GuMe 13

IAl ul

I
Acronyms and Abbreviations 3

TCP/IP Transmission Control Protocol/Internet Protocol
TD Technical Directive 3
TDA Technical Directive Authority
TDT Theater Display Terminal
T&E Testing and Evaluation 3
TeleAda EXEC Telesoft Run-Time Environment
TEMP Test and Evaluation Master Plan
TEP Test and Evaluation Plan
TFA Tnmsparent File Access
TLCSC/LLCSC Top Leve/Lower Level Computer Software Component g
TLOC Total Lines of Code
TOES Telephone Order-Entry System
TOPS Training and Operations Section
TQM Total Quality Management I
TSGCEE Tri-Service Group on Communications and Electronics

Equipment U
UIMS User Interface Management System
ULLS Unit Level Logistics System
USMC U.S. Marine Corps
USTAG United States Technical Advisory Group
USW Undersea Warfare 3
UUT Unit Under Test

VADS Verdix Ada Development System i
VDI Virtual Device Interface
VHSIC Very High-Speed Integrated Circuit
VRC Virtual Reference Coordinate
VSR Validation Summary Report
VT Virtual Terminal
VUE Visual User Environment

WAdaS Washington Ada Symposium
WAM WWMCCS ADP Modernization I
WBS Work Breakdown Structure
WC World Coordinate
WFNIA Wells Fargo Nidkko Investment Advisors i
WIS WWMCCS Information System
WST Weapon System Trainer
WPAFB Wright Patterson Air Force BaseI
WWMCCS World Wide Military Command and Control System

I
14 Dpw~mmnt of tim Navy 3

I

