
ADýA28 357>

offj

I Volume I

I
SI

I

t Ada Implementation
II Guide

5 Software Engineering With Ada
I
I
S DTIC QUALITY INSPECTED S

5 April 1994

g " 94-18857

DEPARTMENT OF THE NAVY
Naval Information Systems Management Center

W4 6 17 040

£

Acknowledgements

I The following DON personnel contributed their valuable time, insights, and perspectives
in developing this guide. Their contributions and hard work were invaluable and are£ greatly appreciated.

Chair: Ms. Antoinette Stuart, NISMCIDeputy Chair: CDR Martin Romeo, SPAWAR

Major George Bedar USNA
Mr. Currie Colket AJPO
Mr. Tom Coyle NAVAIR
Major Gerald DePasquale MARCORCOMTELACT
Mr. Les Dupaix USAF/STC
Mr. Greg Engledove NAVSEA

Ms. Donna Fisher NRaD
Mr. Charles Flen .ings NSWC Dahlgren
Ms. Patricia Grandy NARDAC, San Francisco
Mr. Ron House NUWC Newport
Mr. Chuck Koch NAWC-AD-WAR
Dr. Yuh-jeng Lee NPS
Ms. Joan McGarity NCTC
Mr. John McLaurin NADEPJAX
CDR Lindy Moran NCTC
Major John Myers USNA
LT Don Needham USNA
Ms. Tricia Oberndorf NAWC-AD-WAR
Mr. Mike Rice NAVSEA
Mr. Ramon Rivera FMSO
Mr. George Robertson NRaD
LCDR Jean Shkapsky BUPERS
Mr. Barry Siegel NRaD
Major J. Spegele MCSAIDITSO-KC
Mr. Charles Stokes NAVAIR
Mr. Hank Stuebing NAWC-AD-WAR
LCDR Anne Sullivan DISA/JIEO/TEWS J

3 Mr. Tim Walton FMSO

We also wish to express our thanks to the document coordinator, Ms. Susan Scott, with 0
support from Ms. Salvi Mugol, and the editor, Ms. Madeline Nevins, all of Booz Allen 0
& Hamilton Inc.

,jj Cc7q

*~~~~~5 ýiyd? /vI r
Ir/

I
Contents VO LM Z I

Section 1: INTRODUCTION 1 1
1.1 Scope of Ada Un 1
1.2 Experieace of Ada Use 3
1.3 Document Scope 4 i
1.4 Content and a - of This Document 5

Section 2: Ada POLICY 7 7
2.1 Policy Dirctives 7
2.2 Policy Rationale 7
2.3 Policy Description 8

Sectlon 3: BILDIENTATION GUIDANCE 13
3.1 Program Planning 13 1

3.1.1 Organizational Structure 13
3.1.2 Cost Estimation 14
3.1.3 Resource Planning 16 I

3.2 Acquisition Planning 28
3.2.1 Acquisition Plan 28
3.2.2 Statement of Work 29
3.2.3 Proposal Prepauation Instructions 30
3.2.4 Proposal Evaluation Criteria 30
3.2.5 Governmnt Estimnate 31 a
3.2.6 Deliverables-Contract Data Requirements List 32

3.3 Systems Engineering and Risk Management 32
3.3.1 Software Versus Hardware in a System Context 33 I
3.3.2 Prototyping 33
3.3.3 Project Context Benchmarks 33
3.3.4 Requirements Volatility and Traceability 34
3.3.5 Support Software Acquisition Impacts 34

3.3.11 Testing Philosophy, Evaluation, and Methodology 36 •
3.4 Highlights 37

I

I
Section 4: .. 3..................... ... 39
4.1 Project Support EnVionMnt .. .39
4.2 Tools 40

4.2.1 Minimum Tool Set 40
4.2.2 Commercial Ada Development Tools 41

4.3 £tical Computer Resore Environmnt 42i4.4 Automated Information Syshmn Environment 42

4.5 Proect Support Envirmen Options 43
4.5.1 Commercial Ada Environments 43
4.5.2 AdaSAGE 43
4.5.3 Ada-Baed Environment forTesting 44
4.5.4 Ada Language System/Navy 45

4.6 Selection of the Project Support Environment 45
4.6.1 Compiler Selection 46
4.6.2 Availability of Project Support Environment Standards 49
4.6.3 Tool Upgrades in a Project Support Environment 50
4.6.4 Mixing Ada With Other Languages 50
4.6.5 Maxing Executable Ada Programs From Different Compilers ... 505 4.7 Impact on Post-Deployment Software Support 51

Section 5: Ada AND SOFTWARE .NG.. .. G 53
5.1 Software Engineering Concept 54

5.1.1 Software Engineering Goals 54
5.1.2 Software Engineering Principles 545 5.2 Ada Language Feaum That Support Softwareginee 57

5.3 Software EngineeringTechnology Practices 57
5.3.1 Prototyping 57
5.3.2 Simulators and Simulation Languages 59
5.3.3 Reuse 59
5.3.4 Reengineeing 61
5.3.5 Reverse Engineering 62
5.3.6 Open Systems Environment 63
5.3.7 System Portability 69
5.3.8 Ada Compared to Assembler 70
5.3.9 Ada Compared to C, C+ 70
5.3.10 Mixing Ada With Other Languages 72

5.4 Paradigm Shiis for Effective Software Engineering 72

Section 6: LESSONS LEARNED 73
6.1 Standards and Policy 74
6.2 Project Management................................... 75

IV
IW

I

6.3 Development Process 75
6.4 Corporate Knowl and Software Development Eerience 76
6.5 Training ... 76 I
6.6 Reources and Facilities 76
6.7 Tools ... 77
6.8 Reuse ... 77
6.9 Pr ect Costs 78

Sectiou 7: FUTURE DIRECTIONS W
7.1 dg 9X 8

7.1.1 Aaes...8
7.1.2 Ada 9X Transition Activities 817.2 Ada Reuse In

7.3 Corporate Information Management 84
7.4 Integrated Computer-Aided Software Engineering Tools 84 I
7.5 Next Generation Computer Resources 89

7.5.1 Project Support Environment Standards Working Group 90
7.5.2 operating systems Standards Working Group 91

7.6 North American Portable Common Tool Environment Initiative 91
7.6.1 Background 91
7.6.2 Focus on PCTE 92
7.6.3 Goals for NAPI 92
7.6.4 .NAPI's Or nmt 94
7.6.5 Benefits of the Initiative 96

7.7 Portable Common Interface Set 97
7.8 Software Engineering Institute 97

7.8.1 Software Development Process 97
7.8.2 Software Risk .anagement. 99
7.8.3 Real-Time Distributed Systems 100
7.8.4 Software EgineengTechniques 101
7.8.5 Special Projects 101
7.8.6 SEI Products 101 U
7.8.7 SE Services 102

7.9 Software Executive Official Council 103
7.10 Software Technology for Adaptable, Reliable Systems 103

7.10.1 Reuse 104
7.10.2 Process 105
7.10.3 Environment 105 I
7.10.4 Demonstration 105
7.10.5 Technology Transition 106

7.11 TAC-4 and TAC-5 Procurements 106 I
7.12 Plans 107

7.12.1 Software Action Plan 107
7.12.2 Draft DOD Software Technology Strategy Document 108

VIa

1 7.12.3 DON Rluse ImplematUion Plan and Guide 109

7.12.4 DON Information MangemetStrategic Plan 110
7.12.5 SoftwareProces mprovement Plan 111

7.13 DON Technology Pilot Projects 112
7.13.1 Integrated Computer-Aided Software Engi i Pilot

SProject 112
7.13.2 Functional ProcessI lt 113
7.13.3 SEI Pilots 114
7.13.4 STARS Demonstration Pilots 115

Section 8: TRAINING AND EDUCATION 117
8.1 Organizational Training Requirements 117

8.1.1 Course Content 117
8.1.2 Evaluation of Education and Training 119

8.2 Training and Information Sources 121
8.2.1 Academic Institutions 121
8.2.2 DOD Organizations and DOD-Sponsored Activities 121
8.2.3 Catalog of Resources for Education in Ada and

Software Engineering 121
8.2.4 Other Sources of Ada Training Information 121

8.3 Lessons Learned and Recommendations 122

I m REE NCES .. 127
A•RONYM AND ABBREVIATIONS 129
GLOSSA4RY.. 143
BIBLIOOG 175
INDEX .. 181

SV6I

I

VOLUME H I
Appendix A: HELPFUL SOURCES A-i
A.1 Governmeut Sour= . A-I

A.1.I O izatio A-2
A. 1.2 Training. A-8
A.1.3 Publications . A-16
A.1.4 Bulletin Boards . A-21 5
A.1.5 RepositDries . .o o........... A-26
A.1.6 Conferences and SpeciallInterestGroups - oo.. ... o-A-32
A.1.7 Operational Development Support Tools A-33

A.2 Ada Information ...a...g....e.. A-35
A.2.1 Public Access to the AdaIC Bulletin Board A-38
A.2.2 Access to Ada Information on the Defense Data Network ... A-40
A.2.3 Info Ada Digest A-41
A.2.4 Doc~nnent Referene Sources A-41
A.2.5 AdaIC File Directory A-42

A.3 OtherSources A-51
A.3.1 T'raining o A-5i
A.3.2 Publications o................. A-54
A.3.3 Repositories o............ A-57
A.3.4 .Conferences and Special Interest Groups A-59
A.3.5 Operational Development Support Tools A-60

Appendix B: DODIDON SOFTWARE POLICIES B-1

Appedi AC: THE MATURITY FRAMEWORK C-i
C.I InitialProcess C-2
C.2 Repeatable Process C-4

Appldl D: COST ESTIMATION STUDIES D-I 1

Appendix lE EXAMPLE OF METRIC WORDING FOR USE IN A
CONTRACTUAL DOCUMENT. E- 1 I

Appendix F: SOFTWARE TOOL DESCRIPTIONS F-I 3
Appendix G: APMCATION PORTABILITY PROFILE (APPM

SERVICES....... G-1
G.1 operatiSg system Services -1
G.2 Human-Compute Interface Services G-1
G.3 Software Engineering Services * G-2

V.

I

I
G(.4 Data %tSenrvice G-3
G 0.4 DataM Intana Services 0-3

G.6 GsS G-5
G.7 Network Services G-5
G.8 Security Services G-7
G.9 Management Services G-7
G.10 NIST APP Specifications Evaluations G-7

IAppendix H: Ads BINDING PRODUCTS .. H-I

Apenldix L- LESSONS LEARNED 1-1
1.1 Stratcom--Computer Center, Offutt Air Force Base 1-21
1.2 Wells Fargo N'kko Investment Advisors 1-23
1.3 B-2 Aircrew Training Devices 1-24
1.4 Boeing Military Aircraft (Wichita, Kansas) 1-27
1.5 Coulter Electronics: Ada for Cytometry 1-29
1.6 AN/UYS-2A Project 1-29
1.7 Ada Experience at the Naval Research and Development Center 1-31
1.8 Tactical Aircraft Mission Planning System 1-33
1.9 Advanced Field Artillery Tactical Data System 1-39
1.10 AN/BSY-2 ... 1-40
1.11 Ada Language System/Navy 1-45I1.12 Avioniics Project 1-47
1.13 PEO-SSAS, PMS-414, SEA LANCE 1-49
1.14 Navy World Wide Military Command and Control System

(WWMCCS) Sit-Unique Software (NWSUS) Project Mission 1-51
1.15 Event-Driven Language/COBOL-to-Ada Conversion Program 1-54
1.16 Shipboard Gridlock System With Auto-Correlation 1-55! 1.17 Combat ControlSystem MK2 1-57
1.18 P-3C Update. V Ada Development 1-59
1.19 Standard Financial System Redesign 1-63
1.20 Reccnfigurable Mission Computer Project 1-66
1.21 Intelligent Missile Project 1-67

J Appendix J: FY91 Ada TECHNOLOGY INSERTION PROGRAM
PROJECIS J-1

J.I Education J-1
J.2 Bindings J-1
J.3 Technology J-3

.Appendix K:e NAVY AND MARINE CORPS Ada PROJECTS K-I

III Ix

I

I

Appendix L: Ada LANGUAGE FEATURES THAT SUPPORT
SOFTWARE GINE NG L-i

L.1 Ada Iackage I-i
L.2 SUM T yping 4
L.3 Exceptions 1-7
LA4 Generics -.. 8I
L.5 Ada Library (Seprate Compilation) L-9
L.6 Ada Tasking L-9
L.7 Features That Facilitate Software Engineering L-10 I

Attachment 1. Example-Paclage Specification: Parcel
Abstraction Example L-I
Attachment 2. Package Specification and Package Body: Queue m
Example 1-13
Attachment 3. Generic Package: Generic Queue Example L-15

Appendix I: SUPPLEMENARY READING M-1

Appendix N: COMPARISON OF Ada TO ASSEMBLY: F-i5 STRUCTURAL
F -T. EXAMPLE N-1

Arnms and Abbreviations I

I
N
p
a
S
I
I
I
i
I

Libt of F4g u OW Tahl

Figures

2-1 DON Directives and Instructions for Implementing Public
Law 102-396 8.. 8

3-1 Development Time for Software Engineered Projects .1
3-2 Reduction in Integration Time 18
3-3 Source of Software Ernrs 20
3-4 Relative Cost to Correct Software Errors 20
5-1 Goals and Principles of Software Engineering 55
5-2 Open Systems Environment Reference Model (OSE/RM) 65
5-3 APP Service Areas and the OSElRM 67
5-4 Comparison of Ada to C++ (SEI, 1991) 71
7-1 I-CASE Technical Environment 86

Tables

2-1 DON Ada Policy Implementation Matrix 9
7-1 ACVC Planned Release Schedule 83

Al

$eoeon 1

Introduction

Public Law 102-396, Section 9070 of the Department of Defense (DOD)
Appropriations Act, 1993, enacted on 6 October 1992, requires that, "where
cost-effective, all Department of Defense software shall be written in the
programming language Ada " The Department of the Navy (DON) prepared
this second edition of the Ada Impl•umtation Guide to help Program Managers and
their staffs to implement this law. (For the purposes of this document, the terms
Program Managers and Project Managers are synonymous.)

New additions to this guide include the following:

"* Software engineering and Ada training requirements

"* Information on standard Ada bindings to commercial application software

"* A section on the way Ada facilitates the application of software engineering
principles

"* Integration of Ada and new emerging technologies (e.g., open systems
architecture, software reuse, computer-aided software engineering,
reengineering)

"* A DOD/DON Software Policy Matrix that includes policy descriptions and
related policies.

LI SCOPE OF Ada USE
Ada was developed to control the proliferation of programming languages, establish
a standard programming language for DOD, and reduce DOD's cost to maintain
software for its mission-critical systems. Congress has recognized Ada as the
standard for all DOD software application development and has mandated its use
unless an alternative approach can be demonstrated to be cost-effective over the
application life cycle. As a matter of DOD policy, all new systems and major
software upgrades are subject to this mandate. The mandate to use Ada applies only
to software that DOD is developing and must support and maintain throughout the
life cycle. Organizations are encouraged to use Commercial-Off-The-Shelf (COTS)
software to fulfill operational requirements as development tools and even support
libraries within an application. The language used for these artifacts is immaterial
because DOD does not maintain the software. When DOD does maintain the
software, however, the language does matter, and DOD must have an infrastructure

Ada Implemtenatlon Guide

Intrducti

to provide cost-effective maintenance and supportability of the software over the
system life cycle to include Post-Deployment Software Support (PDSS). Use of a
single DOD language to support this infrastructure is not a new concept: DOD a
organizations have required the use of particular languages since the 1960s; in the
mid-1970s, the use of a smaller set of languages was mandated for DOD applications;
in 1985, the use of Ada was mandated for a class of DOD systems; and in 1990, the I
Congressional mandate made Ada the standard language for all DOD systems.

This guide addresses Ada policy implementation for two broad classes of DON
systems: Mission-Critical Computer Resource (MCCR) systems and Automated
Information Systems (AIS). The term MCCR is used in this guide to denote the
class of systems managed under the DODD 5000 series of instructions. The term
AIS is used to denote those systems managed under the DODD 8000 series of
instructions. The communities of program managers who manage these systems have
distinctly differing environments for implementing Ada policy.

The MCCR community consists of organizations that work on computer resources j
critical to the conduct of the military mission of the DON, including those for all
tactical and strategic weapons, communications, command and control, cryptologic
activities related to national security, and intelligence systems that directly support
military operations. Such systems often are embedded. The MCCR community has
been developing software systems in Ada since 1985; however, most systems
development has been contracted to the private sector.

The AIS community comprises organizations that work on business computer
resources that are not mission critical, including all administrative, logistics, financial, I
personnel, and work load planning systems. Such systems may operate on
microcomputers or mainframe computers in a stand-alone or networked mode. The
AIS community has developed its software systems in a variety of High Order S
Languages (HOts) by using inhouse DON personnel. Although relatively few AIS
applications systems have been developed in Ada, the number is increasing as
activities and claimants are developing Ada expertise.

Whether the system is MCCR or AIS, Ada must be used during the concept
exploration and definition, demonstration and validation, engineering and
manufacturing, development, and production/deployment phases of a system and for
both application and support software. In addition, Ada must be used for major
modifications to existing systems and for systems that involve integrating components
into systems that incorporate commercial and other nondevelopmental software. To
use an alternative programming language, a waiver must first be obtained from the
appropriate waiver authority; the waiver must include an economic analysis that

2
2 Department of the Navy I

I

B
5 hiboduction

clearly delineates that an alternative -roach will be significantly more cost-£ effective.

L2 EXPERIENCE OF Ada USE5 Operation Desert Storm illustrates why DOD's use of a single HOL is appropriate.
During this conflict, the Air Force's Theater Display Terminal (TDT) had been
deployed to Israel to warn of Iraqi SCUD attacks. The TDT is a deployable missile
warning system written in Ada for a Sun 3 UNIX environment. On 11 January 1991,
Israel identified a new system requirement for the TDT operational program, namely,

to identify the country of origin for a missile launch. Knowing the country of origin
was considered important in formulating the tactical response. To Israel, it made a
difference whether a SCUD was launched from Iraq or from some other country.
By 13 January 1991, an existing country-of-origin algorithm in Ada and an Ada
geopolitical database were found. On 13 January 1991, these artifacts were
integrated into a developmental system; on 14 January the enhancement was
integrated into an operational system. The software was flown to theater and
installed for use on 15 January. On 16 January, only 5 days after the requirement
was identified, the new capability was ready to detect Iraqi SCUD attacks on IsraeL
The capability to support this new mission requirement rapidly was possible only
because the TDT, the country-of-origin algorithm, and the geopolitical database were
in Ada. Integration of these artifacts was possible only because of the Ada package,
which provided dean logical interfaces between each artifact. Had Ada not been
used, the cost to support the new requirement would have been substantial, and the
enhancement would not have been fielded by the end of Desert Storm.

i Today, use of Ada enables DOD, government, and commercial organizations
committed to Ada to achieve a higher-quality product at reduced life-cycle costs.
Just as Ada use makes sense to DOD for sound economic reasons, its use also makes
sense to the commercial world for the same reasons. Among the companies that are
using Ada are Digital Equipment Corporation, Boeing, Motorola, and Rockwell.
Boeings 777, the Federal Aviation Administration's Advanced Automation System,
and the National Aeronautics and Space Administration's Space Station are
non-DOD projects committed to the use of Ada. These organizations are openly
embracing Ada, not because of the Ada mandate, but because using Ada to produce
high-quality software for large, safety-critical applications is a sound economic
business decision.

Boeing is an excellent example of a commercial organization committed to using
Ada. The Boeing 777, with its estimated 10 million lines of code, will be one of the
largest software projects ever undertaken. Boeing expects to take advantage of
software reuse by reusing 2 to 4 million lines of existing code. Boeing also used Adag on the recent modification to the Boeing 747, which is now flown extensively by the

1 Adam Iiplementaton Guide 3

1*

I

airlines. Boeing is committed to the use of Ada for this system because of the
quality, cost, and schedule benefits provided when Ada is used in combination with I
modem software engineering practices.

Data obtained by comparing the B-52 Offensive Avionics System (OAS) Modification
in 1979-1980 and the F-22 Advanced Tactical Fighter (ATF) Demonstration I
Evaluation (DEMVAL) in 1990 helped Boeing decide to commit to Ada on the 777.
The B-52 OAS was written in 120,000 lines of JOVIAL source code. Originally,
about 15 flights had been scheduled to test the software. During flight testing. more
than 800 problem reports were identified, and approximately 80 flights were required
to complete the software testing. Testing was unnecessarily complicated, expensive,
and problematic because, on average, 30 to 50 patches were entered into the tested
software. In contrast, the F-22 ATF was written in 250,000 lines of Ada source code.
This represented far more than twice the complexity of the B-52 OAS because Ada
is capable of dealing with high-level abstractions. Thirty-one flights had been I
scheduled to test all the complexities of the flight software. Only eight problems
were identified against the flight software. This represents an improvement of two I
orders of magnitude from the B-52 OAS to the F-22 ATF DEMVAL Testing was
facilitated because a clean compile was available as required because of Ada's
support of separate compilation. These statistics are even more impressive given that 5
seven different contractors developed the ATF software and a team of programmers
integrated it at the flight test site the week before the first flight. Certainly the
advances in software engineering and tools between 1980 and 1990 played a role in a
these statistics. The support of these software engineering advances and tools for the
Ada language was an important factor in Boeing's commitment to Ada for the
Boeing 777.

1.3 DOCUMENT SCOPE
This document is intended to guide Program Managers in using Ada in systems
development throughout the various phases of acquisition and to promote the use of
sound software engineering principles, concepts, and processes in systems
engineering. All levels of management, technical personnel, and the systems I
development community should refer to the information contained herein.

The intent is to update this document biennially. In keeping with the spirit and m
intent of the document, all users of this guide are encouraged to share their
experiences and knowledge with the Ada community. Therefore, if a reader finds
that significant areas are not covered in this document, we request that he or she
provide feedback to the document update process so that the next user will have
better information. (See Appendix A, Section A.1.1, DON Ada Representative 5
address.)

I
4 DeparmeInt of the-Nav

I
I

I
i I*roducmo

14 CONTENT %ND ORGANIZATION OF THIS DOCUMENT
3 This two-volume document discusses the use of Ada for software system development

in the DON, and its contents apply to both AIS and MCCR communities. Volume I
contains eight sections, a glossary, a list of acronyms and abbreviations, a referenceU list, a bibliography, and an index. Section 1 provides information on the content of
this document. Section 2 describes DON policy with regard to Ada use. Section 3
contains specific guidance on incorporating Ada into all phases of life-cycle

Smanagem ent- from program planning through post-deploym ent m ai tenance. In
Section 4, the environments that support development and maintenance of Ada
application software are described. Section 5 addresses the concept of software
engineering and identifies several Ada features that are important in supporting
software engineering. Section 6 presents a series of lessons learned relevant to the
software development process, and Section 7 highlights what DON Program
Managers can expect in the future. Section 8 contains information on recommended
training in Ada and software engineering for DON software professionals.

i Volume I contains several appendixes that provide valuable information to
supplement the guidance contained in Volume I. Appendix A describes additional
resources that will be helpful to Ada Program Managers and urs. As noted,
Appendix B provides a matrix of DOD/DON software policy. The t .er appendixes
expand on issues discussed in Volume I, and they are referenced where appropriate.

II

I

I
I

1 Ada Implemmntation Guide 5

3

I
-. 5

I
I
I
U
3
I
I
I
I
S
I
I
I
I
I

S Depadnissa of the Navy

I

I
I

Seion 2
Ada Policy

This section summarizes the Department of the Navy (DON) policy on Ada use in
Automated Information Systems (AIS) and Mission-Critical Computer Resources
(MCCR) progrms

2.1 POLICY DIREIVESjPublic LAW 102-396 requires that, "notwithstanding any other provision of law, after
June 1, 1991, where cost effective, all Department of Defense software shall be
written in the programming language Ada, in the absence of special exemption by an
official designated by the Secretary of Defense.' Fqure 2-1 provides the directives
and instructions that serve as the framework for DON implementation of this law.

1 2.2 POLICY RATIONALE
The thrust of the Department of Defense (DOD) computer programming language
policy has been to limit the number of different computer languages, including
dialects and support tools, associated with the application software maintained by
DOD. DOD estimates that maintenance accounts for 60% to 80% of software life-
cycle costs; therefore, DOD emphasis is on one High Order Language (HOL) and
a limited set of standard HOLs.

The selection of Ada as the "single, common, approved standard HOL" for DOD
systems was based on the inherent software engineering features of the Ada
programming language. These software engineering features lead to software
programs that are better structured, less error prone, and more easily maintained.
In addition, these features facilitate reuse and system reengineering. Ada and Ada
Program Support Environments (PSEs) enable DOD to deal effectively with the
programmatic and technical challenges posed by the increasing number and
complexity of software-intensive systems.

AI
I
I
g Ada Implsmentailo Guide 7

I

I

* Jm460c92 *R~q~s ~ Ads Poley5

P.L 102-396 AU Softwwe
Dsvdopmu. Whins7 CmstEffsecdw

DODID 3405.1 *Pum DOD Comnpow

I I

ASD (C1) MM, o u17 APR 92 "-I • w*iI ~Authmimb
I I

" Rmqvh~j%& fo ReqmufruAda forRubAdfu XD1O00. J DOD "8000" Seris

DOD 50O" Serds DO Dy u120.1a
Systms With CHI SYMeM

*a Fmmealy DODD 7920.1
I' I

" 1nod for CtuI5 " PrdN Impkuimnmdio of DOD
September 199|L 5234.2A AdaPol7

.mpbe o of 50.2A 5231.1C pmm of DODD
DODI 5000.2 8120.1 (FOrmudy DODD

S SBNAVINST 7920.1)
5200.32A S

Figure 2-L DON Dirncives and Aco for lmpemmdtag Public Law 1M2-3M

2.3 POUCY DESCRIPTION
Table 2-1 provides a description of the essential features of DON Ada policy as
planned to be issued in SECNAVINST 5234.2A. The table has been prepared with I
the expectation that the SECNAVINST 5234.2A will be issued at about the time this
guide is promulgated. Although the table has been constructed to be consistent with
SECNAVINST 5234.2A, in the event of conflicts, the provisions of SECNAVINST
5234.2A take precedence. Appendix B provides additional info on on
DOD/DON instructions related to Ada, software engineering, and life-cycle
management policy. -

I
B Dnemutmw of the Na,,y I

I

6
SAda Poicy

Table 2-1. DON Ads Policy Implementation Matrix

IAREA Ada POLICY DESCRIPTION COMMENTS

Scope/ This nsmtuction applies to all systems and Major software upgrade is
Applicability software that: defined as "a change to the

system architecture which
(a) are managed under SECNAVINST 5200.32A, would result in a
or (DOD 5000 Series) cummulative one-third

modification to a computer
(b) are managed under SECNAVINST 523 1.IC, software configuration
or (DOD 8000 Series) item (DOD-STD-2167A)

or a subsystem
(c) are part of Science and Technology (S&T) specification (DOD-STD-
prograns under direction and oversight of the 7835) within any five year
Office of the Chief of Naval Research (OCNR). period as measured in

compileable source lines of
This instruction does not apply retroactively to the code.
following:

Modification includes"Systems that have entered production and addition, deletion, or

deployment (passed Milestone III) for (a) change exclusive of
above, routine maintenance."

"* Systems managed under (b) above that
have passed Milestone II as of 1 June 1991

"* Systems nmaged under (a) above for
which a documented language commitment
was made in accordance with previous
policy.

IThis policy does apply at the firs major software
upgrades for these systems.

3 This policy supersedes SECNAVINST 5234.2.

I
SAda lmpIementltion Guide 9

Im

I
Ada Policy

Table 2-1. DON Ada Policy Implementation Matrix
(continued) 3

AREA Ads POLICY DESCRIPTION COMMENTS I
Existing Ada is not required for: Reuse or upgrade of
Operationally operationally fielded
Fielded Software maintenance limited to error correction software for new
Software and modifications for portability of existing acquisition programs or

software, major software upgrades is
addressed below.

Nondeliverable Ada is not required for the development of Rationale: By definition,
Software nondeliverable software, as defined in DOD-STD- nondeliverable code will

2167A, does not require Ada. not be delivered to or
maintained by DOD.

COTS No waivers are required for the use of COTS Use of COTS software is
Software software, including operating systems, utilities, encouraged and a

libraries, self-contained applications programs, and recommended.

vendor update implementations.

The COTS software is not to be modified in U
finction or maintained by the goverment.

Reuse of Ada No waiver is required. Reuse of Ada software is m
code encouraged and

recommnided.

Reuse and No waivers are required for reuse of modification Major software upgrade is 5
Upgrade of of existing operationally fielded non-Ada software, defined above.
Existing DOD- as long as the change to the reused or modified
and software is less than a major software upgrade.
Government-
maintained Changes to existing software that constitute a
Software major software upgrade must be done in Ada or

else a waiver is required.

II
3

10 Dopartment of the Nqavy

I

6
5 AAda Policy

Table 2-1. DON Ads Policy Implementation Matrix
(continued)

3 AREA Ada POLICY DESCRIPTION COMMENTS

Advanced No waivers are required for the use of a ASTs include life-cycle
Software commercially available off-the-shelf AST that is support tools,
Technology not modified or maintained by the Government. programming support
(AST) environments, non-

*Note: procedural languages
(4GLs), and modem

Use of SQL (ANSI. FIPS 127-1) with DBMSs. Although the
compliant COTS DBMS's for binding to native commands
Ada host applications is an Ada policy associated with ASTs may
compliant approach. The software be used for ad hoc query
engineering approach for constructing such trinsaction, any programs
DBMS applications is described in: written for use with the
- SEI 88-MR-9 AST or HOLs, or used in
- SEI 89-SR-14 conjunction with AST
- SEI 90-TR-26 must use Ada or AdaI bindings.

Waiver As specified in SECNAVINST 5234.2A.
Authority ________________ _____ ____

A
I

I
I
I
I
I
g. Acla Implementation Guide 1

I

I

I

I

I
I
i

i
I
1
i

12 Department of the Navy

£

I

!ek~on3
Implementation Guidance

I To capitalize on the benefits of software engineering with Ada, the Program Manager
must carefully plan for its use throughout the program ie cycle. Department of the
Navy (DON) programs have multiple stages: planning, acquisition and/or
deveopment, test and evaluation, and Post-Deployment Software Support (PDSS).
It is critical that the Ada software engineering process be assimilated into the3projects systems engineerin activities at the earliest possible time. This combination
of systems engineering and Ada will provide the Program Manager with tangible
benefits such as higher quality software, fewer system integration problems, ease of
Spost-deployment maintenance, d software reusability-all of which result n
reduced life-cycle costs.

3 This section provides guidance to help Program Managers effectively engineer and
incorporate Ada into their programs. It discusses the interrelated elements of
program planning. acquisition plaming, systems engieering, and risk management.
It is important that the Program Manager's acquisition and program planning reflect
systems engineering (i.e, an integrated approach to hardware and software) from the

-- first stages of the acquisition process.

This section assumes that the Program Manager is well versed in the areas of
software and systems engineering and the appropriate Department of Defense
(DOD) and DON policy and directives.

3.1 PROGRAM PLANNING
To effectively incorporate Ada into systems development, the following areas must
be addressed:

El *Orgaizatonalstructure
•Cost estimaton1• Resource planning.

The Program Manager is responsible for ensuring that program planning thoroughly
addresses these key areas. It is critical that the acquisition strategy fully integrate
software and hardware systems development as early as possible in the process.

-&LI Organizational Structure
Ada software development and maintenance efforts are compatible with all
organizational structures (Archer, 1991). The use of Ada does not restrict project
size, functional organization, combinations of organizational structures, or the

Ads impls ttion Guild 13

I u1

I
mpm daeUo- Guidance

function of the organization concerned. As a matter of good business and systems
engineering practices, Program Managers should: 3

"Establish their Program Management Organization and organizational
interfaces including: 1
- Operational users
- Test and evaluation organizations
- Software development organizations (contractor and organic)
- Organic support organizations (e.g., warfare centers, Life-Cycle Support

Activities []SAsJ, design programming activities, Software Support
Activities [SSAs], and In-Service Engineering Agents [ISEAs]). I

"* Ensure that Ada, software engineering, domain-specific architecture, and
engineering expertise are available within their management and support
organizations.

" Ensure that organic support activities have established internal management 3
practices for improving their software engineering capabilities. These
management practices should include provisions for introductory and
continuing Ada and software engineering training, incorporation of Software I
Engineering Institute (SEI) software process improvement plans, and institution
of Software Engineering Process Groups (SEPGs). a

"* Promote the use of Ada and ensure that Ada policy requirements are known
and understood within the management and support organization.

3.1.2 Cost Estimation
Department of Defense Directive (DODD) 5000.1, Department of Defense
Instruction (DODI) 5000.2, DODD 8120.1, and DODI 81202 require that system I
life-cycle cost estimations include cost forecasts for development, procurement, and
support. Program Managers are responsible for performing and submitting
developmental and support cost estimates for their systems. These cost estimationI
data are used to prepare Program Objective Memorandum (POM) funding estimates,
Logistics Requirements Funding Plans (ltRFPs), Cost and Operational Effectiveness
Analyses (COEAs), and other system life-cycle milestone decision documents. They
serve as the Government estimate for contract evaluations.

As DON systems have become increasingly software intensive, software costs have I
become a significant factor in overall system life-cycle costs. Software maintenance
is the single largest life-cycle cost for Government computer systems, with software
development costs coming next. Government computer systems have typically been
delivered over cost, behind schedule, and lacking in quality and maintainability.

14 Deptwmet of the Navy I
I

nmplemeftmto Guidance

It is crucial that accurate software cost estimations be performed to provide a basis
for the Program Manager to plan the organization, schedule, and resource
requirements needed to sustain the software from the initial software development
throughout the system's life cycle.

One of the most challenging tasks in software management is to accurately estimate
the resource requirements and time needed for a software development project.

SSection 6, Lessons Learned, notes that, on some projects, initial planning estimates
for software development understated the resource requirements and time neededand severely affected actual system costs.

The threv generally accepted approaches for estimating the resources and schedule
needed for software development are as follows:

" Comparing the proposed project with a completed project of the same type the
cost and schedule of which are known

"* Dividing the overall development effort into several smaller tasks (often using
a multilevel Work Breakdown Structure [WBS]) and adding up the estimates
for each of these tasks. (See Software Work Breakdown Structure,
MI.-STD-881B, and the draft Handbook, MIL-HDBK-171.)

0 Using a software cost and schedule model that calculates the resources and
time needed as a function of other software parameters (e.g., size, complexity,
function points).

Regardless of the estimation approach used, an organization with more experience
in developing software of the same size and complexity for the same type application
will produce more accurate estimates for a new project. Unfortunately, estimates
based on experience with small and less complex software developments are almost
always unreliable because this experience cannot be applied to larger, more complex
software in a similar application area. This difference results partially from an
exponential relationship between software size and development effort. Experience
in one application area does not always transfer well to other application areas.

Many software cost estimating methods have evolved over the years. These methods
take the form of either analog or parametric models and may be implemented
manually or by using automated software cost estimating tools. Most of the current
models require size estimates of either the lines of source code or function points as
input. The resulting estimates for cost, effort, and schedule are highly dependent
upon the accuracy of the initial size estimates. A few software tools, such as those

I 1Ada Implementation Guide 15

I

I
ImphlmmlMlon Gudwnce 5

based on function point analysis (Jones, 1991), do not require project size as an

input.3
Experience has shown that the best software cost estimates have been based on an
application of two or more methods/models by experienced estimators. The Naval
Center for Cost Analysis (NCA) can provide:

"* Expert advice on cost estimation 3
"* Assessments of software cost estimation tools being considered for use by DON

programs (independent)

"* Lessons learned from cost estimating

"* Advice on estimating software development and maintenance costs. U
Appendix A, Section A.1.1, provides points of contact and addresses of organizations I
involved in cost estimating, and Appendix D provides additional information on cost
estimating. a
3.1.3 Resource Planning
The major areas for resource planning are as follows:

"• Personnel and training
"* Schedule and time
"* Development, test, and operational environments (hardware and software) S
"• Life-cycle documentation
"* Software development process improvement
"* Metrics I
"* Data management and analysis
"* Life-cycle maintainability (PDSS)
0 Information sources.

The subsections below discuss these areas. f
3.1.3.1 Personnel and Training
The Program Manager must ensure that software engineering and Ada training is
conducted at all levels of the organization (management and technical). Project
success depends on the ability of people who have the knowledge and skills needed
to perform the system and software engineering functions, develop the process I
control mechanisms, collect critical data and metrics, and analyze data to determine
status and trends.

16 Depa'tmnt of the Navy

6
5 Impnnm tkm~ @Guidance

Most computer science graduates who are trained in Ada and software engineering
principles can quickly adapt this knowledge to a specific application. Staff members
who have spent years working with traditional programming languages and
production processes may require additional training and mentoring. With this3 additional training, these individuals can become a valuable part of the program by
using their inherent knowledge of corporate functions and experience in the
application domain. Training should be given "just in time"; that is, personnel should

Sbe assigned to a project where they can immediately capitalize on their training.
Consideration should also be given to conducting continuing education at local
universities, via membership in software professional societies, and at software

I engineering and Ada symposia. Appendix A, Sections A.1.6 and A.3.4 provide
information on Ada professional societies. Section 8 in this volume provides detailed3 descriptions of the contents and recommended length of the courses available.

3.1.3.2 Schedule and Time
Time is the Program Manager's most important consumable resource. Program
Managers must identify milestones and select and use a realistic process for
measuring progress towards achieving those milestones. By using a variety of
measures to track progress and plan contingency actions, Program Managers can best
mitigate schedule risk. Although cost tracking mechanisms, such as WBSs, cau be
useful, their exclusive use does not constitute a valid measure of progress.

I Program Managers should be aware that the allocation of resources to a schedule is
different for the Design, Coding, and Testing Phases of a project when using Ada.
In general, Ada projects require more time for design and less for coding and testing
than non-Ada projects because errors detected in the Design Phase are less expensive
to correct. Figure 3-1 depicts the results of a National Aeronautics and Space
Administration (NASA) study that analyzed the time spent on the various phases of
Ada and non-Ada projects conducted from 1983 to 1993. As shown in Figure 3-1,
non-Ada projects typically required less time for the Design Phase and more time for3 Coding and Testing Phases.

Time invested in the Design Phase reduces the time required for the Coding and
Testing Phases, and, according to data provided by NobelTech (now Celcius Tech)
of Sweden, it also reduces time needed for integration. Figure 3-2 shows the
reduction in time achieved by NobelTech for integration. In the past, integrationSrepresented about 40% of a project's total time. When NobelTech used Ada on its

Ads Implementation Guide 17

3

n- 46lee%.o Guidance5
45-!wl

40 37% 37%3
35-

p. 7 it 307%27

Thm 6

i 5-

10

HNor-Ma HOL d3

Source: NASA GFSC, 1983-1990

Fligure 3-1. Development lI.. for Softwar Engineered Projects

9-82%3

70- 0

Percamt Go-

al

30 1
0

l~atoilcaa Ma Frt ShNp)

Source: Nobeflfch, Sweden3

Figur 3-2. ReductIon in Integration TIme

Is Deportment of the Navy

B
SIm Guidance

first development project, the integration time was only about 18% of the total time.3 Tune is especially important during system integration when many subsystems must
come together, often for the first time. Delay in producing a critical subsystem could
seriously affect the progress of other subsystems. Use of Ada helps to reduce
integration problems because its language features help provide a dear interface
between subsystems. Appendix L, Section Li, contains additional information on the
Ada package feature that provides this clear interface.

During schedule planning, it is important to realize that time invested in both the
requirements and design phases will provide significant benefits to the overall system
life-cycle costs. Errors in the Requirements and Design Phases are typically high and
are the most costly to correct. Figure 3-3 shows the source of software errors as
reported in the Communications of the Association for Computing Machinery
(ACM), (Association for Computing Machinery, 1984). As the figure shows, more
than 75% of errors result from the Requirements and Design Phases. Figure 3-4
shows the relative cost to correct these errors based on a study from AT&T, Bell
Laboratories, 1988. A requirement error detected in deployment is almost an order
of magnitude more expensive to correct in the Deployment Phase than in the
Requirements Phase. An error in design is about 25% less expensive to correct in
the Design Phase than in the Deployment Phase.

As illustrated in the NASA, NobelTech, and other studies, the use of Ada and
software engineering results in the early detection of design and requirement errors,
thus reducing overall life-cycle costs. Figures 3-3 and 3-4 also imply a Program
"Manager should invest additional time in developing, analyzing, and validatingrequirements. Many projects would have benefited from a more rigorous
Requirements Phase.

1 3.1.3.3 Development, Test, and Operational Environments
Software and software development methods within DON must keep pace with the
latest development and test technology. The Program Manager is responsible for
ensuring that new technology is identified, evaluated, and integrated into the
acquisition process when it provides a better system solution. To minimize program

Srisk, only those technologies that have been fully proven and demonstrated should
be adopted for Full-Scale Development (FSD).

SUse of the best-of-industry tools and a highly trained, competent staff ensures the
highest productivity and quality. Profiles of DOD projects show that, historically, for
every line of operational code, there have been at least four lines of support software
(Boehm, 1981). Traditionally, this approach has increased the hidden costs of a
project because support functions were either performed in a labor-intensive manner

A
Ad Implemuntdton Guide 1S

3

Wul INemo Gsiimm

*d w
phm

is-I

0 FM
Owl"m bedva Too" £

Source. Cammmicatia of ACM. Januazy 1964

Ilguz 3.3& souwn of Soitwu EMrS3

9-I

To

Eu.' 4-

Sour=e AT&T3

Figur 34C RMa" Codt to Comet Softmar Erros

20 Dopulunst of Oim Navy

£
5is ,mm NfO. Guidence

or additional tii:planned costs were incurred in tool development The diversity of
commercial pr :Ject support tools available to assist in the generation,
configuration control, and maintenance of operational code should minimize the
need to develop project-specific support tools.

The judicious selection of such took can enhance software development,
maintenar -e, and productivity; however, the Program Manager should ensure:

"* The project support tools selected are formally demonstrated and tested before3 committing to their extensive use

"* Software methodologies used in the support tools are consistent with practices

Sused in the supporting software development or maintenance activity

"* Support tools are used consistently from the highest level of management1 through the subdeveloper level

" Interface and data interchange incompatibilities among various tools are3 resolved.

The Program Manager also should contact the U.S. Air Force Software Technology
Support Center (STSC) for information and evaluation data concerning applicable
Software Engineering Environment (SEE) tools. Appendix A, Section A. 1.1, provides
information on the STSC.

I Modem systems are becoming more complex and frequently test the limits of the
system development process. The software development environment should be
robust and flexible to accommodate unforeseen requirements. Therefore, managers
of development activities should evaluate development tools and select those that are
best for their application. The tendency to procure host or target configurations thatI minimally support the requirements of the software development process must be
overcome. It is important to provide the software development activity with
sufficient processing and memory capacity to allow it to accomplish its task. Memory
and processing capacity are relatively inexpensive when the value of functions
performed and productivity gains achieved by software tools are considered.
Program Managers must also realize that an adequate number of trained
professionals will be required to use and maintain these tools and environments.

3.13.4 life-Cycle Documentation
Documenting and disseminating the standards and procedures needed to manage the
development process are necessary to ensure discipline and consistency in the3 development and maintenance phases of the software system life cycle. Project

Ada Implm•entaton Guide 21

I

knplune-lauon Ouidanoo

planning documentation must identify the applicable standards and procedures to be
used during the project's life cycle. Section 2 identifies the requirements and
instruction that describe life-cycle management and documentation standards.

These standards are meant to be tailored for each individual program and will vary
from program to program. ML-IDBK-287 contains tailoring guidance for
DOD-STD-2167A, but no equivalent too, is available for DOD-STD-7935A. The
Program Manager should realize that time spent up front in tailoring documentation 1
requirements to the program's specific needs can substantially reduce total life-cycle
costs.

3.1.3. Software Development Process Improvement
The basic principle of system process management is that a development process
should be under statistical control. Statistical control means valid process indicators
have been identified and measured so that statistical monitoring of this indicator,
over time, will accomplish the following:

"* Identify any deviation of the process from normal operations
"* Serve as a long-term basis for process improvement
"* Produce desired results within anticipated limits of cost, schedule, and quality.3

Although statistical control is well known in the manufacturing arena, its use as a
tool in the software development process is still in its infancy. Few process indicators I
have been identified that reliably contribute to long-term process improvement.

As a step toward providing guidance to organizations on how to gain control of 3
software development and maintenance processes and evolve toward a culture of
software excellence, the SEI has developed the Capability Maturity Model (CMM),
which is described in Appendix C. To help apply the CMM, the SEO has developed I
two distinct evaluation techniques: Software Process Assessment (SPA) and Software
Capability Evaluation (SCE). These techniques can help the Program Managerimprove in-house software development and maintenance capabilities and can
provide a basis for selecting qualified software developers.

3.1.3.5.1 Software Process Assessment i
SPA is a self-diagnostic and improvement-initiating activity that helps software
organizations launch effective process improvement programs. SEI or its licensed
vendors provide SPA training. Appendix A, Section A.1.1, contains information on
how to contact the SEI.

Based on examination of representative projects, SPA produces a baseline of the i
organization's process maturity. These projects may be old or new, large or small,

22-Depaimit of i U Navy

5 lmplemwmatso Guidance

and they may use either the latest languages and methods or established languages3 and methods. An effective SPA will provide software development organizations
with an indication of the current state of their software processes, the high-priority
software process issues facing the organizations, and the actions needed to start5 process improvement.

3.13.12 Software Capability Evaluation
SCE is an audit technique that examines an organization in light of the contract to
be awarded. Government acquisition organizations use SCE to help identify the
capability of software organizations during source selection and to monitor contractor5 capability during contract performance. The software development organization
provides candidate projects for evaluation by the acquisition organization as an
indicator of its ability to perform on the contract. Program Managers should assess
the maturity level of contractors and in-house software developers before beginning
software acquisition or development.

3 3.1.3.5.q3 Process Control
Program Managers must ensure that reporting mechanisms and procedures are in
place to regularly review the status of development and that a method exists for
assessing adherence to plans and controlling risk. The resolution of critical problems
must include inputs from the end user, Program Managers, and developers.

U Program Managers should institute the use of an SEPG as the primary means of
process improvement and control. The SEPG facilitates software process definition
and improvement efforts. This should also be required of both Government and
contractor software development organizations. Program Managers should have on
their staffs an SEPG member who will help the Program Manager work with the
development organization's SEPG staff to coordinate, monitor, and facilitate all
contract software process improvement initiatives, including SCEs, SPAs, metrics
collection, and reporting.

I Standardization of the metrics process is especially critical to allow analysis that will
reveal the cause rather than the side effects of the problem. Formal record keeping
and accurate traceability ot "op-level requirements down through coding, testing, and
execution are vital to the analysis of system problems. The localization and
modularity features of Ada enhance its capability to support traceability through

I assignment of requirements to a single code entity.

3.1.3.6 Metrics
Software metrics refer to the measurement of pertinent software process and product
parameters. For example, during certification of Reusable Software Components
(RSCs), use of a "reusability" metric provides an indicator of the level of effort

Ads Implementation Guide 23

I

I
inlei Umon Buftisa3

required to reuse the RSC in a new development. The reusability metric becomes
a discriminator that helps managers choose between two or more -Cs that meet
needed functional requirements. Selecting the RSC with the highest reusability scoresaves time and money.

Integ ratin metrics into the development process enables an objective assessment of U
development progress, resource expenditure, and technical product quality. Metrics
must be identified, qualified, and applied at the beginning of the acquisition and
systems engineering processes and maintained throughout the life cycle. Costs I
associated with the collection and analysis of metrics must be carefully considered
in selecting appropriate software metrics. The need for metrics is discussed in
greater detail in SErs Software Meanuenent Concepts for Acquiion Program
Mwuge (Rozm, 1992).

The Program Manager must ensure that a software metrics implementation plan is m
in place before contract award and that an experienced support organization is
identified to implement the plan. This organization can initiate assessment activities
during source selection by working with Request for Proposals FP)-specified and
contractor-proposed software metrics. The implementation plan should provide forthe following: .

Metrics should address specific issues of interest to the Program Manager.
Many issues are common across programs (e.g, cost and schedule, personnel I
resources, Source Lines of Code [SLOC], defects). A standard set of metrics
applicable across major programs should be identified as a core set from which
the project-specific metrics program is built. The program should be flexible I
and expandable to address additional issues that may be derived from the
analysis of the core set or other program concern. These additional issues will.
depend on program size; acquisition strategy, the developer's process; cost, I
schedule, and technical risks; and changes in these characteristics throughout
the life cycle.

"* Because metrics are linked to a software process or product, they need to be
collected on a planned basis throughout the system life cycle. 3

" Metrics should be defined and used consistently to provide a critical foundation
for meaningful comparisons (e.g., planned versus actual costs, differences
between configuration items).

"* Metrics should be collected automatically when possible to ensure accuracy,
consistency, and timeliness. On-line access to developer data in electronic

2
24 Dpartent f th Nav

I
l l l l l I l lI

an
format should be provided throughout the life cycle. Developer data should

Sbe treated as proprietary to prevent i

* Metrics should be analyzed and interpreted to assess achievement of milestones
and quality of software products Raw metrics can be misleading; to be useful,
they must be interpreted with respect to the overall software process.

3 Results of metrics analysis activities must be related to and used by decision
makers. The quantitative results of software metrics analysis can be used as5 an indication of the overall health of the program.

To establish an effective metrics program, the requirement for metrics must be
formally established in contractual documents. As mentioned above, metrics should
be defined and used consistently within all activities using that metric. Appendix E
provides an example of wording for use in a contractual document to effect a metrics
program. This example should be tailored to each SEE. Other useful metric
information can be found in the SEI report, Software Meauw and the Capabfiy
Maw* Model (Baumert, 1992) in which 13 different measurement categories are3 discussed in detail.

3.0.7 Data Management and Analysis
In managing today's complex system and software development efforts, the Program
Manager has to sort through a huge volume of information and data from a variety
of sources to establish project status. Frequently, such information and data (e.g.,
financial data, personnel accounting data, problem report status, software
development metrics, software project data) are stored in databases. To ensure that
these items can be integrated into a project-wide picture for management analysis,
the underlying formats must have interface consistency. Program Managers can
ensure a measure of database consistency by emphasizing the use of standard data
dictionaries and data formats.

3.1.3.8 Life-Cycle Maintainability
Program Managers should use an in-house organization to monitor the software
development regardless of whether or not the developers are in-house. The in-house
organization participates in software technical reviews, performs milestone
Independent Verification and Validation (IV&V) activities, and participates in formal
testing. If the in-house organization is the future SSA, the project can be guided to
meet its requirements for maintainability. This will simplify the transition ofresponsibilities and lower the long-term costs.

I
iAda Impleuneta~on Guide 2

3

S
mpwemetaton Guklasn .

Traditionally, 70% to 80% of a software project's ts are associated with software
maintenance during PDSS. Applications develop,-, in Ada using sound software
engineering are expected to significantly reduce this cost as a result of the following-

* Fewer defects per line of code because of Ada's strong typing, packages, and
exception handling

e Easier understanding of the code for both defect correction and enhancements

* Increased portability of Ada source code to newer hardware if required later I
in the life cycle

* Shared cost of defect maintenance and enhancements for Ada code reused by 3
other organizations.

For the PDSS portion of the life cycle, the prime developer, another developer, or 3
in-house DON personnel may perform the work. Using the system developer to
perform the PDSS avoids incompatibility problems between the development and
PDSS organizations. The developer knows and understands the software better than I
anyone else, hence can maintain it effectively. The major disadvantage is that the
Government can become locked into perpetual support performed only by the system
developer and,- therefore, may be unable to control the costs. The selection of an 3
Ada environment for the project will significantly reduce the problems traditionally
associated with the transition from software development to PDSS in the event that
the system developer does not perform PDSS.

The transition to PDSS may also require undue effort if the development and PDSS
environments are not the same or are incompatible. One alternative, which is often
costly, is to procure an identical support environment and install it at the PDSS site.
Regardless of the option chosen, developers must prepare for the complete life cycle
before and during development. In part, this may be accomplished by requiring
delivery of a complete, high-quality package, including tools and documentation
sufficient to understand, regenerate, and maintain the software products, as well as
delivery of the software.

The Program Office should ensure that test and analysis tools acquired for the
sustaining engineering effort allow life-cycle support staff to work with the latest
proven technology. Commercial Off-The-Shelf (COTS) tools in the Open Systems
Environment (OSE) are becoming more capable of supporting Ada applications.
Tools are emerging to support reverse engineering, to import Ada source code into

I
26 Depeirnet of th Navy

I

a
5 npumn I-en alop Iulm

higher-level design methods, and to assist in. e conversion of code from other High
I Order Languages (HOLs) to Ada.

The ISEA and LCSA efforts require the same engineering disciplines that are
* applied to the initial development of the system. Life-cycle support consists of a

repetitive cycle of development projects. The common denominator is that each
cycle builds on the results of the previous one. In the past, after a few revision
cycles, COBOL, FORTRAN, JOVIAL, and Compiler Monitor System (CMS-2)
implementations typically resulted in significant degradation of the supporting design
documentation, the quality of embedded comments, and the integrity of the system
architecture.

The combination of well-defined programming standards and Ada's syntactic support
for modularity, abstraction, localization, and uniformity alleviates this problem by
providing the capability to quickly isolate and correct faults. In addition, automated
documentation tools can reduce cost and provide a vehicle for timely updates. The
software engineering goals described in Section 5.1.1 are the cornerstones for
ensuring long-term, cost-effective maintainability and ease of revision of the
supported operational program software written in Ada. Although the use of Adadoes not guarantee ease of maintenance, the use of Ada with software engineeringis expected to provide significant cost reduction during the PDSS.

3 3.13.9 Information Sources
Information on the political, regulatory, commercial, and technological factors crucial
to successful program planning and execution is readily accessible in a variety of
forms and formats. This guide is a primary source of information for the DON
Program Manager, and it references many of the most frequently used sources ofinformation on implementation guidance. The appendixes provide additional helpful
sources for general information, research tools, program assistance, and information
technology products and services.

3.13.9.1 Resource Organizations
The many organizations listed in Appendix A, Section A.1.1, can be invaluable in
providing practical information as well as the more theoretical information
surrounding the use of Ada and software engineering principles. Both types ofs information are useful in program planning.

3.1.3.9.2 Repositories
In addition to the conventional information sources, the Program Managers have
many traditional and newer electronic repositories of information and development
assets at their disposal, including the following:

A
A da implnemenati Guido 2

U

I
mapmuiM Oulanc .

"* Legacy software in relevant application domains that may provide the
functionality required and prevent "reinvention of the wheel" 3

"* Software assets (Ada components) contained in DOD and DON reuse libraries
that can provide software-engineered components for inclusion in new
developments.

" Information clearinghouses, such as the Ada Joint Program Office's (AJPO's)
Ada Information Clearinghouse (AdaIC), which contains the latest information I
on the state of the practice and project experiences. Appendix A, Section A.2,
has information on AdaIC. 3

"* Databases containing program requirements data.

"* Benchmarks (best practices) of industry and Government that may be used as
program resource requirements, especially in the early planning stages.

"* Lessons learned from other organizations.

3.2 ACQUISITION PLANNING 3
Section 2 provides policy guidance. Documents used to ensure that the software
development organization selected is competent in Ada and has the requisite systems
and software engineering experience and to identify what and how the developer is I
to deliver include the following-

"* Acquisition Plan I
"* Statement of Work (SOW) (part of RFP)
"* Proposal preparation instructions (part of RFP)
"• Proposal evaluation criteria (part of RFP) I
"* Government estimate
"* Deliverables-Contract Data Requirements List (CDRL). 3

3.2.1 Acquisition Plan
Acquisition planning is critical to the success of any program. From the software
perspective, the following requirements should be included in the Acquisition Plan:

" Use of Ada 5
"* Application of software engineering principles

"* SLOC definition and estimate as discussed in Section 3.1.3.6

o
25 Dpautmw f thNav

I

II

5 Im teneu Guidnes

* Software reuse as discussed in Section 3.3.7

* Criteria for establishing and using metrics

5 * Criteria for evaluating a contractors's Ada development capabilities

* Criteria for evaluating the contractor's software engineering process (Software
Developer Maturity Level [SPA or SCE])

5• Criteria for evaluating the contractor's risk management capabilities.

3.2.2 Statement of Work
Use of Ada should be specified throughout the SOW. The SOW should dearly
identify those areas that will not be considered for an Ada waiver and those that may
be subject to an Ada waiver, based on further analysis. In addition, the elements
subject to Ada reuse from the Government-Furnished Equipment (GFE) and other
domains should be specified. Other issues to be addressed include the following:

3 * Project application of SLOC definitions

* Definition of all categories of software and firmware

1 * Reserve capacities and software test acceptance criteria

5 e Estimated software sizes by configuration items

* Tailoring of applicable standards (e.g., DOD-STD-2167A and
I DOD-STD-7935A) (See Section 2 for additional policy guidance.)

0 Software metric requirements (see Appendix E)

e Requirements of Development Plan, Configuration Management Plan, Quality
i Assurance Plan, and Life-Cycle Management Plan

e Integrated automated documentation

1 Use and delivery Jf test software, support software, and project-specific data
files.

5 Appendix E lists other contract considerations.

A
Ida Impeetto Guie 2

i

S
m m i Oklan•e

3.23 Proposal Preparation Instructions
Depending on the scope of the project, it is often beneficial to have the contractor I
submit draft planning documents as part of the RFP package and respond to the
following issues:

"* Commitment to Ada-oriented system and software engineering processes

"* Demonstrated corporate adoption of Ada (e.g., Ada training, Ada experience) 3
"* Procedures to coordinate with the Federal Acquisition Regulations (FAR) for

reuse of a COTS and/or Government Off-The-Shelf (GOTS) assets 3
"* Statements regarding rights and data issue (i.e., data rights escrows,

documentation, quality and testing, software liabilities, contract incentives) with
respect to proprietary Ada technologies

"* Procedures for enforcing the tenets of Ada and software engineering in 3
subcontractor e.nvironments

"* Software development process control 3
"* Software metrics program m
" Performance of initial allocation of function to configuration items with

specification of language and estimated SLOC

" Summary of successful performance on previous programs requiring the use of
Ada.

3.2.4 Proposal Evaluation Criteria
The RFP evaluation criteria should include the following: 3

"* Requirements traceability

"* Cost modeling I
"* Ada experience 3
"* Plan for acquiring the required Ada-capable staff needed to meet contract

requirements

"* Ada reuse assets

30 Depuitient of the Navy I
!

I

* Ada training program

9 Ada projects completed and size (e.g, SLOC)

5 * Adoption of Ada for internal project use

9 Proof of an Ada software engineering process and programming culture

* Software process maturity level of repeatable or higher

5 Controls and procedures that enforce subcontractor compliance with the
proposed evaluation criteria

* * Validation that software sizing, cost, and schedule are within Government
estimates

I * Tools and environments applications

5 • Testing process

* Risk assessment

1 * Risk management

5 • Configuration Management Plan

o Quality Assurance Plan

I SEPG.

3.2.5 Government Estimate
In developing the Government estimate, the following issues should be considered:

• Erperience of Devdopers-Developers who have not completed two or three
Ada projects will be less productive than more experienced developers

* * Cost of Code-Developing code to be reused on other projects is more
expensive.

5 Inteation of Computer-Aided Software Egbuwft (CASE) ino Softwar
Deve/opment Process-To achieve maximum benefit, CASE tools must be
integrated into the software development process.

Ada lmlm~t~nGuide 31

3 ulo$

"* Worst-Case Scenado-Labor-hour totals and category allocations should be
estimated for a worst-case scenario. 3

"* Product Qual/y-Reuse of existing Ada code may lower project costs and result
in a higher-quality product. 5

e Open Systems Stndan--Use of open standards (e.g, XWindows, Moti,
Portable Operating System Interface for Computer Systems [POSIX],
Government Open Systems Interconnection Profile [GOSIP]) can significantly 3
reduce cost through improved productivity. A framework of standards for an
open systems environment is discussed in Section 53.36. 5

3.26 Deliverables-Contract Data Requirements List
The CDRL specifies the deliverables that will be required and the expected quality.
Close coordination in preparing the SOW and the CDRLs should result in high-
quality software deliverables. The CDRL enables the Program Manager to describe,
tailor, and specify, by means of the Data Item Descriptions (DIDs), the nature,
detail, and "personality" of the software deliverables. MILIHDBK-287 provides
guidance for tailoring DIDs. Additionally, the National Technical Information
Service (NTIS) can provide a PC-based tool called Tailor DID. Appendix A, Section 3
A.13, contains information on NTIS.

A detailed CDRL does carry some economic impact. Product quality, however, I
reduces the life-cycle cost of ownership. Bidders should be instructed to assess the
CDRL specifications carefully, and evaluators should be extremely critical of these
issues. The CDRL must contain the requirements needed to ensure good systems 5
engineering if the contract is expected to yield a quality product.

The Program Manager should specify that contract data deliverables are to be I
created and maintained electronically in accordance with the Computer-aided
Acquisition and Logistics Support (CALS) Program. 3
3.3 SYSTEMS ENGINEERING AND RISK MANAGEMENT
Systems engineering should take a programmatic view that recognizes software costs
as a significant portion of the total system life-cycle cost. Consequently, systems I
engineering must be considered in the early stages of a project. During the System
Definition Phase, the Program Manager should perform analyses to identify high-risk
requirements and potential solutions in the context of both hardware and software. I
High-risk components should remain visible throughout the development process.
Areas of risk management for Ada implementation include the following: 5

I
I

_ _ _ _ _ _!

I

*Softwae venus bardware in a s"sem context

*Project context benchmarks
* Requirements volatility and traceability

Support software acquisition impacts
* Coding for quality
* Ada software reuseU * Prime developer-subdeveloper relationships

* Incremental development
* Integration philosophy5 Testing philosophy, evaluation, and methodology.

3 3,3.1 Software Vrss Hardware In a System Context
A goal of every Program Manager should be to position the acquired system for ease
of future support. With software consuming an increasing percentage of total
program budgets, the use of Ada software engineering is an important factor in

Senabling the future support of a system . A s for hardware, postponing hardware
selection until later in the development cycle can significantly reduce life-cycle costs
while providing greater functionality. An excellent case in point is the Federal
Aviation Administration's (FAA's) Advanced Automation System (AAS). The AAS
contract was awarded in 1988, and much of the software was designed, coded, and
tested in Ada using the IBM MVS operating system. In late 1991, with about 40%
of the software coded, the newly developed RS/6000 was selected as the hardware
for the AAS controller console. The Ada code was easily ported to the RS/6000
environment. By postponing the decision on the hardware, FAA will field the AAS
with hardware that is faster, more capable, more reliable, and cheaper over the
expected life cycle.

3.3.2 Prototyping
Prototyping is recommended as a method of risk abatement to evaluate
human-computer interfaces and alternative algorithms and to confirm requirements,
not as a means for rapid deployment Fielding a prototype system can have life-cycle
cost impacts that far exceed the theoretical development cost savings. Prototyping

Smay take the form of a repetitive spiral of alternative solutions that gradually
narrows the choices to single out a preferred approach. Still, each alternative must
be planned for and accmpanied by disciplined documentation of the design
approach and system interfaces. Ada directly supports prototyping through the use
of separately compiled components.

S3.3.3 Project Context Benchmarks
Development of benchmark programs that represent the critical aspects of a software
application (e.g., Kalman filters, operating system overhead, correlation algorithms,

Aft ImpnemewmUon Guide

I

I
Imp~eftetbnt Guidae 5

graphic output) is recommended to determine whether available compilers and/or
code generators satisfy projected operational requirements. Benchmarks also help
to quickly identify hardware deficiencies in the project. Section 4.6.13 provides
further discussion of benchmarks.

33.4 Requirhements Volatility and Traceability
Requirements volatility increases costs, schedule, and undetected error rates. To
gain the maximum productivity from Ada, the software requirements should be
baselined at the Software Requirements Review (SRR), but certainly no later than
at the Preliminary Design Review (PDR). At PDR, the allocation of software
functions to Computer Software Configuration Items (CSCIs) should be complete.
At Critical Design Review (CDR), allocations of these functions to respective Ada
package specifications should be complete. Any change in requirements beyond this
point will affect the cost and schedule. Redesigns required by requirement 3
modifications have the side effect of invalidating baseline documentation; thus, the
effort required to change the affected documents must be considered. Prototyping,
configuration management, change control, and design revision can reduce I
requirements volatility. The configuration management method should support
traceability of the requirements through design, coding, and testing as well as from
testing back to requirements.

33.5 Support Software Acquisition Impacts
When using COTS software, the Program Manager must consider the stability of the I
product vendor to ensure the support environment will be available for the life of the
system. The identification of data and data rights must be part of the acquisition of
any COTS software. Appendix M lists several publications on data rights that are I
available from either NTIS or SEI.

33.6 Coding for Quality I
The AJPO has suggested the use of the Ada Quality and Style Guide for the
development of high-quality Ada applications. The Software Productivity Consortium
(SPC) wrote this guide in 1989. Since then, it has become the standard guidebook
for Ada programming at many organizations. The AJPO has negotiated with SPC
to use, copy, modify, and distribute this guide for any purpose and without a fee
provided it is distributed with the copyright notice. The guide is available in
hardcopy through the Defense Technical Information Center (DTIC) and the NTIS.
Electronic copies in both ASCII and Postscript are available electronically on the
ajpo host and on the AdaIC Bulletin Board. Appendix A, Section A.13, provides
information on DTIC and NTIS.

I
34 Departmenwt of the Navy I

I

I
5 lmpenieia~on uidance

33.7 Ada Software Reuse3 Software reuse is important to DOD and the Ada community because reuse promises
a higher-quality product with significant cost savings across the software life cycle.
Although software reuse was not specifically identified as a design criterion for the3 Ada language, the concept of reuse is strongly implied in the design criteria.

Domain analysis is a method of identifying the commonalties and variations ofU eisting systems within the :.me application area to determine reuse candidates.
Domain analysis should be i.-.rformed in the Requirements Analysis Phase to gain
a better understanding of existing systems in terms of common functionality and to
identify components from existing systems that can be reused in the current
development. A side benefit of domain analysis is stabilizing the requirements3 through the early discovery of missing requirements.

Use of Ada as the implementation language does not, by itself, ensure reusability.
Among other things, a library of reusable programs and established Ada
programming standards, policies, and procedures are necessary. Libraries of reusable
Ada programs have great promise for reducing future software development costs.
The Program Manager must be aware of issues that will make maintenance of the
library attractive to the development contractor (e.g., data rights). Section 5.3.3
provides additional details on software reusability, and Appendix A, Section A.15,3 provides a list of software repositories.

33.8 Prime Developer-Subdeveloper Relationships
In selecting subdevelopers, the prime developer should apply the Ada technology
acquisition criteria discussed throughout Section 32. The prime developer must be
as analytical in selecting its subdevelopers as the Government is in selecting the
prime developer. For its part, the Government should consider the subdeveloper's
capabilities and commitment to Ada in the same light as those of the prime
developer. The relationship between the prime developer and its subdeveloper
should not be taken for granted. The RFP should specify that the
developer-subdeveloper relationship be explicitly described in the proposal and
should include proposal evaluation criteria that address this relationship.

3.3.9 Incremental Development
Shrinking budgets as well as poorly defined and shifting requirements have put many
programs at risk To reduce risk, one strategy employed by Program Managers is to
address software developments in increments. This facilitates the reevaluation and
optimization of requirements when moving from one incremental phase to the next.
The software engineering features of Ada (e.g., packages, generics, information
hiding, and abstraction) support this risk-reducing approach.

A!Ada Implementaion Guide 35

3

I
Impemssmtl Gukance 3

33.10 Integration Philosophy
The size and complexity of DON systems are increasing. As a result, systems
integration is growing in proportion and importance. Both the tactical and
nontactical worlds are developing highly complex, multifunctional systems, and the
distinctions that once existed between the systems used in these two worlds are
becoming blurred. A classic example is the critical time requirements of modem I
logistics systems to support the rapid deployment and multimission functionality of
today's naval forces. 3
Ada use increases in importance in light of the diversity of hardware required for the
wide variety of these operational environments. Ada can be applied over most of
these environments for mission performance and problem solving. With the
appropriate systems engineering practices and policies, Ada could contribute
significantly to easing the multivendor, multimission integration problems 3
encountered in today's systems.

33.11 Testing Philosophy, Evaluation, and Methodology 3
Because of the increasing complexity and size of emerging systems, a testing
philosophy must be considered and built in at the concept formulation phase of a
project. All requirements, developed and derived, must be evaluated not only for I
their application to the problem statement or mission, but also for testability.
Large-scale, heterogeneous, distributed systems must be thoroughly tested as modules
and subsystems as the system is built and comprehensively tested as an integrated 1
system. The appropriate use of Ada components should support the testing
philosophy by providing a capability to confirm the implementation of requirements
and evaluate them for completeness. Because the components provide a defined I
external interface, integration and testing problems are minimized. Test planning
must start in the Requirements Definition Phase (e.g., requirements validation,
requirements realism, and transitioning of requirements to function). Contracts must
ensure and enforce requirements for unit testing of the individual functional
capabilities; full-scale integration testing; verification, validation, and certification
testing;, and life-cycle support testing.

Ada supports the identification of errors during the early Design and Coding Phases
through compilable program specifications, strong typing, and constraint checa*ng.
Constraint checking takes place statically during compilation and dynamically during
run time where an exception is raised and can be easily processed. This constraint
checking can be disabled to improve system performance after all testing has been i
completed. These features help to uncover errors earlier in the development process.
In the end, the cost impact of error repair during integration testing demonstrates
that this phase should focus on integration, not discovery of unit code errors, bad
design, or ambiguous requirements.

36 Deperunwit of the Navy

I

I

In the past, the error correction process often applied patches to the source code
because complete system generation was time consuming. Patches are unnecessary
when the system is properly designed by using Ada packages. Errors corrected within
a package body require only the recompilation of the package body and relinking,
which significantly reduces the time for a complete system regeneration.

Testing methodologies include the use of designed-in test structures and the
application of tools for modeling, simulation, design, development, and operational
assessment of systems in both the hardware and software arenas throughout the
development process. When used as part of a well-defined systems engineering
approach, Ada supports an incremental build and test approach.

3.4 HIGHLIGHTS
The preceding sections provide general guidance for Program Managers in
incorporating Ada and software engineering into a program's life cycle. Thisft subsection highlights the critical points in each phase.

Guidance for the Program Planning Phase, for example, emphasizes the need for
integration, up-front preparation of procedures, and careful tool analysis and
selection. This guidance may be summarized as follows:

* Ensure the program organizational structure(s) integrates the activities of the
Program Office, the operational users, and developers; embodies clearly
defined lines of authority; and supports promotion of Ada use and enforcement3 of Ada policy and standards.

* Ensure that Ada expertise is available within the management and support3 organizations.

0 Use parametric modeling and cost-estimating tools. Ada sizing inputs to
estimation models should be based on Ada statements or terminal semicolons
rather than on lines of code.

* Develop a training strategy:
- Address software engineering and Ada training.
- Ensure appropriate training at all levels of the organization.
- Ensurethetraining isjust intime.
- Use on-site mentors.

5 * Identify, document, and disseminate standards and procedures needed to
manage the software reuse and development process.

G!Ada Impbementalon Guide 37

I
I iI I

I
p! tod~a -Ouklanm J

" Identify metrics to be applied at the beginning of the systems engnering and

software implementation processes.

"* Take advantage of the information sources available on political, regulatory,
commercial, and technology issues, and lessons learned from other projects. 3

Guidance for the Acquisition Planning Phase relates primarily to the requirements
of the RFP. Highlights of this guidance are as follows: 3

"* Develop a strong acquisition plan and other documents needed to ensure

selection of a competent Ada developer. 5
"* Ensure the RFP SOW provides specifications on Ada use and/or reuse, defines

all of the applicable software and firmware categories, specifies conformance
to applicable standards, and states the software metrics requirements.

"* In the RFP evaluation criteria, emphasize contractor experience, training and 3
competence in Ada use and reuse as well as requirements traceability, cost
modelin& and subcontractor compliance with the evaluation criteria.

For the Systems Engineering and Risk Management Phase, the guidance provided
stresses the importance of considering software-related issues from the outset and
identifying high-risk hardware and software components. Specific guidance in this
area includes the following:

"* Define software requirements in parallel with hardware requirements. 3
"* Use prototyping and benchmarks to mitigate risk. 3
"* Freeze requirements no later than the PDR.

"* Identify opportunities for and consider reuse of Ada source code.I

"* Ensure the prime developer applies the same Ada technology acquisition
criteria in selecting subdevelopers as the Government used in the selection of I
te prime developer.

Implement processes that identify errors early in the Development Phase to
avoid costly repair during the Integration and Test Phase.

* Ensure that the cycle of incremental builds, test, and repair are under U
configuration management.

36 Depwunmen of the Navy !
I

I
I

ISeeon 4
Environments

I This section discusses the environments used to support the development and
maitennceof Ada. ppiato software.

1 4.1 PROJECT SUPPORT ENVIRONMENT
The term 'environment" evolved from early work on the UNIX operating system and
originally referred to setting certain parameters and c t s of the operating
system to create a programming or computing environment suitable for the user.
From the start, the term implied selecting or tailoring the environment to meet
specific user needs. Gradually, the term became more general, referring to
Programming or Project Support Environments (PSEs), thus reflecting the idea that
the environment was designed and constructed to support a particular class of
applications. The phrase 'Software Engineeri Environment" (SEE) was then usedto refer to a set of computer tools to rapport the activities of software engineering

3 A SEE that supports software development is a computer-based set of integrated
methods, tools, and procedures to develop software that meets mission needs. This
definition inherently means that a SEE must provide the functions of both a
programming development system and a management information system to monitor
and control the development. The term 'AMa environment' means that the scope of
the SEE is focused on supporting the development of software written in the Ada
programming language and the associated software engineering methods andprocedlures.

I Currently, the accepted practice is to execute the SEE on host computers to develop
project software during the Requirements, Design, Coding, Integration, and Testing
Phases. Normally, system integration and testing are performed in system test
facilities with support from the SEE. The SEE is then used for the remainder of the
system life cycle.

I Other terms for SEEs that appear in the general literature include Software
Development Environment (SDE), Integrated Software Engineering Environment
(ISEE), PSE, Ada Programming Support Environment (Ada PSE), and Integrated
Project Support Environment (IPSE). The term PSEM which appears in the
remainder of this section, is used interchangeably to mean project and programming3 support environments.

I

AIa anlaelao uie MeUl

I

4.2 TOOLS
A variety of tools is used in PSEs. These tools may vary significantly from one PSE
to another. A few tools are used in almost every application although several other
tools exist that are desirable and can improve productivity across the software life
cycle.

4.2.1 Minimum Tool Set
The minimum tool set consists primarily of those tools associated with the coding
phase of development, including the following:

"* Editor is used to create or modify source code and to view or modify files
produced by other tools.

"* Compiler translates a High Order Language (HOL) source program into its 3
relocatable code equivalent.

"* Assembler translates an Assembly source program into relocatable code.

"* Linker creates a load module from one or more independently translated
modules by resolving the cross-references among the modules. Some vendors I
separate part of this functionality and provide it in a separate binder tool.

"* Relocating Loader executes on the host computer and translates the relative I
addresses into the absolute addresses and produces an execution module.

"* Run-Tune Environment (RTE) provides a variety of operating-system-like I
services for application programs (also known as run-time executive).

"* Profler provides a mechanism to monitor the dynamic aspects of an application
(e.g., scheduling, Central Processing Unit [CPU] utilization, Input/Output [I/O]
channel loading). 3

"* Simulator/Emulator simulates or emulates the target computer but executes on
the host computer and greatly increases testing productivity.

"* In-circuit Emulator emulates, tests, and traces the prototype system operation
when connected to the prototype system through the microprocessor socket.

" Symbolic Debugger allows a programmer to test a module by controlling the
program execution on a target computer emulator or the target computer itself I
by using source program symbols or names.

0
40 Darlmnl o theNav

I
5 Enwh ,Wwft

"* Prety P/iner automatically applies standard rules for formatting program3 source code.

"" Host-to-Taoget Exporer provides a tool to tranmit the execution module from
the host to the target when the target machine is different from the host
machine.

A more comprehensive set would include tools covering the folowing categories:syntax-directed program editing, configuration management, system modelins Ada
program design, specification and design, software technical documentation
aids that facilitate DOD-STD-2167A document production, software quality and
performance analysis, and project management. Such tools are often referred to as
Computer-Aided Software Engineering (CASE) tools. Appendix F provides a more
detailed discussion of these tools.

42.2 Commercial Ada Development Tools
Ada has matured significantly over the last few years. Today, many vendors supply
several hundred validated Ada compilers for a number of commercial configurations.
The Ada Joint Program Office (AJPO) updates the list of validated Ada compilers
monthly and makes the list available on the AJPO host computer on the Defense
Data Network (DDN). To obtain the list, contact the Ada Information
Clearinghouse (AdaIC). Appendix A, Section A2, provides information on AdaIC
and the material it supplies.

In addition, hundreds of commercially available tools exist that are backed by their
vendors to support the development of Ada applications across the software life
cycle. Tools are available to support both hierarchical and object-oriented design.
Other tools are available that produce and use Booch diagrams, Buhr diagrams,
Demarco data flows, entity relationships, flowcharts, functional flow diagrams, state
transition diagrams, and structure charts. Some of these tools provide automaticScode generation from the design diagrams.

In addition, tools exist to support source code translation to Ada from Assembly, C,
COBOL, Program Design Language (PDL), JOVIAL, LISP, and Pascal. Even Ada
artificial intelligence tools are commercially available to support the building of
expert systems, knowledge-based systems, natural language systems, and neural
networks.

The AIPO maintains an on-line Ada Products and Tools Database that can be used
to find out more about these tools. In addition, the Software Technology Support
Center (STSC) maintains information in the form of a database and reports for tools

I
iAda tmplement.Uon Guide 41

I

a

to support a SEE. Appendix A, Section A.l, provides more information on both
AP and STSC.

43 MISSION-CR CAL COMPUIER RESOURCES ENVIRONMENT
Department of Navy (DON) software applications for mission critical systems run on
a wide variety of target computer systems including commercially based
microprocessors and computers and military-unique computers such as the Navy
Standard Embedded Computer Resources (SECR). Often the program support
environment tools selected for such applications run on a host computer system that I
is different from the target computer system. The host system provides the resources
for development, simulation, documentation, and test of software applications to be
compiled for the target.

Navy SECR computers include the AN/UYK-43(V), AN/UYK-44(V), and the
AN/AYK-14(V). The Ada Language System/Navy (ALS/N) serves as the validated
Ada compiler, the run-time software, and the PSE for the SECR computers. Section
4.5.4 provides further discussion of AMS/N. For Navy commodity-maraged 3
computers, such as the Desktop Tactical Computer (DTC-2) and the Tactical
Advanced Computer (TAC-3), validated Ada compilers may be selected through the
DTC-2 and TAC-3 ordering contracts for the commercial derivatives of the DTC-2I
(Sun SPARC Workstation) and TAC-3 (Hewlett-Packard [IHP] Workstation 9000)
Because the DTC-3 and TAC-3 are based on widely used commercial workstations,
a wide variety of commercial PSEs are available to support Ada software 3
developments.

Many DON mission-critical Ada applications have been developed and fielded U
successfully by using commercial processors and/or computers, validated commercial
compilers, and commercial PSEs. Use of commercial computer resources, compilers,
and PSEs has greatly facilitated and accelerated Ada implementation within the I
DON.

44 AUTOMATED INFORMATION SYSTEMS ENVIRONMENT I
The Congressional mandate to use Ada throughout the DON will result in having
many Automated Information System (AIS) applications programmed entirely in
Ada. The AIS community uses a wide range of commercial hardware and software. I
Therefore, the DON strategy for establishing the Ada environment for AIS will
incorporate the use of Ada into an Open Systems Environment (OSE) that will
provide the capability to integrate and transport application software across multiple
computer systems. Current policy requires that, once the Integrated Computer-Aided
Software Engineering (I-CASE) contract has been awarded, all tools for AIS
environments should be selected from this contract.

I
42 Depaotnwn o1 the NaVy I

I

I

4.5 PROJECT SUPPORT ENVIRONMENT OPTIONS
PSEs are critical to the successful development and maintenance of DON computer
systems. Ada PSEs include commercial Ada environments, ALS/N, AdaSAGE, and
Ada-Based Environment for Test (ABET).

4.5.1 Commercial Ada Environments
The commercial Ada PSEs based on validated Ada compilers are steadily increasing
in number and becoming more mature. Commercial Ada PSEs typically contain a
set of system tools that provides capability for data management, resource
management, and scheduling. Additionally, they provide the target RTE with
loaders, debuggers, and the like. Although the completeness and quality of these
Ada PSEs vary, several highly capable Ada PSEs have evolved.

I These commercial environments have been exceptionally powerful for the
development of Ada software on both host and target environments. A wide range
of CASE tools, which are discussed in Appendix F, support these commercial Adaenvironments. The AdaIC and STSC, which are described in Appendix A, SectionA.1.1, also can provide information on these environments.

U 4.5.2 AdaSAGE
AdaSAGE is an applications development set of utilities designed to facilitate rapid
construction of systems in Ada. Applications may vary from small to large
multiprogramming systems that use special capabilities. These capabilities include
Structured Query Language (SOL)-compliant database storage and retrieval,
graphics, communications, formatted windows, on-line help, sorting, editing, and
more. AdaSAGE operates on MS-DOS and UNIX platforms, and AdaSAGE
applications can be run in the stand-alone mode or in a multiuser environmenL A
developer using the Ada language and the AdaSAGE development system can design
a product that is tailored to a specific requirement and offers outstanding
performance and flexibility.

AdaSAGE is an effective environment for developing software applications primarily
for the AIS and some scientific and engineering domains. The environment allows
the user to build applications through an interactive screen editor. Here, the
applications developer is presented with options that are based on reusable modules
in the AdaSAGE program library. After all options have been selected for an
application, the AdaSAGE environment builds the Ada source code, which then can
be compiled to create the application. Developers with limited knowledge of Ada
or of software engineering can develop simple applications. Development of larger
applications may require programmers skilled in Ada and software engineering.
Functionality and potential benefits of AdaSAGE include rapid prototyping,
programmer reusability, and efficiency.

Ada Imlem1n'mlnon Guide 43

I

I

All four Services have reported significant success in developing applications with
AdaSAGE. The Department of Energy and private industry also are using
AdaSAGE.

Additional enhancements to this environment are under way, funded by several
sources including the AJPO's Ada Technology Insertion Program (ATIP). U
4.5.3 Ada-Based Environment for Testing
ABET is a set of software interface standards for Automated Test Equipment (ATE)
environments used to assist in the development and execution of automatic tests
using the Ada programming language. These software interface standards are
defined to support hardware or software component portability, reusability,
exchangeability, and interoperability and to serve as targets for test-related software
development tools. 3
Each ABET interface is defined in one of the Institute of Electrical and Electronics
Engineers (IEEE) ABET component standards (IEEE Std 1226.x). The ABET 3
component standards define the Ada packages and data structures that are used to
give a comparable capability to the associated reference documents. They also
define mappings between the reference documents and the Ada packages and data
structures.
The ABET interface standards can be grouped in an ABET layer model The layers

of this model are as follows:

The Product D&ction Layer supports the link from design-oriented product I
description information to test-oriented product information. The design data
may include descriptions of the Units Under Test (UUTs) physical and circuit
design and its externally measurable characteristics and responses and the
stimuli needed to elicit them. Standardization of these interfaces supports
analysis of test and maintenance issues during the Product Design Phase as
well as development of automated tools to generate the requirements or
procedures directly from UUT product descriptions.

The Test Strweg/1Requiements Layer supports the specification of UUT test I
requirements, test strategies, automatic test generation, diagnostic models, and
collection and retrieval of maintenance data. 3

* The Test Procedur Layer supports full signal-oriented vocabulary and semantics
and the UUT-oriented virtual resource model of ATLAS and includes the
capability to relate UUT test requirements to virtual test resources that are
independent of any particular ATE.

44 •DqmUnt of th Navy

.1

* The ATE System Layer specifies the mapping of virtual resources to real
resources, signal routing, and access to non-UUT signal-oriented test functions
and maintains and reports on ATE status.

e The Instrument Control Layer standardizes access to command and
communication protocols used by real test resources. This will allow test
resources with common functionality made by any manufacturer to be used to
perform identical functions.

4.5.4 Ada Langauge System/Navy
ALS/N is a software development and RTE that is being developed for the current
generation of DON standard computers: the AN/UYK-43(V), AN/UYK-44(V), and
AN/AYK-14(V). The ALS/N development is scheduled to be completed by the endof Fiscal Year 1993. Present plans call for two additional years of maintenance; afterthat period, user projects will be required to provide support for maintenance.

I ALS/N, which is hosted on the VAX series of computers using the VMS operating
system, has been validated as Ada/L for the AN/UYK-43(V) and as Ada/M for the3 AN/UYK-44(V) and AN/AYK-14(V).

ALS/IN consists of two functional parts: the Minimal Ada Programming Support
Environment (MAPSE) and the RTE. The MAPSE consists of the compiler and
other associated compile-time tools that run on a host computer and produce
software products for a target computer.

The RTE software provides services needed by the executable application program
and supports execution of those programs so as to meet the requirements of
performance, reliability, and fault-tolerance on the target computer. The RTE
provides the basic and extensible software facilities required to support Ada use in
the mission, support, systems, test and maintenance, and trainer software categories.
RTE tools include the run-time operating system, executive, librarian, loader,
run-time application support, run-time debugger, embedded target debugger, and
run-time perf.-rmance measurement aids. The AIS/N RTE provides run-time
support -ir the AN/UYK-43(V), AN/UYK.44(V), and AN/AYK-14(V) embedded
target cumputers only.

I 4.6 SELECTION OF THE PROJECT SUPPORT ENVIRONMENT
The subsections below provide PSE-related information for compiler selection,
availability of PSE standards, upgrades to newer versions of tools within a PSE,
mixing Ada with other languages, and mixing executable Ada from different
compilers.

I
iAda Implementation Guide ,45

I

I

4.6.1 Compiler Selection
A compiler is a software tool or product that receives as input the HOL or
source-language statements developed by designers and/or programmers and
translates or compiles these statements into machine-readable, executable code.
Vendors typically provide a set of tools in addition to the compiler and call the
collection a "compilation system.* A typical compilation system includes only a
compiler, linker, loader, library, and fundamental program execution (run-time)
structure. Other vendors package additional tools (e.g., interfaces and support for
programmer productivity, testing and configuration management tools, and structures)
into the compilation system. Consequently, these packages are almost complete
software development environments.

Each manager must select the best compiler for particular project needs. The
compiler selection process should begin with a plan that establishes the project 3
requirements, budget, personnel, and timetable. To reduce risk, the selection process
must identify key criteria and test the candidate compilation systems against the
criteria. The criteria for selecting a compiler should be based on the nature of the 3
project; for example, concern about execution time would not be as applicable in a
batch-type application as in a tactical program. Based on these criteria, benchmarks,
checklists, and interviews should be used as needed to assess different compilers for U
specific project requirements, and a limited number of candidate compilers should
be selected for detailed evaluation. Several types of benchmarks and test suites can
be used to evaluate compiler implementation. No single test suite or checklist 1
suffices for every project (Weiderman, 1989).

Evaluation of Ada compilation systems for a particular user application will decrease I
p:z"ject risk and reduce total cost and schedule overruns. Evaluation and selection
apply to the entire software development package, not just the compiler. Evaluating
and selecting an Ada compilation system for a project are complex and costly
processes. The means available to support them, as discussed below, are very
important, but it will always be necessary to supplement them with project-specific
criteria.

4.6.1.1 Validation
All Ada compilers must pass formal validation to ensure conformance to American
National Standards Institute (ANSI)/Military Standard (MIL-STD)-1815A. DOD
Directive 5000.1 and DOD Instruction 50002 require that all DOD initiatives use 3
validated compilers. A list of validated compilers can be obtained from the AdaIC.
The formal validation consists of approximately 4,000 tests known as the Ada
Compiler Validation Capability (ACVC). A formal validation ensures that an Ada
compiler correctly implements the Ada language syntax as defined by the standard.
A validation does not, however, assess performance or machine-dependent language

46 Department of the Navy

I

I

features. Section 4.6.1.3 provides a discussion of benchmarks. Ada compiler3 developers who want to validate their products may obtain information on the
current version of the ACVC test suite from the AJPO or the National Institute of
Standards and Technology (NIST).

Project Managers must select a validated Ada compiler for their software
development projects. Validations are issued for a tested host and target
combination with an expiration date. It is important to verify that selected compilers
have been validated against the most recent version of the test suite. The timin of
compiler procurement should correspond with the start of the project. A validated
compiler used at project start is considered validated for the entire life cycle of the
designated project, even if the expiration date has passed.

1 4.6.1.2 Evaluation
The goal of formal evaluation is to provide vendors, procurers, and users of Ada
implementations with comparable compiler performance data. These data enable
vendors to:

I * Improve compiler implementation performance

* Allow procurers to select implementations and configurations that best meet3 their project needs

0 Help users identify the best language features to use for that particular5 application

o Help users identify the language features to avoid for that particular

3 application.

Two systems are available for Ada compiler evaluations: the Ada Compiler
Evaluation Capability (ACEC) and the Ada Evaluation System (AES). Work isunder way to merge the ACEC and AES into the Ada Compiler Evaluation System(ACES). The merged product is expected to be available in mid-1993.

4.6.1.2.1 Ada Compiler Evaluation Capability
In 1983, AJPO formed the Evaluation and Validation Team to examine PSE and tool
evaluation and validation issues and provide a capability to assess Ada PSEs to
determine their conformance to applicable standards. One result was the ACEC.
The current ACEC is available from the Data and Analysis Center for Software
(DACS); information on DACS is available in Appendix A, Section A.1.5.

I
iAda Imnplmntatlo Guide 47

I

I
Enwhu If

The ACEC strengths include the depth of coverage for language features,
documentation, documented structure, code size measurements, tming techniques
with a statistical model, and cross-system analysis software. The shortcomings are I
lack of support; limitation of an automated analysis subsystem; weakness in testing
compile-time performance; and lack of diagnostics, debuggers, and a library system.

"4.1.2.2 Ada Evaluation System
The AES is a test suite designed for the British government to perform testing of an
Ada programming environment. Measurements are taken on features such as
compile- and execution-time performance, generated-code quality, compiler-produced
error and warning messages, linker and library systems, and debugging capabilities.
AES strengths are breadth of coverage, interactive user interface, automatic
generation of reports, extensive documentation, macro capability for test generation,
checklist for diagnostics, library systems, vendor evaluation, and examples. AES
shortcomings are considerable setup time, lack of U.S. support, cost, target run-time
performance, and the subjective nature of the checklist.

4.6.1.3 Benchmarks
All compilers are not alike. Benchmarks provide techniques and application

s to compare performance among different Ada compilers or performance I
among Ada compilers and other language compilers. Careful analysis of the
benchmark result will help identify the compiler best suited for the computing
environment of a given project. To guarantee successful benchmarking, the U
benchmarks best suited to project requirements must be selected or developed. For
some medium and large projects, it may be necessary to develop benchmarks that
reflect specific project needs. Program Managers cannot depend solely on publicly I
available resources; they will have to generate some of their own benchmarks.

When selecting and developing benchmarks, the Program Manager should ensure the I
following:

"* Benchmarks adequately represent and test the system requirements and the I
environment selected.

"• Benchmarks are part of a planned, total, integrated, supported test suite. I
"* Benchmarks are maintained throughout the total life cycle.

"* Benchmarks and benchmark requirements are suitable for inclusion in a
contract. 3

49 Department of the Navy I
I

I

The benchmark developed by the Performance Issues Working Group (PIWG) of the
SAssociation for Computing Machinery (ACM) Special Interest Group on Ada

(SIGAda) comprises a suite of Ada performance measurement programs that focuses
primarily on the execution time of individual features of the Ada language. Many
tests in this suite are designed to be machine independent and to run without
modification. These tests fall into the areas of clock resolution, task creation and
rendezvous, dynamic storage allocation, exception handling, array processing,
procedural and run-time overhead, composite benchmarks, compilation speed, and
capacity test. The strengths of the PIWG benchmark are ease of use, wide use, wide
distribution, low run time, and no cost (it is free through the DDN). The weaknesses
of the PIWG benchmark are lack of documentation and support.

The Software Engineering Institute (SEI) is developing new benchmarks for Ada
applications.

4.6.2 Availability of Project Support Environment Standards
Over the past few years, national and international standards bodies have expended
a great deal of technical effort to define reference models and interface standards
for PSEs, such as those discussed in Section 7.5.1 related to the Project Support

I Environment Standard Working Group (PSESWG), Section 7.62 (i.e., Portable
Common Tool Environment [PCIEJ), and Section 7.7 (i.e., Portable Common
Interface Set [PCISJ). The eventual fruition of these efforts will allow greater
modularity, flexibility, data interchange, and openness among tool sites that
constitute PSEs. The Navy Next Generation Computer Resources (NGCR) program,5 described in Section 7.5, has been participating in the definition of standards.

Until these standardization efforts are more mature, the tool suites that constitute
PSEs for Ada (and all other programming languages) will be product-driven.
Consequently, Program Managers need to carefully manage the risks that may be
associated with the following:

Migrating from one PSE to another

0 Identifying the essential elements of the development-phase PSE that must be
preserved for the maintenance-phase PSE

0 Upgrading various elements of the PSE to incorporate the latest available
technology.

A possible interim strategy to minimize these risks is to select PSE tool suites from
commercial vendors that have committed to support these emerging national and
international PSE standards in their product lines.

M Ads Impleentation Guide 49

I

I

4.3 Tool Upsrades In a ProJect Support Environmemt
During the project life cycle, it may be desirable to upgrade operating systems,
compilers, editors, CASE tools, and the like to the latest version. The Program
Manager is responsible for controlling such upgrades wisely because even minor
upgrades can have serious cost and schedule repercussions. 3
4.6.4 Mbing Ada With OtherLng
DON policy guidance requires the use of Ada in major software upgrades for
computer systems. Choices must be made between redesigning and recoding all of
the software in Ada or developing a strategy to support systems with a mixture of
Ada and other languages.3

Completely redesigning and recoding the system in Ada are usually cost-prohibitive
activities although they are necessary to achieve the full benefits of Ada. Simply
translating the existing non-Ada code into Ada carries the risk of code expansion and
does not take advantage of the many software engineering features of Ada.
Cohabitation of Ada code and code in other languages appears to be a necessary I
option-but it entails risk and requires much corporate planning and commitment.

One approach is to interface existing code to an Ada program by using language 3
interface features. In this case, compilers that support the other languages must be
selected. Many compilers have excellent interfaces to languages such as COBOL,
FORTRAN, and Pascal.

A second approach is to isolate the unique languages by the processor on which they
are to run (i.e., using only one language on a given processor). This approach allows
interchange of data through message passing or similar methods of data
normalization and is a low-risk approach because it minimizes the need to change
the old code while eliminating new code constraints. For this approach, compilation
systems for each of the language-processor combinations will be needed. This
requirement affects PSE selection only when the desire is to have a single PSE
capable of supporting all of the languages in use in the system.

4A.S Mixing Executable Ada Programs From Different Compilers
Another class of problems is encountered when a project tries to mix executable Ada
programs from two or more commercial compiler systems on one target computer.
In general, such programs are incompatile because of the differences in callingi
sequences and RTE. One approach to this problem is to take advantage of the
portability of Ada programs at the source level. In this way, even if two different
compilation systems were used to develop the application software, all source codeI
would be compiled on only one system to create the executable software for the

target computer. A second approach is to define an interface between the two

so Depautmwit of• Navy

I

I
Ebwknmuft

portions of the application. In this way, the interface can resolve the incompatibility
issuesI '
4.7 IMPACr ON POST-DEPLOYMEN SOFTWARE SUPPORT
Post-Deployment Software Support (PDSS) activities, although a microcosm of the
development activities in scope, generally take much more time than development
activities. Therefore, effective PDSS requires good PSE support. Although few
activities or finctions are unique to PDSS, some receive more or less emphasis
during PDSS than during development. During PDSS, for example, generally there3 is a heavy emphasis on configuration management, version control, and regression

Transfer of the software product from the development to the PDSS environment is
another activity that must be examined. If the two PSEs are identical, this task is
much easier. Most often, however, the PSEs will be different. Therefore, the
compatibility between the software tools and their interfaces becomes a very real
issue that must be solved.

AI
I
I
I
I
I
3
I

i ds ImlpIUenWUon Guide 51

I

I

U
I
U
U
U
U
I
I
I
U
I
I
I
I

Ii. Navy I
I
I

II

U

Ada and Software Engineering
I Rear Admiral Robert M. Moore, the Software Executive OfficI for the Department

of the Navy (DON), provided an appropriate introduction for this section in a speech3 to the Eleventh Amnal National Conference on Ada Technology on 18 March 1993.
Admiral Moore stated:

fn the past several decades coapter technolo has plae an importan and
increai nrg in buin ystems; which maintain our military superiouy
However, the software to nn these system is continuously becoming more
complei more ciesw and takes longer to dwelop. At one time, it was the
hardware that supported te mss todan , the h ware is ra rm ,capable of supportng any misin It is the softwardut prvie the n

We recognize the need to inWmove the process for dewloping and acquirbig
software sys•nem We re i te bnpotnance of s*ware eIn for
devdeloping and maintaining our systems. And we reconize Ada as an bnportant

* ~critical technoloV, necesary to support good so~ftware eiCneenngft

Cotair*, good software enginering is possible without Ada. U*ing a doesnot
guarantee good software egineeriM but Ada as a buildbig block for softwareI gernng does provide a real capab•ty to developig ualwt, reliable systems
to satisfy our mission in the fleet and to prvide a real capabUfty for support and
maintenance ove the enwtiresystem * cycl.

Ada and software woiern have been iMportant to the Departrmen of the Navy
in the past; Ada and software enineerin will become even more important in the
fiuure as we address the new chaleges necessar to transition our milary forre
from one capable of defeati a superpower to one capable of maintaing peace
in an environment of unremitng Th World conftirotaons.

This section addresses the concept of software engineering. It identifies its goals and
underlying principles and lists several Ada features that are important in supporting
software engineering. It also discusses several Ada technology issues resulting from
good software engineering. Appendix L and its attachments expand on many of the3 topics presented in this section.

I
iAd. Implementaton Guide 63

I

I
Ads and bumt• Englwue

51 SOFTWARE ENGINEERING CONCEPT
Good systems engineering practices provide a framework foi good software
engineeri practices. The Ada language was specifically designed with features to
support software engineering

L L1 Software En eeri Go
The discipline of software engineering has identified four goals, supported by a
number of software engineering principles, to help manage the complex task of
developing modem software applications. Figure 5-1 presents these goals and
principles. The four software engineering goals are reliability, modifiability,

rstandability, and efficiency, which are defined as follows:

"* Reliabi/i is associated with the quality of the software and is a critical goal
when the cost of failure is high. Reliability issues must be addressed
throughout the design process. Reliability can only be built in from the start; U
it cannot be added at the end.

" ModiflaMity deals with the capability to perform maintenance on or otherwise
change the software. A change in requirements and/or design should result in
a controlled change in the software. Error correction to the software should
be effected as a controlled change to the software.

" Undavandabiklt is key to the management of complexity. For a system to be 3
understandable, it must reflect our natural view of the world. At a high level,
objects and operations map to real-world data and algorithms. At a low level,
the software solution is understandable as a result of proper coding style.

* Effiency refers to the use of resources. Time and space resources should be
used optimally. This goal is especially important when real-time deadlines
must be met to satisfy the application requirements.

&L2 Software Engineering Principles I
The software engineering principles that support the goals of software engineering
are abstraction, classification, completeness, confirmability, encapsulation,
information hiding, inheritance, localization, modularity, and uniformity. The
definitions of these principles are as follows:

* Abshcdon allows users to highlight the essential details of a process or its data U
dependencies and omit the nonessential details. In this manner, the logic of
a program solution can be expressed in terminology approximating the problem
domain rather than in computer-dependent terms. Abstraction supports code
readability and maintenance. The abstraction principle directly supports the

54 DepaitmnW of tbs Nasvy I

I
Ads Od Softeuu Enekmsdq

I

SMu larity4. Go l s P r So m Eml f m

I goals of understandability and modifiability. The essential details can be filled

in later without affecting the balance of the system.
I * Ckmif atin provides a means to comprehend the real world by making

generalizations from discrete observations. Clse are organized in a
I hierarchy with weil-defined interfaces. This principle is a cornerstone of

object-oriented programming, allowing the creation of specialized objects that
inherit the properties and characteristics of an object class. AdaB3 supports
classification with the seof additional ojc-retdtools.,da9 has been
designed to effectively support object-oriented programming. The principle ofclassification supports the goals of reliability, modifiability, and
g understandability.

Competeness creates programs that enrati sfy both the behavioral and
performance software requirements. Completenessihelps us develop correct
solutions by ensuring that all of the important elements are prsn. The

principle of completeness supports all four software engineering goals.

Ada hplemealonv Guide 55

I

Ada amd Soam &ngkser h

" Confirmability verifies that the application software developed satisfies all
requirements. Each software system must be readily testable. Decomposed
systems can localize testing and thus help make systems modifiable. Strong
typing facilities help the confirmation process. Specialized automated tools
that understand the syntax and semantics can also support the confirmation
process. The principle of confirmability also supports the four goals of
software engineering.

"* Encapsulation allows users to see only those services that are available from an
object. Access to objects is only through well-defined interfaces.
Implementation details are hidden from the user. This principle is closely
related to abstraction, information hiding, modularity, and localization. The
principle of encapsulation supports the goals of reliability, modifiability, and
understandability. 3

"* Information Hiding makes inaccessible certain details that do not affect other
parts of a system. For example, a disk drive should be controlled as a U
collection of files, but an application should not control a disk drive by using
tracks and sectors. Doing so could violate data integrity concepts implemented
as part of another process. Reliability of systems is enh?.nced when, at each i
level of abstraction, only the necessary operations are permitted, and
operations that violate a logical view of that level are prevented.

Inheritance allows the properties or characteristics of an object class to be
inherited by a new object. This is an important principle necessary to support
object-oriented programming. The principle of classification supports the goals U
of reliability, modifiability, and understandability.

Localization creates programs in which each part is highly cohesive (i.e., critical I
data are self-contained) and loosely coupled (i.e, a part can execute in
isolation). Localization enables development of self-sufficient components that
can be implemented with minimal technical interproject and intraproject
communication. Modularity and localization are key components in reducing
expensive project communications overhead and critical tc incremental build
and test. The principle of localization directly supports the goals of
modifiability, reliability, and understandability.

* Modularity supports the organization of very large programs into discrete parts,
which allows separate development of the individual components. The
principle of modularity directly supports the goals of modifiability, reliability, 3
and understandability.

o
S6 Department of the Navy

I

I
Ads and Software Engrawn

Uniformity refers to the use of a consistent notation for all artifacts within a
Ssoftware development activity. Modules are free from any unnecessary

differences. A standard coding style used consistently during a project supports
the principle of uniformity. The principle of uniformity directly supports the
goals of modifiability, reliability, and understandability.

The Ada language was developed to support the software engineering goals through
features that draw on software engineering principles. If these principles are
understood thoroughly and applied on a project, use of Ada can effectively support
the software engineering goals. This facilitates effective systems engineering.

S.2 Ada LANGUAGE FEATURES THAT SUPPORT SOFTWARE ENGINEERING
Ada has several features that directly support software engineering. Appendix L
discusses several features many people consider important, including Ada packages,
strong typing, exceptions, generics, Ada libraries, and tasking. The programming
examples provided illustrate how Ada's special features contribute to increased
software quality, performance, portability, and supportability.

5.3 SOFTWARE ENGINEERING TECHNOLOGY PRACTICES
This section addresses major technology practices available today to support the
software development and maintenance of today's modem systems. The relevance
of these technology practices to Ada is discussed.

5.3.1 Prototyplng
Use of prototyping as a standard technology has only recently become widespread.
The surge of interest results from the availability of powerful nonprocedural
languages; new design and programming techniques; programming languages, such
as Ada, that promote use of good software engineering techniques; and the generally
recognized cost and reduced-risk benefits of prototyping.

A prototype may be defined as an early running model of a system to be built. This
model may represent only a very small portion of the system, such as the interaction
among several of the product's computer display screens, so that the evaluation of
user-friendliness techniques can be studied. Or, the model may represent a
substantial portion of the system so that many of the functions can be demonstrated.

Prototyping can be extremely valuable to the Program Manager in defining and
evaluating the system requirements, especially with respect to the user interface.
Hands-on experience by system users is the most effective way known of validating
requirements, eliminating ambiguities in requirements, identifying requirement
deficiencies, and analyzing the design to support the requirements.

G
iAda Implementation Guide 67

I

I
Ada and Software Ennering 3

53.1.1 Purpose
The primary purpose for building a prototype is usually to experiment with,demonstrate, or prove the feasibility of a concept. Prototypes have been valuable in Iconducting the following activities:

"* Evaluating requirements i
"* Assessing costs of alternative design approaches
"* Assessing feasibility of a specific design
"* Assessing performance for alternative design
"* Determining a product's human-computer interface
"* Developing and fine-tuning the product specifications
"* Evaluating interactions of parallel threads of an application
"* Applying new technology
"* Promoting a proposed product to management or to customers
"* Obtaining an early start in developing a new product.

Prototyping should focus on assessing and reducing the risks associated with 3
integrating available and emerging technologies into a system design approach to
satisfy a validated mission need.

.3.1.2 Role in Evaluating Requirements
Prototyping the user interface before Milestone II will help identify whether
specifications to satisfy the requirements are valid. This determination allows the I
development activity to correct any deficiencies in the user interface early in the
program where changes are less costly. It is often observed that what looks good on
paper often does not work in the real world. Consequently, each improvement made I
to the system specifications early in the product development process can save a
significant amount of rework later. Prototyping the user interface has one other very
important benefit: a prototype provides an opportunity to learn how the system will I
behave, in order to further explore the implications of the system requirements.

S3.13 Prototyping Considerations I
Generally, all systems that have significant interactions with end users and exceed
5,000 Source Lines of Code (SLOC) are good candidates for prototyping.

Ada is effective in supporting most prototyping activities. The Ada package, which
is described in Appendix L, allows software engineers to rapidly develop an
architecture for the system by identifying critical interfaces. A stubbing capability in
Ada allows code to be separately compiled for ease in developing prototypes. For
XWindows environments, Ada Graphical User Interface (GUI) builders are available
that allow dynamic creation and evaluation of the user interfaces.

o
66 Department of the Navy

I

I
Ada and Software Engilneerg

Prototypes intended as early versions of the final application should be designed
appropriately and implemented in Ada. When prototypes are developed, however,
often little attention is paid to effectively using software engineering features.
Certainly, prototyping should never be an excuse for hacking, and one should always
have honorable purposes in mind before starting a prototype. Prototyping typically
generates poorly designed and poorly documented code, and there are real dangers
in converting this code to be part of the operational software. Generally, code

Idesigned for prototyping is unrsitable for supporting an operational mission.
Consequently, even when Ada is used for a prototype, the final application may still
require appropriate design activities that use software engineering principles.

S3.2 Simulators and Simulation Languages
Simulators are successfully being developed in Ada. Ada has been extensively usedI in the flight simulator and flight trainer domain. In the past, the different
environments for operational, simulation, and training software resulted in different
software developed for each. Ada's portability and modularity of design provide for
significant reuse of Ada software in each of these environments, which results in
savings of time and money. Ada also is suitable for operations research simulations
and modeling, areas traditionally covered by special-purpose simulation languages
such as SIMSCRIPT and GPSS. The use of Ada requires some additional effort to
provide simulation scheduling and report generation, which are provided by
traditional simulation languages. Use of Ada, however, should reduce the life-cycle
maintenance costs of these simulation and modeling programs. Another advantage
is Ada's tasking (parallel processing). Tasking is effective in simulating logically
parallel activities, and it allows multiple processors to be used simultaneously to do
the work previously done by expensive, high-powered processors (Law, 1992).

5.33 Reuse
Several initiatives are underway in DOD to institutionalize software reuse. This
subsection surveys estimates of the economic benefits of software reuse and
summarizes some reuse techrxaues and issues that apply to Ada software
development. In addition, Appendix A.1.5 lists several government and DOD reuse
repositories.

5.33.1 Economic Benefits of Software Reuse
Attempts have been made to quantify the economic benefits of software reuse for
software development. Estimates of potential savings range from 20% to more than
90%. Most experts on this topic agree that reuse techniques should be applied
across all phases of software development (i.e., requirements definition, design, code
production, test, and Post-Deployment Software Support [PDSSj to increase
significantly the potential for cost savings. The Software Engineering Institute (SEI)
recently published economic models that estimate cost savings resulting from

Ada Implementation Guide 59

I

I
Ads vn Softwae Enghriesm

software reuse under a variety of conditions. The SEI models provide a qualitative
analysis of conditions needed to make software reuse economically beneficial. m

533.2 Software Reuse Techniques Applicable to Ada
This subsection samples current techniques in software reuse that can be applied to
Ada. These techniques are not mutually exclusive; successful projects have adopted
concepts and methods from more than one of the following reuse techniques:

"* Development of Generic Components (megaprogramming) I
"* Design techniques
"* Commercial Off-The-Shelf (COTS) software.

533.2.1 Development of Generic Components (Mepprogramming)
Classification techniques attempt to describe how a software repository is organized I
so that components may be easily identified and retrieved. Domain analysis, a
method by which an application domain is decomposed into component processes,
is one such technique. The resulting collection of connected processes may serve as
a standard for organizing a reuse library of that domain. Additional information on
domain analysis is available in "An Object-Oriented Approach to Domain Analysis"
(Shlaer and Miller, 1989). This technique and several similar techniques describe a I
reuse repository where identifying information is stored in n-tuplets and accessed by
a query system. Additional information on this technique can be found in
"Classifying Software for Reusability" (Prieto-Diaz and Freeman, 1987). 3
S33.2.2 Design Techniques
Information hiding is a design technique that allows software costs to be significantly
reduced by keeping software changes as localized as possible. This design technique
can have a positive impact on software reuse because well-designed Ada packages
containing few input parameters (hence, less need for information from the
environment external to the component) are more likely to be reusable. A common
example would be the abstraction or hiding of device-dependent logic from other
portions of the program so that the other portions may be reused easily with different
devices.

533.23 Commercial-Off-The-Shelf Software I
Reusing COTS software is another technique that can be effectively used in an Ada
software development. When COTS software meets system requirements and
appropriate licensing rights can be acquired, its use can reduce significantly the costs
and schedules associated with system development and acquisition. The availability
of Ada bindings, described in Appendix H, provides a framework and means for 3
effectively integrating COTS software into an Ada software development effort. Ada
policy encourages the use of COTS software (independent of its underlying language

so Depawbmen of the Navy

I

I
Ads and Softmin EiLnsu,*i

implementation) s long as the acquiring program office does not modify or maintain5 the COTS software.

5.333 Management Issues
Among the incentives for increasing software reuse are improved productivity
because less code development is required and improved quality because previously
tested code is used. Factors that inhibit software reuse include lack of a standard
software architecture; lack of trust in code developed elsewhere; the desire to use the
latest innovative languages, tools, and approaches; and lack of knowledge about oru difficulty in obtaining information on available tools, software, or repositories.

Domain analysis is a method of identifying the commonalities and variations of
existing systems within the same application area to determine reuse candidates.
Domain analysis should be performed as part of the requirements analysis to gain a
better understanding of existing systems in terms of common functionality and to
identify components from existing systems that can be reused in the current
development. Domain analysis conducted during requirements analysis uncovers
missing requirements. Addressing these missing requirements early helps to stabilize3 the requirements package.

The issue of data rights is sometimes difficult to address. A piece of software written
by an employee of a company on company time generally belongs to the company.
In addition, if software development is contracted out, the contract should specify
who owns the software upon delivery. Program Managers should ensure, when
reusing software from another source, that they have obtained the appropriate
ownership or licensing rights. Another data rights issue that should be considered
is the responsibility for software that does not work correctly. This is an issue that
the Government faces with Government-Furnished Equipment (GFE). When the
software is GFE and it does not work, the Government may be responsible for any
milestone slips or additional cost resulting from the software problem.

53.4 Reengineering
Reengineering refers to the redesign of one or more elements of a software system
to improve a system's functionality. Conversion of a software system from an existing
programming language to Ada is considered a form of reengineering. A variety of
reengineering products are available in the commercial marketplace.

Organizations and Program Managers responsible for long-term maintenance of
DOD software systems should understand the relevance and potential benefits of the
reengineering concept. From a management perspective, use of automated tools is
the key to the reengineering process. Where tools are available, system
reengineering can be performed quickly and economically. Reengineering may be

Ada Implementation Guide 61

I

I
Aft and Softar Eng iIng

particularly advantageous in situations where large libraries of non-Ada code exist.
Because all new systems and any major modifications to existing code must be
developed in Ada, organizations with software maintenance responsibilities will be
required to maintain expertise in both Ada and the programming languages of their
existing systems. In addition, these organizations face potentially complex and costly
integration and cohabitation problems as they attempt to develop and operate hybrid
systems consisting of Ada and non-Ada code. When automated tools are available,
it may be cost-effective to reengineer all existing code to Ada and thereby eliminate
the need to maintain long-term programming expertise in other languages. The costs
and technical risks of interfacing Ada and non-Ada code also would be eliminated
by such a strategy. 3
Ada also can provide excellent interfaces to many HOLs and assembler, machine
language, and system services. Although this capability is vendor dependent, it can I
allow for an effective transition strategy to Ada. Sections of existing non-Ada code
that require little or no change can be easily incorporated into the Ada application.

Reengineering efforts, however, should be undertaken cautiously. Some
reengineering techniques neither provide easily readable Ada code nor take
advantage of Ada features. No firm guidance can be given as to whether I
reengineering is the right option for a particular project or organization. As noted,
the commercial market is well stocked in reengineering products. Program Managers
need to familiarize themselves with the reengineering marketplace to determine a
whether reengineering represents a viable and cost-effective path for their

organizations.

53.5 Reverse Engineering
The purpose of reverse engineering is to automatically extract the design information
for a system from the existing system source code. Currently, reverse engineering is I
used primarily to generate documentation products to help manually support and
modify systems by using existing source code. The ultimate goal of reverse
engineering however, is to extract design information from the existing system in a 1
standard design format with an automated tool. A functionally equivalent
replacement system could then be automatically generated by the tool selected.
Under this scenario, any required change to the system would be accomplished at the
design-specification level. Several products are emerging on the market to support
reverse engineering. 3
Industry observers generally agree that this type of capability will soon become
available. The emergence of this type of tool will provide Program Managers with I
an additional positive option to deal with the hybrid Ada and non-Ada code
maintenance problem. It will soon be possible to improve the basic design and

62 Departmntf of the Navy

I
a

I
A da and Softem r Engealbg

structure of an existing system, incorporate new requirements, and then regenerate5 the entire system. As with the reengneering market, there is extensive commercial
activity in the area of reverse engineering products. Program Managers need to
maintain familiarity with the available technology.

53.6 Open Systems Environment
The following discussion is based on the U.S. Department of Commerce, National
Institute of Standards and Technology (NIST) Application Portability Profile (APP),
the U.S. Government's Open System Environment Profile OSE/1 Version 2.0; and
the DOD Technical Architecture Framework for Information Management (TAFIM)
Version 1.1

Federal information systems initially developed from isolated islands of computing.
Through progressive changes, these individual systems became connected by common
users and common information needs. These systems are now well on the way to
migrating toward computing environments that consist of distributed, heterogeneous,
networked applications, databases, and hardware. The concept of a Federal
computing environment that is built on an infrastructure defined by open,
consensus-based standards is well on its way to becoming a de facto means oforganizing these systems. Such an infrastructure is called an Open SystemsEnvironment (OSE).

I An OSE encompasses the functionality needed to provide interoperability, portability,
and scalability of computerized applications across networks of heterogeneous,
multivendor hardware/software/communication platforms. The OSE forms anextensible framework that allows services, interfaces, protocols, and supporting dataformats to be defined in terms of nonproprietary specifications that evolve through

I open (public), consensus-based forums.

53.6.1 Benefits of an Open Systems Environment
From the perspective of users aVd technologists alike, an OSE consists of a
computing support infrastructure that facilitates the acquisition of applications with
the following attributes:

* Execute on any vendor's platform
* Use any vendor's operating systemSAccess any vendor's database
* Communicate and interoperate over any vendor's networks
* Are secure and manageable3 * Interact with users through a common human-computer interface.

I
iAdan Implementation Guide 63

I

I
Ada and Software Er•tam 3

In more technical terms, an OSE is a computing environment that supports portable,
scalable, and interoperable applications through standard services, interfaces, data
formats, and protocols. The standards may consist of international, national, industry, I
or other open (public) specifications. These specifications are available to any user
or vendor for use in building systems and products that meet OSE criteria.

Applications in an OSE are scalable among a variety of platform and network
configurations, from stand-alone microcomputers, to large distributed systems that
may include microcomputers, workstations, minicomputers, mainframes, and
supercomputers, or any configuration in between. The existence of greater or fewer
computing resources on any platform will be apparent to users only in the context
they affect the application's speed of execution (e.g., the time it takes to refresh
screens, retrieve data, and/or process data).

Applications interoperate by using standard communications protocols, data
interchange formats, and distributed system interfaces to transmit, receive,
understand, and use information. The process of moving information from one
platform, through a Local Area Network (LAN), Wide Area Network (WAN), or
combination of networks to other platforms should be transparent to the application
and the user. Location of other platforms, users, databases, and programs should also3
be transparent to the application.

In short, an OSE supports applications through the use of well-defined components, I
a plug-compatible technology or building-block approach for developing systems.

Unfortunately, not enough standards are in place to define an OSE completely. I
Standards organizations are working on this problem, but much effort is still needed.
As technology changes, some standards will become obsolete and other new ones will
be required. Organizations can still accomplish a great deal in moving toward an I
OSE by selecting specifications h will provide greater openness over time.

5.3.6.2 Open Systems Environment Reference Model I.
The Institute of Electrical and Electronics Engineers (IEEE) POSIX Working Group
P1003.0 describes an OSE Reference Model (RM) that is closely aligned with the
APP that provides a framework for describing open systems concepts and defining
a lexicon of terms that can be agreed upon by all interested parties. Figure 5-2
illustrates the OSE/RM. I

Two types of elements are used in the model: entities consisting of the application
software, application platform, and platform external environment, on the one hand,
and interfaces including the application programming interface and external
environment interface on the other hand. I
64 Depatmemnt of the Navy

a

I Ad -i Softwaeeu e qhw

I

3 ~APPLICATION SOFT WARE ENTITY

I __ _ __ _ _ _____

APPLICATION PLATFORM ENTITY

3 EXTERNAL ENVIRONMENT

I tiure 5-2. Open Sysmus Fumiounmmt R•rwme Modd (OSElM

i The three classes of OSEIRM entities are described as follows:

e * Application Sot•wre includes data, documentation, and training.

* Applcation Platform consists of a collection of hardware and software
I components that provides the system services used by application programs.

* Pixform Exrernal Enironment consists of those system elements that are£ external to the application software and the application platform (e.g.,services
provided by other platforms or peripheral devices).

I Two classes of interfaces in the OSE/RM are described in the following paragraphs.

* Application Program Interface (API) is the interface between the application
software and the application platform. Its primary function is to support
portability of application software. An API is categorized according to the types

I
I Ada I,-l~uentaton Guide 6

£

I
Ado uW Soimum E d 3

of service accessible through that APL The four types of API services in the
OSE/RM are: I
- Human-Computer Interface Services
- Information Interchange Services

-Communication Services
- Internal System Services.

0 F~emalEnvidmemt Interface (EE!) is the interface that supports information I
transfer between the application platform and the external environment.
Consisting chiefly of protocols and supporting data formats, it supports
interoperability to a large extent. An EEl is categorized according to the type
of information transfer services provided. The three types of information
transfer services are those to and from i
- Human users
- External data stores
- Other application platforms.

L3163 Application Portability Proflie Service Areas 3
A selected suite of specifications that defines the interfaces, services, protocols, and
data formats for a particular class or domain of applications is called a profile. The
Application Portability Profile (APP) integrates industry, Federal, national,
international, and other specification into a Federal application profile to provide
the functionality necessary to accommodate a broad range of Federal information
technology requirements. The APP is directed toward assisting managers, project I
leaders, and users in making an informed judgment regarding the choice ofspecifications to meet current requirements.

The services defined in the APP tend to fall into seven broad service areas. These
service areas are: I

"• Operating System Services
"* Human-Computer Interface Services
* Software Engineering Services I
"* Data Management Services
"* Data Interchange Services
"* Graphics Services
"* Network Services.

Figure 5-3 illustrates where each of these seven service areas relates to the OSE I
Reference Model The software engineering services are not shown as they are

s66 Deparment @1 the Navy

I
I

1
3Ada and Somtw Engbueedg

applicable in all areas. Two supporting services are integrated within and permeate
ithe other seven service areas. In many cases, separate specifications are not available

for these supporting services within each of the seven service areas. These two1 services are:

Security Services£ * Management Services.

The following sections briefly define each servi m- area.

I
APPLICATION AFOWARE ENTITY

I -i

5 Figure 5-3. APP Service Areas Pad the OSE/RM

1 5.3.6.3.1 Operating System Services
Operating system services are the core services needed to operate and administer the
application platform and provide and interface between application software and theI platform. These core services consist of kernel operations, commands and utilities,
realtime extensions, and system management.I

IAda Implementation Guide 67

I
5.3.6.3............g Syste m Ser ice

I
Ads and Software Engineering1

53.6.2 Human-Computer Interface Services
Human-Computer Interface (HCI) services define the methods by which people may
interact with an application. Depending on the capabilities required by users and the I
applications, these interfaces may include client-server operations, object definition
and management, window management, dialogue support, and multimedia. 3
5.3.6.33 Software Engineering Services
The objective of open systems is to produce and use portable, scalable, interoperable
software. Software engineering services provide the infrastructure to develop and
maintain software that exhibits the required characteristics. Standard programming
languages and software engineering tools and environments become central to 3
meeting this objective.

5.3.63.4 Data Management Services
Central to most systems is the management of data that can be defined
independently of the process that creates or uses it, maintained indefinitely, and
shared among many processes. Data management services include data dictionary or i
directory services, DataBase Management System (DBMS) services, and distributeddata services.

5.63.5 Data Interchange Services
Data interchange services provide specialized support for the exchange of
information including format and semantics of data entities between applications on
the same or different (heterogeneous) platforms. Data interchange services currently
include document services, graphics data services, and product data interchange
services.

53.6.3.6 Graphics Services a
Graphics services provide functions required for creating and manipulating displayed
images. These services include display element definition and management and image
attribute definition. The services are defined in specification for describing
multidimensional graphic objects and images in a form that is independent of devices.
Graphics security services in this area include access to, and integrity of, functionsthat support the development of imaging and graphics software and image data. i

5.3.6.3.7 Network Services
Network services provide the capabilities and mechanisms to support distributed
applications requiring data access and applications interoperability in heterogeneous,
networked environments. These services include the data communication, transparent
file access, PC or microcomputer support, and remote procedure call. I

I
U8 Department of the Navy I

I

[I
Ads and Softwr, Enginesl

.3.6.3.8 Security Services£ Security services are provided to support distribution and integrity of information and
to protect the computing infrastructure from unauthorized access. These services
include operating system security services, HCI security services, programming
security services, data management security services, data interchange security
services, graphics security services, and network security services.

5.3.6.3.9 Management Services
Management services are integral to the operation of an OSE. They provide the
mechanisms to monitor and control the operation of individual applications,

I databases, systems, platforms, networks, and user interactions with these components.
Management services enable users and systems to become more efficient in
performing required work. Management is better able to streamline the operation,
administration, and maintenance of open systems components. These services
include fault management and control services, configuration control services,5 accounting services, and performance monitoring services.

5.3.7 System Portability
Portability refers to the ease with which software can be transferred from one
computer system or environment to another. Over the life of an application
program, the host development environment frequently changes because of hardware
upgrades, modernization, and the transition of support from a contractor to a
government facility. Portability must be considered when selecting or developing
tools and software.

I Porting from one hardware environment to another presents special portability
problems because word sizes may be different, which affects numeric representation
and accuracy, and architectures are different, which affects interrupt processing,
interfaces, and bus commands. Porting from one software environment to another
can also pose special problems. For example, operating system calls and interprocess3 communications differ significantly among different operating systems.

Ada code is perhaps more portable than any other language because of Ada's
I validation suite and the capability to isolate system dependencies through Ada

packages. Because of a comprehensive conformance test suite involving more than
4,000 tests, a high level of uniformity is achieved among validated Ada compilers.5 Furthermore, hardware and software dependencies can be isolated in a small number
of modules. With appropriate isolation of these dependencies, the number of
modules requiring change to support porting from one compiler to another can be
very small.

I I ~Ada Implementation Guide 6

I

I
Ada and Softwa Eiglhw•l

NobelTech recently conducted a portability exercise. In this exercise, about 6,000
Ada modules written for the Motorola 68020 chip were ported to the Reduced
Instruction Set Computing (RISC) architecture. Of these 6,000 modules, only about
30 modules required source code changes for the port. Appendix I, Section L8,
highlights the complexities involved in achieving portability in the Tactical Aircraft
Mission Planning System (TAMPS).

53.8 Ada Compared to Assembler
Coding with High Order Languages (HOLs) such as Ada has important benefits
when compared to coding in Assembly. McDonnell Douglas demonstrated these
benefits for the computation of the Structural Filter as part of the F-15 integrated
flight control system, which was flown in September 1984. Appendix L provides this
example.

From this example, it is clear that the Assembler code would be very prone to error.
A highly skilled Assembler programmer is likely to make several errors just coding
this small example. It is virtually impossible for a nonprogrammer to look at the I
code and make sense of it. In contrast, the Ada code looks almost identical to the
code coming out of the system specification; therefore, any errors are likely to be
detected easily during design reviews. Code generated in Ada is more reliable and
has a higher quality than code generated in Assembly. Incidentally, McDonnell
Douglas projected an order of magnitude improvement in programmer productivity
using Ada rather than Fixed Point Assembly Language for design, coding and testing.

Project Managers expect that Assembly code can be made to execute much faster
than Ada code. In most situations, this is not true. Today, optimizing compilers can I
generate Ada executable code that is much faster than that done in Assembly. A
highly skilled Assembly programmer will not normally find all of the places where
optimization can manually be coded; an optimizing compiler will. Occasionally, a I
highly skilled Assembly programmer can generate slightly more efficient code,
especially in tight loops where there are interfaces to nonstandard hardware. Ada
provides an excellent interface to machine-level code so that this can be done when a
required.

5.3.9 Ada Compared to Cq C+ +
In 1991, the Air Force conducted a Business Case Analysis to compare Ada to C+ +
to determine under what circumstances a waiver to the DOD Ada requirement might I
be warranted for use of C+ +, particularly in the DOD's Corporate Information
Management (CIM) Program. This report examined quantitatively the availability
of tools, language selection methodologies, cost, and the emerging impact of fourth- I
generation technology. Each study reached the same conclusion: there is no
compelling reason to waive the Ada requirement to use C+ +. I
70 Department of the Navy I

I

I
3 A and Softerm rEngne

The report summary stated that it is impossible to make a credible case for the
existence of more cost-effectve C+ + systems compared to Ada. Business
cost-effectiveness data collected for the study showed that Ada provides development
cost advantages on the order of 35% and maintenance cost advantages on the order
of 70%.

A March 1991 SEO study compared Ada to C and C+ + in the areas of capability,
efficiency, reliability, maintainability, life-cycle cost, and risk (Carnegie-Mellon
University, 1991). Ada 83 compared quite well to C+ + as Figure 5-4 depicts.I

100 --

I --
-70-

60-

40-

I 3-
20-

1 10

0
C [IM.d WIIS" In M.eyl n Tom

3 Source: Carnegie-Mellon University/Software Engineering Institute, 1991

Figure 5-4. Comparison of Ada to C+ + (SEI, 1991)

A report from New York University in April 1992, titled Contrasts: Ada 9X and5 C+ + indicated that:

Ada 9X had similar advantages over C+ +, particularly when software costs3 were examined over the lifetime of the software system. Ada 9X was also
found to be superior in terms of safety and reliability. A copy of this report
can be obtained through the AdaIC, which is described in Appendix A, Section
A.1.1.

Ada Implementation Guide 71

I

Ada and Softwar Enginering

53.10 Mixing Ada With Other Languages
One of the major challenges to the more widespread use of Ada within DOD is the
large number of non-Ada systems that are being reengineered or upgraded. The
number of new starts, as compared to upgrades, is very low. Even for new starts,
often the strategy is to make the greatest possible use of existing code. 3
Several Ada features support interfaces to other languages. Interfaces to languages
such as C, FORTRAN, COBOL, Pascal, and Assembly are common. Such interfaces
are vendor dependent and may not be portable from one compilation system to
another. If such capabilities are desired, one should check with the compiler vendor
for support of Pragma INTERFACE for the desired language(s). 3
The National Aeronautics and Space Administration (NASA) has been successful in
mixing Ada with other languages. They have a considerable investment in legacy I
software written in FORTRAN, C, and Pascal. By making use of an Ada
infrastructure, NASA is able to reuse much of this legacy software and take
advantage of the software engineering benefits of an Ada architecture.

5.4 PARADIGM SHIFTS FOR EFFECTIVE SOFTWARE ENGINEERING
Correct orientation in education and training is critical in tapping the strengths of I
Ada that can help us achieve a paradigm shift to effective software engineering.

In its shallowest sense, Ada is just another programming language. If software I
developers are introduced to it in this context, it will be of little benefit. Taught in
the context of a tool to support good software engineering practices, however, it can
be of great benefit. In short, it is the paradigm shift, the cultural change, in how to I
develop software systems that is imperative and will bring the most gains. Ada is
simply one of the most effective tools at our disposal to support this shift. To
support this paradigm shift, education and training programs must focus on software I
engineering and teach Ada in the context of a tool to support it.

I
I
a
U

I
I

I

Lessons Learned

I This section summarizes the collective set of lessons learned on several Department
of Defense (DOD) and commercial Ada projects, including the following:

t Stratcom-Computer Center, Offutt Air Force Base

1 • Wells Fargo Nikko Investment Advisors

9 B-2 Aircrew Training Devices

* Boeing Military Aircraft (Wichita, Kansas)

* Coulter Electronics: Ada for Cytometry

e AN/UYS-2A Project

* Ada Experience at the Naval Research and Development Center

0 Tactical Aircraft Mission Planning System

3 • Advanced Field Artillery Tactical Data System

* AN/BSY-2 Submarine Control System

* • Ada Language System/Navy Full-Scale Development Program

1 o Avionics Project for an Airborne Command, Control, and Intelligence

Application

1 * PEO-SSAS, PMS-414, SEA LANCE

& Navy World Wide Military Command and Control System (WWMCCS) Site-
I Unique Software Project

* Event-Driven Language/COBOL-to-Ada Conversion Program

1 Shipboard Gridlock System with Auto-Correlation

3 * Combat Control System MK2

Ada Imp96me1 Guide 73

I
iII i| I II

It
"* P-3C Update IV Ad DevlomentLes.La d3

"* Standard Financial System Redesign I
"* Reconfigurable Mission Computer Project

"* Intelligent Missile Project.

Appendix I provides a full description of these projects and the lessons learned on
each. This appendix also provides a matrix showing the lessons learned by specific
category and project. As review of this appendix shows, most of the problems 3
encountered were management-related, not Ada-specific, problems. In addition,
some problems recur across all of these projects, such as:

ID
"* Lack of training and/or experience

"• Failure to take a risk engineering approach 3
"* Improperly specified contract requirements for software-related items and

processes

"* Inadequate estimates of resources and/or facilities needed 3
"* Immaturity of Ada development tools and environments

"* Insufficient incremental testing or lack thereof.

The subsections below highlight a few of the lessons common to several of the
projects in the areas of standards and policy, project management, development
process, corporate knowledge .id software development experience, training,
resources and facilities, support environment tools, reuse, and project costs. 3
Before undertaking any software-intensive system development, the reader should
review the matrix in Appendix I, and the Project Manager should study the detailed
project descriptions in this appendix so as to benefit from the lessons learned.

6.1 STANDARDS AND POLICY £
Lesson Area Summary: Review of the project lessons shows the necessity for
establishing a policy to ensure that planning and monitoring of software development
occur early in the development process. The lessons also highlight the importance 3
of incorporating the critical elements of the Military Standards into the acquisition
package (e.g., the Request for Proposals). In addition, the lessons suggest that g
74 IoDepenwit of tih Navy

I

I
3 L.nor. Laed

policies be established to require i -remental development, use of metrics from the5 beginning of the project, and dcv. ment of a common style guide for use across
development teams.

3 Continuing Challenges: DOD acquisition policies have recently been revised. It is
still too early to assess the overall impact of these revisions on acquisition
Smanagement practices. Emerging policies and standards that deal with software
reuse, Open Systems Architecture (OSA), information system security, tools, and use
of Nondevelopmental Item/Commercial-Off-The-Shelf software will directly affect
software acquisition practices.

6.2 PROJECT MANAGEMENT
Lesson Area Summary: Nearly every lesson learned in these projects related to
project management, as the matrix in Figure I-1 in Appendix I shows. Among the
recurring lessons in this area is the need for up-front planning and close monitoring
of the project. Also evident, and related to up-front planning, is the necessity for
ensuring that adequate facilities and resources are available.

Continuing Challenges: Within the area of project management, new and strong
emphasis is being placed on the early assessment and evaluation of true life-cycle
costs. Among the topics being addressed are evolutionary (lower risk) developments;
risk planning and control; complete metrics programs; increased use of commercial,
nonproprietary software, hardware, and networking interface standards; optimized
software portability; and design for reuse. As in the past, the need to ensure
adequate staffing, resources, and facilities to accomplish the work must be anticipated
and addressed. These key ingredients all need to be incorporated into a well-
thought-out early planning effort. Once execution begins (based on a complete Work
Breakdown Structure [WBS]), status and progress towards interim deadlines must be
continuously monitored.

6.3 DEVELOPMENT PROCESS
Lesson Area Summary: The most significant lesson learned across projects was the
importance of applying sound systems engineering and software development
practices and principles at every stage of the project. Of particular importance isstrict adherence to configuration management and Quality Assurance practices. On
several projects, use of a consistent methodology and adoption of a risk engineering
approach were mentioned as key to a successful development process.

Continuing Challenges: Greater flexibility in the development process is being
allowed in today's acquisition environment. The days of starting softwaredevelopments from scratch and blindly imposing a waterfall development process

have passed. Advances in object-oriented design, OSA interfacing, and legacy

Adah Implemernation Guide 75

I

I
L.os . I

software availability enable systems to evolve through reuse and modular upgrades.
The willingness to actively pursue "joint" or "shared" developments should lead to 3
lower risk, decreased costs, and improved quality in meeting mission requirements.

6.4 CORPORATE KNOWLEDGE AND SOFTWARE DEVELOPMENT
EXPERIENCE I

Lesson Area Summary:. In this area, the lessons learned emphasize that both
Government and contract developers must understand the project requirements and
adhere to them. Corporate knowledge and software development experience also are
needed to establish schedules, determine at what point full-blown coding should
begin, and identify the resources available to meet system requirements. 3
Continuing Challenges: Knowledge of the corporate domain and ancillary software
development experience continue to be critical to the generation and deployment of
software-based systems. Such experiential data and information need to be captured
as they are generated, saved in the appropriate context, and recalled when needed.
Armed with this collective knowledge, planners can make informed estimates of the 3
what, how, when, and why for new undertakings. The goal here is to transition both
the engineering and management of systems development from the worst case
"initial" to the "optimizing" or continuous process improvement level. Such a
conversion will ensure best-quality products and maximum potential to anticipate
future change. I
6.S TRAINING
Lesson Area Summary:. On several of the projects, the need for Ada-specific training
was noted because most of the experienced personnel have little or no experience I
with Ada and modern software engineering practices. This need for tiaining applies
to both technical and management personnel Project experience suggests that
hands-on training should be conducted as close as possible to development or during Idevelopment.

Continuing Challenges: Ada-specific training problems should decrease over time. 3
Training in application software engineering process methods and use of Computer-
Aided Systems Engineering (CASE) technology tools, however, needs to be
addressed for both technical and management personnel.

6.6 RESOURCES AND FACILITIES
Lesson Area Summary: As mentioned above, review of the project lessons indicates
that the initial estimates of the resources and facilities needed often were inadequate.
Project experiences show the necessity for having developers identify the tools to beused in both system analysis and development to ensure adequate resources will be Uavailable to meet requirements.

76 Deportment of the Navy I
I

S
SLearned

Continuing Challenges: Resource and facility planning must address both3 development and post-deployment needs. For larger, geographically
distributed developments, the lowest risk solution is to standardize as many of the
support resources as possible, including tools, exchange media, documentation,
processes, configuration management, and environments. Managers need to develop
resource utilization estimates before beginning projects, and they need to monitor
utilization closely to track actual consumption against projections.

6.7 TOOLS
Lesson Area Summary: For large, geographically dispersed projects, the lessons
learned show that common support tools should be required. Use of common tools
allows problems to be identified quickly, workarounds made only once, and results
entered into a shared electronic reporting system. In addition, before committing to
large projects, the methods and tools should be exercised; the team must be well
trained in the use of the supplied tools; and the tools must work as advertised.
Project experience also indicates that use of automated tools should be mandatory
for large software undertakings and that development tools are essential.

Continuing Challenges: The number of vendor tool products continues to increase
as the industry matures and enters its second decade. Many products on the market,
however, fail to meet the goal of total life-cycle support. Integrated data and
information exchange, along with interoperability among differing vendor tools,
remains elusive. For CASE tools, project experience has also shown that unless
proper evaluation, selection, training, and management commitment occurs, the5 products are sometiLes abandoned because of poor performance and lack of utility.

6.8 REUSE
Lesson Area Summary: The project lessons show that Ada facilitates reuse and that
planning for and designing in reuse yield long-term benefits. It was noted that
development and maintenance time can be reduced significantly by capitalizing on
reuse. However, project experience suggests that large-scale software component
reuse will depend on achieving more technological progress.

I Continuing Challenges: Within the past 2 years, concern about the affordability of
systems and the need for evolutionary upgrades has escalated. In response to that
concern, the efforts to promote reuse have increased dramatically. Tool technology
has begun to provide automated ways of designing for reuse and evaluating legacy
software assets. As with CASE technology, key ingredients for success include
corporate commitment, planning, resource investment, engineering and management
discipline, and correct tool selection and usage.

I !Ada Implementation Guide 77

I
mmImmm mmmmmm m mm

I

6U PROJECT COSTS
Lesson Area Summay:. On several projects, the effect of inadequate initial estimates
of the needed resources had cost implications. In some cases, additional funding was
needed for support hardware and facilities and for training as well as to
accommodate schedule delays.

Continuing Challenges: The impending cuts in the overall DOD budget will make
it necessary to learn bow to accomplish more with less. The number of start-from- I
scratch projects will decrease whereas the need to plan carefully for smaller upgrades
of existing systems will increase. There will be a much greater emphasis on
demonstrating a new concept before allowing full production to proceed. In such an
environment, funds will need to be invested to ensure developers fully understand
existing products and their capabilities. From a software perspective, investment in
domain-specific software reuse needs to be accelerated. In addition, the downscaling
of worldwide threats should cause reallocation of funds away from only mission-
driven requirements to a more even-handed set of requirements that addressesmission, quality, and affordability. I

I
i
I
I
I
I
I
I
I

76 Depdmeut of the Nav I
I

Sctlon 7
Future Directions

3 Evolving technology is valuable to Program Managers as the latest initiatives become
the state of the practice. Several important initiatives are examining ways to improve
the software development process, increase productivity, increase quality, and reduce
costs. These initiatives will be important to the Department of the Navy (DON) in
the near future.

This section provides a description of the following initiatives,- which warrant
attention:

* Ada9X
* Ada Reuse

Corporate Information Management (CIM)
* Integrated Computer-Aided Software Engineering I-CASE) tools
* Next Generation Computer Resources (NGCR)

North American Portable Common Tool Environment (PCTE) Initiative(NAPI)
g Portable Common Interface Set (PCIS)

* Software Engineering Institute (SEI)
•Software Executive Official Council (SEOC)

Software Technology for Adaptable, Reliable Systems (STARS)I Tactical Advanced Computer-4 (TAC-4) and TAC-5 Procurement
* Technology plans, including:

- Software Action Plan (SWAP)
- Software Technology Strategy Document
- DON Reuse Implementation Plan and Guide
- DON Information Management Strategic Plan
- DON Software Process Improvement (SPI) Plan

* DON Technclogy Pilots, including:
- I-CASE Pilots
- Functional Process Improvement (FPI)
- SEI Pilots3 - STARS Demonstration Pilot.

7.1 Ada 9X
The tenets of both the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO) require that each standard be
periodically revisited. Ada 9X is the effort to perform this function for the Ada3 programming language.

Adf Implenwnt.Uon Guide 79

I

I
FuUa Meo 3

7.1.1 Background
The Ada language standard, ANSI/Military Standard (MIL-STD)-1815A, was
published in 1983. Starting in 1984, the number of available Ada development
facilities began to increase. As Ada was rigorously used in several projects, a series
of omissions, limitations, and minor errors were identified. In January 1988, the Ada
Joint Program Office (AJPO) asked the Ada Board for a recommendation on how
to resolve this situation.

In September 1988, the Ada Board delivered its report, which recommended revising
the language. To accomplish this task, the Ada 9X Project Office was established
under the direction of Christine M. Anderson at Eglin Air Force Base (AFB), 3
Florida, and was relocated to Kirtland AFB, New Mexico, in July 1992. The goal of
the project is to revise Ada 83 and effect a smooth transition from Ada 83 to Ada
9X (ANSI/MIL-STD-1815B). During the project, a public survey was conducted to 3
solicit revision requests, and more than 750 revision requests were received. Several
international workshops were convened to review and rank those inputs.

Changes have been constrained by the overall objective of mininizing the negative
impact and maximizing the positive ý,npact on the Ada community. Upward
compatibility between Ada 83 and Ada 9X is a high-priority goal. The effect on I
managers, programmers, vendors, educators, authors, and various application domains
will be considered throughout the revision process. 3
The revision will include only those changes that improve the usability of the
language while minimizing the disruptive effects of changing the standard. The
revision process will continue and will include various forms of public scrutiny such U
as conferences, electronic mail comments, and draft documentation. The draft Ada
9X standard will be released for voting by ANSI and ISO in September 1993. ANSI
and ISO approval of the revisions is expected in 1994.

7.1.1.1 Requirements I
The proposed revision requirements, which were completed in December 1990, are
grouped into the following categories:

"* General requirements. Collection of small defects in the language with the I
structure and format of the standard retained

"* Real-time requirements. Precise control over when an action occurs

" Systems programming requirements. Machine operations, data interoperability, 3
interrupt entry binding, and operations on pointers

s0 Department of the Navy

I

I
3 Fiu Dksctions

SSafety-ai trusted requiments. Ability to analyze generated code forScertificatiol and to provide correspondence between the source and the
generated code

3 Support of pWgrmM pwadigm. Subprogram manipulation, data storage
control, recompilation, object-oriented programming support, and generic£ modifications

o Paralleordiuributedprocessm (capabfiit cun'ently does not e=i). Distribution
of single programs, distribution of an Ada system, remote communications, and
configuration control

0 Infomation systems. Currency quantity handling, character set compatibility,
interface to Database Management Systems (DBMSs), and common data
structures

0 * Scientific and mathematical applications. Location of point and data storage

g * International user requirements. Topics such as international character sets.

7.1.1.2 Revision Activities
The requirements have been mapped (1991-1992) into language solutions, and the
wording in "the standard will be revised by September 1993. Three major
enhancements include support for object-oriented programming, programming-in-3 the-large, and lightweight synchronization.

7.1.2 Ada 9X Transition Activities
Transition activities involve management, programmers, vendors, and Ada Compiler
Validation Capability (ACVC) test suite revision and policy.

7.1.2.1 Managers
To help managers transition to Ada 9X, two Ada 9X workshops for managers will
be conducted before the formal standard approval-one for mid-level managementIand one for executive-level management. Transition issues and strategies will be
discussed.

3 A short (approximately 15- to 20-minute) videotape that discusses the language in
terms of corporate benefits and policy issues will be developed for managers and a
concise guide to practical steps for transitioning to Ada 9X from both non-Ada and
Ada 83-oriented organizations will be developed. The guide will be similar to the
Ada Adoption Handbook for Ada 83 developed by SEI. It will include a discussion

A
SAda Implementation Guide S1

I

I
Furwe keons 3

of the benefits of using Ada 9X from a manager's perspective, tips on tool selection,
and a summary of policy. 3
7.1.22 Programmers
To help Ada 83 programmers transition to Ada 9X anAda 9X~Mf ammerý Guide i
will be developed. This guide will highlight, chapter by chapter, the changes between

Ada 9X and Ada 83 and discuss programming strategies that use new features. Any

incompatibilities between Ada 9X and Ada 83 will also be noted, and straightforward I
modifications to Ada 83 code will be provided to transition to equivalent Ada 9X

code. Suggested Ada 83 coding practices to facilitate the transition to Ada 9X also

will be discussed for those programmers who are continuing to use. Ada 83 on 3
existing projects. A 1-hour videotape also will be developed that will highlight the

changes to the language and will feature opportunities for use as well as
programming examples.

7.1.2.3 Vendors
During the Ada 9X revision process, several workshops for vendors will be

conducted. The purpose of these workshops will be to allow vendors to closely track

the revision and to provide feedback on inplementability to Ada 9X teams. An

electronic vendor bulletin board has been established to allow vendors to interact I
directly with Ada 9X Project team members. Open and direct dialogue is essential
for a timely and effective transition. 3
7.L2A ACVC Test Suite Revision
AJPO has frozen the Ada 83 test suite (ACVC 1.11). For information only, a
baseline for the Ada 9X ACVC Test Suite, 9XBasic, will be released approximately I
12 months before ANSI approval. It will eliminate incompatibilities between Ada

83 and Ada 9X and focus on usage-oriented tasks rather than remote fringes of the
language.

The first Ada 9X ACVC release will be designated ACVC 2.0 and will cover part of
the new Ada 9X features. The Ada 9X test suite will focus on usage. Table 7-1
provides the planned release schedule.

8
I
I

62 D~patment of the Navy

I

3 Fgutr Direions

Suite Available Available Start End Expiration

3 2.0 2 MAC 3 MA9X 3 MA9X 27 MA9X 36 MA9X
2.1 3 MA9X 9 MA9X 27 MA9X 63 MA9X 75 MA9X

£ MAC - Months after release of Ada 9X ANSI canvass for voting
MA9X = Months after ANSI approval of Ada 9X

U Table 7-1. ACVC Planned Release Schedule

7.2 Ada REUSE
Several efforts (e.g., STARS, CIM, SWAP) are under way to address software reuse.
The Department of Defense (DOD) and other agencies (e.g., the Joint Integrated5 Avionics Working Group [JIAWG], National Aeronautics and Space Administration
[NASA]) recognize that software reuse has the potential to yield substantial
improvements in the quality and reliability of DOD software systems at a reduced
cost. The main objective of all of these efforts is to create an environment in which
Program Managers can reuse already developed software components rather than
develop new code. The reuse concept, however, raises several issues that must be
addressed and resolved, including the following:

0 Policy and regulations that inhibit software reuse

0 Incentives to developers, Program Managers, and contractors to reuse existing
software

* DOD infrastructure to facilitate widespread software reuse

3 * Cultural change in the areas of software development, acquisition, and support
to accept and promote reuse

1 * Legal and contractual issues

1 * Work force education in areas of reuse technology

o Technology to support confident composition of software components

1 Limited tool support.

A!Ada Implementation Guide 83

I

I
Futur Directhms 5

"7.3 CORPORATE INFORMATION MANAGEMENT
CIM is the initiative through which DOD will integrate and strengthen central
management of the Defense Information Management Program. The goal of the
CIM initiative is to improve the effectiveness and efficiency of business processes in
DOD by integrating and streamlining functional requirements and by usinm
information technology to implement the improved business operations that result.

The Secretary of Defense assigned to the Office of the Assistant Secretary of
Defense (OASD[C31]) the responsibility for establishing an organization to
implement CIM throughout DOD. Pursuant to this direction and in accordance with
the "Plan for Implementation of Corporate Information Management in DOD,"
approved by the Deputy Secretary on 14 January 1991, OASD(C31) established a
Directorate of Defense Information (DDI), which is responsible fo- the following:

" Developing and promulgating information management policies

"* Implementing information management processes, programs, and standards I
"* Integrating the principles of information management into all of DOD's

functional activities. I
This responsibility applies to information technologies and architectures, software,
systems development methods and tools, information technology and data standards, I
and Automatic Data Processing (ADP) equipment acquisition processes. It does not
include equipment and software that are an integral part of a weapon or weapons
system and related test equipment.

Application of CIM principles will enable managers of functional activities to
streamline business methods and business processes, develop sound business cases I
and functional economic analyses of their activities and supporting information
technology, and provide other improvements in the effectiveness and efficiency of the
functional activities. The OASD(C3I) DDI will develop and promulgate guidance
on the common models, tools, and methodologies to be used by functional personnel
in performing their responsibilities for the management of information related to
their functions. CIM also supports the goals of the July 1989 Defense Management
Report to the President.

7.4 INTEGRATED COMPUTER-AIDED SOFTWARE ENGINEERING TOOLS
"The Department of Defense (DOD) is committed to establishing a single, common
Software Engineering Environment (SEE) for the development of Automated
Information Systems (AISs)." This dramatic statement introduces a far-reaching
policy memo, the DOD I-CASE Use Policy, signed by the Director of Defense

64 Department of the Navy

U
• • m m m1

I
3Future Dhsctions

Information on 27 February 1992. With the establishment of the I-CASE policy,3 which will be enabled by the complementary I-CASE acquisition program, DOD has
made a major strategic commitment to apply Computer-Aided Software Engineering
(CASE) technology throughout the largest software development organization in theU world, the U.S. DOD.

The I-CASE policy will ultimately result in the modernization and standardization
of DOD's numerous software development activities. The I-CASE Use Policy memo
states, "It is DOD policy that I-CASE will be used by each Military Department and
Defense Agency for all in-house, Government-developed AISs." For contractor-
developed systems, the policy requires that AIS contracts include provisions for
delivering computer products in a form that can be input into an I-CASE SEE.
Preliminary results of a recent survey of selected DOD software development
activities indicate that DOD owns at least one copy of virtually every commercial
CASE tool in the marketplace. Standardizing on I-CASE will reduce the3 proliferation of incompatible products the Department must support.

To implement the I-CASE policy, the U.S. Air Force has been designated as the
Executive Agent for I-CASE and charged with identifying DOD CASE requirements
and establishing an acquisition program to meet those requirements. The Air Force
has created the I-CASE System Programming Office (SPO) at Maxwell AFB, Gunter
Annex, Alabama, to manage the acquisition. The mission of the I-CASE SPO is to
bring I-CASE to fruition as soon as possible so that users throughout DOD will have
a standard SEE and associated hardware, training, and technical support services.
The I-CASE contract, which is expected to be awarded in late 1993, will be available
throughout DOD and to other Federal agencies.

1The I-CASE acquisition will provide DOD software development and maintenance
organizations with the latest SEE. I-CASE will cons st primarily of Commercial-Off-
The-Shelf (COTS) hardware and software development components and the
necessary run-time licenses to execute the systems developed in the environment.
The use of COTS tools in the I-CASE environment will be strongly emphasized.
I-CASE will include a central repository for storing all information relating to a3 specific software project and will support a full range of program development tools
that covers each phase of the software life cycle. Additionally, I-CASE will support
common management functions extending across multiple life-cycle phases such as
program management, Quality Assurance (QA), and configuration management.

Figure 7-1 illustrates the I-CASE technical environment.

DOD is moving rapidly to establish a standards-based computing environment and
has identified several standards that will be mandatory. I-CASE must operate under

Ada Implementation Guide 85

I

I
Future Oections 3

II

oASD(c3 I-CASE TECHNICAL ENVIRONMENT I
I

Tools for Tools for3
Frogram Quality

Management

Tools for Date Adu•ix.

I
I
I

Tools for Centra

R"J5U GeneraTion l o etn

KA Depa vem of the Navyt

U

for

I

I FutuRe Dkrtdons

these standards and will, in turn, be used to develop applications that execute on3 open systems platforms. The I-CASE environment will support or meet the following
standards:

3 * Portable Common Tool Environment (PCTE) to provide a standard repository
interface through the PCTE specification

3 o Ada to generate code in Ada, the DOD standard High Order Language (HOL)

e Structured Query Language (SQL) to support an SQL interface to at least two
Relational Database Management Systems (RDMSs)

3 * XWindows to support XWindows for end-user applications

0 Portable Operating System Interface for Computer Systems (POSIX) to support3 applications executing in a POSIX operating environment

* Government Open Systems Interconnection Profile (GOSIP) to provide support3 for GOSIP.

The I-CASE environment will also comply with 'ae National Institute of Standards
and Technology (NIST)/European Computer Manufacturing Association (ECMA)
Reference Model for Frameworks of Software Engineering Environmenst

Public Law 102-396, Section 9070, requires that DOD use the Ada programming
language for all applications except where is it cost-effective not to do so.
Consequently, Ada has been specified as the only third-generation language that will
be supported by the I-CASE environment. Initially, I-CASE will support Ada 83, but
when the Ada 9X requirements are approved, I-CASE will evolve to the new version.
At a minimum, the I-CASE environment will generate Ada program unit skeletons

Sand the user will be required to complete the functionality. By the end of the 7-year
contract, however, we expect I-CASE to generate 100% of the code required for an
application.

IThe I-CASE environment will strongly emphasize the integration of all supported
software development tools across each possible dimension of integration (i.e.,
control, presentation, data, and process). I-CASE will support at least one, but
preferably more, of the most widely accepted software development methodologies.
DOD systems today are developed by using a wide variety of methodologies rangingS from functional and data-driven approaches to state transition and object-oriented
methodologies. Support is needed for as many of these as possible; however, the3 emphasis is on the requirement for an object-oriented methodology. Process and

Ada Implementation Guide 67

IM

I
Future DNscUoM 3

work flow control of the tools in the environment will be an important feature of
I-CASE, and groupware support is expected to be part of any development process. 3
In addition to providing the traditional functions offered by a SEE, I-CASE will
strongly emphasize reuse of previously developed software components. Within
I-CASE, the reusability of all software objects in the repository will be supported,
from requirements through design to code construction and eventually to testing.
Each I-CASE environment will be connected to the DOD Software Repository
System (DSRS), a multidomain software reuse library. Each I-CASE environment
will also be connected to the DOD Data Repository System (DDRS), which will
provide access to common data elements, data definitions, and data models used
across DOD. Software metrics, an integral part of the SEE, will capture DOD-
specific metrics at each phase of the software life cycle.

The execution of the I-CASE contract will break new ground for a DOD acquisition.
DOD recognizes the state of technology of SEEs is evolving rapidly and the I-CASE
contract must be innovative in its approach to technology enhancements and
upgrades. To ensure that DOD always has current SEE technology, broad
requirements have been set for the initial I-CASE delivery. Each requirement in the
Request for Proposals (RFP) has been demonstrated in one or more I
implementations; however, the total of all requirements effectively advances the
state of the ar. Consequently, I-CASE is structured into tiered requirements, with
the mandatory requirements at contract award representing only a subset of the long- I
term need. At award time, the I-CASE contractor will deliver all mandatory
requirements, a subset (large, it is hoped) of the I-CASE "tiered" requirements, and
a "migration plan" for incorporating requirements that were not part of the initial Idelivery. A substantial award fee should encourage adherence to the migration plan.

The contract will require commercialization of the I-CASE environment. Therefore, I
in addition to providing the I-CASE SEE to DOD and other Government agencies,
the winning contractor must also sell the environment commercially. Moreover, it
is a DOD goal to make the information repository data model and interface
specification open and public information. DOD anticipates that many third-party
suppliers of CASE tools will adapt and integrate their products to the I-CASE SEE.
DOD has long been the recipient of Government-only technology that frequently
approaches obsolescence on the day it is delivered. The I-CASE contract intends to
"ride the wave" of commercial SEE development and thus ensure that DOD software
developers are provided with the latest technology to support the DOD I
"customer--the soldier, sailor, and aviator of the U.S. armed forces.

oI
88 Department of the Navy U

__ I

I
3 Fure Direction

7.5 NEXT GENERATION COMPUTER RESOURCES3ITe Next Generation Computer Resources (NGCR) Program is providing Navy air,
surface, and subsurface tactical systems Program Managers and system developers
with computer hardware and software interface standards that will allow the Navy to,
transition to commercially based open systems designs. Open systems designs will
reduce Navy dependence on the original system suppliers by allowing competition for
procurement and modification/upgrades to Navy mission critical systems.

To achieve program objectives, the NGCR program has established working groups
in critical computer standardization areas including backplane busses, networks,
operating systems, database management systems, graphics, and project support
environments. These working groups are composed of NGCR-funded Navy
personnel with voluntary participation from industry. The task of each group is to
work directiv with national and international standards organizations to infuse Navy
requiremer .:. into the commercial standards. When successful, this allows the Navy
to leverage commercial investments by using the resulting open commercial standards
in its weapons systems. This modular approach to systems design will allow
technology to evolve in a competitive environment and without revolutionary changes3 in the systems architecture.

The NGCR effort is fostering an Open Systems Architecture (OSA) approach to
computer resource acquisition. For OSAs, the internal and external hardware and
software interfaces, services, and protocols are well specified; they have undergone
public review and have been published and widely accepted as standards by
organizations such as the Institute of Electrical and Electronics Engineers (IEEE),
ANSI, and ISO; and they are implemented in vendor products. This approach will
allow the Navy to take advantage of existing and future industrial competition and
innovation on a continuing basis, which will dramatically improve the technical and
operational performance of DON computer-based systems.

SThe NGCR Program is pursuing standards in the following areas (note that the dates
provided indicate the planned availability of the completed standards):

I * Local Area Network (LAN)-Survivable Adaptable Fiber-optic Embedded

Network (SAFENET)*, October 1992

5 * Backplane (BP)*-FUTUREBUS+, June 1993

* Operating System Interface-POSIX, December 1995

0 High Performance Network, September 1996

I
-- Ada Implementation Guide 89

I

I

9 Hig-speed Data Transfer Network, September 1996

* DBMS Interface, September 1998 3
* Graphics Language Interface, September 1998

"* High Performance Backplane (HPBP), TBD

" PSE, suspended. I
Of the nine areas, only the BP and the LANs (ie, items marked with an asterisk)
will be actually prototyped and conformance tested as part of the NGCR program.
A formal conformance tsting capability will be established within DON and will be
available for acquisition managers by 1995. The program is encouraging industry toa3
undertake initiatives in this area so as to tasition all testing away from the Navy.

7.5.1 Project Support Environment Standards Working Group 3
Consistent with the objectives of the overall NGCR program, the goal of the Project
Support Environment Standards Working Group (PSESWG) is to establish DON
standards for PSE interfaces that will enhance the DON's ability to acquire PSEs I
quickly and cost-effectively. Also consistent with the NGCR program guidance, the
PSESWG is a joint team composed of members from DON, other Government 3
orgnizations, industry, and academia.

PSE interfaces selected for standardization will include data interchange formats and
interfaces to the user, a DBMS, life-cycle process management, and a network.
Because the objective is to standardize interfaces based on industry standards, the
PSESWG work will not select particular tools or products. The group is pursuing the
adoption of interfaces with Ada language bindings as well as those for other
lanuag~es, such as C.

The PSESWG coordinates with several other important groups in the environments i
community, including SEI, STARS, and NIST, in addition to the other military
Services. This coordination is expected to yield the maximum benefit and reduce
duplication of effort. Because of the wide range of interfaces to be considered for
standardization by PSESWG, the standards are expected to emerge incrementally,
perhaps as early as 1994. Although the original plans called for contimng the work
until approximately 1998, the NGCR funding situation will not allow the work to
continue beyond FY93. The products of the PSESWG to date, most notably the
Next Generation Computer Resources (NGCR) Reference Model for Project 3
Support Environments, Version 2.0, 2 September 1993, will continue to be available
as the basis for launching future work.

O0 ofputno the Navy

I

I
I Future Dkvcdoim

7.S.2 Operating Systems Standards Working GroupI The Navy's NGCR program and NASA have selected the POSIX IEEE 1003
standard as the nonproprietary operating system interface standard. The NGCR
Operating Systems Standards Working Group (OSSWG) is participating in the IEEE
POSIX group to influence the standards so that they will support Navy requirements.
POSIX areas of standardization of particular interest to the NGCR program include
real-time extensions, Ada bindings, security extensions, and distributed computing
standardization features.

7.6 NORTH AMERICAN PORTABLE COMMON TOOL ENVIRONMENT
i INITIATIVE

The North American Portable Common Tool Environment Initiative (NAPI), a joint
technical initiative among Government, industry, and academia, was created to
provide a forum to represent North American interests in PCTE and to foster the
establishment of a market for the growth of PCTE tools and environments.

I 7.6.1 Background
During the past decade, the software development community has become
increasingly aware of the need for integrated tools that share data and systems that
allow tools to interoperate. The full power of CASE tools can only be realized when
these tools are integrated into a common, distributed SEE. Such an environment will
consist of a framework of common operations that provide basic integration facilities
based upon-an open common repository with additional support for communication,
user interface, and process support functionality.

An integrated environment will provide a platform to facilitate addition of new tools
to improve user productivity and software quality. It will benefit both tool developers
and users. From the tool developer's perspective, a single set of integration
standards will enable development of lower-cost and higher-quality products across
multiple hardware platforms. From the user's point of view, the existence of
standards will mean that the same type of products will be available from several
sources, which will give the user a broader selection and, because of vendor
competition, possibly reduce acquisition and maintenance costs. Such interfaces
should support the needs of both the defense and non-defense communities.

Among the candidates suggested for such a data interface have been the Common
Ada Programming Support Environment (Ada PSE) Interface Set (CAIS-A),
developed under the sponsorship of the AJPO (MIL.STD-1838A); A Tool Integration
Standard (ATIS), currently under consideration by ANSI working group X3H6; and
the PCTE, developed under the aegis of ECMA (ECMA-149). Each of these
provides a set of basic services for other software tools, and each of these sets of
services (in different ways) supplies some of the capabilities of a "framework."

Ada Implementation Guide 91

S
Fugure DNvor 3

74.2 Focus on PCTE
NAPI will focus on PCT as a baseline standard because PCTE is now the leading
internationally recognized interface standard that appears to meet a reasonable set I
of framework repository requirements. PCTE does not currently provide all of the
functionality that the software development community needs; however, it can evolve
toward the needed functionality and NAPI can influence PCTE's evolution in an
open process. ECMA and its Technical Committee 33 (TC33) own the standard;
however, ECMA is planning to submit it to the Joint Technical Committee 1 (JTC1)
in mid-1993 for adoption as an ISO standard. ECMA's ownership, and eventually
ISO's ownership, of the standard means that this is a publicly available,
nonproprietary standard. 1
Although no commercial implementations of the full standard exist, Emeraude,
Verilog, and Heuristix Systems have implemented a forerunner of the standard
(PCTE 1.5). These companies, as well as IBM, Digital Equipment Corporation, ISSI,
and EDS Scion, have announced they are implementing the full standard, but no
company has provided a firm product release date.

Because PCTE is a technology of considerable importance to both government and
industry in North America, NIST, DOD, and the Object Management Group (OMG) 3
have jointly proposed the creation of NAPI with U.S. industry taking a leading role.
NAPI will provide a forum for North American interest in PCIE, and give North
America a voice to express opinions to TC33, ECMA, and ISO on the future
development, evolution, and adoption of the standard and its revisions. NAPrs
ultimate goal is a good interface for ISEE technology; the baseline NAPI has chosen
to begin working toward this goal is PCTE.

Industry and government in North America will collaborate in NAPI to lormalize
North American interest in PCTE and to work toward the achievement of a widely
used common software tool interface. NAPI will work with other groups that support
PCIZ specifically the North American PCIE Users' Group (NAPUG) and the
PUTE Interface Management Board (PIMB). NAPI will not compete with any
vendors but will provide benefits to tool and repository vendors by stimulating
demand for PCTE-compliant products. 3
7.6.3 Goals for NAPI

NAPI has five primary goals: 3
To promote the use of the PCTE spec$fication as the defin'on of a set of serices
for ISEEs. NAPI will create a forum for discussing PCTE; provide newslettersI
and electronic bulletin boards; and invite framework vendors, tool developers,
and end users to various symposia, workshops, and meetings. These activities

92 Departnmet of the Navy

I

Fiure Dreueors

will inform the North Americ:- market about the use, implementation, and
evolution of PCrE and the -=nefits of using or developing PCTE-based
products.

To provide a recognized forum in North America for the maintenance and
evolution of the PCTE standar4 with the goal of becoming the United States
Technical Advisory Group (USTAG) for PCTE. This forum will develop goals
for modifying or extending PCrE and will examine ways to develop PCTE to
achieve those goals by working with TC33, PIMB, ISO, and other organizations.
Such extensions would include support for fine-grained data, trusted systems,
and object-oriented methods. NAPI will also include discussions of ISO
standardization with members of ECMA and will support adoption of PCTE
as a standard in the United States.

e To liaise with other organizations to encourage the development of additional
framework services required or useful for SEEs compatible with PCTE. An
integrated SEE will need additional framework services beyond those ECMA-
149 currently specifies in PCTE. Incorporating additional services or modifying
PCTE to ensure compatibility and efficient execution with such interfaces or
standards is a goal of NAPI members. Possible candidate services for inclusion
into an integrated SEE framework are as follows:

Services for communication, such as OMG's Common Object Request
Broker Architecture (CORBA) or Hewlett-Packard's (HP's) Broadcast
Message Server (BMS)

- Additional data services such as those provided by ATIS or X3H4
(Information Resource Directory System [IRDS])

- Services for Graphical User Interfaces (GUIs) such as the Massachusetts

Institute of Technology consortium's XWindow System

- Services for process management activities.

* To encourage development of usefid integration conventions (ie., schemas,
conventions, protocofs) for integated SEEs. Providing a common repository is
not sufficient for tools to share data. The semantics of the shared data must
be agreed to in advance, and common notations and conventions must be
established for sharing such information.

To encourage the development of a market for PCTE tools and environments.
Industry and government commitments to purchase PCTE products will

Ada Implementation Guide 93

S

stimulate investment in the development of such products by demonstrating to
developers that a market exists for PCTE products. 3

To achieve these goals, NAPI will undertake the following tasks in the near term.

"* Encourage all members of the PCrE community to participate in evolving the U
PCTE standard to meet current and future needs of the software development
community. 5

"* Ensure similarity of PCTE implementations by encouraging the development
of a conformance test suite. The proposed model for this process is similar to 3
the POSIX product validation process. After the test suite has been developed,
NAPI, through NIST, could certify various laboratories in North America and
possibly in Europe to perform official testing to certify products as compliant 5
with PCTE. The validation and test suite would be publicly available, however,
for use by vendors and developers in performing their own in-house unofficial
testing.

" Develop clear definitions of the relationship between PCTE and other
framework services. Use of the NIST/ECMA framework r-ierence model I
provides a basis and a consistent notation for describing framework services
such as those provided by PCTE and other related standards. 5

"• Promote the use and analysis of PCTE in universities and research institutions.
Universities are a primary source of programmer expertise in such technology
and for understanding and developing extensions to the standard.

7.6.4 NAPI's Organization
All NAPI contributing participants from government, industry, and academia will be
partners with a shared strategy and a shared set of technical objectives decided by
a consensus process. The strengths each organization brings to the initiative will
shape its role in the initiative.

NAPI will consist of an exccutive committee of active contributors drawn from the
PCeE community and four technical committees. The NAPI membership will
determine the future direction and goals of NAPI; however, NAPI will be interested
in listening to any comments on how PCTE should evolve. 3
The four technical committees and their roles are as follows:

* Technical Committee 1 (TCI) will focus on maintenance and evolution of the
PCTE standard and will examine ways to develop the PC-TE standard to meet

94 Depafmtnt of the Navy

U

Future Ohetlons

the ISEE needs of the soi-ware development community. All interested
members of the PCTE community will be encouraged to contribute to TC1
because standards evolution should be an open, consensus-driven process. TCM
will make recommendations to the steering committee, which will make
recommendations to TC33, ECMA, ISO, and other standards organizations.
These recommendations will represent the North American consensus position
on the direction PCTE should take.

Technical Committee 2 (TC2) will be responsible for development of the
validation and testing technology, including defining the scope of the test suite
and interim goals for production of the test suite and directing work in this
area. The test suite will be publicly available. TC2 will work with DOD and
other government and industry contributors to fashion a test suite suitable for
compliance testing of PCTE. TC2 will also work with the European
Commission's PCTE test suite contractor so that the two test suites will be
complementary. NIST will establish the mechanisms for joint development of
the validation and test suite and will use the development of the POSIX test
suite as a model. Technical contributions, such as PCTE vendor's in-house
testing technology, could be made available to NAPI under Cooperative
Research and Development Agreements (CRADAs) with NIST. These
agreements would protect vendor ownership unless that code became part of
the adopted validation and test suite, at which time vendors would have to give
up such ownership.

" Technical Committee 3 (TC3) will promote the use and analysis of PCrE in
universities. As a means of achieving its goals of promoting and evolving
PCTE, NAPI supports the acquisition and analysis of PCTE by universities.
The active use of PCE at universities means that more students will get
experience with PC'E, and more research in extending the standard will occur.

"* Technical Committee 4 (TC4) will develop clear definitions of !he relationship
between PCTE and other SEE framework services to promote better
integration among SEE products. TC4 will provide a forum for those
interested in discussing integration issues and recommending interfaces
between PCTE and other SEE products.

The first two committees are the initial NAPI technical committees. The second two
are proposed additional committees to address other NAPI goals. All of NAPI's
major activities will be joint undertakings by government, industry, and academia.
One major role for the U.S. Federal Government will be to provide core funding,
and a major role for industry will be to provide technical expertise. Therefore, no

Ad& Implementation Guide 95

S
Fut,. firedons 3

NAPI-sponsored projects will be "government-only" projects, nor will they be
proprietary and commercial. 3
7. , Benefits of the Initiative
The initiative will benefit all potential ISEE developers and users: government
agencies, vendors of software environment frameworks, tool developers, and tool
users.

The U.S. Federal Government, a major user of tools and environments, benefits from I
the adoption of ISEE technology, and PCTE in particular, through the productivity
gaied by greater interoperability of tools and services. NAPI furthers these U
objectives by providing a forum for government agencies and other customers to
discuss their needs in the evolution of the standard. A validation and testing
mechanism will also assure PCTE buyers that they are obtaining a version of PCTE 5
that complies with the specifications. Validating PCFE implementations is important
to agencies that expect to acquire an accurate version of PCIE and have stated
procurement goals of obtaining PCTE. 5
For framework vendors who are implementing PCTE, NAPI has strategic benefits.
It provides a legal umbrella for exchange of technical information. Framework 3
vendors can discuss the technical problems of extending PCrE and validating the
technology and can hear what customers are looking for in PCTE products. g
NAPI will enable framework vendors who are not implementing PCTE to keep
informed about PC1E and discuss compatibility issues. Other framework vendors
need to know what Pa'E's strengths are and how PCTE compares to and interfaces U
with other SEE products.

Participation in NAPI will allow tool developers to discuss issues in ISEE technology I
and open systems and the way PCIE and other standard services should evolve to
address those issues. 3
NAPI's use of PCTE as a baseline for ISEE technology and the U.S. Federal
Government's support for PCTE products will encourage developers to create more
PCTE-compliant products. This encouragement will increase competition. Several
U.S. Government organizations have already announced that they intend to support
PCTE. For example, the DOD's RFP for I-CASE requires that the final version of
I-CASE be PCTE compliant. As PCTE evolves, the number of mandates for the use
of PCTE in U.S. Federal Government procurements will increase.

9
Ws Dgpasmrntn of the Navy

U

Futwe DrcUions

7.7 PORTABLE COMMO .:NTERIFACE SET
The PCIS Program is a North..tlantic Treaty Organization (NATO) effort sponsored
by the Special Working Group on Ada Programming Support Environments (SWG
on Ada PSEs). This program will define framework-level services for an ISEE.
'These framework services will be based on requirements identified in the
International Requirements and Design Criteria (IRAC) document, and they will
reflect the ECMA/NIST SEE Frameworks Reference Model. Services in the
following areas will be considered:

"* Object management
"* Process management
"* Communication
"* User interface services.

The PCIS framework interface will be based on the ECMA PCTE to which a
standard Ada binding exists as ECMA Standard 162. The PCIS Program will
develop the framework services in the French Entreprise II environment. Plans are
to complete the PCIS framework interface definition by the end of 1993. A
prototype and Ada PSE demonstrator are planned for early 1994. Production quality
environments based on PCIS are expected by the end of 1995.

7.8 SOFIWARE ENGINEERING INSTITUTE
The SEI is a federally funded research and development center sponsored by DOD
through the Advanced Research Projects Agency (ARPA) (formerly DARPA). The
Air Force Systems Command (Electronic Systems Division) awarded the SEI contract
to Carnegie-Mellon University (CMU) in December 1984. In December 1989, the
contract was renewed for another 5 years.

The SEI mission is to provide leadership in advancing the state of the practice of
software engineering and to improve the quality of systems that depend on software.
The SEI expects to accomplish its mission by promoting the evolution of software
engineering from an ad hoc, labor-intensive activity, to a discipline that is well
managed and supported by technology. The SEI carries out its mission by offering
products and services that help SEI customers to improve the quality of their
software, as described below.

7.8.1 Software Development Process
The SEI concentrates on improving the software development process. In projects
related to process, SEI is assessing the actual practice of software engineering in the
defense community, is training organizations to gain management control over their
software development processes, and is supporting the use of quantitative methods

Ada Implementation Guide 97

I
Futur Directions

for software process management. Included in this focus area are the following
projects: 3

" The Software Process Measurement Project advocates the use of measurement
in managing, acquiring, and supporting software systems. The project is
formulating reliable measures of the software development process and I
products to guide and evaluate development. To expedite DOD and industry
transition, the project is actively working with professionals from Government,industry, and academia to encourage organizations to use quantitative methods I
to improve their software processes.

" The objectives of the Software Process Definition (SPD) Project are to I
establish as standard software engineering practice the use of defined processes
for the management and development of software and to advance the
capabilities required to define the software process within an organization.
The SPD Project supports process improvement through the development andmaturation of methods and technology that support process definition. I

" The Capability Maturity Model (CMM) Project maintains a model describing
how organizations can improve their software process maturity. This model
will be continuously updated as the state of the art evolves in areas such as
software engineering and Total Quality Management (TOM). It will elaborate
on software development practices that provide dear strategies for capability I
maturity growth and improvement.

* The Empirical Methods Project develops, evaluates, and validates products
(e.g., questionnaires and tests, methods and models) for use in baselining and
measuring software process improvement. 3

* The Software Process Assessment (SPA) Project helps organizations improve
their software development process by providing a structured method for
assessing their current practice. It also is continuously improving the I
assessment method and ensuring that it focuses on organizational process
improvement. The objectives of the assessment method are to identify key
areas for improvement, using the SEI process maturity model as a framework, I
and to help the organization initiate those improvements.

0 The Software Capability Evaluation (SCE) Project helps DOD acquisition I
organizations evaluate the capability of contractors to develop and maintain
software competently. The project is improving and implementing anevaluation method that examines the software process of contractors for use Iin software-intensive acquisitions.

96 Department of the Navy

I

I
3 Future Directions

7.8.2 Software Risk Management
The SEI is exploring existing techniques and developing methods for managing risk,
assessing practice, preparing organizations to manage risk, and conducting prototype
risk assessment methods. To achieve its goals and objectives, the SEI must provide
not only the mechanisms for managing risk but also a process that can be
implemented within a project and organization to facilitate the communication of risk
issues. Communicating risk underlies the strategy of addressing risk throughout the
acquisition process and strengthening the relationship between Government and
industry. The risk focus area was reorganized in July 1992 into the following three5 projects to emphasize its customer relationships:

The Government Risk Management Project is the primary interface between
Government customers with respect to risk management, and it establishes
collaborative partnerships for developing risk management methods. Project
staff develop and conduct interviews, risk assessments, risk assessment training,
and risk profiles. Risk management methods are improved through active field
work with Government and industry defense programs. The project is
developing methods with primary framework of the acquisition life cycle. The
project will develop methods to facilitate and strengthen risk communication
through a rational, visible structure for identifying and analyzing risk. This
project is concerned with creating viable methods for communicating risks
internally within programs, which includes the communication of risk between
the Government and the contractor and externally to higher levels of
management.

The goal of the Indmtrial Risk Management Project is to develop, demonstrate
and transition risk management processes and techniques to an industrial client
base. The project intends to fulfill its mission by working with industry
partners to demonstrate methods of risk identification-the first step in risk
management-and then to develop the succeeding risk management steps with
a small number of strategic industry partners who are likely to be successful in
transitioning software risk management into wide use on their projects.

3 • The Risk Taxonomy Project is refining the taxonomy-based questionnaire so that
it can help identify software technical risk and can be easily used by
development organizations. The strategy of the Taxonomy Project is to derive
a software risk taxonomy by analyzing risk assessment data and other related
literature, field test the taxonomy-based questionnaire, and modify the
questionnaire based upon field test data. The Risk Taxonomy Project also is

II developing analytical methods to qualify the risks identified by the
taxonomy-based questionnaire.

I
i ~Ada Implementation Guide 9

I

I
Future Drctions 3

7.83 Real-lime Distributed Systems
The goal of improving the development of real-time distributed systems is achieved
by integrating software engineering with systems engineering and reducing the risk I
associated with new technology. Projects in this focus area include the following:

"The Rate Monotonic Analysis (RMA) for Real-Time Systems Project aims to U
ensure that RMA and scheduling algorithms become part of the standard
practice for designing, building, troubleshooting, and maintaining real-time
systems. RMA helps engineers understand and predict the timing behavior of
hard real-time systems to a degree not previously possible.

" The Real-Tnme Embedded Systems Testbed Project collects, classifies, generates, I
and disseminates information about Ada performance in hard real-time
embedded systems. 3

" The goals of the Real-Tmne Simulators Project are to extend, validate, and
document flight simulator and other real-time simulator architectures in a form 3
accessible to practitioners and acquisition personnel and to understand and
codify the relationship between nonfunctional quality goals and simulator
software architectures. 3

"* The Fault Tolerance Project is investigating the use of fault tolerance in the
design and implementation of dependable critical systems. I

" The Transition Models Project is developing a set of methods and supporting
materials such as guidelines and checklists for planning, implementing, and I
assessing transition activities. These materials will be used by software
technology producers and consumers both inside and outside the SEI. Project
members also provide other SEI staff, including management, with education I
and training on .echnology transition concepts and approaches. Additionally,
project members provide limited consulting on software technology transition
to members of the SEI constituencies, and maintain contact with researchers I
and others interested in technology transition from business and academic
domains. 3

"* The objective of the Zero-Defect Application Kernel Project is to develop and
transition software fault tolerance methodology for real-time mission-critical
systems. Project members are generalizing the rate monotonic scheduling
theory and developing software fault tolerance methods using redundancy. The
project will combine them into a unified software engineering framework for 3
practitioners who must meet both real-time and fault tolerance requirements.

1
100 Department of the Navy U

I

I
Future DOectlvor

7.8.4 Software Engineer!ng Techniques
I SEI activities related to software engineering techniques aim to increase the use of

engineering knowledge for effective and efficient production of large
software-intensive systems through a model-based software engineering approach and
engineered project support environments. The projects in this area have been
integrated around a common technical vision and strategy:

* The CASE Technology Project and the Software Architectures Engineering (SAE)
Project were consolidated into the CASE Environments Project to address
issues of engineering of environments.

* The Domain Ana/ysis and the SAE Projects were consolidated into the
Application of Software Models Project to address the systematic creation and
application of models in application engineering.

* The Advanced Video Technology for Imaging Project, the Requirements
Engineering Project, and the Software Architecture Design Principles Project were
consolidated into the Software Engineering Informatiov Modeling Project to
address issues of capturing, representing, and making ;cessible increasingamounts of engineering information ranging from requirements to engineering
knowledge typically found in handbooks.

I 7.8.S Special Projects
The SEI is also involved in special projects. For example, the Process Research
Project investigates the factors that limit software development performance by
conducting research on the use of software process principles by individuals and small
teams. This research is seeking insight into the processes, tools, and methods that
will be most helpful in improving the performance of software engineering
professionals.

3 7.8.6 SEI Products
With the goal of helping end users help themselves, the SEI Products group works
with other groups in the SEO to develop an integrated set of products and services
for managers, practitioners, and educators. SEO Products ensures that the results of
SEO work are in a form the software community can easily and effectively use to
improve software practice and educators can use to improve software engineering.
SEI Products has the following projects:

i The Academic Education Project focuses on the long-term development of a
highly qualified work force. The project promotes and accelerates the
development of software engineering as an academic discipline. The project3I is developing model curricula and promoting the establishment and growth of

Ada Implemefttion Guide 101

I

I
Futrs DMesMone

software engineering programs, as well as working to increase the amount of
software engineering content in computer science programs. The project
produces educational materials that support the teaching of software I
engineering in universities.

" The Continuing Education Project interacts with industry and Government to I
increase the availability of high-quality educational opportunities for software
practitioners and executives. The project produces the Continuing Education 5
Series and the Technology Series. The Continuing Education Series provides
video-based courses designed for clients' in-house education, and execu
offerings designed for decision makers involved in improvement efforts. -Technology Series provides stand-alone presentations that promote awarenessof emerging issues and leading-edge technologies.

" CMU offers a Master's in Software Engineering (MSE) Project, a 16-month I
master's degree program in software engineering in response to industry's
growing demand for skilled software developers. The program is a cooperative
effort of the CMU School of Computer Science and the SEI. The core of the
program is based on the SEI curriculum recommendations for MSE programs.
The MSE Project also produces the Academic Series, a set of video-based 3
graduate-level courses on software engineering.

7.8.7 SEI Services 3
SEI Services works with other groups in the SEI to develop, deliver, and transition
services that support the efforts of SEI clients to improve their ability to define,
develop, maintain, and operate software-intensive systems. To accelerate the
widespread adoption of effective software practices, SEI Services works with client
organizations that are influential leaders in the software community, promotes the
development of infrastructures that support the adoption of improved practices, and
transitions capabilities to Government and commercial associates for use with their
client organizations. SEI Services is composed of the following groups and functions: i

* The Computer Emeigency Response Team (CERT) was formed by ARPA in
November 1988 in response to the needs exhibited during the Internet worm
incident. The CERT charter is to work with the Internet community to I
facilitate its response to computer security events involving Internet hosts, to
take proactive steps to raise the community's awareness of computer security
issues, and to conduct research targeted at improving the security of existing I
systems.

A The Improvement Planning and Organizi& (IPO) Function focuses its activities I
on SEI clients who seek long-term support for their software process

I102 D~eparlment of the Navy

I

U
5 Future Directons

improvement efforts. IPO was formed to address needs for integrated software
I process improvement programs. These include understanding the principles of

how to effectively launch and sustain continuous software process improvement
and integrating assessments, organizational dynamics, the maturity model,
process definitions, and improvement metrics into a plan. IPO members
provide support in planning and organizing continuous software process
improvement programs. They do this by using business and case histories in

I software process improvement to illustrate benefits achieved, by promoting and
launching software process improvement programs, and by coordinating a
client's activities with the work of different SEI projects.

"The Organization Capability Development Function supports clients' software
process improvement efforts by helping the client organizations develop the
capability to manage the organizational aspects of improvement at their sites.
Services include organizational assessment, vision setting and dissemination,
strategic planning, transition infrastructure development, executive consulting,
cross-functional team development, and management of technological change,
and provision of consultation for software engineering process groups. The
goal of the function is to provide to clients the self-sustaining capability of
managing their own long-term improvement.

"" The strategy of the Technical Assistance Project is to define, develop, and
implement a structured technology-transition process that will establish the
requisite technology-transition capabilities. This process will enable software
technology to be disseminated broadly. Applying a structured transition
approach will accelerate the transition and adoption of improved software
engineering practices and technology.

I 7.9 SOFTWARE EXECUTIVE OFFICIAL COUNCIL
The DON Software Executive Official Council (SEOC) will serve as an advisory
committee that focuses on software-related technology and policy issues. The council
will address software issues that affect AIS, C31 systems, and embedded weapon
system software. The council will meet quarterly with Flag and Senior Executive
Service (SES)-level representatives from the Chief of Naval Operations (CNO),
Commandant of the Marine Corps (CMC), major DON Systems Commands
(SYSCOMs), Program Executive Offices (PEOs), and Navy research centers and3 laboratories.

7.10 SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
STARS is a technology development, integration, and transition program to
demonstrate a process-driven, domain-specific, reuse-based approach to software

I !Ads Implementation Guide 103

I

U
Future DbUNMn 3

engineering (also known as megaprogramming) supported by appropriate tools and
environment technology. 3
The goal of the STARS program is to increase software productivity, reliability, and
quality by synergistically integrating support for modem software developmentprocesses and modem reuse concepts into the latest SEE technology. To meet that Igoal, STARS has set the following objectives for the 1992-95 time frame.

"* Software Reuse. Establish the basis for a paradigm shift to reuse-based Idevelopment
"d Propemes. Establish capabilities for tailoring process definition and U

management

" Envronments. Establish adaptable, commercially viable SEE solutions that are
available on multiple vendors' platforms, are built upon open architecture
industry standards, and include automated support for process management and
software reuse

"* Demonsration and Vaidation. Demonstrate that the STARS integrated reuse, I
process, and SEE solutions can be used in actual practice to increase the
quality and life-cycle supportability of DOD software products •

"* Technology Transition. Sponsor activities and disseminate information that will
speed up transition of STARS technologies to practical use. 3

STARS technical development addresses new areas. Therefore, STARS program
management selected three prime contractors-Boeing, IBM, and Paramax-to
reduce risk and accelerate acceptance of changing technology. Combining the efforts I
of three prime contractors will enable cooperative work to be accomplished from a
very broad experience base. Furthermore, use of multiple prime contractors and
their subcontractors will help accelerate the shift to megaprogramming in other I
companies.

7.10.1 Reuse I
STARS is working to establish a basis for a paradigm shift to reuse-based
development. As pan of the activities, technical, management, cultural, and 3
acquisition-related issues are being considered with the goal of reducing the adoption
risks in tranitioning to reuse-based software engineering STARS reuse activities
include establishing a framework for reuse processes, providing automated support
for key processes, and experimenting in the definition and prototyping of reuse
library open architectures. The STARS reuse approach focuses on an iterative model

104 Depsitment of the Navy

U

I
Future Dvctldon

that addresses technology evolution and cultural issues with a trial-usage and3 feedback loop. STARS technology transition affiliates provide feedback that is
incorporated into the concept, processes, guidelines, and automated tools. The
planned reuse results include reuse-transition support guidelines; a reuse-based3 concepts document; modular descriptions of reuse processes associated with various
user roles; a reuse library open architecture framework; reuse library mechanisms
that support acquisition, classification, browsing, and retrieval; general management
of reusable assets; and additional tools to support the various reuse processes.

7.10.2 Process
STARS will establish capabilities for process definition and management that will
show the value of process concepts, process definition, process tailoring, and process
support in the environment as a vehicle to improve quality, productivity, and
reliability. Process definition and tailoring capabilities will support the SEI CMM.
STARS process technology transition affiliates will provide feedback to improve the3 processes and products.

7.103 Environment
STARS is working with framework providers, tool vendors, and standards
organizations to ensure that commercially viable environment infrastructures
(frameworks) are extensible and robust and conform to open architecture standards.
Framework-based environments serve as integration platforms on which tools,services, and functional capabilities can be integrated to support software
development within the context of megaprogramming.

1 7.10.4 Demonstration
To measure the success of STARS technologies, three demonstration projects have
been selected that will use STARS technologies to develop operational
mission-critical applications in Ada:

* A 200,000 line-of-code subsystem of the Improved Guardrail V system will be
reengineered by an in-house support contractor at the Life-Cycle Support
Center at the Army Communications Electronics Command (CECOM), Ft.3 Monmouth, New Jersey. (Application domain: Electronic Warfare)

* A 200,000 line-of-code subsystem of the Space Warning Mission will be3. reengineered with contractor support at Air Force Space Command
(AFSPACECOM), Colorado Springs, Colorado. (Application domain:
Command and Control)

I
iAda Implementation Guide 105

I

I
Fuire Dbsc•le 5

A 110,000 line-of-code system at the T-34C Flight Instrument Trainer will be
developed at the Navy Training and Simulation Center (NTSC), Orlando,
Florida. (Application domain: Flight Trainers)

The projects will be designed to provide a pragmatic measure of the progress STARS
has made in developing and introducing new software engineering approaches and
to provide realistic and useful feedback to the technology developers. Advanced
planning is under way, and execution of these projects is scheduled to begin in late
1993.

7.10.5 Technology Transition 3
STARS is developing an overall technology transition strategy that identifies specific
activities to foster the transition of the STARS concept and technologies to practical
use. Technology partnerships have been formed with potential customers and
su-.Dliers of STARS technologies using the STARS Technology Transition and Prime

ites Program as well as relationships between the STARS prime contractors and
their commercial counterparts. General information about STARS concepts and
technologies is disseminated through newsletters, participation in selected software
conferences, electronic bulletin boards, and the annual STARS conference.

7.11 TAC-4 AND TAC-S PROCUREMENTS
The Secretary of the Navy, the Office of the Secretary of Defense (OSD), and the
General Services Administration (GSA) have approved the TAC-4 contract to
procure the latest high-performance, open systems-compliant (insofar as current
standards allow) computers in support of tactical, strategic, business, and
administrative functions. The contract is a 3-year indefinite delivery, indefinite
quantity, fixed-price ordering contract that provides for 3 additional option years formaintenance. 3
TAC-4 is managed by the Naval Command, Control, and Ocean Surveillance Center
(NCCOSC) in San Diego. Designed for Navy afloat applications, TAC-4 is also
available to other DOD components, other U.S. Government agencies, and foreign I
nations aligned with the United States. The Army, Air Force, Coast Guard, and
Marine Corps have already presented their requirements in connection with the
TAC-4 contract.

TAC-4 provides a suite of equipment that is binary compatible and required to
interface downward with equipment provided by the previous TAC-3 contract. Both
ruggedized suites (i.e., standard 19-inch, rack-mounted, environmentally hardened),
and purely commercial suites will be offered. The TAC-4 contract provides 3

I

I

Fiur Dirget•ns

performance incentives for the high-end equipment. The TAC-4 will be procured
with an Ada capability. The requirement is based on the stated current and near-
term needs of the user.

The TAC-4 solicitation is a prime example of the DON's riding the price and
performance curve on hardware, achieving a common operating environment,
extending it beyond command and control to other forms of communications and
nontactical applications, and loing what the strategy of buying off the shelf is
intended to do.

The TAC-5 contract is scheduled to follow approximately 24 months after the TAC-4
award (i.e., in May 1996). The purpose of the rapid turnaround is to ensure that the
Navy maintains currency with evolving technology and benefits from the attendant
reductions of cost per unit of performance.

7.12 PLANS
Currently, several DOD planning initiatives relating to Ada and Ada-related
technologies are in process. The subsections below provide synopses of these
activities.

7.12.1 Software Action Plan
The Acting Director of Defense Research and Engineering (DDR&E) established
the Software Action Plan Working Group (SWAP-WG) in June 1991 to specify and
implement !. . . an integrated technology and management plan to ensure more
cost- effective support of weapons systems and related test equipment systems within
DDR&E's purview." The SWAP-WG directly supports the SEOC, which is chairedby the DDR&E.

To accomplish its mission, the SWAP-WG has addressed high-leverage software
management and technology issues to support four basic goals:

* Assist the DOD in establishing a proactive acquisition and life-cycle
management process

* Identify and act upon opportunities for improving DOD software policies,
standards, and guidance

* Identify opportunities to strengthen the capabilities of the DOD software work
force

Ads ImplemnWtiaton Guide 107

U
Futws Dkclo

* Support and capitalize on current software technology programs and promote
the integration of the resultant products into other SWAP-WG- and 3
DOD-SEOC-sponsored efforts.

Specific efforts in which the SWAP-WG has thus far provided funding and/or
technical support to help achieve those goals include the following: I

"* Software process improvement
"* Assessment of the maturity or capability of software acquisition organizations
"* Software risk assessment
"• Core set of software metrics
"* Software reengineering
"* High-level language policy
"* Software life-cycle standards
"* Software cost reporting standards
"• Standards-based architectures for weapon system software
"* Software engineering environment standards
"* Software education for DOD senior executives
"* Enhancements to the software personnel base
"* Enhancements to the DOD software technology base.

The SWAP-WG has been successful in leveraging the expertise of its membership
and the limited resources available to it and has served as an effective mechanism I
for addressing numerous DOD software-related issues. DDR&E's and SEOC's
continued support of the SWAP-WG's efforts will enable the entire Department to
reap additional benefits in addressing the many managerial and technical challenges I
presented by DOD's increased reliance on software.

7.12.2 Draft DOD Software Technology Strategy Document I
In December 1991, a Draft DOD Software Technology Strategy Document was
completed and distributed for public review and comment. This document justified
a coordinated set of DOD software science and technology actions and investments
that would meet DOD needs for improved software functionality and that would
bring future DOD software costs under control. It identified the following two levels
of software technology investments:

"* A current program that could be implemented within currently programmed
budget levels

"* An achievable program that focuses on more cost-effective levels of software
technology that could be realized with higher levels of funding.

I
106 Departmntn of the Navy

I

Future Ohiretn

The document covers a 7;-year period oi DOD software technology investments
between FY92 and FY0 provides more detail for the first 5 years.

The Draft DOD Software Technology Strategy Document was used as the baseline
for a new DOD Software Technology Initiative (MT) program that will begin in
FY94. The STI program represents a focused and integrated initiative to accomplish
the following:

* Provide significant and timely boosts to DOD thrust areas through
experimental use of software technologies on advanced technology
demonstrations

* Provide support for new and existing systems by addressing current voids in the
DOD software science and technology program.

The military departments and ARPA will plan and execute the STI program. The
DDR&E retains approval authority for the plan and its subsequent execution.

7.12.3 DON Reuse Implementation Plan and Guide
The DOD estimates that expenditures for developing and maintaining software for
its weapons, command and control, and other automated information systems
currently exceed $24 billion a year. In an attempt to better manage these costs and
improve its-ability to develop and maintain high-quality software, DOD has initiated
a comprehensive effort to incorporate software reuse practices into its software
development efforts.

DON has developed the Draft DON Software Reuse Implementation Plan to
establish a reuse infrastructure in the DON. This plan will establish systematic and
structured software reuse as an integral part of the DON software-systems
development and acquisition process. DON believes systematic and structured reuse
can help decrease the cost of software acquisition and development. In addition, the
DON believes that an effective reuse infrastructure will improve software reliability,
productivity, portability, and interoperability.

Planned initiatives include the following:

"* Establish DON-wide reuse policies, standards, and guidance.

"• Establish a Reuse Manager under the CNO to provide oversight on the DON
reuse initiative.

Ad& Implementation Guide 109

I
Future Dkiedom

"* Establish Domain Managers to manage the domain engineering activity within
each PEO and SYSCOM activity.gt

"* Establish Reuse Coordinators to identify sources within PEOs and SYSCOMs
and to share reusable components.

"* Develop incentive programs to produce long-term cost savings from effective
reuse for all levels of DON, to include PEOs, SYSCOMs, and Direct Reporting
Program Managers (DRPMs).

"• Establish a DON Reuse Executive Council (a function of the DON SEOC) to
develop reuse policies, standards, and guidance.

" Establish an education and training program targeting the DON software reuse U
concepts for senior executives.

"* Establish a Domain Analysis Pilot Project under the CNO to use as a basis to
build a DON reuse infrastructure.

7.12.4 DON Information Management Strategic Plan 3
Pursuant to Defense Management Review Decision (DMRD) 918, the DON is
turning most Navy and Marine Corps Central Design Activities (CDAs) and Data
Processing Installations (DPIs) over to the Defense Information Systems Agency I
(DISA) for management. In the future, DON will be receiving software development
and operations support from DISA on a cost-reimbursable, fee-for-service basis. To
accommodate this change and to focus increased attention on the information I
management functions that remain with DON, the Naval Information Systems
Management Center (NISMC) has initiated DON-wide strategic planning for
information and computer resources. Emphasis over the next year will be on the
following.-

" Developing a common naval shipboard hardware and software architecture forI
Navy and Marine Corps afloat and amphibious tactical support and combat
service support functions. This architecture for the Naval Tactical Combat
Support System (NTCSS) will permit integration of tactical and tactical-support
of the Naval Expeditionary Forces under the new naval maritime strategy.

"* Developing Service-level agreements for support to DON activities from I
DISA-managed CDAs and DPIs and institutionalizing unit costing and a
fee-for-service structure. DON expects to generate new cost savings by taldng
advantage of lower rate structures generated through economies of scale.

1
110 Deputlnwnt of the Navy

I

Future Divetions

" Improving base-level computing and communications support capabilities by
migrating from the current heterogeneous sole-source environment toward a
clie- -server architecture that is open-systems compliant, most cost-effective,
anc --ss personnel intensive. Standard acquisition vehicles will be used,
es- .Jally ongoing DISA Indefinite Quantity contracts and Basic Ordering
Agi•ements.

"* Optimizing the Return On Investment (ROI) for all DON information
technology expenditures by putting into place the FPI management process
initiated by OSD under CIM and institutionalizing the requirement for
Functional Economic Analysis as justification for information technology
acquisitions.

"* Making DON information practices more effective by continuing or initiating
the following management improvements:

- Participating actively in DOD data element standardization efforts

- Focusing life-cycle management attention on economic issues (e.g., ROI
and real cost savings) and bringing the expertise of the Naval Center for
Cost Analysis (NCA) to bear at key decision points

- Developing a standard software engineering environment through a
combination of initiatives such as the following:

I-CASE Pilot Program
Ada Implementation Guide
STARS/ARPA Demonstration Project
Reuse Implementation Plan and Guide
DON SEOC
Multilevel Information Security

- Developing a standard DON information technology technical architecture
in conformance with the Defense Information Infrastructure Technical
Architecture For Information Management (TAFIM).

7.12.5 Software Process Improvement Plan
The SPI Plan is based on the SErs CMM, which is a five-level framework of key
process areas. This framework characterizes the maturity that organizations use to
establish or improve their software processes. It is assumed that the maturity level
of development and maintenance organizations directly correlates to their
development capabilities. DON's goal is to develop a program where all software

Ads Implementation Guide i11

I
Future DWeions 3

development and maintenance organizations undertake self-improvement programs
to raise their maturity levels. Initiatives include the following: 3

"* Develop a DON-wide SPI implementation plan.

"* Develop a training program to educate or enhance management understanding I
of the effects of software on acquisition, development, and post-deployment
software support strategies. 3

"* Enhance the Software Process Advisory Group to help institutionalize
continuous process improvement through the sharing of lessons learned. 3

The SPI Implementation Plan calls for the use of an SCE as part of the source
selection process for all new programs started in FY94 through FY96.

The Director of Defense Information, as part of an Information Technology Policy
Board (1`PB) initiative, requested volunteers from the Services to participate in an 3
SPA. The Navy Fleet Material Support Office (FMSO) and Naval Research and
Development (NRaD), a division of the Naval Command, Control, and Ocean
Surveillance Center, volunteered to participate in this program. The FMSO I
assessment has been completed; the NRaD assessments began in August 1993.

The most important benefit FMSO gained from this assessment was the intensified I
focus on the need for formal software process improvement. The assessment
provided the process for formally identifying key areas throughout the organization
that needed improvement and a baseline on which to measure future improvement. I
The resulting action plan will now allow FMSO to rank improvement efforts based
upon need and funding availability. 3
7.13 DON TECHNOLOGY PILOT PROJECTS
The DON is involved in several pilot projects that will implement many of the
software engineering principles and Ada features discussed in this guide in real-world
situations. The sections below briefly describe these projects.

7.13.1 Integrated Computer-Aided Software Engineering Pilot Project
The I-CASE procurement, as discussed in Section 7.4, is a major DOD initiative, led
by the Air Force, to procure an Ada-based integrated computer engineering 3
environment and associated services, something software developers in DOD have
been lacking for a long time.

I
112 Department of the Navy

I

I

"Th'ý, Director of Defense Information requested nominations for pilot projects from
m" Services, and four of the nominat.J DON pilot projects were selected. These

"ijects, which will begin immediately after contract award, are as follows:

3I* Marine Air/Ground Task Force Logtics Automated Infomuation System. TIis
mid-size pilot project proposes to conduct both reengineering and reverse
engineering actions on the seven systems that support mobilization and
deployment of various Fleet Marine Force Units.

* Communication Support System Standard Communication Environment. This
project addresses the redesign and integration of the configuration control,
status monitoring, and performance monitoring modules of the real-time
communication management requirements for Navy tactical communications,
including satellite and line-of-sight, high-frequency radio systems.

* Navy Tactical Command SystemsAfloat. By using rapid prototyping techniques,
this pilot project will develop an automated reasoning module for analyzing
combat information related to engagement analysis, commander's estimates,
effects on sensors and countermeasures, and decoy diffusion or drift. This
module also will include a decision support system to assist tactical
commanders in effectively using critical elements of information associated with3hard- or soft-kill actions.

* Automation of Procurement and Accounting Data Entry. This project consists
of reverse engineering that uses Ada on one of eight subsystems that support
monitoring and management of the procurement process. This system is
currently in COBOL

IThe successful introduction of I-CASE into DOD in the future will depend greatly
on the outcome of the pilot projects established by the DDI.

7.13.2 Functional Process Improvement
Early in 1992, DON initiated a program to assess, through four pilot projects, the FPI
methodology and management process proposed by OSD for process improvement.
The four pilot projects were:

3 * Intermediate maintenance across the aviation, surface, and submarine
environments in the DON

3 e Pay and personnel data collection in the Personnel/Support Activities and
Personnel Support Detachments

A
SAdm Implementation Guide 113

I

I
Fua.e Dkueelom

"* Funds allocation in the Weapons Division at the Naval Warfare Development
Center

"* Training request processing at Naval Sea Systems Command (NAVSEA)
Human Resources Offices.

Included in the pilots was an assessment of the use of an Integrated System
Definition Language (or IDEF) for process and data modeling. Pilot project 3
managers provided final briefings on 3 March 1993.

The lessons learned from the pilot projects and recommended guidelines for future
Project Managers are being published in a DON FPI Implementation Guide.

7.13.3 SEI Pilots
DON is working closely with SEI to transition SEI's technology into DON projects. I
Some of the following projects are included in this effort:

"* Use of RMA in the software design of the AN/BSY-2, DON's largest Ada
project, which consists of 2.4 million lines of unique Ada code. Other modules
reuse 1.2 million lines of code within the BSY-2.

"* Transition of fault tolerance technology to the Office of Naval Research.

"* Transition of RMA principles in standards for NGCR operating systems and
LANs.

" Transition of a measurement program for improving the software process at the
Naval Air Warfare Center. 3

"* Development of software architectural components for the AN/SSQ-94 trainer.

"* Methods and processes for managing and communicating software risks for I
PEO for Air ASW, Assault, and Special Mission Programs.

"* Transition of visual imaging technology for converting hard-copy Naval SupplyI
Systems Command (NAVSUP) engineering drawings to computer-aided design.

"* Course material development for Space and Naval Warfare Systems Command
(SPAWAR) OSA training.

I
114 Depsitment of the Navy

I

I
PFuture Dhons

7.13.4 STARS Demonstration Pilots3 A Memorandum of Agreement was signed between ARPA and NAVAIR in October
1992 for a joint project to apply the STARS megaprogramming paradigm to the
rehost upgrade of the Navy's T-34C FIT. The development is expected to start in
January 1994 and to be completed in October 1994. Objectives of the project are as
follows:

* To build a real software-intensive product by using a process-driven,
domain-specific, reuse-based, and technology-supported approach
(megaprogramming)

* To measure the benefits of megaprogramming and provide feedback

I * To transition the demonstration organizations to megaprogramming.

This demonstration project is part of a SHOW ME philosophy. If successful, it will
encourage other DON projects to transition to megaprogramming.

I
I
I
I
I
I
I
I
I

IAda Implementation Guide 115

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

116 D.pmImesW of the Navy

I

I
ID

Section 8
Training and Education

I ~ ~This section provides practical information on impeetn an Ada training and
education program. Topics include (1) orgaizaioeal training requiremet, (2) training
and information sources, and (3) lessons learned and ecnommendations.

The successful transition of new technology into an organization is directly related to the3 effectiveness of the training and education program that introduces it. Any education and
training prgam must focus primarily on software engineering and teach Ada in the
context of a tool.

Introducing Ada within an organization demands the developmet of a well-planned
education and training program tailored to the needs of the organization. Risk to a
program is minimized if education and training ae sufficiently funded and adequately
planned.

8.1 ORGANIZATIONAL TRAING REQUIJEM]741
Organizations vary widely in their structure, in the applications they use, and in their
training requiremets, but all orgnizations face similar education and training needs.

8.1.1 Course Content
Training and education are needed in the areas of Ada orientation, programming
language, software engineering, developmnt support envirnments, and project
managmenMt. The following course topics are recommended for each subject area:

5 * Ada Orientation
- History of Ada
- Software anineering principles and the way Ada supports them
- Pros and cons of using Ada
- Unique features of Ada
- Phases of the software system life cycle
- Amount of effort associated with each phase
- Cost associated with each phase3 - Features of Ada targeting software maintenance
- Ada procurement strategies
- Ada as an alternative to other languages
- Object-Oriented Design (001) constructs
- Reuse
- Unique training aspects of Ada3 - Computer-Aided Software Engineering (CASE) tool overview

Ada I1 n tutimn Guide 117

I

I

- Effects an the software life cycle of usingg AdaEsalm
- I M11pt of -of gad management

*Ada Programm!ing Lauqngug
- ntoco Coures I

Softwre engineering c
OOD
Libraries and reueM
Ada backpound
Program units
Packages flrs then xwbproams

I•n • a use of generic units
Sesarme Compilation
Early interm testing I
Types (including access, priva, and limited private types)
Subtypes, declarations, and statements
ExcP.tions and exception handling
Elaboration and execution definition/differences
Daily hands-on and practical workshops
IpWOUtt (110)
Tasking -vrve

- Advanced Courses
Concurrency and the tasking model

Low-= = fut such as paon auses I
Intrbeswith oh agaemdls n aaae

Creation of generic units and planning for reuse
Design and reusabilitya
Daily hands-on and practical workh)ps
Performance profiling

* Software Engineering Using Ada

Sot =engineering concepts3OODI
Ada-specific design co -n-aos (e.g., data typing, structures, exception
handling)u • •~m

- Software standards and douetto equiriementsI
- system dv Feomet lf cycle (e.g., requirements analysis, design,

imp10mentation, testing, maIn) 3
- Designof musble components (generc)

I
118 IDepwtmntl of *1. Nawy

I
I

I
3 Trainkn wuld Edue

- Selection and use of database and file strategies
- Programming-in-the-large issues

0 Ada Development Support nvinment5 - Trmn tailored to secifics of hardware ad um interfce
- Extensive on-line exercises
- mna ge t and configrat control
- Selection and use of tools (e.g., text editors, linkers or loaders)
- Selection and use of compilers and automated tutorials

I * Ada ProjectM -ana eFn t and Cost Etimatig
- Software anengiMn concets
- Software Quality Assurance (QA)I- Configuration management (e.g., performance baselines and changes)
-t of cost, productivity, and risk
- Pg (i.e., rapid versus evolutionary)
- Rmurce allocation (e.g., hardware, staff, training)
- Software sizing
- Portability
- Reuse- Sources of information.

I 8.1.2 Evabti of fEducation and Trhanng
In order for the Department of the Navy (DON) to successfully and cost-effectively3 evolve toward moder software engineering practices using the Ada prramming
language for all computer systems, education and training programs must be well planned
and critically evaluated. The pargmphs below provide guidelines for this task.

I 8.1.2.1 Target Audimce and Environent
Planners should define the target audience and enviromnent for training by evaluating the
categories of personnel and available facilities. Analysis should be conducted to identify
the amount, degree, and level of training required for an individual. Course pirquisites
should be enforced so that instructors do not digress from presentation of Utrgeted

I material to remedy deficiencies. Next, the Avironment should be analyzed in terms of
computer facilities, tools, prqect types, and project deadlines. The facilities and tools
needed for training may be already available, or a procurement lead time may be3 involved. types of projects and their deadlines should be reviewed to ensure planned
training matches workload mequimnts and schedules. Optimally, training should begin
and end immediately before actual project work is scheduled. This type of scheduling
is complex and dependent on many interactive factors. Charting techniques are useful
to dearly show training and project deedencies.

g Ada htpl-mm Js GuId 119

lI

I
Training anw Educaton

8.1.2.2 Tnfn and Course Leugth
The timing of education and training is key. The optimum solution is to have a fully
qualified Ada manager, engineer, or programmer emerge from the training process and I
immediately become par of an active Ada project. The time lag between training
completion and task commencement should be kept to a minimum. If delay between the
two is unavoidable, provision should be made for refreshe training to be available when I
required.

For introductory courses, 3 to 5 class days are needed to teach the basics of the language i
and to introduce the underlying software engineering principles. For advanced classes,
10 to 20 class days are needed to present the material and enable trainees to understand 3
the complexity of the subject matter and become proficient with the language, compilers,
and automated tools. For executive overviews and briefings, 2 to 8 hours are required
to present and discuss the unique attributes and requirements of software engineering
using Ada. At least 5 days should elapse between courses to allow students time to
digest course material.

8.1.2.3 Testing
Courses should provide pretesting, progress testing, and post testing of student
knowledge and expertise. Such tests allow courses to be tailored cost-effectively to the
unique requirements of the students. Pretesting assesses the expertise and background
level of the class as a whole and determines the beginning achievement level of individual
students. It also helps instructors to direct course emphasis i
and identify special instructional requirements. Progress testing provides the instructor
and students with a measurement of progress and mastery of the subject. Post testing
provides an indication of the knowledge and proficiency achieved by the student and of U
the overall course effectiveness. Consistently ineffective courses should be dropped from
the training plan or redesigned. I
8.1.2.4 Location
Depending on the number of students, on-site training is usually more cost-effective than
off-site training. When possible, instructors should be brought to the site, or instructors I
already on-site should be used. This approach reduces travel and per diem costs for
students, reduces time away from the workplace, and provides training in the actual work
environment on installed Ada compilers and automated tools to be used with actual I
project work. As in-house expertise and knowledge increases, in-house staff should be
used to update, improve, and present on-site training and to function as mentors to less i
experienced staff.

1
I

120 Department of the Navy

I

I Training and Education

8,2 TRAINING AND INFORMATION SOURCES
Education and training are available from a wide variety of sources. The subsections
below provide examples of available sources of training. Appendix A, Sections A. 1.2
and A.3.1, presents information on accessing these sources.

8.2.1 Academic Institutlons
Appendix A, Section A.3.1, lists civilian academic institutions that currently teach or use

I Ada.

8.2.2 DOD Organlzatloos and DOD-Sponsored Activities
Ada training and/or information is available from the following Government sources:

* Ada Language System/Navy
* Ada Software Engineering Education and Training TeamI AdaSAGE
* Air Force Institute of Technology
* Common Ada PSE Interface Set (CAIS)Computer Sciences School (Marine Corps)* Computer Science School (Army)

i National Audiovisual Center
* National Defense University
* Naval Post'aduate School
* Software Engineering InstituteI United States Air Force Academy
* United States Air Force Technical Training School
, United States Army Engineering CollegeUnited States Military Academy

United States Naval Academy.

I Appendix A, Section A. 1.2 provides information on how to access these sources.

8.2.3 Catalog of Resources for Education In Ada and Software Enginee
The Catalog of Resources for Education in Ada and Software Engineering (CREASE),
produced by AdaIC, lists military, commercial, and academic sources of courses for
education in Ada and software engineering. The document is available on-line and may
-be accessed and downloaded from the ajpo.sei.cmu.edu host, as described in Appendix
A, Section A.2.

8.2.4 Other Sources of Ads Trining
Other non-DOD sources that may provide information or pointers to information on Ada
education and training are the local Special Interest Groups on Ada (SIGAdas) and Ada
f.uers published by the Association for Computing Machinery (ACM). Additionally,I
Ads Impl.ommetion Guide 121

I----------

I
Trin-- w EdrAuctilon

the following annual conferences are good sources of Ada and software engineering
informaton:n

"* ASEET Symposium
"* DOD Software Technology Conference (formerly the STSC Conference)
"* National Conference on Ada Technology I
"* SIGAda Conference
"* Tri-Ada Confrence
"* Washington Ada Symposium.

8.3 LESSONS LEARNED AND RECOMMENDATIONS
The points listed below highlight lessons learned from DOD, industry, and academia I
concerning Ada as an effective software engineering tool. The most significant lesson
is that management commitment is critical to success. The sources of the following
lessons are indicated in parentheses at the end of each entry.

Ada must be taught as a software engineering tool, not syntactically as yet another I
programming language.

- Software engineerini eJucation is mandatory for the proper use of Ada. To j
accrue the desired productivity gains and cost savings, education and training
in the features of Ada that support the principles of software engineering, such
as modularity, abstraction, and information hiding, must be provided. A I
low-level syntactic focus on Ada as a language is ineffective. (SEI)

- A study on Ada education and training, conducted by the Armed Forces U
Communications and Electronics Association (AFCEA), indicated that training
in software engineering practices was both the most important and the least
practiced of all training requirements. The AFCEA surveys were consistent
on this point. General comments often were made that the high-level concepts
of Ada (e.g., packages, tasking, generics, strong data typing) permitted new
options in software architecture and design. The intelligent use of these I
concepts would have great benefit for both the software engineering process
and the quality of the resulting design. (AFCEA, 87) I

- Teaching should not be done solely by analogy, (i.e., with simple
transliteration of examples from other languages). Teaching by analogy alone
will fail to capitalize on the power of the many new software engineering
features of Ada. Resultant programs will be "AdaBOL" or "AdaTRAN" (i.e.,
syntactically Ada but semantically constrained by the limitations of the earlier
language). Moreover, if analogy alone is used in teaching, the student is less
likely to readily adopt new, more powerful ways of accomplishing old tasks

122 Depatn of the NaY I
!

Trablng and Educaion

and ways more suited to Ada, and to take advantage of *new* Ada features
such as packages, tasking, exceptions, e assignments, and use of
Boolean exprsions. Students must be taught to think in Ada. (SE1, 92)

* Hands-on training is essential.

- Ada education and .aining are ineffective without hands-on experience on
actual Ada projects. The training can be conducted on an actual project, on
a pilot study, or in classroom exercises. Several respondents to the AFCEA
87 study agreed that language training was useless without such immediate
I reinforcement. Actual project experience was the most highly recommended
form of hands-on training. (AFCEA, 87)

- It is also apparent that classroom training alone, even with hands-on exercises,
does not prepare individuals fully for actual work on Ada projects. To be
fully educated, people need to have on-the-job experience either on an actual
Ada project or on a pilot project with actual deadlines and goals. (AFCEA,
87)

- Examples must be at a real level to accelerate the ability to apply the language
techniques. Students have difficulty applying new concepts to their application
areas without real-life models to imitate. Ada compounds the problem by
having new constructs. Thus, many programmers who have a foundation in
Assembly have no parallel constructs to which to relate. 'Generics' is a good
example. (AFCEA, 87)

- Additional models (i.e., analogies) need to be provided to facilitate the
application of Ada to specific projects; for example, avionics examples could
be created to provide real Ada coded examples to show how Ada solves
problems in this specific application domain. Models are needed to allow new
Ada programmers to imitate good style and practices rather than to start from
scratch. (AFCEA, 87).

- When asked about learning Ada, several interviewees responded that there is
no substitute for on-the-job training. (AFCEA, 87)

- It is imperative that hands-on programming exercises be a major component
of the training process. It is just as difficult to build computer software and
learn computer languages without practical applied work as it is to learn how
to repair radar sets or jet engines without applying the skills. In fact, the
more detailed the training, the more imperative hands-on exercises become.
For example, in classes dealing with using Ada for a specific embedded

Ads Implementation Guide 123

I

I
TmbknV mwi Educaton 3

processor, there is no substitute for writing software with the compiler and
tool set that will be used on the actual development program. The software
engineers working at this level need to understand the performance and
limitations of a particular tool set. (SEI, 92)

Training and education and their application must be closely aligned. I
- Course documentation, materials, and models should be relevant to the actual

work environment. For example, a class of Automated Information System i
(AIS) students should be working with sample Ada programs for unclassified
business functions. Normally, instructors should follow these presentations by
assigning students exercises that require use of automated compilers or other
tools so that students will master the subject matter with hands-on training.
The compilers, tools, and models should be the same as those used by the
students in their actual work environments.

- It is important to assign useful work in Ada immediately after training. i
Education provided too long before actual use is not reinforced and is lost.
(AFCEA, 87)

- In general, knowledge retention was best when the training was concurrent
with or very close to actual project assignment. Training benefits were judged
to be essentially lost if as few as 4 to 6 weeks passed between the training I
class and project assignment. (AFCEA, 87)

- From the point of view of students, immediate need for Ada skills is the I
strongest motivator for learning. (AFCEA, 87)

All personnel associated with an Ada development effort require some level of Ada !
education and training.

- Training is necessary for both acquisition and development of maintenance I
personnel. Software designers, systems engineers, Ada programmers, and
software managers in both industry and Government need to know about Ada
and its associated software engineering techniques. Ada training should
address all of these groups, but the depth and kind of knowledge needed will
vary for each. (SEI, 92) I

- Project support personnel need training in relevant aspects of Ada. (AFCEA,
87)3

124 Depat•mnt of the Navy

I

Training and Education

"* Access to an Ada software programming expert is important.

- Student access to an Ada programming expert also was found to be both
essential and effective in on-the-job training situations. Having available a
recognized expert to answer questions and provide guidance to novice learners
was a good catalyst for the learning process. (AFCEA, 87)

- It is useful for a project to build a core group of knowledgeable, well-trained
individuals to serve as mentors for more junior personnel. These individuals
must be very knowledgeable in the application of Ada and software
engineering and in the project domain. Experience has shown that a few such
individuals, placed in key positions within the project, can have a stimulating
effect on other engineers. (SEI, 92)

" CAI is good for supplementing other training but not as the sole method of
providing training. Available methods and media must be compared against
training funds, objectives, and desired outcome. Lectures with some visual aids
are relatively inexpensive and suitable for briefings, overviews, and orientations.

" Providing adequate tools and using only validated Ada compilers for training is
importanL

- Adequate, user-friendly tools greatly enhance the acceptability of Ada,
particularly by professional programmers. An overtaxed or overloaded
support environment often creates frustration, which is displaced to the
language. For example, a system where editor response time is degraded will
generate a negative attitude toward the language although the editor, not the
language, is at fault.

- Using only validated Ada compilers is recommended so that students are not
exposed to the frustration of studying an Ada feature and then discovering it
does not work in their training environments.

- Although use of nonvalidated or subset compilers may seem effective or
convenient in tWe short term, productivity on the job will suffer when students
have to adjust to the full language.

"* Ada is not significantly more difficult to learn or teach than are other languages.
Teachers and students do not find Ada significantly more difficult to learn and
teach than alternative languages, and student reaction is generally favorable.
(Communications of the Association for Computing Machinery [CACM], November
92)

Ada Implewmtation Guide 125

I
Trainig and Education

Teaching Ada effectively requires a different methodology from those used to teach
previous languages. Emphasis needs to be placed on aspects such as
programming-in-the-large, team development, and maintenance. To do this well
requires redesigning old lesson plans and incorporating libraries of software
packages. i

- Instructors must redesign their teaching methodologies to teach Ada and its
power effectively. Pascal style and methodology do not carry over to Ada.
(CACM, November 92)

Basic language constructs in Ada take longer and are more complicated to
teach than basic language constructs in Pascal. Thus, first and second
programming courses require more effort from the instructor, but these extra
efforts will be beneficial. (CACM, November 92) 1
Students should be exposed to "reading" and analyzing Ada software systems
before "writing* or creating them. 5

- Two kinds of support are envisioned for an Ada-based freshman course, which
are currently unavailable. For instance, a large library of well-designed Ada j
library units is needed. Abstract data types are not enough. Examples are
needed that illustrate specific key features of Ada, kinds of objects and
operations, and other software design issues, as well as a large collection of
components that students can combine into interesting systems.

I
I
U
I
I
I
1

126 Department of the Navy I
I

,

i

£ References

Archer, T. S. Managing the Ada Conversion and Integration of Mission Critical
Defense Systems." 9th Annual National Conference in Ada Technologies. March 1991.

5 Association for Computing Machinery, Commutcation, January 1984.

Baumert, J. and M. McWhinney. Software Measures and the Capability Maturity Model3 (CMU/SEI-92-TR-25, ESC-TR-/92-0M5). Pittsburgh, PA: Carnegie-Mellon University,
1992.

SBoehm. B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentrice-Hall,
1981.

5 Carnegie-Mellon University/Software Engineering Institute. Software Capability
EWluation Overwew. Pittsburgh, PA: Carnegie-Mellon University, 19-21 March 1991.

£ Contrast: Ada 9X and C++, Schonberg, E. New York University, 1992 (Distributed
by Ada IC on Form S100-0992B).

£ Humphrey, -Watts. Characterizing the Software Process: A Maturity F ewrk
(CMU/SEI-87-TR-11). Pittsburgh, PA: Carnegie-Mellon University, June 1987.

SJones, C. Applied Software Measurement: Assuring Pmductivity and Quality. New
York NY: McGraw-Hill, 1991.

SLaw, D. "Parallel Ada in Simulation Systems. Defense Electronics, Vol. 24, No. 11.
November 1992, pp. 35-37.

I Naval Air Warfare Center. Next Generation Computer Resources Reference Model for
Project Support Environments, Technical Report NAWCADWAR 92023-70. 1993.

SPrieto-Diaz, R. and P. Freeman. *Classifying Software for Reusability," IEEE
Computer Society Press, Vol. 4, No. 1, Los Alamitos, CA: January 1987.

Rozum, J. et al. Software Measurement Concepts for Acquisition Program Managers
(CMU/SEI-92-TR-1 1, ESD-TR-92- 11). Pittsburgh, PA: Carnegie-Mellon University,5 June 1992.

San Antonio I, Panel VII. JLC Software Workshop Final Report. 1 February 1991.

Ads Implementation Guide 127

I

I
"Refoerms

Shlaer, S. and S. Miller. "An Object-Oriented Approach to Domain Analysis." Softwore
Rnineering Notes, Vol. 14, No. 5. November 1989.

U.S. Department of Commerce, National Institute of Standards and Technology.
Application Portability Profile (APP): The U.S. Government's Open System Environment I
Profile 0SE/ Version 1.0. Washington, D.C.: Government Printing Office, 1991.

Weiderman, N. Ada Adoption Handbook, Compiler Evauaion and Selection, Version
1.0 (CMU/SEI 89-TR-13, ESD-TR-89-12). Pittsburgh, PA: Carnegie-Mellon
University, 1989.

I
I
I
I
I
I
I
i
I
I
I
I

128 Department of the Navy

I
I

I

£ LIST OF ACRONYMS AND ABBREVIATIONS

AAS Advanced Automation SystemS ABET Ada-Based Environment for Test
ACEC Ada Compiler Evaluation Capability
ACES Ada Compiler Evaluation System
ACM Association for Computing Machinery
ACSE Association Control Service Element
ACUE Aircraft Control Unit Emulator
ACVC Ada Compiler Validation Capability
AdalC Ada Information Clearinghouse
AdaJUG Ada Joint (Services) Users Group
Ada PSE Ada Programming Support Environment
ADP Automatic Data ProcessingIAES Ada Evaluation System
AFATDS Advanced Field Artillery Tactical Data System

AFB Air Force Base
AFDSRS Air Force Defense Software Repository System
AFSC Air Force Systems Command
AFSPACECOM Air Force Space Command
Al Artificial Intelligence
AME Ada Integrated Environment
AIS Automated Information System
AIU Acoustic Interface Unit
AJPO Ada Joint Program Office
MAS Ada Language System

ALS/N Ada Language System/Navy
AMMWS Advanced Millimeter Wave Seeker
AMPS Advanced Message Processing System
ANSI American National Standards Institute
AP Acquisition Plan
AP Arithmetic ProcessorS APB Acquisition Program Baseline
API Application Programming Interface
APID Application Programming Instructional Department
APP Application Portability Profile
APT Advanced Programming Technique
ARB Acquisition Review Board
ARLB Ada Reuse Library Browser
ARPA Advanced Research Projects Agency5 ASEET Ada Software Engineering Education and Training

Ada Implementation Guide 129I
I

I
Acrnym an Abb lols w

ASI Application Software Inrface
ASIS Ada Semantic InterfaceSpciaio5
ASP Acquisition Strategy Plan
ASR. Ada Softwar Repository
ASSET Asset Source for Software Engineering Technology
AST Advanced Systems Technology
ASW Anti-Submarine Warfare
ASWSOW Anti-Submarine Warfare Standoff Weapon
AT&T American Telpone & Telegraph
ATCCS Army Tactical Command and Control System
AID Afrcrew Training Device
ATE Automated Test Equipment
ATF Advanced Tactical Fighter
ATIP Ada Technology Insertion Program
ATIS A Tool Integration Standard
ATRIM Aviation Training and Readiness System
AVF Ada Validation Facility 4
BAFO Best and Final Offer
BBS Bulletin Board System
BMS Broadcast Message Server
BP Backplane

C2 Command and Control
C21 Command, Control, and Intelligence
C31 Command, Control, Communications, and Intelligence 5
C41 Command, Control, Communications, Computers, and

Intelligence
CAB Common Ada Baseline
CAD Computer-Aided Design
CAI Computer-Aided Instruction
CAIS Common Ada PSE Interface Set I
CALS Computer-aided Acquisition and Logistics Support
CAM Computer-Aided Manufacture
CAMP Common Ada Missile Packages
CARDS Central Archive for Reusable Defense Software Program
CASE Computer-Aided Software Engeering
CAS REPS Casualty Reporting System
CAUWG Commercial Ada Users Working Group
CAXI Common Ada XWimdow Interface
CC&I Command, Control, and Intelligence
CCITT Intenational Consultative Committee for Telegraph and

130 Depwonmmnt of the Navy I
£

I
3 Aronym and AbbremvloW

ccrrr International Consultative Committee for Telegraph and

CCP Code Counting Program
SCC$ Combat Control SystemI CDA Central Design Activity
CDB Central Data Base
CDIF CASE Data Interchange Format
CDPA Central Design Programming Activity
CDR Critical Design Review
CDRL Contract Data Requirements List
CECOM Communications Electronics Command
CERT Computer Emergency Response Team
CERT/CC Computer Emergency Response Team Coordination Center
CFE Contractor-Furnished Equipment
CGI Computer Graphics Interface
CGM Computer Graphics Metafile
C1 Configuration Item
CIF Central Issue Facility
CIM Corporate Information Management
CLNP Connectionless Network Protocol
CLOC Compiled/Assembled Lines of Code
CMM Capability Maturity ModelICUP CoMPleteness
CMS-2 Compiler Monitor System-2
CMU Carnegie-Mellon University
CMU/SEI Carnegie-Mellon University/Software Engineering Institute
CNO Chief of Naval Operations
COBOL Common Business Oriented LanguageII
COE Common Operating Environment
COEA Cost and Operational Effectiveness Analysis
COMNAVCOMTELCOM Commander, Naval Computer and Telecommunications

Command

COMSPAWARSYSCOM Commander, Space and Naval Warfare Systems Command
CONOPS Concept of Operations
CORBA Common Object Request Broker Architecture
COTS Commercial Off-The-Shelf
CPDL Computer Program Development Laboratory
CPP Command Program Processor
CPU Central Processing Unit
CRADA Cooperative Research and Development Agreement
CREASE Catalog of Resources for Education in Ada and SoftwareI Engineering

Ada Implanuntati Guide 131

I

Acronyms anw bmlain

CRISD Computer Resource Integrated Software Document
CRLCMP Computer Resources Life-Cycle Management Plan
CRSS C3I Reusable Software System $
CRWG Computer Resources Working Group
CSC Computer Sciences Corporation
CSCI Computer Software Configuration Item I
CSRO Center for Software Reuse Operations
CSS Centralized Structure Store
CSU Computer Software Unit
CWG Coordinator Working Group

D&V Demonstration & Validation I
DAB Defense Acquisition Board
DACS Data and Analysis Center for Software
DARPA Defense Advanced Research Projects Agency
DAT Digital Audio Tape
DBMS Database Management System
DC Device Coordinate
DCDS Distributed Computing Design System
DCE Distributed Computing Environment
DDI Directorate of Defense Information
DDN Defense Data Network
DDR&E Director of Defense Research and Engineering I
DDRS DOD Data Repository System
DEl Data Elements in the Source
DEM Digitized Electronic Module j
DEMVAL Demonstration and Validation
DFCS Digital Flight Control System
DFU De Facto Usage
DID Data Item Description
DISA Defense Information Systems Agency
DMRD Defense Management Review Decision I
DOD Department of Defense
DODD Department of Defense Directive
DODI Department of Defense Initiative
DON Department of the Navy
DPI Data Processing Installation
DP/DGU Distributed Processor/Display Generator Unit I
DRPM Direct Reporting Program Manager
DS Directory Service
DSRS Defense Software Repository System
DTC 2 Desk Top Computer 2

1132 Dopwunent of th, Navy

I
I

I
3 Amnnmv mid Abbsvd snsl

DTN Da :rnsfer Network
lyric Defense Technical Information Center
DUS Design Unit
DWS Defensive Weapon System

ECCM Electronic Counter-Countermeasures
I ECLD Embedded Comment Le in Data

ECLS Embedded Comment Lines i Source
ECM Electronic Countemesures

I ECMA European Computer Manufacturing Association
ECS Electronic Customer Services
EDI Electronic Data Interchange
EDL Event-Driven Language
EDSI Equivalent Delivered Source Instructions
EMPM Electronic Manuscript Preparation and Markup
EMR Extended Memory Reach
ENB Engineering Notebook
EPROM Erasable Programmable Read Only Memory
EP Enhanced Processor
ERA Entity Relationship Attribute
ESD Electronic Systems Division5 ESM Electronic Support measure

4GL Fourth Generation Language
FAA Federal Aviation dministration
FAR Federal Acquisition Regulations
FAU Fin Actuator Unit
FCDSSA Fleet Combat Direction System Support Activity
FE Functional Element
FFP Firm Fixed Price
FFRDC Federally Funded Research and Development Center
FIFO First In First Out
FIPS Federal Information Processing Standards
FIT Flight Instrument TrainerFMSO Fleet Material Support Office
FP Function Point
FPI Functional Process Improvement
FRAWG Front Range Ada Working Group
FSD Full-Scale Development
FTAM File Transfer, Access, and Management

Ads Impvlemmnttiom Guide 133

I

I
Amnmsa w W Oviedo.

FIT Fil Trnm poga m
Op File Transfer ProWtc
43),S ANIUYK-43(V) Run-Time Support System I
GAO General Accounting Office
GB Giabyte
GEU Guidance Electronics Unit
GFE Government-Furnished Equipment
GPS Government-Furnished Software I
GIS Geographic Information System
GKS Graphical Kre System
GM Global Memory I
GNCP Guidance, Navigation, and Control Program
GNMP Government Network Management Profile
GOSIP Government Open Systems Inercnnection Profile 1
GOTS Government-Off-the-Shelf
GPEF Generic Package of Elementary Functions
GPPF Generic Package of Primitive Functions
GPO Government Printing Office
GRACET ' Generic Reusable Ada Components for Engineering
GSIS Graphics System Interface Standard
GTRIMS Ground Controller Training System
GUI Graphical User Interface 3
HOL High Order Language
HP Hewlett-Packard
HP VUE Hewlett-Packard Visual User Environment
HPBP High-Performance Backplane
HPP High-Performance Processor

IBM Interational Business Machines
I-CASE Integrated Computer-Aided Software Engineering £
ICC Irvine Compiler Corporton

ICE Independent Cost Estimate
IDE& Integrated System Definition Language I
IEC International Electro-Technical Committee
IEEE Institute of Electrical and Electronics Engineers
IGES Initial Graphics Exchange Specification I
IGRV Improved Guard Rail Five
ILSP Integrated Logistics Support Plan
IMU Inertial Measurement Unit I
INEL Idaho National Engineering Laboratory

134 Depwament of teNavy

I

I
acrnym wid Abboo-dedns

INPOSEC nfomation System Security
InProc in Processing
1/0 nPsWOutpu
bC Initial Operating Capability3o lOP ProcessorSInput/Output
WO Infomation Planning and Organizing
IPR In-Process Review
IPS Integrated Project Summary
IPSE Integrated Project Suppor Environment
IRAC inte-o irements and Design Criteria
IRDS Information Resmurce Dictionary System
IRS Interface Requiremet Specificai±on
ISA Instruction Set Architecture
ISC Input Signal Conditioner
ISDN Integrated Services Digital Network5 ISEA In-Service Engineering Activity
ISEE integrated Software Engineering Environment
ISO International Organization for Standardization
ISSC Information System Software Center
1`1PB Information Technology Policy Board
ITS Integrated Test Software5 IV&V Independent Verification and Validation

JCS Joint Chiefs of Staff
JIAWG Joint Integrated Avionics Working Group
JIEO Joint Interoperability and Engineering Organization
JLC-JPCG-CRM Joint Logistics Commanders Joint Policy Coordinating

Group on Computer Resources Management
JTC Joint Technical Committee

K 1,000
KAPSE Kernel Ada Programming Support Environment

SLAN Local Area Network
LCM Life-Cycle Management
LCSA Life-Cycle Support Activity3 LOC Level of Consensus
LRFP Logistics Requirements Funding Plan

IMAPSE Minimal Ada Programming Support Environment
MAT MATurity£ MB Megabyte

Ada Impienwit Guide 135

II

I
Acronyms andA 3

MCCDC Marine Corps Combat Development Command
MCCR Mission-Critical Computer Resources
MCCRES Marine Corps Combat Readiness Evaluation System I
MCO Marine Corps Order
MENS Mission Element Need Statement
MEPS Message Edit Processing System
MHs Message Handling Service
MIL-HDBK Military Handbook
M IL-STD Military Standard
MIMMS Marine Corps Integrated Maintenance Management System
MIPS Millions of Instructions per Second
MIS Management Information System
mm Millimeter
MMI Man-Machine Interface
MMS Minimum Mode Software
MOA Memorandum of Agreement
MOTS Military Off-The-Shelf
MSE Master's in Software Engineering
MT Mission Trainer

NA Network Adaptor
NAC Naval Avionics Center
NADC Naval Air Development Center
NAPI North American Portable Common Tool Environment

Initiative
NAPUG North American PCTE User's Group 5
NARDAC Navy Regional Data Automation Center
NASA National Aeronautics and Space Administration
NASEE NAVAIR Software Engineering Environment S
NATO North Atlantic Treaty Organization
NAUG Navy Ada Users Group
NAVAIR Naval Air Systems Command £
NAVCOMTELCOM Naval Computer and Telecommunications Command
NAVDAC Navy Data Automation Command
NAVSEA Naval Sea Systems Command a
NAVSUP Naval Supply Systems Command
NAVSWC Naval Surface Warfare Center
NAWC-AD-WAR Naval Air Warfare Center, Aircraft Division, Warminster

II
136 Depavmnun of the Navy U

I

I
3 Acoym an Abbmeviatl

NCA Naval Center for Cost Analysis
NCCOSC Naval Command, Control, and Ocean Surveillance Center
NCS Network Computing Service
NCTAMS Naval Computer and Telecommunications Area Master3 Station
NCTAMS LANT NCTAMS Atlantic
NCTAMS EASTPAC NCTAMS Eastern Pacific3 NCTC Naval Computer and Telecommunications Command
NCTS Naval Computer and Telecommunications Station
NDC Normalized Device Coordinate
NDI Nondevelopmental Item
NGCR Next Generation Computer Resources
NISBS NATO Interoperable Submarine Broadcast System
NIST National Institute of Standards and Technology
NISMC Naval Information System Management Center
NISO National Information Standards Organization
NIUF North American ISDN Users' Forum
NM Network Management
NOSC Naval Ocean Systems Center
NRaD Naval Research and Development
NSWC Naval Surface Weapons Center
NTCSS Naval Tactical Combat Support System
NTIS National Technical Information Service
NUSC Naval Undersea Command
NWRC Navy Wide Reuse Center
NWSUS Navy WWMCCS Site-Unique Software

OAS Offensive Avionics System
OASD Office of the Assistant Secretary of Defense
OCD Operational Concept Document
OFPS Operational Flight Program Size
OMG Object Management Group
OMU Operational Mock-up
OOD Object-Oriented Design
OOP Object-Oriented Programming
OORA Object-Oriented Requirements Analysis
OPE Open Systems Environment
OPNAVINST Naval Operations Instruction
OPR Office of Primary Responsibility
ORG Organization Chain of Command
OS Operating System
OSA Open Systems Architecture

Ads Implenntatian Guide 137

II

oAc ny wi Abbrsvmts 3
OS Offce of di Sertr of Defens
OSE Open Systems Environment
OSF Open Software Foundation
OS Open Systems Interonnecto
OSISL Open Systems Interface Standards List 3
OSS Operations Support System
OSSWG Operating Systems Standards Working Group

PAV Product AVailability I
PC Pesonal Computer
PCIS Portable Common Interface Set
PCTE Portable Common Tool Environment i
PDL Program Design Language
PDR Preliminary Design Review
PDS Post-Deployment SupportPDSS Post-Deployment Software Support

PDU Pulse Driver Unit 3
PEO Program Executive Office
PHIGS Programmer's Hierarchical Interactive Graphics System
Pla Protocol Independent Interface
PIMB PCTE Interface Management Board
PIWG Performance Issues Working Group
PMC Project Management Charter
POC Point of Contact
POM Program Objective Memorandum
POSIX Portable Operating System Interface for Computer Systems iPPBS Planning, Programming, and Budgeting System

PRISM Portable Reusable Integrated Software Modules
PRL PRoblems/Limitations I
PRR Product Readiness Review
PSE Project (or Programming) Support Environment
PSERM Project Support Environment Reference Model I
PSESWG Project Support Environment Standard Working Group
PSA Program Structure Analysis
PSL Program Structure Language

R&D Research and Development
RACS Registration and Access Control System
RADC Requirements and Design Criteria
RAM Random Access Memory
RAPID Reusable Ada Products for Information Systems 'I

Development

138 Depwomen of dom W"v I
I

Acrmonm and Abbivlit, iWS

RCL RAPID Center Library
RDA Remote Database Access
RDBMS Relational Database Management System
RDT&E Research, Development, Test, and Evaluation
RES Resources
REVIC Revised Intermediate COCOMO
RFP Request for Proposals
RLF Reuse Library Framework
RLT Reuse Library Toolset
RMA Rate Monotonic Analysis
RMC Reconfigurable Mission Computer
ROI Return on Investment
ROM Read Only Memory
RPC Remote Process Communication
RPC Remote Procedure Call
RSC Reusable (Ada) Software Component
RTAda Run-Time Ada
RTE Run-Time Environment

SAE Software Architectures Engineering
SAFENET Survivable Adaptable Fiber-optic Embedded Network
SAI Software Action Item
SAIL System Avionics Integration Laboratory
SAME SQL Ada Module Extension
SAMeDL SQL Ada Module Description Language
SASET Software Architecture Sizing and Estimating Tool
SASSY Supported Activities Supply System
SCAI Space Command & Control Architecture Infrastructure
SCCS Submarine Combat Control System
SCE Software Capability Evaluation
SCH Scheduler
SCL Stand-alone Comment Lines
SCMP System Configuration Management Plan
SCRB Software Change Review Board
SCS Submarine Combat System
SDC-W Software Development Center, Washington
SDD System Design Definition
SDE Software Development Environment
SDF Software Development Folder
SDIO Strategic Defense Initiative Organization
SDL Software Development Laboratory
SDP Software Development Plan

Ada Implementation Guide 139

I
Acronyvms and Abviations g

SDP System Division Paper
SDR System Design Review
SDSR Software Development Status Report
SDTS Spatial Data Transfer Standard
SECNAVINST Secretary of the Navy Instruction
SECNAVNOTE Secretary of the Navy Note I
SECR Standard Embedded Computer Resource
SEE Software Engineering Environment 3
SEI Software Engineering Institute
SEM Standard Electronic Module
SEMP System Engineering Management Plan
SEO Software ExcutiveffSEQC Software Executive Official Council

SEPG Software Engineering Process Group
SES Senior Executive Service
SGS/AC Shipboard Gridlock System with Auto-Correlation
SGML Standard Generalized Markup Language
SIGAda Special Interest Group on Ada
SIGSOFT Special Interest Group on Software Engineering
SIL System Integration Laboratory
SIP System Integration Plan
SISTO Software and Intelligent Systems Technology Office
SLOC Source Lines of Code i
SLOC/SM Source Lines of Code per Staff Month
SLOCWC Source Lines of Code Without Comments
SMB Submarine Message Buffer 3
SMM Software Management Metrics
SMP Software Master Plan
SOW Statement of Work I
SPA Software Process Assessment
SPAWAR Space and Naval Warfare Systems Command
SPC Software Productivity Consortium £
SPD Software Process Definition
SPDL Standard Page Description Language
SPI Software Process Improvement I
SPO System Programming Office
SPR Software Problem Report
SQAP Software Quality Assurance Plan
SQL Structured Query Language
SRC Software Requirements Change
SRR Software Requirements Review I
SRS Software Requirements Specification

140 DepwarAM of the Navy

I

B
3 Aamryn and

SSA Software Support Activity
SSC :ystem Support Center
SSS System/Segment Specification
STANFINS Standard Financial System3 STANFINS-R Standard Financial System Redesign
STARFIARS Standard Army Financial Accounting and Reporting System
STARS Software Technology for Adaptable, Reliable SystemsSSTB STaBility
STC Software Technology Conference

STEP Standard for the Exchange of Product Model Data
STI Software Technology Initiative
STSC Software Technology Support Center
SSUP Support Planning
SWAP Software Action Plan
SWAP-WG Software Action Plan Working Group
SWG Special Working Group
SWTP Software Technology Plan
SYSCOM Systems Command

5 TAC Tactical Advanced Computer
TACAMO Take Charge and Move Out
TACFIRE Tactical Fire Direction
TAFIM Technical Architecture For Information Management
TADSTAND Tactical Digital Standard
TAMPS Tactical Aircraft Mission Planning System
TC Target Capacity
TC Technical Committee
TCL Total Comment Lines
TCP/IP Transmission Control Protocol/Internet Protocol
TD Technical Directive
TDA Technical Directive Authority
TDT Theater Display Terminal
TEMP Test and Evaluation Master Plan
ITEP Test and Evaluation Plan
TFA Transparent File Access
TLCSC/LLCSC Top Level/Lower Level Computer Software Component
TLOC Total Lines of Code
TOES Telephone Order-Entry System

I IAda Implementation Guide 141

I

I
-n wid Abbmvladeds

TOPS Training and Operations Section
TQM Total Quality M m ent 1
TSGCEE Tri-Service Group on Communications and Electronics

Equipment

UIMS User Interface Management System
ULLS Unit Level Logistics System
USMC U.S. Marine Corps
USTAG United States Technical Advisory Group
USW Undersea Warfare
UUT Unit Under Test I
VADS Verdix Ada Development System
VDI Virtual Device Interface
VHSIC Very High-Speed Integrated Circuit
VRC Virtual Reference Coordinate
VSR Validation Summary Report
VT Virtual Terminal

WAdaS Washington Ada Symposium 5
WAM WWMCCS ADP Modernization
WBS Work Breakdown Structure
WC World Coordinate I
WFNIA Wells Fargo Nikko Investment Advisors
WIS WWMCCS Information System
WPAFB Wright Patterson Air Force Base I
WST Weapon System TrainerWWMCCS World Wide Military Command and Control System I

1
i
i
I
I

I

£

li Glossary

The definitions provided below are used throughout the Deparment of Defense (DOD)
software community. Most of the definitions are from other sources. The source from
which the definition originated is indicated in brackets at the end of the definition, and
the complete information about the source is provided at the end of this glossary.
originator of these definitions may periodically modify the definition.

3AcnvrrY. (1) A task or discrete step in a methodology performed to provide
management, technical, and support information for decision mating. [I-CASE] (2)
A unit of work to be completed in achieving the objective of a software project. (3)
The lowest level of the hierarchical decomposition of functions in the Enterprise
Model. [I-CASE] (4) A defined portion of work within a project that typically has
a designated owner, entry requirements, implementation requirements, exit
requirements, duration, and schedules. Examples of activities include developing the
product specification document, creating the high-level design, coding, andg performing the system test.

ACCURACY. (1) A quality of that which is free of error. [ISO] (2) A qualitative
assessment of freedom from error, a high assessment corresponding to a small error.
[ISO] (3) A quantitative measure of the magnitude of error, preferably expressed as
a function of the relative error, a high value of this measure corresponding to a small
error [ISO]. (4) A quantitative assessment of freedom from error. [IEEE;

Ada. A programming language developed on behalf of the U.S. DOD for use i3 large, real-time, embedded computer systems.

Ada MDINOS. Software linkages between the Ada programming language and
other languages. For example, Ada-SQL bindings provide the means to link Adaprograms with a Relational Database Management System (RDBMS) using SQL or
SQL-like embedded instructions.

I Ada PROGRAMhMO SUPPORT ENVIRONMENT (AdaPSE). A set or hardware and
software that supports all aspects of software development and maintenance, including

Sproject management and configuration management.

Ada REPOSrroRY. A database that contains reusable software components for
information system development. The Reusable Ada Products for Information
Systems Development Program (RAPID) was developed by the U.S. Army and
purchased by the Standard Systems Center. [I-CASE]

Ada Implementation Guide 143

£

a
- *

ADAPTArrmrF. The case with which software allows differing system constraints
and user needs to be satisfied. [I

ALDOarrm. A finite set of well-defined rules for the solution of a problem in a
finite number of steps (e.g., a complete specification of a sequence of arithmetic
operations for evaluating sin x to a given precision). [ISO] (2) A finite set of
well-defined rules that gives a sequence of operations for performing a specific task.

AROUrECRu. (1) The structure of components, their interrelationships, and
the principles and guidelines governing their design and evolution over time. (2)
Organization structure of a system or component. [IEEE]

ARc==TuRAL DESIGN. (1) The process of defining a collection of hardware
and software components and their interfaces to establish a framework for the I
development of a computer system. [IEEE] (2) The result of the architectural design
process. [IEEE] I

ARTIFICIAL INTELLJGENCE. A subfield within computer science concerned with
developing technology to enable computers to solve problems (or assist humans in I
solving problems) by using explicit representations of knowledge and reasoning
methods employing that knowledge. [SWTP]

ATTRIBUTE. A piece of information about an entity or relationship. [I-CASE].

AuTOMATED APPuCATION GENERATORS. Programs that generate application U
programs from special application-oriented languages. [SWTPJ

AUTOMATED INFORMATION SYSTEM (AIS). An automated system in which the I
data stored will be used in spontaneous ways that are not fully predictable in advance
for obtaining information. 3

AVAILABUZrY. (1) The probability that software will be able to perform its
designated system function when required for use. [IEEE] (2) The ratio of system
up-time to total operating time. [IEEE] (3) The ability of an item to perform its
designated function when required for use. [ANSI/ASQC]

BASELINE. (1) A configuration identification document or set of such documents
(regardless of media) formally designed and fixed at a specific time during a
configuration item's life cycle. Baselines, plus approved changes to those baselines,
constitute the current configuration identification. (DOD-HDBK-287A] (2) A
sp~cification or product that has been formally reviewed and agreed upon, that

144 Department of the Navy I
I

£

thereafter serves as the basis for further development and that can be changed onlyIthrough formal change control procedures. IEEE] (3) A document or set of such
documents formally designated and fixed at a specific time during the life cycle of ag configuration item. [IEEE]

BSY-2. The distributed battle management system for the SSN-21 submarine in
the U.S. Navy. The system integrates sensors and weapons and displays information.IMP

3 C2. See command and control.

C31. See definitions of command and control, communications, and intelligence.

I CASE. Computer-Aided Software Engineering is the automation of well-defined
methodologies that are used in the development and maintenance of software products.
These methodologies apply to nearly every process or activity of a product
development cycle (e.g., project planning and tracking, product designing, coding,
and testing).

I CASE ENVnRONMENT. A CASE environment is a computer system consisting of a
fixed set of core facilities that form the environment framework and a set of facilities,5 called tools, that supports software development activities. (I-CASE]

CERTIFICATION. (1) A written guarantee that a system or computer program
complies with its specified requirements. [IEEE] (2) A written authorization that
states that a computer system is secure and is permitted to operate in a defined
environment with or producing sensitive information. [IEEE] (3) The formal
demonstration of system acceptability to obtain authorization for its operational use.
[IEEE] (4) The process of confirming that a system, software subsystem, or
computer program is capable of satisfying its specified requirements in an operational
environment. Certification usually occurs in the field under actual conditions and is
used to evaluate not only the software itself but also the specifications to which the
software was constructed. Certification extends the process of verification and
validation to an actual or simulated operational environment. [IEEE] (5) The
procedure and action by a duly authorized body of determining, verifying, and
attesting in writing to the qualifications of personnel, processes, procedures, or items
in accordance with applicable requirements. [ANSI/ASQC]

CHANGE CONTROL PROCESS. A defined process to be followed when a change to
a controlled document or procedure is proposed. A typical use is to control proposed
changes to product objectives or product specifications once these documents have3 been approved.

Ads Implementation Guide 145

I

I

CLmwr-sZRvER mEImoRNM . Defined most broadly, a client-server
environment involves a requester of a service or services and a delivere of those 3
services. The requester is normally a user on a microcomputer, whereas the deliverer
is usually a file server. Toronto-based International Data Corp. analyst Michael
O'Neill defines client-server as network architectures in which applications are runto some extent on desktop computers and servers provide additional services such as I
storage, applications, communications, and printing. (I-CASE]

CODmNo. The act of writing instructions that are immediately computer I
recognizable or can be assembled or compiled to form computer-recognizable
instructions. Within a product development cycle, this activity follows the low-level
design activity and precedes the unit testing and function testing activities.

COMMAND AND CONTROL. The provision of communications and intelligence to
a properly designated commander of assigned forces for use in the accomplishment
of a mission. Command and control functions are performed through an arrangement
of personnel, equipment, communications, facilities, and procedures employed by a 3
commander in planning, directing, coordinating, and controlling forces and operations
in the accomplishment of the mission. (PUB 1-02]

COMMERCIAL-OFF-THE-SHELF (COTS) PRODUCTS. Items regularly used in the
course of normal business operations for other than Government purposes that (a)
have been sold or licensed to the general public; (b) have not been sold or licensed, I
but have been offered for sale or license to the general public; -(c) are not yet
available in the commercial marketplace, but will be available for commercial
delivery in a reasonable period of time; (d) are as described in (a), (b), or (c) that U
would require only minor modification in order to meet the requirements of the
procuring agency. Minor modification means a modification to a commercial item
that does not alter the commercial item's function or essential physical characteristics. I
[I-CASE]

COMMON wINORMATION REPOSumOy. A database that contains all of the I
information pertaining to systems development and provides the means for all tools
in the development environment to share information engineering information.
[I-CASE]

COMMUNICATIONS. A method or means of conveying information of any kind
from one person or place to another [Webster]. I

COMPLE.rrY METXRCS. Pertaining to any of a set of structure-based metrics thatmeasures the degree to which a system or component has a design or implementation 1
that is difficult to understand and verify (See SoftwareComplexity). The more

146 Department of the Navy U
I

£
I "-

complex a program, the more likely it will contain errors. Examples of complexity3 nmetrics are module size, Halstead's Software Science Metrics, McCabe's cyclomatic
number, and McClure's control variable complexity. [I-CASE]

CoMPONEN. A portion of a software system that contains one logical subdivision
of the system. A given software system may be seen as composed of its variousg components. [SWTPJ

COMIrE soFrwARE CoNFIoURATION fENM (CSC). A configuration item for
computer software. [DOD-STD-2167A]

CONCEPT OF OPERATIOS (CONOps). Detailed narrative description of a targeted
area's functions and all of their interrelationships during peacetime, exercise, crisis,
and wartime.

CONcEPTUAL DATA MODEL. Identification and description of all of the entities
and relationships that support the key areas, tasks, and activities defined in the
Enterprise Model of the targeted area. These entities and relationships define the
inherent structure of information within the enterprise. [I-CASE]

CONFRRATION CONTROL. The systematic evaluation, approval or disapproval,
and implementation of all approved changes in the configuration of a configuration
item after formal establishmeit of its configuration identification. [I-CASE]

CONIGURATION rrm. Hardware or software, or an aggregate of both, which isdesignated by the contracting agency (or project configuration manager) for
configuration management. [DOD-HDBK-287A]

i CONFIWUPATION IDENTIFICATION. The approved or conditionally approved
technical documentation for a configuration item as set forth in specifications,3 drawings, associated lists, and documents referenced therein. [DOD-HDBK-287 k]

CONFIGOMATION MANAGEMENT. (1) The process of identifying and defining the5 configuration items in a system, controlling the release and change of these items
throughout the system life cycle, recording and reporting the status of configuration
items and change requests, and verifying the completeness and correctness of
configuration items. (IEEE] (2) A discipline applying technical and administrative
direction and surveillance to (a) identify and document the functional and physical
Scharacteristics of a configuration item, (b) control changes to those characteristics,
and (c) record and report change processing and implementation status. [DOD-STD
480A)

A!Ada Implementation Guide 147

I

| i|W

- *1

COP"URATION MANAGOEMENT PLAN (0MP). The Configuration Management
Plan defines the implementation (including policies and methods) of configuration
management on a particular program/project. [DOD-HDBK-287AJ

CoN'nmcr CHANGE PROPOSAL. A formal priced document also referred to as
"Task Change Proposal (TCP)" used to propose changes to the scope of work of the I
contract. It is different from an Engineering Change Proposal (ECP) in that it does
not affect specifications or drawing requirements. It may be used to propose changesto contractual plans, the Statement of Work (SOW), Contract Data Requirements List(CDRL), and others. [I-CASE]

CoNruAcT DATA REQuREm LUST (CDRL). Identifies the name of the item I
to be delivered, the date it is to be delivered, and a Data Item Description (DID).

CONTRACTOR. An individual, partnership, company, corporation, or association
that has a contract with the contracting agency (Government) for the design,
development, maintenance, modification, or supply of configuration items and 3
services under the terms of a contract. A Government agency performing any of the
above actions is considered a "contractor" for configuration management purposes.
[DOD-HDBK-287A] I

COST ANALYSIS. (1) The act of breaking down a cost summary into its
constituenits- and studying and reporting on each factor. (2) The comparison of costs
(as of a standard with actual or for a given period with another) for the purpose ofdisclosing and reporting on conditions subject to improvement. [WEBSTER]

CIRICAL PATH. The collection of work activities in a product development cycle
that are neck-to-neck with one another and define the longest duration for a project.

CIrrWCAL REAL-Ma SYSTEM. A system in which failure to meet a deadline has
an impact on safety or could cause large financial, social, or military losses. [SWTP]

CRrCAL REQUIEMENTS. Any or all of a wide range of characteristics the
absence or diminished presence of which in a system can result in serious
consequences. [SWTP]

DATA. A representation of facts, concepts, or instructions in a formalized manner
suitable for communication, interpretation, or processing by human or automatic
means. Any representations such as characters or analog quantities to which meaningis or might be assigned. [PUB 1-02] 1

1
148 DeparUmant of tha Navy

I
I

£

DATABSES. Ele",ronic repositories of information accessible through a query5language interf4ce. [SWTP]

DATABAS MANAGEMENT SYSTEM (DBMS). An integrated software system that
has facilities for defining the logical and physical structure of data in a database and
for accessing, entering, and deleting data. [DOC]

DATA FLOW DiAGRAM. A graphical representation of the various processes and
flows of information that make up a function. [I-CASE]

3 DATA INTEGTrrY. Confidence that the data a software system is using or
producing is right, data values being produced are right, and spurious values are not
being inserted into the system from external sources. [SWTP]

DATA ITEM DESCRIPTION (DID). A document that contains details and referenceU standards with which a deliverable must comply. [I-CASE]

DATA MODELING. The process of identifying an application's data elements, data
structures, and file format structures. This includes delineating the relationships
between data elements, generally with entity-relationship diagrams. [I-CASE]

DATA REPWisropRs. Refers to the dynamic data that are used during the
development process. Repositories will contain a broad range of fine and coarse grain
project information. [I-CASE]

m DESION. The process of defining the architecture, components, interfaces, and
other characteristics of a system or component; often referred to as the Design Phase.5 [I-CASE]

DESIGN FAULT. A fault committed during the design of a software system or3 during a subsequent modification of the design. [SWTP]

DEvELOPMENT ENVIRONMENT. The hardware and software platforms that will5 be used to support software development activities. [I-CASE]

DmTnmtrw PROCESSwNo. The organization of processing to be carried out on a
distributed system (see distributed system). Each process is free to process local data
and make local decisions. The processes exchange information with each other over
a data communication network to process data or to read decisions that affect multiple3processes. [DOC] Running a program on several different machines. [SWTP]

A!Ada Implmenaton Guide 14,9

U
aI

"" ~I

DmrIDtrED SYSTEM. Any system in which a number of independent
interconnected computers can cooperate. [DOCI I

DocUMENT. Any subset of technical data that, packaged for delivery on a singlemedium, meets the format, content, consistency, and completeness requir-ments of
a unified control specification whether delivered in hard copy or digital form. A I
document is a self-contained body of engineering data that supports, alone or with
other documents, an engineering or maintenance function. (I-CASE]

DOMAIN. A set of current and future applications that performs common sets of
functions. DOD software domains include avionics, vehicle control, C31, and
logistics. [SWTPJ

DOMAIN ANALYSIS. The process of identifying, collecting, organizing, and
representing the relevant information in a domain. The process is based on the study
of existing systems and their development histories, knowledge captured from domain
experts, underlying theory, and emerging technology within the domain. [SWTP]

DOMAIN KNOWLEDGE. (1) Knowledge about the objects, concepts, and
relationships of a particular domain. [SWTP] (2) The set of data and business rules
applicable to a product application or functional area. (I-CASE]

DOM-SPEC. Concerned with the objects, concepts, and relationships of a 3
particular domain. [SWTP]

EMBEDDED COMPUTER SYSTEM. A computer system that -is integral to a larger 3
system the primary purpose of which is not computational, (e.g., a computer system
in a weapon, aircraft, command and control, or rapid transit system). [IFEEE M

EMBEDDED SOFTWARE. Software for an embedded computer system. [IEEE]

ENtERPRISE MODEL. (1) A hierarchical description of key areas of functionality, I
their subordinate tasks, and specific activities identified in the Concept of Operations
(CONOPS). (2) A high-level model of an organization's information architecture that
consists of a function model and a data model. [ELG] (3) A description of the 1
(entity) types, functions, and processes. [MARTIN]

FN'rrrY. (1) A distinct thing (such as a person, place, thing, or event) of interest
to the enterprise about which data are stored. It holds meaning in context with other
entities in the enterprise. (2) Person, place, thing, concept, event, or activity about 3
which an organization wishes to keep information. [DODM]

I
150 Departmut Of the sNavy

I
I

£

ENvmoNmENT. (1) Collection of hardware and software enveloped in a process3to engineer software. (2) Everything that supports a system or the performance of a
function. (ELG] (3) The conditions that affect the performance of a system or
function. [ELG] (4) That part of the real world that contains the users that exchange
messages with an information system. (ELG]

ENVIRONMENT FRAMEWORK. The core set of facilities in a CASE environment
that provides necessary control, data, presentation, and communication services for
tools executing in that environment. [I-CASE]

I ERRoR. (1) A manifestation of a fault; data (usually involving the system state)
that produce a failure when processed by the system. (2) A discrepancy between a
computed, observed, or measured value or condition and the true, specified, or
theoretically correct value or condition. [IEEE]

EVOLUTIONARY PROTOTYPING. An approach to software development where auser's system is established using rapid prototyping techniques, then is updated and
maintained as required. [I-CASE]

I EXCEPTION. An event that causes suspension of normal program execution.
[IEEE]

I EXPERT SYSTEMS. Computer programs built for commercial application by using
the programming techniques of Artificial Intelligence (AI), especially those techniques
developed for problem solving, and involving the use of appropriate information
acquired previously from human experts. [DOC]

FAILURE. (1) The result of a system or component not performing a required
function within specified constraints. (2) The termination of the ability of a functional
unit to perform its required function. (3) The inability of a system or system
component to perform a required function within specified limits (may be produced
when a fault is encountered). (4) A departure of program operation from program
requirements. [IEEE]

FAILURE RATE. (1) The ratio of the number of failures to a given unit of
measure (e.g., failures per unit of time, failures per number of transactions, failures
per number of computer runs). (2) In reliability modeling, the ratio of the number
of failures of a given category or severity to a given period of time (e.g., failures pers second of execution time, failures per month). [IEEE]

FAULT. (1) An accidental condition that causes a functional unit to fail to5 perform its required function. (2) A manifestation of an error in software. A fault,

Ads Implementation Guide 151

I

I

if encountered, may cause a failure. [IEBEE (3) A discrepancy in an automated
system encountered during testing. [I-CASE]

FAULT AVOIDANCE. (1) Action that reduces the likelihood of a fault during
system operation, such as isolating or replacing system components with a high
predicted probability of failure based on error reports or stress data. [SWTP] (2) I
The elimination of faults by careful and conservative design and construction
Practices. [SWTPJ 1

FAULT PREVENTION. The elimination of faults by careful and conservative design
and construction practices. [SWTP] 3

FAULT RECOVERY. The attempt to bring a system to a state acceptable for
continued operation. (SWTP] 3

FAULT TOLERANCE. The built-in capacity of a system to provide continued
correct execution despite faults or failures of hardware or software components.
[IEEE]

FAULT-TOLERANT soFTWArI. Software that includes functions for detecting,
identifying, confining, and/or recovering from faults to create a fault-tolerant system. U
[SWTP]

FORMAL QUALIFICATION TEST. A test conducted in accordance with formally
approved test plans and procedures and witnessed by Government representatives to
show that the integrated hardware and software satisfy specific requirements.
[I-CASE]

FoRwAD ENGMMNG. (1) The process of generating the design from the 3
requirements and generating the code from the design. (2) The traditional process of
moving from high-level abstractions and logical, implementation-independent designs
to the physical implementation of a system. [CHIK]

FRAMEWORKs. General designs or architectures for systems that can be
Scustom ized or specialized for particular applications. [SW TP]

FUNCTION. An action that a product is capable of performing. For example,
functions for a word processor might be define margins, define page length, set tabs,
change font for all section headings, search for words and phrases, and automaticdocument save. 5

I
152 Department of the Navy

U
I

I
I "-

FUNCTIONAL REQUIMENT. A requirement that specifies a function that a
i system or system component must be capable of performing. UIEEE]

FuNCrION TEST. The testing of each product function across one or more
I modules. Some amount of scaffolding is typically required to perform this test.

(I-CASE]

3v mN u s EQUIPMENT (OFE). Equipment furnished by the U.S.
Government. [I-CASE]

3 GOVERNMENT OPEN SYSTEMS INTERCONNECTION PROFILE (GOSIP). A Federal
Information Processing Standards Publication (FIPS PUB) that defines a common set
of data communication protocols that enable systems developed by different vendors
to interoperate and enable users of different applications on these systems to exchange
information. [I-CASE]

I GOSm-cOMPuANT. Computer network protocols that are in compliance with
FIPS PUB 146, "Government Open Systems Interconnection Profile.* (I-CASE]

GRACEFUL DEGRADATION. The ability of a system to shed noncritical
functionality to accomplish critical functions within their deadlines during failures.3 [SWTP]

HARD REAL-TIME SYSTEM. A system that must completely service each task and
produce results within specified time intervals (i.e., a system that must respond to
hard deadlines). [SWTP]

HARDWAME. Physical equipment used in data processing, as opposed to
computer programs, procedures, rules, and associated documentation. (iEEE]

HETEROGENEOUS NETWORK. A network of different host computers, such as
those of different manufacturers. [I-CASE]

HETEROGENEOUS PROCESSORS. Processors of different types that use different
organization (e.g., shared memory, arrays) or architecture (Reduced Instruction Set
Computer [RISC], Complete Instruction Set Computer [CISC]). Includes also
processors built by different manufacturers (e.g., Digital Equipment Corporation,
Sun, IBM). [SWTP]

HIGH ASSURANCE SOFTWARE. Software for which there is compelling evidence

that the computer system will respond properly under all circumstances in the context
of its application. [SWTP]

Ada Implementation Guide 153

I

I
Glossary I

HIGH-LEVEL DESIGN. The level of design required to understand how the
components of a product will technically work with one another and with the
surrounding hardware and software environment in which the components must
operate. This design identifies the components that make up the product, defines the
functional mission for each component, and defines the interface across these 1
components and externally to the operating environment.

HYPERTExT. A method of organizing text to enable the user to browse through
the text in any order and examine any portion at any time without having to read the
text from start to end. [SWTP]

I-CASE. Integrated Computer Aided Software Engineering components that span I
the full software development life cycle. [I-CASE]

I-CASE ENVIRONMENT. Automated software development environment that
includes a Software Engineering Environment (SEE), an Operational Test
Environment (OTE), and an Application Execution Environment (AEE). It will 3
support and be used by DOD organizations responsible for development,
modernization, and maintenance of AISs. [I-CASE]

IEEE FruTREBUS+. A computer backplane standard adopted by the U.S. Navy
for its next-generation computing systems. [SWTP]

IMPLEMENTATION PHASE. That portion of a system's life cycle when the system
reaches its initial operational capability. [I-CASE]

INDEPENDENT VERIFICATION AND VALIDATION (IV&V). (1) Verification and
validation of a software product by an organization that is both technically and
managerially separate from the organization responsible for developing the product. i
[IEEE] (2) Verification and validation of a software produ~ct by individuals or groups
other than those who performed the original design but who may be from the same
organization. The degree of independence must be a function of the importance of I
the software. [IEEE] (3) An independent review of the software product for
functional effectiveness and technical sufficiency. 3

IFOR.MAL TEST. The testing performed on a product that is typically conducted
in a loosely controlled environment and is performed by the programmers who
developed the code to be tested. Both the unit test and function test are considered
informal test activities. Some amount of scaffolding is typically required during the
informal test period. 3

I
154 Department of the Navy I

I

II*
INFORMATION ENGINEERING. The science of analyzing value-added information

usage and organizing heterogeneous information (e.g., hard copy, ASCII, graphics,
voice, video, structured files) so that it is stored, processed, and retrieved in a form
useful to each level of decision making within an organization. [SWTP]

INFORMATION HIDING. A design concept put forward by Parnas [Parnas 1971,
1972]. Modules most likely to be changed in the future should be designed in such
a way that those design decisions are hidden from other modules. Therefore, if a
change has to be made in the future, such a change is localized to one specific
module. [I-CASE]

INFORMATION REPOSITORY. Encompasses the capabilities currently found in
multiple types of products (i.e., data repository, repository manager, library manager,
and reuse library). [I-CASE]

INFORMATION RESOURCE DICTIONARY SYSTEM (IRDS). A computer software
system that provides facilities to control, describe, protect, document, and facilitate
use of an installation's information resources. [I-CASE]

SINFORMATION SYSTEMS ENGINEERING. The process of defining requirements for
databases, applications, and technical services. [I-CASE]

I INSPECTION: Examination of an activity by a group of people, typically peers, to
identify and remove defects and problems from a product.

S INTEGRATED LOGISTICS SUPPORT (uLs). A composite of the elements necessary
to assure the effective and economical support of a system or equipment at all levels3 of maintenance for its programmed life cycle. [I-CASE]

INTEGRATION. The process of combining software elements, hardware elements,3or both into an overall system. [IEEE]

INTEGRATION SERVICES. Services that provide for integration of components
across the life cycle of software applications, from concept development through
decommissioning or replacement. [I-CASE]

5I INTERFACE. The supporting hardware and software through which dialogue takes
place. [SWTP]

A
I

!Ada Implementation Guide 155

I

I

KNOWLEDGE. (1) Computer data structures designed to capture or encode
knowledge in structural forms that can be easily manipulated by reasoning processes.
[SWTP] (2) What a person or computer must know to perform a given task. n[SWTP]

KNOWLEDGE REPRESENTATION. Computer data structures designed to captuMe
or encode knowledge in structural forms that can be easily manipulated by reasoning
processes. [SWTP] 3

LIBRARY MANAGER. Performs version control and configuration management on
larger grain objects such as source code, object modules, and documentation.
[I-CASE]

LIFE CYCLE. (1) The period of time encompassing the life of an automatedsystem. (2) The period of time that begins when a system is conceived and ends Iwhen the product is no longer available for use. [IEEE]

LIFE-CYCLE MODEL. A model of the software life cycle describing the series of
steps or phases through which the software progresses (e.g., Code and Fix, Waterfall,
Rapid Prototyping, and Incremental Release). [I-CASE]

LOW-LEVEL DESIGN. A term representing two levels of design: (1) The design
required to understand how the modules within each component will technically work I
with one another. This design identifies the modules that make up each component,
the functional mission of each module, and the interface across these modules. (2)
The design required to define the design within each of the many modules that mayconstitute each component. This design level identifies each programming decisionpath within each module and is the lowest level of design before coding.

MAINTENANCE SUPPORT. Modification of a product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a
changed environment. [IEEE] I

MEASUREMENT. The act or process of measuring something to ascertain the
quantity, mass, extent, or degree in terms of a standard unit or fixed amount, usually 3
by means of an instrument or container marked off in the units. [WEBSTER]

MEGAPROGRAMMING. (1) Computer systems design and implementation using I
preexisting software modules of known functionality as primitives [SWTP]. (2) The
development of software by composing components rather than individual lines of 3
code. [SWTP]

1156 Department of the Navy

• I
I

I

MEnTODOLOGY. (1) The way the group activities within a process are3 accomplished; the approach to solving the problem; a body of methods, rules, and
postulates employed by a discipline. (2) A general philosophy for carrying out a
process; composed of procedures, principles, and practices. [STARS]

METRIcs. (1) Numerical data collected during the software production process
and used to compute measures of quality, productivity, and performance of software

Sproducts, development tools, methods, techniques, and processes. (2) A composite
of one or more measures used to understand a process. [BOEING] (3) Those
measurements established for each step in the software engineering process that are

Sused to determine its effectiveness. The metrics define the results of each process
stage and relate them to resources expended, errors introduced, errors removed, and
various coverage, efficiency, and productivity indicators. [I-CASE]

MODERNIZATION. The implementation of new techniques or technology.
Through modernization, the Government seeks to redesign all antiquated software
systems into Ada applications and implement them as such. [I-CASE]

MODIFICATION. The process of changing existing software to support the evolving
changes in design specifications. [DOD-HDBK-287A]

MODULE. (1) Software components required to support the products and
applications within the operational constraints of the environment. (2) Code that
represents part of a function, a single function, or more than one function. A module
is code that can be independently compiled. One or more modules usually make up
a component. [I-CASE]

NETWORK SERVICES. Services to support distributed applications requiring data
access and applications interoperability in heterogeneous or homogeneous networked
environments. [I-CASE]

3 OBECT. An entity that is characterized by the operations that can be applied on
or by the entity. [I-CASE]

I OBJECT MANAGEMENT SERVICES. Services that manage an information
repository that stores information supporting software development of program or3 project data across all components within the environment. [I-CASE]

OBJECT MANAGEMENT SYSTEM. A data management system the data of which
are characterized by object descriptions. [SWTP]

Ada Implementation Guide 157

U

OBJECT-ORIENTED DESIGN. A method of design encompassing the process of
object-oriented decomposition and a notation for depicting both logical and physical
as well as static and dynamic models of the system under design; specifically, this I
notation includes class diagrams, object diagrams, module diagrams, and process
diagrams. 5

OPEN SYSTEMS. Refers to a combination of standards. Specifically, open systems
is a combination of the standards as defined in the National Institute of Standards and
Technology (NIST) Application Portability Profile (APP) for POSIX and XPG3. This
is applicable to both hardware and software. [I-CASE]

OPEN SYSTEMS ARcHrrECTURE (ma). An architecture that implements i
international standard protocols. [I-CASE]

OPEN SYSTEMS ENVIRONMENT (OSE). Computing, communications, and i
application software products that have vendor-independent interfaces. [ELG]

OPERATIONAL TEST ENVIRONMENT (OTE). The primary purpose of the I-CASE
OTE is to test applications generated by the I-CASE SEE. This test environment is
used to test application functionality and evaluate performance of the application in R

the I-CASE SEE (target environment). The I-CASE 0rE supports compilation and
testing of application source code developed and maintained in the SEE and includes
run-time components required for the applications to execute on their open system 3
hardware platforms. [I-CASE]

PHASE. A defined portion of a product development cycle. The portions defined 3
as phases are arbitrary and are usually determined by the group that plans the project.
Also, a subset of activities that make up a major activity. For example, a project
document review cycle is composed of five phases: preparation, review, update, I
approval, and information.

PHYSICAL DATA MODEL. Representation of the technically independent data i
requirements in a physical environment in hardware, software, and networik
configurations as alternative methods of implementing the conceptual design in a
"functional" system or representing them in the constraints of an existing physical I
environment. [I-CASE)

PORTABILITY. The ease with which software can be transferred from one I
computer system or environment to another. [IEEE]

PORTABLE OPERATING SYSTEM INTERFACE (POSIX). An IEEE standard that
defines a C language source interface to an operating system environment. [I-CASE]

158 Department of the Navy

I

I

PRocEI: (1) A set of actions, tasks, and procedures that, when performed or3 executed, obtains a specific goal or objective. (2) A series of actions, changes or
functions that achieve an end or result. (3) A model for accomplishing an objective.
[BOEING] (4) The logical organization of people, machines, tools, methods, andI procedures into work activities designed to produce a specified end result (work
product). The term software process refers to processes that are intrinsic to
developing and evolving software systems. [SWTP] (5) The grouping of activities;
what is to be done in the development of software, the sequence of phases, tasks, and
activities required. (6) The manner in which a software development project, or any
of its many integral parts, is planned, developed, or tracked. For example, the
method of logging in a problem and tracking that problem to a satisfactory closure is
defined as a process. [I-CASE]

U PROCESS DEFINITION. An explanation of the meaning of a specific software
process (e.g., the software quality assurance process). [SWTP]

U PROCESS MANAGEMENT. The management of the creation and maintenance of
software process definitions before and during their use in building or maintaining

I systems or families of systems. [SWTP]

PROCESS MANAGEMENT SERVICES. Services that provide the mechanism to
manage life-cycle processes as described by the I-CASE Software Process Model.
[I-CASE]

PROCESS MODEL. One specific embodiment of a software process architecture
(i.e., an embodiment of a set of software process definitions configured to create or
maintain a system or family of systems). [SWTP]

I PROCESS MODELING. To make or conform to a chosen framework for identifying,
defining, and organizing tbh business strategies, rules, and processes needed to3 manage and support the way an organization does or wants to do business. [I-CASE]

PRODUCT. A software package, consisting of code and documentation, that is3 eventually delivered to a customer. In a more global sense, the definition of product
also includes the product support materials related to activities such as marketing and
maintenance.

PRODUCT BASELINE. The initially or conditionally approved productg configuration identification. [I-CASE]

PRODUCT DEVELOPMENT CYCLE. The sequence of activities followed in
developing a product. A product development cycle covers a wide range of activities

Ads Implementation Guide 159

I

I

that typically include creating the product objectives and the product specifications and
designing, coding, testing and packaging the final product for delivery to customers. I

PRODUCT SPEc•IFICTIONS. A document that details precisely what the user will
receive and use when the completed product is made available. Every function,
command, screen, prompt, and so on is documented in the specification so that all I
participants involved in the product development cycle know the product they are to
build, test, document, and support. 3

PROGRAM. The code portion of a product or test case or a collection of
components linked together. 3

PROGRAM OR PROJECT MANAGEMENT. Provides the necessary planning,
organization, staffing, direction, and control for the orderly development or
acquisition of a software product. [I-CASE]

PROGRAMMING LANGUAGE. An artificial language designed to generate or
express programs. [IEEE]

PROJECT. The combined resources (i.e., people, computers, and materials), 5
processes, and activities dedicated to building and delivering a product. Also, a
group of people, typically from two or mom organizations, that is working on the
same product.

PROTOTYPE. (1) An experimental model for a system on which decisions for later
versions are based or judged. [SWTP] (2) A functional model of a target system, I
suitable for evaluation of design, performance, and product potential or an instance
of a software version that does not exhibit all of the properties of the final system;
usually lacking in terms t ztional or performance attributes. [DOD-HDBK-287A] 1
(3) A preliminary type,, , or instance of a system that serves as a model for later
stages or for the final, complete version of the system. [IEEE] (4) An early running
model of a product the primary purpose of which is usually to experiment with, I
demonstrate, or prove the feasibility of a concept.

PROOF-OF-CONCEPT. A type of demonstration generating evidence that the I
concept is effective. [SWTP]

PROVABLY SECURE SOFTWARE SYSTEM. A software system for which it can be
proved that the software has a level of assurance that the system can enforce a
specific security policy and that integrity, availability, and liveness are also assured.

160 Department of the Navy I
I

I
m

QUALIFICATION TESTING. Product testing that demonstrates that the products3 satisfies all MINMUM requirements in the current version of the I-CASE
Specification Requirements and that occurs, at the Government's option, as a
precondition for the product baseline. (I-CASE]

QuALrrY. Conformance to requirements. Once the product and process
requirements have been defined, the quality can be measured for compliance.

QUALIT ASSURANCE (QA). (1) A planned and systematic pattern of all actions
necessary to provide adequate confidence that the item or product conforms to
established technical requirements. [IEEE] (2) Methodologies and techniques used
to perform critical evaluation of computer systems to ensure release of high-quality

Uproducts. [I-CASE)

QUALrrY ASSURANCE GROUP. People assigned to perform an "outside
check-and-balance' role of ensuring that a product is being developed according to
an acceptable process.

QUALrrY ASSURANCE PLAN. A document that can be used to define, track, and
measure both product and process quality goals throughout the product development
cycle.

I RAID PROTOTYPING. (1) The process of building executable versions of partially
constructed systems to allow early observation and understanding of system behavior,
especially its interface. [SWTP] (2) The use of an application generator and/or
nonprocedural Fourth Generation Languages (4GLs) to quickly develop a prototype
of key portions of the user's desired capability. [I-CASE]

�REAL-T]I SOFTWARE SYSTEM. A software system that satisfies critical timing
requirements. The correctness of the software depends on the results of computation3 and on the time at which the results are produced. [SWTPJ

REENGINEER•NG. (1) The examination and alteration of a subject system to3 reconstitute it in a new form and the subsequent implementation of the new form;
generally includes some form of reverse engineering (to achieve a more abstract
description) followed by some form of forward engineering or restructuring. [CHIK,
I-CASE] (2) Redesign and development of a system and its data structures from an
existing baseline to improve its functionality or configuration. These can be based
on reverse engineering products or upon existing documentation and design documents
or by other systems analysis methods. [DODM, I-CASE] (3) The process of
examining an existing software system (program) and/or modifying it with the aid of

I
iAda Implementation Guide 161

I

U
-ou1

automated tools to improve its future maintainability, upgrade its technology, extend
its life expectancy, capture its components in a repository where CASE tools can be 3
used to support it, and increase maintenance productivity. [MCC, I-CASE]

REFERENCE MODEL. A conceptual framework that helps to describe and
compare systems. As used here, it describes the set of services an environment I
provides, but not the architecture of how such services ame to be provided. [I-CASEJ

REGRESSION TESTING. A software function that performs the rerunning of tests i
to detect errors spawned by changes or corrections made during software development
and maintenance. [I-CASE] Selective retesting to detect faults introduced during
modifications of a system or system component, to verify that modifications have not
caused unintended adverse effects, or to verify that a modified system or system
component still meets its specified requirements. 3

RELATIONAL DATABASE. A database that allows the linking of different pieces of
information. [SWTP] n

RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS). A database
management system in which information is organized in tables. [I-CASE] U

RELATIONSHIP. An association between two entity types. [I-CASE]

REUABUMrrY. The ability of an item to perform a required function under stated
conditions for a stated period of time. [DCTj. n

REPOSITORY. (1) The place where the software artifacts are kept in their on-line
form. Its functions are modeled after those of a librarian; it is the gatekeeper ofproject products. Artifacts are typically created and modified outside the realm of the I
repository. [SWTP] (2) The mechanism for defining, storing, accessing, and
managing all of the information about an enterprise, its data, and its software systems.
[MCC]

REQUIREMENTS ANALYSIS. (1) The process of studying user needs to arrive at a
definition of system, hardware, or software requirements (referred to as the
Requirements Analysis Phase). (2) The process of studying and refining system,
hardware, or software requirements. [I-CASE] I

REQUIREMENTS ENGINEERING. Involves all life-cycle activities for identifying
user requirements, analyzing the requirements to derive additional requirements,
documenting the requirements as a specification, and validating the documented

2
162 Department of the Navy I

I

1

I s--,

requirements against user needs. Also refers to processes that support these activities.3 [STSJ

REQUmmENS TJRACEABL•rY. Checking to ensure that user requirements are
satisfied by the software system being produced and that all software being produced
can be traced back to a requirement. [I-CASE]

3 REusABLE sOFTwAR. Software that has application, in whole or in part, to
more than one specific function. [DOD-STD-2167AJ

3 REUS LIBRARY. (1) A library that contains filtered items from many projects,
usually within the same domain. A reuse library has a different schema and tooling
than a data repository. It usually contains larger grain data. (2) Storage location for
software developed in response to the requirements for one application than can be
used, in whole or in part, to satisfy the requirements of another application.3 [DOD-STD-2167A] (3) A central library of reusable software parts that is available
to software developers. [DORF]

REVERSE ENGINEERING. The process of analyzing a subject system to identify
the system's components and their interrelationships and create representations of the
system in another form or at a higher level of abstraction. [I-CASE]

IREXs. The probability of occurrence of an undesired event and its impact.
[SWTPJ

IRMS ANALYSiS. The process of identifying risks, determining their magnitude,
and identifying -eas needing safeguards. Risk analysis is a part of risk management3 and is synonym-,..s with risk assessment. [I-CASE]

RiS AssESSMENrr. Information provided to identify items at risk, their sources of
risk, and their measure of risk. Risk assessment is accomplished through a
disciplined and structured process to systematically identify and analyze risks.
[SWTP]

RISK MANAOEMEN'r. Making informed decisions by consciously assessing what
can go wrong and the resulting impact. Risk management is accomplished through
a continuous set of activities to identify, confront, and resolve risks. [SWTP]

ROBUSTNESS. The extent to which software can continue to operate correctly
despite the introduction of invalid inputs. [IEEE]

Ads Implementation Guide 163

I

wm~ *1
RUN-TImE ENVIRONMETr. The environment in which applications produced

using the I-CASE environment will operate. (I-CA SE]

SA,, soFTwAn. Software that has a level of assurance that the system will not
enter a hazardous state. If a hazardous state should occur, the system will get out of
it. A hazardous state is one in which an accident or mishap can occur (e.g., when
two aircraft come closer than the prescribed safe distance). [SWTP]

SCA•FOLDINo. Temporary code that has been developed to interface with one or I
more modules. This temporary code allows modules to be independently tested while
waiting for the permanent interfacing modules to be developed and readied for use. 3

SCHEmDuLER. The part of a real-time system that performs task management.
[SWTPJ 3

SCHmEDULIN ALGoRTHM. A set of rules that assigns the time at which each task
will receive service. [SWTP] 3

SECURE soFrwAR. Software that has a level of assurance that the system can
enforce a specific security policy. [SWTP]

SOR•. (1) Equipment that detects and may indicate and/or record objects and
activities by- means of energy or particles emitted, reflected, or modified by objects.
[IEEE (2) Equipment that detects and indicates terrain configuration, the presence
of military targets, and other natural and fabricated objects and activities by means
of energy reflected or emitted by such targets or objects. The energy may be nuclear, I
electromagnetic (including the visible and invisible portions of the spectrum),
chemical, biological, thermal, or mechanical (including sound, blast, and earth
vibration). [SWTP]

SIMULATION. The representation of selected characteristics of the behavior of
one physical or abstract system by another system. In a digital computer system,
simulation is done by software; for example, (a) the representation of physical
phenomena by means of operations performed by a computer system, (b) the

representation of operations of a computer system by those of another computer
system. [EEE]

SOFT REAL-TIME SYSTEM. A system in which a statistical distribution of task I
service times is acceptable. [SWTP]

SOFrWAR. Computer program instructions and data. 1

I
164 Department of the Navy U

I

I n

* -,
SOFTWARE ARCHMTECTURE. The structure and relationships among the

Scomponents of software. [IEEE]

SOFTWARE BDRDGE. Software that translates from one protocol to another.

I [SWTP]

SOFrWARE BUG. A software fault. [SWTP]

SOFTWARE DEVELOPMENT CYCLE. (1) The period of time that begins with the
decision to develop a software product and ends when the product is delivered. This
cycle typically includes a Requirements Phase, Design Phase, Implementation Phase,
Test Phase, and sometimes, Installation and Checkpoint Phase. contrast with software
life cycle. (2) The period of time that begins with the decision to develop a software
product and ends when the product is no longer being enhanced by the developer.
(3) Sometimes used as a synonym for software life cycle. See product development

I cycle. [IEEE]

SOFTWARE DEVELOPMENT FILE. An electronic or paper repository for a
collection of material pertinent to the development or support of software. Contents
typically include (either directly or by reference) design considerations and
constraints, design documentation and data, schedule and status information, test3 requirements, test cases, test procedures, and test results. [DOD-STD-2167A]

SOFTWARE ENGINEERING. (1) The application of science and mathematics by
which the capabilities of computer equipment are made useful through computer
programs, procedures, and associated documentation. (2) The application of a
systematic, disciplined approach to the development, operation, and maintenance of
software; (i.e., the application of engineering to software). (IEEE] (3) A science of
design, development, implementation, test, evaluation, and maintenance of computer
software over its life cycle. (DODD]

SOFTWARE ENGINEERING ENVIRONMENT (SEE). A collection of hardware and
software tools enveloped in a process to engineer software. [I-CASE]

SOFT-wAE LIFE CYCLE. (1) The period of time that starts when a software
i product is conceived and ends when the product is no longer available for use. The

software life cycle typically includes a Requirements Phase, Design Phase,
Implementation Phase, and sometimes, Maintenance and Retirement Phases. Contrast
with software development cycle. [IEEE] (2) The series of steps or phases through
which the software progresses, usually from conception to retirement. [I-CASE]

A
IAda Implementation Guide 165

I

I

SOFtWARE MAiNTAiNABInrY. The probability that the software can be retained
in or restored to a specified status in a prescribed period compatible with mission
requirements.

SoFWARE PRocEss. The sequence of tasks and management techniques usedI
during the creation and evolution of software systems. [SWTPJ

SOFTWARE PRODUCT METRICS. The collection of data and analysis from I
software products for purposes of estimating (a) the quality of the products at each

phase of the software development cycle, (b) the reliability of the software, and (c)
the size of the software. [SWTP]

SOFrWARE QUALUTY. The ability of a software product to satisfy its specific
requirements. [DOD-STD-2168]

SOFTWARE REENOGIEERING. (1) The examination and alteration of a software
system to reconstitute it in a new form and the subsequent implementation of the new
form. (IEEE] (2) Reengineering requires understanding the design of existing
software that was written in an undisciplined, ad hoc style and then describing the
design in a structured form consistent with modem software engineering methods.
[SWTP]

SOFTWARE REUSE. (1) The deliberate exploitation of existing software
components and related assets to facilitate the development of new software systems.
[SWTP] (2) The ability to use existing software components over and over. Reuse I
is facilitated by the use of an I-CASE repository in which reusable software
components can be stored. Software components can consist of requirements, design,
code, data, and data models. [I-CASE]

SOFTWARE REUSE TECHNOLOGY. (1) Processes, architectures, and component

composition capabilities that facilitate software reuse. (2) The organization, storage,
and management of reusable components into repositories. (3) The casual browsing
and systematic searching of these repositories to locate potentially useful components.
(4) The modification and integration of the components into the evolving system
development [SWTP]

SOFrWARE TOOL. A computer program used to help develop, test, analyze, or I
maintain another computer program or its documentation (e.g., automated design tool,
compiler, test tool, and maintenance tool). (IEEE] 3

I
166 Department of the Navy I

I

U
Gloss

SoFrWARE UPoRADE. Software changes that are made to include significant3 enhancements and new features that improve the performance and capability, or other
attributes, of a software product. Normally, software upgrades are provided to a
commercial customer at a cost in addition to the original purchase price. -I-CASE]

1 SOURCE LINES OF CODE (SLOC). The count of program instructions created by
project personnel, excluding comment lines. [I-CASE]

SPECIFICATION. (1) A document that prescribes, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a system or
system component. (2) The process of developing a specification. (3) A concise
statement of a set of requirements to be satisfied by a product, a material, or process
indicating, whenever appropriate, the procedure by means of which it may be
determined whether the requirements given are satisfied. [IEEE]

SQL (STRUCTURED QUERY LANGUAGE). A standard relational database
language. [I-CASE]

STANDARD. An approved, documented, and available set of criteria used to
determine the adequacy of an action or object.

STANDARD DATA ELEMENT. A data element that is an Air Force standard (i.e.,
included-in the Air Force Corporate Data Dictionary). [I-CASE]

STRUCTURE CHART. A diagram that identifies modules, activities, or other
entities in a system or computer program and shows how larger or more general
entities break down into smaller more specific entities. (Synonyms: hierarchy chart,3 program structure chart). [I-CASE]

SYSTEM SPECIFICATION. A system-level specification. The system specification
may be a System/Segment Specification (SSS) (DOD-STD-2167A) or a Design Unit
Specification (DUS). [AFC2M2 Guidelines Handbook]

SYSTEM PERFORMANCE ANALYSIS. Measures the performance of computer
systems and investigates methods by which that performance can be improved.
[I-CASE]

SYSTEM TEST. A test of a product in a total systems environment with other
software and hardware product combinations.

TAILOR. To modify or change a set of standards or procedures to better match
process or product requirements. [SWTP]

Ads Implementation Guide 167

I

I
Glossary g

TmLoRING. (1) Usually spoken of or referring to acquisition strategy,
allows the CDRL item to be written to suit an individual program's needs. No strict
format needs to be followed. Basics must be addressed, but the Program Manager
has authority to design or plan for specific requirements to meet the optimum balance
between need and cost. Tailoring allows flexibility. (2) The process by which
individual requirements of standards, DID, and related documents are evaluated to I
determine their suitability for a specific software production effort, and the
modification of those requirements to ensure that each achieves an optimal balance
between operational needs and costs. [DOD-HDBK-287A]

TASK. (1) A piece of work assigned to a person or group of persons [Webster].
(2) In an executing software system, a software entity that performs a particular
function. Also, the unit of work in the software process that provides a visible
management checkpoint. Tasks have entry criteria (preconditions) and exit criteria
(post conditions). [SWTP]

TAXONOMY. The general principles of scientific classification. [SWTP]

TECHNOLOGY IUFRESHMENT. An addition or substitution (i.e., a new
component), upgrade, or update to the I-CASE environment product baseline
(hardware and software). [I-CASE]

TEMPLATE. -A predefined outline that serves as a pattern for document 3
generation or data input. [I-CASE]

TESING. The process of exercising or evaluating a system or system component 3
by manual or automated means to verify that it satisfies specified requirements or to
identify differences between expected and actual results. (IEEE]

TOTAL QUALITY MANAGEMENT (TQM). (1) The DOD version of a management
strategy designed to ensure quality with regard to the performance of management,
personnel, and product. The concept originates in the work of Deming and Juran. I
[SWTP] (2) A management Ailosophy committed to a focus on continuous
improvement of product and services with the involvement of the entire workforce.

TRACEABILITY. The degree to which a relationship can be established between
two or more products of the development process, especially products having a
predecessor-successor or superior-subordinate relationship to one another. [IEEE]

TRAINING. The level of learning required to adequately perform the
responsibilities designated to the function and accomplish the mission assigned to the
system.

168 Department of the Navy I
I

I
3 Glossary

TRANVERsE ENGINEERING. The combin.,:on of reverse engineering, insertion3 of design changes, and forward engineei.- . performed in that order. [I-CASE]

TROJAN HO'.SE. (1) A program that appears to do something useful, yet
additionally does something destructive behind one's back. (I-CASE] (2) A computer
program with an apparL :!y or actually useful function that contains additional
(hidden) functions that surreptitiously exploit the legitimate authorizations of the
invoking process to the detriment of security or integrity. (I-CASE] See aLso Virus
and Worm.

3 ULTRA-cRrTIcAL soFrwAn. Software that is required to provide service with an
extremely low probability of failure (e.g., 10.' failures/hour). [SWTP]

3 UNIT TEST. The isolated testing of each flow path of code within each module.

1. a FRIENDLY. A basic characteristic of a product that simplifies its operation
for users and assists users in understanding other product functions. This "ease of
use" condition is typically attributed to the quickness with which users can both learn3 and become productive with a product.

UTILrY. The state or quality of being useful militarily or operationally.
Designed for or possessing several useful or practical purposes rather than a single,
specialized one.

VALIDATION. (1) The process of evaluating software at the end of the software
development process to ensu: compliance with software requirements. [IEEE] (2)
The process of evaluating Mftware to determine compliance with specified3 requirements. [DOD-STD-2: u7A]

VERIFICATION. (1) The process of determining whether the products of a given
phase of the software development cycle fulfill the requirements established during
the previous phase. (2) Formal proof of program correctness. [IEEE] (3) The act
of reviewing, inspecting, testing, checking, auditing, or otherwise establishing and
documenting whether items, processes, services, or documents conform to specified
requirements. [DCTJ (4) The process of evaluating the products of a software
development activity to determine the correctness and consistency with respect to the3 products and standards provided as input to that activity. [DOD-STD-2167A]

VIRTUAL REALITY. Computationally obtained representations of reality (e.g., use
of special input and output devices such as head-mounted displays) that create for any
operator the illusion of a real world in which the operator can move and function in
a natural fashion. [SWTP]

Ada Implementation Guide 169

I

I
Glossary g

VIRus, (1) A piece of code that attaches itself to other programs. Once an

infected program is run, the virus quickly spreads to system files and other software. I
(2) A self-propagating Trojan horse, composed of a mission component, a trigger

component, and a self-propagating component. (I-CASE] (See also Trojan Horse and

Worm)

WAffle. A written authorization to accept an item that, during production or

after having been submitted for inspection, is found to depart from the specified U
requirements, but nevertheless is considered suitable for use "as is" or after rework
by an approved method. (I-CASE]

WALKTHROUGH. A technique used to review the design and code of a

production effort, which can be conducted throughout the software production

process. [1-CASE]

WoRK BREAKDOWN STRUCTURE (WBS). A project-oriented family tree,
composed of hardware, software, services, and other work tasks, which results from

project engineering effort during the development and production of a Defense

material item, and which completely defines the project/program. A WBS displays

and defines the product (s) to be developed or produced and relates elements of work

to be accomplished to each other and to the end product. [I-CASE]

WORM. A program that replicates and spreads, but does not attach itself to other 3
programs. Unlike a virus, it does not require a host to survive and replicate. Worms

usually spread within a single computer or over a network of computers. They are

not spread through the sharing of programs. (See also Trojan Horse and Virus).

[I-CASE] I
I
I

I
I

170 Department of the Navy I
I

I

Sources

AFC2M2 Air Force Command and Control Modernization Methodology,
AFC2M2, Guidelines Handbook, 12 March 1991.

ANSI/ASQC Quality Assurance Terminology Standards, ANSI/ASQC A3-1978.

3 BOEING System Software Management GrouplCOMMETRC, Briefing
Slides, Boeing Computer Services, 16 December 1991.

3 CHIK Chikofsky, E.J, and J.H. Cross I, "Reverse Engineering and
Design Recovery: A Taxonomy,* IEEE Software, January 1990,1 pp. 13-17.

DCT Dictionary of Computer Terms, eds. D. Downing, M. Covington,3 Barron's, 1989.

DOC Dictionary of Computing, eds. E.L. Glaser, I.C. Pyle,5 V. Illingworth, Oxford University Press, 1983.

DODD Department of Defense, Management of Computer Resources in
Major Defense Systems, Department of Defense Directive 5000.29,
26 April 1976.

DODM Department of Defense Element Standardization Procedures
Manual, DOD Manual 8320.1M, (extract) Draft, 20 December
1991.

DOD-STD-480A Department of Defense Standard, Configuration Control
Engineering Changes, Deviations and Waivers, DOD-STD-480A,3 1978.

DOD-STD-2167A Defense System Software Development, 29 February 1988.

DOD-STD-2168 Defense System Software Quality Program, 29 April 1988.

3 DORF Standards, Guidelines, and Examples on System and Software
Requirements Engineering, eds. M. Dorfman, R. Thayer, IEEEi Computer Society Press Tutorial, 1990.

ELG Notes and Handouts from ELG meetings.

I
iAda Implementation Guide 171

I

U

I-CASE Source Selection Information-See FAR 3.104
Final RFP Version 24 July 1993 (F01620-91-R-A254). 3

IEEE ANSI/IEEE Software Std 729-1983, IEEE Standard Glossary of
Software Engineering Terminology, 1983.

MARTIN Martin, J., Information Engineering, Book 1, Introduction, Prentice
Hall, 1989. 3

MCC McClure, C., The Three R's of Software Automation, Prentice
Hall, 1992. 3

MIL-HDBK-287 Tailoring Guide for DOD-STD-2167A, Defense System Software
Development, 11 August 1989. 3

MIL-STD-109B Quality Assurance Terms and Conditions, 4 April 1969.

MIL-STD-973 Configuration Management, 17 April 1992.

PUB 1-02 Joint Chiefs of Staff, Department ofDefense Dictionary of Military
and Associated Terms, Washington, D.C., 1989.

STARS McDonal, C., and S. Redwine, *STARS Glossary: A Supplement 3
to the IEEE Standard Glossary of Software Engineering
Terminology Version 3.0," IDA Paper (P-1846), January 1986.

STS DOD Software Technology Strategy, Draft, 31 October 1991.

SWTP Software Technology Plan, Department of Defense, Draft, October 3
1991.

WEBSTER Webster's Third New International Dictionary, ed. G. P. Babcock, I
Merriam-Webster Inc., Springfield, MA, 1981.

1I
I

172 Department of the Navy I
I

I
U

I Bibliography

Ada Joint Program Office. Common Ada Programming Support Environment (Ada PSE)
Interface Set (CAIS) (Revision A). 6 April 1989.

Archer, T. S. "Managing the Ada Conversion and Integration of Mission Critical Defense
Systems." 9th Annual National Conference in Ada Technologies. March 1991.

3Assistant Secretary of Defense (Command, Control, Communications, and Intelligence
[C311). Memorandum: "Plan for Implementation of Corporate Information Management
in DOD." 14 January 1991.

Association for Computing Machinery (ACM) Special Interest Group on Ada (SIGAda).
Implementing the DOD-STD-2167 and DOD-STD-2167A Software Organizational
Structure in Ada. August 1990.

3 Association for Computing Machinery, Communication, January 1984.

Baumert, J. and M. McWhinney. Software Measures and the Capability Maturity Model
(CMU/SEI-92-TR-25, ESC-TR-92-025). Pittsburgh, PA: Carnegie-Mellon University,
September 1992.

Berk, K., D. Barrow, and T. Steadman. Project Management Tools Report. Hill AFB,
UT: Software Technology Support Center, March 1992.

Boehm, B. W., "Ada COCOMO and the Ada Process Model," Proceedings, Fifth
COCOMO Users Group Meeting. Pittsburgh, PA: Carnegie-Mellon University, October
1989.

I Boehm, B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall,
1981.

Booch, G. Software Components with Ada. Menlo Park, CA.: Benjamin/Cummings
Publishing Co., 1987.

Booch, G. Software Engineering with Ada. Menlo Park, CA.: Benjamin/Cummings
Publishing Co., 1983.

Bowler, 0. et al. Requirements Analysis & Design Tools Report. Hill AFB, UT:
Software Technology Support Center, April 1992.

Ada lb•,mfteknta GuM 173

I

1
Obilognih

Carleton, A. et aL Software Measurement for DOD Systems: Recommendations for
Initial Core Measures (CMU/SEI-92-TR-19, ESC-TR-92-019). Pittsburgh, PA:
Carnegie-Mellon University, September 1992.

Carnegie-Mellon University/Software Engineering Institute. Software Process Assessment.
Pittsburgh, PA: Carnegie-Mellon University, September 1990.

Carnegie-Mellon University/Software Engineering Institute. Software Metrics (SEI-CM-
12-1.1). Pittsburgh, PA: Carnegie-Mellon University, December 1988.

Cohen, S. G. Ada 9X Issues-Reuse Study (Draft). Pittsburgh, PA: Carnegie-Mellon
University, 1989.

Conn, R. "Overview of the DOD Ada Software Repository." Dr. Dobb's Journal,
February 1986.

Crosby, D., G. Petersen, and R. Sorensen. Documentation Tools Report. Hill AFB, UT:
Software Technology Support Center, March 1992.

Deputy Secretary of Defense. Memorandum: "Strengthening Technology and Acquisition 1
Functions." 12 August 1991.

Donohue, P. Hurtstone Benchmark User's Guide, Version 1.0, (TR SEI-90-UG-1, ADA 1
235740). Pittsburgh, PA: Carnegie-Mellon University, 1990.

Dyson, P. B. Metrics Application Plan for the Take Charge and Move Out (TACAMO) I
Message Processing System: Technical Report. (Prepared for the Naval Air
Development Center, Warminster, PA, under Contract Number: N62269-86-C-0415), 27
April 1989.

Evaluation and Validation Guidebook, Version 3.0. (NTIS A 236 494). E&V, 1991(a). 1
Evaluation and Validation Reference Manual, Version 3.0. (NTIS A 236 697). E&V
1991(b). 1
EVB Software Engineering, Inc. "Creating Reusable Ada Software," Proceedings of the
Conference on Software Reusability and Maintainability. Tysons Corner, VA: The I
National Institute for Software Quality and Productivity, Inc., March 1987.

Fefier, P. and 0. Downey. Tool Version Management Technology: A Case Study
(CMU/SEI-90-TR-26, Ada 235639). Pittsburgh, PA: Carnegie-Mellon University, 1990.

174 Depalment ofthN

I

I Ba
5 B~logM~nphy

FIPS-PUBS 127-1. Database Language SQL, 2 February 1990 (incorporates ANSI X.3
135-1989, Database Language-SQL With Integrity Enhancement and ANSI X.3
168-1989, Database Language-Embedded SQL).

Florac, W. Software Quality Measurement. A Framework for Counting Problems and
Defects (CMU/SEI-92-TR-22, ESC-TR-92-022). Pittsburgh, PA: Carnegie-Mellon
University, September 1992.

Giallombardo, R. J. Effort and Schedule Estimating Models for Ada Software
Developments. MITRE, May 1992.

Goethert, W., E. Bailey, and M. Busby. Software Effort and Schedule Measurement: A
Framework for Counting Staff-Hours and Reporting Schedule Information (CMU/SEI-92-
TR-21, ESC-TR-92-021). Pittsburgh, PA: Carnegie-Mellon University, September 1992.

Guidelines for Professional Programmers. New York, NY: Van Nostrand, Reinhold,
1989.

Hanrahan, B. et al. Software Engineering Environment Report. Hill AFB, UT: Software
Technology Support Center, March 1992.

Hefley, W. E., J.T. Foreman, C.B. Engle, Jr., and J.B. Goodenough. Ada AdoptionHandbook: A Program Manager's Guide, Version 2.0 (CMU/SEI-92-TR-29,
ESC-TR-92-029). Pittsburgh, PA: Carnegie-Mellon University, October 1992.

I Hitchon et al., Introduction to CAIS (MIL-STD-1838A), 1989.

Humphrey, W. S. Managing the Software Process. Reading, MA: Addison-Wesley,
1989.

3 Humphrey, W. S- Characterizing the Software Process: A Maturity Framework,
(CMU/SEI-87-TR-II, ESD-TR-87-112). Pittsburgh, PA: Carnegie-Mellon University,
June 1987.

Humphrey, W. S. and W.L. Sweet. A Method for Assessing the Software Engineering
Capability of Contractors (CMU/SEI-87-TR-23, ESD-TR-87-186). Pittsburgh, PA:
Carnegie-Mellon University, September 1987.

171T Research Institute. Available Ada Bindings. January 1992.

IT Research Institute. Estimating the Cost of Ada Software Development, Test Case3 Study. April 1989

Ada Impmenwtatlon Guide 175

I

WM~ *1
Jones, C. Applied Software Measurement: Assuring Productivity and Quality. New
York, NY: McGraw-Hill, 1991. !

Kile, R. L. Revised Intermediate COCOMO (REVIC) Software Cost Estimating Model
User's Manual, Version 9.0. February 1991.

Law, D. "Parallel Ada in Simulation Systems." Defense Electronics, Vol. 24, No. II.
November 1992, pp. 35-37. 3
Lesslie, P. A., R. 0. Chester, and M. F. Theofanos. Guidelines Document for Ada Reuse
and Metrics (Draft). Oak Ridge, TN: Martin Marietta Energy Systems, Inc., 1988. 3
McDonnell Douglas Missile System Company. Common Ada Missile Packages.-Leading
the Way in Software Reuse (videotapes). St. Louis, MO: McDonnell Douglas, 1991.

McNicholl, D. G. et al. Common Missile Packages (CAMP), Vol. 1: Overview and
Commonality Study Results (AFATL TR-85-93). St. Louis, MO: McDonnell Douglas,
1986.

MIL-HDBK 287. "A Tailoring Guide for DOD-STD-2167A." 29 February 1988. 3
MIL-STD- 1838A. "Common Ada Programming Support Environment (Ada PSE) Interface
Set." 30 September 1989.

Musgrove, R. G. Workshop on Commonality in Computing for NASA Flight Systems.
Houston, TX: Lyndon B. Johnson Space Center, 1987.

National Aeronautics and Space Administration. Software Engineering Laboratory (SEL)
Guidebook.

Naval Air Warfare Center. Next Generation Computer Resources Reference Model for
Project Support Environments, Technical Report NAVCADWAR 92023-70, 1993.

Naval Ocean Systems Center (NOSC). Guideline for NOSC Ada Programmers: An
Update to SPC's Ada Quality and Style, Version 1.0. 30 September 1991.

Naval Underwater Systems Center (NUSC) Software Metrics. Ada Style Guide. 10 May 3
1991.

Park, R. Software Size Measurement: A Framework for Counting Source Statements 3
(CMU/SEI-92-TR-20, ESC-TR-92-20). Pittsburgh, PA: Carnegie-Mellon University,
September 1992. !
176 Deparment of the Navy

I

1

Price, G. et al. Test Preparation, Execution, and Analysis Tools Report, Rev-A. Hill3 AFB, UT: Software Technology Support Center, April 1992.

Price, G. et al. Source Code Static Analysis Tools Report, Rev-A. Hill AFB, UT:3 Software Technology Support Center, April 1992.

Rozum, J. et al. Software Measurement Concepts for Acquisition Program Managers
(CMU/SEI-92-TR-11, ESD-TR-92-11). Pittsburgh, PA: Carnegie-Mellon University,
June 1992.

uSan Antonio I, Panel I. Software Metrics Implementation Final Report. 11 December

1991.

I San Antonio I, Panel VII. JLC Software Workshop Final Report. 1 February 1991.

SEER Technologies Division. System Evaluation and Estimation ofResources (SEER:'),
User's Manual. Marina del Ray, CA: Calorath Associates, Inc., 15 March 1991.

Shlaer, S. and S. Miller. "An Object-Oriented Approach to Domain Analysis." Software
Engineering Notes, Vol. 14, No. 5. November 1989.

Sittenaur, C., M. Olsen, and D. Murdock. Reengineering Tools Report, Rev-B. Hill AFB,
UT: Softwire Technology Support Center, July 1992.

Software Architecture Sizing and Estimating Tool (SASET), SASET User's Guide, Version
3.0. September 1992.

Software Cost Estimation Study: Performance Measurement Enhancement (Software
Performance Measurement Model jSPMMJ), User's Manual. August 1990.

3 Software Standards and Procedures Manual for the AN/BSY-2 Submarine Combat System.
28 September 1990.

3 Software Standards and Procedures Manual for the CCS Mk 2 Submarine Combat
Control System. 5 October 1989.

3 Software Technology Support Center. Software Management Guide, third printing. Hill
AFB: Ogden Air Logistics Center, 1992.

U U.S. Air Force. Air Force Systems Command Software Quality Indicators: Management
Quality Oversight (AFSCP 800-14). January 1987.

I
IAda Implunwnltlon Gugde 177

I

I

U.S. Air Force. Air Force Systems Command Software Management Indicators:
Aanagement Insight (AFSCP 800-43). January 1986. 3
U.S. Department of Commerce, National Institute of Standards and Technology.
Application Portability Profile (APP): The U.S. Government's Open System Environment
Profile OSEII Version 1.0. Washington, D.C.: Government Printing Office, 1991.

U.S. Department of Commerce, National Institute of Standards and Technology.
Reference Model for Frameworks of Software Engineering Environments, (NIST Special
Publication 500-201/Technical Report ECMA TR/55, second edition). Washington, D.C.:
Government Printing Office, 1991. 3
U.S. Department of the Navy. Interim Department of the Navy Policy on Ada. 24 June
1991.

Van Verth, P. A Concept Study for a National Software Engineering Database
(CMU/SEI-92-TR-23, ESC-TR-92-003). Pittsburgh, PA: Carnegie-Mellon University, 3
July 1992.

Weiderman, N. Ada Adoption Handbook, Compiler Evaluation and Selection, Version 3
1.0 (CMU/SEI 89-TR-13, ESD-TR-89-12). Pittsburgh, PA: Carnegie-Mellon University,
1989.

I
I
I
I
I
I

I

I

I
I

II Index

abstraction 27, 35, 54, 56, 60, 122
acquisition planning 13, 28, 38
Ada Compiler Evaluation Capability (ACEC) 47, 483 Ada Compiler Evaluation System (ACES) 47
Ada Compiler Validation Capability (ACVC) 46, 47, 81-83
Ada development tools, commercial 41
Ada environment 26, 39, 42
Ada environments (commercial) 43
Ada Evaluation System (AES) 47, 48
Ada Information Clearinghouse (AdaIC) 28, 41, 121
Ada Joint Program Office (AJPO) 28, 34, 41, 42, 44, 47, 80, 82, 91, 121
Ada Language System/Navy (ALS/N) 42, 43, 45
Ada package 4, 19, 34, 58
Ada Products and Tools Database 41

i Ada PSE 39, 91, 97

AdaIC 28, 34, 41, 43, 46, 72, 121
Application Portability Profile (APP) 63, 64, 66, 67
artificial intelligence 41
assembler 40, 62, 70
Association for Computing Machinery (ACM) 19, 20, 49, 121
A Tool Integration Standard (ATIS) 91
Automated Information System (AIS) 3, 6, 7, 42, 43, 85, 103, 124
automated test equipment 44
benchmark 33, 48, 49
Booch diagrams 41
Buhr diagrams 41
Ada development tools, commercial 41
Ada environments, commercial 43
compiler 27, 40, 42, 45-48, 50, 69, 70, 72, 81, 124
compiler selection 45, 46
completeness 36, 43, 54, 55
Computer-Aided Software Engineering (CASE) 31, 41, 50, 70, 71, 76, 77, 79, 85, 118

CASE projects 101
CASE tools 43
I-CASE 42, 85-88, 96, 111-1133 I-CASE tools 84-85, 91

confirmability 54, 56
cost estimations 14, 15
Data and Analysis Center for Software (DACS) 47

""da h_ mnwatieon Gude 179

I

data flows 41
Demarco 41

DOD-STD-2167A 10, 22, 29, 41
editor 40, 43, 125
efficiency 43, 54, 71, 84
Environments 21, 26, 32-34, 39, 42-45, 69, 74, 79, 85-86, 89-91, 104, 105 I

I-CASE 87-88
Training 119-120, 125 3
See also: Ada Programming Support Environment (Ada PSE), Integrated Project
Support Environment (IPSE), Integrated Software Engineering Environment (ISEE),
North American Portable Common Tool Environment Initiative (NAPI), Open Systems
Environment (OSE), Programming or Project Support Environment (PSE), Run-Trie
Environment (RTE), Software Development Environment (SDE), Software Engineering
Environment (SEE) 3

evaluation 21-23, 33, 36, 98
proposal 30-3i, 35, 38
compiler 46-48 I
of Requirements 57-58
cost 75
of Tools 77
of Personnel and Facilities 119

host-to-target exporter 41
IEEE Std 1226.X 44
in-circuit emulator 40
information hiding 35, 54, 56, 60, 122
Integrated Project Support Environment (IPSE) 39 U
Integrated Software Engineering Environment (ISEE) 39, 92, 95-97
integration 33, 36, 37, 93, 103, 105,

of Components 2, 31, 87, 91, 95, 113 I
software 4, 17
system 13, 19, 39, 62
phase 38-39 I

linker 40,46,48
localization 23, 27, 54, 56
Mission-Critical Computer Resources (MCCR) 3, 6, 7 I
modifiability 54-5/
modularity 23, 27, 49, 54, 56, 59, 122 3
National Institute of Standards and Technology (NIST) 47, 63, 87 90, 92, 94, 95, 97
Next Generation Computer Resources (NGCR) 49, 79, 89-91, 114
North American Portable Common Tool Environment Initiative (NAPI) 79
Object-Oriented Design (OOD) 41, 76, 117
Open Systems Environment (OSE) 26, 42, 63-67, 69

180 Department of the Navy

I

I

Performance Issues Working Group (PIWG) 493 portability 10, 11, 63, 65, 69, 70, 75, 109,
of Ada 26, 44, 50, 57, 59, 119

pretty printer 41
profiler 40
program planning 6, 13, 27, 37
prototyping 33, 34, 38, 43, 57-59, 104, 113, 119
Programming or Project Support Environment (PSE) 39, 40, 42, 45, 47, 49-51, 90, 91,1 97
reengineering 2, 7, 61-63, 108, 113
reliability 45, 54-57, 71, 83, 104, 105, 109
relocating loader 40
resource planning 13, 16
reverse engineering 26, 62, 63, 113
risk management 13, 29, 31, 32, 38, 99
Run-Time Environment (RTE) 40, 43, 45, 50
simulator/emulator 40
Software Development Environment (SDE) 39
Software Engineering Environment (SEE) 8, 15, 21, 25, 29, 39, 42, 56, 84, 85, 88, 91,
93, 95-97, 104
software engineering goals 27, 54, 55, 57
Software Engineering Institute (SE!) 14, 22, 24, 25, 34, 49, 59, 60, 71, 79, 82, 90,
97-103, 105; 111, 114, 121-125
software engineering principles 2, 5. 17, 27, 28, 54, 57, 59, 112, 117, 120
Software Technology Support Center (STSC) 21, 41-43, 121, 122
Special Interest Group on Ada (SIGAda) 49, 122
Standard Embedded Computer Resources (SECR) 42
supportability 3, 57, 104
symbolic debugger 40
Tactical Advanced Computer (TAC-3) 42, 1073 tool set 40, 124
understandability 54-57
validation 25, 46

I
I
I

iAda Implementation Guide +181

I /7/G/

