# Best Available Copy



## AD-A281 356

## **McClellan Air Force Base**



### Basewide Groundwater Operable Unit Groundwater Operable Unit Remedial Investigation/ Feasibility Study Report

Delivery Order 5066 Volume 3 of 3





#### DEPARTMENT OF THE AIR FORCE

HEADQUARTERS BACRAMENTO AIR LOQISTICS CENTER (APIIC) MICLELLAN AIR FORCE BASE, CALIFORNIA

JUN 2 3 1994

#### MEMORANDUM FOR SEE DISTRIBUTION

- FROM: SM-ALC/EMR 5050 Dudiey Bivd, Suite 3 McClellan AFB CA 95652-1389
- SUBJECT: Groundwater (GW) Operable Unit (OU) Final Remedial Investigation/Feasibility Study (RI/FS) Document

1. Attached is the GW OU Final RI/FS. This document will be in the repository for public review on 1 Jul 94. The public comment period for the subject document and the GW OU Proposed Plan is 5 Jul - 6 Aug 94. The public meeting to discuss the Proposed Plan is scheduled for 20 Jul 94.

2. If you have any questions or comments, please contact me or Doris Varnadore at (916) 643-0830.

KEND^L R. TANNER, P.E.

Remedial Program Manager Environmental Restoration Division Environmental Management Directorate

Attachment: GW OU Final RI/FS

cc: McClellan Admin Record

| Acces                           | ion For                     |
|---------------------------------|-----------------------------|
| NTIS<br>D110<br>Unani<br>Justit | CRA&I VI<br>TAE Internation |
| By<br>Distrib                   | vailability dec             |
| Dist<br>A-1                     | Avail of Spector            |

#### FINAL REPORT DISTRIBUTION LIST

#### ADDRESS

. . . . . . . . . . . .

. . . .

- **1** 

#### NUMBER OF COFIES

3 SM-ALC/EM 5050 Dudley Blvd, Suite 3 McClellan AFB CA 95652-1389 U.S. Environmental Protection Agency 2 (1 bound/1 unbound) Office of Superfund Programs Attn: Mr Joe Healy (H-9-1) 75 Hawthorne Street (15th Floor) San Francisco CA 94105 2 Dept of Toxic Substances Control Senior of Military Team Region I, Site Mitigation Branch Aun: Mr Mark Malinowski Mr John Harris 10151 Croydon Way, Suite 3 Sacramento CA 95827-2106 1 **Regional Water Quality Control Board** Attn: Mr Alex MacDonald 3443 Routier Road Sacramento CA 95827-3098 1 City of Sacramento Public Works Department Attn: Mr Robert Los 5730 24th Street, Bldg 4 Sacramento CA 95822 1 Sacramento Metropolitan Air Quality Management District Attn: Mr Jorge' DeGuzman 8411 Jackson Roed Sacramento CA 95826 1 State Dopt of Health Services Office of Drinking Water Atta: Mr Bert Elleworth 8455 Jackson Road, Suite 120 Secremento CA 95826 1 Secremento County -Environmental Management Department Hazardous Materials Division Attn: Mr Mel Knight 8475 Jackson Road, Suite 220 Secremento CA 95827

AS OF: 23 Jun 94

#### FINAL REPORT DISTRIBUTION LIST (cont'd)

....

| ADDRESS                                                                                                    | NUMBER OF COPIES |
|------------------------------------------------------------------------------------------------------------|------------------|
| URS<br>Attn: Mr Dennis Bane<br>2710 Gatesow Oaks Drive                                                     | 1                |
| Suite 250 North<br>Sacramento CA 95834                                                                     |                  |
| U.S. Department of Justice<br>Torts Branch, Civil Division<br>Atta: Mr William E. Michaels, Trial Attorney | 1                |
| Box 340 Ben Franklin Station<br>Washington DC 20044                                                        |                  |
| HQ AFMC/CEV                                                                                                | 1                |
| Attn: Mr Ajan Waite                                                                                        |                  |
| 4225 Logistic Ave, Suite a<br>Wright-Patterson AFB OH 45433-5747                                           |                  |
| Mr Burl Taylor                                                                                             | 1                |
| North Highlands CA 95660                                                                                   |                  |
| AFGE Local 1857                                                                                            | 1                |
| Atin: Mf Jim Bryan<br>DO Ber 1027                                                                          |                  |
| North Highlands CA 95660                                                                                   |                  |
| Mr Charles Yarbrough                                                                                       | 1                |
| 4919 Raley Bivd<br>Secondaria CA 95929                                                                     |                  |
| Sectemento CA 33638                                                                                        |                  |
| Defense Technical Information Center                                                                       | 1                |
| Cameron Station - DTIC-OCC, Bldg 5                                                                         |                  |
| Victimital AV 77364-0143                                                                                   |                  |

**Groundwater Operable Unit Remedial Investigation/Feasibility Study Report** 

Volume 3 of 3

Prepared for

McClellan Air Force Base Contract No. F04699-90-D-0035

**Delivery Order 5066** 

Line Item 0014



Prepared by

CH3M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, California 95833

SWE28722.66

. . .

1

1

.

June 1994

-----

#### Notice

This report has been prepared for the Air Force by CH2M HILL for the purpose of aiding in the implementation of a final remedial action plan under the Air Force Installation Restoration Program (IRP). Because the report relates to actual or possible releases of potentially hazardous substances, its release prior to an Air Force final decision on remedial action may be in the public's interest. The limited objectives of this report and the ongoing nature of the IRP, along with the evolving knowledge of site conditions and chemical effects on the environment and health, must be considered when evaluating this report, since subsequent facts may become known that may make this report premature or inaccurate. Acceptance of this report in performance of the contract under which it is prepared does not mean that the Air Force adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor only and do not necessarily reflect the official position of the Air Force.

)

#### CONTENTS-Volume 3 of 3

-

-----

ŧ

C

· · · · · · · · ·

| Apper | Appendix Page                                                                                                                                                                                                                                                           |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| J     | Groundwater Model Development J-1   Introduction J-1   Modeling Objectives J-1   Site Conceptual Model and Model Construction J-2   Calibration and Sensitivity Analysis J-15   Simulation of Containment Scenarios J-28   Modeling Limitations J-64   Works Cited J-68 |  |  |
| K     | VOC Mass Estimates K-1   Introduction K-1   Identification of Contaminants of Concern K-1   Delineation of the Extent of Contamination K-5   VOC Mass Estimates K-10                                                                                                    |  |  |
| L1    | Innovative Technologies Screening L1-1<br>Overview and Approach L1-1                                                                                                                                                                                                    |  |  |
| L2    | In Situ Anaerobic Biotreatment Implementation PlanL2-1Technology OverviewL2-1Potential BenefitsL2-5Potential LocationsL2-8ApproachL2-8Technology Limitations and UncertaintiesL2-15ScheduleL2-15CostL2-18Works CitedL2-21                                               |  |  |
| L3    | In Situ Cometabolic Biotreatment Implementation Plan L3-1   Technology Overview L3-1   Potential Benefits L3-5   Potential Locations L3-7   Approach L3-8   Technology Limitations and Uncertainties L3-14   Schedule L3-16   Cost L3-16   Works Cited L3-20            |  |  |

.

RDD10012E0A.WP5-iii (GW RI/FS)

and the second second second second

6/23/94

,

• •• •

----

| Apper | Appendix Page                                                                                                                                                                                                          |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| L4    | Dual Phase Extraction (DPE) Implementation PlanL4-1Technology OverviewL4-1Potential BenefitsL4-3Potential LocationsL4-7ApproachL4-7Technology Limitations and UncertaintiesL4-12ScheduleL4-15CostL4-15Works CitedL4-19 |  |  |  |
| L5    | SVE/Sparging Implementation PlanL5-1Technology OverviewL5-1Potential BenefitsL5-3Potential LocationsL5-5ApproachL5-6Technology Limitations and UncertaintiesL5-12ScheduleL5-13CostL5-13Works CitedL5-17                |  |  |  |
| L6    | Electron Beam Treatment Implementation PlanL6-1Technology OverviewL6-1Potential BenefitsL6-4Potential LocationsL6-6ApproachL6-6Technology Limitations and UncertaintiesL6-10ScheduleL6-12CostL6-12Works CitedL6-12     |  |  |  |
| L7    | Cometabolic Biofiltration Implementation PlanL7-1Technology OverviewL7-1Potential BenefitsL7-3Potential LocationsL7-6ApproachL7-6Technology Limitations and UncertaintiesL7-10ScheduleL7-12CostL7-12Works CitedL7-12   |  |  |  |

.

RDD10012E0A.WP5-iv (GW RI/FS)

6/23/94

.....

. .....

, }

Ì

#### Appendix

- - - - - - ---

| L8 | Resin Adsorption Implementation Plan L8-1                                                         |
|----|---------------------------------------------------------------------------------------------------|
|    | Technology Overview                                                                               |
|    | Potential Benefits L8-4                                                                           |
|    | Potential Locations L8-6                                                                          |
|    | Approach L8-6                                                                                     |
|    | Technology Limitations and Uncertainties                                                          |
|    | Schedule                                                                                          |
|    | Cost L8-14                                                                                        |
|    | Works Cited L8-16                                                                                 |
| М  | Influent VOC Concentration Estimate M-1                                                           |
|    | Introduction M-1                                                                                  |
|    | Influent Concentrations for Order-of-Magnitude Cost Estimates M-1                                 |
|    | Influent Concentrations for Budget-Level Cost Estimates M-6                                       |
| Ν  | Production Well Pumping Information                                                               |
|    | Introduction                                                                                      |
|    | Compilation of Data N-1                                                                           |
| 0  | Well Closure Methods and Procedures Report and Field Summary                                      |
| Р  | Budget Estimate/Technical Proposal for Horizontal Extraction<br>Wells at McClellan Air Force Base |
| Q  | Evaluation of End-Use Options Q-1                                                                 |
|    | Purpose and Scope Q-1                                                                             |
|    | Background Q-1                                                                                    |
|    | Treatment Groundwater Characteristics                                                             |
|    | End-Use Screening                                                                                 |
|    | Further Development of End-Use Options                                                            |
|    | Implementation of End-Use Options                                                                 |
|    | Works Cited                                                                                       |
|    |                                                                                                   |

. . . . .

K

6/23/94

#### Appendix

#### Page

. . . . . . . . . . . . . . . . .

| R | Methodology for Budget-Level Cost Estimates R-1 |
|---|-------------------------------------------------|
|   | Introduction R-1                                |
|   | Extraction System R-2                           |
|   | Treatment System R-7                            |
|   | End-Use System R-16                             |
|   | Summary                                         |

S Tasks and Schedules for Implementation Plans

#### Located in Other Volumes

#### Chapter

#### Volume

|      | Executive Summary                            | 1 |
|------|----------------------------------------------|---|
|      | Glossary of Terms                            | 1 |
| 1    | Introduction                                 | 1 |
| 2    | Study Area Investigations                    | 1 |
| 3    | Physical Characteristics of the Study Area   | 1 |
| 4    | Conceptual Model                             | 1 |
| 5    | Risk Assessment and ARARs                    | 1 |
| 6    | Feasibility Study Approach                   | 1 |
| 7    | Data Collection and Management               | 1 |
| 8    | Groundwater Containment Options              | 1 |
| 9    | Groundwater Treatment Options                | 1 |
| 10   | Innovative Technologies                      | 1 |
| 11   | Water End-Use Options                        | 1 |
| 12   | Assembly and Screening of Alternatives       | 1 |
| 13   | Implementation Plans and Detailed Evaluation | 1 |
| 14   | Works Cited                                  | 1 |
|      | Response to Comments                         | 2 |
| Appe | ndix                                         |   |
|      |                                              | h |

| Α | Groundwater Treatment Plant Evaluation 2                    |   |
|---|-------------------------------------------------------------|---|
| B | Risk Assessment Methodology 2                               | 2 |
| C | Risk Evaluation of Remedial Action Alternatives (continued) |   |
| D | ARARs Analysis                                              | 2 |

:

)

#### Located in Other Volumes (continued)

#### Appendix

.

ł

,

.

1

**.** .

. .

#### Page

\_\_\_\_

. . . . . . .

| E | Proposed Groundwater Monitoring Program                       | 2 |
|---|---------------------------------------------------------------|---|
| F | Data Management                                               | 2 |
| G | Interactions of the Vadose Zone and Groundwater Remedial      | 2 |
| Η | Decision Analysis                                             | 2 |
| Ι | Technology Screening and Groundwater Treatment Cost Estimates | 2 |





#### **TECHNICAL MEMORANDUM J**

CHANHILL

PREPARED FOR:McClellan Air Force BaseDATE:May 12, 1994SUBJECT:Groundwater Model Development<br/>Groundwater OU RI/FS Report<br/>Delivery Order No. 5066PROJECT:SAC28722.66.GW

As a convenience to the reader, all oversize figures  $(11^{"} \times 17^{"} \text{ or larger})$  have been located at the end of the appendix.

#### Introduction

This technical memorandum describes the construction, calibration, and application of the groundwater flow model developed to evaluate remedial action alternatives at McClellan Air Force Base (McClellan AFB). The objectives of the modeling effort and the uncertainties and limitations of using a numerical model to simulate a complex physical system are also discussed.

#### **Modeling Objectives**

A numerical groundwater flow model was developed as an analytical tool to assist in the development of extraction well networks to contain and remediate contaminated groundwater at McClellan AFB. The specific objectives of the modeling effort are as follows:

- Evaluate the total extraction rate required to contain various target volumes of contaminated groundwater
- Demonstrate that groundwater containment is a viable remedial alternative for contaminated groundwater at McClellan AFB
- Estimate the response of the groundwater system to potential remedial actions

Additional questions that were addressed during the course of the modeling effort include:

- The quantity of extracted groundwater requiring treatment
- The impact of end-use injection on the containment system

Numerical modeling was chosen as the appropriate tool for this task because it has the capability to represent multidimensional flow in a heterogeneous system with less conceptual idealization than is required by other analytical techniques. However, it was recognized from the outset that there will always be some uncertainty in the hydrogeologic understanding of the site and that the modeling analysis can only provide approximate answers to the items previously discussed. The process of developing a numerical model of a complex physical system requires that simplifying assumptions be made to reflect the uncertainties in the definition of the site characteristics. Site characteristics that are routinely simplified for the purpose of numerical analysis are the spatial variability of aquifer properties, the spatial distribution of contamination, and the temporal variation in recharge and groundwater pumping.

The use of a groundwater flow model to develop extraction network designs necessarily makes the resulting extraction networks subject to these same uncertainties. At McClellan AFB, the most significant uncertainties in the site characteristics used to construct the groundwater model include:

- The geometry of the monitoring zones undergoing remediation
- The spatial distribution of aquifer properties across the site
- The spatial distribution of contamination
- Future hydrologic conditions that may alter the effectiveness of the extraction system

This technical memorandum provides a summary of the numerical modeling procedures and results as they pertain to the previously listed objectives.

#### Site Conceptual Model and Model Construction

The first step in the analytical process is to identify the essential features of the site hydrologic system that must be included in the conceptual model and to determine how the essential features can be represented in the numerical analysis. This procedure results in the development of a site conceptual model, which then forms the framework for construction of the numerical model. This section discusses the characteristics of the model code, essential quantitative aspects of the conceptual model that were included in the numerical model, and the procedures used to construct the numerical model. For further detail regarding the complete site conceptual model, refer to Chapter 4 of the RI/FS Report.

#### **Groundwater Model Code Description and Selection**

The groundwater flow model prepared for this project is a multilayer finite element model that can be run as a steady-state or transient system. The code for the model is Micro-Fem, an integrated groundwater modeling package developed in the Netherlands (Hemker, 1988). Micro-Fem runs on any PC with EGA or VGA graphics. The present version handles up to 16 aquifers and a maximum number of nodes between 1,000 and 4,000 on a PC with 590 Kb user-available RAM, depending on the number of layers in the simulated system. When extended memory is available on 80386- or 80486-based microcomputers, models up to 12,500 nodes (25,000 elements) can be designed. The package consists of several programs: two finite element mesh generators, a calculation module for steady-state flow and one for transient flow, a combined pre- and postprocessor called FeModel, a three-dimensional particle tracking program and some additional utilities. It is capable of modeling saturated, single-density groundwater flow in layered systems. Horizontal flow is considered in each layer, as is vertical flow between adjacent layers. A layered aquifer or different aquifers in a multiple-aquifer system can be modeled in this way.

The mesh generation routine is described in Lo, 1985. The band-width reduction technique is based on the approach of Gibbs et. al., 1976.

Programs called FemCalc (steady-state) and FemCat (trar ient) perform the calculations for solving the flow equations by means of a finite element technique with linear basis functions for the horizontal flow components and through a finite- difference scheme for the flow between adjacent layers. The system of equations is solved iteratively, using the method of successive over-relaxation (SOR) with automatic adjustment of the relaxation factor. The progress of calculations is shown on the screen by head improvements and residual water balance errors. The automatic stopping criterion can be overruled by the user.

The Micro-Fem model was chosen for use at McClellan AFB for several reasons outlined below:

- The finite element approach allowed the construction of a model grid that covered 100 square miles while maintaining node spacings as small as 75 feet in areas where groundwater extraction is simulated.
- Micro-Fem includes a three dimensional particle tracking utility that is ideal to evaluate capture in the stratified aquifer system at McClellan
- The graphical user interface allows rapid assignment of aquifer parameters to model nodes, and allows proofing of assigned values by graphical means

RDD10012C5F.WP5 (GW RI/FS)

6/23/94

#### **Finite Element Mesh Delineation and Boundary Conditions**

#### Model Grid

The numerical model developed for McClellan AFB was developed in accordance with the site conceptual model discussed in Chapter 4 of the RI/FS report. The Micro-Fem groundwater model was constructed as a four-layer model using a computational finite element mesh of 11,510 nodes and 22,894 elements. Figure J-1 shows the general layout of the model grid which consists of a central area of extremely fine node spacing (75 ft) that transitions out to the model boundaries with constantly increasing node spacing. The total modeled area is approximately 100 mi<sup>2</sup>, centered on McClellan AFB. The node spacing ranges from 75 to 2,000 feet, with smaller elements constructed in areas of observed contamination. High node density in areas of suspected and confirmed contamination allows improved definition of spatial hydraulic head distribution created by extraction well pumping. Along w improved definition in the hydraulic head field comes more reliable particle tracking analysis and better estimation of the extent of capture for a particular extraction wellfield.

#### **Boundary Conditions**

Boundary conditions define the interactions between heads located within the modeled area and groundwater conditions outside the model area. The boundary condition on the lateral boundaries are fixed head boundaries in all four layers, assigned based on observed regional 1992 groundwater levels compiled by Sacramento County (Figure J-2). These boundary conditions account for the influence of regional groundwater conditions on the modeled area. The upper boundary is a prescribed flux boundary, with a specified recharge rate. At model nodes representing A-zone extraction wells, the recharge rate applied to the ground surface is subtracted from the extraction rate of the well. The lower boundary for this model is assigned as a no-flow boundary, corresponding to the base of the Mherten Formation which represents the base of the water bearing sediments in the lower Sacramento Valley.

#### **Conceptual Model Description and Parameter Selection**

The essential features of the hydrologic system at McClellan AFB included in the numerical model are:

- Monitoring Zone A
- Monitoring Zone B
- Monitoring Zone C
- The Regional Aquifer
- Base Extraction and Supply Wells
- Existing Base extraction wells

RDD10012C5F.WP5 (GW RI/FS)

6/23/94



SOURCE: Secremento County

- -

•

• .

This groundwater contour map is for general comparison only. Specific information should be obtained by independent investigation.

-

FIGURE J-2 OBSERVED SPRING 1992 GROUNDWATER ELEVATIONS INTHE VICINITY OF MCCLELLAN AIR FORCE BASE GROUNDWATER OPERABLE UNIT RIFS MCCLEILAN AIR FORCE BASE SACRAMENTO, CALIFORNIA

------

RDD1464\_704

C

- Regional Groundwater Production
- Recharge of Precipitation to the Groundwater System

A description of how each of the conceptual model components was incorporated into the numerical groundwater model is provided below.

#### **Monitoring Zone A**

The A monitoring zone is defined in the numerical model to be consistent with the characteristics discussed in Chapter 4. The aquifer was simulated as an unconfined aquifer with the transmissivity distribution shown in Figure J-3. These values are based on the results of aquifer testing presented in the PGOURI and summarized in Tables J-1 and J-2. This transmissivity distribution was digitized as shown, gridded using the Golden Software SURFER computer program to create a 100 by 100 data field, and imported into Micro-Fem. The transmissivity value at each grid point was assigned to the nearest Micro-Fem node, and data values were averaged if more than one data point was assigned to an individual model node. A linear interpolation scheme included within Micro-Fem was then used to assign transmissivity values to any remaining model nodes without an associated transmissivity value. This gridding routine was only performed at locations on, and in the vicinity of McClellan AFB where transmissivity estimates were available from pumping tests. At areas distant from McClellan, an average transmissivity value for the zone was assumed to extend to the model boundaries. The vertical leakance between layers was assigned based on the local transmissivity estimate at each node and the layer thicknesses at that particular location. The layer thicknesses used in the simulations were calculated based on the structural contour maps for the base elevations for each zone presented in the PGOURI (Section 3, Figures 3-29 through 3-31).

The bottom elevation and groundwater levels in Monitoring Zone A are extremely critical to the development of the A-zone extraction well alternatives. This is due to the fact that portions of the A-zone west of the runway have a limited saturated thickness, and wells completed in the A-zone will produce little water. Containment of contaminated groundwater in these areas will require a greater density of extraction wells because of the limited pumping capacity of each individual well. The thickness of the A-zone was determined by subtracting the elevations of the base of the A-zone from the 1993 A-zone groundwater elevations (Figure 4-35). A more detailed mathematical description of the calculation of vertical leakance values is presented below.



|                                 |     |                                  | McClellan AFB        |                             |            | ······   |
|---------------------------------|-----|----------------------------------|----------------------|-----------------------------|------------|----------|
|                                 |     | 1                                | ransmissivity (gpd/f | l)                          | Average    | Values   |
| Well ID                         | OU  | Papadopulos-<br>Cooper<br>Method | Jacob Method         | Theis<br>Recovery<br>Method | T (gpd/ft) | K (fl/d) |
| A Monitoring Zo                 | De  |                                  |                      |                             |            |          |
| MW-1061                         | A   | 1100                             | 2500                 | 5600                        | 4100       | 34       |
| MW-175                          | A   | 7220                             | 12900                | 28100                       | 20500      | 166      |
| MW-186                          | A   | 900                              | 600                  | 1500                        | 1100       | 10       |
| MW-206                          | С   | 5900                             | 16300                | 13600                       | 15000      | 100      |
| MW-203                          | A   | 500                              | 6600                 | 6600                        | 6600       | 65       |
| MW-222                          | Α   | 300                              | 300                  | 100                         | 200        | 2        |
| B Monitoring Zo                 | bie |                                  |                      |                             |            |          |
| MW-1059                         | Α   | 800                              | 3800                 | 4200                        | 4000       | 53       |
| MW-1062                         | Α   | 4700                             | 12500                | 12400                       | 12400      | 170      |
| MW-176                          | Α   | 1000                             | 7300                 | 12800                       | 12800      | 130      |
| MW-179                          | Α   | 5000                             | 9600                 | 5500                        | 5500       | 100      |
| MW-195 E 2100 10100 16900 16900 |     |                                  |                      | 180                         |            |          |
| MW-198                          | A   | 2800                             | 6900                 | 15800                       | 15800      | 217      |
| MW-204 A 2500 20400 11700 11700 |     | 215                              |                      |                             |            |          |
| MW-207 C 1900 9500 7900 7900    |     |                                  | 129                  |                             |            |          |
| MW-211                          | A   | 2800                             | 11700                | 9500                        | 9500       | 140      |
| MW-223                          | A   | 1100                             | 6300                 | 11800                       | 11800      | 120      |
| MW-225                          | A   | 1700                             | 10000                | 6700                        | 6700       | 112      |
| C Monitoring Zo                 | )ne |                                  |                      |                             | •          |          |
| MW-1060                         | A   | 1800                             | 6200                 | 4700                        | 5500       | 73       |
| MW-1063                         | Α   | 4600                             | 20400                | 18700                       | 19600      | 262      |
| MW-174                          | A   | 2400                             | 7900                 | 4000                        | 6000       | 93       |
| MW-177                          | A   | 7500                             | 24000                | 20600                       | 22300      | 300      |
| MW-180                          | A   | 1800                             | 5600                 | 4000                        | 4800       | 63       |
| MW-187                          | A   | 14200                            | 87000                | 32200                       | 59600      | 770      |
| MW-196                          | E   | 3200                             | 14900                | 12400                       | 13700      | 180      |
| MW-199                          | Ā   | 16300                            | 67500                | 58200                       | 62900      | 823      |
| MW-205                          | A   | 5700                             | 1600                 | 3500                        | 2600       | 34       |
| MW-208                          | с   | 3900                             | 8000                 | N/C                         | 8000       | 134      |

.

.

5

J-8

------

)

١

| Table J-2<br>Summary of Multiple Well Aquifer Testing                                                                                                                                                                                                                                                                                                                                            |                                             |                    |                  |         |                                              |                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|------------------|---------|----------------------------------------------|----------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                  | Transmissivity (gpd/ft) Storage Coefficient |                    |                  |         |                                              |                      |  |
| ου                                                                                                                                                                                                                                                                                                                                                                                               | Contractor                                  | Monitoring<br>Zone | Range            | Average | Range                                        | Average              |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                | CH2M HILL                                   | Α                  | 17,500 to 28,600 | 16,500  | 9.0x10 <sup>-4</sup> to 8.2x10 <sup>-3</sup> | N/A                  |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                | CH2M HILL                                   | В                  | 2,300 to 19,300  | 8,800   | 3x10 <sup>-4</sup> to 1.1x10 <sup>-3</sup>   | 8x10 <sup>-4</sup>   |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                | McLaren                                     | A/B                | 7,000 to 19,000  | N/A     | 5x10 <sup>-4</sup> to 9.1x10 <sup>-3</sup>   | N/A                  |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Radian (1986)                               | A/B                | 7,700 to 8,600   | 8,000   | 1.3x10 <sup>-4</sup> to 6.2x10 <sup>-4</sup> | 3x10 <sup>-4</sup>   |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Radian (1986)                               | с                  | 7,600 to 15,000  | 12,000  | 1.6x10 <sup>-4</sup> to 8.7x10 <sup>-5</sup> | 1.6x10 <sup>-4</sup> |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Radian (1990)                               | A/B                | 5,700 to 6,900   | 6,300   | 3.7x10 <sup>-4</sup> to 1.5x10 <sup>-4</sup> | 2.6x10 <sup>-4</sup> |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Radian (1991)                               | С                  | 4,150 to 5,100   | 4,600   | 1x10 <sup>-4</sup> to 8x10 <sup>-4</sup>     | 4.5x10 <sup>-4</sup> |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Radian (1990)                               | В                  | 9,700 to 10,100  | 9,900   | 7.5x10 <sup>-4</sup> to 8.8x10 <sup>-4</sup> | 8.1x10 <sup>-4</sup> |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Radian (1990)                               | С                  | 10,800 to 12,100 | 11,000  | 2.3x10 <sup>-4</sup> to 2.3x10 <sup>-3</sup> | 1.3x10 <sup>-3</sup> |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | EG&G Idaho                                  | A                  | 3,000 to 10,000  | 6,500   | 5x10 <sup>-4</sup>                           | 5x10 <sup>-4</sup>   |  |
| Note:<br>N/A = Information not available.<br>Sources:<br>Transmissivity and Storage Coefficient Estimates: (Preliminary GW OU RI Table 3-9) Radian, 1992<br>CH2M HILL Aquifer Test Data and Interpretation: (CH2M HILL, 1984)<br>Radian Aquifer Test Data and Interpretation: (Preliminary GW OU RI-Appendix E, Radian, 1992)<br>EG&G and Mcl aren Aquifer Test Data Not Independently Evaluated |                                             |                    |                  |         |                                              |                      |  |

#### **Monitoring Zone B**

Monitoring zone B was simulated as a confined, leaky, aquifer. The transmissivity distribution used in the modeling simulations for monitoring zone B are presented in Figure J-4. The information contained on this figure was digitized, gridded, and assigned to model nodes using the methodology described above for the A-zone. Vertical leakance values were also determined in a similar manner. The thickness of the B-zone was calculated by subtracting the base elevation of the B-zone presented in the PGOURI (Section 3, Figure 3-30) from the base elevations of the A-zone presented in the same document.

#### **Monitoring Zone C**

Monitoring zone C was simulated as a confined, leaky, aquifer. The transmissivity distribution used in the modeling simulations for monitoring zone C are presented in Figure J-5. The information contained on this figure was digitized, gridded, and assigned to model nodes using the methodology described above for the A-zone. Vertical leakance values were also determined in a similar manner. The thickness of the C-zone was calculated by subtracting the base elevation of the C-zone presented in the PGOURI (Section 3, Figure 3-31) from the base elevations of the B-zone presented in the same document.

RDD10012C5F.WP5 (GW RI/FS)

6/23/94





.....

#### **Regional Aquifer**

The regional aquifer was modeled as a confined, leaky aquifer system. The main source of information regarding the aquifer properties of the regional aquifer was the regional groundwater model developed for this area by S.S. Papadopolus in 1987. AFORTRAN computer program was developed to read the Papadopulos model input files and extract the hydraulic parameters needed for Micro-Fem. The regional aquifer, as defined here, represents the entire aquifer thickness in the Sacramento area from the water table to the base of the water bearing aquifer (defined as the base of the Mherten formation). The upper three layers of the groundwater model (the A,B, and C Monitoring Zones) do extend to the model boundaries, but their low transmissivities are overwhelmed by the transmissivity of the regional aquifer, and they do not significantly impact groundwater flow. The vertical leakance between the C-zone and the regional aquifer was calculated using a method identical to that described above. Due to the great thickness of the regional aquifer compared to monitoring zone C, the hydraulic conductivity of the regional aquifer dominated this leakance calculation. The assumed hydraulic conductivity distribution of the regional aquifer is presented in Figure J-6. The assumed thickness distribution of the regional aquifer was also obtained from the Papadopulos model.

#### Vertical Leakance

The conceptual model of groundwater flow includes leakage upward and downward. This was incorporated by specifying a leakage term between layers. Value of this parameter is a function of the conductance of each layer, which is a function of average vertical hydraulic conductivity between layers and the thickness of the layers.

The vertical leakance was computed with the help of the MicroFem computing capabilities using the following equation:

$$VC = 1/(d_1/k_{\nu l} + d_2/k_{\nu 2})$$
(1)

where:

| VC                    | = | the vertical conductance between Layer 1 and Layer 2 |
|-----------------------|---|------------------------------------------------------|
| <b>d</b> <sub>1</sub> | Ξ | the thickness of Layer 1                             |
| $k_{vl}$              | = | the vertical hydraulic conductivity of Layer 1       |
| d2                    | = | the thickness of Layer 2                             |
| k <sub>v2</sub>       | Ξ | the vertical hydraulic conductivity of Layer 2       |
|                       |   |                                                      |

The value of the vertical hydraulic conductivity  $(k_{\nu})$  was assumed to be 10 percent of horizontal hydraulic conductivity to satisfy an anisotropy ratio of 1 to 10.



#### **Regional Production Wells**

The regional groundwater production data were included in the calibrated S.S. Papadopolus model and these were directly imported into the Micro-Fem model. Comparison of the distribution of regional groundwater production included in the Papadopuos model with the information presented in Appendix N indicate that all of the major pumping wells in the vicinity of the Base were incorporated in the Papadopulos data set (See Appendix N for the locations of these pumping centers).

#### **Base Extraction and Supply Wells**

Base well pumping for BW-10, BW-18, and BW-29 was included in the groundwater model based on average annual pumping rates for 1992 obtained from the Metcalf & Eddy Quarterly Monitoring Reports. The assumed pumping rates for the operating Base wells was 270 gpm, 975 gpm, and 375 gpm for Base wells BW-10, BW-18, and BW-29 respectively. Existing Base extraction well pumping was also included in the model, using average pumping rates for 1992, based on Radian Quarterly Production Well Data for McClellan AFB. Table J-3 presents the assumed average pumping rates for the Base extraction wells at McClellan.

| Table J-3     Summary of Existing Groundwater Extraction     McCleilan AFB |             |                 |                                 |  |
|----------------------------------------------------------------------------|-------------|-----------------|---------------------------------|--|
| Well Name                                                                  | OU Location | Monitoring Zone | Avg Pumping Rate<br>(1992)- gpm |  |
| EW-73                                                                      | OU D        | A/B             | 20.5                            |  |
| EW-83                                                                      | OU D        | A/B             | 6.1                             |  |
| EW-84                                                                      | OU D        | A/B             | 6.5                             |  |
| EW-85                                                                      | OU D        | A/B             | 11.7                            |  |
| EW-86                                                                      | OU D        | A/B             | 12.2                            |  |
| EW-87                                                                      | OU D        | A/B             | 12.3                            |  |
| EW-137                                                                     | OU C        | В               | 7.7                             |  |
| EW-140                                                                     | OU C        | В               | 25.4                            |  |
| EW-141                                                                     | OU C        | С               | 17.2                            |  |
| EW-144                                                                     | OU C        | В               | 19.2                            |  |
| EW-233                                                                     | OU B        | Α               | 5.2                             |  |
| EW-234                                                                     | OU B        | Α               | 1.6                             |  |
| EW-246                                                                     | OU B        | Α               | N/A                             |  |
| EW-63                                                                      | OU B        | В               | N/A                             |  |
| EW-247                                                                     | OU B        | С               | N/A                             |  |
| Notes:<br>N/A - Information not available                                  |             |                 |                                 |  |

6/23/94

2

#### **Recharge of Precipitation**

The actual recharge of precipitation to the groundwater system varies spatially based on land use, drainage patterns, and urbanization. The initial assumption used in the groundwater model was a uniform distribution of recharge of 2.5 inches per year. This values represents approximately 15 percent of the annual rainfall at McClellan AFB. This values was adjusted by +/-25 percent to improve the accuracy of the calibration.

#### **Calibration and Sensitivity Analysis**

Model calibration is an interactive process in which certain model parameters are adjusted to produce predicted groundwater elevations that closely match observed conditions. Usually, the parameters adjusted are those that have not been accurately measured in the field and that can have a strong influence on the simulation results. The objective of the calibration process was to achieve a run that produced simulated water levels that closely matched the calibration head target. The results of the calibration process for the McClellan model suggest that minor adjustments of the recharge rate were sufficient to achieve agreement between the simulated heads in the upper three aquifers at the site and the observed water levels in site monitoring wells. Slightly higher recharge rates (up to 25%) were necessary in the northern portions of the Base and slightly lower values (up to 25%) were necessary in the southern portions of the Base. Calibration was quite accurate in the central portions of the Base using the initially assigned value. These results are consistent with the presence of open space in the northern portions of the Base allowing recharge, and the relatively heavy urbanization in the southern portions of the Base preventing it. It is acknowledged that this is not a unique solution to matching observed water levels, and that other parameters could be adjusted to obtain similar results. Regional aquifer parameters were obtained from a previously calibrated numerical model, so they were not considered a calibration parameter.

#### Water Level Calibration

The following criteria were used for calibration:

- The model should yield the same water level distribution configuration observed at the site.
- The model should accurately predict the cone of depression at known pumping well locations
- The model should accurately predict the overall gradient within the model domain.

RDD10012C5F.WP5 (GW RI/FS)

6/23/94

#### **Calibration Summary**

This section summarizes the results of the calibration process for the groundwater model used to evaluate remedial options at McClellan AFB. All of the methods used to quantify the state of calibration of the model rely on some form of comparison between simulated groundwater levels and the water levels measured in monitoring wells in January 1993. The data set used for these comparisons is the water levels measured in 194 monitoring wells across the site; 97 A-zone wells, 63 B-Zone wells, and 34 C-zone wells. Wells with screens in the transition between zones were assigned to the higher aquifer for the purposes of data comparison. Extraction wells were omitted from this comparison as the well efficiency of each extraction well will influence the measured groundwater levels in the well, while the simulated water levels reflect an assumed 100 percent well efficiency.

Table J-4 presents the simulated and actual water level for all of the calibration wells at the site, along with the magnitude of the residuals. The average residual between the simulated and actual water levels is 1.2 feet. Figure J-7 presents this same information in graphical form. An perfect match between simulated and observed values would generate a line with a slope of 1.0 as indicated on the figure. The best fit line through the data set is also presented on this figure for comparison. This comparison indicates that in the lowest water level ranges (i.e., the southern part of the Base), the model predicts slightly higher water levels than those observed. In the higher water level ranges (the northern portions of the Base) the model predicts slightly lower water levels than those observed.

Another way of quantifying the error between the simulated and observed water levels is through the used of a histogram analysis of the water level residuals. The results of this analysis are summarized in Figure J-8 and Table J-5. This evaluation indicates that at 78 percent of the wells, simulated water levels are within two feet of actuals, and in 98 percent of the wells, simulated water levels are within four feet of the observed. The final three wells have simulated water levels that are within four to six feet of the observed.

A final presentation method of the state of calibration is to compare the simulated groundwater contours with the measured water levels. Figures J-9 through J-11 show these comparisons for the A-zone, B-zone, and C-zone, respectively. The same trends described above can be seen on these figures. Predicted water levels on the south end of the base are slightly high, and predicted water levels on the north end are slightly low. However, the overall accuracy of the simulated water levels, and groundwater flow directions, are more than adequate to meet the objectives of this groundwater modeling effort.

| Table J-4                                                    |                 |             |             |                |  |
|--------------------------------------------------------------|-----------------|-------------|-------------|----------------|--|
| Simulated versus Observed Water Levels - Revised Calibration |                 |             |             |                |  |
| McClellan AFB Groundwater Model                              |                 |             |             |                |  |
|                                                              |                 | Observed    | Simulated   | Observed       |  |
| Zone                                                         | Well            | Water Level | Water Level | less Simulated |  |
| Α                                                            | <b>MW</b> -10   | -38.59      | -36.7       | -1.89          |  |
| Α                                                            | MW-1002         | -36.75      | -35.3       | -1.45          |  |
| Α                                                            | MW-1004         | -36.23      | -35         | -1.23          |  |
| Α                                                            | MW-1005         | -36.05      | -34.6       | -1.45          |  |
| Α                                                            | MW-1009         | -35.25      | -34.5       | -0.75          |  |
| Α                                                            | MW-1014         | -40.29      | -40.1       | -0.19          |  |
| Α                                                            | MW-1015         | -46.04      | -42.8       | -3.24          |  |
| Α                                                            | <b>MW-</b> 1016 | -44.26      | -44.5       | 0.24           |  |
| Α                                                            | MW-1020         | -45.21      | -43.2       | -2.01          |  |
| Α                                                            | MW-1021         | -46.87      | -47.5       | 0.63           |  |
| Α                                                            | MW-1026         | -35.08      | -35         | -0.08          |  |
| Α                                                            | MW-1044         | -46.29      | -46.3       | 0.01           |  |
| Α                                                            | MW-1054         | -46.49      | -44.4       | -2.09          |  |
| Α                                                            | MW-1064         | -35.77      | -34.1       | -1.67          |  |
| Α                                                            | MW-1069         | -46.44      | -42.8       | -3.64          |  |
| Α                                                            | <b>MW-107</b>   | -36.09      | -35.3       | -0.79          |  |
| Α                                                            | <b>MW-</b> 11   | -37.78      | -36.1       | -1.68          |  |
| Α                                                            | MW-110          | -37.06      | -34.9       | -2.16          |  |
| Α                                                            | MW-111          | -37.35      | -35         | -2.35          |  |
| Α                                                            | MW-115          | -39.35      | -37.2       | -2.15          |  |
| Α                                                            | MW-12           | -38.06      | -36.5       | -1.56          |  |
| Α                                                            | MW-123          | -42.22      | -40.7       | -1.52          |  |
| Α                                                            | MW-128          | -38.15      | -38.3       | 0.15           |  |
| Α                                                            | MW-129          | -38.48      | -38.3       | -0.18          |  |
| Α                                                            | MW-131          | -39.18      | -39.3       | 0.12           |  |
| A                                                            | MW-135          | -41.81      | -40.1       | -1.71          |  |
| Α                                                            | MW-139          | -40.13      | -40.1       | -0.03          |  |
| A                                                            | MW-14           | -38.41      | -36.7       | -1.71          |  |
| Α                                                            | MW-145          | -44.12      | -43         | -1.12          |  |
| Α                                                            | MW-15           | -38.2       | -36.5       | -1.7           |  |
| Α                                                            | MW-150          | -46.21      | -45.5       | -0.71          |  |
| Α                                                            | MW-153          | -44.15      | -47.2       | 3.05           |  |
| Α                                                            | MW-155          | -44.86      | -45.1       | 0.24           |  |
| A                                                            | MW-157          | -43.55      | -46.6       | 3.05           |  |
| A                                                            | MW-158          | -43.64      | -45.9       | 2.26           |  |

•

-----

.

e verez e soan

. . .. .

مدينية فريد

RDD/DP/C:\GW\caisum.xis

()

• -----

į

.....

| Table J-4                                                    |               |             |             |                |  |
|--------------------------------------------------------------|---------------|-------------|-------------|----------------|--|
| Simulated versus Observed Water Levels - Revised Calibration |               |             |             |                |  |
| McClellan AFB Groundwater Model                              |               |             |             |                |  |
|                                                              |               | Observed    | Simulated   | Observed       |  |
| Zone                                                         | Well          | Water Level | Water Level | less Simulated |  |
| Α                                                            | MW-159        | -43.01      | -44.1       | 1.09           |  |
| Α                                                            | <b>MW-160</b> | -35.12      | -35.7       | 0.58           |  |
| Α                                                            | MW-164        | -42.36      | -41.8       | -0.56          |  |
| <u>A</u>                                                     | MW-169        | -31.97      | -33.4       | 1.43           |  |
| Α                                                            | MW-172        | -33.5       | -34.5       | 1              |  |
| Α                                                            | MW-175        | -41.1       | -40.7       | -0.4           |  |
| Α                                                            | MW-182        | -40.34      | -39.5       | -0.84          |  |
| Α                                                            | MW-185        | -33.17      | -34.3       | 1.13           |  |
| A                                                            | MW-186        | -38.03      | -38.1       | 0.07           |  |
| Α                                                            | MW-188        | -36.57      | -35.9       | -0.67          |  |
| Α                                                            | MW-191        | -42.62      | -42.5       | -0.12          |  |
| Α                                                            | MW-197        | -36.3       | -36.7       | 0.4            |  |
| A                                                            | MW-200        | -44.21      | -46.7       | 2.49           |  |
| Α                                                            | MW-202        | -33.53      | -34.3       | 0.77           |  |
| Α                                                            | MW-203        | -36.35      | -36.5       | 0.15           |  |
| A                                                            | MW-206        | -38.17      | -38.5       | 0.33           |  |
| Α                                                            | MW-209        | -36.3       | -36.7       | 0.4            |  |
| Α                                                            | MW-212        | -31.64      | -33.7       | 2.06           |  |
| Α                                                            | MW-214        | -41.05      | -41.2       | 0.15           |  |
| Α                                                            | MW-217        | -45.46      | -47.5       | 2.04           |  |
| A                                                            | MW-21D        | -37.47      | -37         | -0.47          |  |
| Α                                                            | MW-222        | -34.71      | -35.5       | 0.79           |  |
| Α                                                            | MW-224        | -33.02      | -33.9       | 0.88           |  |
| Α                                                            | MW-226        | -32.21      | -33.4       | 1.19           |  |
| Α                                                            | MW-228        | -32.34      | -34.1       | 1.76           |  |
| A                                                            | MW-235        | -43.23      | -45.2       | 1.97           |  |
| Α                                                            | F4W-236       | -43.5       | -45.4       | 1.9            |  |
| Α                                                            | MW-25D        | -40.03      | -40         | -0.03          |  |
| Α                                                            | MW-28D        | -34.22      | -35.9       | 1.68           |  |
| Α                                                            | MW-33S        | -38.04      | -38         | -0.04          |  |
| A                                                            | MW-41S        | -43.27      | -46.4       | 3.13           |  |
| Α                                                            | MW-44S        | -36.73      | -36.2       | -0.53          |  |
| Α                                                            | MW-60         | -37.57      | -36.5       | -1.07          |  |
| A                                                            | MW-61         | -39.61      | -39         | -0.61          |  |
| Α                                                            | MW-62         | -36.37      | -36.2       | -0.17          |  |

ì.

RDD/DP/C:\GW\caisum.xis

. .....

1

.

•

----

| Table J-4                                                    |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Simulated versus Observed Water Levels - Revised Calibration |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| McClellan AFB Groundwater Model                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                              | Observed                                                                                                                                                                                                                                                    | Simulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Well                                                         | Water Level                                                                                                                                                                                                                                                 | Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | less Simulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| MW-65                                                        | -42.89                                                                                                                                                                                                                                                      | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MW-7                                                         | -44.74                                                                                                                                                                                                                                                      | -45.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MW-72                                                        | -38.62                                                                                                                                                                                                                                                      | -36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-75                                                        | -38.13                                                                                                                                                                                                                                                      | -38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-88                                                        | -36.97                                                                                                                                                                                                                                                      | -36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-89                                                        | -37.86                                                                                                                                                                                                                                                      | -36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-90                                                        | -37.67                                                                                                                                                                                                                                                      | -36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-91                                                        | -37.37                                                                                                                                                                                                                                                      | -36.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-92                                                        | -37.12                                                                                                                                                                                                                                                      | -36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1000                                                      | -45.28                                                                                                                                                                                                                                                      | -43.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1003                                                      | -36.24                                                                                                                                                                                                                                                      | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <b>MW-1010</b>                                               | -35.69                                                                                                                                                                                                                                                      | -34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1034                                                      | -40.41                                                                                                                                                                                                                                                      | -36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1042                                                      | -36.01                                                                                                                                                                                                                                                      | -33.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-108                                                       | -36.41                                                                                                                                                                                                                                                      | -35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-113                                                       | -37.91                                                                                                                                                                                                                                                      | -35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <b>MW-124</b>                                                | -42.09                                                                                                                                                                                                                                                      | -42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-126                                                       | -41.77                                                                                                                                                                                                                                                      | -41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MW-38D                                                       | -38.14                                                                                                                                                                                                                                                      | -36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-52                                                        | -37.16                                                                                                                                                                                                                                                      | -35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-53                                                        | -38.71                                                                                                                                                                                                                                                      | -36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-54                                                        | -38.07                                                                                                                                                                                                                                                      | -36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-55                                                        | -38.95                                                                                                                                                                                                                                                      | -36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-57                                                        | -38.23                                                                                                                                                                                                                                                      | -36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <b>MW-7</b> 0                                                | -37.63                                                                                                                                                                                                                                                      | -36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-74                                                        | -37.57                                                                                                                                                                                                                                                      | -36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-76                                                        | -37.2                                                                                                                                                                                                                                                       | -36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>MW-1001</b>                                               | -35.74                                                                                                                                                                                                                                                      | -34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1022                                                      | -50.89                                                                                                                                                                                                                                                      | -51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MW-1027                                                      | -35.47                                                                                                                                                                                                                                                      | -35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1028                                                      | -34.95                                                                                                                                                                                                                                                      | -35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>MW-1038</b>                                               | -38.06                                                                                                                                                                                                                                                      | -38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MW-104                                                       | -35.96                                                                                                                                                                                                                                                      | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MW-1045                                                      | -47.4                                                                                                                                                                                                                                                       | -46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>MW-105</b>                                                | -35.55                                                                                                                                                                                                                                                      | -35.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                              | Well     MW-65     MW-7     MW-72     MW-75     MW-89     MW-90     MW-91     MW-92     MW-1000     MW-1000     MW-1003     MW-1042     MW-1042     MW-1042     MW-10434     MW-10442     MW-1045     MW-1042     MW-1043     MW-1044     MW-1045     MW-70 | Table     McClellan AFB Gro     Well   Water Level     MW-65   -42.89     MW-7   -44.74     MW-72   -38.62     MW-75   -38.13     MW-89   -37.86     MW-90   -37.67     MW-91   -37.37     MW-92   -37.12     MW-1000   -45.28     MW-1010   -35.69     MW-1042   -36.01     MW-1034   -40.41     MW-1042   -36.01     MW-1042   -36.01     MW-1043   -41.77     MW-1044   -42.09     MW-124   -42.09     MW-125   -37.16     MW-52   -37.16     MW-53   -38.71     MW-54   -38.07     MW-55   -38.95     MW-76   -37.21     MW-76   -37.57     MW-76   -37.57     MW-76   -37.57     MW-76   -37.57     MW-76   -35.74 | Table J-4     MucClelian AFB Growdwater Model     Well   Water Level   Simulated     MW-65   -42.89   -44     MW-7   -44.74   -45.1     MW-72   -38.62   -36.5     MW-75   -38.13   -38     MW-88   -36.97   -36.6     MW-89   -37.86   -36.5     MW-90   -37.67   -36.4     MW-91   -37.37   -36.2     MW-92   -37.12   -36     MW-1000   -45.28   -43.2     MW-1001   -35.69   -34.2     MW-1003   -36.24   -35     MW-1010   -35.69   -34.2     MW-1034   -40.41   -36     MW-1042   -36.01   -33.9     MW-103   -37.91   -35.1     MW-1042   -36.01   -33.9     MW-103   -37.91   -35.1     MW-113   -37.91   -35.1     MW-124   -42.09   -42     MW- |  |  |

**...** 

RDD/DP/C:\GW\calsum.xis

. ....

K\_\_

I

 $\cap$ 

| Table J-4                                                    |               |             |             |                |  |
|--------------------------------------------------------------|---------------|-------------|-------------|----------------|--|
| Simulated versus Observed Water Levels - Revised Calibration |               |             |             |                |  |
| McClellan AFB Groundwater Model                              |               |             |             |                |  |
|                                                              |               | Observed    | Simulated   | Observed       |  |
| Zone                                                         | Well          | Water Level | Water Level | less Simulated |  |
| В                                                            | MW-1050       | -46.52      | -42.7       | -3.82          |  |
| В                                                            | MW-1055       | -46.8       | -45         | -1.8           |  |
| В                                                            | MW-1059       | -34         | -35.2       | 1.2            |  |
| В                                                            | MW-1062       | -37.82      | -37.9       | 0.08           |  |
| B                                                            | MW-1065       | -31.92      | -34.7       | 2.78           |  |
| B                                                            | MW-1066       | -31.9       | -34.7       | 2.8            |  |
| В                                                            | MW-1068       | -31.93      | -34.7       | 2.77           |  |
| В                                                            | MW-109        | -36.6       | -35.5       | -1.1           |  |
| В                                                            | <b>MW-112</b> | -37.66      | -35.2       | -2.46          |  |
| В                                                            | MW-118        | -42.52      | 42.2        | -0.32          |  |
| В.                                                           | <b>MW-130</b> | -39.91      | -41.8       | 1.89           |  |
| В                                                            | MW-134        | -41.35      | -40.7       | -0.65          |  |
| В                                                            | MW-142        | -40.39      | -40.8       | 0.41           |  |
| В                                                            | MW-143        | -39.09      | -39.2       | 0.11           |  |
| B                                                            | MW-146        | -44.23      | -43         | -1.23          |  |
| B                                                            | MW-151        | -47.03      | -45.9       | -1.13          |  |
| В                                                            | <b>MW-156</b> | -46.11      | -46.3       | 0.19           |  |
| B                                                            | MW-165        | -42.55      | -42.2       | -0.35          |  |
| В                                                            | MW-173        | -34.28      | -35.9       | 1.62           |  |
| В                                                            | MW-176        | -41.35      | -41.3       | -0.05          |  |
| В                                                            | MW-179        | -32.56      | -35.2       | 2.64           |  |
| В                                                            | MW-183        | -40.66      | -39.6       | -1.06          |  |
| В                                                            | MW-189        | -36.68      | -36         | -0.68          |  |
| В                                                            | MW-18D        | -34.36      | -35.6       | 1.24           |  |
| В                                                            | MW-192        | -43.13      | -42.7       | -0.43          |  |
| В                                                            | <b>MW-195</b> | -32.93      | -35         | 2.07           |  |
| В                                                            | MW-198        | -37.95      | -37.8       | -0.15          |  |
| В                                                            | MW-19D        | -36.73      | -36         | -0.73          |  |
| В                                                            | MW-201        | -46.21      | -47.2       | 0.99           |  |
| В                                                            | MW-204        | -37.43      | -37.5       | 0.07           |  |
| B                                                            | <b>MW-207</b> | -39.05      | -39.1       | 0.05           |  |
| В                                                            | MW-20D        | -37.49      | -36.9       | -0.59          |  |
| В                                                            | MW-211        | -31.96      | -35.3       | 3.34           |  |
| В                                                            | MW-213        | -31.68      | -34.8       | 3.12           |  |
| В                                                            | MW-215        | -40.95      | -41.2       | 0.25           |  |

RDD/DP/C:\GW\caisum.xis

| Table J-4                       |                                                              |             |             |                |  |
|---------------------------------|--------------------------------------------------------------|-------------|-------------|----------------|--|
| Si                              | Simulated versus Observed Water Levels - Revised Calibration |             |             |                |  |
| McClellan AFB Groundwater Model |                                                              |             |             |                |  |
|                                 |                                                              | Observed    | Simulated   | Observed       |  |
| Zone                            | Well                                                         | Water Level | Water Level | less Simulated |  |
| В                               | MW-218                                                       | -47.3       | -47.5       | 0.2            |  |
| В                               | MW-220                                                       | -41.05      | -40.4       | -0.65          |  |
| В                               | MW-223                                                       | -35.13      | -36.3       | 1.17           |  |
| B                               | MW-225                                                       | -33.48      | -35.5       | 2.02           |  |
| B                               | <b>MW-227</b>                                                | -32.14      | -35.6       | 3.46           |  |
| В                               | MW-229                                                       | -33.53      | -35.6       | 2.07           |  |
| В                               | MW-22D                                                       | -38.6       | -39.6       | 1              |  |
| B                               | MW-23D                                                       | -48.45      | -47.9       | -0.55          |  |
| В                               | MW-24D                                                       | -43.81      | -42         | -1.81          |  |
| B                               | MW-26D                                                       | -38.57      | -39         | 0.43           |  |
| В                               | MW-27D                                                       | -35.28      | -36.7       | 1.42           |  |
| В                               | MW-29D                                                       | -33.11      | -35.5       | 2.39           |  |
| В                               | MW-51                                                        | -37.26      | -36.7       | -0.56          |  |
| В                               | MW-58                                                        | -36.8       | -35.9       | -0.9           |  |
| В                               | MW-59                                                        | -37.02      | -36.3       | -0.72          |  |
| В                               | MW-63                                                        | -46.11      | -46         | -0.11          |  |
| В                               | MW-64                                                        | -47.7       | -47.6       | -0.1           |  |
| В                               | MW-66                                                        | -50.88      | -49.6       | -1.28          |  |
| В                               | <b>MW-71</b>                                                 | -34.23      | -35.8       | 1.57           |  |
| В                               | <b>MW-6</b> 9                                                | -38.67      | -38.6       | -0.07          |  |
| C                               | MW-1046                                                      | -48.62      | -49.7       | 1.08           |  |
| С                               | MW-1051                                                      | -46.71      | -42.7       | -4.01          |  |
| С                               | MW-1056                                                      | -47.84      | -44.6       | -3.24          |  |
| С                               | MW-1060                                                      | -34.22      | -36.7       | 2.48           |  |
| С                               | MW-1063                                                      | -37.97      | -38.8       | 0.83           |  |
| С                               | MW-119                                                       | -41.78      | -42.3       | 0.52           |  |
| С                               | MW-122                                                       | -41.65      | -42.3       | 0.65           |  |
| С                               | MW-125                                                       | -40.5       | -41.3       | 0.8            |  |
| С                               | MW-127                                                       | -41.54      | -41.8       | 0.26           |  |
| С                               | <b>MW-132</b>                                                | -47.25      | -46.7       | -0.55          |  |
| С                               | MW-133                                                       | -41.4       | -40.4       | -1             |  |
| С                               | MW-136                                                       | -39.88      | -39.6       | -0.28          |  |
| С                               | MW-138                                                       | -39.36      | -39.2       | -0.16          |  |
| С                               | <b>MW</b> -147                                               | -44.21      | -42.5       | -1.71          |  |
| С                               | MW-152                                                       | -48.64      | -46.2       | -2.44          |  |

.

----

RDD/DP/C:\GW\oalsum.xls

:

 $\bigcap$ 

-----

| Table J-4                                                    |                             |             |             |                |  |  |
|--------------------------------------------------------------|-----------------------------|-------------|-------------|----------------|--|--|
| Simulated versus Observed Water Levels - Revised Calibration |                             |             |             |                |  |  |
|                                                              | Observed Simulated Observed |             |             |                |  |  |
| Zone                                                         | Well                        | Water Level | Water Level | less Simulated |  |  |
| С                                                            | MW-154                      | -47.1       | -47.8       | 0.7            |  |  |
| С                                                            | MW-161                      | -36.05      | -37.5       | 1.45           |  |  |
| С                                                            | MW-166                      | -42.02      | -42.3       | 0.28           |  |  |
| С                                                            | MW-171                      | -32.17      | -36.9       | 4.73           |  |  |
| С                                                            | MW-174                      | -34.41      | -36.9       | 2.49           |  |  |
| C                                                            | <b>MW-177</b>               | -41.23      | -41.3       | 0.07           |  |  |
| C                                                            | <b>MW-180</b>               | -33.11      | -36.2       | 3.09           |  |  |
| С                                                            | MW-181                      | -40.18      | -40.3       | 0.12           |  |  |
| С                                                            | MW-184                      | -40.35      | -39.7       | -0.65          |  |  |
| С                                                            | MW-187                      | -39.1       | -39.5       | 0.4            |  |  |
| С                                                            | <b>MW-190</b>               | -36.76      | -36.2       | -0.56          |  |  |
| C                                                            | MW-193                      | -42.23      | -42.8       | 0.57           |  |  |
| С                                                            | MW-199                      | -37.99      | -38.5       | 0.51           |  |  |
| С                                                            | MW-205                      | -37.56      | -38.2       | 0.64           |  |  |
| С                                                            | MW-208                      | -39.29      | -38.6       | -0.69          |  |  |
| С                                                            | MW-216                      | -40.67      | -40.9       | 0.23           |  |  |
| С                                                            | <b>MW-2</b> 19              | -48.93      | -50.7       | 1.77           |  |  |
| С                                                            | <b>MW-221</b>               | -41.57      | -40.7       | -0.87          |  |  |
| С                                                            | MW-148                      | -41.97      | -42.5       | 0.53           |  |  |

•

-

-----

1

١


-----

160



Water Level Residual

FIGURE J-8 HISTOGRAM OF WATER LEVEL RESIDUALS GROUNDWATER OPERABLE UNIT RIVES MCCLELLAN AIR FORCE BASE SACRAMENTO, CALIFORNIA

ROD1454\_700

CHEM HILL-

100.00%













| Re                        | Table J-5<br>sults of Histogram Ana | alysis             |
|---------------------------|-------------------------------------|--------------------|
| Water Level<br>Difference | Frequency                           | Cumulative Percent |
| 0 to 2                    | 152                                 | 78.35              |
| 2 to 4                    | 39                                  | 98.45              |
| 4 to 6                    | 3                                   | 100.00             |
| 6 to 8                    | 0                                   | 100.00             |

#### **Sensitivity Analysis**

Sensitivity analysis is frequently used to study the sensitivity of model results to changes in input parameters. This is done, even though the model is well calibrated, because it is recognized that the calibration may not be unique. There may be more than one combination of parameters that produces equally good agreement between simulation results and field measurements. The normal procedure for sensitivity analysis is to vary individual input parameters, such as transmissivity, and to observe the amount of resulting variation in simulation results. The resulting information may help quantify the degree of uncertainty associated with the model results.

At McClellan AFB, the model parameters that have the greatest uncertainty are the transmissivities of the four model layers and the vertical conductance between layers. A total of 14 model runs were made to study the impact of varying the model transmissivities and vertical leakances on the calibrated heads and capture zones. The model was run using transmissivity and vertical leakance values equal to 50 percent and 200 percent of the calibration value, respectively. Table J-6 presents predicted head values for each model layer at 8 nodes for the basic calibration run and the additional 14 sensitivity analysis runs. The assumed conditions for each of the 14 sensitivity simulations are described below (Table J-7):

The results of these simulations showed no significant impact on the calibrated heads, along with a negligible increase/decrease in the volume of water requiring extraction when 50 percent and 200 percent of the calibrated transmissivity was used. The results also showed that when the transmissivity value used in the model was reduced to half the calibration value, Monitoring Zone A was not able to sustain the withdrawal rate in several areas. The results of this sensitivity analysis indicate that a reasonable degree of parameter uncertainty and error associated with parameter estimation does not unreasonably impact model predictions.

J-25

| inner J-o<br>Results of Stendichty Analysis<br>Head (0) prodicted at the 4 Model Layers | Run 1 Run 3 Run 4 Run 6 Run 7 Run 6 Run 9 Run 10 Run 11 Bun 11 Bun 11 Bun 11 | 40.56 45.684 39.779 40.529 43.696 45.194 43.636 45.41 44.381 44.723 44.678 44.519 44.754 44.001 | 41.135 45.772 40.367 41.11 43.986 45.5 44.326 45.443 44.78 45.041 45.118 44.776 45.057 44.92 | 42.3 44.719 41.585 42.29 43.6 44.36 43.798 44.27 43.96 44.067 43.888 44.211 44.109 44.059 | 43.728 46.169 43.551 43.57 43.731 43.79 43.753 43.78 43.75 43.795 43.763 43.781 43.713 43.774 | 40.365 45.534 -39.53 -40.243 -43.918 -45.238 -43.684 -45.481 -44.865 -44.563 -44.812 -44.264 -44.653 -44.795 | 40.936 45.911 40.1 40.79 44.073 45.04 44.293 45.556 45.83 44.788 45.164 44.882 45.037 44.998 | 41.34 -45.151 -41.1 -41.7 -43.853 -44.58 -44.95 -44.552 -44.71 -43.867 -44.409 -44.297 -44.313 | 43.052 -43.587 -42.5 -42.5 -42.73 -42.84 -42.76 -42.83 -42.74 -42.851 -42.789 -44.812 -42.802 -42.804 | 37.686 40.125 -37.24 -37.7 -39.104 -39.665 40.031 -38.96 -39.200 -39.579 -39.399 -39.502 -39.686 -39.313 | 37.217 -39.396 -36.7 -37.2 -38.198 -38.92 -38.915 -38.46 -38.36 -38.768 -38.609 -38.660 -38.512 -38.861 | 37.243 -38.988 -36.7 -37.3 -38.021 -38.44 -38.43 -38.2 -37.98 -38.41 -38.241 -38.376 -38.257 -38.376 | 36.133 -36.806 -38.1 -38.1 -38.35 -38.43 -38.41 -38.4 -38.35 -38.43 -38.35 -38.40 -38.405 -38.405 -38.303 -38.604 | 35.905 -37.443 -35.26 -36.391 -37.04 -36.99 -36.73 -36.14 -37.231 -36.409 -37.086 -36.38 -37.143 | 36.552 38.025 36.05 36.66 36.995 37.5 37.52 37.35 36.73 37.821 36.999 37.684 37.428 37.45 | 37.523 -38.628 -37.1 -37.6 -37.876 -38.2 -38.15 -38.1 -37.4 -38.503 -38.158 -38.068 -38.098 -38.13 | 18 664 20 711 78 C 30 600 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                         | Run 2 Run 3 R                                                                | 45.684 .39.779                                                                                  | -45.772 -40.367 -                                                                            | -44.719 -41.585                                                                           | -46.169 -43.551 -                                                                             |                                                                                                              | -45.911 -40.1                                                                                | -45.151 -41.1                                                                                  | -43.587 -42.5 -                                                                                       | -40.125 -37.24 -                                                                                         | -39.396 -36.7                                                                                           | -38.988 -36.7                                                                                        | -38.806 -38.1                                                                                                     | -37.443 -35.4                                                                                    | -38.025 -36.05                                                                            | -38.628 -37.1                                                                                      | -39.234 -38.5                                                |
|                                                                                         | yer Californition Ren 1                                                      | er 1 -44.638 -40.56                                                                             | et 2 44.972 -41.135                                                                          | er 3 -46.081 -42.3                                                                        | er 4 -43.77 -43.728                                                                           | er 1 -44.739 -40.365                                                                                         | er 2 45.031 40.936                                                                           | er 3 -44.309 -41.94                                                                            | er 4 -42.803 -43.052                                                                                  | er 139.48537.686                                                                                         | er 2 -38.674 -37.217                                                                                    | er 3 - 38.311 - 37.243                                                                               | er 4 -38.399 -38.133                                                                                              | er 1 36.839 - 35.905                                                                             | er 2 -37.428 -36.552                                                                      | er 3 -38.111 -37.523                                                                               | rt 4                                                         |
|                                                                                         |                                                                              | 1,000 Lay                                                                                       | Ĩ                                                                                            | 5                                                                                         | Ē<br>I                                                                                        | 2,000 Lay                                                                                                    | Ē                                                                                            | Ē                                                                                              | Ĩ.                                                                                                    | 4,000 Lay                                                                                                | Ĩ                                                                                                       | Xie                                                                                                  | ř.                                                                                                                | 6,000 Laye                                                                                       | ¥.                                                                                        | aye.                                                                                               | Laye                                                         |

RDD10012E03.WP5 (GW RI/FS)

6/23/94

J-26

|    |          |         |             |         |         |         |        | Rest<br>Hond (R) | Table<br>ults of Senal<br>producted at | J-6<br>Unity Amalya<br>the 4 Model | ia<br>Jares |         |         |         |         |         |             |
|----|----------|---------|-------------|---------|---------|---------|--------|------------------|----------------------------------------|------------------------------------|-------------|---------|---------|---------|---------|---------|-------------|
|    | ſ        |         |             |         |         |         |        |                  |                                        |                                    |             |         |         |         |         |         | Page 2 of 2 |
|    | įź       | Lague   | Calibration | Rim 1   | Ĩ       |         | Run 4  | Run 5            | Run 6                                  | Run 7                              | Run 8       | Run ,   | Run 10  |         | R 12    |         |             |
|    | 8,000    | Layer 1 | -38.653     | -32.564 | -32.708 | -32.5   | -32.5  | -32.57           | -32.69                                 | -32.656                            | -32.66      | -32.37  | -32.806 | -32.468 | -32.74  | -32.515 | 32.72       |
|    |          | Layer 2 | -32.785     | -32.698 | -32.838 | -32.66  | -32.72 | -32.702          | -32.8                                  | -32.796                            | -32.78      | -32.5   | -32.939 | -32.603 | -32.87  | -32.283 | -32.78      |
|    |          | Layer 3 | -32.948     | -32.862 | -32.989 | -32.82  | -32.9  | -32.88           | -32.97                                 | -32.954                            | -32.93      | -32.65  | -33.098 | -32.934 | -32.9   | -2.939  | -32.84      |
|    |          | Layer 4 | -33.267     | -33.231 | -33,289 | -33.03  | -33.3  | -33.854          | -33.27                                 | -33.27                             | -33.26      | -33.26  | -33.269 | -33.264 | -32.3   | -32.263 | -33.267     |
|    | 10,000   | Layer 1 | -44.03      | -36.42  | -38.545 | -36.25  | -36.32 | -37.868          | -37.85                                 | -38.160                            | -37.7       | -37.98  | -37.868 | -37.967 | -37.85  | -31.795 | -31.91      |
|    |          | Layer 2 | -44.972     | -36.892 | -38.780 | -36.65  | -36.72 | -38.121          | -38.06                                 | -38,239                            | -38.015     | -38.21  | -38.082 | -38.20M | -38.092 | -38.128 | -38.11      |
|    | <u> </u> | Layer 3 | 44.081      | -37.262 | -36.820 | -37.10  | -37.15 | -38.097          | -38.14                                 | -38.229                            | -38.04      | -38.21  | -38.131 | -38.165 | -38.134 | -38.138 | -38.15      |
|    |          | Layer 4 | -43.774     | -37.603 | -38.798 | -37.46  | -37.5  | -38,043          | -38.13                                 | -38.133                            | -38.006     | -38.057 | -38.133 | -38.067 | -38.116 | -38.101 | -36.109     |
| -  | 11,000   | Layer 1 | -35.751     | -35.370 | -36.015 | -35.2   | -35.39 | -35.662          | -35.785                                | -35.87                             | -35.668     | -35.50  | -35.884 | -35.633 | -35,814 | 35,633  | -35.82      |
|    |          | Layer 2 | -35,881     | -35.552 | -36.158 | -35.34  | -35.54 | -35.8            | -35.911                                | -35.94                             | -35.82      | -35.63  | -36.015 | -35.76  | 35.948  | 35.878  | -35.88      |
| J- | 6        | Layer 3 | -36,022     | -35.703 | -36.307 | -35.52  | -35.72 | -35.95           | -36.05                                 | -36.07                             | -35.98      | -35.76  | -36.158 | -36.014 | -36.025 | -36.015 | -36.028     |
| 27 | Ť        | Layer 4 | -36.274     | -36.022 | -36.581 | Ķ,      | -35.28 | -36.23           | -36.29                                 | -36.29                             | -36.26      | -36.25  | -36.268 | -36.263 | -36.281 | -36.871 | -36.276     |
| -  | 905 II   | Layer 1 | -37.881     | -36.467 | -38.285 | -36.29  | -36.40 | -37.743          | -37.94                                 | -38.04                             | -37.84      | -37.97  | -37.802 | -38.124 | -37.736 | -38.051 | -37.78      |
| -  |          | Layer 2 | -37.416     | -36.437 | -37.845 | -36.25  | -36.42 | -37.267          | -37.43                                 | -37.6                              | -37.3       | -37.52  | -37.33  | -37.679 | -37.262 | -37.311 | -37.506     |
|    |          | Layer 3 | 36,995      | -36.315 | -37.468 | -36.111 | -36.3  | -36.869          | -37.04                                 | -37.1                              | -36.31      | -37.13  | -36.88  | -36.925 | -37.038 | 36.96   | -37.04      |
|    |          | Layer 4 | -36.661     | -36.228 | -37.200 | -36.116 | -36.15 | -36.6            | -36.7                                  | -36.694                            | -36.64      | -36.61  | -36.694 | -36.637 | -36.677 | 36.65   | 36.668      |

ξ.

C

RDD10012E03.WP5 (GW RIAS)

4/23/94

|         | Table J-7<br>Summary of Sensitivity Runs                                                                                                              |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Run No. | Conditions                                                                                                                                            |  |  |  |  |  |  |  |
| 1       | The transmissivity of layer 4 (regional aquifer) was double the calibrated value for this run while all other parameters were held constant.          |  |  |  |  |  |  |  |
| 2       | The transmissivity of layer 4 (regional aquifer) was reduced to half the calibrated value for this run while all other parameters were held constant. |  |  |  |  |  |  |  |
| 3       | The transmissivity of layer 3 was double the calibrated value for this run while all other parameters were held constant.                             |  |  |  |  |  |  |  |
| 4       | The transmissivity of layer 4 (regional aquifer) was reduced to half the calibrated value for this run while all other parameters were held constant. |  |  |  |  |  |  |  |
| 5       | The transmissivity of layer 2 was double the calibrated value for this run while all other parameters were held constant.                             |  |  |  |  |  |  |  |
| 6       | The transmissivity of layer 2 was reduced to half the calibrated value for this run while<br>all other parameters were held constant.                 |  |  |  |  |  |  |  |
| 7       | The transmissivity of layer 1 was double the calibrated value for this run while all other parameters were held constant.                             |  |  |  |  |  |  |  |
| 8       | The transmissivity of layer 1 was reduced to half the calibrated value for this run while<br>all other parameters were held constant.                 |  |  |  |  |  |  |  |
| 9       | The Leakance between layer 3 and layer 4 was double the calibrated value for this run while all other parameters were held constant.                  |  |  |  |  |  |  |  |
| 10      | The Leakance between layer 3 and layer 4 was reduced to half the calibrated value for this run while all other parameters were held constant.         |  |  |  |  |  |  |  |
| 11      | The Leakance between layer 3 and layer 2 was double the calibrated value for this run while all other parameters were held constant.                  |  |  |  |  |  |  |  |
| 12      | The Leakance between layer 3 and layer 2 was reduced to half the calibrated value for this run while all other parameters were held constant.         |  |  |  |  |  |  |  |
| 13      | The Leakance between layer 1 and layer 2 was double the calibrated value for this run while all other parameters were held constant.                  |  |  |  |  |  |  |  |
| 14      | The leakance between layer 1 and layer 2 was reduced to half the calibrated value for this run while all other parameters were held constant.         |  |  |  |  |  |  |  |

# **Simulation of Containment Scenarios**

The following section describes the simulations performed to develop the extraction well networks required to contain a particular remedial action target volume.

Three target volumes were considered for containment:

• Containment of all contaminated groundwater above background VOC concentrations (0.5 µg/l)

- Containment of all contaminated groundwater exceeding a federal or state MCL
- Containment of all contaminated groundwater that poses a 10<sup>-6</sup> or greater risk

Three containment scenarios were investigated for each remedial action target volume:

- Basic containment with high contaminant concentrations isolated in the current hot spot areas
- Containment with injection of treated groundwater to speed cleanup of the hot spots
- Containment with end-use injection into the regional aquifer

Target volumes have been defined based on where groundwater contamination levels exceed federal MCLs, where risk from groundwater contamination exceeds an additional  $10^{-6}$  cancer risk, and where contamination levels exceed the assumed background concentration for VOCs (0.5  $\mu$ g/l).

It was assumed in the scenario simulations that the groundwater elevations across the site would remain constant during the course of remediation. If regional water levels continue to decline, the saturated thickness of certain portions of Monitoring Zone A may become extremely small or the sediments may become completely dewatered. If this occurs, remediation by extraction wells will become impossible. The areas most susceptible to dewatering lie east of the runway in OU A and are shown on Figure J-12.

#### **Operational Strategy**

The strategy used in developing the extraction alternatives contained the following main elements:

- Each extraction system must completely contain the specified target volume, and most contamination is captured in the aquifer where it resides.
- A limited quantity of contamination is allowed to move between aquifers as long as the location where contaminants enter the receptor aquifer lies inside the target volume for that aquifer.
- In no case is contamination allowed to leave a contaminated aquifer and enter an adjacent aquifer outside of the specified target volume.



£.

ţ









## **Containment Criteria**

The definition of groundwater containment used in the extraction alternatives is that a flow line started at any location within the target volume, at any depth in the aquifer, moves toward and into an extraction well. Flow lines for each alternative started at the perimeter of the target volume in each monitoring zone are presented in the following sections. These figures show the movement of groundwater from the boundaries of the target volumes into the groundwater extraction wells. It is apparent from these figures that all contaminated groundwater within the target volumes eventually moves to, and is removed by, the extraction wells. Also apparent is that a majority of the contaminated groundwater is extracted in the monitoring zone in which it resides.

Another significant characteristic of all extraction networks is that the highly contaminated portions of Monitoring Zone A (hot spots) are isolated independently and removed by dedicated extraction wells. This was done to isolate groundwater with concentrations as high as 1,000 times the concentrations observed in other portions of the plume. These areas are also locations where dense nonaqueous-phase liquids (DNAPLs) are suspected to reside. It is advantageous to remove DNAPL-based contamination near the source area as opposed to inducing this high concentration contamination to flow through areas of the aquifer with much lower contaminant concentrations. Five areas of extremely high groundwater concentrations have been identified in Monitoring Zone A. These locations are shown in Figure J-13. It is also noted on this figure that the boundaries of the hot spot target areas were modified slightly when input to the groundwater model. This was necessary as the target areas must be defined by existing model nodes, and nodes were not always available in the exact locations of the hot spot boundaries. When the estimated boundary fell between two model nodes, the outer node was selected to ensure that the entire hot spot was contained by the proposed extraction wells.

### **Alternatives Evaluation**

The alternatives evaluated are grouped according to common elements contained in them. The first set of extraction alternatives consists of basic containment of each of the target volumes described, with hot spot extraction by designated wells. The next set of extraction alternatives is the basic containment alternatives, coupled with injection end use of the treated groundwater. It was necessary to quantitatively evaluate injection of the treatment plant effluent into the regional aquifer to demonstrate that the injection will not alter the hydraulic conditions enough to compromise the containment of the extraction network designs. The final set of evaluations investigate the potential for strategic placement of injection wells surrounding the hot spot contamination areas so that the flushing of the hot spots can be augmented with reinjected treated groundwater.

A comparison of average time per pore volume flushed with and without hot spot injection is provided in Table J-8.

RDD10012C5F.WP5 (GW RI/FS)

6/23/94

| Compartson of A<br>with a | Table J-8<br>Average Time per Pore Volu<br>and without Hot Spot Injection | ume Flushed<br>ion |  |  |  |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
|                           | Time Per Pore Volume (yrs)                                                |                    |  |  |  |  |  |  |  |
| Hot Spot Location         | Without Injection                                                         | With Injection     |  |  |  |  |  |  |  |
| OU A - North              | 1.1                                                                       | 0.8                |  |  |  |  |  |  |  |
| OU A - South              | 0.9                                                                       | 0.4                |  |  |  |  |  |  |  |
| OU B                      | 1.5                                                                       | 0.5                |  |  |  |  |  |  |  |
| OUC                       | 1.0                                                                       | 0.4                |  |  |  |  |  |  |  |
| OU D                      | 4.7                                                                       | 1.7                |  |  |  |  |  |  |  |

Note: Flow times based on assumptions of the groundwater model and an effective porosity of 0.15.

The results of the groundwater modeling analysis were used to investigate the potential benefit of reinjecting treated groundwater on the perimeter of the hot spot extraction systems. The potential benefit of reinjecting the treated groundwater is to increase the available drawdown in the vicinity of the hot spot extraction wells, increasing the sustainable pumping rate in the extraction wells. This evaluation assumed that the quantity of water extracted from the hot spots for containment would be reinjected into the A zone through injection wells located around the perimeter of the hot spots. These assumed injection well locations are included on the well location maps presented for the alternatives including hot spot injection.

The assumed pumping rate of the hot spot extraction wells was then allowed to double. The resulting water levels under these increased pumping rates were evaluated with respect to the base of the A zone. The results suggest that the higher extraction rates are sustainable in all but one of the extraction wells located in the southern OU A hot spot. The extraction rate of this well was increased by 75 percent to ensure that a minimum of 3 feet of available drawdown remained during extraction. These results apply to all of the hot spot injection alternatives, independent of the target volume assumed. It should be noted that because these predictions are based on the results of the modeling analysis, all of the assumptions used to construct the groundwater model also apply to this evaluation.

The extraction alternatives evaluated using the groundwater flow model are summarized as follows:

- The No-Action Alternative with BW-18 abandoned.
- Containment of the background target volume.
- Containment of the background target volume with treated groundwater injection surrounding contamination hot spots.

RDD10012C5F.WP5 (GW RI/FS)

6/23/94

- Containment of the background target volume with injection of treated groundwater into the regional aquifer through an injection well located northwest of the runway.
- Containment of the 10<sup>-6</sup> incremental cancer risk target volume.
- Containment of the 10<sup>-6</sup> incremental cancer risk target volume with treated groundwater injection surrounding contamination hot spots.
- Containment of the 10<sup>-6</sup> incremental cancer risk target volume with injection of treated groundwater into the regional aquifer through an injection well located northwest of the runway.
- Containment of the MCL target volume.
- Containment of the MCL target volume with treated groundwater injection surrounding contamination hot spots.
- Containment of the MCL target volume with injection of treated groundwater into the regional aquifer through an injection well located northwest of the runway.

### Background Target Volume

The background target volume comprises groundwater where VOCs have been detected above 0.5  $\mu$ g/l. The extent of this target volume in Monitoring Zones A, B, and C is shown in Figures J-14 through J-16, respectively. Included on these figures is the number of extraction wells that are required to contain the associated target volume, in conformance with the operational strategies. The extraction well locations were determined based on the groundwater flow directions, target volumes, and vertical hydraulic gradients. A small number of wells was simulated initially, and additional wells were added to capture portions of the target volume that were moving downward or outward past the simulated extraction wells. The well locations were adjusted until the entire target volume was captured. The groundwater injection wells surrounding the hot spots shown in Figure J-14 only apply to alternatives including hot spot injection. The number of extraction wells required for containment of each monitoring zone, and the extraction rate of high concentration versus low concentration contaminated groundwater is summarized in Table J-9. The pumping capacity of each extraction well was assumed to be 10, 15, and 20 gpm in Monitoring Zones A, B, and C, respectively. This is based on actual pumping rates observed from existing extraction wells at the Base. The only exception to this rule is in areas of Monitoring Zone A with limited saturated thickness. Wells in these areas were limited to a pumping rate that resulted in drawdown of 75 percent of the initial saturated thickness. Existing extraction wells were simulated at pumping rates that reflect current operation.

| Table J-9 Summary of Groundwater Modeling Runs   Containment of Target Volume with Isolated Hot Spot Containment |                                           |             |             |             |             |           |           |       |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-------------|-------------|-------------|-----------|-----------|-------|--|--|
| Monitoring Zone                                                                                                  |                                           |             |             |             |             |           |           |       |  |  |
|                                                                                                                  | A B C Per OU                              |             |             |             |             |           |           | OU    |  |  |
| Operable Unit                                                                                                    | No.QNo.QNo.Wells(gpm)Wells(gpm)Wells(gpm) |             |             |             |             |           |           |       |  |  |
| <b>Background Target Vol</b>                                                                                     | ume <sup>a</sup>                          |             |             |             |             |           |           |       |  |  |
| OU A and OU G                                                                                                    | 62                                        | 390         | 15          | 220         | 5           | 100       | 82        | 710   |  |  |
| OU B/C & Offsite                                                                                                 | 72                                        | 700         | 12          | 190         | 15          | 310       | 99        | 1,200 |  |  |
| OU D                                                                                                             | 7                                         | 40          | 7           | 60          | 0           | 0         | 14        | 100   |  |  |
| Totals                                                                                                           | 141                                       | 1,130       | 34          | 470         | 20          | 410       | 195       | 2,010 |  |  |
| Risk Target Volume <sup>a</sup>                                                                                  |                                           |             |             |             |             |           |           |       |  |  |
| OU A                                                                                                             | DU A 55 340 11 170 4 80 70 590            |             |             |             |             |           |           |       |  |  |
| OU B/C & Offsite                                                                                                 | 44                                        | 430         | 12          | 190         | 5           | 100       | 61        | 720   |  |  |
| OU D                                                                                                             | 7                                         | 40          | 7           | 60          | 0           | 0         | 14        | 100   |  |  |
| Totais                                                                                                           | 106                                       | 810         | 30          | 420         | 9           | 180       | 145       | 1,410 |  |  |
| MCL Target Volume <sup>8</sup>                                                                                   |                                           |             |             |             |             |           |           |       |  |  |
| OU A and OU G                                                                                                    | 50                                        | 280         | 10          | 150         | 1           | 20        | 61        | 450   |  |  |
| OU B/C                                                                                                           | 34                                        | 340         | 10          | 150         | 4           | 80        | 48        | 570   |  |  |
| OU D                                                                                                             | 7                                         | 40          | 6           | 30          | 0           | 0         | 13        | 70    |  |  |
| Totals                                                                                                           | 91                                        | 660         | 26          | 330         | 5           | 100       | 122       | 1,090 |  |  |
| Hot Spot Flows (Basic                                                                                            | Containme                                 | ent and En  | nd-Use Inje | ction)      |             |           |           |       |  |  |
| OU A                                                                                                             | IA 6 30 N/A N/A N/A 6 30                  |             |             |             |             |           |           | 30    |  |  |
| OU B/C                                                                                                           | 10                                        | 90          | N/A         | N/A         | N/A         | N/A       | 10        | 90    |  |  |
| OU D                                                                                                             | 5                                         | 68          | N/A         | N/A         | N/A         | N/A       | 5         | 68    |  |  |
| Totals                                                                                                           | 21                                        | 188         | N/A         | N/A         | N/A         | N/A       | 21        | 188   |  |  |
| Hot Spot Flows (Hot S                                                                                            | ot Injectio                               | on) – Extra | ction Flow  | 5           |             |           |           |       |  |  |
| OU A                                                                                                             | 6                                         | 60          | N/A         | N/A         | N/A         | N/A       | 6         | 60    |  |  |
| OU B/C                                                                                                           | 10                                        | 180         | N/A         | N/A         | N/A         | N/A       | 10        | 180   |  |  |
| OU D                                                                                                             | 5                                         | 136         | N/A         | N/A         | N/A         | N/A       | 5         | 136   |  |  |
| Totals                                                                                                           | 21                                        | 376         | N/A         | N/A         | N/A         | N/A       | 21        | 376   |  |  |
| Hot Spot Flows (Hot Spot Injection) – Injection Flows                                                            |                                           |             |             |             |             |           |           |       |  |  |
| OU A                                                                                                             | 6                                         | 30          | N/A         | N/A         | N/A         | N/A       | 6         | 30    |  |  |
| OU B/C                                                                                                           | 11                                        | 120         | N/A         | N/A         | N/A         | N/A       | 11        | 120   |  |  |
| OU D                                                                                                             | 5                                         | 80          | N/A         | N/A         | N/A         | N/A       | 5         | 80    |  |  |
| Totals                                                                                                           | 22                                        | 230         | N/A         | N/A         | N/A         | N/A       | 22        | 230   |  |  |
| <sup>8</sup> These flows include ex<br>injection options.                                                        | isting Base                               | extraction  | and hot s   | pot flows f | or basic co | ntainment | and end-u | se    |  |  |

Note: N/A = Not applicable.

1 2

6/23/94

١

.....

,









Figures J-17 through J-19 present the groundwater pathlines for the basic containment alternative. These pathlines originate from the target area boundaries in Monitoring Zones A, B, and C, and confirm that groundwater contained in the target volume is moving toward, and eventually removed by, the extraction system. Figures J-20 through J-22 show similar flow lines for the basic containment alternative with hot spot flushing by injection of treated groundwater. The locations of the groundwater injection wells near the hot spots are presented on Figures J-14 through J-16. Figure J-23 through J-25 show the estimated pathlines for the basic containment alternative combined with injection end use of all treated groundwater into the regional aquifer. The injection location is assumed to be adjacent to the northern end of the runway as shown on Figures J-14 through J-16.

# **10<sup>-6</sup> Incremental Cancer Risk**

The 10<sup>-6</sup> incremental cancer risk target volume includes all areas where the cumulative cancer risk posed by groundwater contamination exceed 1 in 10,000. Figures J-26 through J-28 include the locations of extraction wells required to contain this target volume. The groundwater injection wells surrounding the hot spots shown in Figure J-26 only apply to alternatives including hot spot injection. The number of extraction wells and approximate flushing rates are summarized in Table J-9. The assumed extraction well pumping capacities for each zone are identical to those assumed for the background target volumes.

Figures J-29 through J-31 present the groundwater pathlines for the basic containment alternative. These pathlines originate from the target area boundaries in Monitoring Zones A, B, and C, and confirm that groundwater contained in the target volume is moving toward, and eventually removed by, the extraction system. Figures J-32 through J-34 show similar flow lines for the basic containment alternative with hot spot flushing by injection of treated groundwater. Figure J-35 through J-37 show the estimated pathlines for the basic containment alternative combined with injection end use of all treated groundwater into the regional aquifer.

#### MCL Target Volumes

The MCL target volumes comprise all groundwater that contains any contaminant above the federal or state MCL. Figures J-38 through J-40 include the extraction well locations required to contain this target volume. The groundwater injection wells surrounding the hot spots shown in Figure J-38 only apply to alternatives including hot spot injection. The results of the simulations performed assuming this target volume, including pumping rates and flushing time estimates, are summarized in Table J-9.

1-

J-35



à.

)



- ---

 $\bigcap$ 





į

....

•

17

.



Ì

ł







l








----





•





ŧ



-.



. .

ł



}







--





Figures J-41 through J-43 present the groundwater pathlines for the basic containment alternative. These pathlines originate from the target area boundaries in Monitoring Zones A, B, and C, and confirm that groundwater contained in the target volume is moving toward, and eventually removed by, the extraction system. Figures J-44 through J-46 show similar flow lines for the basic containment alternative with hot spot flushing by injection of treated groundwater. Figure J-47 through J-49 show the estimated pathlines for the basic containment alternative combined with injection end use of all treated groundwater into the regional aquifer.

#### **No-Action Alternative**

The No-Action Alternative was investigated to develop a baseline set of conditions with which to measure the benefit that any additional groundwater remedial action will have on conditions at the Base. In this simulation, BW-18 was assumed to be abandoned because state agencies and the U.S. EPA have expressed concern that this well is a potential conduit for cross-contamination between aquifers and should be abandoned. Existing extraction wells currently operating at the Base were included in this simulation. Predicted groundwater elevations under this alternative, existing extraction well locations, and target volumes for a particular aquifer are shown in Figures J-50 through J-52. It is apparent from these figures that contamination in all of the aquifers would continue to migrate to the south-southwest and threaten groundwater production wells downgradient. Predicted vertical gradients from this simulation are predominantly downward over the Base area, indicating that contamination will also move downward into deeper aquifers as it continues to move to the south and southwest.

### **Modeling Limitations**

The simulations performed in the modeling analysis were steady-state. The use of a steady state model is appropriate as the objective of the groundwater modeling effort is to evaluate the long-term performance of an extraction system at containing and extracting contaminated groundwater.

The predicted heads are based on efficiencies of 100 percent for both extraction and injection wells. The actual efficiency of the wells may be substantially lower than 100 percent, with the injection well efficiencies lower than that of the extraction wells. However, well efficiency was accounted for in the simulations by restricting the available drawdown in the extraction wells to 75 percent of the saturated thickness. Additional head rise in the injection wells due to well inefficiency was not a concern as site water levels are approximately 100 feet below ground surface.

The actual performance of the extraction system may be influenced by changes in future hydrologic conditions. This is an uncertainty impossible to resolve at this time

RDD10012C5F.WP5 (GW RI/FS)

6/23/94



















i,













. . . . . . . . . . . .

1

مير دين دي

......





ŝ 1

.



because it is dependent on future activities near the Base such as groundwater production practices and natural and artificial groundwater recharge. The influence that rising water levels will have on the extraction network is to require increased pumping rates from the extraction wells to achieve the same level of containment. If water levels decline significantly, certain portions of the monitoring zones will dewater, and contamination will have to be removed by alternative means.

# Works Cited

CH2M HILL, 1984. Installation Restoration Program, Phase III/IV, Area D Site Characterization Study, Technical Memorandum No. 1. Hydrogeologic Conditions in the Vicinity of OU D.

Gibbs, N. E., Poole, W. G., and Stockmeyer, P. R. 1976. An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix, SIAM Journal of Numerical Analysis, vol 13, no 2, pp 236-249.

Hemker, C. J., 1988. Eindige Elementen in Opmars in Hydrologische Modellen H2O vol 21, p 611-615.

Hemker, C. J., and H. Van Elburg. Microcomputer Multilayer Steady-State Finite Element GroundWater Modeling. Elangsgracht 83 - 1016 TR - Amsterdam The Netherlands, 1987 - 1993.

Lo, S. H., 1985. A New Mesh Generation Scheme to Arbitrary Planar Domains. International Journal of Numerical Methods in Engineering, vol 21, pp 1403-1426.

S. S. Papadopulos and Associates, Inc. 1987. Development of a Subregional Ground-Water Flow to Evaluate the Feasibility of Contaminant Transport Modeling at McClellan Air Force Base, California. Davis, California. 1987.

### **TECHNICAL MEMORANDUM K**

CHANHILL

**PREPARED FOR:**McClellan Air Force Base**DATE:**June 22, 1994

SUBJECT: VOC Mass Estimates Groundwater OU RI/FS Report Delivery Order No. 5066

**PROJECT:** SWE28722.66.FS

# Introduction

The goals of this technical memorandum are to identify the contaminants of concern (COCs), to estimate the extent of contamination, and to estimate the mass of COCs in the groundwater. The quantity and spacial distribution of contaminant mass influences the method of remediation. For example, contaminant mass influences the priority of each required remedial action. The mix of contaminants influences treatment options. The quantity and type of contaminant influences the length of time required for remediation.

A detailed discussion of the nature and extent of contamination, as well as the methodology used in the delineation of the target areas for extraction and remedial action options, is presented in Chapter 4, Conceptual Model of the GW OU RI/FS report and will not be discussed in this technical memorandum.

# **Identification of Contaminants of Concern**

The COCs were selected by examining the summary statistics from the Groundwater Sampling and Analysis Program (GSAP) maintained by Radian Corporation by identifying the primary risk drivers and by studying the spatial distribution of contaminant concentrations above MCLs. TCE, cis-1,2-DCE, PCE, 1,2-DCA, 1,1,1-TCA, and 1,1-DCE have been selected as COCs for performing mass estimates for the following reasons:

- They are the most frequently detected VOCs and are frequently detected above MCLs.
- They are risk drivers. At present groundwater concentrations, these contaminants posed hazards to human health.
- The areal extent of these contaminants is widespread.

RDD10012E21.WP5 (GW RI/FS)

6/23/94
The identification of COCs is necessary in defining the contamination problem and in evaluating the different facets of solutions, such as treatment options and length of time required for remediation.

# **Frequency of Detection**

-----

Most recent VOC samples collected during or after 1988 for all wells were used to calculate the summary statistics presented in Table K-1. TCE, cis-1,2-DCE, PCE, and 1,2-DCA have clearly been detected above MCLs more often than the other VOCs. Chloroform, carbon tetrachloride, and methylene chloride have been frequently detected, but only rarely above MCLs.

The data set presented in Section 4.6.1 was reviewed to select the COCs. The water quality trends of wells that have been sampled in the past 2 years was examined in conjunction with data from wells that had not been sampled as recently to extrapolate current groundwater conditions. The frequency of detects and the mean sampling result time series for TCE, PCE, cis-1,2-DCE, 1,2-DCA, 1,1,1-TCA, and 1,1-DCE are presented in Figure K-1.

For most contaminants, the frequency of detections has been increasing with time, but their maximum and mean concentrations have been decreasing. This may be the result of the following:

- Because of regional, Base, and extraction well pumpage, contaminant plumes have been migrating.
- Contaminant mass has been removed by extraction wells installed for remedial actions.
- Several wells that have been sampled consistently at non-detect levels have been dropped from the monitoring program.
- New wells have been added to the program to further define the plumes. This has led to the addition of numerous wells in relatively low groundwater contamination areas.

Hence, compounds have been detected in more sampled wells, but at lower concentrations.

Some discrepancy may be noted with the maximum nondetected reporting limit when compared to the detected values. The reporting limit was raised because of sample dilutions. Sample dilutions are necessary when there is a high concentration of one or more compounds in the given sample. The reporting limit is increased as a function of the dilutions, and all compounds are reported at the values detected in the final dilution and qualified using the final reporting limit value. Procedures to keep the reporting limits at or below MCLs, for contaminants with MCLs, are included in the Basewide RI/FS QAPP Update (Radian, 1994).

| T | • |
|---|---|
| 4 | • |

|                                                             |                     | Table K-                | 1                          |                     |            |          |           |                   | Γ         |
|-------------------------------------------------------------|---------------------|-------------------------|----------------------------|---------------------|------------|----------|-----------|-------------------|-----------|
| ō                                                           | ummary Statistic    | a on Ground<br>Units ag | dwater VOC Dai             | ta Set <sup>°</sup> |            |          |           |                   |           |
|                                                             |                     |                         |                            | Nondete             | cted Value | Detected | J Value   | ſ                 | Ī         |
|                                                             | Number              | Number                  | Frequency of               |                     | Reporting  |          |           |                   | Standard  |
| Parameter                                                   | of Detects          | of Samples              | Detection <sup>6</sup> (%) | Minimum             | Limit      | Minimum  | Maximum   | Mean <sup>b</sup> | Deviation |
| TRICHLOROETHYLENE (TCE)                                     | 132                 | 260                     | 51                         | 0.04                | 5          | 0.28     | 26,000.00 | 453.47            | 2,450.35  |
| ACETONE                                                     | 2                   | 4                       | 50                         | 7.50                | 100        | 8.00     | 14.00     | 5.50              | 6.81      |
| cia-1,2-DKCHLOROETHYLENE                                    | 51                  | <u>8</u>                | 26                         | 0.04                | 120        | 0.36     | 210.00    | 3.54              | 16.54     |
| CARBON DISULFIDE                                            | 1                   | 4                       | 25                         | 1.70                | 5          | 3.10     | 3.10      | 0.78              | 1.55      |
| METHYLENE CHLORIDE                                          | 49                  | 231                     | 21                         | 0.04                | 800        | 0.40     | 351.00    | 6.99              | 38.78     |
| TETRACHLOROETHYLENE(PCE)                                    | 29                  | 260                     | 11                         | 0.0                 | 200        | 0.10     | 2,100.00  | 13.61             | 140.71    |
| CHLOROPORM                                                  | 29                  | 260                     | 11                         | 0.03                | 200        | 0.11     | 22.00     | 0.29              | 1.57      |
| 1,1-DICHLOROBTHENE                                          | 26                  | 260                     | 10                         | 0.06                | 200        | 1.06     | 13,600.00 | 110.32            | 965.22    |
| 1,2-DICHLOROETHANE                                          | 24                  | 260                     | 6                          | 0.03                | 200        | 0.17     | 120.00    | 1.18              | 10.11     |
| 1,1-DICHLOROETHANE                                          | 20                  | 260                     | 80                         | 0.02                | 1,000      | 0.34     | 230.00    | 1.90              | 17.17     |
| 1,1,1-TRICHLOROETHANE                                       | 15                  | 260                     | 9                          | 0.14                | 770        | 0.65     | 1,290.00  | 10.27             | 111.30    |
| TOLUENE                                                     | 6                   | 184                     | 5                          | 0.03                | 400        | 0.24     | 51.00     | 0.29              | 3.76      |
| TOTAL 1.2-DICHLOROETHENE                                    | 1                   | 21                      | 5                          | 0.10                | 400        | 2.20     | 2.20      | 0.10              | 0.48      |
| CARBON TETRACHLORIDE                                        | 11                  | 260                     | 4                          | 0.04                | 300        | 0.41     | 22.40     | 0.29              | 2.25      |
| XYLENES, TOTAL                                              | 9 6                 | 184                     | 3                          | 0.05                | 400        | 0.23     | 2.69      | 0.03              | 0.21      |
| BENZENE                                                     | 3                   | 184                     | 2                          | 0.01                | 400        | 0.94     | 820.00    | 4.47              | 60.45     |
| 1,2-DICHLOROBENZENE                                         | 4                   | 261                     | 2                          | 0.03                | 1,000      | 0.42     | 57.30     | 0.32              | 3.88      |
| 1,2-DICHLOROPROPANE                                         | 3                   | 260                     | 1                          | 0.02                | 200        | 0.22     | 0.85      | 0.01              | 0.06      |
| TRICHLOROFLUOROMETHANE                                      | 2                   | 260                     | 1                          | 0.06                | 1,100      | 3.70     | 15.00     | 0.07              | 0.96      |
| VINYL CHLORIDE                                              | 2                   | 560                     | 1                          | 0.08                | 400        | 83.00    | 360.00    | 1.70              | 22.89     |
| 1,3-DICHLOROBENZENE                                         | 2                   | 261                     | 1                          | 0.02                | 640        | 0.27     | 1.05      | 0.01              | 0.07      |
| 1,4-DichloroBenzene                                         | 2                   | 261                     | 1                          | 0.01                | 480        | 3.80     | 37.70     | 0.16              | 2.34      |
| Notes:                                                      |                     |                         |                            |                     |            |          |           | İ                 |           |
| Most recent VOC concentrations sampled during or after 1988 | for all wells in th | he database.            |                            |                     |            |          |           |                   |           |
| b Mean concentration calculated with nondetects as zero.    |                     |                         |                            |                     |            |          |           |                   |           |

K-3

<sup>d</sup> The values presented as maximums are the reporting limit for the sample. The reporting limits have been elevated because of sample dilution. <sup>c</sup> Only parameters that were detected are presented in this table, i.e., frequency of detection greater than zero.

G:\users\daV\_under\usey\draftfnNTABL\_K-1.XLS

6/23/94



RDD1454\_206

.

and the second sec

CHEM HILL.

......

# **Risk Drivers**

In addition to being frequently detected above MCLs, TCE, PCE, 1,2-DCA, 1,1,1-TCA, and 1,1-DCE have been identified as primary risk drivers based on mean estimates of increased lifetime cancer risks or hazard quotients in Appendix B, Risk Assessment Methodology. Chloroform, methylene chloride, and carbon tetrachloride were also identified as risk drivers, but are not COCs in determining the extent of target areas for the following reasons (based on 1992 sampling):

- Chloroform was never detected above MCLs.
- Less than 2.4 percent of all methylene chloride results were above MCLs. In addition, methylene chloride is a common laboratory contaminant; samples with associated blank contamination were not rejected from the risk assessment and therefore it is likely that a portion of the methylene chloride detects reflect laboratory contamination rather than groundwater contamination.
- Less than 0.4 percent of all carbon tetrachloride results were above MCLs.

While cis-1,2-DCE was not identified as a risk driver by the risk assessment, it was detected in 26 percent of the samples collected. Cis-1,2-DCE had a mean concentration of  $3.5 \mu g/l$  and is considered to be equivalent to total 1,2-DCE as trans-1,2-DCE was not detected. Since the extent of this contaminant appears to be widespread, cis-1,2-DCE was selected as a COC. 1,1,1-TCA was also selected although it was only detected in approximately 6 percent of the samples. 1,1,1-TCA had a mean concentration of  $10.3 \mu g/l$  and was considered to be a prevalent contaminant.

# Areal Extent of Contamination

TCE is the most frequently detected contaminant and the most widespread. For this reason, the extent of VOC contaminant migration, and consequently the extent of the target volumes described in Chapter 4, the Conceptual Model, was based on the extent of observed TCE contamination. The approximate areal extent of the TCE, PCE, cis-1,2-DCE, 1,2-DCA, 1,1,1-TCA, and 1,1-DCE in each zone are presented in Figures K-2, K-3, and K-4. The mass of the COCs in these zones were calculated and are presented in the VOC Mass Estimate section of this technical memorandum.

# **Delineation of the Extent of Contamination**

The location of the source areas, time of contaminant release, contaminant transport properties, and groundwater flow directions all influence the extent of VOC contamination at the Base.



,





Water quality data from 279 wells and borings were used to approximate the extent of contamination, to estimate VOC mass and to generate target volumes. The data set used is presented in Table 4-9.

The data set representing current groundwater conditions was assembled and used to estimate the extent of contamination, VOC mass, and target volumes. Only 161 wells were sampled within the last 2 years. Hence, water quality trends of all other wells were examined to extrapolate to current groundwater conditions. The following steps were taken in assembling the data set:

- Water quality data collected from the newly installed OU A and OU D wells were incorporated into the data set. MW-38D was also sampled for the OU D RI and was included in the data set; it was last sampled in June 1985. Risk values were not calculated for these wells.
- For wells in the data base, the most recent result for each well sampled during 1992 or 1993 collected was incorporated into the data set. Sampling performed within the last 2 years is considered representative of current conditions. Risk values were calculated for these wells.
- For wells in the data base that were last sampled during 1988 to 1991, their data trends were examined to approximate what current water quality concentrations might be. These wells were divided into three categories:
  - Wells that were consistently nondetect: In most cases, these wells were not sampled after 1991 because concentrations were consistently nondetect. Hence for consistently nondetect wells, the most recent nondetect result was used. Risk values were calculated for these wells.
  - Wells with fluctuating concentrations: Fourth quarter 1993 results for three weeks with fluctuating concentrations, MW-131, MW-165 and MW-211, were available in from the data summary report and were incorporated into the data set. Average concentrations were calculated and incorporated into the data set for three wells, MW-131, MW-166, and MW-21S; these wells experienced fluctuating concentrations but were not sampled during the fourth quarter of 1993. Risk values were not calculated for these six wells.

ł

1

ĺ

K-9

Wells with increasing or decreasing concentrations: Concentrations in MW-120 were consistently declining. It was last sampled in July 1989 at nondetectable levels for prevalent contaminants, therefore that sample record and the risk associated was incorporated in the data set. Concentration in MW-44s were increasing therefore the most recent record and risk value in the data base was used.

 Newly installed wells that were sampled in the fourth quarter of 1993: Results for MW-282, MW-283, MW-284, MW-285, MW-286, MW-287, MW-288, and MW-999 were taken from the fourth quarter data summary report. Risk values were not calculated for these wells.

The interpretation of the VOC extent of contamination in a particular monitoring zone is a function of the monitoring network. VOC concentration isopleths are known with certainty in regions where the monitoring network is dense (e.g., in the A zone of OU D). In regions where there are fewer monitoring wells, and thus less data spatially, the delineation of the extent of contamination is based on proximity to source areas and groundwater flow directions. This is the case in all zones of OUs G and H. Generally, well networks are more dense in areas of high concentration and less dense in areas of low concentration.

Background level target volumes were established based on the data set described above and are presented in Chapter 4. Contaminant mass was calculated only in the background target volume.

#### **VOC Mass Estimates**

This section discusses the methodology used to estimate the mass of the COCs dissolved in groundwater and sorbed to the soil matrix. The mass of free product was not considered in this calculation because the presence of NAPLs in the groundwater system has not been confirmed and insufficient data exist to estimate the mass of DNAPL that may exist.

The mass of each COC dissolved in groundwater or sorbed to the aquifer matrix was determined by calculating the mass within each contaminant isopleth. A linear isotherm relating contaminant concentrations in solution to concentrations sorbed to soil were assumed. The mass of the COCs as well as the volume of aquifer that these contaminants currently occupy is presented in this technical memorandum. This section will discuss the estimation of VOC mass in the groundwater system followed by the assumptions made and the methodology followed to perform these calculations.

# Mass of VOCs and Volume of Contaminated Aquifer

TCE is the most prevalent COC by mass and by contaminated aquifer volume, followed by PCE. Approximately 67 percent of the COC mass is attributable to TCE. Sixty-two percent of that TCE mass exists in Monitoring Zone A. Table K-2 presents the estimated mass of the COCs in each monitoring zone and the estimated volume of contaminated aquifer that each COC occupies. TCE is the most widespread contaminant spatially; and with few exceptions, all other COCs exist in areas where TCE also exists.

The mass of each COC by monitoring zone of each OU is presented in Table K-3. The distribution of the COC mass in each zone of each OU is summarized in Figures K-5, K-6, K-7, K-8, K-9, and K-10. The mass of contaminants in Monitoring Zone C of OU D was not calculated because monitoring wells do not exist in Monitoring Zone C in OU D. Mass in Monitoring Zones D and E of OU B/C were not calculated because the D and E zone wells are located in a north-south line, and it was not possible to determine the east-west extent of contamination.

Cumulative mass versus cumulative volume of each COC is compared in Figures K-11, K-12, K-13, K-14, K-15, and K-16. Comparison of cumulative mass versus cumulative volume show that the mass of contaminants per volume of aquifer in the high concentration areas are significantly higher than the mass of contaminants per volume of aquifer in the low concentration areas. The highest mass exists in the smallest volumes associated with regions of high concentrations (>500  $\mu$ g/l). Conversely, the regions of low concentrations (<1  $\mu$ g/l) make up large volumes of aquifer, but contain little mass. This difference is significant because the characteristics of the groundwater extracted from each area will be different and may require different treatment technologies to achieve remedial cleanup goals. Total groundwater extraction from the limited areas where concentrations are greater than 500  $\mu$ g/l would be relatively small, but the influent concentrations from these areas would be high. Conversely, total groundwater extraction from regions where concentrations are less than 1  $\mu$ g/l would be high, but the influent concentrations from these areas would be low.

#### Assumptions

1

۱

On the basis of transport mechanisms, contaminant concentration and contaminant properties, the concentrations of contaminants in the subsurface are constantly changing. Therefore, to perform VOC mass estimates, the following assumptions will be made:

- Contaminants in solution (groundwater and porewater) are in equilibrium with contaminants sorbed to the aquifer matrix.
- The concentration of a VOC sorbed to soil is linearly related to the concentration of a VOC in solution (i.e., linear sorption isotherms).

RDD10012E21.WP5 (GW RI/FS)

6/23/94

| Mass of COC:                                                                                                      | T<br>s and Volume<br>Groundwa | able K-2<br>of Contamin<br>ter Operable | ated Aquifer I<br>Unit      | By Zone        |                  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|-----------------------------|----------------|------------------|
|                                                                                                                   |                               | Zone                                    |                             |                | Percent          |
| COCs                                                                                                              | A                             | B                                       | С                           | Total          | or rotai<br>Mass |
| TCE<br>Mass (kg)<br>Percent of Total Mass<br>Volume (million ft <sup>3</sup> )<br>Percent of Total Volume         | 7,900<br>62<br>2,200<br>48    | 400<br>3.1<br>1,300<br>29               | 170<br>1.3<br>1,000<br>23   | 8,500<br>4,600 | 67               |
| PCE<br>Mass (kg)<br>Percent of Total Mass<br>Volume (million ft <sup>3</sup> )<br>Percent of Total Volume         | 760<br>6<br>180<br>42         | 33<br>0.26<br>250<br>58                 | <br><br>                    | 790<br>420     | 6.2              |
| 1,1,1-TCA<br>Mass (kg)<br>Percent of Total Mass<br>Volume (million ft <sup>3</sup> )<br>Percent of Total Volume   | 250<br>2.0<br>97<br>30        | 0.45<br>0<br>20<br>6                    | 4.5<br>0.04<br>210<br>64    | 260<br>330     | 2.0              |
| Cis-1,2-DCE<br>Mass (kg)<br>Percent of Total Mass<br>Volume (million ft <sup>3</sup> )<br>Percent of Total Volume | 170<br>1.0<br>1,100<br>51     | 43<br>0.00<br>510<br>23                 | 34<br>0.00<br>550<br>25     | 250<br>2,200   | 2.0              |
| 1,2-DCA<br>Mass (kg)<br>Percent of Total Mass<br>Volume (million ft <sup>3</sup> )<br>Percent of Total Volume     | 18<br>0.14<br>130<br>13       | 9.5<br>0.070<br>830<br>86               | 0.060<br>0.00<br>8.6<br>1.0 | 27<br>970      | 0.21             |
| 1,1-DCE<br>Mass (kg)<br>Percent of Total Mass<br>Volume (million ft <sup>3</sup> )<br>Percent of Total Volume     | 2,900<br>23<br>360<br>73      | 1.5<br>0.01<br>86<br>18                 | 0.63<br>0.01<br>46<br>9.0   | 2,900<br>490   | 23               |
| Total Mass of COCs                                                                                                | 12,000                        | 490                                     | 210                         | 13,000         | 100              |

. .....

RDD1001364D.WP5

•

ł

|                    |      | Ŵ                               | ass of COCs and Volu<br>Ground   | Table K-3<br>me of Contaminated<br>water Operable Unit | Aquifer By Zone                                         |                                                | Page 1 of 6                                                         |
|--------------------|------|---------------------------------|----------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Operable<br>Unit   | Zone | Mass Per<br>Zone Per OU<br>(kg) | Total Mass in<br>Each OU<br>(kg) | Percent of Total<br>Mass in Each OU<br>(kg)            | Volume Per<br>Zone Per OU<br>(million ft <sup>3</sup> ) | Volume<br>Per OU<br>(million ft <sup>3</sup> ) | Percent of Total<br>Volume in Each OU<br>(million ft <sup>3</sup> ) |
| TCE                |      |                                 |                                  |                                                        |                                                         |                                                |                                                                     |
|                    | 4    | 2,500                           |                                  |                                                        | 780                                                     |                                                |                                                                     |
| A                  | B    | 0.84                            | 2,500                            | 30                                                     | 41                                                      | 1,000                                          | 41                                                                  |
|                    | ပ    | 8.3                             |                                  |                                                        | 210                                                     |                                                |                                                                     |
|                    | ۲    | 5,000                           |                                  |                                                        | 1,100                                                   |                                                |                                                                     |
| B/C                | æ    | 400                             | 5,500                            | 65                                                     | 1,200                                                   | 3,100                                          | 42                                                                  |
|                    | ပ    | 160                             |                                  |                                                        | 810                                                     |                                                |                                                                     |
|                    | A    | 390                             |                                  |                                                        | 70                                                      |                                                |                                                                     |
| D                  | B    | 0.61                            | 390                              | 4.6                                                    | 27                                                      | 67                                             | 3.9                                                                 |
|                    | ပ    |                                 |                                  |                                                        | 1                                                       |                                                |                                                                     |
|                    | A    | 6.9                             |                                  |                                                        | 310                                                     |                                                |                                                                     |
| G/H and<br>Offbase | B    | 0.19                            | 7.4                              | 60.0                                                   | 10                                                      | 340                                            | 13                                                                  |
|                    | ပ    | 0.28                            |                                  |                                                        | 14                                                      |                                                |                                                                     |
| Total              |      | 8,500                           |                                  | 100                                                    | 4,600                                                   |                                                | 100                                                                 |

RDD100136D1.WP5-1

.....

(

|                    |      | Ŵ                               | ass of COCs and Volu<br>Ground   | Table K-3<br>ume of Contaminated<br>iwater Operable Unit | Aquifer By Zone                                         |                                                | Page 2 of 6                                                         |
|--------------------|------|---------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Operable<br>Unit   | Zone | Mass Per<br>Zone Per OU<br>(kg) | Total Mass in<br>Each OU<br>(kg) | Percent of Total<br>Mass in Each OU<br>(kg)              | Volume Per<br>Zone Per OU<br>(million ft <sup>3</sup> ) | Volume<br>Per OU<br>(million ft <sup>3</sup> ) | Percent of Total<br>Volume in Each OU<br>(million ft <sup>3</sup> ) |
| cis-1,2-DCE        |      |                                 |                                  |                                                          |                                                         |                                                |                                                                     |
|                    | ۲    | 120                             |                                  |                                                          | 210                                                     |                                                |                                                                     |
| ۷                  | B    | 5.9                             | 120                              | 48                                                       | 152                                                     | 360                                            | 17                                                                  |
|                    | ပ    | 1                               |                                  |                                                          | a<br>F                                                  |                                                |                                                                     |
|                    | V    | 57                              |                                  |                                                          | 788                                                     |                                                |                                                                     |
| B/C                | B    | 37                              | 130                              | 51                                                       | 357                                                     | 1,700                                          | 78                                                                  |
|                    | ບ    | 34                              |                                  |                                                          | 550                                                     |                                                |                                                                     |
|                    | V    | 0.16                            |                                  |                                                          | 11                                                      |                                                |                                                                     |
| Ω                  | B    | :                               | 0.16                             | 0.06                                                     | 1                                                       | 11                                             | 0.51                                                                |
|                    | ပ    | 1                               |                                  |                                                          | 1                                                       |                                                |                                                                     |
|                    | ۷    | 1.6                             |                                  |                                                          | 110                                                     |                                                |                                                                     |
| G/H and<br>Offbase | B    | :                               | 1.6                              | 0.61                                                     | ł                                                       | 110                                            | 5.1                                                                 |
|                    | ပ    | :                               |                                  |                                                          | :                                                       |                                                |                                                                     |
| Total              |      | 250                             |                                  | 100                                                      | 2,200                                                   |                                                | 100                                                                 |

RDD100136D1.WP5-2

K-14

|                    |      | Ŵ                               | ass of COCs and Volu<br>Ground   | Table K-3<br>une of Contaminated<br>twater Operable Unit | Aquifer By Zone                                         |                                                | Page 3 of 6                                                         |
|--------------------|------|---------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Operable<br>Unit   | Zone | Mass Per<br>Zone Per OU<br>(kg) | Total Mass in<br>Each OU<br>(kg) | Percent of Total<br>Mass in Each OU<br>(kg)              | Volume Per<br>Zone Per OU<br>(million ft <sup>3</sup> ) | Volume<br>Per OU<br>(million ft <sup>3</sup> ) | Percent of Total<br>Volume in Each OU<br>(million ft <sup>3</sup> ) |
| PCE                |      |                                 |                                  |                                                          |                                                         |                                                |                                                                     |
|                    | A    | 0.070                           |                                  |                                                          | 2.0                                                     |                                                |                                                                     |
| ¥                  | B    | 2.3                             | 2.4                              | 0.30                                                     | 41                                                      | 43                                             | 10                                                                  |
|                    | υ    | •                               |                                  |                                                          | 1                                                       |                                                |                                                                     |
|                    | ¥    | 750                             |                                  |                                                          | 160                                                     |                                                |                                                                     |
| B/C                | B    | 14                              | 760                              | 8                                                        | 1.0 x 10 <sup>2</sup>                                   | 260                                            | 63                                                                  |
|                    | υ    | :                               |                                  |                                                          | :                                                       |                                                |                                                                     |
|                    | A    | 9.0                             |                                  |                                                          | 12                                                      |                                                |                                                                     |
| D                  | B    | 15                              | 24                               | 3.0                                                      | 69                                                      | 81                                             | 19                                                                  |
|                    | ပ    | 8                               |                                  |                                                          | ſ                                                       |                                                |                                                                     |
|                    | A    | :                               |                                  |                                                          | ſ                                                       |                                                |                                                                     |
| G/H and<br>Offbase | B    | 1.8                             | 1.8                              | 0.23                                                     | 33                                                      | 33                                             | 7.8                                                                 |
|                    | ပ    | 1                               |                                  |                                                          | 1                                                       |                                                |                                                                     |
| Total              |      | 064                             |                                  | 100                                                      | 420                                                     |                                                | 100                                                                 |

RDD100136D1.WP5-3

ţ

|                  |      | W                               | ass of COCs and Volu<br>Ground   | Table K-3<br>ime of Contaminated<br>water Operable Unit | Aquifer By Zone                                         |                                                |                                                                     |
|------------------|------|---------------------------------|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
|                  |      |                                 |                                  |                                                         |                                                         |                                                | Page 4 of 6                                                         |
| Operable<br>Unit | Zone | Mass Per<br>Zone Per OU<br>(kg) | Total Mass in<br>Each OU<br>(kg) | Percent of Total<br>Mass in Each OU<br>(kg)             | Volume Per<br>Zone Per OU<br>(million ft <sup>3</sup> ) | Volume<br>Per OU<br>(million ft <sup>3</sup> ) | Percent of Total<br>Volume in Each OU<br>(million ft <sup>3</sup> ) |
| 1,2-DCA          |      |                                 |                                  |                                                         |                                                         |                                                |                                                                     |
|                  | ۷    | 5.4                             |                                  |                                                         | 63                                                      |                                                |                                                                     |
| A                | B    | 8.0                             | 13                               | 49                                                      | 720                                                     | 780                                            | 81                                                                  |
|                  | c    | *                               |                                  |                                                         | •                                                       |                                                |                                                                     |
|                  | A    | 0.43                            |                                  |                                                         | 35                                                      |                                                |                                                                     |
| B/C              | B    | 1.5                             | 2.0                              | 7.2                                                     | 110                                                     | 150                                            | lő                                                                  |
|                  | c    | 0900                            |                                  |                                                         | 8.6                                                     |                                                |                                                                     |
|                  | A    | 12                              |                                  |                                                         | 28                                                      |                                                |                                                                     |
| Q                | B    | •                               | 12                               | 44                                                      | *                                                       | 28                                             | 2.9                                                                 |
|                  | ပ    | ł                               |                                  |                                                         |                                                         |                                                |                                                                     |
| Total            |      | 27                              |                                  | 100                                                     | 016                                                     |                                                | 100                                                                 |

.

------

RDD100136D1.WP5-4

ļ

|                    |      | Ŵ                               | ass of COCs and Volu<br>Ground   | Table K-3<br>ıme of Contaminated<br>İwater Operable Unit | Aquifer By Zone                                         |                                                | Page 5 of 6                                                         |
|--------------------|------|---------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Operable<br>Unit   | Zone | Mass Per<br>Zone Per OU<br>(kg) | Total Mass in<br>Each OU<br>(kg) | Percent of Total<br>Mass in Each OU<br>(kg)              | Volume Per<br>Zone Per OU<br>(million ft <sup>3</sup> ) | Volume<br>Per OU<br>(million ft <sup>3</sup> ) | Percent of Total<br>Volume in Each OU<br>(million ft <sup>3</sup> ) |
| 1,1,1-TCA          |      |                                 |                                  |                                                          |                                                         |                                                |                                                                     |
|                    | ¥    | 1                               |                                  |                                                          |                                                         |                                                |                                                                     |
| A                  | B    |                                 |                                  |                                                          | •                                                       |                                                |                                                                     |
|                    | ပ    |                                 |                                  |                                                          | •                                                       |                                                |                                                                     |
|                    | ۷    | 0.97                            |                                  |                                                          | 51                                                      |                                                |                                                                     |
| B/C                | В    | 0.35                            | 5.7                              | 2.2                                                      | 16                                                      | 270                                            | 82                                                                  |
|                    | c    | 4.4                             |                                  |                                                          | 200                                                     |                                                |                                                                     |
|                    | A    | 250                             |                                  |                                                          | 46                                                      |                                                |                                                                     |
| D                  | В    | 0.10                            | 250                              | 98                                                       | 4.4                                                     | 51                                             | 15                                                                  |
|                    | С    | :                               |                                  |                                                          | :                                                       |                                                |                                                                     |
|                    | A    | 1                               |                                  |                                                          | :                                                       |                                                |                                                                     |
| G/H and<br>Offbase | B    | 0.10                            | 0.10                             | 0.04                                                     | 7.5                                                     | 7.5                                            | 2.3                                                                 |
|                    | c    | :                               |                                  |                                                          | ;                                                       |                                                |                                                                     |
| Total              |      | 260                             |                                  | 100                                                      | 330                                                     |                                                | 100                                                                 |

- · · ·

ſ

RDD100136D1.WP5-5

لي المناصر بالاليان

|                    |      | W                               | ass of COCs and Volt<br>Ground   | Table K-3<br>ime of Contaminated<br>jwater Operable Unit | Aquifer By Zone                                         |                                                | Page 6 of 6                                                         |
|--------------------|------|---------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Operable<br>Unit   | Zone | Mass Per<br>Zone Per OU<br>(kg) | Total Mass in<br>Each OU<br>(kg) | Percent of Total<br>Mass in Each OU<br>(kg)              | Volume Per<br>Zone Per OU<br>(million ft <sup>3</sup> ) | Volume<br>Per OU<br>(million ft <sup>3</sup> ) | Percent of Total<br>Volume in Each OU<br>(million ft <sup>3</sup> ) |
| 1,1-DCE            |      |                                 |                                  |                                                          |                                                         |                                                |                                                                     |
|                    | A    | 1.6                             |                                  |                                                          | 50                                                      |                                                |                                                                     |
| ¥                  | B    | 1.3                             | 2.8                              | 0.10                                                     | 73                                                      | 120                                            | 25                                                                  |
|                    | c    | 1                               |                                  |                                                          | 1                                                       |                                                |                                                                     |
|                    | A    | 6.7                             |                                  |                                                          | 200                                                     |                                                |                                                                     |
| B/C                | B    | 1                               | 6.7                              | 0.24                                                     |                                                         | 230                                            | 47                                                                  |
|                    | c    | 0.21                            |                                  |                                                          | 22                                                      |                                                |                                                                     |
|                    | A    | 2,900                           |                                  |                                                          | 100                                                     |                                                |                                                                     |
| D                  | В    | 0.21                            | 2,900                            | 100                                                      | 13                                                      | 110                                            | 23                                                                  |
|                    | c    | :                               |                                  |                                                          | •                                                       |                                                |                                                                     |
|                    | A    | 1                               |                                  |                                                          | *                                                       |                                                |                                                                     |
| G/H and<br>Offbase | B    | 0.43                            | 0.43                             | 0.01                                                     | 24                                                      | 24                                             | 4.9                                                                 |
|                    | c    | :                               |                                  |                                                          | :                                                       |                                                |                                                                     |
| Total              |      | 2,900                           |                                  | 100                                                      |                                                         | 490                                            | 100                                                                 |

1

۱

. .....

RDD100136D1.WP5-6

-----





. . . .

۰.



ŧ

1





......

ì





- ----

The following assumptions regarding the physical groundwater system were made in performing the mass estimates:

- Porosity = 0.48
- Water saturation = 100 percent
- Saturated water content by weight = 0.34
- Dry bulk density =  $1.4 \text{ g/cm}^3$
- Percent of organic carbon,  $f_{oc} = 0.30$  percent
- Wet bulk density =  $1.9 \text{ g/cm}^3$

The thicknesses of the aquifer zones were calculated in the following manner by using the bottoms of Monitoring Zones A, B, and C presented in the PGOURI (Radian, 1992):

- The thickness of the A zone was calculated from the difference between the January 1993 water levels and the bottom of the A zone.
- The thickness of the B zone was calculated from the difference between the bottom of the A zone and the bottom of the B zone.
- The thickness of the C zone is calculated from the difference between the bottom of the B zone and the bottom of the C zone.

The thickness of these zones varies Basewide and significantly affects the volume of the contaminated aquifer and subsequently the estimation of VOC mass.

# Methodology

The following section presents the equations that govern the distribution of contaminant mass between the aqueous and sorbed phases.

The concentration of sorbed contaminants is related to the concentration of contaminants in solution by the following relationship:

$$C_s = K_d \times C_w$$

where

 $C_s$  is the concentration sorbed to soil in  $\frac{mass \ contaminant}{mass \ soil}$  $C_w$  is the concentration in water in  $\frac{mass \ contaminant}{vol \ water}$  $K_d$  is the partition coefficient =  $K_{oc} \ F_{oc}$ 

RDD10012E21.WP5 (GW RI/FS)

|                   | Tarameters Used in 1                            | able K-4<br>Mass Estimate Calculati | ons   |
|-------------------|-------------------------------------------------|-------------------------------------|-------|
| VOC               | K <sub>oc</sub><br>(c <b>m<sup>3</sup>/gram</b> | f <sub>oc</sub><br>(%)              | Kd    |
| TCE               | 126                                             | 0.30                                | 0.378 |
| cis-1,2-DCE       | 32                                              | 0.30                                | 0.096 |
| 1,2-DCA           | 14                                              | 0.30                                | 0.042 |
| PCE               | 661                                             | 0.30                                | 1.98  |
| 1,1,1-TCA         | 151                                             | 0.30                                | 0.453 |
| 1,1-DCE           | 65                                              | 0.30                                | 0.195 |
| Source: U.S. EPA, | 1990.                                           |                                     |       |

Table K-4 presents the partition coefficients used in the mass estimates.

The mass of contaminants in solution and sorbed to the soil are related to the volume of matrix and the contaminant concentration in that matrix in the following manner:

Mass Sorbed:

$$M_{s} = C_{s} M_{soil}$$
  
=  $K_{d} C_{w} V_{aquifer} \rho_{soil}$  (1-n)

Mass in Groundwater:

$$M_{w} = C_{w} V_{w}$$
$$= C_{w} V_{aquifer} n\rho_{w}$$

where:

 $\rho_{soil}$  is the wet bulk density of the soil

 $\rho_w$  is the density of water at  $60^\circ F$ 

n = water filled porosity of aquifer

Therefore, the total mass of contaminant in a volume of contaminated aquifer is defined by:

RDD10012E21.WP5 (GW RI/FS)

6/23/94

Mass Total:

$$= M_s + M_w$$
  
=  $K_d C_w V_{aquifer} \rho_{soil} (1-n) + n C_w V_{aquifer} \rho_w$ 

The maximum COC concentration measured at each well between January 1988 to January 1993 were used to calculate the mass estimates. The mass and volume of contaminated aquifer in each of the following contours was estimated to be 0.5, 1, 5, 10, 50, 100, 500, 1,000, and 10,000  $\mu$ g/l. The outer boundary contour, set at a value of O, was determined by the background level target volumes previously determined for each zone. The mass of TCE, cis-1,2-DCE, PCE, 1,2-DCA, 1,1,1-TCA, and 1,1-DCE between each contour and the associated volume of aquifer between each contour are presented in Table K-5. The average contaminant concentration between each contour interval was used to determine the mass within the contours. The cumulative mass versus volume graphs in Figures K-11, K-12, K-13, K-14, K-15, and K-16 summarize the mass/volume relationship based on these calculations. For example, the first data point represents the mass and volume within the 10,000  $\mu$ g/l contour; the second data point represents the summation of the mass and volume within the 10,000  $\mu$ g/l contour and the 1,000 to 10,000  $\mu$ g/l contour.

The GSAP results for the VOCs of concern for all McClellan AFB monitoring wells are presented in Table K-6.

K-27

|               |                            |                |                            | Table K-5                                 |                            |                 |                |            |
|---------------|----------------------------|----------------|----------------------------|-------------------------------------------|----------------------------|-----------------|----------------|------------|
|               | -                          | COC Mass and C | Contaminated Aqu<br>Ground | lifer Volume By<br>Ivater Onerahl         | / Concentration C          | ontour Interval |                |            |
|               | AZA                        | othe           | B Zo                       | Be la la la la la la la la la la la la la | C 20                       |                 |                |            |
| Concentration | Volume                     | Mass           | Volume                     | Maas                                      | Volume                     | Maa             | Total Volume   | Total Mass |
| (Mg/l)        | (miltion ft <sup>3</sup> ) | (kg)           | (million ft <sup>3</sup> ) | (kg)                                      | (miltion ft <sup>3</sup> ) | (ke)            | (million ft 3) |            |
| TCE           |                            |                |                            |                                           |                            |                 |                |            |
| 0.5           | 2,200                      | 7,900          | 1,300                      | 400                                       | . 1,000                    | 170             | 4,600          | R SM       |
| 1.0           | 2,000                      | 7,900          | 1,100                      | 390                                       | 820                        | 160             | 006 6          | 8 400      |
| 5.0           | 800                        | 7,800          | 904                        | 340                                       | 240                        | 120             |                | 0,400      |
| 10            | 909                        | 7,800          | 310                        | 330                                       | 120                        | 100             | 1,000          | 8 200      |
| 50            | 410                        | 7,600          | 85                         | 180                                       | 13                         | 24              | 015            | 7 000      |
| 100           | 320                        | 7,500          | 47                         | 110                                       | 1.4                        | 34              | 370            | 004.1      |
| 500           | 65                         | 5,600          |                            |                                           |                            |                 | 33             |            |
| 1,000         | 37                         | 5,100          |                            |                                           |                            |                 | 3.12           | 0001 Y     |
| 10,000        | 4.2                        | 1,000          |                            |                                           |                            |                 | C V            | 1,000      |
| PCE           |                            |                |                            |                                           |                            |                 | 4.4            | 000'T      |
| 0.5           | 180                        | 760            | 250                        | 33                                        | 0.0                        | 00              | UCF            | 101        |
| 1.0           | 120                        | 750            | 150                        | 28                                        |                            | 3               | 020            | 061        |
| 5.0           | 94                         | 750            | 22                         | L'L                                       |                            |                 | 120            | 241        |
| 10            | 82                         | 740            |                            |                                           |                            |                 | 2.             | UAT 1      |
| 50            | 41                         | 099            |                            |                                           |                            |                 | 41             | 555        |
| 100           | 21                         | 550            |                            |                                           |                            |                 | 21             | 055        |
| <b>200</b>    | 3.1                        | 180            |                            |                                           |                            |                 | 3.1            | 180        |
| 1000          | 1.4                        | 8              |                            |                                           |                            |                 | 14             | 8          |
| 1,1,1-TCA     |                            |                |                            |                                           |                            |                 |                |            |
| 0.5           | 26                         | 250            | 20                         | 0.45                                      | 210                        | 4.5             | 330            | 260        |
| 1.0           | 59                         | 250            | 7.6                        | 0.20                                      | 67                         | 1.8             | 130            | 260        |
| 5.0           | 27                         | 250            |                            |                                           |                            |                 | 27             | 250        |
| 10            | 24                         | 250            |                            |                                           |                            |                 | 24             | 250        |
| 8             | 20                         | 250            |                            |                                           |                            | -               | 20             | 250        |
| 8             | 19                         | 240            |                            |                                           |                            |                 | 19             | 240        |
| 200           | 7.9                        | 160            |                            |                                           |                            |                 | 6.7            | 160        |
| 1000          | 1.1                        | 28             |                            |                                           |                            |                 | 1.1            | 28         |

----

G:\users\daV\_under\mey\TBLK-6.XLS

6/23/94

K-28

|               |                            |               |                            | Table K-5                         |                              |                 |                            |            |
|---------------|----------------------------|---------------|----------------------------|-----------------------------------|------------------------------|-----------------|----------------------------|------------|
|               | C                          | OC Mass and C | ontaminated Aqu<br>Groun   | uffer Volume Bj<br>dwater Operabl | / Concentration (<br>le Unit | Contour Interva | 3                          |            |
|               | A Zo                       | bae           | B Z6                       | one                               | CZ                           | ue              |                            |            |
| Concentration | Volume                     | Mass          | Volume                     | Mass                              | Volume                       | Mass            | <b>Total Volume</b>        | Total Mass |
| (J/3n)        | (miltion ft <sup>3</sup> ) | (kg)          | (million ft <sup>3</sup> ) | (kg)                              | (million ft <sup>3</sup> )   | (kg)            | (miltion ft <sup>3</sup> ) | (kg)       |
| cls-1,2-DCE   |                            |               |                            |                                   |                              |                 |                            |            |
| 0.5           | 1,100                      | 170           | 510                        | 43                                | 550                          | 34              | 2,200                      | 250        |
| 1.0           | 860                        | 170           | 430                        | 42                                | 410                          | 32              | 1,700                      | 250        |
| 5.0           | 480                        | 160           | 220                        | 32                                | 110                          | 20              | 820                        | 210        |
| 10            | 370                        | 150           | 150                        | 24                                | 8.7                          | 7               | 520                        | 180        |
| 50            | 44                         | 62            |                            |                                   |                              |                 | 4                          | 62         |
| 100           | 21                         | ¥             |                            |                                   |                              |                 | 21                         | 8          |
| 1,2-DCA       |                            |               |                            |                                   |                              |                 |                            |            |
| 0.5           | 130                        | 18            | 830                        | 9.5                               | 8.6                          | 90:0            | 026                        | 27         |
| 1.0           | 16                         | 17            | 93                         | 1.4                               |                              |                 | 190                        | 19         |
| 5.0           | 57                         | 16            |                            |                                   |                              |                 | 57                         | 16         |
| 01            | 40                         | 14            |                            |                                   |                              |                 | 40                         | 14         |
| \$0           | 3.2                        | 3.6           |                            |                                   |                              |                 | 3.2                        | 3.6        |
| 100           | 0.14                       | 0.21          |                            |                                   |                              |                 | 0.14                       | 0.21       |
| 1,1-DCE       |                            |               |                            |                                   |                              |                 |                            |            |
| 0.5           | 360                        | 2,900         | 86                         | 1.5                               | 46                           | 0.63            | 490                        | 2,900      |
| 1.0           | 63                         | 2,900         | 56                         | 1.1                               | 24                           | 0.43            | 140                        | 2,900      |
| 5.0           | 58                         | 2,900         |                            |                                   | 18                           | 0.34            | 76                         | 2,900      |
| 10            | 45                         | 2,900         |                            |                                   |                              |                 | 45                         | 2,900      |
| 50            | 39                         | 2,900         |                            |                                   |                              |                 | 39                         | 2,900      |
| 100           | 30                         | 2,800         |                            |                                   |                              |                 | 30                         | 2,800      |
| 500           | 25                         | 2,800         |                            |                                   |                              |                 | 25                         | 2,800      |
| 1000          | 1.4                        | 260           |                            |                                   |                              |                 | 1.4                        | 260        |

. ....

()

G:\users\daV\_under\mey\TBLK-6.XLS

6/23/94

|                    |           | ,       | VOC GSAP C                              | oncentrations ( | up to Third Qu | arter 1993 Sam | pling Period |      |                      |          |     |
|--------------------|-----------|---------|-----------------------------------------|-----------------|----------------|----------------|--------------|------|----------------------|----------|-----|
| Location           | LanDan    | 12001   |                                         | A 1 2-DCF       | PCF            |                | TCE          | VC   | Risk for             | Operable | ]   |
| MW 0004            | 21 Mar 92 | 1,2-0.4 | 1,1-008                                 | C-1,4-DCE       |                | 1,1,1-1CA      |              |      | Pacaways             |          | _   |
| MW-0004            | 02 Ort 84 | ·       | <u> </u>                                |                 |                |                |              |      | 0                    | 0        |     |
| MW-0004            | 02-04-84  |         |                                         |                 |                |                |              |      | 7.405.00             | <u> </u> | -   |
| MW-0006            | 30-Mar-82 | 0       | 0                                       |                 |                |                | 24           | 0    | /.49£-06             | В        |     |
| MW-0006            | 01-Oct-84 |         |                                         |                 |                |                |              |      | 0                    | B        | _   |
| MW-0006            | 13-Jun-85 | 0       | 0                                       |                 | 0              | 0              | 86.2         | 0    | 2.69E-05             | B        | _   |
| MW-0007            | 17-Mar-82 | 0       | 0                                       |                 | 0              | 0              | 30           | 0    | 9.36E-06             | B        |     |
| MW-0007            | 29-Mar-82 | 0       | 0                                       |                 | 0              | 0              | 29           | 0    | 9.05E-06             | B        |     |
| MW-0007            | 21-Sep-84 |         |                                         |                 |                |                |              |      | 0                    | B        |     |
| MW-0007            | 31-May-85 | 0       | 0                                       |                 | 0              | 0              | 38.2         | 0    | 1.93E-05             | В        |     |
| MW-0007            | 28-Apr-89 | 0       | 0                                       |                 | 0              | 0              | 26           | 0    | 1.09E-05             | B        |     |
| MW-0007            | 04-Aug-89 | 0       | 0                                       |                 | 0              | 0              | 29           | 0    | 9.05E-06             | В        |     |
| MW-0007            | 04-Aug-89 | 0.5     | 0                                       |                 | 0              | 0              | 30           | 0    | 9.05E-06             | B        | -   |
| MW-0007            | 11-Dec-89 | 0       | ō                                       |                 | 0              | 0              | 36           | 0    | 1.36E-05             | В        | -   |
| MW-0007            | 11-Dec-89 | 1.3     | 0                                       |                 | 0              | 0              | 45           | 0    | 1.36E-05             |          | -   |
| MW-0007            | 07-Feb-90 |         | 0                                       |                 | 0              | 2.8            | 47           | 0    | 1.47E-05             | 8        | -   |
| MW-0007            | 25.477-90 |         | 0                                       |                 |                | 0              | 41           | - 0  | 1.66E-05             | R        | -   |
| MW-0007            | 25-Apr-90 | 0.5     |                                         |                 | <u> </u>       |                | 40           | - 0  | 1.665-05             |          | -   |
| MW_0007            | 02-1-1-00 | 0.5     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                 |                |                |              | - 0  | 1 195.04             | <u> </u> | -   |
| MW 0007            | 20 0-200  | 0.20    | ~ ~                                     |                 |                |                | 20           | 0    | 1.305-03             | D<br>9   | 4   |
| MW-0007            | 29-00-90  |         | 0                                       |                 |                | 0.26           | 30           | - 0  | 1.14E-05             | D        | _   |
| MW-0007            | 10-Jan-91 | 0.48    | 0                                       |                 | 0.46           | 0.25           |              |      | 1.72E-05             | <u> </u> | -   |
| MW-0007            | 10-Jan-91 | 0.77    | 0                                       |                 | 0.99           |                |              | 0    | 1.72E-05             | В        | _   |
| MW-0007            | 01-May-91 | 0       | 0                                       |                 | 0              | 0              | 31           | 0    | 9.68E-06             | B        | _   |
| MW-0007            | 01-Aug-91 | 0.45    | 0                                       |                 | 0              | 0              | 24           | 0    | 1.02E-05             | В        | _   |
| MW-0007            | 01-Aug-91 | 0.74    | 0                                       |                 | 0              | 0              | 23           | 0    | 1.02E-05             | B        | _   |
| <u>MW-0007</u>     | 09-Oct-91 | 0.83    | 0                                       |                 | 0              | 0              | 26           | 0    | 1.70E-05             | B        | _   |
| MW-0007            | 29-Jan-92 | 0.78    | 0                                       |                 | 0              | 0              | 39           | 0    | 1.99E-05             | B        |     |
| MW-0007            | 23-Jul-92 | 0.76    | 0                                       | 19              | 0              | 0              | 19           | 0    | 9.69E-06             | B        |     |
| MW-0007            | 19-Oct-92 | 0.54    | 3.6                                     | 13              | 0              | 0              | 20           | 0    | 1.06E-05             | B        |     |
| MW-0007            | 26-Jan-93 | 0.34    | 0                                       | 13              | 0              | 0              | 21           | 0    | 1.18E-05             | В        |     |
| MW-0007            | 26-Jan-93 | 0.4     | 0                                       | 16              | 0              | 0              | 24           | 0    | 1.18E-05             | В        |     |
| MW-0007            | 09-Apr-93 | 0.33    | 0                                       | 16              | 0              | 0              | 28           | 0    | 2.58E-05             | В        |     |
| MW-0007            | 21-Jul-93 | 0.456   | 0                                       | 13.20           | 0              | 0              | 21           | 0    | 1.93E-05             | В        |     |
| MW-0008            | 31-Mar-82 | C       | 0                                       |                 | 0              | 0              | 61           | 0    | 1.90E-05             | A        | - ' |
| MW-0009            | 31-Mar-82 | 0       | 0                                       |                 | 0              | 0              | 0            | 0    | 0                    | A        |     |
| MW-0009            | 28-Apr-82 | 0       | 0                                       |                 | 0              | 0              | 225          | 0    | 1.88E-04             | A        |     |
| MW-0009            | 30-Sep-84 |         |                                         |                 |                |                |              |      | 0                    | A        |     |
| MW-0009            | 16-Jun-85 | 0.2     | 0.4                                     |                 | 0              | 0              | 134          | 0    | 9.52E-05             | Α        | -   |
| MW-0010            | 30-Mar-82 | 17      | 500                                     |                 | 0              | 0              | 140          | 0    | 8.03E-05             | D        | -   |
| MW-0010            | 20-Jun-85 | 94.7    | 1500                                    |                 | 64.9           | 327            | 826          | 0    | 5.56E-04             | D        |     |
| MW-0010            | 26-0a-87  | 330     | 1100                                    |                 | 0              | 21             | 910          | 810  | 2.22E-02             | D        |     |
| MW-0010            | 07-Apr-88 | 390     | 910                                     |                 | 2.4            |                | 1500         | 400  | 1.18E-02             | D        | -   |
| MW-0010            | 22.jui-88 | 410     | 1400                                    |                 | 0              |                | 2100         | 360  | 1.10E-02             |          |     |
| MW-0010            | 20.04.88  | 270     | 1000                                    |                 | 0              |                | 1600         | 100  | 3.71E-03             |          | -   |
| MW 0010            | 25-04-00  | 270     | .000                                    |                 |                | 0              | 1300         | 71   | 2 01E-03             | <u> </u> | -   |
| MW-0010            | 25-744-89 | - 270   | 450                                     |                 |                |                |              |      | 2.912-03             | <u> </u> |     |
| MW-0010            | 23-Apt-69 | 320     | 430                                     |                 |                | 12             | 1100         | 40   | 2.262-03             | <u>D</u> |     |
| MW-0010            | 04-Aug-89 | 280     | 390                                     |                 | 0              |                | 1100         | 49   | 2.24E-03             | <u> </u> |     |
| MW-0010            | 29-Dec-89 | /000    | 370                                     |                 | 0              |                | 1300         |      | 1.346-02             |          | _   |
| MW-0010            | 21-Feb-90 | 250     | 350                                     |                 | 0              |                | /80          | 0    | 7.82E-04             | <u>D</u> | _   |
| MW-0010            | 27-Apr-90 | 200     | 550                                     |                 | 0              | 0              | 1000         | 0    | 7.82E-04             | <u> </u> | _   |
| MW-0010            | 27-Apr-90 | 200     | 730                                     |                 | 0              | 0              | 1100         | 0    | 7.82E-04             | D        | _   |
| MW-0010            | 30-Apr-91 | 210     | 370                                     |                 | 0              | 0              | 790          | 0    | 6.99E-04             | D        |     |
| MW-0010            | 24-Jul-92 | 110     | 250                                     | 0               | 0              | 0              | 400          | 0    | 3.64E-04             | D        |     |
| MW-0010            | 06-Apr-93 | 120     | 170                                     | 0               | 0              | 0              | 390          | 0    | 8.64E-04             | D        |     |
| MW-0011            | 30-Mar-82 | 0       | 19300                                   |                 | 10             | 4300           | 2100         | 20   | 2.02E-03             | D        | _   |
| MW-0011            | 18-Aug-82 | 0       | 63000                                   |                 | ō              | 12000          | 5000         | 0    | 1.56E-03             | D        |     |
| MW-0011            | 19-Sep-84 | +       |                                         |                 |                |                |              |      | 0                    | D        |     |
| MW-0011            | 20-Jun-85 | o†      | 64300                                   |                 | 2480           | 18100          | 11900        | 0    | 7.54E-03             | D        |     |
| 10000              | 27-Oct-87 | 0       | 40000                                   |                 | 0              | 6900           | 5600         | 0    | 4.48E-03             | D        |     |
| M W-UUIII          |           |         |                                         |                 |                |                |              |      |                      |          | 4   |
| MW-0011            | 06-Am-88  | 86      | 17000                                   |                 | 24 1           | 3800 1         | 6200         | 13 1 | 2.81E_03             | נט       |     |
| MW-0011<br>MW-0011 | 06-Apt-88 | 86      | 17000                                   |                 | 25             | 3800           | 6200         | 13   | 2.81E-03<br>9.05F_04 |          | -   |

g:\umas\da\j\_zumwal\woog\TABLEK-6.XLS

5

a and the second second second second second second second second second second second second second second se

05/11/94

.

|          | Table K-6<br>VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period |          |         |           |      |           |        |     |           |                                              |          |  |  |  |
|----------|-------------------------------------------------------------------------------|----------|---------|-----------|------|-----------|--------|-----|-----------|----------------------------------------------|----------|--|--|--|
| Location |                                                                               |          |         |           |      |           |        |     | Risk for  | Operable                                     |          |  |  |  |
| D        | Log Date                                                                      | 1,2-DCA  | 1,1-DCE | e-1,2-DCE | PCE  | 1,1,1-TCA | TCE    | VC  | Pathways  | Unit                                         | Zone     |  |  |  |
| MW-0011  | 27-Apr-89                                                                     | 0        | 14000   |           | 0    | 2100      | 2000   | 0   | 6.24E-04  | <u> </u>                                     | <b>A</b> |  |  |  |
| MW-0011  | 04-Aug-89                                                                     | 0        | 17000   |           | 0    | 2800      | 2800   | 0   | 8.74E-04  | D                                            | <b>^</b> |  |  |  |
| MW-0011  | 04-Aug-89                                                                     | 0        | 1/000   |           | 0    | 2900      | 3000   | 0   | 8.74E-04  | D                                            |          |  |  |  |
| MW-0011  | 28-Dec-89                                                                     | 0        | 20000   |           | 0    | 3400      | 3200   | 0   | 9.99E-04  | <u>D</u>                                     | <b>^</b> |  |  |  |
| MW-0011  | 22-Feb-90                                                                     | 0        | 1/000   |           | 0    | 3700      | 3900   | 0   | 1.22E-03  | <u>D</u>                                     | <b>^</b> |  |  |  |
| MW-0011  | 11 1400-90                                                                    | 0        | 27000   |           | 0    | 3000      | 5000   | - 0 | 1.222-03  | <u>D</u>                                     | A        |  |  |  |
| MW-0011  | 01 May-90                                                                     | <b>U</b> | 27000   |           |      | 3900      | 5000   | •   | 1.30E-03  | <u>D</u>                                     |          |  |  |  |
| MW-0011  | 01 May 91                                                                     |          | 12000   |           |      | 000       | 1700   |     | 5 115 04  | <u></u>                                      |          |  |  |  |
| MW 0011  | 28 Jul 03                                                                     | 0        | 13600   |           |      | 1290      | 1400   | 0   | 1.00E-03  | <u>D</u>                                     |          |  |  |  |
| MW-0012  | 20-Jul-93                                                                     |          | 4200    |           | 70   | 2700      | 930    | 0   | 3.80E-04  | <u>D</u>                                     |          |  |  |  |
| MW-0012  | 18-Aug-82                                                                     | 0        | 2500    |           | 18   | 520       | 160    | 0   | 7 30E-05  | <u>D</u>                                     |          |  |  |  |
| MW-0012  | 20-Sep-84                                                                     | <b>`</b> |         |           |      |           |        |     | 0         | D                                            |          |  |  |  |
| MW-0012  | 19-Jun-85                                                                     | 0        | 25500   |           | 1260 | 12400     | 121:00 | 0   | 5.39E-03  | D                                            |          |  |  |  |
| MW-0012  | 23-Oct-87                                                                     | 0        | 11000   |           | 280  | 3200      | 4700   | 0   | 1.83E-03  |                                              | A        |  |  |  |
| MW-0012  | 07-Apr-88                                                                     | 0        | 8400    |           | 200  | 1200      | 2500   | 0   | 1.04E-03  |                                              | A        |  |  |  |
| MW-0012  | 26-Jul-88                                                                     | 0        | 22000   |           | 610  | 4500      | 6900   | 0   | 2.93E-03  | D                                            | A        |  |  |  |
| MW-0012  | 21-Oct-88                                                                     | 0        | 4000    |           | 70   | 590       | 1200   | 0   | 4.64E-04  | D                                            | A        |  |  |  |
| MW-0012  | 25-Jan-89                                                                     | 0        | 2600    |           | 38   | 360       | 590    | 0   | 2.33E-04  | D                                            | A        |  |  |  |
| MW-0012  | 27-Apr-89                                                                     | 0        | 2600    |           | 0    | 370       | 600    | 0   | 1.87E-04  | D                                            | A        |  |  |  |
| MW-0012  | 04-Aug-89                                                                     | 0        | 5700    |           | 270  | 840       | 1400   | 0   | 7.83E-04  | D                                            | A        |  |  |  |
| MW-0012  | 28-Dec-89                                                                     | 0        | 8800    |           | 0    | 1600      | 2300   | 0   | 7.18E-04  | D                                            | A        |  |  |  |
| MW-0012  | 20-Fob-91                                                                     | 0        | 7800    |           | 140  | 860       | 1400   | 0   | 6.16E-04  | D                                            | A        |  |  |  |
| MW-0012  | 27-Apr-90                                                                     | 0        | 8300    |           | 94   | 470       | 1200   | 0   | 4.95E-04  | D                                            | A        |  |  |  |
| MW-0012  | 24-Jul 91                                                                     | 0        | 3700    |           | 0    | 0         | 720    | 0   | 2.25E-04  | D                                            | A        |  |  |  |
| MW-0012  | 19-0a-92                                                                      | 0        | 6100    | 0         | 0    | 470       | 1100   | 0   | 4.64E-04  | <u>D</u>                                     | A        |  |  |  |
| MW-0012  | 20-Jul-93                                                                     | 0        | 6610    | 0         | 0    | 0         | 976    | 0   | 7.26E-04  | <u>D</u>                                     | A        |  |  |  |
| MW-0013  | 30-Mar-82                                                                     | 0        | 1100    |           | 20   | 300       | 1470   | 50  | 2.01E-03  | <u>D</u>                                     | A        |  |  |  |
| MW-0013  | 18-Aug-82                                                                     | 0        | 780     |           | 0    | 08        | 230    | 0   | 7.18E-05  | <u></u>                                      | A        |  |  |  |
| MW-0014  | 30-Mar-82                                                                     | 0        | 4600    |           | 0    | 8700      | 5800   | 25  | 3.23E-03  |                                              | A        |  |  |  |
| MW-0014  | 18-Aug-82                                                                     |          | 17000   |           | U    | 2300      | 11000  |     | 3.43E-03  | <u> </u>                                     | A        |  |  |  |
| MW-0014  | 10 Jun 85                                                                     | 2700     | 22600   |           |      | 22800     | 26600  | 0   | 1.975-02  | <u> </u>                                     |          |  |  |  |
| MW-0014  | 26.0x+87                                                                      | 2/90     | 22000   |           | 0    | 350       | 350    |     | 1.9712-02 | <u>D</u>                                     |          |  |  |  |
| MW-0014  | 06-Apr-88                                                                     | 36       | 5700    |           | 7.6  | 3100      | 6500   | 1.4 | 2.17E-03  | D                                            |          |  |  |  |
| MW-0014  | 22-Jul-88                                                                     | 0        | 13000   |           | 0    | 5500      | 11000  | 0   | 3.43E-03  | D                                            | A        |  |  |  |
| MW-0014  | 20-Oct-88                                                                     | 0        | 4400    |           | 0    | 3200      | 3800   | 0   | 1.19E-03  | D                                            | A        |  |  |  |
| MW-0014  | 26-Jan-89                                                                     | 34       | 4600    |           | 0    | 2600      | 4100   | 0   | 1.35E-03  | D                                            | A        |  |  |  |
| MW-0014  | 26-Apr-89                                                                     | 0        | 2900    |           | 0    | 1100      | 1500   | 0   | 5.08E-04  | D                                            | A        |  |  |  |
| MW-0014  | 04-Aug-89                                                                     | 0        | 2300    |           | 0    | 1600      | 1400   | 0   | 4.37E-04  | D                                            | A        |  |  |  |
| MW-0014  | 28-Dec-89                                                                     | 0        | 3400    |           | 0    | 2900      | 2400   | 0   | 7.49E-04  | D                                            | A        |  |  |  |
| MW-0014  | 21-Feb-90                                                                     | 0        | 1800    |           | 0    | 1700      | 1900   | 0   | 5.93E-04  | D                                            | A        |  |  |  |
| MW-0014  | 11-May-90                                                                     | 0        | 3700    |           | 0    | 1900      | 5000   | 0   | 1.56E-03  | D                                            | Â        |  |  |  |
| MW-0014  | 30-Jul-91                                                                     | 0        | 4300    |           | 0    | 4700      | 3700   | 0   | 1.15E-03  | D                                            | A        |  |  |  |
| MW-0014  | 26-Jan-93                                                                     | 0        | 2100    | 0         | 0    | 1100      | 1700   | 0   | 5.32E-04  | D                                            | A        |  |  |  |
| MW-0014  | 06-Apr-93                                                                     | 0        | 2100    | 0         | 0    | 1200      | 2100   | 0   | 1.49E-03  | D                                            | A        |  |  |  |
| MW-0014  | 06-Apr-93                                                                     | 0        | 2400    | 0         | 0    | 1300      | 2300   | 0   | 1.49E-03  | D                                            | <b>A</b> |  |  |  |
| MW-0015  | 29-Apr-82                                                                     | 0        | 5980    |           | 0    | 2200      | 2800   | 0   | 3.58E-03  | D                                            |          |  |  |  |
| MW-0015  | 18-Aug-82                                                                     | 0        | 9600    |           | 0    | 2500      | 3000   | 0   | 1.01E-03  | <u>D</u>                                     | A        |  |  |  |
| MW-0015  | 18-Sep-84                                                                     |          |         |           |      |           |        |     | 1.88E-02  | <u> </u>                                     |          |  |  |  |
| MW-0015  | 10-Jun-85                                                                     | 0        | 16500   |           | 0    | 4100      | 18000  | 0   | 5.98E-03  | <u> </u>                                     |          |  |  |  |
| MW-0015  | 20-0d-87                                                                      | 0        | 1500    |           | 0    | 180       | 1000   | 0   | 3.12E-04  | <u> </u>                                     |          |  |  |  |
| MW-0015  | 00-Apr-88                                                                     | 0.8      | 83      |           | 0    | 110       | 200    | 1.5 | 1.045.04  | <u> </u>                                     |          |  |  |  |
| MW.001#  | 20 0-1 00                                                                     | 5.6      | 008     |           | 0    | 110       | 590    |     | 1.702-04  | <u> </u>                                     |          |  |  |  |
| MW-0015  | 20-00-88                                                                      | 0        | 028     |           | e    | 320       | 3/0    | 0   | 1.780-04  | <u>,                                    </u> |          |  |  |  |
| MW.0015  | 26 Ar- 80                                                                     |          | 080     |           |      | 1/0       | 340    | 0   | 5 642.04  |                                              |          |  |  |  |
| MW.0015  | 03. Aug 80                                                                    |          | 230     |           | 0    | 19        | 140    | 0   | 0.040-05  | <u> </u>                                     |          |  |  |  |
| MW.0014  | 28 Dec. #0                                                                    |          | 920     |           |      | 130       | 610    | 0   | 1 97F_04  | <u> </u>                                     |          |  |  |  |
| MW-0015  | 15-Feb.90                                                                     | 0        | 470     |           |      | 140       | 320    | 0   | 9,99E-05  | D                                            |          |  |  |  |
| MW-0015  | 07-May-90                                                                     |          | 2100    |           |      | 670       | 1400   | 0   | 4.37E-04  | D                                            | A        |  |  |  |
|          |                                                                               |          |         |           |      | 0.0       | 1      | 1   |           |                                              | لستصحد   |  |  |  |

g:\uerr\da\j\_zumwa\wong\TABLEK-6.XLS

and the second second second second second second second second second second second second second second second

÷

05/11/94

)

|              | Table K-6   VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period |         |         |           |      |            |          |     |          |              |                   |  |  |  |
|--------------|------------------------------------------------------------------------------|---------|---------|-----------|------|------------|----------|-----|----------|--------------|-------------------|--|--|--|
| Location     | <u> </u>                                                                     |         |         |           |      |            |          |     | Risk for | Operable     | 1                 |  |  |  |
| D            | Log Date                                                                     | 1,2-DCA | 1,1-DCE | e-1,2-DCE | PCE  | 1,1,1-TCA  | TCE      | VC  | Pathways | Unit         | Zome              |  |  |  |
| MW-0015      | 07-May-90                                                                    | 0       | 2300    |           | 0    | 700        | 1300     | 0   | 4.37E-04 | D            | A                 |  |  |  |
| MW-0015      | 19-Jul-91                                                                    | 0       | 550     |           | 0    | 310        | 430      | 0   | 1.34E-04 | D            | A                 |  |  |  |
| MW-0015      | 13-Jan-93                                                                    | 0       | 320     | 0         | 0    | 170        | 310      | 0   | 9.68E-05 | D            | <u>A</u>          |  |  |  |
| MW-0015      | 28-Jul-93                                                                    | 0       | 151     | 0         | 0    | 6.71       | 82.10    | 0   | 5.45E-05 | D            | A                 |  |  |  |
| MW-0016D     | 16-Jun-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | AB                |  |  |  |
| MW-0016D     | 17-Aug-82                                                                    | 0       | 0       | L         | 0    | 0          | 0        | 0   | 0        | F            | AB                |  |  |  |
| MW-0016D     | 24-Sep-84                                                                    |         |         | L         |      |            |          |     | 0        | F            | AB                |  |  |  |
| MW-0016D     | 14-Jun-85                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | AB                |  |  |  |
| MW-0016S     | 16-Jun-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | <b>A</b>          |  |  |  |
| MW-0016S     | 17-Aug-82                                                                    | 0       | 10      |           | 0    | 0          | 10       | 0   | 3.12E-06 | F            | A                 |  |  |  |
| MW-0016S     | 26-Sep-84                                                                    |         |         |           |      |            |          |     | 0        | F            | A                 |  |  |  |
| MW-0016S     | 30-May-85                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 4.98E-07 | F            | A                 |  |  |  |
| MW-0017D     | 16-Jun-82                                                                    | 0       | 0       | L         | 0    | 0          | 0        | 0   | 0        | 4            | AB                |  |  |  |
| MW-0017D     | 17-Aug-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | AB                |  |  |  |
| MW-0017D     | 26-Sep-84                                                                    |         |         |           |      |            |          |     | 0        |              | AB                |  |  |  |
| MW-0017D     | 30-May-85                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        |              | AB                |  |  |  |
| MW-0017D     | 14-May-87                                                                    | 0       | 0       |           | 0    |            | 0        | 0   | 0        | <u> </u>     | AB                |  |  |  |
| MW-0017D     | 11-Aug-87                                                                    | 0       | 0       |           | 0    | 0          | 0 10     | 0   | 0        | r<br>        | AB                |  |  |  |
| MW-0017D     | 22-00-87                                                                     | 0.33    | 0.32    |           | 0    | 0          | 0.39     | 0   | 8.325-07 | r<br>F       | AB                |  |  |  |
| MW-0017D     | . /-Jan-88                                                                   | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        |              | AB                |  |  |  |
| MW-0017D     | 08-Apt-88                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | AD                |  |  |  |
| MW-0017D     | 21-341-00                                                                    | 0       | 0       |           | 0    |            | 0        | 0   | 0        | F            | AD                |  |  |  |
| MW-0017D     | 10-04-88<br>27 Dec 90                                                        | 0       | 0       |           | 0    |            | 0        | 0   | 0        | F            | AD                |  |  |  |
| MW-0017D     | 2/-Dec-89                                                                    | 0       | 0       |           | 0.27 | 0          |          | 0   | 3465.07  | г<br>        | AB                |  |  |  |
| MW-0017D     | 16 Jul 01                                                                    | 0       | 0       |           | 0.27 |            |          |     | 1 565-07 | F            | AB                |  |  |  |
| MW-00175     | 16-Jup-82                                                                    | 0       | 0       |           |      | 0          | 0        | 0   | 1.502-01 | F            |                   |  |  |  |
| MW-00175     | 17-Aug-82                                                                    | - 0     | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | A                 |  |  |  |
| MW-00175     | 13_Sep.84                                                                    |         |         |           |      |            |          |     | 0        | F            |                   |  |  |  |
| MW-0017S     | 05-Jun-85                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | F            | A                 |  |  |  |
| MW-0018D     | 15-Jup-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 16-Aug-82                                                                    | 0       | 0       | ·         | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 25-Sep-84                                                                    | ·       |         |           |      |            |          |     | 0        | Е            | B                 |  |  |  |
| MW-0018D     | 14-Jun-85                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | Ē            | В                 |  |  |  |
| MW-0018D     | 28-Mar-86                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 3.85E-06 | E            | B                 |  |  |  |
| MW-0018D     | 01-Oct-86                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 3.31E-07 | E            | B                 |  |  |  |
| MW-0018D     | 12-Jan-87                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 29-Apt-87                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 11-Aug-87                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 08-Oct-87                                                                    | Ō       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 22-Jan-88                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 1.32E-07 | E            | B                 |  |  |  |
| MW-0018D     | 27-Apr-88                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 18-Jul-88                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 1.59E-07 | E            | B                 |  |  |  |
| MW-0018D     | 10-Oct-88                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 12-Oct-89                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 1.72E-07 | E            | B                 |  |  |  |
| MW-0018D     | 30-Jul-90                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 25-Jul-91                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 10-Oct-91                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018D     | 06-Feb-92                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | E            | B                 |  |  |  |
| MW-0018S     | 15-Jun-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | <u> </u>     | <b>A</b>          |  |  |  |
| MW-00185     | 16-Aug-82                                                                    | 0       | 0       |           | 0    | 0          | ļ0       | 0   | 0        | E            | A                 |  |  |  |
| MW-0018S     | 29-Sep-84                                                                    |         |         |           |      |            | L        |     | 0        | <u> </u>     | <b>A</b>          |  |  |  |
| MW-00185     | 06-Jun-85                                                                    | 0       | 0       |           | 0    | 0          | 1.1      | 0   | 3.43E-07 | E            | <b>⊢</b> <u>∧</u> |  |  |  |
| MW-0019D     | 28-Apr-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | <u> </u>     | B                 |  |  |  |
| MW-0019D     | 16-Aug-82                                                                    | 0       | 0       |           | 0    | 0          | 0        | 0   | 0        | <u> </u>     | <b>B</b>          |  |  |  |
| MW-0019D     | 09-Aug-83                                                                    | 0       | 3.6     |           | 0    | 0          | 0        | 0   | 2.65E-06 |              | - B               |  |  |  |
| MW-0019D     | 13-Sep-84                                                                    |         |         |           |      | <u>-</u> - | <u> </u> |     | 0        |              | 10                |  |  |  |
| MW-0019D     | 10-JUB-85                                                                    | 0       | 0       |           | 0    | 0          | <u> </u> |     | 2 005 07 | - <u>v</u> - | 4                 |  |  |  |
| MW COUND     | 20-001-8/                                                                    | 0       | 0       |           | 0    | 0          |          | 0   | 2.08E-07 |              |                   |  |  |  |
| MW 0010D     | 21.0.4                                                                       | 0       | 0.23    |           |      |            |          | ~ ~ |          | <u> </u>     | 4                 |  |  |  |
| Last 4-00130 | 66-200-13                                                                    | V       | U       |           | U    | 0          | U U      | U   | <u> </u> |              |                   |  |  |  |

g:\umars\day\_zamwal\wong\TABLEK-6.XLS

 $i = \mathbf{T}$ 

1

1

÷.,

ويستعققه بالموالا المالي المالية

-

05/11/94

|          |           |          | VOC GSAP C | Concentrations | Table K-6<br>up to Third On | neter 1993 Sa | naline Period |    |          |          |          |
|----------|-----------|----------|------------|----------------|-----------------------------|---------------|---------------|----|----------|----------|----------|
| Location | <u></u>   | <b>I</b> |            |                |                             |               | mpane :       |    | Risk for | Operable | Γ        |
| D        | Log Date  | 1,2-DCA  | 1,1-DCE    | e-1,2-DCE      | PCE                         | 1,1,1-TCA     | TOE           | vc | Pathways | Unit     | Zame     |
| MW-0019D | 11-Jan-90 | 0        | 0          |                | 0                           | 0.28          | 0             | 0  | 0        | D        | B        |
| MW-0019D | 28-Feb-90 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 1.15E-06 | D        | B        |
| MW-0019D | 30-Apr-90 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | D        | B        |
| MW-0019D | 10-Oct-90 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | D        | B        |
| MW-0019D | 24-Jul-91 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | D        | B        |
| MW-0019D | 27-Jan-93 | 0        | 1.6        | 0              | 0                           | 2.7           | 2.9           | 0  | 9.05E-07 | D        | B        |
| MW-0019S | 16-Aug-82 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | D        | A        |
| MW-0019S | 09-Aug-83 | 0        | 7          |                | 3.8                         | 0             | 0             | Õ  | 6.46E-06 | D        | A        |
| MW-0019S | 14-Sep-84 |          |            |                |                             |               |               |    | 0        | D        | A        |
| MW-0019S | 14-Jun-85 | 0        | 0.9        |                | 0                           | 0             | 4.3           | 0  | 1.34E-06 | D        | A        |
| MW-0019S | 16-Oct-86 | 0        | 1.2        |                | 0                           | 0             | 8.2           | 0  | 2.56E-06 | D        | A        |
| MW-0020D | 28-Apr-82 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | B        |
| MW-0020D | 11-Aug-82 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | В        |
| MW-0020D | 19-Sep-84 |          |            |                |                             |               |               |    | 0        | C        | B        |
| MW-0020D | 18-Jun-85 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | B        |
| MW-0020D | 27-Oct-86 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | B        |
| MW-0020D | 29-Jan-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | В        |
| MW-0020D | 05-May-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | СС       | В        |
| MW-0020D | 28-Jul-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | В        |
| MW-0020D | 12-Oct-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | B        |
| MW-0020D | 22-Jan-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | B        |
| MW-0020D | 11-Apr-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | C        | B        |
| MW-0020D | 13-Jul-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | B        |
| MW-0020D | 07-Oct-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | B        |
| MW-0020D | 23-Jan-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | B        |
| MW-0020D | 11-Apr-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | В        |
| MW-0020D | 14-Jul-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | <u> </u> | B        |
| MW-0020D | 09-0ct-89 | 0        | 0          |                | 0                           | 0             | 0             |    | 0        | <u> </u> | B        |
| MW-0020D | 23-Jan-90 | 0        | 0          |                | 0                           | 0.42          | 0             | 0  |          |          | D        |
| MW-0020D | 11-Apt-90 | 0        | 0          |                | 0                           | 0             | 01            | 0  | 0 16E 08 | <u> </u> | D P      |
| MW-0020D | 10 Inc 01 | 0        | 0          | i              |                             |               | 0.3           |    | 9.302-08 | <u> </u> | B        |
| MW-0020D | 26 bil 01 | 0        | 0          |                |                             | 0             |               | 0  | 0        |          | B        |
| MW-0020D | 19.Anr.93 | 0        | 0          |                |                             | 0             | 0             |    |          | <u> </u> | B        |
| MW-0020S | 25-May-82 |          | 0          | <b>-</b>       | 0                           | 0             | 0             | 0  | 1.09E-04 | <u> </u> | ·A       |
| MW-00205 | 11-Aug-82 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | C        | A        |
| MW-00205 | 30-Sep-84 |          |            |                |                             |               |               |    | 0        | C        | A        |
| MW-0020S | 03-Jun-85 | 0        | 0          |                | 0                           | 3.2           | 2.3           | 0  | 7.18E-07 | С        | A        |
| MW-0020S | 27-Oct-86 | 0        | 0.35       |                | 0.4                         | 0.91          | 0             | 0  | 5.12E-07 | c        | A        |
| MW-0021D | 15-Jun-82 | 0        | 0          |                | 0                           | 0             | 0             | Ō  | 0        | С        | A        |
| MW-0021D | 17-Sep-84 |          |            |                |                             |               |               |    | 0        | С        | A        |
| MW-0021D | 03-Jun-85 | 0        | 0          |                | 0                           | 0             | 0.8           | 0  | 2.50E-07 | с        | A        |
| MW-0021D | 19-Mar-86 | 0        | 0          |                | 0                           | 0             | Ō             | 0  | 0        | С        | A        |
| MW-0021D | 30-Sep-86 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 21-Jan-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 01-May-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 14-Aug-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 17-Oct-87 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 25-Jan-88 | 0        | 0          | -              | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 13-Apr-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 18-Jul-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 18-Oct-88 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | Ċ        | A        |
| MW-0021D | 23-Jan-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | C        | A        |
| MW-0021D | 18-Apr-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | C        | A        |
| MW-0021D | 17-Jul-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | C        | A        |
| MW-0021D | 16-Dec-89 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | C        | A        |
| MW-0021D | 31-Jan-90 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 13-Apr-90 | 0        | 0          |                | 0                           | . 0           | 0             | 0  | 0        | С        | A        |
| MW-0021D | 12-Jul-90 | 0        | 0          |                | 0                           | 0             | 0.36          | 0  | 1.12E-07 | С        | A        |
| MW-0021D | 15-Oct-90 | 0        | 0          |                | 0                           | 0             | 0             | 0  | 0        | С        | A        |
| MW-0021D | 10-Jan-91 |          |            |                |                             |               |               |    | 0        | С        | <b>A</b> |

g: uners\da\j\_zumwal\wong\TABLEK-6.XLS

:

.

ŧ

۱

05/11/94

ì

----

|          | Table K-6<br>VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period |          |          |           |      |           |          |    |           |          |              |  |  |  |
|----------|-------------------------------------------------------------------------------|----------|----------|-----------|------|-----------|----------|----|-----------|----------|--------------|--|--|--|
| Location |                                                                               |          |          |           |      |           |          |    | Risk for  | Operable |              |  |  |  |
|          | Log Date                                                                      | 1,2-DCA  | 1,1-DC8  | 6-1,2-DCE | PCE  | L,L,I-TCA | TCE      | VC | Pathways  | Unit     | Zane         |  |  |  |
| MW-0021D | 15 hup 92                                                                     | 0        | 0        |           | 0    | 0         |          | 0  | 2.28E-07  | <u> </u> | +            |  |  |  |
| MW-00215 | 13-348-82                                                                     | 0        | 0        |           | 0    |           | 0        | 0  |           | <u> </u> | +            |  |  |  |
| MW-0021S | 17-Sep-84                                                                     |          | ·        |           |      | <b>`</b>  | ·        |    | 0         | <u> </u> |              |  |  |  |
| MW-00215 | 20-Jun-85                                                                     | 0        | 0        |           | 0    | 0         | 2.1      | 0  | 6.55E-07  | c        |              |  |  |  |
| MW-0021S | 19-Mar-86                                                                     | 0        | 0        |           | 0    | 0         | 0.2      | 0  | 6.52E-07  | c        |              |  |  |  |
| MW-0021S | 30-Sep-86                                                                     | 0        | 0        | ·         | 0.12 | 0         | 0.99     | 0  | 7.14E-07  | č        |              |  |  |  |
| MW-0021S | 30-Jan-87                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | С        | A            |  |  |  |
| MW-0021S | 14-Aug-87                                                                     | 0        | 0        |           | 0    | 0         | 1.9      | 0  | 5.93E-07  | C        | A            |  |  |  |
| MW-0021S | 17-0a-87                                                                      | 0        | 0        |           | 0    | 0         | 0.4      | 0  | 2.97E-07  | С        | A            |  |  |  |
| MW-0021S | 25-Jan-88                                                                     | 0        | 0        |           | 0    | 0         | 0.48     | 0  | 3.62E-07  | С        | A            |  |  |  |
| MW-0021S | 13-Apr-88                                                                     | 0        | 0        |           | 0    | 0         | 0.57     | 0  | 3.63E-07  | С        | <b>A</b>     |  |  |  |
| MW-0021S | 26-Jul-88                                                                     | 0        | 0        |           | 0    | 0         | 1.1      | 0  | 6.61E-07  | С        | A            |  |  |  |
| MW-0021S | 21-Oct-88                                                                     | 0        | 0        |           | 0    | 0         | 0.77     | 0  | 2.40E-07  | С        | A            |  |  |  |
| MW-0021S | 24-Jan-89                                                                     | 0        | 0        |           | 0    | 0         | 1.5      | 0  | 6.14E-07  | С        | •            |  |  |  |
| MW-0022D | 28-Apr-82                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | С        | B            |  |  |  |
| MW-0022D | 13-Aug-82                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | С        | B            |  |  |  |
| MW-0022D | 20-Sep-84                                                                     |          |          |           |      |           |          |    | 0         | C        | B            |  |  |  |
| MW-0022D | 20-Jun-85                                                                     | 0        | 297      |           | 13.5 | 133       | 213      | 0  | 8.66E-05  | C        | B            |  |  |  |
| MW-0022D | 29-Oct-86                                                                     | 0        | 0        | l         | 0    | 0         | 0        | 0  | 0         | С        | B            |  |  |  |
| MW-0022D | 23-Jan-87                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | C        | B            |  |  |  |
| MW-0022D | 06-May-87                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | C        | B            |  |  |  |
| MW-0022D | 06-Aug-87                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | C        | <u>B</u>     |  |  |  |
| MW-0022D | 14-0ct-8/                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | <u> </u> | 8            |  |  |  |
| MW-0022D | 19-140-88                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         |          | - D          |  |  |  |
| MW-0022D | 14 Jul 99                                                                     |          | 0        | ·         |      | 0         | 0        | 0  | 0         |          |              |  |  |  |
| MW-0022D | 17-04-88                                                                      | 0        | 0        |           | 0    |           |          |    | 0         | <u> </u> | B            |  |  |  |
| MW-0022D | 12-Jan-89                                                                     | 0        | 0        |           |      | 0         | 0        | 0  | 0         | c        | B            |  |  |  |
| MW-0022D | 12-Apr-89                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | c        | B            |  |  |  |
| MW-0022D | 17-Jul-89                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | C        | B            |  |  |  |
| MW-0022D | 17-Oct-89                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | C        | B            |  |  |  |
| MW-0022D | 26-Jan-90                                                                     | 0        | 0        |           | 0    | 0         |          | 0  | 0         | С        | B            |  |  |  |
| MW-0022D | 19-Apr-90                                                                     | 0        | 0        |           | 0.49 | 0         | 0        | 0  | 6.27E-07  | С        | B            |  |  |  |
| MW-0022D | 13-Jul-90                                                                     | 0        | 0        |           | 0    | 0         | 0.68     | 0  | 2.12E-07  | С        | B            |  |  |  |
| MW-0022D | 15-Oct-90                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | C        | B            |  |  |  |
| MW-0022D | 09-Jag-91                                                                     | 0        | 0        |           | 0    | 0         | 0        | Ō  | 0         | С        | B            |  |  |  |
| MW-0022D | 04-Feb-91                                                                     |          |          |           |      |           |          |    | 0         | С        | B            |  |  |  |
| MW-0022D | 29-Jul-91                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | c        | B            |  |  |  |
| MW-0022S | 04-Jun-82                                                                     | 0        | 0        |           | 0    | 0         | 8        | 0  | 2.50E-06  | C        | AB           |  |  |  |
| MW-0022S | 13-Aug-82                                                                     | 0        | 0        |           | 0    | 0         | 16       | 0  | 4.99E-06  | C        | AB           |  |  |  |
| MW-0022S | 21-Sep-84                                                                     |          |          |           |      | ļ         |          |    | 0         | C        | AB           |  |  |  |
| MW-0023D | 28-Apr-82                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | 8        | <u></u>      |  |  |  |
| MW-0023D | 13-Aug-82                                                                     | <u>0</u> | 0        |           | 0    | 0         | 0        | 0  | 0         | B        | + <u>B</u>   |  |  |  |
|          | 10 hrs 46                                                                     |          | <u> </u> |           |      |           | <u> </u> |    | 5 10E 07  |          |              |  |  |  |
| MW_0023D | 17.14- 44                                                                     |          | 0        |           | 0    |           |          | 0  | 1 245 04  | R        | 4            |  |  |  |
| MW_001D  | 27.1-27                                                                       |          | 0        |           |      |           |          | 0  | 1.4.32-00 | R        |              |  |  |  |
| MW-0023D | 05 May 87                                                                     |          | 0        |           | 0    | 0         | 0        |    | - 0       | B        |              |  |  |  |
| MW-0023D | 12-Aug-87                                                                     |          |          |           | 0    | 0         |          | 0  | - 0       | R        | R            |  |  |  |
| MW-0023D | 25.04.87                                                                      | 0        | 0        |           | 0    | 0         |          | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 21-Jan-88                                                                     | 0        |          |           | 0    | 0         |          | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 21-Am-88                                                                      | 0        | 0        |           |      | 0         | 0        | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 21-Jul-88                                                                     | 0        | 0        | <u></u>   | 0    | 0.3       |          | 0  | 0         | B        | + <u>-</u> B |  |  |  |
| MW-0023D | 19-Oct-11                                                                     | 0        | 0        |           | 0    | 0         |          | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 09-Jan-89                                                                     | 0        | 0        |           | 0    |           | 0        | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 19-Apr-89                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 13-Jul-89                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 14-Dec-89                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 1.22E-07  | B        | B            |  |  |  |
| MW-0023D | 16-Jan-90                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | B        | B            |  |  |  |
| MW-0023D | 23-Jui-90                                                                     | 0        | 0        |           | 0    | 0         | 0        | 0  | 0         | B        | B            |  |  |  |
|          |                                                                               |          |          |           |      |           |          |    |           |          |              |  |  |  |

g:\user\da\j\_sumwal\woag\TABLEK-6.XLS

 $\langle \cdot \rangle$ 

1.4

 $_{i} = \mathbf{T}$ 

a second a second second

05/11/94

|          | I able K-0<br>VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period |         |                                       |           |     |           |                                                                                                                |          |          |          |          |  |  |  |
|----------|--------------------------------------------------------------------------------|---------|---------------------------------------|-----------|-----|-----------|----------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|--|--|--|
| Location |                                                                                |         |                                       |           |     |           |                                                                                                                |          | Risk for | Operable |          |  |  |  |
| D        | Log Date                                                                       | 1,2-DCA | 1,1-DCE                               | e-1,2-DCE | PCE | 1,1,1-TCA | TCE                                                                                                            | VC       | Pathways | Unit     | Zone     |  |  |  |
| MW-0023D | 09-Jan-91                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 1.85E-07 | B        | B        |  |  |  |
| MW-0023D | 04-Feb-91                                                                      |         |                                       |           |     |           |                                                                                                                |          | 0        | B        | В        |  |  |  |
| MW-0023D | 01-Aug-91                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0023D | 07-Oct-91                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0023D | 14-Jan-92                                                                      | 0       | 0                                     |           | 0   | 0         | 0.27                                                                                                           | 0        | 8.43E-08 | B        | B        |  |  |  |
| MW-0023D | 06-Jul-92                                                                      | 0       | 0                                     | 0         | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | В        |  |  |  |
| MW-0023D | 07-08-92                                                                       | 0       | 0                                     | 0         | 0   | 0         | 0                                                                                                              | 0        | 0        | <u>B</u> | в        |  |  |  |
| MW-0023D | 07-Jan-93                                                                      | 0       | 0                                     | 0         | 0   |           | 0                                                                                                              | 0        | 0        | D        | B        |  |  |  |
| MW-0023D | 21-Jul-93                                                                      | 0       | 0                                     | <u> </u>  | 0   | 0         | 0                                                                                                              | 0        | 0        | D        |          |  |  |  |
| MW-00235 | 12 Aug 82                                                                      |         | 0                                     |           |     |           |                                                                                                                | - 0      |          | D        |          |  |  |  |
| MW-00235 | 20 Sep.84                                                                      |         |                                       |           |     |           |                                                                                                                |          | 0        | R        |          |  |  |  |
| MW-00235 | 03.100-85                                                                      |         | 0                                     |           | 0   | 0         | 2.7                                                                                                            | 0        | 4.15E-06 | <u>B</u> | A        |  |  |  |
| MW-0024D | 28-Apr-82                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | в        |  |  |  |
| MW-0024D | 12-Aug-82                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | В        |  |  |  |
| MW-0024D | 27-Sep-84                                                                      |         | · · · · · · · · · · · · · · · · · · · |           |     |           |                                                                                                                |          | 0        | B        | В        |  |  |  |
| MW-0024D | 07-Jun-85                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | В        |  |  |  |
| MW-0024D | 20-Mar-86                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0024D | 22-Jan-87                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0024D | 05-May-87                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | В        |  |  |  |
| MW-0024D | 13-Aug-87                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | В        | В        |  |  |  |
| MW-0024D | 19-Jan-88                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0024D | 21-Apr-88                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | В        |  |  |  |
| MW-0024D | 12-Jul-88                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0024D | 05-Oct-88                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0024D | 13-Jan-89                                                                      | 0       | 0                                     | L         | 0   | 0.25      | 0                                                                                                              | 0        | 1.35E-07 | <u>B</u> | B        |  |  |  |
| MW-0024D | 11-Apr-89                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | <u>B</u> | B        |  |  |  |
| MW-0024D | 18-JUI-89                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | <b>B</b> | B        |  |  |  |
| MW-0024D | 20-Dec-69                                                                      | 0       | 0                                     |           | 0   |           | 0                                                                                                              |          | 0        | D        | D        |  |  |  |
| MW-0024D | 10-Jan-90                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | D<br>R   | B        |  |  |  |
| MW-0024D | 15-0rt-90                                                                      | - 0     | <u>0</u>                              |           | 0   | 0         | 0                                                                                                              | 0        |          | B        | B        |  |  |  |
| MW-0024D | 09-May-91                                                                      | 0       | 0                                     |           | ů   | 0         | 0                                                                                                              | 0        | 0        | B        | B        |  |  |  |
| MW-0024D | 21-Jul-93                                                                      | 0.17    | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 8.50E-07 | B        | B        |  |  |  |
| MW-00245 | 28-Apr-82                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | A        |  |  |  |
| MW-0024S | 12-Aug-82                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | A        |  |  |  |
| MW-0024S | 12-Sep-84                                                                      |         |                                       |           |     | ×         |                                                                                                                |          | 0        | B        | A        |  |  |  |
| MW-0024S | 02-Jun-85                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | A        |  |  |  |
| MW-0025D | 15-Jun-82                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | A        |  |  |  |
| MW-0025D | 12-Aug-82                                                                      | 0       | 0                                     |           | 0   | 0         | 0                                                                                                              | 0        | 0        | B        | A        |  |  |  |
| MW-0025D | 25-Sep-84                                                                      |         |                                       |           | _   |           |                                                                                                                |          | 0        | B        | A        |  |  |  |
| MW-0025D | 13- <b>Jun-8</b> 5                                                             | 0       | 0                                     |           | 0   | 0         | 2.9                                                                                                            | 0        | 9.05E-07 | <u> </u> | <b>A</b> |  |  |  |
| MW-0025D | 21-Oct-88                                                                      | 0.15    | 0                                     |           | 0   | 0         | 1.2                                                                                                            | 0        | 1.00E-06 | B        |          |  |  |  |
| MW-0025D | 24-Jan-89                                                                      | 0.24    | 0                                     |           | 0   | 0         | 1.1                                                                                                            | 0        | 1.30E-06 | B        |          |  |  |  |
| MW-0025D | 24-Jan-89                                                                      | 0.24    | 0                                     |           | 0   | 0         | 1.2                                                                                                            | 0        | 1.30E-06 | <u>B</u> |          |  |  |  |
| MW-0025D | 24-Apr-89                                                                      | 0.34    | 0                                     |           | 0   | 0         | 1                                                                                                              | 0        | 1.60E-06 | <u> </u> |          |  |  |  |
| MW-UUZSD | 01-Aug-89                                                                      | 0       | 0                                     |           | 0   | 0         | 0.8                                                                                                            | <u> </u> | 2.30E-07 | <b>B</b> |          |  |  |  |
| MW-0025D | 01-Aag-89                                                                      | 0       | 0                                     |           | 0   | 0         | 2.3                                                                                                            |          | 4.00E-07 | <b>D</b> |          |  |  |  |
|          | 27-D00-89                                                                      | 0       |                                       |           | 0   | 0         | 1.0                                                                                                            |          | 1.070 04 | D<br>R   | +        |  |  |  |
| MW-0025D | 31-788-90                                                                      | 0.26    | 0                                     |           | 0   | 0         | 2.8                                                                                                            |          | 2.05E.06 | D        |          |  |  |  |
| MW.m?    | 02. ML00                                                                       | 0.43    | 0                                     |           |     |           | 4.0                                                                                                            |          | A 350.04 | R        |          |  |  |  |
| MW.mosh  | 10.04.00                                                                       | 0       |                                       |           |     | 0         | 0.44                                                                                                           |          | 1 376_07 | R        |          |  |  |  |
| MW-0025D | 10-Jan-01                                                                      | 0.25    |                                       |           | 0   | 0         | 0.74                                                                                                           |          | 1.73E-06 | B        |          |  |  |  |
| MW-0025D | 08_Amr.01                                                                      | 0.22    |                                       |           | 0   |           | 1 4                                                                                                            | 0        | 1.56F-06 | B        |          |  |  |  |
| MW-0025D | 17-jul-91                                                                      | 0       | 0                                     | _         | 0   | 0         | 1.1                                                                                                            | 0        | 3,43E-07 | B        |          |  |  |  |
| MW-0025D | 21-Jul-93                                                                      |         | 0                                     | 0.58      | 0   | 0         | 0.67                                                                                                           | Ő        | 1.40E-06 | B        |          |  |  |  |
| MW-00255 | 15-Jun-82                                                                      | 0       | 0                                     | 0.00      | 0   | 0         | 50                                                                                                             | ō        | 1.56E-05 | B        | A        |  |  |  |
| MW-0025S | 12-Aue-82                                                                      | 0       | 0                                     |           |     | 0         | 0                                                                                                              | 0        | 0        | B        | A        |  |  |  |
| MW-00255 | 29-Sep-84                                                                      |         |                                       |           |     | <u> </u>  |                                                                                                                |          | 0        | B        | A        |  |  |  |
| MW-0025S | 30-May-85                                                                      | 0       | 0                                     |           | 0   | 0         | 2.4                                                                                                            | 0        | 7.49E-07 | В        | A        |  |  |  |
|          |                                                                                |         |                                       |           |     |           | the second second second second second second second second second second second second second second second s |          |          |          |          |  |  |  |

g:\umas\da\j\_annwa\woog\TABLEK-6.XLS

۰.

.

,

 ${}^{\pm}\mathbf{1}$ 

•

05/11/94

)

------

|          |           | <u> </u> | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | nrter 1993 Sa | npling Period |    |          | <u> </u> |    |
|----------|-----------|----------|------------|---------------|-----------------------------|---------------|---------------|----|----------|----------|----|
| Location | <u> </u>  | I        |            |               |                             |               |               |    | Rink for | Onerable |    |
| ID       | Los Data  | 1.2-DCA  | 1.1-DCE    | e-1.2-DCE     | PCE                         | I.I.I-TCA     | TCE           | vc | Pathwara | Elmit .  | 2- |
| MW-0026D | 28-Apr-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | A        | B  |
| MW-0026D | 11-Aug-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | A        | B  |
| MW-0026D | 27-Sep-84 |          |            |               |                             |               |               |    | 0        | A        | B  |
| MW-0026D | 18-Jun-85 | 0        | 3.8        |               | 0                           | 2.6           | 8.7           | 0  | 6.03E-06 | ٨        | B  |
| MW-0026D | 25-Oct-88 | 0        | 0          |               | 0                           | 0             | 8.1           | 0  | 3.48E-06 | A        | B  |
| MW-0026D | 23-Jan-89 | 0        | 0          |               | 0                           | 0             | 22            | 0  | 1.00E-05 | A        | B  |
| MW-0026D | 26-Apr-89 | 0        | 0          |               | 0                           | 0             | 20            | 0  | 1.06E-05 | A        | B  |
| MW-0026D | 26-Apr-89 | 0        | 0          |               | 0                           | 0             | 22            | 0  | 1.06E-05 | A        | B  |
| MW-0026D | 01-Aug-89 | 0        | 0          |               | 0                           | 0             | 34            | 0  | 1.14E-05 | A        | B  |
| MW-0026D | 04-Jan-90 | 0        | 0          |               | 0                           | 0             | 42            | 0  | 2.21E-05 | A        | B  |
| MW-0026D | 04-Jan-90 | 0        | 0          |               | 0                           | 0             | 50            | 0  | 2.21E-05 | A        | В  |
| MW-0026D | 31-Jan-90 | 0        | 0          |               | 0                           | 0             | 44            | 0  | 1.37E-05 | A        | B  |
| MW-0026D | 31-Jan-90 | 0        | 0          |               | 0                           | 0             | 50            | 0  | 1.37E-05 | A        | B  |
| MW-0026D | 19-Apr-90 | 0        | 0          |               | 0                           | 0             | 65            | 0  | 2.37E-05 | A        | B  |
| MW-0026D | 17-Jul-90 | 0        | 0          |               | 0                           | 0             | 71            | 0  | 2.63E-05 | A        | B  |
| MW-0026D | 10-Oct-90 | 0        | 0          |               | 0                           | 0             | 72            | 0  | 2.25E-05 | ٨        | В  |
| MW-0026D | 11-Jan-91 | 0        | 0          |               | 0                           | 0             | 41            | 0  | 1.58E-05 | A        | В  |
| MW-0026D | 06-May-91 | 0        | 0          |               | 0                           | 0             | 44            | 0  | 1.69E-05 | A        | B  |
| MW-0026D | 18-Jul-91 | 0        | 0          |               | 0                           | 0             | 69            | 0  | 2.15E-05 | ٨        | в  |
| MW-0026D | 08-Jan-93 | 0        | 0          | 0             | 0                           | 0             | 37            | 0  | 1.15E-05 | A        | B  |
| MW-0026D | 08-Jan-93 | 0        | 0          | 0             | 0                           | 0             | 47            | 0  | 1.15E-05 | A        | B  |
| MW-0026S | 16-Jun-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | ٨        | A  |
| MW-0026S | 11-Aug-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | A        | A  |
| MW-0026S | 29-Sep-84 |          |            |               |                             |               |               |    | 0        | ٨        | A  |
| MW-0026S | 02-Jun-85 | 0        | 0          |               | 0                           | 6.5           | 21.3          | 0  | 1.15E-05 | ٨        | A  |
| MW-0027D | 28-Apr-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | A        | B  |
| MW-0027D | 12-Aug-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | A        | В  |
| MW-0027D | 01-Oct-84 |          |            |               |                             |               |               |    | 0        | A        | В  |
| MW-0027D | 30-May-85 | 0        | 0          |               | 0                           | 0             | 4.6           | 0  | 1.44E-06 | A        | B  |
| MW-0027D | 13-May-87 | 0        | 0          |               | 0                           | 0             | 195           | 0  | 1.79E-04 | A        | В  |
| MW-0027D | 11-Aug-87 | 0        | 0          |               | 0                           | 0             | 71            | 0  | 8.28E-05 | A        | B  |
| MW-0027D | 11-Aug-87 | 0        | 0          |               | 0                           | 0             | 76            | 0  | 8.28E-05 | A        | В  |
| MW-0027D | 22-Oct-87 | 0.69     | 0          |               | 0                           | 0             | 39            | 0  | 5.79E-05 | A        | B  |
| MW-0027D | 22-Oct-87 | 0.74     | 0          |               | 0                           | 0             | 40            | 0  | 5.79E-05 | A        | В  |
| MW-0027D | 26-Jan-88 | 0.41     | 0          |               | 0                           | 0             | 35            | 0  | 4.12E-05 | A        | В  |
| MW-0027D | 08-Apr-88 | 0.98     | 0          |               | 0                           | 0             | 56            | 0  | 7.39E-05 | <b>A</b> | В  |
| MW-0027D | 20-Jul-88 | 0        | 0          |               | 0                           | 0             | 56            | 0  | 3.47E-05 | <u>A</u> | B  |
| MW-0027D | 20-Jul-88 | 0.88     | 0          |               | - 0                         | 0             | 91            | 0  | 3.47E-05 | <u>A</u> | B  |
| MW-0027D | 24-Oct-88 | 0.5      | 0          |               | 0                           | 0             | 67            | 0  | 6.49E-05 | <b>A</b> | B  |
| MW-0027D | 09-Aug-89 | 0        | 0          |               | 0                           | 0             | 87            | 0  | 7.36E-05 | <u>A</u> | B  |
| MW-0027D | 18-Dec-89 | 0        | 0          |               | 0                           | 0             | 110           | 0  | 7.22E-05 | A        | B  |
| MW-0027D | 18-Dec-89 | 0        | 0          |               | 0                           | 0             | 150           | 0  | 7.22E-05 | <u>A</u> | B  |
| MW-0027D | 20-Apr-90 | 1.9      | 0          |               | 0.98                        | 0             |               | 0  | 2.33E-05 | <u>A</u> | B  |
| MW-0027D | 18-Jul-90 | 0        | 0          |               | 0                           | 0             | 41            | 0  | 1.74E-05 | A        | B  |
| MW-0027D | 19-Oct-90 | 0        | 0          |               | 0                           | 0             | 63            | 0  | 2.38E-05 | <b>A</b> | B  |
| MW-0027D | 10-Jan-91 | 0.64     | 0          |               | 0                           | 0             | 52            | 0  | 2.82E-05 | A        | B  |
| MW-0027D | 09-May-91 | 0        | 0          |               | 0                           | 0             | 75            | 0  | 3.36E-05 | <u>A</u> | B  |
| MW-0027D | 09-May-91 | 2.3      | 0          |               | 0                           | 0             | 74            | 0  | 3.36E-05 | <u>A</u> | B  |
| MW-0027D | 18-Jul-91 | 0.84     | 0          |               | 0                           | 0             | 71            | 0  | 2.40E-05 | <u>A</u> |    |
| MW-0027D | 08-Jan-93 | 1.4      | 0          | 4.1           | 0                           | 0             | 26            | 0  | 1.13E-04 | A        | B  |
| MW-0027D | 08-Jan-93 | 1.6      | 0          | 6             | 0                           | 0             | 35            | 0  | 1.13E-04 | <b>A</b> | B  |
| MW-0027S | 28-Apr-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | A        |    |
| MW-0027S | 12-Aug-82 | 0        | 0          |               | 0                           | 0             | 15            | 0  | 4.68E-06 | A        |    |
| MW-0027S | 12-Sep-84 |          |            |               |                             |               |               |    | 0        | <u> </u> |    |
| MW-0027S | 05-Jua-85 | 0        | 0          |               | 0                           | 0             | 63.4          | 0  | 4.48E-05 | A        |    |
| MW-0028D | 16-Jua-82 | 0        | 0          |               | 0                           | Ó             | 0             | 0  | 0        | <b>A</b> |    |
| MW-0028D | 17-Aug-82 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | <b>A</b> |    |
| MW-0028D | 26-Sep-84 |          |            |               |                             |               |               |    | 0        | <u> </u> |    |
| MW-0028D | 16-Jua-85 | 0        | 6.5        |               | 0                           | 2.5           | 8.9           | 0  | 2.78E-06 | <b>A</b> |    |
| MW-0024D | 15-May-87 | 0        | 0          |               | Ő                           | Ō             | Ō             | 0  | 0        | <b>A</b> |    |
| MW-0028D | 07-Aug-87 | 0        | 0          |               | 0                           | 0             | 0             | 0  | 0        | ۸        |    |

g:\usav\day\_sumwal\woog\TABLEK-6.XLS

۰.

1

.....

05/11/94

-----

|           |            |        | VOC GSAP C | oncentrations | Table K-6<br>up to Third Q | mrter 1993 Sai | mpling Period |     |          |          |           |
|-----------|------------|--------|------------|---------------|----------------------------|----------------|---------------|-----|----------|----------|-----------|
| Location  |            |        |            |               |                            |                |               |     | Risk for | Operable |           |
| D         | Log Date   | L2-DCA | 1,1-DCE    | ~1,2-DCE      | PCE                        | 1,1.1-TCA      | TCE           | VC  | Pathways | Unit     | Zone      |
| MW-0028D  | 23-Oct-87  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | <u> </u> | A         |
| MW-0028D  | 27-Jan-88  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | <u> </u> | <b>A</b>  |
| MW-0028D  | 1.5-Apt-88 | 0      | 0          |               | 0                          | 0              | 0             | 0   |          | <u> </u> | <b>A</b>  |
| MW 0028D  | 13.0~ 98   | 0      | 0          |               | 0                          | 0              |               | 0   | 0        | <u> </u> |           |
| MUY 0028D | 23. Jan 90 |        | 0          |               | 0                          | 0              | 0             | 0   | 0        | <u> </u> |           |
| MW-0028D  | 12-Jag-69  | 0      | 0          |               |                            |                | 0             |     |          | A        |           |
| MW-0028D  | 28 Jul 89  | 0      | 0          |               | 0                          | 0              | 0             | 0   |          |          |           |
| MW-0028D  | 19-Dec-89  | 0      | 0          | h · · · · ·   | 0                          | 0              | 0             | 0   | 4.57E-07 | A        |           |
| MW-0028D  | 24-Jan-90  | 0      | 0          |               | 0                          | 0              | 0             |     | 0        | A        |           |
| MW-0028D  | 24-Apr-90  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 8.93E-08 | <u> </u> |           |
| MW-0028D  | 16-Oct-90  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | Α        | A         |
| MW-0028D  | 10-May-91  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | ٨        | A         |
| MW-0028D  | 16-Apr-93  | 0      | 0          | 0             | 0                          | 0              | 0             | 0   | Ó        | A        | A         |
| MW-0028S  | 16-Jun-82  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | A        | A         |
| MW-0029D  | 28-Apr-82  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | н        | В         |
| MW-0029D  | 16-Aug-82  | 0      | 0          |               | Ő                          | 0              | 10            | 0   | 3.12E-06 | н        | B         |
| MW-0029D  | 01-Oct-84  |        |            |               |                            |                |               |     | 0        | H        | B         |
| MW-0029D  | 17-Jun-85  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | Н        | B         |
| MW-0029D  | 03-Apr-86  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 5.60E-05 | Ĥ        | B         |
| MW-0029D  | 01-Oct-86  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | H        | B         |
| MW-0029D  | 15-Jan-87  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | H        | B         |
| MW-0029D  | 29-Apr-87  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | H        | B         |
| MW-0029D  | 12-Aug-8/  | - 0    | 0          |               | 0                          | 0              | 0             | 0   | 0        | <u> </u> | B         |
| MW-0029D  | 24-0ct-8/  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | н<br>    | 8         |
| MW-0029D  | 12-4       | 0      | 0          |               |                            | 0              | 0             | 0   | 0        | n        | D         |
| MW-0029D  | 12-748-00  | 0      | 0          |               |                            |                | 0             | - 0 |          | н<br>н   | B         |
| MW-0029D  | 13-Oct-88  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        |          | B         |
| MW-0029D  | 18-Dec-89  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | н        | B         |
| MW-0029D  | 19-Oct-90  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | Н        | B         |
| MW-0029S  | 28-Apr-82  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | Н        | A         |
| MW-0029S  | 16-Aug-82  | 0      | 0          |               | 0                          | 0              | 10            | 0   | 3.12E-06 | Н        | A         |
| MW-0030S  | 16-Jun-82  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 5.40E-04 | A        | A         |
| MW-0030S  | 17-Aug-82  | 0      | 0          |               | 0                          | 0              | 10            | 0   | 3.12E-06 | A        | A         |
| MW-0030S  | 18-Sep-84  |        |            |               |                            |                |               |     | 0        | ٨        | A         |
| MW-0030S  | 13-Jun-85  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | A        | A         |
| MW-0031S  | 16-Jun-82  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 5.40E-04 | C        | A         |
| MW-0031S  | 17-Aug-82  | 0      | 0          |               | 0                          | 0              | 10            | 0   | 3.12E-06 | <u> </u> | <b>A</b>  |
| MW-0031S  | 25-Sep-84  |        |            |               |                            |                |               |     | 0        | <u> </u> | <b>A</b>  |
| MW-0031S  | 11-Jun-85  | 0      | 0          |               | 0                          | 0              | 0             | 0   | 0        | <u> </u> |           |
| MW-00315  | 20-Mar-80  | 0      | 0          |               | 0                          | 0              | 0             | U   | 1.326-07 | <u> </u> |           |
| MW-00315  | 20. A #7   | U      | U          |               | 0                          | 0              |               | U   | U        | <u> </u> | <u> -</u> |
| MW.00313  | 12. A1-0/  |        | 0          |               | 0                          | U              | 0             | 0   |          | <u> </u> |           |
| MW-00315  | 27-Oct-17  |        | 0          |               | 0                          | 0              |               | 0   |          | <u> </u> |           |
| MW-0031S  | 27-Jan-88  | 0      | 0          |               | 0                          | 0              | 0             | 0   |          | c        |           |
| MW-0031S  | 13-Anr-88  | 0      | 0          |               | 0                          |                | 0             | 0   | 0        | č        | Å         |
| MW-0033S  | 29-Sep-82  | 0      | 0          |               | 0                          | 0              | 2000          | ō   | 6.31E-04 | Ċ        |           |
| MW-0033S  | 07-Jun-85  | 0      | 0          |               | 0                          | 0              | 21500         | Ō   | 7.04E-03 | С        | A         |
| MW-0033S  | 07-Jun-85  | 0      | 0          |               | 0                          | 0              | 22600         | 0   | 7.04E-03 | С        | A         |
| MW-0033S  | 30-Oct-86  | 62     | 2.6        |               | 0                          | 0              | 25000         | 2.9 | 8.14E-03 | С        | A         |
| MW-0033S  | 29-Jan-87  | 79     | 4.6        |               | 9.8                        | 0.27           | 27000         | 15  | 7.38E-03 | С        | A         |
| MW-0033S  | 29-Jan-87  | 88     | 4.1        |               | 0                          | 0              | 22000         | 10  | 7.38E-03 | С        | A         |
| MW-0033S  | 16-Apr-87  | 100    | 0          |               | 8.7                        | 0.49           | 25000         | 10  | 8.38E-03 | С        | A         |
| MW-0033S  | 16-Apr-87  | 110    | 0          |               | 8.5                        | 0.27           | 24000         | 11  | 8.38E-03 | С        |           |
| MW-0033S  | 31-Jul-87  | 0      | 0          |               | 0                          | 0              | 52000         | 0   | 1.40E-02 | С        | A         |
| MW-0033S  | 31-Jul-87  | 0      | 0          |               | 0                          | 280            | 45000         | 0   | 1.40E-02 | С        | A         |
| MW-0033S  | 17-Sep-87  | 140    | 3.5        |               | 6.9                        | 45             | 20000         | 5.1 | 6.84E-03 | С        |           |
| MW-0033S  | 26-Oct-87  | 0      | 0          |               | 0                          | 0              | 35000         | 0   | 1.09E-02 | С        |           |
| MW-0033S  | 06-Jan-88  | 0      | 0          |               | 0                          | 0              | 22000         | 0   | 6.86E-03 | С        | •         |

g:\user\de\j\_zunswal\woog\TABLEK-6.XLS

2.4

T

1

\_\_\_\_\_

Page 8 of 60

05/11/94

-----
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | OC GSAP C | encentrations | Table K-6<br>up to Third Qu | mrter 1993 Sa | mpling Period |      |                      |                   |   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|---------------|-----------------------------|---------------|---------------|------|----------------------|-------------------|---|
| Location | L on Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.004                           | 11.008    | al 2 DCE      | PCE                         | LLITCA        | TT            | VC   | Risk for<br>Pathanan | Operable<br>Eluit | I |
| MW-00335 | 25.400.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 450                              | 17        |               | 26                          | 14            | 26000         | 40   | 9 37E-03             |                   | ╇ |
| MW 00335 | 21 Jul 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 430                              |           |               |                             |               | 28000         |      | 9.37E-03             | <u> </u>          | + |
| MW-00335 | 21-JUI-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               |                             |               | 18000         | 0    | 1.205-02             | <u> </u>          | + |
| MW-00335 | 21-JUI-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400                              |           |               |                             |               | 33000         |      | 0.275.02             | <u> </u>          | + |
| MW-00335 | 18-00-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400                              |           |               |                             | 0             | 17000         | 0    | 9.275-03             | <u> </u>          | + |
| MW-00335 | 11-Jan-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                              |           |               |                             | 0             | 17000         | 0    | 5.73E-03             |                   | ╡ |
| MW-00335 | 06-Apt-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                | 0         |               |                             | 0             | 17000         |      | 3.305-03             | <u> </u>          | + |
| MW-00335 | 23-JUI-69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               |                             |               | 12000         |      | 3.742-03             | <u> </u>          | 4 |
| MW-00335 | 13-1060-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                | 0         |               |                             |               | 12000         |      | 3.74E-03             | <u> </u>          | 4 |
| MW-00335 | 29-388-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               |                             |               | 12000         |      | 3.74E-03             | <u> </u>          | - |
| MW-00355 | 20-Apt-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               |                             |               | 20000         | 0    | 8.10E-05             |                   |   |
| MW-00365 | 29-300-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                | v         |               | <b>`</b>                    |               |               |      | 1.302-00             | <u> </u>          | - |
| MW-00365 | 17-300-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               |                             |               |               |      | 0.065.01             | <u> </u>          | - |
| MW-00365 | 08-Jun-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               | <b>v</b>                    |               | <u> </u>      |      | 9.052-07             | <u> </u>          | - |
| MW-00365 | [4-Apr-6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               |                             |               |               |      | 2105.00              | <u> </u>          |   |
| MW-00365 | 10-Apr-8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               | 01                          | 0             | 3.4           |      | 2.105-06             | <u> </u>          | _ |
| MW-00365 | 10-ADE-8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               | 0.3                         | 0             | 3.7           | 0    | 2.105-06             | <u> </u>          | - |
| MW-00365 | 30-JUL-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U 0                              | 0         | <u></u>       | 0                           | 0             | 2.3           |      | 2.11E-06             | <u> </u>          | _ |
| MW-00365 | 21-00-8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U 0                              |           |               | 0.33                        | 0             | 1.8           |      | 1./1E-06             | <u> </u>          | + |
| MW-00365 | 13-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                | 0.24      |               |                             |               | 1.9           | 0    | 3.935-07             |                   |   |
| MW-00365 | 11-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | <u> </u>  |               |                             |               | 2.3           |      | 1.122-00             | <u> </u>          | - |
| MW-00365 | 11-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                | 0         |               | 0                           | 0             |               | 0    | 1.128-06             | <u> </u>          | _ |
| MW-00365 | 25-00-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                |           |               |                             | 0             | 1.8           | - 0  | 3.62E-07             | <u> </u>          | - |
| MW-0037  | 28-Sep-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                | 0         |               | 0                           | 0             | 0             | 0    | 1 (15.05             | <u> </u>          | _ |
| MW-0038D | 27-360-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 500       |               |                             | 120           | 30            | 0    | 1.01E-05             |                   | - |
| MW-0038D | 09-Aug-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 370       |               | 2.8                         | 120           | 52            | 420  | 5.898-05             | <u> </u>          |   |
| MW-0058D | 27-00-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                              | 2000      |               | 3.2                         | 1/0           | 140           | 420  | 1.15E-02             |                   | - |
| MW-0038D | 14-360-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 11600     |               | 260                         | 1970          |               | 2220 | 4.985-04             |                   | - |
| MW-0038D | 19-Jun-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                              | 11500     |               | 200                         | 1670          | 290           | 4230 | 5.662-02             |                   |   |
| MW-00395 | 14-300-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 0                           | 0             |               | 0    | 1 565 06             | <u> </u>          |   |
| MW-00405 | 29-300-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>-</b> +                       |           | <u> </u>      | <b>`</b>                    |               |               |      | 1.305-00             | <u> </u>          | _ |
| MW-00405 | 30-30p-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           | <u></u>       |                             |               | 100           |      | 7 725.05             | <u> </u>          | - |
| MW-0041S | 14.500 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           | La-a          |                             |               | 20            | 0    | 6 24E-06             | 2<br>B            | _ |
| MW-00415 | 24 5-5 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | └─── <b>─</b> └                  |           | ······        | <b>`</b>                    | <b>v</b>      | 20            |      | 0.242500             |                   | - |
| MW-00413 | 10 hm 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 0         |               | 31                          | 23            | 23.2          | 0    | 1155-05              | 9                 | _ |
| MW-00415 | 13. Mar 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |           |               | 0.5                         | 2.5           | 20            |      | 8 86E-06             | R                 |   |
| MW-00415 | 19 Nov 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 0.0                         |               | 43            |      | 1 54E-05             | 8                 | - |
| MW-00415 | 18-Nov-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 0.18                        | 0             | 45            | 0    | 1.54E-05             |                   | - |
| MW-00415 | 15-1an-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 0.10                        | 0             | 37            | 0    | 1.29E-05             | B                 | - |
| MW.00415 | 24.45-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |           |               | 0.75                        | 0             | 01            | 0    | 3.66F-05             | R                 | - |
| MW-00415 | 05-Ame.#7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               |                             |               | 130           | 0    | 4.19F-05             | B                 | - |
| MW-00415 | 20-0rt-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           | ····          | 0                           |               | 100           | 0    | 3,43E-05             | B                 |   |
| MW-00415 | 20-0:1-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               |                             | 0             | 110           | 0    | 3.43E-05             | B                 |   |
| MW-0041S | 26-Jan.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - ă                              |           |               | 6.2                         | 0             | 140           | 0    | 5.29E-05             | B                 |   |
| MW-0041S | 18-Apr.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           | <u> </u>      | 10                          | 0             | 220           | 0    | 8,21E-05             | B                 |   |
| MW-00415 | 13-Jul-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | ō         |               | 0                           | 0             | 1100          | 0    | 3.43E-04             | B                 | - |
| MW-00415 | 13-Jul-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - ol                             |           |               | 42                          | 0             | 870           | 0    | 3.43E-04             | B                 |   |
| MW-0041S | 07-Oct-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               | 370                         | 0             | 2900          | 0    | 1.38E-03             | B                 |   |
| MW-0041S | 16-Jan.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                |           |               | 240                         | 0             | 3400          | 0    | 1.37E-03             | B                 |   |
| MW-00415 | 11-Apr-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 150                         | 0             | 2700          | 0    | 1.03E-03             | B                 | - |
| MW-00415 | 25-Jul-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 0         |               | 230                         | 0             | 2500          | 0    | 1.07E-03             | B                 |   |
| MW-00415 | 17-0-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                         |           | ·             | 200                         |               | 3500          | 0    | 1.35E-03             | B                 | - |
| WW-00415 | 17-0-1-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 320                         | <u> </u>      |               |      | 1.35E-03             | B                 | - |
| MW_00419 | 12-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ├─── <b>````````````````````</b> | ~ ~       |               | 120                         |               | 1800          | 0    | 7.28F_04             | R                 |   |
| MW_00419 | 12.4-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ├ <u>~</u> /                     |           |               | 70                          |               | 1400          |      | 5 59R_04             | R                 | - |
| MW_00410 | 18.64.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |           |               |                             | 0             | 1000          | - 0  | 3 86F_04             | R                 |   |
| W.MAIR   | 16.0.4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               |                             | 0             | 720           | - 0  | 2 438-04             | R                 | - |
| MW.00410 | 11.10-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |           |               | 71                          |               | 070           | 0    | 1 GAE_GA             | R                 | _ |
|          | 30.h-L01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |           |               | 21                          |               | 770           |      | 2.67F_04             | R                 |   |
|          | The second line will be a second line with the second line with the second line will be a second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the second line with the sec |                                  |           |               |                             |               |               |      |                      |                   |   |
| MW-00415 | 30 Jul 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |           |               | 21                          | ^             | 770           | -    | 2678.04              | R                 |   |

: wees/da'j\_manwalwoog'TABLEK-6.XLS

۰,

وتهجون وتراديا الأر

. ب سه

Page 9 of 60

05/11/94

| Table K-6           VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period           Location         Risk for         Operable           ID         Las Date         1,1-DCE         e-1,2-DCE         PCE         1,L1-TCA         TCE         VC         Pathways         Unit         Zame |            |         |         |          |      |         |      |     |          |          |          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------|----------|------|---------|------|-----|----------|----------|----------|--|--|
| Location                                                                                                                                                                                                                                                                                                 |            |         |         |          | []   |         |      |     | Rick for | Operable |          |  |  |
| D                                                                                                                                                                                                                                                                                                        | Log Date   | 1,2-DCA | 1,1-DCE | €1,2-DCE | PCE  | LLI-TCA | TCE  | VC  | Pathways | Unit     | Zamo     |  |  |
| MW-00415                                                                                                                                                                                                                                                                                                 | 20-Jan-92  | 0       | 0       |          | 9.3  | 0       | /60  | 0   | 2.5/E-04 | B        | <b>A</b> |  |  |
| MW-0041S                                                                                                                                                                                                                                                                                                 | 07.04.92   | 0       | 0       | 0        |      | 0       | 520  | 0   | 1.70E-04 | <u> </u> | <u>^</u> |  |  |
| MW-0041S                                                                                                                                                                                                                                                                                                 | 07-148-93  |         | 0       | 0        | 16   | 0       | 460  | ů ů | 1.64E-04 | B        | Â        |  |  |
| MW-00415                                                                                                                                                                                                                                                                                                 | 16-Apr-93  | 0       | 0       | 0        | 42   | 0       | 360  | 0   | 4.09E-04 | B        | Å        |  |  |
| MW-00415                                                                                                                                                                                                                                                                                                 | 16-Apr-93  | 0       | 0       | 0        | 55   | 0       | 390  | 0   | 4.09E-04 | B        | A        |  |  |
| MW-0041S                                                                                                                                                                                                                                                                                                 | 27-Jul-93  | 0       | 0       | 23.80    | 0    | 0       | 299  | 0   | 2.05E-04 | В        | A        |  |  |
| MW-0042S                                                                                                                                                                                                                                                                                                 | 27-Sep-82  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | B        | A        |  |  |
| MW-0042S                                                                                                                                                                                                                                                                                                 | 28-Sep-84  |         |         |          |      |         |      |     | 0        | B        | A        |  |  |
| MW-0042S                                                                                                                                                                                                                                                                                                 | 02-Jun-85  | 0       | 0       |          | 0    | 0       | 0    | 0   | 2.18E-07 | B        | <b>A</b> |  |  |
| MW-0042S                                                                                                                                                                                                                                                                                                 | 02-Jua-85  | 0       | 0       |          | 0    | 0       | 0.7  | 0   | 2.18E-07 | B        | <b>A</b> |  |  |
| MW-0043S                                                                                                                                                                                                                                                                                                 | 14-Sep-82  | 0       | 0       |          | 0    | U       | 0    |     | 0        | B        | <b>A</b> |  |  |
| MW-00435                                                                                                                                                                                                                                                                                                 | 13-30p-04  |         |         |          |      | 0       |      | 0   | 0        | B        |          |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 13-500-82  | 0       | 30      |          | 0    | 0       | 10   | 0   | 3.12E-06 | C        | Â        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 21-Sep-84  |         |         |          |      |         |      |     | 0        | С        | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 21-Mar-86  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 17-Sep-86  | 0       | 0.55    |          | 0    | 0       | 0    | 0   | 0        | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 12-Jan-87  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | С        | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 03-Feb-87  |         |         |          |      |         |      |     | 0        | C        | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 06-May-87  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | <u> </u> | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 13-Aug-8/  | 0       | 8.3     |          |      | 0       | 04   | 0   | 1 25E-07 | <u> </u> |          |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 23-00-87   | 0       | 3.5     | ····     |      | 0       | 0.63 | 0   | 1.23E-07 | <u> </u> |          |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 26-Apr-88  | ō       | 2.8     |          | 0    | 0       | 0.5  | 0   | 1.56E-07 | c        | Å        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 20-Jul-88  | 0       | 4.8     |          | 0    | 0       | 0.95 | 0   | 2.97E-07 | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 06-Oct-88  | 0       | 3.5     |          | 0    | 0       | 0.69 | 0   | 6.87E-07 | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 06-Oct-88  | 0       | 5.6     |          | 0    | 0       | 2.2  | 0   | 6.87E-07 | С        | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 18-Jan-89  | 0       | 4.7     |          | 0    | 0       | 1.1  | 0   | 3.43E-07 | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 17-Apr-89  | 0       | 2.9     |          | 0    | 0       | 0.73 | 0   | 2.28E-07 | <u>C</u> | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 14-Jul-89  | 0       | 0       |          | 0    | 0       | 1.3  | 0   | 4.06E-07 | <u> </u> | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 13-Dec-89  | 0       | 5.5     |          | 0    | 0       | 2.2  |     | 4.99E-07 |          |          |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 30-Jan-90  |         | 4.4     |          |      | 0       |      | 0   |          | <u> </u> | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 09-Apt-90  | 0       | 6       |          | 0    | 0       | 1.6  | 0   | 4.99E-07 | C        | A        |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 09-Apr-90  | 0       | 6.8     |          | 0    | 0       | 2    | 0   | 4.99E-07 | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 18-Jul-90  | 0       | 8.6     |          | 0    | 0       | 1.8  | 0   | 5.62E-07 | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 15-Oct-90  | 0       | 5       |          | 0    | 0       | 1.2  | 0   | 3.75E-07 | С        | A        |  |  |
| MW-0044S                                                                                                                                                                                                                                                                                                 | 30-Jan-91  | 0       | 5.2     |          | 0    | 0       | 1.8  | 0   | 5.62E-07 | C        |          |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 09-May-91  | 0       | 7.1     |          | 0    | 0       | 2.3  | 0   | 1.35E-06 | C        | <b>A</b> |  |  |
| MW-00445                                                                                                                                                                                                                                                                                                 | 13-Aug-91  | 0       | 5.1     |          | 0.45 | 0       | 16   | - 0 | 3.375-00 | <u> </u> |          |  |  |
| MW_00449                                                                                                                                                                                                                                                                                                 | 19-500-84  |         |         |          |      | U       |      |     | 0        | <u> </u> |          |  |  |
| MW-00455                                                                                                                                                                                                                                                                                                 | 04-Jun-85  | 0       | 0       |          | 0    | 0       | 4.1  | 0   | 1.28E-06 | č        | Ā        |  |  |
| MW-00- S                                                                                                                                                                                                                                                                                                 | 29-Sep-82  | 0       | 0       |          | 0    | 0       | 0    | 0   | 6.62E-06 | A        | A        |  |  |
| MW-0046S                                                                                                                                                                                                                                                                                                 | 29-Sep-84  |         |         |          |      |         |      |     | 0        | A        | A        |  |  |
| MW-0046S                                                                                                                                                                                                                                                                                                 | 03-Jun-85  | 0       | 0       |          | 0    | 0       | 2.7  | 0   | 8.43E-07 | A        | A        |  |  |
| MW-0047S                                                                                                                                                                                                                                                                                                 | 29-Sep-82  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | B        | •        |  |  |
| MW-0047S                                                                                                                                                                                                                                                                                                 | 01-Oct-84  |         |         |          |      |         |      |     | 0        | B        | A        |  |  |
| MW-0047S                                                                                                                                                                                                                                                                                                 | 04-Jun-85  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | B        | <b>A</b> |  |  |
| MW-00495                                                                                                                                                                                                                                                                                                 | 29-5-20-82 | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | A        |          |  |  |
| MW-UUTS                                                                                                                                                                                                                                                                                                  | 43-JUL-88  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | A        |          |  |  |
| MW-00495                                                                                                                                                                                                                                                                                                 | 72-Now-84  |         | 0       |          | 0    | 0       | 0    | 0   | 1 44E_04 | <u> </u> | R        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 14-Jan.\$7 |         |         |          | 0    | 0       | 0    | 0   | 0        | <u></u>  | B        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 23-Apr-87  | 0       | 0       |          |      | 0       | 0    | 0   | 0        | D        | B        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 03-Aug-87  |         | 0       |          | 0    | 0       | 0    | 0   | 0        | D        | B        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 15-Oct-87  | 0       | 0       |          | 0    | 0       | 0    | 0   | 3.11E-07 | D        | B        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 11-Jan-88  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | D        | B        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 06-Apr-88  | 0       | 0       |          | 0    | 0       | 0    | 0   | 0        | D        | B        |  |  |
| MW-0051                                                                                                                                                                                                                                                                                                  | 07-Jul-88  | 0       | Ó       |          | 0    | 0       | 0    | 0   | 0        | D        | B        |  |  |

g:\umars\da\j\_autowal\woog\TABLER-6.XLS

۱

the second second second second second second second second second second second second second second second s

05/11/94

)

| Location<br>ID | Log Date                              | 1,2-DCA  | 1,1-DCR | +1,2-DCE | PCE  | 1,1,1 <b>-TCA</b> | TCE  | vc   | Risk for<br>Pathways | Operable<br>Unit |
|----------------|---------------------------------------|----------|---------|----------|------|-------------------|------|------|----------------------|------------------|
| MW-0051        | 07-Oct-88                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 06-Jaa-89                             | 0        | 0       |          | Ö    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 18-Apr-89                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 27-Jui-89                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 12-Oct-89                             | 0        | 0       |          | 0    | 0                 | 0.37 | 0    | 1.15E-07             | D                |
| MW-0051        | 12-Jaa-90                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 17-Jul-90                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 10-Jul-91                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0051        | 06-Apr-93                             | 0        | 0       | 0        | 0    | 0                 | 0    | 0    | Ō                    | D                |
| MW-0052        | 24-Nov-86                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 29-Jan-87                             | 0        | 0       |          | 0    | 0                 | 2.1  | 0    | 7.65E-07             | D                |
| MW-0052        | 11-May-87                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 27-jul-87                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 16-Oct-87                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 07-Jan-88                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 07-Apr-88                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 05-Jul-88                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 18-Oct-88                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | u<br>D           |
| MW-0052        | 18-Jan-89                             | 0        |         |          | 0    | 0                 | 0    | 0    | 0                    | <u> </u>         |
| MW-0002        | U3-APE-89                             | <u> </u> | U       |          | 0    | 0                 | 0    |      | 0                    |                  |
| MW.0042        | 17-141-87                             |          | 0       |          |      | 0                 | 0    | 0    | U<br>                | <u> </u>         |
| MW_0042        | 23. Tan 00                            |          | 0       |          |      | 0                 |      |      |                      |                  |
| MW-0052        | 23-Jul-90                             |          |         |          | 0    | 0                 |      | 0    |                      | <u> </u>         |
| MW-0052        | 24-Arr-91                             |          | 0       |          |      |                   |      |      | 0                    | D                |
| MW-0052        | 07-Jul-92                             | 0        | 0       | 0        | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0052        | 23-Jul-93                             | 0        | 0       | 0        | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 21-Nov-86                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 20-Jan-87                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 08-May-87                             | - ol     | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 28-Jui-87                             | 0        | 2.1     |          | 0    | 0                 | 0    | 0    | 3.94E-07             | D                |
| MW-0053        | 21-Oct-87                             | 0        | 13      |          | 0.27 | 2.9               | 3.4  | 0    | 1.41E-06             | D                |
| MW-0053        | 06-Jan-88                             | ō        | 8.7     |          | 0.16 | 1.3               | 2.3  | 0    | 9.23E-07             | D                |
| MW-0053        | 07-Apr-88                             | 0        | 2.5     |          | 0    | 0.22              | 0.32 | 0    | 9.99E-08             | D                |
| MW-0053        | 05-Jui-88                             | 0        | 12      |          | 0.22 | 1.3               | 2.9  | 0    | 1.19E-06             | D                |
| MW-0053        | 04-May-89                             | 0        | 0       |          | 0    | 0                 | 0.49 | 0    | 1.53E-07             | D                |
| MW-0053        | 18-Jul-89                             | 0        | 0       |          | 0    | 0                 | 0.23 | 0    | 7.18E-08             | D                |
| MW-0053        | 04-Jan-90                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 18-Jan-90                             | 0        | 0       |          | 0    | 1.2               | 0    | 0    | 0                    | D                |
| MW-0053        | 11-Apr-90                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 09-May-91                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0053        | 21-Jul-92                             |          |         |          |      |                   |      |      | 1.62E-07             | D                |
| MW-0053        | 21-Jul-92                             | 0        | 2.8     | 0        | 0    | 0                 | 0.52 | 0    | 1.625-07             |                  |
| MW-UUD3        | 22-Apr-93                             | 0        | 1.10    | 0        | 0    | 0                 | 0.32 | 1200 | 2.03E-07             | <u> </u>         |
| MW-0004        | 20-MOV-80                             | <u> </u> | 430     |          | 4.1  |                   | 20   | 1200 | 3 102 02             | <u> </u>         |
| MW-0004        | 27 4 97                               | 14       | 1/1     |          |      |                   | 3.9  | 1224 | A 720 02             |                  |
| MW-0054        | 27.4-27                               |          | 54      |          |      |                   | 0    | 100  | 4.73E-03             |                  |
| MW.004         | 10.4                                  |          |         |          |      |                   |      | 17   | 1.60F_04             |                  |
| MW.0044        | 10.414-97                             | 0.22     |         |          |      | 0                 |      | 14   | 1 60F_04             |                  |
| MW-0054        | 19-0-4-87                             | 1        |         |          |      | 0.3               | 1.8  | 30   | 1.06E-03             | D                |
| MW-0054        | 19-0-4-87                             | 12       | 22      |          |      | 0.5               | 1.7  | 40   | 1.06E-03             | D                |
| MW-0054        | OG-Inn-RE                             | 016      | 24      |          | 0    | 0.50              | 1.4  | 3.6  | 1.32E-04             | D                |
| MW-0054        | 06-Jan-88                             | 0.17     | 8.2     |          | 0    |                   | 1.4  | 5    | 1.32E-04             | D                |
| MW-0054        | 06-Am-81                              | 0        | 0.36    |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0054        | 11-Jul-88                             | 1        | 100     |          | 0    | 0.46              | 7.3  | 2.9  | 8.25E-05             | D                |
| MW-0054        | 14-Oct-88                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0054        | 17-Jan-89                             | ot       | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0054        | 03-Apr-89                             | 0        | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
| MW-0054        | 26-Jul-89                             | o l      | 0       |          | 0    | 0                 | 0    | 0    | 0                    | D                |
|                | · · · · · · · · · · · · · · · · · · · | ·        |         |          |      |                   |      |      |                      |                  |

g:\umm\de\j\_zuzuwal\wong\TABLEK-6.XLS

•

Page 11 of 60

05/11/94

| Table K-6           VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period           Location         Risk for         Operable           ID         Lee Data         1.1-DCE         c-1.2-DCE         PCE         1.L1-TCA         TCE         VC         Pathware         Unit         Zone |                   |              |         |           |      |         |                   |      |          |          |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|---------|-----------|------|---------|-------------------|------|----------|----------|------|--|
| Location                                                                                                                                                                                                                                                                                                 | T                 |              |         |           |      |         |                   |      | Risk for | Operable |      |  |
| D                                                                                                                                                                                                                                                                                                        | Log Date          | 1,2-DCA      | 1,1-DCE | e-1,2-DCE | PCE  | LLI-TCA | TCE               | VC   | Pathways | Unit     | Zame |  |
| MW-0054                                                                                                                                                                                                                                                                                                  | 24-Jan-90         | 0            | 21      |           | 0    | 0       | 0                 | 0.46 | 1.21E.05 | D        | AB   |  |
| MW-0004                                                                                                                                                                                                                                                                                                  | 17-Apt-90         | 0            | 2.1     |           |      | 0       | 0                 | 0.40 | 1.212-03 | <u></u>  | AB   |  |
| MW-0054                                                                                                                                                                                                                                                                                                  | 21-Jul-92         | 0            | 0       | 0         | 0    | 0       | 0.34              | 0    | 1.06E-07 |          | AB   |  |
| MW-0054                                                                                                                                                                                                                                                                                                  | 07-Apr-93         | 0            | 0       | 0         | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 22-Nov-86         | 2.9          | 210     |           | 13   | 15      | 110               | 0.34 | 1.33E-04 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 05-Jan-87         | 2.9          | 160     |           | 46   | 41      | 70                | 0.34 | 9.67E-05 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 20-Apr-87         | 0.7          | 310     |           | 38   | 58      | 29                | 0    | 7.25E-05 | <u>D</u> | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 20-Apr-87         | 0.93         | 110     |           | 47   | 69      | 33                | 0    | 7.25E-05 | <u>D</u> | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 13-Aug-8/         | 0            | 130     |           | 70   | 17      | 57                |      | 1.15E-05 | <u></u>  | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 14-00-67          | 11           |         |           | 6.8  | 10      |                   |      | 1.45E-05 | <u>D</u> | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 08-Apr-88         | 0.27         | 11      |           | 2.8  | 5.5     | 4.2               | 0    | 5.48E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 08-Apr-88         | 0.34         | 13      |           | 3    | 5.2     | 4.6               | 0    | 5.48E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 11-Jui-88         | 0.6          | 31      |           | 0.8  | 0.8     | 10                | 0    | 5.44E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 11-Jul-88         | 0.96         | 51      |           | 1.7  | 2.8     | 18                | 0    | 5.44E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 04-Oct-88         | 1.4          | 60      |           | 1.5  | 2.6     | 14                | 0    | 9.39E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 04-Oct-88         | 1.5          | 61      |           | 1.4  | 2.9     | 14                | 0    | 9.39E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 04-4-0-89         | 0            | 4.1     |           | 1.4  | 3.9     | 1.4               | - 0  | 2.23E-00 | <u>D</u> | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 27-Jui-89         | 0            | 7.9     |           | 1.8  | 1.9     | 2.3               | 0    | 3.02E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 27-Jul-89         | 0            | 8.6     |           | 1.9  | 1.9     | 3.2               | 0    | 3.02E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 10-Oct-89         | 0.28         | 13      |           | 1.2  | 1.6     | 2.7               | 0    | 2.98E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 10-Oct-89         | 0.31         | 14      |           | 1.2  | 1.6     | 2.9               | 0    | 2.98E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 15-Jan-90         | 0.11         | 3.9     |           | 0    | 3       | 1.8               | 0    | 1.22E-05 | <u>D</u> | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 16-Apr-90         | 0            | 3.5     |           | 1.4  | 2.0     | 2.8               | 0    | 2.07E-06 | <u></u>  | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 31-00-90          | 0            | 2.0     |           | 0.97 |         | 0.3               |      | 4.17E-06 |          | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 21-Jan-91         |              | 3       |           | 0.64 | 0.93    | 0.98              | 0    | 1.13E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 21-Jan-91         | 0            | 3.2     |           | 0.73 | 0.99    | 1.1               | 0    | 1.13E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 19-Apr-91         | 0            | 2.8     |           | 0.72 | 0       | 2                 | 0    | 1.55E-06 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 24-Jul-91         | 0            | 2.9     |           | 0.11 | 0       | 1.2               | 0    | 5.15E-07 | D        | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 24-Jul-91         | 0            | 3.3     |           | 0.14 | 0       | 1.2               | 0    | 5.15E-07 | <u>D</u> | AB   |  |
| MW-0055                                                                                                                                                                                                                                                                                                  | 12-Jan-95         | 0            | 23      |           | 0.24 | 0       | <b>4.4</b><br>2.5 | 0    | 7.80E-07 | <u> </u> | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 13-Jan-87         | 0            | 13      |           | 0    | 0.88    | 14                | Ő    | 4.37E-06 |          | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 28-Apr-87         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 30-Jul-87         | 0            | 1.6     |           | 0    | 0       | 0                 | 0    | 3.94E-07 | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 12-Oct-87         | 0            | 1.2     |           | 0    | 0       | 0.58              | 0    | 1.81E-07 | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 08-Jan-88         | 0            | 3.6     |           | 0    | 0       | 2.3               | 0    | 7.18E-07 |          | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 22-Apr-88         | 0            | 0.31    |           | 0    | 0       | 0                 | 0    | 0        | <u> </u> | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 12-Oct-88         |              | 0.16    |           | 0    | 0       | 0.35              | 0    | 1.09E-07 | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 09-Jan-89         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 19-Apr-89         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 01-Aug-89         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 09-Oct-89         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 25-Jan-90         | L            | 0       |           | 1.1  | 0       | 0                 | 0    | 1.41E-06 | <u>D</u> | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 18-Apt-90         | 0            | 0       |           | 1.3  | 0       | 0 24              | 0    | 7.405.08 | <u>D</u> | AD   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 12-0ct-90         | 0            | 0       |           | 0    |         | 0.24              | - 0  | 0        |          | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 29-Jan-91         |              | 0       |           | 0    | 0       | 0.39              | Ō    | 1.22E-07 | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 22-Apr-91         | 0            | 0       |           | 0    | 0       | 0.26              | 0    | 8.12E-08 | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 31-Jul-91         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0057                                                                                                                                                                                                                                                                                                  | 27- <b>Jan-93</b> | 0            | 0       | 0         | 0    | 0       | 0                 | 0    | 0        | D        | AB   |  |
| MW-0058                                                                                                                                                                                                                                                                                                  | 21-Nov-86         | 0            | 1.7     |           | 0    | 0.36    | 0.62              | 1.3  | 3.44E-05 | D        | B    |  |
| MW-0058                                                                                                                                                                                                                                                                                                  | 19-Jan-87         | 0            | 2.9     |           | 0    | 2.1     | 1.2               | 0    | 4.37E-07 | D        | B    |  |
| MW-008                                                                                                                                                                                                                                                                                                   | 19-J88-87         | 0            | 3.3     |           | 0    | 2.4     | 1.4               | 0    | 4.5/E-0/ | <u> </u> |      |  |
| MW-0058                                                                                                                                                                                                                                                                                                  | 06-Ame-87         | 0            | 0       |           | 0    | 4.5     | 1.5               | 0    | 0        | D        | B    |  |
| MW-0058                                                                                                                                                                                                                                                                                                  | 13-0ct-87         | 0            | 0       |           | 0    | 0       | 0                 | 0    | 0        | D        | B    |  |
|                                                                                                                                                                                                                                                                                                          | <u> </u>          | ليتسبب سيبيا |         |           |      |         | للتعريب ويتراجعها |      |          |          |      |  |

g:\umas\da\j\_zumwal\woog\TABLEK-6.XLS

۲

and a second second second second second second second second second second second second second second second

05/11/94

;

|          |             |          | VOC GSAP C | encentrations | up to Third Qu | arter 1993 Sam | pling Period |          |                      |                  |     |
|----------|-------------|----------|------------|---------------|----------------|----------------|--------------|----------|----------------------|------------------|-----|
| Location | Los Data    | 12-004   | L1-DCE     | ell-DCE       | PCE            | LLI-TCA        | TCE          | vc       | Risk for<br>Pathware | Operabie<br>Unit | T   |
| MW-0058  | 11-Jan-88   | 0        | 0.27       |               | 0              | 0.25           | 0            | 0        | 0                    | D                | +   |
| MW-0058  | 06-41-88    |          | 0.55       |               | 0              | 0              | 0.24         | - 0      | 3.41E-07             | <u> </u>         | t   |
| MW-0058  | 07. Int. 88 |          | 0.14       |               |                |                | 0            | - 0      | 0                    |                  | +   |
| MW-0058  | 17.04.88    |          |            |               | 0              | 0              |              | - 0      |                      | <u> </u>         | ╉   |
| MW-0058  | 09.1        | 0        | 0.11       |               |                | 0.33           |              |          | <u>0</u>             | <u>D</u>         | +   |
| MW-0058  | 04.4        |          | 0.28       |               | 0              | 0.4            | 0            | - 0      |                      | <u> </u>         | +   |
| MW-0058  | 27. Jul 89  |          | 0.20       |               | 0              | 0              | 0            | - 0      |                      | <u> </u>         | +   |
| MW-0058  | 02-1        |          | <u>0</u>   |               | 0              | 0              |              | - 0      | 1 27E-07             | D                | -   |
| MW 0058  | 22-140-90   |          |            |               | 0              |                |              | - 0      | 1.272-07             | <u> </u>         | -   |
| MW-0058  | 16 Arr.90   |          | 0.42       |               | 0              |                | 047          | 0        | 1 47E-07             | <u> </u>         | -   |
| MW-0058  | 26 Jul 90   |          | 0          |               | 0.18           |                |              | - 0      | 2 30E-07             | D                | ~   |
| MW-0058  | 17.04.90    |          |            |               | 0.10           |                |              |          | 2.302-01             |                  | -   |
| MW-0058  | 17-04-90    |          |            | L             | 0              |                |              | - 0      |                      | D                | ~   |
| MIW-0058 | 17-Jag-91   |          |            |               |                |                |              |          |                      | <u> </u>         | -   |
| MW-0058  | 27-Apt-71   |          |            |               |                |                |              |          |                      | <u> </u>         | -   |
| MW-0058  | 23-301-91   | 0        |            |               | 0              |                |              |          |                      |                  | -   |
| MW-0050  | 22-Jan-93   |          |            | v             |                |                |              |          | 4 77E 06             | <u> </u>         |     |
| MW_0060  | 12 Nov 26   | 0        | 270        |               | 01             | 10             | 200          |          | 2 005-04             | <u></u>          | -   |
|          | 12.1- 07    |          | 210        |               | 0.1            |                |              |          | 2.000-04             |                  | ~   |
| MW-0009  | 12-Jan-87   | 0        |            |               | 0              |                | 108          |          | 2 225 04             | <u> </u>         | ~   |
| MW -0039 | 21. Are 27  |          | 47         |               |                |                | 100          |          | 1 105-04             |                  | ~   |
| MW 0059  | 21-Apt-6/   | - 0      | 47         |               |                | 3.2            | 40           | - 0      | 1.195-05             | D                |     |
| MW 0059  | 21-Apr-67   | 0        | 30         |               |                |                |              | - 0      | 4 245-06             |                  |     |
| MW-0059  | 10-Aug-67   | 0        | 15         |               | 0              | 0.9            |              |          | 4.24E-06             | D                | -   |
| MW-0059  | 10-Aug-07   | 0        | 15         |               |                |                | 62           |          | 1.04E-06             | <u> </u>         | -   |
| MW-0009  | 09-00-87    |          |            |               | 0              | 0.21           | 2.2          | - 0      | 7 195 07             |                  | ~   |
| MW-0059  | 08 4        | 0        | 3.1        |               | 0              | 0.21           | 2.3          | 0        | 1.52E.07             | <u>D</u>         | -   |
| MW-0009  | 06-Apt-68   | 0        | 0.55       |               |                |                | 0.49         |          | 1.536-07             | <u> </u>         | ~   |
| MW-0059  |             | 0        |            |               |                |                | 0.23         |          | 7 185.09             | D                | ~   |
| MW 0059  | 05 Ion 80   |          | 0.11       |               | 0              |                | 0            |          | 7.162-06             | D                |     |
| MW-0059  | 04 A == 90  | 0        | 0.11       |               |                |                |              |          | Ŏ                    | <u> </u>         | ~   |
| MW-0059  | 01 Aug 90   |          |            |               |                |                |              |          |                      |                  | -   |
| MW 0059  | 10.0.4.89   |          |            |               |                |                |              | <u> </u> |                      | n n              | -   |
| MW.0059  | 24 Jan 90   |          |            |               | 23             |                |              |          | 2 955-06             | <u> </u>         | -   |
| MW-0059  | 12.4=.90    |          |            |               |                | 0              |              |          | 2.752-00             | D D              |     |
| MW-0059  | 06.101.00   |          |            |               |                |                | 0            | - 0      | 8 30F-08             |                  | -   |
| MW_0059  | 07-Nov-90   |          |            |               | 0              |                | 0            | <u> </u> | 1 99E-07             | <u> </u>         | -   |
| MW_0059  | 23. Inn.01  | 0        |            |               |                |                | 0            | - 0      | 0                    | <u>D</u>         |     |
| MW-0059  | 13.May.01   |          |            |               |                |                | 0            |          | <u>0</u>             | <u> </u>         | -   |
| MW.0050  | 10-InL02    |          |            |               | 0              |                |              | <u> </u> | 0                    | D                | -   |
| MW.0040  | 20-InL01    |          |            |               | ·              |                | - 0          | <u> </u> | 4.46E-07             | <u> </u>         | -   |
| MW-0060  | 28.0.1.16   |          |            |               |                |                | 0            |          | 0                    | <u> </u>         |     |
| MW-0060  | 13-Jan-87   |          |            |               |                |                |              |          | 0                    | c                | -   |
| MW-0060  | 24-Ang-87   |          |            |               |                |                |              |          | 0                    | c                | -   |
| MW-0060  | 13-Ape.87   |          |            |               |                |                |              |          | 0                    | Ċ                |     |
| MW-0060  | 25-Oct-87   |          |            |               | 0              |                |              |          | 0                    | Ċ                |     |
| MW-0060  | 22-Jan-88   | <u> </u> |            |               | 0              |                |              |          | 0                    | c                | -   |
| MW-0060  | 18-Ang-88   | 0        | 0          |               | 0              |                | 0            | 0        | 0                    | С                | -   |
| MW-0060  | 20-Jul-88   |          |            |               | 0              |                | 0            | ō        | 0                    | C                |     |
| MW-0060  | 10-00-88    |          |            |               |                |                |              | - o      | 0                    | Ċ                | -   |
| MW-0060  | 13-Jan-80   | Ö        |            |               | 0              | of             | 0            | 0        | 0                    | C                | ••• |
| MW-0060  | 11-Anr-19   | 0        |            |               | 0              |                |              | 0        | 0                    | c                |     |
| MW-0060  | 17.jpLR0    |          |            |               |                |                |              | 0        | 0                    | c                |     |
| MW-0060  | 09.04.80    | <u> </u> |            |               |                | <u> </u>       |              | 0        | 0                    | c                | -   |
| MW-0060  | 30-1-00     |          |            |               |                | <u></u>        |              |          | 0                    | - č              | -   |
| MW-0060  | 12.4        |          |            |               |                |                | 0            |          | 0                    | - č              |     |
| MW.0060  | 16.0.00     |          |            |               |                |                |              |          | 1.04E-07             | c                | -   |
| MW-0060  | 17./p1.01   |          |            |               |                |                |              |          | 0                    | c                | -   |
| MW-0061  | 19.Mar.26   |          |            |               | 0              |                |              |          | 9.68E-07             | c                | -   |
|          | 01. Dec 86  |          |            | <u> </u>      |                |                | 7.4          | č        | 2.315.06             |                  | -   |
|          |             |          |            |               |                |                |              |          | <u></u>              |                  |     |

g:\users\ds\j\_manwa\wong\TABLER-6.XLS

۱

٠

4

.

05/11/94

| [        |            |         | VOC GSAP C      | oncentrations | 1 able K-6<br>no to Third Ou | neter 1993 Sa | noling Period |     |          |            |            |
|----------|------------|---------|-----------------|---------------|------------------------------|---------------|---------------|-----|----------|------------|------------|
| Lecation | 1          |         |                 |               |                              |               |               |     | Risk for | Operable   | T          |
| D.       | Log Date   | 1.2-DCA | 1,1- <b>DCE</b> | e-1,2-DCE     | PCE                          | 1,1,1-TCA     | TCE           | VC  | Pathways | Unit       | 2.000      |
| MW-0061  | 07-May-87  | 0       | 0               |               | 0                            | 0             | 15            | 0   | 4.68E-06 | С          | A          |
| MW-0061  | 07-Aug-87  | 0       | 0               |               | 0                            | 0             | 14            | 0   | 4.37E-06 | С          | <b>A</b>   |
| MW-0061  | 13-Oct-87  | 0       | 0               |               | 0                            | 0             | 5.3           | 0   | 1.65E-06 | C          | <b>A</b>   |
| MW-0061  | 19-Jan-88  | 0       | 0               |               | 0                            | 0             | 4.3           | 0   | 1.34E-06 | C          | <b>A</b>   |
| MW-0061  | 22-Apr-88  | 0       | 0               |               | 0                            | 0             | 5.2           | 0   | 1.62E-06 | C          | <b>A</b>   |
| MW-0061  | 20-Jul-88  | 0       | 0               |               | 0                            | 0             | 7.9           | 0   | 2.47E-06 | C          | <b>A</b>   |
| MW-0061  | 07-Oct-88  | 0       | 0               |               | 0                            | 0             | 14            | 0   | 4.37E-06 | C          | A          |
| MW-0061  | 20-Jan-89  | 0       | 0               |               | 0                            | 0             | 14            | 0   | 4.37E-06 | <u> </u>   | <b>A</b>   |
| MW-0061  | 12-Apr-89  | 0       | 0               |               | 0                            | 0             | 7.2           | 0   | 2.25E-06 | <u> </u>   | <b>A</b>   |
| MW-0061  | 12-Apr-89  | 0       | 0               |               | 0                            | 0             | 7.6           | 0   | 2.25E-06 | <u>C</u>   | <b>A</b>   |
| MW-0061  | 01-Aug-89  | 0       | 0               |               | 0                            | 0             | 9.8           | 0   | 3.06E-06 | <u> </u>   |            |
| MW-0061  | 05-Jan-90  | 0       | 0               |               | 0                            | 0             | 13            | 0   | 4.06E-06 | <u>C</u>   | A          |
| MW-0061  | 07-Aug-90  | 0       | 0               |               | 0                            | 0             | 24            | 0   | 7.49E-06 | <u>C</u>   | <b>A</b>   |
| MW-0061  | 25-Oct-91  | 0       | 0               |               | 0                            | 0             | 27            | 0   | 8.43E-06 | <u> </u>   | <b>A</b>   |
| MW-0061  | 26-Jan-93  | 0       | 0               | 0             | 0.32                         | 0             | 36            | 0   | 1.16E-05 | <u> </u>   | <b>A</b>   |
| MW-0062  | 26-Apr-88  | 0       | 0               |               | 0                            | 0             | 0.44          | 0   | 1.37E-07 | <u> </u>   | <b>A</b>   |
| MW-0062  | 20-Jul-88  | 0       | 0               |               | 0                            | 0             | 1.3           | 0   | 4.00E-07 | <u> </u>   | <b>A</b>   |
| MW-0062  | 07-0ct-88  | 0       | 0               |               | 0                            | 0             | 0.39          | 0   | 1.228-07 | <u> </u>   |            |
| MW-0002  | 11-J20-89  | 0       | 0               |               |                              | U             | 0.40          |     | 1.442-0/ | <u> </u>   |            |
| MW 0042  | 11-APE-89  | 0       | 0               |               |                              |               | 0.74          | - 0 | 1.970 07 | - <u> </u> | +          |
| MW-0002  | 13 Dec 80  | 0       | 0               |               | 0                            | 0             | 0.0           | 0   | 2.47E.07 | <u> </u>   | +          |
| MW-0062  | 13-Dec-89  |         |                 |               |                              |               | 1.2           |     | 2.475-07 | <u> </u>   |            |
| MW-0062  | 23-Jan-90  |         |                 |               |                              | 0.31          | 1.2           |     | 3.75E-07 | <u> </u>   | +          |
| MW-0062  | 11. Apr 90 |         |                 |               | 0                            | 0.51          | 0.02          |     | 2 878.07 |            |            |
| MW-0062  | 18 hil 00  | 0       | 0               |               | 0.26                         |               | 0.92          | - 0 | 6 39E-07 | <u> </u>   |            |
| MW-0062  | 16-04-90   |         | 0               |               | 0.20                         |               | 0.50          | 0   | 1.97E-07 | <u> </u>   |            |
| MW-0062  | 01-Eab-91  | 0       |                 |               | 0                            |               | 0.72          | 0   | 2.25E-07 | C          |            |
| MW-0062  | 23-Apr-91  |         | 0               |               | 0                            | 0             | 1.2           |     | 3.75E-07 | C C        |            |
| MW-0062  | 02-Aug-91  | o       | 0               |               | 0                            | 0             | 1             | 0   | 3.12E-07 | c          |            |
| MW-0062  | 26-Jul-93  | 0       | 0               | 2.87          | 0                            | 0             | 2.62          | 0   | 1.66E-06 | C          | A          |
| MW-0063  | 02-Apr-86  | 0.4     | 0               |               | 0                            | 0             | 36            | 0   | 1.33E-05 | B          | B          |
| MW-0063  | 02-Apr-86  | 0.4     | 0               |               | 0                            | 0             | 40            | 0   | 1.33E-05 | B          | B          |
| MW-0063  | 25-Nov-86  | 0       | 0.24            |               | 0                            | 0             | 24            | 0   | 6.51E-06 | B          | B          |
| MW-0063  | 25-Nov-86  | 0       | 0.25            |               | 0                            | 0             | 20            | 0   | 6.51E-06 | В          | B          |
| MW-0063  | 27-Jan-87  | 0       | 0               |               | 0                            | 0             | 41            | 0   | 1.28E-05 | B          | B          |
| MW-0063  | 11-May-87  | J       | 0               |               | 0                            | 0             | 210           | 0   | 6.55E-05 | B          | B          |
| MW-0063  | 14-Aug-87  | 0       | 0               |               | 0                            | 0             | 190           | 0   | 5.93E-05 | В          | B          |
| MW-0063  | 22-Oct-87  | 0       | 0               |               | 0                            | 0             | 52            | 0   | 1.62E-05 | В          | B          |
| MW-0063  | 23-Jan-88  | 0.78    | 0.76            |               | 0                            | 0             | 69            | 0   | 2.39E-05 | B          | B          |
| MW-0063  | 15-Apr-88  | 0       | 0               |               | 0                            | 0             | 44            | 0   | 1.37E-05 | B          | B          |
| MW-0063  | 15-Jul-88  | 0.69    | 0               |               | 0                            | 0             | 91            | 0   | 2.99E-05 | B          | B          |
| MW-0063  | 07-Oct-88  | 0       | 0               |               | 0                            | 0             | 58            | 0   | 1.81E-05 | В          | B          |
| MW-0063  | 19-Jan-89  | 0.77    | 0               |               | 0                            | 0             | 55            | 0   | 2.03E-05 | B          | B          |
| MW-0063  | 19-Jan-89  | 1.3     | 0               |               | 0                            | 0             | 59            | 0   | 2.03E-05 | В          | B          |
| MW-0063  | 13-Apr-89  | 0.91    | 0               |               | 0                            | 0             | 74            | 0   | 2.59E-05 | В          | B          |
| MW-0063  | 13-Apr-89  | 1       | 0               |               | 0                            | 0             | 76            | 0   | 2.59E-05 | В          | B          |
| MW-0063  | 06-Jul-89  | 1.3     | 0.6             |               | 0                            | 0             | 35            | 0   | 1.46E-05 | B          | B          |
| MW-0063  | 11-Oct-89  | 0.84    | 0               |               | 0                            | 0             | 75            | 0   | 2.67E-05 | B          | B          |
| MW-0063  | 11-Oct-89  | 1.2     | 0               |               | 0                            | 0             | 100           | 0   | 2.67E-05 | B          | B          |
| MW-0063  | 16-Jan-90  | 0       | 0               |               | 0                            | 5.2           | 110           | 0   | 3.43E-05 | B          | B          |
| MW-0063  | 26-Apr-90  | 1.1     | 0               |               | 0                            | 0             | 110           | 0   | 3.91E-05 | <u>B</u>   |            |
| MW-0063  | 07-Aug-90  | 0       | 0               |               | 0                            | 0             | 56            | 0   | 1.75E-05 | B          | B          |
| MW-0063  | 07-Aug-90  | 0       | 0               |               | 0                            | 0             | 75            | 0   | 1.75E-05 | B          | B          |
| MW-0063  | 06-Nov-90  | 0       | 0               |               | 0                            | 0             | 33            |     | 1.03E-05 | B          | B          |
| MW-0063  | 15-Jan-91  | 0       | 0               |               | 0                            | 0             | 45            | 0   | 1.40E-05 | B          | <u>  ₿</u> |
| MW-0063  | 08-May-91  | 0       | 0               |               | 0                            | 0             | 57            | 0   | 1.78E-05 | B          | <u>⊢_</u>  |
| MW-0063  | 08-May-91  | 0       | 0               |               | 0                            | 0             | 69            | 0   | 1.78E-05 | B          | B          |
| MW-0063  | 06-Aug-91  | 0       | 0               |               | 0                            | 0             | 56            | 0   | 1.75E-05 | B          | B          |
| MW-0063  | 22-0ct-91  | 0       | 0               |               | 0                            | 0             | 34            | 0   | 1.06E-05 | В          | + <u>B</u> |
| MW-0063  | 22-Od-91   | 0       | 0               |               | 0                            | 0             | 36            | 0   | 1.068-05 | R          | 15         |

,

05/11/94

}

|                |             | ,         | VOC GSAP C | oscentrations | up to Third Qu | mrter 1993 Sam            | pling Period |     |                      |                  |   |
|----------------|-------------|-----------|------------|---------------|----------------|---------------------------|--------------|-----|----------------------|------------------|---|
| Location<br>ID | Log Date    | 1,2-DCA   | 1,1-DCE    | 6-1,2-DCE     | PCE            | 1,1,1 <b>-</b> TCA        | TCE          | vc  | Risk for<br>Puthways | Operable<br>Unit |   |
| MW-0063        | 05-Feb-92   | 0.89      | 0          |               | 0              | 0                         | 74           | 0   | 2.87E-05             | В                | - |
| MW-0063        | 20-Jul-92   | 0.3       | 0          | 16            | 0              | 0                         | 47           | 0   | 1.53E-05             | В                | - |
| MW-0063        | 22-Oct-92   | 0         | 0          | 11            | 0              | 0                         | 15           | 0   | 4.68E-06             | В                | ~ |
| MW-0063        | 28-Jan-93   | 0         | 0          | 15            | 0              | U I                       | 40           | 0   | 1.25E-05             | В                | - |
| MW-0064        | 26-Oct-88   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | B                | - |
| MW-0064        | 24 lan-89   |           | 0          |               | 0              | 0                         | 0            |     |                      | B                | - |
| MW-0064        | 24 Apr 89   |           |            |               | 0              |                           |              | - 0 | 0                    | R                | - |
| MW 0064        | 18.141.80   |           |            |               | 0              | <u>-</u>                  | 0            |     | 0                    | R                | - |
| MW-0064        | 16-Jul-69   |           |            |               |                |                           |              |     | 6 34E 08             |                  | - |
| MW-0004        | 13-Dec-69   |           |            |               |                |                           | 0.2          |     | 0.246-06             | D                | - |
| MW-0004        | 13-1-00-90  |           |            |               |                |                           |              | - 0 |                      | <b>D</b>         | - |
| MW-0064        | 24-Apr-90   | 0         |            |               | 0              |                           |              |     | 0                    | <u> </u>         | _ |
| MW-0064        | 05-Oct-90   | 0         | 0          |               | 0              | 0                         | 0            | - 0 | 0                    | 8                | _ |
| MW-0064        | 12-Aug-91   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | B                | _ |
| MW-0064        | 14-Oct-91   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | B                |   |
| MW-0064        | 30-Jan-92   |           |            |               |                |                           |              |     | 0                    | B                | _ |
| MW-0064        | 26-Feb-92   | 0         | 0          |               | 0              | 0                         | 0.99         | 0   | 3.09E-07             | B                |   |
| MW-0064        | 24-Jui-92   | 0         | 0          | 0             | 0              | 0                         | 2.1          | 0   | 6.55E-07             | В                | ĺ |
| MW-0064        | 22-Oct-92   | 0         | 0          | 0             | 0              | 0                         | 0.74         | 0   | 2.31E-07             | В                |   |
| MW-0064        | 12-Jan-93   | 0         | 0          | 0             | 0              | 0                         | 0.81         | 0   | 2.53E-07             | B                | - |
| MW-0064        | 27-Jul-93   | 0         | 0          | 0             | 0              | 1.66                      | 0.583        | 0   | 6.97E-07             | В                | - |
| MW-0065        | 26-Apr-89   | 0         | 0          |               | 0.78           | 0                         | 58           | 0   | 1.91E-05             | B                | - |
| MW-0065        | 18-Jul-89   | 0         | 0          |               | 0.28           | 0                         | 16           | 0   | 3.13E-05             | B                | - |
| MW-0065        | 18-Jul-89   | 0         | 0          |               | 1.3            | 0                         | 95           | 0   | 3.13E-05             | В                | - |
| MW-0065        | 15-Dec-89   | 0         | 0          |               | 1.8            |                           | 110          | 0   | 3.66E-05             | B                | - |
| MW-0065        | 28 Esh-90   |           |            |               | 0              | 0                         |              | - 0 | 2 975-05             | B                | - |
| NOW 0065       | 02 May 00   |           |            |               |                |                           | 120          |     | 1 285 06             |                  | - |
| MW-0005        | 02 16-11 00 |           |            |               |                |                           |              |     | 1.200-00             | B                | - |
| M W-0065       | 02-May-90   |           |            |               |                |                           | 120          |     | 1.265-06             | D                | _ |
| MW-0065        | 00-Aug-90   |           |            |               | 17             | 0                         | 120          |     | 3.756-05             |                  | - |
| MW-0005        | 18-Dec-90   | U         | 0          |               | 1.7            |                           | 100          |     | 3.346-03             | D D              | _ |
| C000-WM        | 04-Feb-91   | 0         | 0          |               | 1.0            | 0                         | 82           | 0   | 2.76E-03             |                  | _ |
| MW-0065        | 09-Apr-91   | 0         | 0          |               | 0              | 0                         |              | 0   | 2.56E-05             | 8                | _ |
| MW-0065        | 02-Aug-91   | 0         | 0          |               | 0              | 0                         | 53           | 0   | 1.65E-05             | B                | _ |
| MW-0065        | 11-Oct-91   | 0         | 0          |               | 0.82           | 0                         | 47           | 0   | 1.57E-05             | B                | _ |
| MW-0066        | 25-Apr-89   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | <u> </u>         |   |
| MW-0066        | 26-Jul-89   | 0         | 0          |               | 0              | 0                         | 0.7          | 0   | 2.18E-07             | B                | _ |
| MW-0066        | 19-Dec-89   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 3.74E-07             | B                |   |
| MW-0066        | 19-Feb-90   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 3.94E-07             | В                |   |
| MW-0066        | 12-May-90   | 0         | 0          |               | 0              | 0                         | 3.3          | 0   | 1.03E-06             | B                |   |
| MW-0066        | 07-Aug-90   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 1.04E-07             | B                | Ī |
| MW-0066        | 15-Oct-90   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | B                |   |
| MW-0066        | 05-Feb-91   | 0         | 0          |               | 0              | 0                         | 0.31         | 0   | 9.68E-08             | B                | 1 |
| MW-0066        | 29-Apr-91   | 0         | 0          |               | 0              | 0                         | 8.5          | 0   | 2.65E-06             | В                | - |
| MW-0066        | 08-Aue-91   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | B                | - |
| MW-0066        | 08-0-1-01   |           |            | ├ <b>-</b>    |                | 0                         | 1.4          | 0   | 4.37E-07             | B                | - |
| MW.OOKA        | 04. Eab 02  |           |            |               |                |                           | 0.47         |     | 1.795_07             | R                | - |
| MW MAG         | 28 Jul 02   | ┝───────┥ |            | ┝╼╍──╍┥       |                | ├ <b>───</b> ─ <b>ॅ</b> ┼ |              |     | 0                    | R                |   |
|                | 21 0-02     |           |            |               |                |                           |              |     | 1 42E 07             |                  | - |
|                | 41-000-92   |           |            |               |                |                           | 1.1          |     | 3.432-07             | 8                | - |
|                | 10-180-95   | U         | <u> </u>   | U             | 0              | U                         |              |     | 3.145-07             |                  | - |
| MW-0007        | 20-Mar-86   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | <u> </u>         | - |
| MW-0067        | 17-Oct-86   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | <u>A</u>         | _ |
| MW-0067        | 23-Jan-87   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | <u>A</u>         | _ |
| MW-0067        | 06-May-87   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | A                | _ |
| MW-0067        | 15-Aug-87   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | A                | _ |
| MW-0067        | 20-Oct-87   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | A                | ĺ |
| MW-0067        | 26-Jan-88   | 0         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | A                | • |
| MW-0067        | 26-Apr-88   | Ö         | 0          |               | 0              | 0                         | 0            | 0   | 0                    | A                |   |
| MW-0067        | 15.Jul-88   | n i       |            |               |                | 0                         | 0            | 0   | 0                    | A                | - |
| MW-0067        | 11-0-1-11   | <u> </u>  |            |               |                |                           |              |     | 0                    | A                | - |
|                | 01 1        |           |            | └─── <b>─</b> |                |                           |              |     | 0                    |                  | - |
| MW-0067        |             |           |            |               |                |                           |              |     |                      |                  |   |
| MW-0067        | 03-Jan-90   |           |            |               |                |                           |              |     |                      |                  | - |

g:\usars\ds\j\_zumwai\woag\TABLEK-6.XLS

•

•

Page 15 of 60

05/11/94

| Table K-6         VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period         Location       Risk for Operable         ID       Log Date       1,2-DCA       1,1-DCE       PCE       1,1.1-TCA       TCE       VC       Pathways       Unit       Zone |           |         |        |          |          |           |      |    |                      |                   |          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|----------|----------|-----------|------|----|----------------------|-------------------|----------|--|--|
| Location                                                                                                                                                                                                                                                            | Los Data  | 1.2-DCA | L1-DCE | el 2-DCE | PCE      | 1.1.1-TCA | TCE  | vc | Risk for<br>Pathways | Operable<br>Linit | 7        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 07-Aug-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 |          |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 23-04-87  | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | A        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 25-Jan-88 | 0       | 0      |          | 0        | 0         | 0    | 0  |                      | A                 | <b>A</b> |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 08-Apr-88 | 0       |        |          | 0        | 0         | 0    | 0  | 0                    | <u>A</u>          |          |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 20 Jul 88 | 0       | 0      |          | 0        |           | 0    | 0  | 0                    | A                 | A        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 25-Oct-88 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | A        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 11-Dec-89 | 0       | 0      |          | 0        | 0         | 0    | 0  | 1.47E-07             | A                 |          |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 01-May-90 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | A        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 30-Oct-90 | 0       | 0      |          | 0        | 0         | 0    | 0  | 1.52E-07             | A                 | A        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 09-May-91 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | A        |  |  |
| MW-0068                                                                                                                                                                                                                                                             | 22-Apr-93 | 0       | 0      | 0        | 0        | 0         | 0    | 0  | 0                    | A                 | A        |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 25-Nov-86 | 0       | 0.1    |          | 0        | 0         | 0.65 | 0  | 3.35E-07             | Α                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 28-Jan-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 13-May-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 01-Aug-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 1.99E-07             | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 20-Oct-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | Α                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 23-Jan-88 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 19-Apr-88 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 13-Jul-88 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 05-Oct-88 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 12-Dec-89 | 0       | 0      |          | 0        | 0         | 0    | 0  | 1.91E-07             | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 01-Aug-90 | 0       | 0      |          | 0.54     | 0         | 0    | 0  | 6.91E-07             | A                 | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 31-Jan-91 | 0       | 0      |          | 0        | 0         | 0    | 0  | 8.73E-07             | <u>A</u>          | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 12-Aug-91 | 0       | 0      |          | 0        | 0         | 0    | 0  | 1.89E-06             | <u>A</u>          | BC       |  |  |
| MW-0069                                                                                                                                                                                                                                                             | 15-Jan-93 | 0       | 0      | 0        | 0        | 0         | 1.2  | 0  | 3.32E-06             | A                 | BC       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 29-Jan-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 12-May-87 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 14-Aug-87 | 0       | 0      |          | 0        | 0         | 0.79 | 0  | 2.47E-07             | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 16-Oct-87 | 0       | 0.27   |          | 0        | 0         | 0    | 0  | 0                    | <u>D</u>          | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | U/-Jan-88 | 0       | 0.25   |          | 0        | 0         | 0    | 0  | 0                    |                   | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 21-Apt-00 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | <u> </u>          |          |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 13 0 4 88 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    |                   | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 05 Jan 80 | 0       | 011    |          | 0        | 0         | 0    |    | 0                    |                   | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 05-40-89  | 0       | 0.11   |          | 0        | 0         | 0    | 0  | 0                    | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 28-Int-89 | 0       | 0      |          | <u>0</u> | 0         | 0    | 0  | 0                    | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 09-Oct-89 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | <br>D             | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 25-Jan-90 | 0       | 0      |          |          | 0         | 0    | 0  | 0                    | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 18-Jan-91 | 0       | 0      |          | 0        | 0         | 0    | 0  | 1.10E-07             | D                 | AB       |  |  |
| MW-0070                                                                                                                                                                                                                                                             | 16-Jan-92 | 0       | 0      |          | 0        | 0         | 0    | 0  | 0                    | D                 | AB       |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 22-Apr-88 | 0       | 0.1    |          | 0        | 0         | 0.7  | 0  | 9.87E-07             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 20-Jul-88 | 0       | 0      |          | 0        | 0         | 0.71 | 0  | 9.10E-07             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 27-Oct-88 | 0       | 0.11   |          | 0        | 0         | 0.74 | 0  | 6.15E-07             | A                 | В        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 30-Jan-89 | 0       | 0      |          | 0        | 0         | 0.59 | 0  | 8.99E-07             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 25-Apr-89 | 0       | 0.18   |          | 0        | 0         | 1.3  | 0  | 1.86E-05             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 20-Jul-89 | 0       | 0      |          | 0        | 0         | 2    | 0  | 2.48E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 02-Jan-90 | 0       | 0      |          | 0        | 0         | 2.6  | 0  | 2.93E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 02-Jan-90 | 0       | 0      |          | 0        | 0         | 2.8  | 0  | 2.93E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 02-Feb-90 | 0       | 0      |          | 0        | 0         | 3.5  | 0  | 1.09E-06             | A                 | В        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 01-May-90 | 0       | 0.3    |          | 0        | 0         | 3.7  | 0  | 4.07E-06             | A                 | В        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 12-Jul-90 | 0       | 0      |          | 0        | 0         | 10   | 0  | 7.23E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 30-Oct-90 | 0       | 0      |          | 0        | 0         | 2.6  | 0  | 2.53E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 29-Jan-91 | 0       | 0.36   |          | 0        | 0         | 3.3  | 0  | 3.94E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 13-May-91 | 0       | 0.77   |          | 0        | 0         | 5.8  | 0  | 6.84E-06             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 13-Aug-91 | 0       | 1.2    |          | 0        | 0         | 9.6  | 0  | 1.76E-05             | A                 | B        |  |  |
| MW-0071                                                                                                                                                                                                                                                             | 21-Jan-93 | 0.5     | 3.4    | 1.9      | 0        | 0         | 18   | 0  | 3.58E-05             | <b>A</b>          | B        |  |  |
| MW-0072                                                                                                                                                                                                                                                             | 08-May-87 | 28      | 550    |          | 0        | 5.9       | 410  | 41 | 1.27E-03             | D                 | A        |  |  |
| MW-0072                                                                                                                                                                                                                                                             | 14-Aug-87 | 140     | 1900   |          | 0        | 43        | 1200 | 0  | 6.76E-04             | D                 | A        |  |  |
| MW-0072                                                                                                                                                                                                                                                             | 20-Oct-87 | 86      | 320    |          | 0        | 7         | 580  | 0  | 3.66E-04             | <u>D</u>          | A        |  |  |
| MW-0072                                                                                                                                                                                                                                                             | 08-Jan-88 | 140     | 930    |          | 0        | 49        | 870  | 0  | 5.73E-04             | D                 |          |  |  |
| MW-0072                                                                                                                                                                                                                                                             | 11-Apr-88 | 210     | 800    |          | 0        | 17        | 1000 | 0  | 7.64E-04             | D                 | <b>A</b> |  |  |

g:\users\da\j\_mmwal\wong\TABLEK-6.XLS

·····

Page 16 of 60

05/11/94

| Lessien         Lapos         LLOCA         LLOCA         FLOC         FLOC         LLI-TCA         TCC         VC         Padewy         Uiu           NW.0072         21-Jul-84         120         590         0         11         150         0         514E.04         D           NW.0077         15-Jul-84         130         570         0         212         550         0         432E.04         D           NW.0077         05-Jul-89         110         100         0         111         500         0         432E.04         D           NW.0077         05-Age-89         110         100         0         150         0         432E.04         D           NW.0072         15-Age-89         110         280         0         0         330E.04         D           NW.0072         15-Oda-89         160         510         0         112         790         0         556E.04         D           NW.0072         15-Age-83         160         210         0         12         790         0         526E.04         D           NW.0072         23-Jul-23         0         84         16         0         11         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |        | VOC GSAP C | oncentrations | nh to Imila Ga | arter 1993 Sam | sping renod |     |                      |          |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------|------------|---------------|----------------|----------------|-------------|-----|----------------------|----------|--------------|
| UND 072         UND 0         UND 050         UND 050         UND 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location | I an Data  | 12.000 | 11.007     | -12-DCF       | PCE            |                | 777         | VC  | Risk for<br>Bathanan |          | Γ,           |
| NW 0077         11 Aug 8         120         900         0         1         600         0         51 BE 20         0           NW 0077         13 Aug 8         100         0         0         24         660         0         51 BE 20         0           NW 0077         13 Aug 8         100         0         0         11         900         0         51 BE 20         0           NW 0077         13 Aug 8         110         120         0         0         13 BE 20         D         14 BE 20         D         14 BE 20         D         14 BE 20         D         14 BE 20         D         14 BE 20         D         14 BE 20         D         14 BE 20         D         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10       | 21 Jul 99  | 120    | 500        | C-1,0-0-C-6   |                |                | 820         |     | S 14E 04             |          | ť            |
| Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num         Num <td>MW-0072</td> <td>21-341-00</td> <td>120</td> <td>700</td> <td></td> <td>0</td> <td></td> <td>850</td> <td></td> <td>5.146-04</td> <td><u></u></td> <td>┢</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-0072  | 21-341-00  | 120    | 700        |               | 0              |                | 850         |     | 5.146-04             | <u></u>  | ┢            |
| MW 2072         OS Late 8         DO         DO <thdo< th=""> <thdo< th="">        DO</thdo<></thdo<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEW-0072 | 21-341-88  | 120    | 460        |               |                |                | 650         | 0   | 1 795 04             | <u> </u> | ┢            |
| mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm         mm<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MW-0072  | 13-00-88   | 120    | 170        |               |                |                | 660         |     | J./6E-04             | <u> </u> | ╋            |
| M.W. 2007         Constrained and another and another and another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another anot | MW-0072  | 06-J22-89  | 130    | 370        |               |                |                | 300         |     | 4.522-04             | <u>v</u> | ╋            |
| MW 40702         Chi Ale B0         Col         Col         Col         Col         State-A4         D           MW 40702         110-14-89         150         530         0         100         780         0         5464-84         D           MW 40702         10-02-89         150         530         0         100         780         0         5666-84         D           MW 40702         10-02-89         140         226         0         15         700         0         5366-84         D           MW 4072         10-04-89         140         260         0         0         0         0         1306-84         D           MW 4072         12-34-92         0         0         0         14         0         0         1452-84         D           MW 4072         23-14-92         66         88         16         0         0         1475-86         D           MW 4072         23-14-92         14         0         0         1475-86         D           MW 4074         27-46-48         0         11         0         0         44         0         1475-86         D           MW 4074         25-414-80<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0072  | 05-Apt-89  | 110    | 100        |               |                |                | 500         |     | 3.305-04             | <u>v</u> | ∔            |
| mw.dva/2         1.7.40.39         1.20         0         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         3.20         0         0         0         3.22         0         0         3.22         0         0         3.22         0         0         3.22         0         0         3.22         0         0         3.22         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-0072  | 03-Apt-89  | 110    | 280        |               |                |                | 580         |     | 3.30E-04             | <u>D</u> | ∔            |
| MW 4072         IO4,08-39         ISO         ISO         IO         AUO         O         SoleE-04         D           MW 6072         IOA,08-00         IO         ISO         O         SoleE-04         D           MW 6072         IOA,08-00         92         ISO         O         O         SoleE-04         D           MW 6072         IOA,08-00         92         ISO         O         O         2306E-04         D           MW 6072         IOA,08-00         92         ISO         O         O         240         O         ISOEE-04         D           MW 6072         IOA,08-00         92         ISO         O         O         III         O         IIII         IIII         O         IIIII         IIIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW-0072  | 17-Jul-89  | 120    | 280        |               |                |                | 330         |     | 4.246-04             |          | +-           |
| MW-072         10-10-26-89         160         10         0         12         790         0         3.866-84         D           MW-072         10-546-80         92         150         0         0         340         0         3.066-64         D           MW-072         10-1469-51         58         90         0         0         0         1.122-64         D           MW-072         23-14692         60         88         16         0         0         1.122-64         D           MW-072         23-14693         37.59         88.30         2.433         0         0         1.41         0         0         1.122-64         D           MW-072         23-1468         0.22         12         0         0         4.53         0         3.225-66         D           MW-074         27-1478-86         D         11         0         0         4.64         0         1.472-66         D           MW-074         26-0c-88         0         12         0         0         7.0         1.472-66         D           MW-074         26-16-88         0         12         0         0         7.0         1.472-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-0072  | 10-Oct-89  | 150    | 530        |               | 0              |                | 780         | 0   | 5.00E-04             | <u></u>  | ╀            |
| MW-072         20-Res 30         140         200         0         15         700         0         3.00-E94         D           MW-072         0.1-May-91         58         90         0         0         0         210         0         150E-94         D           MW-072         23-Jul-92         0         0         0         170         0         1.12E-94         D           MW-072         23-Jul-92         66         88         16         0         0         1.72         0         1.12E-94         D           MW-072         23-Jul-92         60         88         16         0         0         1.12E-94         D           MW-072         23-Jul-93         0.0         14         2.00         0         1.3         0         3.22E-96         D           MW-074         24-Jul-88         0.2         12         0         0         4.5         0         1.47E-96         D           MW-074         24-Jul-89         0.05         10         0         0         3.5         0         2.22E-96         D           MW-074         14-Dse-89         0         11         0         0         4.55 <th0< td=""><td>MW-0072</td><td>10-Oct-89</td><td>160</td><td>510</td><td></td><td>0</td><td>12</td><td>/90</td><td></td><td>5.00E-04</td><td><u>v</u></td><td>╇</td></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-0072  | 10-Oct-89  | 160    | 510        |               | 0              | 12             | /90         |     | 5.00E-04             | <u>v</u> | ╇            |
| MW-0072         10-Age-90         92         130         0         0         240         0         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         100000         100000         100000         100000         1000000         1000000         1000000         1000000         1000000         1000000         10000000         10000000000         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0072  | 20-Feb-90  | 140    | 260        |               | 0              |                | /00         |     | 5.20E-04             | <u>D</u> | ∔            |
| MW 20072         01         01         0         0         0         0         0         0         0         0         0         1.82E-04         D           MW 20072         23-July 2         60         88.30         2.43         0         0         2.46         0         5.35E-04         D           MW 20072         23-July 29         75.90         88.30         2.43         0         0         2.46         0         5.35E-04         D           MW 20074         27-Age-88         0.29         12         0         0         4.46         0         1.37E-06         D           MW 20074         26-Oae-88         0         11         0         0         4.46         0         1.47E-06         D           MW 20074         26-Oae-88         0         11         0         0         0         0         1.47E-06         D           MW 20074         24-Dae-99         0         11         0         0         0         1.47E-06         D           MW 20074         42-Dae-89         0         11         0         0         0         2.24E-06         D           MW 20074         12-Dae-90         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-0072  | 10-Apr-90  | 92     | 150        |               |                | 0              | 340         | - 0 | 3.04E-04             |          | ∔            |
| MW-0072         23-Ma 92         Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s          | MW-0072  | 01-May-91  | 58     | 90         |               | 0              | 0              | 210         | 0   | 1.90E-04             | D        | ∔            |
| MW-0072         23-ka-92         60         88         16         0         0         170         0         1.82E-04         D           MW-0074         27-Ag-88         0         14         0         0         11         0         3.32E-06         D           MW-0074         27-Ag-88         0.22         12         0         0         8.3         0         3.22E-06         D           MW-0074         25-Ka-88         0.21         12         0         0         4.6         0         1.47E-06         D           MW-0074         26-Oca-88         0         11         0         0         5.4         0         1.47E-06         D           MW-0074         26-Oca-88         0.15         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-0072  | 23-Jul-92  |        |            |               |                |                |             |     | 1.82E-04             | D        | $\downarrow$ |
| MW-0072       23-Jai-93       37.50       88.30       2.43       0       0       124       0       0       11       0       3.58E-04       D         MW-0074       27-Agr-88       0.29       12       0       0       4.6       0       3.22E-06       D         MW-0074       25-Agr-88       0.2       12       0       0       4.6       0       1.47E-06       D         MW-0074       25-Oct-88       0       12       0       0       4.7       0       1.47E-06       D         MW-0074       25-Oct-88       0       12       0       0       5.4       0       1.47E-06       D         MW-0074       25-Agr-89       0       11       0       0       5.5       0       2.04E-05       D         MW-0074       14-Dac-89       0       11       0       0       6.7       1       2.22E-06       D         MW-0074       12-Dac-89       0       13       0       0       3.4       0       1.06E-06       D         MW-0074       13-Dac-90       0       5.5       0       0       3.4       0       1.06E-06       D         MW-0074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW-0072  | 23-Jul-92  | 60     |            | 16            | 0              | 0              | 170         | 0   | 1.82E-04             | D        |              |
| MW-0074         Z7-Agc-83         0         14         0         0         11         0         3.22E-06         D           MW-0074         Z5-Bit 84         0.22         12         0         0         6.4         0         1.87E-06         D           MW-0074         Z5-Cat-88         0         11         0         0         4.4         0         1.87E-06         D           MW-0074         Z5-Cat-88         0         11         0         0         5.4         0         1.47E-06         D           MW-0074         Z5-Cat-88         0         11         0         0         5.5         10         0         0.5         12         2.06         D           MW-0074         14-Dac-89         0         11         0         0         0         5.5         12         0         0         1.5         0         2.22E-06         D           MW-0074         13-Lab<0         0.13         9.5         0         0         4.8         0         1.55E-06         D           MW-0074         13-Lab<0         0.17         12         0         0         1.38         0         1.55E-06         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0072  | 23-Jul-93  | 37.90  | 88.30      | 2.43          | 0              | 0              | 246         | 0   | 3.58E-04             | D        |              |
| MW-0074         Z7.Age.88         0.29         12         0         0         4.8.3         0         3.22E-06         D           MW-0074         Z5-0a:88         0         11         0         0         4.4.6         0         1.47E-06         D           MW-0074         Z5-0a:88         0         12         0         0         5.4         0         1.47E-06         D           MW-0074         Z5-0a:88         0         12         0         0         6.7         0         1.47E-06         D           MW-0074         Z4-Jul-89         0.15         10         0         0         6.7         0         2.24E-05         D           MW-0074         Z4-Jul-89         0         12         0         0         4.8         0         1.22E-06         D           MW-0074         Z4-Jul-89         0         12         0         0         4.8         0         1.55E-06         D           MW-0074         13-Jul-90         0.13         9.3         0         0         3.4         0         1.55E-06         D           MW-0074         13-Jul-90         0.13         9.3         0         0         3.59E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW-0074  | 27-Apr-88  | 0      | 14         |               | 0              | 0              | 11          | 0   | 3.22E-06             | D        |              |
| MW-0074         25-Jul-88         0.2         12         0         0         4.6         0         1.87E-06         D           MW-0074         25-Oc-88         0         11         0         0         5.4         0         1.47E-06         D           MW-0074         25-Oc-88         0         12         0         0         5.4         0         1.47E-06         D           MW-0074         25-Oc-88         0.15         10         0         0         5.5         0         2.04E-06         D           MW-0074         14-Dec-89         0         11         0         0         7.1         0         2.22E-06         D           MW-0074         12-Dec-89         0         12         0         0         4.8         0         1.06E-06         D           MW-0074         13-Jul-90         0.17         12         0         0         4.8         0         1.58E-06         D           MW-0074         13-Jul-90         0.17         12         0         0         3.8         0         1.58E-06         D           MW-0074         13-Jul-90         0.3.6         0         0         0.9.98E-07         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0074  | 27-Apr-88  | 0.29   | 12         |               | 0              | 0              | 8.3         | 0   | 3.22E-06             | D        |              |
| MW-0074       26-Oct-83       0       11       0       0       4.7       0       1.47E-06       D         MW-0074       03-May-89       0       0.36       0       0       0       0       0       0       D         MW-0074       22-JuL 89       0.13       10       0       0       0.55       0       2.04E-06       D         MW-0074       14-Dac-89       0       11       0       0       6.7       0       2.22E-06       D         MW-0074       14-Dac-89       0       12       0       0       4.8       0       1.06E-06       D         MW-0074       12-Hab-80       0.13       9.5       0       0       3.4       0       1.06E-06       D         MW-0074       13-JuL-90       0.13       9.5       0       0       3.4       0       1.05E-06       D         MW-0074       13-JuL-90       0.13       9.5       0       0       3.4       0       1.05E-06       D         MW-0074       13-JuL-90       0.3.6       0       0       0       3.0       9.36E-07       D         MW-0074       12-Jup-83       0       0       0 <td>MW-0074</td> <td>26-Jul-88</td> <td>0.2</td> <td>12</td> <td></td> <td>0</td> <td>0</td> <td>4.6</td> <td>0</td> <td>1.87E-06</td> <td>D</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0074  | 26-Jul-88  | 0.2    | 12         |               | 0              | 0              | 4.6         | 0   | 1.87E-06             | D        |              |
| MW-0074         26-0c.88         0         12         0         0         5.4         0         1.4TE-06         D           MW-0074         03-May-89         0         0.96         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0074  | 26-Oct-88  | 0      | 11         |               | 0              | 0              | 4.7         | 0   | 1.47E-06             | D        | Τ            |
| NW.0074         0.3 May.959         0         0.96         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         1         0         0         1         0         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         1         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-0074  | 26-Oct-88  | 0      | 12         |               | 0              | 0              | 5.4         | 0   | 1.47E-06             | D        | Т            |
| MW-0074         24-Jule 89         0.15         10         0         0         5.5         0         2.04E-06         D           MW-0074         14-Dace 89         0         11         0         0         6.7         0         2.22E-06         D           MW-0074         27-E69-90         0         9.8         0         0         4.8         0         1.06E-06         D           MW-0074         27-E69-90         0         5.6         0         0         4.4         0         1.06E-06         D           MW-0074         13-Jul-90         0.17         12         0         0         3.8         0         1.55E-06         D           MW-0074         13-Jul-90         0.17         12         0         0         3.8         0         1.55E-06         D           MW-0074         13-Aug-91         0         3.6         0         0         3         0         9.55E-07         D           MW-0074         12-Aug-84         0         0         0         0         3         0         9.55E-07         D           MW-0074         12-Aug-84         0         0         0         0         0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0074  | 03-May-89  | 0      | 0.96       |               | 0              | 0              | 0           | 0   | 0                    | D        | Τ            |
| NW-0074         14-Dec-89         0         11         0         0         6.7         0         2.22E.06         D           NW-0074         14-Dec-89         0         12         0         0         7.1         0         2.22E.06         D           NW-0074         02-May-90         0         5.6         0         0         3.4         0         1.56E.06         D           NW-0074         13-Jul-90         0.13         9.5         0         0         4.4         0         1.55E.06         D           NW-0074         13-Jul-90         0.17         12         0         0         3.8         0         1.55E.06         D           NW-0074         13-Jul-90         0.17         12         0         0         0         5.5E.07         D           NW-0074         13-Jul-90         0         3.6         0         0         0         3.5E.07         D           NW-0074         12-Aug-91         0         4.4         0         0         2.9         0         3.0         9.36E.07         D           NW-0075         21-Agr-88         0         0         0         0         0         0         2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0074  | 24-Jul-89  | 0.15   | 10         |               | 0              | 0              | 5.5         | 0   | 2.04E-06             | D        | Τ            |
| NW-0074         14-Dec-89         0         12         0         0         7.1         0         2.222.66         D           NW-0074         27-Reb-90         0         9.8         0         0         4.8         0         1.502.66         D           NW-0074         13-Jul-90         0.13         9.5         0         0         4.8         0         1.55E.66         D           NW-0074         13-Jul-90         0.17         112         0         0         4.8         0         1.55E.66         D           NW-0074         31-Dec-90         0         6.5         0         0         1.9         0         5.93E.07         D           NW-0074         12-Aug-91         0         3.6         0         0         3.0         9.36E.07         D           NW-0074         12-Aug-91         0         2.9         0         0         3.0         9.36E.07         D           NW-0075         12-Lage-84         0         0         0         0         0         1.36E.66         D           NW-0075         12-Lage-84         0         0         0         0         0         0         0.31E.06         C </td <td>MW-0074</td> <td>14-Dec-89</td> <td>0</td> <td>11</td> <td></td> <td>0</td> <td>0</td> <td>6.7</td> <td>0</td> <td>2.22E-06</td> <td>D</td> <td>T</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-0074  | 14-Dec-89  | 0      | 11         |               | 0              | 0              | 6.7         | 0   | 2.22E-06             | D        | T            |
| WW-0074         27.Feb-00         0         4.8         0         1.50E-06         D           MW-0074         02.May-90         0         5.6         0         0         3.4         0         1.06E-06         D           MW-0074         13.Jul-90         0.117         12         0         0         3.8         0         1.55E-06         D           MW-0074         31.Que-90         0         6.5         0         0         3.8         0         1.55E-06         D           MW-0074         31.Que-90         0         6.5         0         0         3.8         0         1.55E-06         D           MW-0074         12.Aug-91         0         3.6         0         0         9.35E-07         D           MW-0074         12.Aug-91         0         2.9         0         0         2.9         0         1.36E-06         D           MW-0075         21.Age-88         0         0         0         0         2.9         1.36E-06         D           MW-0075         22.Age-88         0         0         0         0         0         3.1E-06         C           MW-0075         25.Age-89         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW-0074  | 14-Dec-89  | 0      | 12         |               | 0              | 0              | 7.1         | 0   | 2.22E-06             | D        | T            |
| NW-0074         02.Msy-90         0         5.6         0         0         3.4         0         1.06E-06         D           NW-0074         13-Jul-30         0.13         9.5         0         0         4         0         1.55E-06         D           NW-0074         31-Ocx-90         0         6.5         0         0         3.8         0         1.55E-06         D           NW-0074         23-Jan-91         0         3.6         0         0         2.9         0         9.05E-07         D           NW-0074         12-Aug-91         0         4.4         0         0         2.9         0         9.05E-07         D           NW-0074         12-Aug-91         0         2.9         0         0         0         1.36E-06         D           NW-0075         21-Apr-88         0         0         0         0         1.35E-06         C           NW-0075         22-Jul-88         0         0         0         0         1.35E-06         C           NW-0075         25-Jan-89         0         0         0         0         1.7         0         5.31E-06         C           NW-0075 <t< td=""><td>MW-0074</td><td>27-Feb-90</td><td>0</td><td>9.8</td><td></td><td>0</td><td>0</td><td>4.8</td><td>0</td><td>1.50E-06</td><td>D</td><td>T</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0074  | 27-Feb-90  | 0      | 9.8        |               | 0              | 0              | 4.8         | 0   | 1.50E-06             | D        | T            |
| NW-0074         13-Jul-90         0.13         9.5         0         0         4         0         1.55E-06         D           NW-0074         13-Jul-90         0.17         12         0         0         3.8         0         1.55E-06         D           NW-0074         23-Jul-91         0         5.5         0         0         0         5.95E-07         D           NW-0074         12-Jul-91         0         4.4         0         0         2.95E-07         D           NW-0074         12-Jul-91         0         4.4         0         0         2.9         0         0         3.95E-07         D           NW-0074         12-Jul-93         0.21         3.3         0         0         0         2.9         0         0         3.95E-07         D           NW-0075         21-Jul-88         0         0         0         0         0         0         2.9         0         0         0         3.95E-07         D           NW-0075         21-Jul-88         0         0         0         0         0         0         1.35E-06         C           NW-0075         21-Jul-89         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-0074  | 02-May-90  | 0      | 5.6        |               | 0              | 0              | 3.4         | 0   | 1.06E-06             | D        | T            |
| MW-0074       13-Jul-90       0.17       12       0       0       3.8       0       1.55E-06       D         MW-0074       31-Qx-30       0       6.5       0       0       3.8       0       1.55E-07       D         MW-0074       12-Jag-91       0       3.6       0       0       3       0       9.35E-07       D         MW-0074       12-Jag-91       0       2.9       0       0       3       0       9.35E-07       D         MW-0074       12-Jag-91       0       2.9       0       0       3       0       9.35E-07       D         MW-0074       12-Jag-91       0       2.9       0       0       2.9       0       0       2.9       0       0.3       0       9.35E-07       D         MW-0075       21-Jag-88       0       0       0       0       0       0       0       1.55E-66       C         MW-0075       22-Jal-88       0       0       0       0       0       0       0       1.55E-66       C         MW-0075       25-Jan-89       0       0       0       0       0       0       1.55E-66       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-0074  | 13-Jul-90  | 0.13   | 9.5        |               | 0              | 0              | 4           | 0   | 1.55E-06             | D        | T            |
| MW-0074         31-Oct-90         0         6.5         0         0         1.9         0         5.93E-07         D           MW-0074         12-Aug-91         0         3.6         0         0         3         0         9.36E-07         D           MW-0074         12-Aug-91         0         2.9         0         0         3         0         9.36E-07         D           MW-0074         12-Aug-93         0.21         3.3         0         0         0         2.9         0         1.36E-06         D           MW-0075         21-Agr-88         0         0         0         0         2.9         0         1.36E-06         C           MW-0075         22-Agr-88         0         0         0         0         2.0         0         8.12E-06         C           MW-0075         25-Agr-89         0         0         0         0         1.7         0         5.31E-06         C           MW-0075         12-Dec-89         0         0         0         0         1.06E-05         C           MW-0075         11-Dec-89         0         0         0         0         3.31E-06         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-0074  | 13-Jui-90  | 0.17   | 12         |               | 0              | 0              | 3.8         | 0   | 1.55E-06             | D        | T            |
| MW-0074       29-Jaa-91       0       3.6       0       0       3       0       9.36E-07       D         MW-0074       12-Aug-91       0       4.4       0       0       0       2.9       0       0       3       0       9.36E-07       D         MW-0074       12-Aug-93       0.21       3.3       0       0       0       0       3       0       9.36E-07       D         MW-0074       12-Aug-38       0.21       3.3       0       0       0       0       1.36E-06       D         MW-0075       21-Aug-88       0       0       0       0       0       0       2.9       0       1.36E-06       C         MW-0075       22-Jul-88       0       0       0       0       0.20       0       6.24E-06       C         MW-0075       25-Jaa-89       0       0       0       0       0.24       23       0       7.18E-06       C         MW-0075       11-Dec-89       0       0       0       0       0       1.38E-05       C         MW-0075       01-May-90       0       0       0       0       0       0       0       1.38E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-0074  | 31-Oct-90  | 0      | 6.5        |               | 0              | 0              | 1.9         | 0   | 5.93E-07             | D        | T            |
| MW-0074       10-May-91       0       4.4       0       0       2.9       0       9.05E-07       D         MW-0074       12-Aug-91       0       2.9       0       0       3       0       9.05E-07       D         MW-0074       28-Jas-93       0.21       3.3       0       0       0       2.9       0       1.36E-06       D         MW-0075       21-Agr-88       0       0       0       0       0       1.35E-06       C         MW-0075       20-Jul-88       0       0       0       0       0       2.9       0       6.812E-06       C         MW-0075       25-Jas-89       0       0       0       0       0       2.0       6.84E-06       C         MW-0075       25-Agr-89       0       0       0       0.29       12       0       3.31E-06       C         MW-0075       25-Agr-89       0       0       0       0.24       23       0       7.18E-06       C         MW-0075       25-Agr-89       0       0       0       0       3.106E-05       C         MW-0075       01-May-90       0       0       0       1.31E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0074  | 29-Jan-91  | 0      | 3.6        |               | 0              | 0              | 3           | 0   | 9.36E-07             | D        | t            |
| MW-0074         12-Aug-91         0         2.9         0         0         3         0         9.36E-07         D           MW-0074         21-Agr.88         0         0         0         0         2.9         0         1.36E-06         D           MW-0075         21-Agr.88         0         0         0         0         1.36E-06         C           MW-0075         22-Jul-88         0         0         0         0         2.6         0         8.12E-06         C           MW-0075         28-Oct.88         0         0         0         0.20         0         6.24E-06         C           MW-0075         25-Agr.89         0         0         0         0.29         12         0         3.75E-06         C           MW-0075         12-Agr.89         0         0         0         0.24         23         0         7.18E-06         C           MW-0075         11-Dac-89         0         0         0         0         38         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         0         1.31E-05         C           MW-0075         01-Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MW-0074  | 10-May-91  | 0      | 4.4        |               | 0              | 0              | 2.9         | 0   | 9.05E-07             | D        | t            |
| MW-0074         28-Jan-93         0.21         3.3         0         0         0         2.9         0         1.36E-06         D           MW-0075         21-Apr-88         0         0         0         0         0         17         0         5.31E-06         C           MW-0075         20-Jul-88         0         0         0         0         0         20         6.4E-06         C           MW-0075         25-Jan-89         0         0         0         0         0         0.20         6.4E-06         C           MW-0075         25-Jan-89         0         0         0         0         0.17         0         5.31E-06         C           MW-0075         24-Jul-89         0         0         0         0.24         23         0         7.18E-06         C           MW-0075         11-Dec-89         0         0         0         0         38         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         1.31E-05         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-0074  | 12-Aug-91  | o      | 2.9        |               | 0              | 0              | 3           | 0   | 9.36E-07             | D        | t            |
| MW-0075         21-Agr-88         0         0         0         0         17         0         5.31E-06         C           MW-0075         20-Jul-88         0         0         0         0         26         0         8.12E-06         C           MW-0075         28-Jul-88         0         0         0         0         0         20         0         6.24E-06         C           MW-0075         25-Jan-89         0         0         0         0.29         12         0         3.7E-06         C           MW-0075         25-Agr-89         0         0         0         0.29         12         0         3.7E-06         C           MW-0075         24-Jul-89         0         0         0         0.24         23         0         7.18E-06         C           MW-0075         11-Dac-89         0         0         0         0         3.8         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         2.33E-05         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-0074  | 28-Jan-93  | 0.21   | 3.3        | 0             | 0              | 0              | 2.9         | Ó   | 1.36E-06             | D        | t            |
| MW-0075       20. jul.88       0       0       0       0       0       26       0       8.12E-06       C         MW-0075       28-0xt-88       0       0       0       0       0       20       0       6.24E-06       C         MW-0075       25-Jan-89       0       0       0       0.29       12       0       3.75E-06       C         MW-0075       25-Jan-89       0       0       0       0       0.29       12       0       3.75E-06       C         MW-0075       24-Jul-89       0       0       0       0.44       23       0       7.18E-06       C         MW-0075       11-Dec-89       0       0       0       0       3.8       0       1.06E-05       C         MW-0075       01-May-90       0       0       0       0       3.8       0       1.06E-05       C         MW-0075       01-May-90       0       0       0       0       0       1.31E-05       C         MW-0075       01-May-90       0       0       0       0       2.9       9.05E-06       C         MW-0075       31-Oct-90       0       0       0 <td>MW-0075</td> <td>21-Apr-88</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>17</td> <td>0</td> <td>5.31E-06</td> <td>С</td> <td>t</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-0075  | 21-Apr-88  | 0      | 0          |               | 0              | 0              | 17          | 0   | 5.31E-06             | С        | t            |
| MW-0075         28-Oct-88         0         0         0         0         20         0         6.24E-06         C           MW-0075         25-Jan-89         0         0         0         0.29         12         0         3.75E-06         C           MW-0075         25-Jan-89         0         0         0         0.17         0         5.31E-06         C           MW-0075         24-Jul-89         0         0         0         0.24         23         0         7.18E-06         C           MW-0075         11-Dec-89         0         0         0         0.34         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         38         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         2.9         9.05E-06         C           MW-0075         31-Oct-90         0         0         0         0         2.9         0         9.05E-06         C           MW-0075         13-Loct-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-0075  | 20-Jul-88  | 0      | 0          |               | 0              | 0              | 26          | 0   | 8.12E-06             | С        | t            |
| MW-0075         25-Jan-89         0         0         0         0.29         12         0         3.75E-06         CC           MW-0075         25-Apr-89         0         0         0         0         0         17         0         5.31E-06         CC           MW-0075         24-Jul-89         0         0         0         0.24         23         0         7.18E-06         CC           MW-0075         11-Dec-89         0         0         0         0         34         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         0         38         0         1.06E-05         C           MW-0075         01-May-90         0         0         0         0         0         31.12-05         C           MW-0075         01-May-90         0         0         0         0         0         0         1.31E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         0         1.72E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         1.72E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW-0075  | 28-Oct-88  | 0      | 0          |               | 0              | 0              | 20          | 0   | 6.24E-06             | С        | t            |
| MW-0075         25-Apr-89         0         0         0         0         17         0         5.31E-06         CC           MW-0075         24-Jul-89         0         0         0         0.24         23         0         7.18E-06         CC           MW-0075         11-Dec-89         0         0         0         0.24         23         0         7.18E-06         CC           MW-0075         11-Dec-89         0         0         0         0         34         0         1.06E-05         CC           MW-0075         01-May-90         0         0         0         0         7         0         2.37E-05         CC           MW-0075         01-May-90         0         0         0         0         0         1.31E-05         CC           MW-0075         01-May-90         0         0         0         0         0         0         0         1.31E-05         CC           MW-0075         31-Oct-90         0         0         0         0         0         0         1.72E-05         CC           MW-0075         13-Ba-91         0         0         0         0         0         1.72E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-0075  | 25-Jan-89  | o      | 0          |               | 0              | 0.29           | 12          | 0   | 3.75E-06             | c        | t            |
| MW-0075         24-Jul-89         0         0         0         0.24         23         0         7.18E-06         CC           MW-0075         11-Dec-89         0         0         0         0         34         0         1.06E-05         CC           MW-0075         11-Dec-89         0         0         0         0         38         0         1.06E-05         CC           MW-0075         05-Feb-90         0         0         17         0         5.7         0         2.35E-05         CC           MW-0075         01-May-90         0         0         0         0         1.31E-05         CC           MW-0075         01-May-90         0         0         0         0         42         0         1.31E-05         CC           MW-0075         01-May-90         0         0         0         0         0         29         0         9.05-13.1E-05         CC           MW-0075         31-Oct-90         0         0         0         0         0         0         1.72E-05         CC           MW-0075         31-Oct-90         0         0         0         0         0         2.37E-05         C <td>MW-0075</td> <td>25-Apr-89</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>17</td> <td>Ō</td> <td>5.31E-06</td> <td>с</td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-0075  | 25-Apr-89  | 0      | 0          |               | 0              | 0              | 17          | Ō   | 5.31E-06             | с        | +            |
| MW-0075         11-Dec-89         0         0         0         0         34         0         1.06E-05         C           MW-0075         11-Dec-89         0         0         0         0         38         0         1.06E-05         C           MW-0075         05-Feb-90         0         0         17         0         5.7         0         2.35E-05         C           MW-0075         01-May-90         0         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         0         0         1.31E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         0         0         1.72E-05         C           MW-0075         10-May-91         0         0         0         0         0         0         0         2.37E-05 <td>MW-0075</td> <td>24-Jul-89</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0.24</td> <td>23</td> <td>0</td> <td>7.18E-06</td> <td>С</td> <td>t</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-0075  | 24-Jul-89  | 0      | 0          |               | 0              | 0.24           | 23          | 0   | 7.18E-06             | С        | t            |
| MW-0075         11-Dac-89         0         0         0         0         0         38         0         1.06E-05         C           MW-0075         05-Feb-90         0         0         0         17         0         5.7         0         2.35E-05         C           MW-0075         01-May-90         0         0         0         0         15         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         15         0         1.31E-05         C           MW-0075         05-Jal-90         0         0         0         0         0         29         0         9.05E-06         C           MW-0075         31-Oct-90         0         0         0         0         0         2.37E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         0         0         2.37E-05         C           MW-0075         12-Aag-91         0         0         0         0         0         0         0         3.06E-05         C           MW-0075         12-Aag-91         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-0075  | 11-Dec-89  |        |            |               | 0              | 0              | 34          | 0   | 1.06E-05             | С        | $^{+}$       |
| MW-0075         05-Feb-90         0         0         17         0         5.7         0         2.35E-05         C           MW-0075         01-May-90         0         0         0         0         17         0         5.7         0         2.35E-05         C           MW-0075         01-May-90         0         0         0         0         15         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         42         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         29         0         9.05E-06         C           MW-0075         31-Oct-90         0         0         0         0         0         0         0         1.72E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         0         1.72E-05         C           MW-0075         10-May-91         0         0         0         0         0         0         2.37E-05         C           MW-0075         12-Aug-91         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0075  | 11-Dec-89  |        |            |               | 0              |                | 38          | 0   | 1.06E-05             | Ċ        | $\dagger$    |
| MW-0075         01-May-90         0         0         0         0         0         15         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         42         0         1.31E-05         C           MW-0075         01-May-90         0         0         0         0         42         0         1.31E-05         C           MW-0075         05-Jai-90         0         0         0         0         29         0         9.05E-06         C           MW-0075         31-Oct-90         0         0         0         0         49         0         1.72E-05         C           MW-0075         10-May-91         0         0         0         0         2.37E-05         C           MW-0075         12-Ang-91         0         0         0         0         98         3.06E-05         C           MW-0075         12-Ang-91         0         0         0         0         390         1.22E-04         C           MW-0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MW-0075  | 05.R.b.00  |        |            |               | 17             |                | 5.7         | 0   | 2.35E-05             | Ċ        | +            |
| MW-0075       01-May-90       0       0       0       0       42       0       1.31E-05       C         MW-0075       01-May-90       0       0       0       0       42       0       1.31E-05       C         MW-0075       05-Jul-90       0       0       0       0       29       0       9.05E-06       C         MW-0075       31-Oct-90       0       0       0       0       49       0       1.72E-05       C         MW-0075       31-Oct-90       0       0       0       0       0       49       0       1.72E-05       C         MW-0075       31-Oct-90       0       0       0       0       0       55       0       1.72E-05       C         MW-0075       29-Jan-91       0       0       0       0       0       76       0       2.37E-05       C         MW-0075       12-Aug-91       0       0       0       0       0       79       0       2.50E-05       C         MW-0075       12-Aug-91       0       0       0       0       0       0       0       2.50E-05       C         MW-0075       12-Aug-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-0075  | 01-May-90  |        | ů          |               | 0              |                | 15          |     | 1.31E-05             | c        | $^{+}$       |
| MW-0075         05-Jul-90         0         0         0         0         29         0         9.05E-06         C           MW-0075         31-Oct-90         0         0         0         0         0         29         0         9.05E-06         C           MW-0075         31-Oct-90         0         0         0         0         0         49         0         1.72E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         55         0         1.72E-05         C           MW-0075         29-Jan-91         0         0         0         0         0         76         0         2.37E-05         C           MW-0075         12-Aug-91         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         0         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         3.66         1.4         4.31E-05         D           MW-0076         21-Jul-88         0.37         33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MW.0075  | 01-May-00  |        |            |               |                |                | 42          | ň   | 1.31E-05             | <u> </u> | +            |
| MW-0075         31-Oct-90         0         0         0         0         49         0         1.72E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         49         0         1.72E-05         C           MW-0075         31-Oct-90         0         0         0         0         0         55         0         1.72E-05         C           MW-0075         29-Jan-91         0         0         0         0         0         55         0         1.72E-05         C           MW-0075         10-May-91         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         0         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         3.50E-05         D           MW-0076         21-Jul-88         0.48         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW_0074  | 05.1.1.00  |        |            | ┝╍────┥       |                |                | 20          |     | 9 05F_06             |          | +            |
| MW-0075         31-Oct-90         0         0         0         0         0         1.125-05         C           MW-0075         31-Oct-90         0         0         0         0         55         0         1.72E-05         C           MW-0075         29-Jan-91         0         0         0         0         0         76         0         2.37E-05         C           MW-0075         10-May-91         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         3.06         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         390         0         1.22E-04         C           MW-0076         21-Jal-88         0         48         0         0         0         0         0         0           MW-0076         21-Jal-88         0.38         39         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW.0074  | 31.0-00    |        |            |               |                |                | 40          |     | 1.72E_04             |          | ╉            |
| MW-0075         29-Jan-91         0         0         0         0         0         0         76         0         2.37E-05         C           MW-0075         10-May-91         0         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         0         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         390         0         1.22E-04         C           MW-0076         21-Jul-88         0         48         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 31.0~00    | ,      |            |               |                |                |             |     | 1 725-05             |          | +            |
| MW-0075         L2-ABE-91         0         0         0         0         0         0         2.57E-05         C           MW-0075         10-May-91         0         0         0         0         0         0         98         0         3.06E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         0         79         0         2.50E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         0         0         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         390         0         2.50E-05         C           MW-0076         28-Apr-88         1.4         200         0.14         0.61         3.6         1.4         4.31E-05         D           MW-0076         21-Jul-88         0         48         0         0         0         0         0         0         9.84E-07         D           MW-0076         27-Oct-88         0.38         39         0         0         0.71         0         9.84E-07         D           MW-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MW 0074  | 20 1-01    |        | <u>_</u>   |               |                |                |             |     | 2 175.04             |          | +            |
| MW-0075       12-Aug-91       0       0       0       0       98       0       3.00E-03       C         MW-0075       12-Aug-91       0       0       0       0       0       79       0       2.50E-05       C         MW-0075       12-Aug-91       0       0       0       0       0       0       2.50E-05       C         MW-0075       27-Oct-92       0       0       13       0       0       390       0       1.2EL-04       C         MW-0076       28-Apr-88       1.4       200       0.14       0.61       3.6       1.4       4.31E-05       D         MW-0076       21-Jul-88       0       48       0       0       0       0       0       0       0       D         MW-0076       27-Oct-88       0.37       33       0       0       0       0       0       D         MW-0076       27-Oct-88       0.38       39       0       0       0       0       9.84E-07       D         MW-0076       27-Oct-88       0.38       39       0       0       0       1.53E-06       D         MW-0076       24-Jul-89       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MBI 0074 | 47-JAB-91  |        |            |               |                |                |             |     | 3 042 04             |          | +            |
| MW-0075         12-A0g-91         0         0         0         0         79         0         2.50E-05         C           MW-0075         12-Aug-91         0         0         0         0         0         0         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         390         0         1.22E-04         C           MW-0076         28-Apr-88         1.4         200         0.14         0.61         3.6         1.4         4.31E-05         D           MW-0076         21-Jul-88         0         48         0         0         0         0         0         0         0         0         0         D           MW-0076         27-Oct-88         0.37         33         0         0         0         0         0         D           MW-0076         27-Oct-88         0.38         39         0         0         0.66         0         9.84E-07         D           MW-0076         03-May-89         0         9.9         0         0         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW-00/3  | 10-MLAY-91 | 0      | 0          |               |                | <u>v</u>       |             |     | 3,002-03             |          | ╉            |
| MW-0075         12-Aug-91         0         0         0         0         0         80         0         2.50E-05         C           MW-0075         27-Oct-92         0         0         13         0         0         390         0         1.22E-04         C           MW-0076         28-Apr-88         1.4         200         0.14         0.61         3.6         1.4         4.31E-05         D           MW-0076         21-Jul-88         0         48         0         0         0         0         0         0         0         0         D           MW-0076         27-Oct-88         0.37         33         0         0         0         0         0         0         0         D           MW-0076         27-Oct-88         0.38         39         0         0         0.66         0         9.84E-07         D           MW-0076         27-Oct-88         0.38         39         0         0         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         0         0         0         0         0         D <td>MW-UU/3</td> <td>12-A0g-91</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>2.305-05</td> <td><u> </u></td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-UU/3  | 12-A0g-91  | 0      | 0          |               | 0              |                |             |     | 2.305-05             | <u> </u> | +            |
| MW-0075         21-Oct-92         0         0         13         0         0         390         0         1.22E-04         C           MW-0076         28-Apr-88         1.4         200         0.14         0.61         3.6         1.4         4.31E-05         D           MW-0076         21-Jul-88         0         48         0         0         0         0         0         0         0         D           MW-0076         27-Oct-88         0.37         33         0         0         0         0.61         0.66         0         9.84E-07         D           MW-0076         27-Oct-88         0.38         39         0         0         0.71         0         9.84E-07         D           MW-0076         03-May-89         0         9.9         0         0         0.153E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-UU75  | 12-Aug-91  | 0      | 0          |               | 0              |                | 08          | U   | 2.308-03             |          | +            |
| MW-0076         23-Apr-88         1.4         200         0.14         0.61         3.6         1.4         4.31E-05         D           MW-0076         21-Jul-88         0         48         0         0         0         0         0         D           MW-0076         27-Oct-88         0.37         33         0         0         0         0         0         9.84E-07         D           MW-0076         27-Oct-88         0.38         39         0         0         0.71         0         9.84E-07         D           MW-0076         03-May-89         0         9.9         0         0         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         0         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW-0075  | 27-Oct-92  | 0      | 0          | 13            | 0              | 0              | 390         | 0   | 1.22E-04             | <u> </u> | +            |
| MW-0076         21-Jul-88         0         48         0         0         0         0         0         0         0         D           MW-0076         27-Oct-88         0.37         33         0         0         0         0.6         0         9.84E-07         D           MW-0076         27-Oct-88         0.38         39         0         0         0.71         0         9.84E-07         D           MW-0076         03-May-89         0         9.9         0         0         4.9         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         0         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-0076  | 28-Apr-88  | 1.4    | 200        |               | 0.14           | 0.61           | 3.6         | 1.4 | 4.31E-05             | <u></u>  | 4            |
| MW-0076         27-Oct-88         0.37         33         0         0         0.6         0         9.84E-07         D           MW-0076         27-Oct-88         0.38         39         0         0         0         0.71         0         9.84E-07         D           MW-0076         03-May-89         0         9.9         0         0         0         4.9         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         0         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0076  | 21-Jul-88  | 0      | 48         |               | 0              | 0              | 0           | 0   | 0                    | D        | 4            |
| MW-0076         27-Oct-\$8         0.38         39         0         0         0.71         0         9.84E-07         D           MW-0076         03-May-89         0         9.9         0         0         4.9         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW-0076  | 27-Oct-88  | 0.37   | · 33       |               | 0              | 0              | 0.6         | 0   | 9.84E-07             | D        | 1            |
| MW-0076         03-May-89         0         9.9         0         0         4.9         0         1.53E-06         D           MW-0076         24-Jul-89         0         0.74         0         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         0         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-0076  | 27-Oct-88  | 0.38   | 39         |               | 0              | 0              | 0.71        | 0   | 9.84E-07             | D        | 1            |
| MW-0076         24-Jul-89         0         0.74         0         0         0         0         0         D           MW-0076         24-Jul-89         0         1.6         0         0.41         0         0         0         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-0076  | 03-May-89  | Ő      | 9.9        |               | 0              | 0              | 4.9         | 0   | 1.53E-06             | D        | 1            |
| MW-0076 24-Jul-89 0 1.6 0 0.41 0 0 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-0076  | 24-Jul-89  | 0      | 0.74       |               | 0              | 0              | 0           | 0   | 0                    | D        | Ţ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-0076  | 24-Jui-89  | 0      | 1.6        |               | 0              | 0.41           | 0           | 0   | 0                    | D        | Γ            |
| MW-0076 14-Dec-89 0 0 0 0 0 0 3.11E-07 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MW-0076  | 14-Dec-89  | 0      | 0          |               | 0              | 0              | 0           | 0   | 3.11E-07             | D        | Γ            |

g:\umes\day\_mumwalwoog\TABLEE-6.XLS

1

**TF** 

•

• . 1

1.

05/11/94

| Table K-6       VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period       Location     Risk for     Operable       ID     Log Date     1.2-DCA     1.1-DCE     PCE     1.1.1-TCA     TCE     VC     Pathways     Unit     7-mail |            |           |         |         |           |         |        |          |          |                  |          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------|---------|-----------|---------|--------|----------|----------|------------------|----------|--|--|
| Location                                                                                                                                                                                                                                      | L D.t.     | 1100      |         | .13 DCP |           | 111 70  | 10.15  | VC       | Risk for | Operable<br>Unio |          |  |  |
|                                                                                                                                                                                                                                               |            | 1,400.0   | 1,1-DCE | CLAULE  | <u>r.</u> | 1,41.10 |        |          | ranways  |                  | 2.000    |  |  |
| MW-0076                                                                                                                                                                                                                                       | 05-54-90   | 0         | 0.24    |         | 0         | 0       | 0      | 0        | 5.40E-07 | <u>ק</u>         | AR       |  |  |
| MW-0076                                                                                                                                                                                                                                       | 05-Nov-90  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | AB       |  |  |
| MW-0076                                                                                                                                                                                                                                       | 28-Jan-91  | 0         | 1.5     |         | 0         | 0       | 0      | - 0      | 0        | D                | AB       |  |  |
| MW-0076                                                                                                                                                                                                                                       | 13-May-91  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | AB       |  |  |
| MW-0076                                                                                                                                                                                                                                       | 15-Aug-91  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | AB       |  |  |
| MW-0076                                                                                                                                                                                                                                       | 29-Jan-93  | 0         | 0       | 0       | 0         | 0       | 0      | 0        | 0        | D                | AB       |  |  |
| MW-0088                                                                                                                                                                                                                                       | 06-Jan-87  | 0         | 1.1     |         | 0         | 0       | Ó      | 0        | 0        | D                | A        |  |  |
| MW-0068                                                                                                                                                                                                                                       | 04-May-87  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 13-Aug-87  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 21-Jan-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 11-Apr-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 08-Jul-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | <b>A</b> |  |  |
| MW-0088                                                                                                                                                                                                                                       | 13-Oct-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 17-Jan-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 05-Apr-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0088                                                                                                                                                                                                                                       | 19-Jul-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | <b>A</b> |  |  |
| MW-0088                                                                                                                                                                                                                                       | 11-Oct-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        |                  |          |  |  |
| MW-0088                                                                                                                                                                                                                                       | 23-Jan-90  | 0         | 0       |         |           | 0       | 0      | 0        | 0        | D                |          |  |  |
| MW-0088                                                                                                                                                                                                                                       | 31 Ort 90  | 0         | 0       |         | 0         | 0       | 0      |          |          |                  |          |  |  |
| MW-0088                                                                                                                                                                                                                                       | 25-but-90  | 0         |         |         |           | 0       |        | 0        | 0        |                  |          |  |  |
| MW-0088                                                                                                                                                                                                                                       | 25-Jun-91  | 0         | 0       | 0       | 0         | 0       | Ŭ      | <u> </u> | 0        | D                |          |  |  |
| MW-0088                                                                                                                                                                                                                                       | 22-Jul-93  | · · · · · | 0       | 0       | 0         | 0       | 0      | 0        | 0        | D                |          |  |  |
| MW-0089                                                                                                                                                                                                                                       | 06-Jan-87  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 04-May-87  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 13-Aug-87  | 0         | 0       |         | 0         | Ő       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 21-Oct-87  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 11-Jan-88  | 0         | 0.75    |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 15-Apr-88  | 0         | 0.97    |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 08-Jul-88  | 0         | 1.1     |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 06-Oct-88  | 0         | 2.5     |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 16-Jan-89  | 0         | 6.2     |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 04-Apr-89  | 0         | 9.4     |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 11-Jul-89  | 0         |         |         | 0         | 0       | 0      | 0        | 1.02E-07 | <u>D</u>         | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 04-Oct-89  | 0         | 10      |         | 0         | 0       | 0      | 0        | 1.43E-07 | <u> </u>         | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 29-Jan-90  | 0         | 120     |         | 0         | 1.3     | 0      | 0        | 0        | <u>ת</u>         | A        |  |  |
| MW-0089                                                                                                                                                                                                                                       | 06. Jul.02 | 0         | 220     |         |           | 0       | 0      |          | 0        |                  |          |  |  |
| MW_0089                                                                                                                                                                                                                                       | 05.477.93  |           | 210     | 0       | 0         | 0       | - 0    | 0        | 0        | <u> </u>         |          |  |  |
| MW-0090                                                                                                                                                                                                                                       | 20-1ap-87  | 0         | 012     |         | <u>0</u>  |         | ů<br>O | 0        | 0        | D                |          |  |  |
| MW-0090                                                                                                                                                                                                                                       | 04-May-87  | 0         | 0       | ·····   | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 13-Aug-87  | 0         | 1.6     |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 12-Oct-87  | 0         | 0.52    |         | 0         | 0.17    | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 20-Jan-88  | 0         | 0.21    | ·       | 0         | 0       | 0      | 0        | Ō        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 11-Apr-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 14-Jul-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 11-Oct-88  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 16-Jan-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 04-Apr-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | A        |  |  |
| MW-0090                                                                                                                                                                                                                                       | 11-Jui-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                |          |  |  |
| MW-0090                                                                                                                                                                                                                                       | 04-Oct-89  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | <b>A</b> |  |  |
| MW-0090                                                                                                                                                                                                                                       | 20-Feb-90  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                | <b>A</b> |  |  |
| MW-0090                                                                                                                                                                                                                                       | 11-Apr-90  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                |          |  |  |
| MW-0090                                                                                                                                                                                                                                       | 30-Apr-91  | 0         | 0       |         | 0         | 0       | 0      | 0        | 0        | D                |          |  |  |
| MW-0090                                                                                                                                                                                                                                       | 24-Jul-92  | 0         | 0       | 0       | 0         | 0       | 0      | 0        | 0        | D                |          |  |  |
| MW-0091                                                                                                                                                                                                                                       | 20-Jan-87  | 0         | 13      |         | 0         | 0       | 9.5    | 0        | 3.09E-06 | D                | <b>A</b> |  |  |
| MW-0091                                                                                                                                                                                                                                       | 20-Jan-87  | 0         | 14      |         | 0         | 0       | 9.9    | 0        | 3.09E-06 | D                |          |  |  |
| MW-0091                                                                                                                                                                                                                                       | 21-Apr-87  | 0         | 14      |         | 0         | 0       | 13     | 0        | 4.06E-06 | D                |          |  |  |
| MW-0091                                                                                                                                                                                                                                       | 28-Jul-87  | 0         | 8.1     |         | 0         | 0       | 18     | 0        | 5.62E-06 |                  |          |  |  |
| MW-0091                                                                                                                                                                                                                                       | 12-Oct-87  | 0         | 3       |         | 0         | 0       | 6.7    | 0        | 2.09E-06 | D                |          |  |  |

g:\umas\ds\j\_zumwal\woag\TABLEK-6.XLS

,

.

1

and a second second second second second second second second second second second second second second second

05/11/94

|          |                        |                  | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | mater 1993 Su | npling Period |     |          |                |                          |
|----------|------------------------|------------------|------------|---------------|-----------------------------|---------------|---------------|-----|----------|----------------|--------------------------|
| Location |                        | 10.00            | 11.000     |               | Brit                        | 111.7004      |               | VC  | Risk for | Operable       |                          |
|          | Log Date               | 1,3-DCA          | 1,1-DCE    | ~1.4-DCE      | - FCE                       | 1,1,1-10.     | - TCE         | ve  | 2.005-06 |                |                          |
| MW-0091  | 21 100 99              |                  | 3.3        |               | 0                           | 0             | 6.4           |     | 2.092-06 | <u>-</u>       | <b>^</b>                 |
| MW-0091  | 18 Ann 88              |                  | 0.65       |               | 0                           | 0             | 76            |     | 2.00E-00 | <u>D</u>       |                          |
| MW-0091  | 20- Int-88             | 0                | 12         |               | 0                           | 0             | 6.9           |     | 2.15E-06 | <u> </u>       |                          |
| MW-0091  | 05.04.88               |                  | 0.74       |               | 0                           | 0             | 3.8           | - ů | 1.19E-06 |                |                          |
| MW-0091  | 13_Jan_89              | 0                | 3.2        |               | 0                           | 0             | 4.9           | 0   | 1.64E-06 |                |                          |
| MW-0091  | 12-Apr-89              | 0                |            |               | 0                           | 0             | 3             | 0   | 9.36E-07 | D              |                          |
| MW-0091  | 24-Jul-89              | 0                | 4          |               | 0                           | 0             | 3.8           | 0   | 1.19E-06 | D              | A                        |
| MW-0091  | 14-Dec-89              | 0                | 8.8        |               | 0                           | 0             | 5.9           | 0   | 1.84E-06 | D              | A                        |
| MW-0091  | 17-Jan-90              | 0                | 3          |               | 0                           | 0             | 5.4           | 0   | 1.69E-06 | D              |                          |
| MW-0091  | 01-May-90              | 0                | 13         |               | 0                           | 0             | 11            | 0   | 3.43E-06 | D              | A                        |
| MW-0091  | 27-Jul-90              | 0                | 24         |               | 0                           | 0             | 3.6           | 0   | 1.12E-06 | D              | A                        |
| MW-0091  | 27-Jul-90              | 0                | 31         |               | 0                           | 0             | 5.5           | 0   | 1.12E-06 | D              | A                        |
| MW-0091  | 30-Apr-91              | 0                | 32         |               | 0                           | 0             | 2.8           | 0   | 8.74E-07 | D              | A                        |
| MW-0091  | 30-Apr-91              | 0                | 33         |               | 0                           | 0             | 8.8           | 0   | 8.74E-07 | D              | A                        |
| MW-0091  | 07-Jul-92              | 0                | 73         | 0             | 0                           | 0             | 2.1           | 0   | 6.55E-07 | D              | A                        |
| MW-0091  | 20-Jui-93              | 0                | 94.90      | 0             | 0                           | 10.60         | 0             | 0   | 2.15E-06 | D              | A                        |
| MW-0092  | 20-Jan-87              | 0                | 0          |               | 0                           | 0             | 6.2           | 0   | 1.94E-06 | D              | A                        |
| MW-0092  | 21-Apr-87              | 0                | 0          |               | 0                           | 0             | 7.9           | 0   | 2.47E-06 | D              | A                        |
| MW-0092  | 28-Jul-87              | 0                | 0          |               | 0                           | 0             | 9.4           | 0   | 2.93E-06 | D              | A                        |
| MW-0092  | 26-Oct-87              | 0                | 0          |               | 0                           | 0             | 3.7           | 0   | 1.19E-06 | D              | A                        |
| MW-0092  | 26-Oct-87              | 0                | 0          |               | 0                           | Ó             | 3.8           | 0   | 1.19E-06 | D              | A                        |
| MW-0092  | 21-Jan-88              | 0                | 0          |               | 0                           | 0             | 3.7           | 0   | 1.37E-06 | D              | •                        |
| MW-0092  | 21-Jan-88              | 0                | 0          |               | 0                           | 0             | 4.4           | 0   | 1.37E-06 | D              | A                        |
| MW-0092  | 12-Apr-88              | 0                | 0          |               | 0                           | 0             | 4.1           | 0   | 1.28E-06 | D              | <b>A</b>                 |
| MW-0092  | 21-Jul-88              | 0                | 0          |               | 0                           | 0             | 3.8           | 0   | 1.19E-06 | D              | A                        |
| MW-0092  | 05-Oct-88              | 0                | 0          |               | 0                           | 0             | 3.25          | 0   | 1.01E-06 | D              | A                        |
| MW-0092  | 17-Jan-89              | 0                | 0          |               | 0                           | 0             | 2.7           | 0   | 8.43E-07 | D              | A                        |
| MW-0092  | 20-Apr-89              | 0                | 0          |               | 0                           | 0             | 1.9           | 0   | 5.93E-07 | D              | A                        |
| MW-0092  | 24-Jul-89              | 0                | 0          |               | 0                           | 0             | 2.9           | 0   | 9.05E-07 | D              | <u>A</u>                 |
| MW-0092  | 16-Oct-89              | 0                | 0          |               | 0                           | 0             | 3.7           | 0   | 1.15E-06 | D              | A                        |
| MW-0092  | 17-Jan-90              | 0                | 0          |               | 0                           | 0             | 3             | 0   | 9.36E-07 | D              | <b>A</b>                 |
| MW-0092  | 17-Jan-90              | 0                | 0          |               | 0                           | 0.22          | 2.3           | 0   | 9.36E-07 | D              | <b>A</b>                 |
| MW-0092  | 09-Apr-90              | 0                | 0          |               | 0                           | 0             | 1.4           | 0   | 4.37E-07 | D              | <b>A</b>                 |
| MW-0092  | 27-Jul-90              | 0                | 0          |               | 0                           | 0             | 1.3           | 0   | 2.01E-06 | <u> </u>       | <b>A</b>                 |
| MW-0092  | 15-Oct-90              | 0                | 0          |               | 0                           | 0             | 0.47          | 0   | 1.47E-07 | <u>D</u>       | A                        |
| MW-0092  | 13-Dec-90              |                  |            |               |                             |               |               |     | A 375 07 |                |                          |
| MW-0092  | 22-Jan-91              | 0                | 0          |               | 0                           | 0             | 1.4           |     | 4.37E-07 |                |                          |
| MW-0092  | 11-JUI-91              | 0                |            |               | 0                           | 0             | 0.79          |     | 4.4/E-UI | - <u>-</u>     |                          |
| MW-0092  | 21 10-04               | 0                |            | 0             | 0                           | 0             |               |     | 0        |                |                          |
|          | 21-100-83              | 0                | 0          |               | 0                           | 0             |               |     | 4 94E 07 | - <del></del>  | BC                       |
| MW 0100  | 41-F00-80              |                  |            |               |                             | 0             | 0             | - 0 | 4.07E-07 | - <del>-</del> | BC                       |
| MW_0100  | 10-300-80<br>00-1e- 97 |                  | 0          |               |                             | 0             | 0             |     | 0        | - 5-           | BC                       |
| MW-0100  | 17.4-01                |                  | 0          |               |                             | 0             |               |     |          |                | BC                       |
| MW_0100  | 07. Ave #7             |                  |            |               |                             | 0             | 0             | - 1 | 0        | - <u>-</u> -   | BC                       |
| MW_0100  | 10.0-27                |                  |            |               |                             |               | 0             |     | 0        | 5              | BC                       |
| MW_0100  | 22-10-01               |                  |            |               |                             | 0             | 0             |     | 0        | <u> </u>       | BC                       |
| MW_0100  | 14.4                   |                  |            |               |                             | 0             |               |     |          | <u> </u>       | BC                       |
| MW_0100  | 10.1.1.00              |                  |            |               | 0                           |               |               |     | 0        | <u> </u>       | BC                       |
| MW-0100  | 17-741-00              | <u>~</u>         | 0          |               | 0                           |               | 0             |     |          | <u> </u>       | BC                       |
| MW.0100  | 20 Dec #0              |                  | 0          |               |                             | 0             | 0             |     |          |                | BC                       |
| MIN-VIOU | 27-0-07                |                  | 0          |               |                             | 0             |               |     | 0        | - 6            | BC                       |
| MW-0100  | 10.0- 01               | ~ ~              |            |               |                             |               |               |     | 0        |                | RC                       |
| MW 0100  | 16.10-02               |                  | 0          |               | 0                           | 0             |               |     |          |                | RC                       |
| MW.0100  | 12.0-02                | <u>-</u>         | 0          | -             |                             |               |               |     |          |                | BC                       |
| MW-0100  | 13-0Ct-92              |                  | 0          | U             | 0                           | 0             |               |     |          | - <u>-</u>     |                          |
| MW-VIUI  | 10-1404-03             |                  | 0          | <u> </u>      |                             | 0             | 0             |     | 0        | 6              |                          |
| MW-0101  | 16. See 84             |                  |            |               |                             |               |               |     | 0        | <u> </u>       | $+\overline{\mathbf{A}}$ |
| MW-0101  | 10-300-80              |                  |            |               |                             | 0             | 0             |     |          |                |                          |
| MW-0101  | 17.4-47                | ├ <u>────</u> ┆│ | 0          |               |                             |               |               |     |          | - n            |                          |
| MW-0101  | 1/-Apt-8/              | 0                | 0          |               | 0                           | 0             | 0             | U U | <u> </u> | <u> </u>       | L_ <b>^</b> _            |

g:\unes\da\j\_manwal\woog\TABLER-6.XLS

1

The second second second second

ł

(

1.1

in.....

05/11/94

|                | Table K-6       VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period       Location     Risk for     Operable       ID     Log Date     1,2-DCA     1,1-DCE     o-1,2-DCE     PCE     1,1,1-TCA     TCE     VC     Pathways     Unit     Zame       MW-0101     05-Aug-87     0     0     0     0     0     0     0     0 |         |         |           |     |           |      |     |                      |                  |          |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|-----|-----------|------|-----|----------------------|------------------|----------|--|--|--|
| Location<br>ID | Log Date                                                                                                                                                                                                                                                                                                                              | 1,2-DCA | 1,1-DCE | e-1,2-DCE | PCE | 1,1,1-TCA | TCE  | vc  | Risk for<br>Pathways | Operable<br>Unit | Zame     |  |  |  |
| MW-0101        | 05-Aug-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| <b>MW-0101</b> | 19-Oct-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0101        | 22-Jan-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | <b>A</b> |  |  |  |
| MW-0101        | 14-Apr-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0101        | 19-Jul-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | <b>A</b> |  |  |  |
| MW-0101        | 11-Oct-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                |          |  |  |  |
| MW-0101        | 29-060-89                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           |     | 0         |      | 0   |                      | 0                |          |  |  |  |
| MW-0101        | 10.00.90                                                                                                                                                                                                                                                                                                                              | 0       | 0       |           |     |           | 0    |     | 0                    |                  |          |  |  |  |
| MW-0101        | 21-Jan-92                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                |          |  |  |  |
| MW-0101        | 06-Jui-92                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0         | 0   | 0         | 0    | 0   | 0                    | G                |          |  |  |  |
| MW-0101        | 13-Oct-92                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0         | 0   | 0         | 0    | 0   | 0                    | G                |          |  |  |  |
| MW-0101        | 18-Jan-93                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0         | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0101        | 22-Jul-93                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0         | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0102        | 04-Nov-85                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | •        |  |  |  |
| MW-0102        | 05-Nov-85                                                                                                                                                                                                                                                                                                                             |         |         |           |     |           |      |     | 0                    | G                | A        |  |  |  |
| MW-0102        | 11-Mar-86                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 3.74E-07             | G                | A        |  |  |  |
| MW-0102        | 09-Jan-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0102        | 22-Apr-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                |          |  |  |  |
| MW-0102        | 07-Aug-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0102        | 19-Oct-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0102        | 20-Jan-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           |     | 0         | 0    | 0   | 0                    | 6                | A        |  |  |  |
| MW-0102        | 12 Jul 88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         |      | 0   | 0                    | 6                | <b>A</b> |  |  |  |
| MW-0102        | 04-Oct-88                                                                                                                                                                                                                                                                                                                             |         | 0       |           | 0   |           | 0    | 0   |                      | G                |          |  |  |  |
| MW-0102        | 11-Oct-89                                                                                                                                                                                                                                                                                                                             | 0       |         |           | 0   | 0         | 0    | 0   | 0                    | G                |          |  |  |  |
| MW-0102        | 30-Jul-90                                                                                                                                                                                                                                                                                                                             |         |         |           |     |           |      |     | 0                    | G                | A        |  |  |  |
| MW-0102        | 04-Dec-90                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0102        | 18-Jul-91                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0102        | 15-Apr-93                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0         | 0   | 0         | 0    | 0   | 0                    | G                | A        |  |  |  |
| MW-0103        | 20-Dec-85                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 8.10E-05             | G                | B        |  |  |  |
| MW-0103        | 11-Mar-86                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 09-Jan-87                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 22-Apr-8/                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | 6                | B        |  |  |  |
| MW-0103        | 10-Aug-87                                                                                                                                                                                                                                                                                                                             |         | 0       |           | 0   |           |      | 0   |                      | <u> </u>         | B        |  |  |  |
| MW-0103        | 20-Ian-88                                                                                                                                                                                                                                                                                                                             |         | 0       |           |     |           | 0    | 0   |                      |                  | B        |  |  |  |
| MW-0103        | 25-Apr-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           |     | <u>0</u>  | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 12-Jul-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 04-Oct-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 12-Oct-89                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 20-Jul-90                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 73  | 0         | 3.4  | 0   | 9.45E-05             | G                | B        |  |  |  |
| MW-0103        | 29-Oct-90                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 18-Jul-91                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | G                | B        |  |  |  |
| MW-0103        | 26-Jul-93                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0         | Ō   | 0         | 1.22 | 0   | 9.30E-07             | G                | B        |  |  |  |
| MW-0104        | 15-Dec-85                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 2.18E-06             | D                | B        |  |  |  |
| MW-0104        | 40-ML#-80                                                                                                                                                                                                                                                                                                                             | 0       |         |           | 0   | 0         | 0    | 0   | 1.81E-04             | 2                | 1 10     |  |  |  |
| MW.0104        | 11.Men #7                                                                                                                                                                                                                                                                                                                             |         | 0       |           | 0   |           | 0    | - 0 |                      | <u> </u>         | R        |  |  |  |
| MW-0104        | 31.hul.27                                                                                                                                                                                                                                                                                                                             |         | 0       |           |     | 0         | 0    |     |                      | <u> </u>         | R        |  |  |  |
| MW-0104        | 21-0-1-17                                                                                                                                                                                                                                                                                                                             |         | 0       |           | 0   | 0         |      |     |                      | D                | B        |  |  |  |
| MW-0104        | 21-Jan-88                                                                                                                                                                                                                                                                                                                             | - 0     | 0       |           |     | 0         | 0    |     | 0                    | D                | B        |  |  |  |
| MW-0104        | 11-Apr-88                                                                                                                                                                                                                                                                                                                             | 0       |         |           | 0   |           | 0    | 0   |                      |                  | B        |  |  |  |
| MW-0104        | 08-Jui-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | D                | B        |  |  |  |
| MW-0104        | 12-Oct-88                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | D                | B        |  |  |  |
| MW-0104        | 20-Jag-89                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | D                | B        |  |  |  |
| MW-0104        | 04-May-89                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | D                | B        |  |  |  |
| MW-0104        | 27-Jul-89                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | D                | B        |  |  |  |
| MW-0104        | 14-Dec-89                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 0                    | D                | B        |  |  |  |
| MW-0104        | 30-Jan-90                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         |      | 0   | 1.05E-06             | D                | B        |  |  |  |
| MW-0104        | 02-Aug-90                                                                                                                                                                                                                                                                                                                             | 0       | 0       |           | 0   | 0         | 0    | 0   | 2.43E-06             | D                | B        |  |  |  |

g-\umars\da\j\_Zizziwa\woog'TABLEK-6XLS

1

,

44

Page 20 of 60

05/11/94

)

-----

ì

| Table K-6<br>VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period |                       |        |         |          |     |           |     |     |          |          |                                                |  |
|-------------------------------------------------------------------------------|-----------------------|--------|---------|----------|-----|-----------|-----|-----|----------|----------|------------------------------------------------|--|
| Location                                                                      | <b></b>               |        |         |          |     |           |     |     | Risk for | Operable | <u>r – – – – – – – – – – – – – – – – – – –</u> |  |
| D                                                                             | Leg Date              | LJ-DCA | L,1-DCE | 61,2-DCE |     | I,I,I-TCA | TOE | VC  | Pathways | Umit     | Zan                                            |  |
| MW-0104                                                                       | 22-Jan-91             | 0      | 0       | ļ        | 0   | 0         | 0   | 0   | 1.92E-07 | 0        | B                                              |  |
| NEW-0104                                                                      | 11-JUI-91             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | 15                                             |  |
| MW-0104                                                                       | 19-00-92<br>31 Dec 95 | 0      |         | ·        |     | 0         | 0   | 0   | 4.678.06 | <u> </u> | <b>D</b>                                       |  |
| MW-0105                                                                       | 21-Dec-63             | 0      |         | <u>↓</u> |     |           |     | 0   | 4.37E-05 | <u> </u> | D                                              |  |
| MW-0105                                                                       | 07-1-87               | 0      | 0       | <u> </u> |     | 0         |     | 0   | 0.722-05 |          | B                                              |  |
| MW-0105                                                                       | 22-An-87              | 0      | 0       | <u> </u> | 0   | 0         | 0   | 0   | 0        |          | B                                              |  |
| MW-0105                                                                       | 11-Aug-87             | 0      | 0       |          | 0   | 0         | 0   | Ō   | 0        |          | B                                              |  |
| MW-0105                                                                       | 23-Oct-87             | 0      | 0       |          | 0   | 0.31      | 0   | 0   |          | D        | B                                              |  |
| MW-0105                                                                       | 22-Jan-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 26-Apr-88             | 0      | 0       |          | 0   | 0         | 0   | Ō   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 19-Jul-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 13-Oct-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 17-Jan-89             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 10-Apr-89             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 31-Jul-89             | 0      | 0       |          | 0   | 0         | 0   | 0   | Ö        | D        | B                                              |  |
| MW-0105                                                                       | 14-Dec-89             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 12-Jan-90             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 01-May-90             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0105                                                                       | 29-Oct-90             | 0      | 0       | [        | 0   | 0         | 0   | 0   | 1.04E-07 | D        | B                                              |  |
| MW-0105                                                                       | 16-Jul-91             | 0      | 0       |          | 0   | 0         | 0   | 0   | 2.70E-07 | D        | B                                              |  |
| MW-0105                                                                       | 19-Oct-92             | 0      | 0       | 0        | 0   | 0         | 0   | 0   | 0        | D        | B                                              |  |
| MW-0106                                                                       | 21-Nov-85             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        |                                                |  |
| MW-0106                                                                       | 13-MIE-80             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        |          |                                                |  |
| MW-0106                                                                       | 21. Apr 97            | 0      | 0       |          | 0   | 0         |     | 0   | 0        |          |                                                |  |
| MW-0106                                                                       | 21-Aut-07             | 0      | 0       |          | - 0 | 0         | 0   |     | 0        |          |                                                |  |
| MW-0106                                                                       | 09-00-87              | 0      | 0       |          |     |           | 0   | 0   | 0        | D        |                                                |  |
| MW-0106                                                                       | 25-Jan-88             | 0      | 0       | <u>}</u> | 0   | 0         | 0   | 0   | 0        | D        |                                                |  |
| MW-0106                                                                       | 18-Apr-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | A                                              |  |
| MW-0106                                                                       | 13-Jul-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | A                                              |  |
| MW-0106                                                                       | 05-Oct-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | A                                              |  |
| MW-0106                                                                       | 27-Dec-89             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | D        | A                                              |  |
| MW-0107                                                                       | 07-Nov-85             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | A                                              |  |
| MW-0107                                                                       | 01-Apr-86             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | A                                              |  |
| MW-0107                                                                       | 07-Jag-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | A                                              |  |
| MW-0107                                                                       | 23-Apr-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | C        | A                                              |  |
| MW-0107                                                                       | 30-Jul-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 1.12E-07 | C        | <b>A</b>                                       |  |
| MW-0107                                                                       | 12-Oct-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | C        |                                                |  |
| MW-0107                                                                       | 14-Jan-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | <u> </u> |                                                |  |
| MW-0107                                                                       | 18-Apr-88             | 0      | 0       |          | 0   | 0         | 0   |     | 0        |          |                                                |  |
| MW-0107                                                                       | 12-141-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        |          |                                                |  |
| MW-0107                                                                       | 02-1                  |        | 0       |          | 0   |           |     | - 0 | 0        |          |                                                |  |
| MW-0108                                                                       | 27-Dec-85             | 0      |         |          | 0   | 0         | 0   | 0   | 0        |          | AB                                             |  |
| MW-0108                                                                       | 01-Apr-86             | 0      |         |          | 0   | 0         | 0   | 0   | 0        |          | AB                                             |  |
| MW-0108                                                                       | 07-Jan-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | c        | AB                                             |  |
| MW-0108                                                                       | 22-Apr-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | C        | AB                                             |  |
| MW-0108                                                                       | 30-Jul-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 1.70E-07 | С        | AB                                             |  |
| MW-0108                                                                       | 12-Oct-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | AB                                             |  |
| MW-0108                                                                       | 14-Jan-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | AB                                             |  |
| MW-0106                                                                       | 18-Apr-88             | 0      | 0       | <u> </u> | 0   | 0         | 0   | 0   | 0        | С        | AB                                             |  |
| MW-0108                                                                       | 12-Jul-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | AB                                             |  |
| MW-0108                                                                       | 05-Oct-88             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | AB                                             |  |
| MW-0108                                                                       | 06-Oct-89             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | С        | AB                                             |  |
| MW-0108                                                                       | 23- <b>Jul-9</b> 0    | 0      | 0       |          | 0   | 0         | 0.3 | 0   | 9.36E-08 | С        | AB                                             |  |
| MW-0108                                                                       | 22-Jul-91             | 0      | 0       |          | 0   | 0         | 0   | 0   | 2.08E-07 | С        | AB                                             |  |
| MW-0108                                                                       | 16-Oct-92             | 0      | 0       | 0        | 0   | 0         | 0   | 0   | 0        | C        | AB                                             |  |
| MW-0109                                                                       | 06-Jan-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        |          | B                                              |  |
| MW-0109                                                                       | 22-Apr-87             | 0      | 0       |          | 0   | 0         | 0   | 0   | 0        | C C      | B                                              |  |
| MW-0109                                                                       | 30-141-87             | 0      | 0       | L        | 0   | 0         | 0   | 0   | 2.708-07 | C        | 1 15                                           |  |

g:\umas\de\j\_maxwa\wong\TABLEE-6.XLS

 $-\bigcirc$ 

1.1

٠

and the second second

.

i

Page 21 of 60

05/11/94

-----

----

|          | Table K-6 VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period Lecation The Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landau Landa |         |          |                 |      |       |      |     |          |          |          |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------------|------|-------|------|-----|----------|----------|----------|--|--|--|
| Lecation | 1 D-+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.00   | 11.007   |                 |      |       |      | VC  | Risk for | Operable | -        |  |  |  |
| MW-0109  | 16-0::47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,540 A | 0        | 61,8-DC.E       | 0    | 0     | 0    |     | 0        |          | B        |  |  |  |
| MW-0109  | 14-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | c        | В        |  |  |  |
| MW-0109  | 18-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | В        |  |  |  |
| MW-0109  | 12-Jul-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | B        |  |  |  |
| MW-0109  | 05-Oct-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | B        |  |  |  |
| MW-0109  | 06-Oct-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0.64  | 0    | 0   | 0        | С        | B        |  |  |  |
| MW-0109  | 24-Jul-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0.38 | 0     | 0    | 0   | 4.87E-07 | <u> </u> | B        |  |  |  |
| MW-0109  | 22-Jul-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 9.34E-08 | <u> </u> | B        |  |  |  |
| MW-0109  | 16-00-92<br>06-Nov-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       |          |                 | 0    | 0     | 0    | - 0 | 0        | <u> </u> | D<br>A   |  |  |  |
| MW-0110  | 31-Mar-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 3.11E-06 | <u> </u> | Â        |  |  |  |
| MW-0110  | 05-Jan-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | c        | A        |  |  |  |
| MW-0110  | 23-Apr-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | A        |  |  |  |
| MW-0110  | 29-Jui-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 4.36E-07 | С        | A        |  |  |  |
| MW-0110  | 21-Oct-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | A        |  |  |  |
| MW-0110  | 18-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | C        | <b>A</b> |  |  |  |
| MW-0110  | 26-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | <u> </u> | <b>A</b> |  |  |  |
| MW-0110  | 43-JUI-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | <u> </u> |          |  |  |  |
| MW-0110  | 27-Dec-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | с<br>С   |          |  |  |  |
| MW-0110  | 01-Aug-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | ō   | 0        | c        |          |  |  |  |
| MW-0110  | 25-Jul-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | C        | <b>A</b> |  |  |  |
| MW-0110  | 30-Jul-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        | 0               | 0    | 0     | 0    | 0   | 0        | С        | A        |  |  |  |
| MW-0111  | 06-Nov-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | A        |  |  |  |
| MW-0111  | 03-Apr-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0.2  | 0   | 9.36E-08 | С        | A        |  |  |  |
| MW-0111  | 03-Apr-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0.3  | 0   | 9.36E-08 | C        |          |  |  |  |
| MW-0111  | 22-Sep-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0.3  | 0   | 9.36E-08 | <u> </u> | <b>^</b> |  |  |  |
| MW-0111  | 09-Jan-8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     |      | 0   | 3.43E.07 |          |          |  |  |  |
| MW-0111  | 29-hul-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 1.1  | 0   | 2.08E-07 | C C      |          |  |  |  |
| MW-0111  | 19-Oct-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0.39 | 0   | 1.22E-07 | c        |          |  |  |  |
| MW-0111  | 15-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12    | 0        |                 | 0    | 0     | 0.83 | 0   | 5.17E-07 | С        | <b>A</b> |  |  |  |
| MW-0111  | 26-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1     | 0        |                 | 0    | 0     | 1.1  | 0   | 5.59E-07 | С        | A        |  |  |  |
| MW-0111  | 12-Jul-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17    | 0        |                 | 0    | 0     | 1.4  | 0   | 1.28E-06 | С        | A        |  |  |  |
| MW-0111  | 15-Dec-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 3.8  | 0   | 2.19E-06 | C        | <b>A</b> |  |  |  |
| MW-0111  | 19-Apr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15    | 0        |                 | 0    | 0     | 2.5  | 0   | 1.975-06 | <u> </u> |          |  |  |  |
| MW-0111  | 19-Apt-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.19    | 0        |                 | 0    | 0     | 2.8  | 0   | 1.97E-06 |          |          |  |  |  |
| MW-0111  | 19-Apr-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50    | 0        |                 | 0    | 0     | 4.5  | 0   | 3.99E-06 | C        | A        |  |  |  |
| MW-0111  | 21-Apr-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        | 0.60            | 0    | 0     | 8.40 | 0   | 5.33E-06 | C        | A        |  |  |  |
| MW-0111  | 21-Apr-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        | 0.80            | 0    | 0     | 1.30 | 0   | 5.33E-06 | С        | A        |  |  |  |
| MW-0111  | 02-Aug-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        | 1.24            | 0    | 0     | 2.91 | 0   | 1.85E-06 | С        | A        |  |  |  |
| MW-0112  | 20-Dec-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 5.40E-05 | С        | B        |  |  |  |
| MW-0112  | 02-Apr-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 2.49E-06 | C        | B        |  |  |  |
| MW-0112  | 22-Sep-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 4.35E-06 | <u> </u> | B        |  |  |  |
| MW-0112  | 07-J88-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U       | 0        |                 | 0    | 0     | 0    | 0   | 0        | с<br>С   | R        |  |  |  |
| MW-0112  | 29.hil.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 2.91F-07 | c        | B        |  |  |  |
| MW-0112  | 19-Oct-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        | · · · · · · · · | 0    | 0     | 0    | ŏ   | 0        | č        | B        |  |  |  |
| MW-0112  | 15-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | В        |  |  |  |
| MW-0112  | 26-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | B        |  |  |  |
| MW-0112  | 11-Jui-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | B        |  |  |  |
| MW-0112  | 15-Dec-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | B        |  |  |  |
| MW-0112  | 18-Apr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 8.72E-08 | C        | B        |  |  |  |
| MW-0112  | 18-Jap-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | <u>_</u> |                 |      |       | ļ    |     | 0        | C        | B        |  |  |  |
| mw-0113  | 09-Jab-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       |          |                 | 0    | 0     | 0    | 0   | 0        |          |          |  |  |  |
| MW-0113  | 20. jpl. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | <u>v</u> |                 | 0    | U<br> |      | 0   | 0        | <u> </u> |          |  |  |  |
| MW-0113  | 19-Oct-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    |       |      | 0   | 0        | - č      | AB       |  |  |  |
| MW-0113  | 15-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | ō   | 0        | Ċ        | AB       |  |  |  |
| MW-0113  | 26-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0        |                 | 0    | 0     | 0    | 0   | 0        | С        | AB       |  |  |  |

g:\umars\da\j\_mumwal\woog\TABLEK-6.XLS

1

.

+ •

.

.....

.

05/11/94

)

. . . . . . . . . . . . . . . .

|                | Table K-6           VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period           Location         Bits for         Operable           ID         Log Date         1,2-DCA         1,1-DCE         c-1,2-DCE         PCE         L,LI-TCA         TCE         VC         Pathways         Unit         Zem           UNIT         11.1-bit 55         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< th=""></td<> |         |         |            |      |                |       |          |                      |                  |   |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------|------|----------------|-------|----------|----------------------|------------------|---|--|--|--|
| Location<br>ID | Leg Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2-DCA | 1,1-DCX | e-1,2-DCE  | PCE  | <b>ЦЦІ-ТСА</b> | TCE   | vc       | Risk for<br>Pathways | Operable<br>Unit | I |  |  |  |
| MW-0113        | 11-Jul-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | С                | 1 |  |  |  |
| MW-0113        | 18-Dec-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | C                | 1 |  |  |  |
| MW-0113        | 18-477-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 1    | 0              | 0.65  | 0        | 1.485-06             | C                | 1 |  |  |  |
| MW-0113        | 05-Nov-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | 4 |  |  |  |
| MW-0113        | 26-In1-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        |                      | Č                | - |  |  |  |
| MW-0114        | 11-Nov-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | C                | - |  |  |  |
| MW-0114        | 02-00-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 0       |            | 0    | 0              | 0.21  | 0        | 2 905-06             | - C              | - |  |  |  |
| MW.011A        | 12 Jan. 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |         | ·          | 0    | 0              | 0.11  | 0        | 0                    |                  | - |  |  |  |
| MW_0114        | 21.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 0       |            | 0    | 0              |       | 0        | 0                    |                  | - |  |  |  |
| MW-0114        | 17.40.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0       |            | 0    | 0              |       | 0        | 0                    |                  | - |  |  |  |
| MW-0114        | 15.04.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 0       |            | 0    |                | 0     | 0        | 2 705-07             |                  | - |  |  |  |
| MW-0114        | 12-bil-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |            | 0    | 0              | 0     |          | 0                    |                  | - |  |  |  |
| MW 0114        | 10.04 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0       |            | 0    |                |       |          | 0                    |                  |   |  |  |  |
| MW-0114        | 20 Are 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    |                |       | 0        |                      | <u> </u>         |   |  |  |  |
| MW-0114        | 10 Dec 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         | ļ          | 0    |                |       |          | 1415.04              | <u> </u>         | _ |  |  |  |
| MW-UIIS        | 19-D80-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 0       |            |      | 0              | 0     |          | 2.42E.07             |                  | - |  |  |  |
| MW-0115        | UD-Mar-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     |          | 2.425-07             | <u> </u>         | - |  |  |  |
| MW-UIID        | 15-186-6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            |      | 0              | 0     | 0        | 0                    |                  |   |  |  |  |
| MW-0115        | 20-Apr-8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |            |      |                |       | 0        |                      |                  |   |  |  |  |
| MW-0115        | 27-Jul-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       | h          | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | - |  |  |  |
| MW-0115        | 08-04-8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0115        | U/-Jap-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0115        | 22-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0115        | 18-Jul-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0115        | 03-Oct-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | C                |   |  |  |  |
| MW-0115        | 16-Jan-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       | Ļ          | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0115        | 20-Apr-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | C                | - |  |  |  |
| MW-0115        | 28-Jul-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       | - <u> </u> | 0    | 0              | 0     | 0        | 0                    | C                | - |  |  |  |
| MW-0115        | 11-Oct-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0.21  | 0        | 6.53E-08             | <u> </u>         | _ |  |  |  |
| MW-0115        | 18-Jap-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | <u> </u> | 0                    | <u> </u>         | _ |  |  |  |
| MW-0115        | 29-Oct-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0116        | 11-Nov-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       | 1<br>      | 0    | 0              | 0     | 0        | 0                    | В                | _ |  |  |  |
| MW-0116        | 28-1-00-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | 0       |            | 0.2  | 0              | 0     | 0        | 4.98E-07             | в                | _ |  |  |  |
| MW-0116        | 26-Sep-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0.23 | 0              | 0     | 0        | 8.27E-07             | В                | _ |  |  |  |
| MW-0116        | 14-Jan-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | <u> </u>         | _ |  |  |  |
| MW-0116        | 27-Apr-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0.47 | 0              | 0     | 0        | 6.02E-07             | В                | _ |  |  |  |
| MW-0116        | 03-Aug-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0.25 | 0              | 0     | 0        | 4.90E-07             | В                | _ |  |  |  |
| MW-0116        | 09-Oct-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | В                | - |  |  |  |
| MW-0116        | 13-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0.12 | 0              | 0     | 0        | 1.54E-07             | B                | - |  |  |  |
| MW-0116        | 11-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0.17 | 0              | 0     | 0        | 2.18E-07             | в                | _ |  |  |  |
| MW-0116        | 06-Jul-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | В                | _ |  |  |  |
| MW-0116        | 10-Oct-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | B                | - |  |  |  |
| MW-0116        | 11-Oct-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | B                | - |  |  |  |
| MW-0117        | 04-Mar-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |            |      |                |       |          | 0                    | B B              | - |  |  |  |
| MW-0117        | 20-Apr-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2     | 0       |            | 0    | 0              | 17    | 0        | 0.53E-06             | <u> </u>         | _ |  |  |  |
| MW-0117        | 20-0d-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 0       | <u> </u>   | 0    | 0              | 19    | 0        | 8.83E-06             | B                | - |  |  |  |
| MW-0117        | 20-0d-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       | 0       |            | 0    | 0              | 21    | 0        | 8.83E-06             | B                | _ |  |  |  |
| MW-0118        | 25-Mar-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       | L          | 0    | 0              | 0     | 0        | 0                    | 8                | - |  |  |  |
| MW-0118        | 21-Oct-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 1     | 0        | 1.57E-06             | В                | - |  |  |  |
| MW-0119        | 05-Mar-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 0     | 0        | 0                    | B                |   |  |  |  |
| MW-0120        | 04-Mar-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |            |      |                |       |          | 0                    | В                | - |  |  |  |
| MW-0120        | 20-Apr-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2     | 0       |            | 0    | 0              | 24    | 0        | 9.51E-06             | B                | - |  |  |  |
| MW-0120        | 13-Oct-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       | L          | 0    | 0              | 20    | 0        | 8.63E-06             | B                |   |  |  |  |
| MW-0120        | 20-Jan-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 17.35 | 0        | 7.22E-06             | B                | _ |  |  |  |
| MW-0120        | 20-Jan-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 19.32 | 0        | 7.22E-06             | B                |   |  |  |  |
| MW-0120        | 20-Apr-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 25    | 0        | 8.82E-06             | B                | _ |  |  |  |
| MW-0120        | 08-Aug-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | Ô       |            | 0    | 0              | 26    | 0        | 9.02E-06             | B                | _ |  |  |  |
| MW-0120        | 22-0a-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29    | 0       |            | 0    | 0              | 9.3   | 0        | 4.19E-06             | B                | _ |  |  |  |
| MW-0120        | 23-Jan-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.19    | 0       |            | 0    | 0              | 8.8   | 0        | 3.61E-06             | B                | _ |  |  |  |
| MW-0120        | 13-Apr-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.24    | 0       |            | 0    | 0              | 12    | 0        | 5.00E-06             | B                | _ |  |  |  |
| MW-0120        | 11-Jui-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0       |            | 0    | 0              | 12    | 0        | 3.75E-06             | B                |   |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |            | 0    |                |       | 0        | 3 765 04             |                  | 1 |  |  |  |

g:\umas\day\_samma\mong\TABLEE-6.XLS

ł.

64

05/11/94

----

|          |           |         | VOC GSAP C | oncentrations | Table K-6 | mrter 1993 Su | naling Period |           |            |          |               |
|----------|-----------|---------|------------|---------------|-----------|---------------|---------------|-----------|------------|----------|---------------|
| Location |           |         |            |               |           |               |               |           | Risk for   | Operable |               |
| WW-0120  | 12-01-18  | LIJ-DCA | LI-DCE     | ~LFUCE        | FCE       | 1,1,1-1CA     | ICE 6.2       | VC O      | 2 17E 06   | Unit     | Zone          |
| MW-0120  | 10-Jan-89 | 0       | 0          | <u> </u>      | 0         | 0             | 5.1           | 0         | 2.24E-06   | <u>B</u> |               |
| MW-0120  | 10-Jan-89 | 0.15    | 0          |               | 0         | 0             | 4.9           | 0         | 2.24E-06   | B        | A             |
| MW-0120  | 14-Apr-89 | 0.15    | 0          | *****         | 0         | 0             | 4.5           | 0         | 2.23E-06   | B        | A             |
| MW-0120  | 11-Jul-89 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | В        | A             |
| MW-0121  | 26-Feb-86 | 0       | 0          |               | 0         | 0             | 0.2           | 0         | 3.04E-07   | В        | AB            |
| MW-0121  | 23-Jan-87 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 25-Apr-87 | 0       | Ô          |               | 0         | 0             | 0             | 0         | 0          | В        | AB            |
| MW-0121  | 01-Aug-87 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 22-Oct-87 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 23-Jan-88 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 20-Apr-88 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 11-Jul-88 | 0       | 0          |               | 0         | U             | 0             | 0         | 0          | 8        | AB            |
| MW-0121  | 12 100 80 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        |               |
| MW_0121  | 20.Ane.10 |         |            |               |           | 0 22          | 0             |           | 0 045.02   | R        |               |
| MW-0121  | 07-Jul-89 | 0       | 0          |               | 0         | 0.24          | 0             | 0         | 0          | B        | AR            |
| MW-0121  | 16-Oct-89 |         | ō          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 15-Jan-90 | o       | 0          |               | 0         | 0.47          | 0             | ō         | 0          | B        | AB            |
| MW-0121  | 27-Apr-90 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 06-Aug-90 | 0       | . 0        |               | 0         | 0             | 0             | 0         | 2.08E-07   | В        | AB            |
| MW-0121  | 05-Nov-90 | 0       | 0          |               | 0         | 0             | 0             | 0         | 1.99E-07   | B        | AB            |
| MW-0121  | 30-Jan-91 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0121  | 24-Jul-91 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | AB            |
| MW-0122  | 26-Feb-86 | 0       | 0          |               | 0         | 0             | 0             | 0         | 2.42E-07   | B        | C             |
| MW-0122  | 26-Jan-87 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | C             |
| MW-0122  | 07-May-87 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        |               |
| MW-0122  | 08-Aug-8/ |         | 0          |               | 0         | 0             | 0             |           | 0          | <u>B</u> |               |
| MW-0122  | 22-00-87  | 0       |            |               |           |               | 0             | 0         |            | 0<br>0   |               |
| MW-0122  | 19-Apr-88 | 0       |            |               |           | 0             | 0             | 0         | 0          | <u>B</u> | $\frac{1}{c}$ |
| MW-0122  | 18-Jul-88 | 0       | 0          |               | 0         | <u>0</u>      | 0             | 0         | 0          | B        | - c           |
| MW-0122  | 12-Oct-88 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | Ċ             |
| MW-0122  | 10-Jan-89 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | B        | c             |
| MW-0122  | 14-Apr-89 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | В        | C             |
| MW-0122  | 07-Jul-89 | 0       | 0          |               | 0         | 0             | 0             | 0         | 0          | В        | С             |
| MW-0122  | 12-Dec-89 | 0       | 0          |               | 0         | 0             | 0             | 0         | 2.28E-07   | B        | С             |
| MW-0123  | 25-Mar-86 |         |            |               |           |               |               |           | 0          | B        | <b>A</b>      |
| MW-0123  | 04-Apr-86 | 0       | 0          |               | 0         | 0             | 3.1           | 0         | 2.50E-06   | B        | <b>A</b>      |
| MW-0123  | 21-Oct-86 | 0       | 0          |               | 0         | 0             | 7.1           | 0         | 3.66E-06   | <u> </u> | <b>A</b>      |
| MW-0124  | 23-Feb-86 | 0       |            |               | 0         | 0.5           | 0             | 0         | 7.95E-07   | B        |               |
| MW-0125  | 03.Mm.86  | 0       | 0          |               |           | 0             | 0             | 0         | 6 23E-07   | D<br>B   |               |
| MW-0127  | 04-Mar-86 |         |            |               |           | 0             |               | 0         | 5.40F_07   | R        | - 100<br>C    |
| MW-0127  | 24-Oct-86 | 0       | 0          |               | 0.15      | 0             | 1.3           | n         | 5.98F-07   | B        | $\frac{1}{c}$ |
| MW-0128  | 05-Dec-86 | 41      | 5.7        |               | 0         | 0             | 41000         | ō         | 1.29E-02   | C        | TA -          |
| MW-0128  | 16-Jan-87 | 0       | 0          |               | 0         | 0             | 28200         | 0         | 8.78E-03   | С        | A             |
| MW-0128  | 16-Apr-87 | 56      | 0          |               | 23        | 0             | 55000         | 0         | 8.66E-03   | С        | A             |
| MW-0128  | 16-Apr-87 | 63      | 0          |               | 19        | 0             | 27000         | 0         | 8.66E-03   | С        | A             |
| MW-0128  | 12-Aug-87 | 0       | 0          |               | 0         | 0             | 68000         | 0         | 2.11E-02   | С        | A             |
| MW-0128  | 17-Sep-87 | 75      | 5.5        |               | 0         | 0             | 36000         | 1.2       | 1.15E-02   | С        | A             |
| MW-0128  | 23-Oct-87 | 0       | 0          |               | 0         | 0             | 27000         | 0         | 8.41E-03   | С        | A             |
| MW-0128  | 13-Jan-88 | 0       | 0          |               | 0         | 0             | 19000         | 0         | 5.92E-03   | С        | <b>A</b>      |
| MW-0128  | 12-Apr-88 | 0       | 0          |               | 0         | 0             | 27000         | 0         | 8.41E-03   | C        | <b>A</b>      |
| MW-0128  | 12-Jul-88 | 0       | 0          |               | 0         | 0             | 34000         | 0         | 1.40E-02   | C        | <b>A</b>      |
| MW-0128  | 12-Jul-88 | 0       | 0          |               | 0         | 0             | 45000         | 0         | 1.40E-02   | <u> </u> | <b></b>       |
| MW-0128  | 12 100 40 | 0       | 0          |               | 0         | 0             | 22000         | 0         | 0.80E-03   | <u> </u> |               |
| MW-0128  | 10.4      | 0       | <u> </u>   |               | 0         | 0             | 17000         |           | 2 748 03   |          |               |
| MW-0128  | 10.400.00 |         |            |               | 0         |               | 12000         | 0         | 3 748-03   | <u> </u> |               |
| MW-0128  | 20-htl.80 |         |            |               | 0         | 0             | 26000         | - 0       | 8.10F_01   | C        |               |
|          |           |         |            |               |           | J             |               | · · · · · | 3.2.02.003 | <u> </u> | 1             |

g:\users\da\j\_zumwai\woog\TABLEK-6.XLS

• •

05/11/94

- -

|                    |                                     |          | VOC GSAP C | concentrations | Table K-6<br>up to Third Qu | mater 1993 Sei | npling Period |          |                      |                  |
|--------------------|-------------------------------------|----------|------------|----------------|-----------------------------|----------------|---------------|----------|----------------------|------------------|
| Location           | Les Des                             | 12-004   | LI-DCE     | el 2-DCE       | PCE                         | LLI-TCA        | TCE           | vc       | Rink for<br>Pathway  | Operable<br>Unit |
| MW-0128            | 06.04.89                            | 0        | .,         |                | 0                           | 0              | 18000         |          | 561E-03              | C                |
| WW 0128            | 30 Ian 90                           |          |            |                | 0                           | 0              | 20000         | - č      | 6 735-03             |                  |
| MW-0128            | 10 100 00                           |          |            | ļ              |                             | 0              | 21000         |          | 6 73E 03             | C C              |
| MW-0126            | 30-188-90                           | 0        |            |                |                             |                | 21000         |          | 0.236-03             |                  |
| MW-0128            | 13-Apt-90                           | 0        | 0          |                | 16000                       | 0              | 42000         |          | 1 2 2 2 2 2          |                  |
| MW-0128            | 19-Jul-90                           | 0        | 0          |                | 10000                       | 0              | 42000         | 0        | 3.35E-02             | C                |
| MW-0128            | 04-Dec-90                           | 0        | 0          |                | 0                           | 0              | 12000         | 0        | 3.74E-03             | C                |
| MW-0128            | 07-Jan-91                           | 0        | 0          |                | 0                           | 0              | 33000         | 0        | 1.03E-02             | С                |
| MW-0128            | 26-Jul-91                           | 0        | 0          | L              | 0                           | 0              | 15000         | 0        | 4.68E-03             | C                |
| MW-0128            | 26-Jul-91                           | 0        | 0          |                | 0                           | 0              | 16000         | 0        | 4.68E-03             | С                |
| MW-0128            | 15-Oct-92                           | 0        | 0          | 0              | 0                           | 0              | 11000         | 0        | 3.43E-03             | С                |
| MW-0129            | 05-Dec-86                           | 0        | 0          |                | 0                           | 0              | 130           | 0        | 4.06E-05             | С                |
| MW-0129            | 16-Jan-87                           | 0        | 0          |                | 0                           | 0              | 10            | 0        | 3.12E-06             | С                |
| MW-0129            | 15-Apr-87                           | 0        | 0          |                | 0                           | 0              | 48            | 0        | 1.50E-05             | С                |
| MW-0129            | 12-Aug-87                           | 0        | 0          |                | 0                           | 0              | 610           | 0        | 1.90E-04             | С                |
| MW-0129            | 23-Oct-87                           | 0        | 0          |                | 0                           | 0              | 45            | 0        | 1.40E-05             | С                |
| MW-0129            | 13-Jan-88                           | ō        | 0          |                | 0                           | 0              | 11            | 0        | 3.43E-06             | С                |
| MW-0129            | 12-Apr-88                           | 0        | 0          |                | 0                           | 0              | 27            | 0        | 8.43E-06             | C                |
| MW-0129            | 12-Jul-88                           | 0        | 0          |                | 0                           | 0              | 220           | 0        | 6.87E-05             | С                |
| MW-0129            | 10-Oct-88                           | 0        | 0          |                | 0                           | 0              | 93            | 0        | 2.90E-05             | С                |
| MW-0129            | 12-Jan-89                           | 0        | 0          |                | 0                           | 0              | 140           | 0        | 5.31E-05             | C                |
| MW-0129            | 12-Jan-89                           |          | 0          |                | 0                           | 2.3            | 170           | 0        | 5.31E-05             | C                |
| MW-0129            | 20-Apr-89                           | 0        | 0          |                | 0                           | 0              | 410           | 0        | 1.28E-04             | c                |
| MW-0129            | 20-Jul-89                           |          | 0          |                | 0                           | 0              | 140           | 0        | 4.37E-05             | C                |
| MW-0129            | 06-04-89                            | 0        | 0          |                | 0                           | 0              | 140           | 0        | 4.37E-05             | C                |
| MW-0129            | 19-Jan-90                           |          | 0          |                | 0                           | 0              | 290           | 0        | 9.05E-05             | Ċ                |
| MW-0129            | 13-Apr-90                           |          | 0          |                | 0                           | 0              | 530           | 0        | 1.65E-04             | <del>c</del>     |
| MW-0129            | 20-Jul-90                           |          | 0          |                | 86                          | 0              | 680           | 0        | 3.22E-04             | C                |
| MW-0129            | 20-541-90                           |          |            |                | 2500                        |                | 560           |          | 3.22E-04             | C C              |
| MW_0120            | 10.04.90                            | ôt       |            |                | 0                           | 0              | 1500          | 0        | 4 68E-04             | C                |
| MW_0129            | 07.1                                |          |            |                |                             | 0              | 1400          | - ů      | 4 37E-04             | C C              |
| MW-0129            | 18 Ang-01                           |          | 0          |                | 0                           | 0              | 2400          | 0        | 7.49E-04             | - C              |
| MW-0129            | 26-Int-91                           |          |            |                | <u>0</u>                    | 0              | 2800          | 0        | 8.74E-04             | C                |
| MW-0129            | 15.04.92                            |          |            |                |                             | 0              | 3800          | 0        | 1 19E-03             | <u> </u>         |
| MNV-0130           | 13-Nov-86                           |          | 12         |                |                             | 0.97           | 26            |          | 8 12E-07             | C                |
| MW-0130            | 16 lan. 97                          |          |            | ·              |                             | 0.8            | 1.0           | - ů      | 5 93E-07             | - C              |
| MW-0130            | 15 Ame 87                           |          |            |                | 0                           | 13             | 1.7           | 0        | 1.57E-06             | <u> </u>         |
| MW-0130            | 29.5.1.87                           |          | 7.8        |                |                             | 0              | 4             | 0        | 1.25E-06             | - C              |
| MW-0130            | 29-54-67                            |          | 1.6        |                |                             | 12             |               |          | 1.25E-06             |                  |
| MW-0130            | 27.0+97                             |          | 23         |                |                             | 0.93           | 11            |          | 6 53E-07             | - C              |
| MW-0130            | 27-04-87                            |          | 2.5        |                |                             | 0.95           | 1.1           |          | 6.53E-07             | - č              |
| MW-0130            | 12 1-00-87                          |          | 2.5        |                | 0                           | 0.63           | 1.4           |          | 1.01E.06             |                  |
| MW 0120            | 12 4                                | <u> </u> | 4.9        |                |                             | 0.01           |               |          | 0 (2E 07             |                  |
| MW 0130            | 12-00-00                            | 0        | <u> </u>   |                |                             |                | <u> </u>      |          | 4 49E M              |                  |
| MW-0130            | 12-14-88                            |          | 4.1        |                |                             | 07             | 1.5           |          | 4 49E 07             |                  |
| MW-0150            | 10.0                                | U        | 3          |                | Ū                           | 0.7            | 4.2           | <u>-</u> | 4.062-07             |                  |
| MW-0130            | 10-00-88                            | 0        | 1.9        |                | 0                           | 0.01           | 1.5           |          | 7.200-07             |                  |
| MW-0150            | 10-001-88                           | 0        | 2          |                | 0                           | 0.47           | 3.7           |          | 1.400-07             |                  |
| MW-0130            | 12-Jaa-89                           | 0        | 2.8        |                | 0                           | 0.78           | 2.7           | 0        | 1.5/E-06             |                  |
| MW-0130            | 10-Apr-89                           | 0        | 1          |                | 0                           | 0.27           | 2.3           | 0        | 1.04E-06             |                  |
| MW-0130            | 20-141-89                           | 0        | 1          |                | 0.18                        | 0.22           | 2.6           | 0        | 1.405-06             |                  |
| MW-0130            | 13-Dec-89                           | 0        | 0          |                | 0                           | 0              | 3.8           | 0        | 1.50E-06             |                  |
| MW-0130            | 13-Dec-89                           | 0        | 0.57       |                | 0                           | 0.24           | 4.1           | 0        | 1.50E-06             | C                |
| MW-0130            | 19-Jan-90                           | 0        | 0          |                | 0.11                        | 0.2            | 3.4           | 0        | 1.47E-06             | C                |
| MW-0130            | 12-Apr-90                           | 0        | 0.33       |                | 0                           | 0              | 1.8           | 0        | 5.62E-07             | C                |
| MW-0130            | 19-Jul-90                           | 0        | 0          |                | 5.9                         | 0              | 4.2           | 0        | 9.09E-06             | C                |
| MW-0130            | 09-Oct-90                           | 0        | 0          |                | 0                           | 0              | 1.5           | 0        | 4.68E-07             | С                |
| MW-0130            | 09-Jan-91                           | 0        | 0.34       |                | 0                           | 0              | 1.3           | 0        | 5.65E-07             | ·C               |
| MW-0130            | 09-Jan-91                           | 0        | 0.5        |                | 0                           | 0              | 1.6           | 0        | 5.65E-07             | С                |
| MW 0120            | 1                                   |          | 0          |                | 0                           | 0              | 1             | 0        | 3.12E-07             | C                |
| M # -0130          | 18-Apr-91                           | 0        | U I        |                | · V                         |                | · •           |          |                      |                  |
| MW-0130            | 18-Apr-91<br>29-Jul-91              | 0        | 0          |                | 0                           | 0              | 1.6           | 0        | 4.99E-07             | С                |
| MW-0130<br>MW-0130 | 18-Apt-91<br>29-Jul-91<br>15-Oct-92 | 0        | 0          | 0.58           | 0                           | 0              | 1.6<br>2.7    | 0        | 4.99E-07<br>8.43E-07 | C<br>C           |

g:\users\da\j\_aumwaf\woog\TABLEK-6.XLS

١

a and a second second second second second second second second second second second second second second second

05/11/94

|          | Table K-6           VOC GSAP Concentrations up to Third Quarter 1993 Sompling Period           Location         Risk for         Operable |         |         |          |     |          |     |     |          |          |              |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|-----|----------|-----|-----|----------|----------|--------------|--|--|--|
| Location |                                                                                                                                           |         |         |          |     |          |     |     | Rick for | Operable |              |  |  |  |
| D        | Log Date                                                                                                                                  | 1,2-DCA | 1,1-DCE | e1,2-DCE |     | LLI-TC - | 108 |     | Pathways | Unit     | 2            |  |  |  |
| MW-0131  | 19-Nov-80                                                                                                                                 | 0       | 0       |          | 0   | 0.78     | 19  | 0   | 8.03E-06 | <u> </u> |              |  |  |  |
| MW-0131  | 19-Jan-87                                                                                                                                 | 0       | 0       |          |     | 0.24     | 30  | 0   | 9 36F-06 | <u> </u> |              |  |  |  |
| MW-0131  | 07-Aug-87                                                                                                                                 | 0       | 0       |          | 0   | 0        | 120 | 0   | 3.75E-05 | Ċ        | Â            |  |  |  |
| MW-0131  | 14-Oct-87                                                                                                                                 | 0       | 0       |          | 0   | 0        | 40  | 0   | 1.25E-05 | <u> </u> | A            |  |  |  |
| MW-0131  | 14-Oct-87                                                                                                                                 | 0       | 0       |          | 0   | 0        | 55  | 0   | 1.25E-05 | C        | A            |  |  |  |
| MW-0131  | 19-Jan-88                                                                                                                                 | 0.31    | 0       |          | 0   | 0        | 32  | 0   | 1.11E-05 | С        | A            |  |  |  |
| MW-0131  | 13-Apr-88                                                                                                                                 | 0.45    | 0       |          | 0   | 0        | 52  | 0   | 1.78E-05 | С        | A            |  |  |  |
| MW-0131  | 13-Jul-88                                                                                                                                 | 0       | 0       |          | 0   | 0        | 83  | 0   | 2.59E-05 | С        | A            |  |  |  |
| MW-0131  | 13-Jul-88                                                                                                                                 | 1.1     | 0       |          | 0   | 0        | 99  | 0   | 2.59E-05 | С        | A            |  |  |  |
| MW-0131  | 04-Oct-88                                                                                                                                 | 0       | 0       |          | 0   | 0        | 72  | 0   | 2.25E-05 | С        | •            |  |  |  |
| MW-0131  | 12-Jan-89                                                                                                                                 | 0.82    | 0       |          | 0   | 0        | 90  | 0   | 3.25E-05 | <u> </u> | A            |  |  |  |
| MW-0131  | 11-Apr-89                                                                                                                                 | 0       | 0       |          | 0   | 0        | 97  | 0   | 3.16E-05 | <u> </u> | <b>A</b>     |  |  |  |
| MW-0131  | 14-Jul-89                                                                                                                                 | 0       | 0       |          | 0   | 0        | 27  | - 0 | 9.222-06 | <u> </u> |              |  |  |  |
| MW-0131  | 26-Jan-90                                                                                                                                 |         | 0       |          |     | 0        | 47  | 0   | 1.536-05 | <u> </u> |              |  |  |  |
| MW-0131  | 19-Jul-90                                                                                                                                 |         |         |          |     | 0        | 49  | - 0 | 1.65E-05 | <u> </u> |              |  |  |  |
| MW-0131  | 16-Oct-90                                                                                                                                 | 0       | 0       |          | 0   | 0        | 16  | 0   | 4.99E-06 | c        |              |  |  |  |
| MW-0131  | 09-Jan-91                                                                                                                                 | 0       | 0       |          | 0   | 0        | 16  | 0   | 5.44E-06 |          | A            |  |  |  |
| MW-0131  | 23-Apr-91                                                                                                                                 | 0       | 0       |          | 0   | 0        | 25  | 0   | 8.72E-06 | С        | A            |  |  |  |
| MW-0131  | 30-Jul-91                                                                                                                                 | 0       | 46      |          | 0   | 95       | 120 | 0   | 3.75E-05 | С        | A            |  |  |  |
| MW-0132  | 24-Nov-86                                                                                                                                 | 0.7     | 0.33    |          | 0   | 0        | 90  | 0   | 3.03E-05 | В        | С            |  |  |  |
| MW-0132  | 21- <b>Jan-8</b> 7                                                                                                                        | 0       | 0       |          | 0   | 0        | 62  | 0   | 1.94E-05 | B        | С            |  |  |  |
| MW-0132  | 15-May-87                                                                                                                                 | 0       | 0       |          | 0   | 0        | 100 | 0   | 3.12E-05 | B        | С            |  |  |  |
| MW-0132  | 15-May-87                                                                                                                                 | 0       | 0       |          | 0   | 0        | 110 | 0   | 3.12E-05 | B        | C            |  |  |  |
| MW-0132  | 29-Jul-87                                                                                                                                 | 0       | 0       |          | 0   | 0        | 110 | 0   | 3.43E-05 | <u>B</u> | C            |  |  |  |
| MW-0132  | 24-0ct-87                                                                                                                                 | 0       | 0 22    |          | 0   | 0        | 130 |     | 3.50E-05 | 8        |              |  |  |  |
| MW-0132  | 24-00-87                                                                                                                                  | 0.3     | 0.32    |          | 0   |          | 77  | 0   | 2.50E-05 | B        |              |  |  |  |
| MW-0132  | 20-Arr-88                                                                                                                                 | 0.5     | 0.48    |          | 0   | 0        | 47  | 0   | 1.60E-05 | B        | c            |  |  |  |
| MW-0132  | 18-Jul-88                                                                                                                                 | 0       | 0       |          | 0   | 0        | 85  | 0   | 2.65E-05 | B        | C            |  |  |  |
| MW-0132  | 18-Jul-88                                                                                                                                 | 0.87    | 0       |          | 0   | 0        | 87  | 0   | 2.65E-05 | B        | C            |  |  |  |
| MW-0132  | 13-Oct-88                                                                                                                                 | 0.55    | 0       |          | 0   | 0        | 90  | 0   | 3.14E-05 | B        | C            |  |  |  |
| MW-0132  | 13-Oct-88                                                                                                                                 | 0.79    | 0       |          | 0   | 0        | 95  | 0   | 3.14E-05 | В        | С            |  |  |  |
| MW-0132  | 16-Jan-89                                                                                                                                 | 1.2     | 0       |          | 0   | 0        | 90  | 0   | 3.20E-05 | B        | С            |  |  |  |
| MW-0132  | 17-Apr-89                                                                                                                                 | 2       | 0       |          | 0   | 0        | 62  | 0   | 3.21E-05 | B        | C            |  |  |  |
| MW-0132  | 17-Apr-89                                                                                                                                 | 3       | 0       |          | 0   | 0        | 75  | 0   | 3.21E-05 | B        | C            |  |  |  |
| MW-0132  | 06-Jul-89                                                                                                                                 | 0.75    | 0       |          | 0   | 0        |     | 0   | 1.95E-05 | B        |              |  |  |  |
| MW-0132  | 17. Jan 90                                                                                                                                | 1.4     |         |          | 0   | 0        | 130 | 0   | 4 51E-05 | B        |              |  |  |  |
| MW-0132  | 17-Jan-90                                                                                                                                 | 2       | 0       |          |     |          | 130 |     | 4.51E-05 | B        |              |  |  |  |
| MW-0132  | 25-Anr-90                                                                                                                                 | 0.68    | 0       |          | 3.2 | 0        | 130 | 0   | 4.61E-05 | B        | c            |  |  |  |
| MW-0132  | 20-Jul-90                                                                                                                                 | 0       | 0       |          | 87  | 0        | 230 | 0   | 1.83E-04 | B        | C            |  |  |  |
| MW-0132  | 01-Nov-90                                                                                                                                 | 0       | 0       |          | 0   | 0        | 91  | 0   | 2.84E-05 | В        | C            |  |  |  |
| MW-0132  | 30-Jan-91                                                                                                                                 | 0       | 0       |          | 0   | 0        | 73  | 0   | 2.48E-05 | В        | С            |  |  |  |
| MW-0132  | 06-May-91                                                                                                                                 | 0       | 0       |          | 0   | 0        | 59  | 0   | 1.84E-05 | В        | С            |  |  |  |
| MW-0132  | 06-May-91                                                                                                                                 | 0       | 0       |          | 0   | 0        | 69  | 0   | 1.84E-05 | B        | C            |  |  |  |
| MW-0132  | 17-Jul-91                                                                                                                                 | 1.3     | 0       |          | 0   | 0        | 86  | 0   | 3.34E-05 | B        | C            |  |  |  |
| MW-0132  | 07-Oct-91                                                                                                                                 | 0       | 0       |          | 0   | 0        | 77  | 0   | 2.40E-05 | <u>B</u> |              |  |  |  |
| MW-0132  | 05-Feb-92                                                                                                                                 | 0       | 0       |          |     | 0        | 87  | 0   | 3.39E-05 | <u>B</u> |              |  |  |  |
| MW-0132  | 03-100-92<br>22 h-1 02                                                                                                                    | 0       | 0       |          | 0   | 0        | 100 | U   | 3.398-03 | 2<br>P   |              |  |  |  |
| MW-0132  | 10 Aug 02                                                                                                                                 |         |         |          |     |          | 14  | 0   | 1 192 04 | R        |              |  |  |  |
| MW-0132  | 19-Ort-02                                                                                                                                 | - 11    |         | 23       |     | 0        | 61  | 0   | 2.65E-05 | B        | <del>c</del> |  |  |  |
| MW-0132  | 27-Jan.03                                                                                                                                 | 0.51    |         | 16       |     | 0        | 48  | - 0 | 1.78E-05 | B        | <del>c</del> |  |  |  |
| MW-0132  | 06-Aue-93                                                                                                                                 | 0.51    | 0       | 12.10    | 0   | 0        | 31  | 0   | 2.55E-05 | B        | c            |  |  |  |
| MW-0132  | 06-Aug-93                                                                                                                                 | 0.65    | 0       | 9.76     | Ő   | 1.31     | 35  | 0   | 2.55E-05 | B        | c            |  |  |  |
| MW-0133  | 08-Feb-88                                                                                                                                 | 0       | 0       |          | 0   | 0        | 0   | 0   | 0        | B        | С            |  |  |  |
| MW-0133  | 14-Apr-88                                                                                                                                 | 0       | 0       |          | 0   | 0        | 0   | 0   | 0        | B        | С            |  |  |  |
| MW-0133  | 11-Jul-88                                                                                                                                 | 0       | 0       |          | 0   | 0        | 0   | 0   | 0        | B        | C            |  |  |  |
| MW-0133  | 06-Oct-88                                                                                                                                 | Ó       | 0       |          | 0   | 0        | 0   | 0   | 0        | B        | C            |  |  |  |

g:\users\da\j\_mmwa\\woog\TABLEK-6.XLS

1

.

Page 26 of 60

05/11/94

ł

| Loc Bas         LibCX         PC3         VC         PC3         VC         PC4         VC         Parkarge         Using         Zame           NW0313         17-Jan-89         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                               |          |           |         | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | iarter 1993 Ser | mpling Period |     |          |          |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|------------|---------------|-----------------------------|-----------------|---------------|-----|----------|----------|---------------|
| DD         Lag Las         Lag Ca         Co         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< t+<="" th=""><th>Location</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Risk for</th><th>Operable</th><th></th></thd<>                                                                                                                                                                                                                     | Location |           |         |            |               |                             |                 |               |     | Risk for | Operable |               |
| NUME         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <tho< th="">         O         O         O</tho<>                                                                                                                                                                                                                                                                                                                                                                                    |          | Log Date  | 1,2-DCA | LI-DCK     | el,2-DCE      | FCE                         | 1,1,1-TCA       | TCE           | VC  | Pathways | Unit     | Zame          |
| NW 0131         10 July 9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             | MW-0133  | 07-Arr-89 |         |            |               |                             | 0               | 0             | 0   |          | B        | C             |
| NW 0131         12:Ost 85         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             | MW-0133  | 10-jul-89 | 0       | 0          | Ļ             | 0                           | 0               |               | 0   | 0        | B        | C             |
| NW-0131         12.5 Las 50         0         0         0         3.4         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         | MW-0133  | 12-Oct-89 | 0       | 0          |               | 0                           | 0               | 0             | 0   | 0        | B        | + c           |
| NW 013         10 Age 30         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                              | MW-0133  | 22-Jap-90 | 0       | 0          |               | 0                           | 3.4             | 0             | 0   | 0        | B        | C             |
| NW 013       10 5 Nak 00       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0133  | 10-Apr-90 | 0       | 0          |               | 0                           | 0               | 0             | 0   | 0        | B        | C             |
| NW 0133       06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-0133  | 19-Jul-90 | 0       | 0          |               | 0.71                        | 0               | 0             | 0   | 9.09E-07 | B        | C             |
| NW-033         16 Jas-31         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                              | MW-0133  | 08-Oct-90 | 0       | 0          |               | 0                           | 0               | 0             | 0   | 0        | B        | С             |
| MW-013         15-ML-51         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                     | MW-0133  | 16-Jan-91 | 0       | 0          |               | 0                           | 0               | 0             | 0   | 0        | B        | С             |
| MW-013         14-Oct-92         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                              | MW-0133  | 15-Jul-91 | 0       | 0          |               | 0                           | 0               | 0             | 0   | 0        | B        | С             |
| NW 013         04-Rot 34         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                              | MW-0133  | 14-Oct-92 | 0       | 0          | 0             | 0                           | 0               | 0             | 0   | 0        | B        | C             |
| NW 0134         14-Age-88         0         0         0         0.73         0         2.54E-07         B         B           NW 014         16-Coz-88         0         0         0         0         0.73         0         0.55E-07         B         B           NW 014         16-Stase 9         0         0         0         0.33         0         1.03E-68         B         B           NW 014         16-Jase 9         0         0         0         0         0.33         0         1.03E-66         B         B           NW 014         12-Cox.89         0         0         0         0         4.53         0         1.04E-66         B         B           NW 014         11-Age-50         0         0         0         0         2.5         0         9.56E-07         B         B           NW 014         10-Age-50         0         0         0         0         2.5         0         8.74E-07         B         B           NW 014         10-Age-50         0         0         0         0         1.37E-66         B         B           NW 0141         16-Age-51         0         0         0 <td>MW-0134</td> <td>08-Feb-88</td> <td>0</td> <td>0</td> <td>ļ</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>B</td> <td>B</td>                                                                                                                                                                                                                | MW-0134  | 08-Feb-88 | 0       | 0          | ļ             | 0                           | 0               | 0             | 0   | 0        | B        | B             |
| NW-013         O Cock 8         O         O         CS         O         SOBE 7         B           NW-0134         O Sock 8         O         O         O         O         SOBE 7         B         B           NW-0134         O Sock 8         O         O         O         O         SOBE 7         B         B           NW-0134         O Soke 7         B         B         B         NW-0134         O Sobe 7         B         B           NW-0134         O Soke 7         D         O         O         O         SOBE 7         B         B           NW-0134         I Soke 7         D         O         O         O         SOBE 7         B         B           NW-0134         I Soke 7         D         O         O         O         O         SOBE 7         B         B           NW-0134         O Soke 70         O         O         O         O         O         A         I SoBE 7         B         B           NW-0134         O Soke 70         O         O         O         O         I SoBE 7         B         B           NW-0134         I Soke 79         O         O         O                                                                                                                                                                                                                                                                                                                                                                               | MW-0134  | 14-Apr-88 | 0       | 0          |               | 0                           | 0               | 0.75          | 0   | 2.34E-07 | B        | B             |
| MW -013         Col Cut as above         Col Cut as above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut above         Col Cut         | MW-0134  | 11-Jul-88 | 0       | 0          |               | 0                           | 0               | 2.9           | 0   | 9.05E-07 | 8        | 8             |
| m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i         m.w.l.i <t< td=""><td>MW-0134</td><td>16 Jan 90</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>2.3</td><td>0</td><td>7.80E-07</td><td>B</td><td>B</td></t<> | MW-0134  | 16 Jan 90 | 0       | 0          |               | 0                           | 0               | 2.3           | 0   | 7.80E-07 | B        | B             |
| WW 20134         LO 1004850         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <tho< th="">         O         O</tho<>                                                                                                                                                                                                                                                                                                                                                                                 | MW-0134  | 10-Jan-09 |         | 0          |               | 0                           | 0               |               | - 0 | 1.03E-06 | B        | B             |
| WW 0134       12 Oc 89       0       0       0       0       0       1405 20       0       1405 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW-0134  | 10-Jul-89 | 0       | 0          |               | 0                           | 0               | 3.2           |     | 9.99E-07 | B        | B             |
| WW0134       15.1a.500       0       0       0       0       0       2.9       0       9.056.07       B       B         WW0134       11.4gr30       0       0       0       0       2.9       0       8.74E.07       B       B         WW0134       09.0cs.90       0       0       0       0       3.72       0       1.37E.06       B       B         WW0134       09.0cs.90       0       0       0       0       4.41E.05       B       B         WW0134       16.1are.01       0       0       0       4.41E.05       B       B         WW0134       15.1a.91       0       0       0       0       1.22E.05       B       A         WW0135       16.4gr.81       0.74       0       0       0       1.22E.05       B       A         WW0135       16.4gr.84       0.95       0       0       0       1.22E.05       B       A         WW0135       16.4gr.84       0.99       0       0       0       1.22E.05       B       A         WW0135       16.4gr.84       0.99       0.3       0       0       1.22E.05       B       A                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0134  | 12-Oct-89 | 0       | 0          |               | 0                           | 0               | 4.5           | 0   | 1.40E-06 | B        | B             |
| NW-0134         11-Apr-90         0         0         0         2.8         0         8.74E-07         B         B           NW-0134         19-Jul-90         0         0         32         0         9.9         0         4.41E-05         B         B           NW-0134         09-Ocs-90         0         0         0         0         3.9         0         1.37E-06         B         B           NW-0134         16-Jus-91         0         0         0         0.44         0         1.37E-06         B         B           NW-0134         16-Jus-91         0         0         0         0.44         0         1.37E-06         B         B           NW-0134         16-Jus-91         0         0         0         0         1.9         0         5.93E-07         B         B           NW-0135         16-Apr-88         0.74         0         0         0         0         1.22E-05         B         A           NW-0135         16-Jus-89         0.3         0         0         0         2.5         0         1.02E-05         B         A           NW-0135         11-Jul-89         0.24         0                                                                                                                                                                                                                                                                                                                                                                | MW-0134  | 15-Jan-90 | 0       | 0          |               | 0                           | 0               | 2.9           | 0   | 9.05E-07 | B        | B             |
| NW-0114         19.1a.b00         0         32         0         99         0         4.41E-05         B         B           MW-0114         09-0a.90         0         0         0         0         0         1.37E-06         B         B           MW-0114         10-1a.91         0         0         0         0         4.4         0         1.37E-06         B         B           MW-0134         16-1a.91         0         0         0         0.41         0         1.37E-06         B         B           MW-0135         06-Agr.91         0         0         0         0.41         0         1.37E-06         B         B           MW-0135         16-Ja.84         0.95         0         0         0         0         0         1.20         B         A           MW-0135         16-Ja.84         0.95         0         0         0         0         2.5         0         9.99E-06         B         A           MW-0135         16-Ja.89         0.45         0         0         0         0         1.5         0         9.99E-06         B         A           MW-0135         1-Ja.89         0.22 </td <td>MW-0134</td> <td>11-Apr-90</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>2.8</td> <td>0</td> <td>8.74E-07</td> <td>B</td> <td>B</td>                                                                                                                                                                                                  | MW-0134  | 11-Apr-90 | 0       | 0          |               | 0                           | 0               | 2.8           | 0   | 8.74E-07 | B        | B             |
| MW-0134         OS-Ocs-90         0         0         0         0         1.37E-06         B         B           MW-0134         Is-Jaa-91         0         0         0         0         4.4         0         1.37E-06         B         B           MW-0134         Is-Jaa-91         0         0         0         0         2.4         0         8.74E-07         B         B           MW-0134         Is-Jau-91         0         0         0         0         2.4         0         8.74E-07         B         B           MW-0135         OF-Aps-88         0.74         0         0         0         0         0         1.30         0         1.32E-05         B         A           MW-0135         II-Ja-B8         0.45         0         0         0         0.25         0         1.13E-05         B         A           MW-0135         II-Ja-B8         0.45         0         0         0         0         2.5         0         9.99E-06         B         A           MW-0135         II-Ja-B9         0.22         0         0         0         0         1.150-56         B         A           MW-0135<                                                                                                                                                                                                                                                                                                                                                               | MW-0134  | 19-Jul-90 | 0       | 0          |               | 32                          | 0               | 9.9           | 0   | 4.41E-05 | B        | В             |
| MW-0134         OP-Oc.90         O         O         O         A4         O         1.37E-05         B         B           MW-0134         OF-Jape 1         O         O         O         O         A44         O         1.37E-05         B         B           MW-0134         OF-Jape 3         O         O         O         O         A44         O         1.28E-05         B         B           MW-0135         OF-Rot-88         0.74         O         O         O         O         O         O         Solar O         O         O         Solar O         O         Solar O         O         O         O         I.15-05         B         A           MW-0135         I-A-LAPS8         0.39         O         O         O         O         O         O         O         O         O         O         O         O         O         O         I.15-05         B         A           MW-0135         I-Ja-B8         0.43         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O                                                                                                                                                                                                                                                                                                                                                                       | MW-0134  | 09-Oct-90 | 0       | 0          |               | 0                           | 0               | 3.9           | 0   | 1.37E-06 | B        | B             |
| MW-0134         16-Jas-91         0         0         0         0         4.8         0         4.74E-07         B         B           MW-0134         15-Jul-91         0         0         0         0         1.9         0         5.93E-07         B         B           MW-0134         15-Jul-91         0         0         0         0         1.9         0         5.93E-07         B         B           MW-0135         14-Apr-83         0.74         0         0         0         2.6         0         1.13E-05         B         A           MW-0135         11-Jul-88         0.45         0         0         0         2.7         0         1.15E-05         B         A           MW-0135         11-Jul-88         0.45         0         0         0         2.5         0         9.99E-06         B         A           MW-0135         11-Jul-89         0.24         0         0         0         1.7         0         7.71E-06         B         A           MW-0135         11-Jul-89         0.24         0         0         0         9.8         A         0         2.71E-06         B         A                                                                                                                                                                                                                                                                                                                                                                | MW-0134  | 09-Oct-90 | 0       | 0          |               | 0                           | 0               | 4.4           | 0   | 1.37E-06 | B        | B             |
| NW-0134         08-Agr-91         0         0         0         4.1         0         1.28E-05         B         B           NW-0135         01-5-Jul-91         0         0         0         0         30         0         1.28E-05         B         A           NW-0135         01-Agr-88         0.95         0         0         0         0         26         0         1.18E-05         B         A           NW-0135         11-Jul-88         0.46         0         0         0         27         0         1.18E-05         B         A           NW-0135         01-Jul-89         0.45         0         0         0         25         0         9.99E-06         B         A           NW-0135         07-Agr-89         0.3         0         0         0         1.02         0         0         1.02E-05         B         A           NW-0135         11-Jul-89         0.22         0         0         0         1.02         0.12E-06         B         A           NW-0135         12-Jul-90         0.1         0         0         0         1.01E-05         B         A           NW-0135         12-Jul-90                                                                                                                                                                                                                                                                                                                                                           | MW-0134  | 16-Jan-91 | 0       | 0          |               | 0                           | 0               | 2.8           | 0   | 8.74E-07 | B        | B             |
| MW-0134       15-Jul-91       0       0       0       1.9       0       3.93E-07       B       B         MW-0135       01-Fob-88       0.74       0       0       0       0       26       0       1.18E-05       B       A         MW-0135       11-Jul-88       0.46       0       0       0       25       0       1.18E-05       B       A         MW-0135       06-Nor-88       0.99       0       0       0       0       25       0       1.02E-05       B       A         MW-0135       16-Jaa-89       0.45       0       0       0       0       25       0       9.99E-06       B       A         MW-0135       07-Jaa-89       0.34       0       0       0       0       15       0       6.37E-06       B       A         MW-0135       11-Jul-89       0.24       0       0       0       0       10       0.1E-05       B       A         MW-0135       12-Jaa-89       0.41       0       0       0       0       23       0       9.29E-06       B       A         MW-0135       12-Jaa-89       0.49       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0134  | 08-Apr-91 | 0       | 0          |               | 0                           | 0               | 4.1           | 0   | 1.28E-06 | B        | B             |
| MW-0133       08-149-88       0.74       0       0       0       0       130       0       1.1222-05       B       A         MW-0135       11-Jul-88       0.46       0       0       0       226       0       1.182-05       B       A         MW-0135       11-Jul-88       0.46       0       0       0       25       0       1.022-05       B       A         MW-0135       16-Jaa-89       0.43       0       0       0       25       0       1.022-05       B       A         MW-0135       11-Jul-89       0.43       0       0       0       15       0       6.37E-06       B       A         MW-0135       11-Jul-89       0.22       0       0       0       17       0       7.11E-06       B       A         MW-0135       12-Jaa-90       1       0       0       0       24       0       101E-05       B       A         MW-0135       12-Jaa-90       2.5       0       9.6       0       23       0       9.29E-06       B       A         MW-0135       10-Aa-90       0.13       0       0       0       18       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW-0134  | 15-Jul-91 | 0       | 0          |               | 0                           | 0               | 1.9           | 0   | 5.93E-07 | B        | B             |
| MW-0135       14-Apt-38       0.57       0       0       0       28       0       1.182-05       B       A         MW-0135       06.Nox-88       0.39       0       0       0       27       0       1.182-05       B       A         MW-0135       16-Jaa-89       0.45       0       0       0       25       0       9.99E-06       B       A         MW-0135       11-Jul-89       0.22       0       0       0       115       0       6.37E-06       B       A         MW-0135       11-Jul-89       0.22       0       0       0       17       0       7.11E-06       B       A         MW-0135       11-Jul-89       0.24       0       0       0       101E-05       B       A         MW-0135       12-Jas-90       1       0       0       0       123       0       9.29E-06       B       A         MW-0135       12-Jas-90       1       0       0       0       0       101E-05       B       A         MW-0135       10-Apt-90       0.49       0       0       0       118       0       6.76E-06       B       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW-0135  | U8-reb-88 | 0.74    | 0          |               | 0                           | 0               | 30            | 0   | 1.225-05 | 8        | A             |
| nm words       0       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW-0135  | 14-APE-00 | 0.95    |            |               |                             |                 | 20            | 0   | 1.162-03 | 8        |               |
| MW-0135       16-Jan-89       0.45       0       0       0       25       0       9.99E-06       B       A         MW-0135       07-Apr-89       0.3       0       0       0       0       15       0       6.37E-06       B       A         MW-0135       11-Jul-89       0.22       0       0       0       17       0       7.11E-06       B       A         MW-0135       11-Jul-89       0.24       0       0       0       19       0       7.11E-06       B       A         MW-0135       12-Jaa-90       1       0       0       0       0       101E-05       B       A         MW-0135       12-Jaa-90       1       0       0       0       10       9.29E-06       B       A         MW-0135       10-Apr-90       0.13       0       0       0       18       0       6.76E-06       B       A         MW-0135       16-Jaa-91       0.22       0       0       0       18       0       5.63E-06       B       A         MW-0135       16-Jaa-91       0.22       0       0       0       15       0       5.63E-06       B <t< td=""><td>MW-0135</td><td>08-Nov-88</td><td>0.10</td><td></td><td></td><td>0</td><td></td><td>25</td><td>- 0</td><td>1.02E-05</td><td>B</td><td></td></t<>                                                                                                                                                                                                                                                                                              | MW-0135  | 08-Nov-88 | 0.10    |            |               | 0                           |                 | 25            | - 0 | 1.02E-05 | B        |               |
| MW-0135         07-Apr.89         0.3         0         0         0         15         0         6.375-06         B         A           MW-0135         11-Jul-89         0.22         0         0         0         0         17         0         7.11E-06         B         A           MW-0135         11-Jul-89         0.24         0         0         0         0         17         0         7.11E-06         B         A           MW-0135         13-Oct-89         0.54         0         0         0         0         24         0         1.01E-05         B         A           MW-0135         12-Jas-90         1         0         0         0         0         23         0         9.29E-06         B         A           MW-0135         10-Apr.90         0.49         0         0         0         0         18         0         5.63E-06         B         A           MW-0135         16-Jas-91         0.22         0         0         0         18         0         5.63E-06         B         A           MW-0135         16-Jas-91         0.22         0         0         0         15         5.63E-06 </td <td>MW-0135</td> <td>16-Jan-89</td> <td>0.45</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>25</td> <td>0</td> <td>9.99E-06</td> <td>B</td> <td>A</td>                                                                                                                                                                                        | MW-0135  | 16-Jan-89 | 0.45    | 0          |               | 0                           | 0               | 25            | 0   | 9.99E-06 | B        | A             |
| MW-0135         11-Jul-89         0.22         0         0         0         17         0         7.11E-06         B         A           MW-0135         11-Jul-89         0.24         0         0         0         0         19         0         7.11E-06         B         A           MW-0135         13-Oct-89         0.54         0         0         0         24         0         1.01E-05         B         A           MW-0135         22-Jaa-90         1         0         0         0         19         0         9.29E-06         B         A           MW-0135         10-Apr-90         0.49         0         0         0         0         0         2.51E-06         B         A           MW-0135         08-Oct-90         0         0         0         0         18         0         5.62E-06         B         A           MW-0135         16-Jaa-91         0.22         0         0         0         16         0         5.63E-06         B         A           MW-0135         16-Jaa-91         0.22         0         0         0         16         0         5.63E-06         B         A                                                                                                                                                                                                                                                                                                                                                                      | MW-0135  | 07-Apr-89 | 0.3     | 0          |               | 0                           | 0               | 15            | 0   | 6.37E-06 | B        | A             |
| MW-0135       11-Jul-89       0.24       0       0       0       19       0       7.11E-06       B       A         MW-0135       12-Jaa-90       1       0       0       0       24       0       1.01E-05       B       A         MW-0135       22-Jaa-90       1       0       0       0       19       0       9.29E-06       B       A         MW-0135       22-Jaa-90       2.5       0       9.6       0       23       0       9.29E-06       B       A         MW-0135       10-Apr-90       0.49       0       0       0       0       2.51E-06       B       A         MW-0135       03-Jul-90       0.13       0       0       0       18       0       5.62E-06       B       A         MW-0135       16-Jaa-91       0.22       0       0       0       16       0       5.63E-06       B       A         MW-0135       16-Jaa-91       0.22       0       0       0       11       0       3.43E-06       B       A         MW-0135       15-Jul-91       0       0       0       0       12       0       3.43E-06       B <t< td=""><td>MW-0135</td><td>11-Jul-89</td><td>0.22</td><td>0</td><td>···</td><td>0</td><td>0</td><td>17</td><td>0</td><td>7.11E-06</td><td>B</td><td>A</td></t<>                                                                                                                                                                                                                                                                                          | MW-0135  | 11-Jul-89 | 0.22    | 0          | ···           | 0                           | 0               | 17            | 0   | 7.11E-06 | B        | A             |
| MW-0135         13-Oct.89         0.54         0         0         0         24         0         1.01E-05         B         A           MW-0135         22-Jas-90         1         0         0         0         19         0         9.29E-06         B         A           MW-0135         10-Apr.90         0.49         0         9.6         0         23         0         9.29E-06         B         A           MW-0135         10-Apr.90         0.49         0         0         0         0         2.51E-06         B         A           MW-0135         08-Oct-90         0         0         0         0         18         0         6.76E-06         B         A           MW-0135         16-Jas-91         0.22         0         0         0         16         0         5.62E-06         B         A           MW-0135         16-Jas-91         0.25         0         0         0         15         0         5.63E-06         B         A           MW-0135         15-Jul-91         0         0         0         0         12         0         3.43E-06         B         A           MW-0135         1                                                                                                                                                                                                                                                                                                                                                               | MW-0135  | 11-Jul-89 | 0.24    | 0          |               | 0                           | 0               | 19            | 0   | 7.11E-06 | В        | A             |
| MW-0135       22-Jan-90       1       0       0       0       19       0       9.29E-06       B       A         MW-0135       22-Jan-90       2.5       0       9.6       0       23       0       9.29E-06       B       A         MW-0135       10-Apr-90       0.49       0       0       0       0       2.51E-06       B       A         MW-0135       03-Jul-90       0.13       0       0       0       0       18       0       6.76E-06       B       A         MW-0135       16-Jan-91       0.22       0       0       0       16       5.63E-06       B       A         MW-0135       16-Jan-91       0.22       0       0       0       15       0       5.63E-06       B       A         MW-0135       16-Jan-91       0.25       0       0       0       0       0       3.63E-06       B       A         MW-0135       15-Jul-91       0       0       0       0       0       10       3.43E-06       B       A         MW-0135       13-Oct-92       0       0       1.60       0       0       2.00       1.33E-05       B                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-0135  | 13-Oct-89 | 0.54    | 0          |               | 0                           | 0               | 24            | 0   | 1.01E-05 | B        | A             |
| MW-0135         22.7aa.90         2.5         0         9.6         0         23         0         9.29E-06         B         A           MW-0135         10-Apr-90         0.49         0         0         0         0         2.51E-06         B         A           MW-0135         05-Jul-90         0.13         0         0         0         18         0         6.76E-06         B         A           MW-0135         06-Oct-90         0         0         0         0         18         0         5.62E-06         B         A           MW-0135         16-Jaa.91         0.22         0         0         0         16         0         5.63E-06         B         A           MW-0135         16-Jaa.91         0.25         0         0         0         10         0         5.63E-06         B         A           MW-0135         15-Jul-91         0         0         0         0         10         3.43E-06         B         A           MW-0135         15-Jul-91         0         0         1.60         0         9.20         0         1.33E-05         B         A           MW-0135         15-Apr-93                                                                                                                                                                                                                                                                                                                                                             | MW-0135  | 22-Jan-90 | 1       | 0          |               | 0                           | 0               | 19            | 0   | 9.29E-06 | B        | A             |
| MW-0135         10-Apr-90         0.49         0         0         0         0         2.51E-06         B         A           MW-0135         03-Jul-90         0.13         0         0         0         18         0         6.76E-06         B         A           MW-0135         06-Ocx+90         0         0         0         0         18         0         6.76E-06         B         A           MW-0135         16-Jaa-91         0.22         0         0         0         16         0         5.63E-06         B         A           MW-0135         16-Jaa-91         0.25         0         0         0         15         0         5.63E-06         B         A           MW-0135         15-Jul-91         0         0         0         0         11         0         3.43E-06         B         A           MW-0135         15-Jul-91         0         0         1.6         0         0         8.7         0         2.72E-06         B         A           MW-0135         15-Apr-93         0.27         0         1.90         0         0         1.33E-05         B         A           MW-0135 <t< td=""><td>MW-0135</td><td>22-Jan-90</td><td>2.5</td><td>0</td><td></td><td>9.6</td><td>0</td><td>23</td><td>0</td><td>9.29E-06</td><td>B</td><td><b>A</b></td></t<>                                                                                                                                                                                              | MW-0135  | 22-Jan-90 | 2.5     | 0          |               | 9.6                         | 0               | 23            | 0   | 9.29E-06 | B        | <b>A</b>      |
| MW-0135         OB-OLL-90         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <tho< th="">         O         O</tho<>                                                                                                                                                                                                                                                                                                                                                                                   | MW-0135  | 10-Apr-90 | 0.49    | 0          |               | 0                           | 0               |               | 0   | 2.51E-06 | <u>B</u> |               |
| MW-0135       Observed       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O <tho< th="">       O       O       O       &lt;</tho<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-0135  | 03-JUI-90 | 0.13    | 0          |               | 0                           |                 | 18            |     | 0./0E-U6 | B        |               |
| MW-0135       10-Jan-91       0.25       0       0       0       15       0       5.63E-06       B       A         MW-0135       16-Jan-91       0.25       0       0       0       15       0       5.63E-06       B       A         MW-0135       15-Jul-91       0       0       0       0       0       11       0       3.43E-06       B       A         MW-0135       15-Jul-91       0       0       0       0       0       11       0       3.43E-06       B       A         MW-0135       15-Jul-91       0       0       0       0       0       12       0       3.43E-06       B       A         MW-0135       15-Jul-91       0       0       1.6       0       0       8.7       0       2.72E-05       B       A         MW-0135       15-Apr-93       0       0       1.60       0       0       9.20       0       1.33E-05       B       A         MW-0135       15-Apr-93       0.277       0       1.90       0       0       230       0       7.18E-05       C       C         MW-0136       10-Mar-88       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MW-0135  | 16 Inn 01 | 0.72    | 0          | ·             |                             |                 | 16            | - 0 | 5.63E-06 | B        |               |
| MW-0135         08-Apt-91         0.48         0         0         0         0         20         0         8.59E-06         B         A           MW-0135         15-Jul-91         0         0         0         0         0         11         0         3.43E-06         B         A           MW-0135         15-Jul-91         0         0         0         0         12         0         3.43E-06         B         A           MW-0135         15-Jul-91         0         0         1.6         0         0         8.7         0         2.72E-06         B         A           MW-0135         15-Apt-93         0         0         1.60         0         9.20         0         1.33E-05         B         A           MW-0135         15-Apt-93         0.277         0         1.90         0         0         2.30         0         7.18E-05         C         C         C           MW-0136         16-Mat-88         0         0         0         0         0         2.30         0         7.18E-05         C         C         C           MW-0136         16-Ota-88         0         0         0         0                                                                                                                                                                                                                                                                                                                                                               | MW-0135  | 16-Jan-91 | 0.25    | 0          |               | 0                           | 0               | 15            | 0   | 5.63E-06 | B        |               |
| MW-0135       15-Jul-91       0       0       0       0       11       0       3.43E-06       B       A         MW-0135       15-Jul-91       0       0       1.6       0       0       12       0       3.43E-06       B       A         MW-0135       13-Oct-92       0       0       1.6       0       0       8.7       0       2.72E-06       B       A         MW-0135       15-Apr-93       0       0       1.60       0       0       9.20       0       1.33E-05       B       A         MW-0135       15-Apr-93       0.27       0       1.90       0       0       12       0       1.33E-05       B       A         MW-0136       10-Mar-88       0       0       0       0       0       230       0       7.18E-05       C       C       C         MW-0136       14-Jul-88       0       0       0       0       0       0       1.47E-04       C       C       C         MW-0136       10-Oct-88       0       0       0       0       0       0       0       0       1.47E-04       C       C       C         MW-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-0135  | 08-Apt-91 | 0.48    | 0          |               | 0                           | 0               | 20            | 0   | 8.59E-06 | В        | A             |
| MW-0135         15-Jul-91         0         0         0         12         0         3.43E-06         B         A           MW-0135         13-Oct-92         0         0         1.6         0         0         8.7         0         2.72E-06         B         A           MW-0135         15-Apr-93         0         0         1.60         0         0         9.20         0         1.33E-05         B         A           MW-0135         15-Apr-93         0.27         0         1.90         0         0         12         0         1.33E-05         B         A           MW-0136         10-Mar-88         0         0         0         0         0         230         0         7.18E-05         C         C           MW-0136         14-Jul-88         0         0         0         0         0         230         0         7.18E-05         C         C         C           MW-0136         14-Jul-88         0         0         0         0         0         4.70         0         1.47E-04         C         C         C           MW-0136         10-Oct-88         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                   | MW-0135  | 15-Jul-91 | 0       | 0          |               | 0                           | 0               | 11            | 0   | 3.43E-06 | B        | A             |
| MW-0135       13-Oct-92       0       0       1.6       0       0       8.7       0       2.72E-06       B       A         MW-0135       15-Apr-93       0       0       1.60       0       0       9.20       0       1.33E-05       B       A         MW-0135       15-Apr-93       0.27       0       1.90       0       0       12       0       1.33E-05       B       A         MW-0136       10-Mar-88       0       0       0       0       0       230       0       7.18E-05       C       C       C         MW-0136       25-Apr-88       0       0       0       0       0       230       0       7.18E-05       C       C       C         MW-0136       14-Jul-88       0       0       0       0       0       0       1.47E-04       C       C       C         MW-0136       10-Oct-88       0       0       0       0       230       0       8.12E-05       C       C         MW-0136       10-Oct-88       0       0       0       0       360       0       8.12E-05       C       C         MW-0136       26-Jaa-89                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0135  | 15-Jul-91 | 0       | 0          |               | 0                           | 0               | 12            | 0   | 3.43E-06 | В        | A             |
| MW-0135         15-Apr-93         0         0         1.60         0         9.20         0         1.33E-05         B         A           MW-0135         15-Apr-93         0.27         0         1.90         0         0         12         0         1.33E-05         B         A           MW-0136         10-Mar-88         0         0         0         0         0         230         0         7.18E-05         C         C           MW-0136         25-Apr-88         0         0         0         0         0         230         0         7.18E-05         C         C           MW-0136         14-Jul-88         0         0         0         0         0         470         0         1.47E-04         C         C           MW-0136         10-Oct-88         0         0         0         0         0         360         0         8.12E-05         C         C           MW-0136         10-Oct-88         0         0         0         0         360         0         8.12E-05         C         C         C           MW-0136         26-Jaa-89         0         0         0         0         330                                                                                                                                                                                                                                                                                                                                                                   | MW-0135  | 13-Oct-92 | 0       | 0          | 1.6           | 0                           | 0               | 8.7           | 0   | 2.72E-06 | B        | A             |
| MW-0135         15-Apr-93         0.27         0         1.90         0         0         12         0         1.33E-05         B         A           MW-0136         10-Mar-88         0         0         0         0         0         230         0         7.18E-05         C         C           MW-0136         25-Apr-88         0         0         0         0         0         230         0         7.18E-05         C         C         C           MW-0136         14-Jul-88         0         0         0         0         0         470         0         1.47E-04         C         C         C           MW-0136         10-Oct-88         0         0         0         0         0         260         0         8.12E-05         C         C           MW-0136         10-Oct-88         0         0         0         0         0         360         0         8.12E-05         C         C         C           MW-0136         10-Oct-88         0         0         0         0         0         312E-05         C         C         C         C         C         C         C         C         C <t< td=""><td>MW-0135</td><td>15-Apr-93</td><td>0</td><td>0</td><td>1.60</td><td>0</td><td>0</td><td>9.20</td><td>0</td><td>1.33E-05</td><td>B</td><td>A</td></t<>                                                                                                                                                                                                     | MW-0135  | 15-Apr-93 | 0       | 0          | 1.60          | 0                           | 0               | 9.20          | 0   | 1.33E-05 | B        | A             |
| MW-0136         10-Mar-88         0         0         0         0         230         0         7.18E-05         C         C         C           MW-0136         25-Apr-88         0         0         0         0         0         230         0         7.18E-05         C         C         C           MW-0136         14-Jul-88         0         0         0         0         0         470         0         1.47E-04         C         C         C           MW-0136         10-Oct-88         0         0         0         0         0         260         0         8.12E-05         C         C         C           MW-0136         10-Oct-88         0         0         0         0         0         260         0         8.12E-05         C         C         C           MW-0136         10-Oct-88         0         0         0         0         360         0         8.12E-05         C         C         C           MW-0136         26-Jan-89         0         0         0         0         0         390         0         1.22E-04         C         C         C           MW-0136         21-Apr-89 <td>MW-0135</td> <td>15-Apr-93</td> <td>0.27</td> <td>0</td> <td>1.90</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td> <td>1.33E-05</td> <td>В</td> <td>A</td>                                                                                                                                                                                                    | MW-0135  | 15-Apr-93 | 0.27    | 0          | 1.90          | 0                           | 0               | 12            | 0   | 1.33E-05 | В        | A             |
| MW-0136       25-Apr-88       0       0       0       0       230       0       7.18E-05       C       C       C         MW-0136       14-Jul-88       0       0       0       0       0       470       0       1.47E-04       C       C       C         MW-0136       10-Oct-88       0       0       0       0       0       260       0       8.12E-05       C       C       C         MW-0136       10-Oct-88       0       0       0       0       0       360       0       8.12E-05       C       C       C         MW-0136       10-Oct-88       0       0       0       0       360       0       8.12E-05       C       C       C         MW-0136       26-Jan-89       0       0       0       0       390       0       1.22E-04       C       C       C         MW-0136       21-Apr-89       0       0       0       0       390       0       1.22E-04       C       C       C         MW-0136       17-Oct-89       0       0       0       0       130       0       4.06E-05       C       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-0136  | 10-Mar-88 | 0       | 0          |               | 0                           | Ô               | 230           | 0   | 7.18E-05 | С        | C             |
| MW-0136         14-Jul-88         0         0         0         0         470         0         1.47E-04         C         C           MW-0136         10-Oct-88         0         0         0         0         0         260         0         8.12E-05         C         C           MW-0136         10-Oct-88         0         0         0         0         360         0         8.12E-05         C         C         C           MW-0136         10-Oct-88         0         0         0         0         360         0         8.12E-05         C         C         C           MW-0136         26-Jan-89         0         0         0         0         230         0         7.18E-05         C         C         C           MW-0136         21-Apr-89         0         0         0         0         390         0         1.22E-04         C         C         C           MW-0136         25-Jul-89         0         0         0         0         130         0         4.06E-05         C         C         C           MW-0136         17-Oct-89         0         0         0         0         170         0 </td <td>MW-0136</td> <td>25-Apt-88</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>230</td> <td>0</td> <td>7.18E-05</td> <td>C</td> <td>+ <u>c</u></td>                                                                                                                                                                                          | MW-0136  | 25-Apt-88 | 0       | 0          |               | 0                           | 0               | 230           | 0   | 7.18E-05 | C        | + <u>c</u>    |
| MW-0136         10-Oct-88         0         0         0         0         0         260         0         8.122-05         C         C         C           MW-0136         10-Oct-88         0         0         0         0         0         360         0         8.122-05         C         C         C           MW-0136         26-Jan-89         0         0         0         0         230         0         8.12E-05         C         C         C           MW-0136         25-Jan-89         0         0         0         0         230         0         7.18E-05         C         C         C           MW-0136         21-Apr-89         0         0         0         0         390         0         1.22E-04         C         C         C           MW-0136         25-Jul-89         0         0         0         0         130         0         4.06E-05         C         C         C           MW-0136         17-Oct-89         0         0         0         0         170         0         5.31E-05         C         C         C           MW-0136         30-Jam-90         0         0         0 <td>MW-0136</td> <td>14-Jul-88</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>470</td> <td>0</td> <td>1.47E-04</td> <td><u> </u></td> <td></td>                                                                                                                                                                                                    | MW-0136  | 14-Jul-88 | 0       | 0          |               | 0                           | 0               | 470           | 0   | 1.47E-04 | <u> </u> |               |
| Introduces         O         O         O         O         O         State         C         C         C           MW-0136         26-Jan-89         O         O         O         O         O         O         O         State         C         C         C         C           MW-0136         21-Apr-89         O         O         O         O         O         O         O         O         O         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C<                                                                                                                                                                                                                                                                                                                                                                                       | MW-0136  | 10-0d-88  | 0       | 0          |               | 0                           | 0               | 260           | 0   | 8.12E-05 | <u> </u> | +             |
| MW-0136         21-Apr-89         0         0         0         0         230         0         7.188-05         C         C           MW-0136         21-Apr-89         0         0         0         0         390         0         1.228-04         C         C         C           MW-0136         25-Jul-89         0         0         0         0         0         130         0         4.068-05         C         C         C           MW-0136         17-Oct-89         0         0         0         0         0         130         0         4.068-05         C         C         C           MW-0136         17-Oct-89         0         0         0         0         0         170         0         5.31E-05         C         C           MW-0136         30-Jan-90         0         0         0         0         0         690         0         2.15E-04         C         C           MW-0136         27-Apr-90         0         0         0         0         140         0         3.93E-05         C         C           MW-0136         05-Aug-90         0         0         0         0         0 <td>MW-0130</td> <td>10-00-55</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>360</td> <td></td> <td>5.12E-05</td> <td></td> <td></td>                                                                                                                                                                                                              | MW-0130  | 10-00-55  | 0       | 0          |               | 0                           | 0               | 360           |     | 5.12E-05 |          |               |
| MW-0136         25-Jul-89         0         0         0         0         0         1220-04         C         C         C           MW-0136         25-Jul-89         0         0         0         0         0         130         0         4.06E-05         C         C         C           MW-0136         17-Oct-89         0         0         0         0         0         170         0         5.31E-05         C         C         C           MW-0136         30-Jan-90         0         0         0         0         690         0         2.15E-04         C         C         C           MW-0136         27-Apr-90         0         0         0         0         140         0         4.37E-05         C         C           MW-0136         05-Aug-90         0         0         0         0         0         100         0         3.93E-05         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW/0124  | 20-128-89 |         | U<br>^     |               |                             | 0               | 230           | 0   | 1.160-00 |          | +             |
| MW-0136         17-Oct-89         0         0         0         0         170         0         5.31E-05         C         C           MW-0136         30-Jan-90         0         0         0         0         0         690         0         2.15E-04         C         C           MW-0136         27-Apr-90         0         0         0         0         140         0         4.37E-05         C         C           MW-0136         05-Aug-90         0         0         0         0         100         0         3.93E-05         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW.0136  | 25-Int.20 |         |            |               |                             |                 | 110           |     | 4.067.05 | <u> </u> | $\frac{1}{c}$ |
| MW-0136         30-Jan-90         0         0         0         0         0         690         0         2.15E-04         C         C           MW-0136         27-Apr-90         0         0         0         0         0         140         0         4.37E-05         C         C           MW-0136         05-Aug-90         0         0         0         0         0         100         0         3.93E-05         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-0136  | 17-Oct-89 |         |            | <u> </u>      | 0                           | 0               | 170           | ő   | 5,31E-05 | č        | † č           |
| MW-0136         27-Apr-90         0         0         0         0         140         0         4.37E-05         C         C           MW-0136         06-Aug-90         0         0         0         0         100         0         3.93E-05         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW-0136  | 30-Jan-90 | 0       | 0          |               | 0                           | 0               | 690           | Ō   | 2.15E-04 | c        | Ċ             |
| MW-0136 06-Aug-90 0 0 0 0 0 100 0 3.93E-05 C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MW-0136  | 27-Apr-90 | 0       | 0          |               | 0                           | 0               | 140           | 0   | 4.37E-05 | С        | C             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MW-0136  | 06-Aug-90 | 0       | 0          |               | 0                           | 0               | 100           | 0   | 3.93E-05 | С        | C             |

g:\users\da\j\_summal\wong\TABLEK-6.XLS

( )

۰,

ى مەلىپىيە ئۆچىرىيە ئىرىمىدىنى ئەمەلىلىمىيە دىرىدى بىرى بىرى بىرى بىرى بىرى

05/11/94

|          | Table K-6 . VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period Location Risk for Operable |         |         |          |      |          |     |     |          |          |          |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------|---------|---------|----------|------|----------|-----|-----|----------|----------|----------|--|--|--|
| Location |                                                                                                         |         |         |          |      |          |     |     | Rink for | Operable |          |  |  |  |
| D        | Log Date                                                                                                | 1,2-DCA | 1,1-DCE | ~1,2-DCE | PCE  | I,LI-TCA | TCE | VC  | Pathwaye | Unit     | 2        |  |  |  |
| MW-0136  | 06-Aug-90                                                                                               | 0       | 0       |          | 3.9  | 0        | 110 | 0   | 3.93E-05 | <u> </u> | C        |  |  |  |
| MW-0136  | 02-NOV-90                                                                                               | 0       | 0       |          | 0    | 0        | 55  | 0   | 1.728-05 | <u> </u> |          |  |  |  |
| MW-0136  | 17-May-91                                                                                               | 0       | 0       |          | 0    | 0        | 31  | - Ŭ | 9.68E-06 | <u> </u> | C        |  |  |  |
| MW-0136  | 31-Jul-91                                                                                               | 0       | 0       |          | 0    | 0        | 49  | 0   | 1.59E-05 | C        | Ċ        |  |  |  |
| MW-0136  | 14-Oct-92                                                                                               | 0.28    | 0       | 1.5      | 0    | 0        | 38  | 0   | 1.25E-05 | С        | С        |  |  |  |
| MW-0138  | 11-Mar-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | С        |  |  |  |
| MW-0138  | 22-Apr-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | С        |  |  |  |
| MW-0138  | 14-Jul-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | C        |  |  |  |
| MW-0138  | 07-Oct-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | C        | C        |  |  |  |
| MW-0138  | 12-Jan-89                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        |          |          |  |  |  |
| MW-0138  | 05-Jul-89                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | c        |          |  |  |  |
| MW-0138  | 20-Dec-89                                                                                               | 0       | 0       |          | 0    | 0.25     | 0   | 0   | 0        | C        | Ċ        |  |  |  |
| MW-0138  | 29-Jan-90                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | С        |  |  |  |
| MW-0138  | 30-Apr-90                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | С        |  |  |  |
| MW-0138  | 25-Jul-90                                                                                               | 0       | 0       |          | 0.37 | 0        | 0   | 0   | 4.74E-07 | С        | С        |  |  |  |
| MW-0138  | 05-Nov-90                                                                                               | 0       | 0       |          | 0    | 0        | 0   |     | 0        | C        | C        |  |  |  |
| MW-0138  | 24-Jan-91                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | <u> </u> | C        |  |  |  |
| MW-0138  | 31-JUI-91                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | <u> </u> |          |  |  |  |
| MW-0138  | 09-Feb-88                                                                                               | 1.8     |         |          | 0    | 0        | 89  | 0   | 3.31E-05 | B        |          |  |  |  |
| MW-0139  | 19-Apr-88                                                                                               | • 0     | 0       |          | 0    | 0        | 74  | 0   | 2.31E-05 | B        | A        |  |  |  |
| MW-0139  | 08-Jul-88                                                                                               | 0       | 0       |          | 0    | 0        | 83  | 0   | 2.59E-05 | В        |          |  |  |  |
| MW-0139  | 14-Oct-88                                                                                               | 0       | 0       |          | 0    | 0        | 63  | 0   | 1.97E-05 | B        | A        |  |  |  |
| MW-0139  | 16-Jan-89                                                                                               | 1.9     | 0       |          | 0    | 2.2      | 100 | 0   | 3.74E-05 | B        | A        |  |  |  |
| MW-0139  | 08-Apr-89                                                                                               | 0       | 11      |          | 0    | 0        | 80  | 0   | 2.50E-05 | B        | <b>A</b> |  |  |  |
| MW-0139  | 18-Jul-89                                                                                               | 1.7     | 0       |          | 0    | 0        | 06  | 0   | 6.44E-06 | B        | A        |  |  |  |
| MW-0139  | 06-04-89                                                                                                | 17      |         |          | - 0  | 0        | 93  | 0   | 3.20E-03 | B        |          |  |  |  |
| MW-0139  | 26-Jan-90                                                                                               | 0       | 0       |          | 0    | 0        | 110 | 0   | 3.43E-05 | B        |          |  |  |  |
| MW-0139  | 26-Apr-90                                                                                               | 0.89    | 0       |          | 0    | 0        | 130 | 0   | 4.33E-05 | В        | A        |  |  |  |
| MW-0139  | 25-Jul-90                                                                                               | 0       | 0       |          | 0    | 0        | 85  | 0   | 2.65E-05 | B        | A        |  |  |  |
| MW-0139  | 02-Nov-90                                                                                               | 0       | 0       |          | 0    | 0        | 100 | 0   | 3.12E-05 | B        | A        |  |  |  |
| MW-0139  | 04-Dec-90                                                                                               |         |         |          |      |          |     |     | 0        | <u>B</u> | A        |  |  |  |
| MW-0139  | 15-Jan-91                                                                                               | 0       | 0       |          | 0    | 0        | 74  | 0   | 2.31E-05 | B        | A        |  |  |  |
| MW_0139  | 22-Apt-91                                                                                               | 17      |         |          | 0    | 0        | 48  |     | 2.08E-03 | B        |          |  |  |  |
| MW-0139  | 16-Jul-91                                                                                               | 0       | 0       |          | 0    | 0        | 83  | 0   | 2.59E-05 | B        | A        |  |  |  |
| MW-0139  | 13-Oct-92                                                                                               | 0       | 0       | 35       | . 0  | 0        | 120 | 0   | 3.75E-05 | В        | A        |  |  |  |
| MW-0139  | 29-Jul-93                                                                                               | 0       | 0       | 32.5     | 0    | 0        | 130 | 0   | 1.03E-04 | В        | A        |  |  |  |
| MW-0142  | 09-Feb-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 26-Apr-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 18-Oct-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 18-J80-59                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | 8        | 8        |  |  |  |
| MW-0142  | 25. Jul. 29                                                                                             | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 13-Dec-89                                                                                               | 0       | 0       |          |      | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 29-Jan-90                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | В        |  |  |  |
| MW-0142  | 27-Apr-90                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 02-Aug-90                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | В        |  |  |  |
| MW-0142  | 24-Jan-91                                                                                               | . 0     | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 03-May-91                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | B        | B        |  |  |  |
| MW-0142  | 13-Jul-92                                                                                               | 0       | 0       | 0        | 0    | 0        | 0   | 0   | 0        | B        |          |  |  |  |
| MW-0143  | 10-reb-88                                                                                               | 0       |         |          | 0    | 0        | 0   | 0   | 0        |          |          |  |  |  |
| MW-0143  | 21-hal.##                                                                                               | 0       | 0       |          | 0    | 0        | 0   | - 0 | 0        |          | R        |  |  |  |
| MW-0143  | 05-Oct-88                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | č        | B        |  |  |  |
| MW-0143  | 18-Jan-89                                                                                               | 0       |         |          | 0    | 0        | 0   | 0   | 0        | Ċ        | B        |  |  |  |
| MW-0143  | 11-Apr-89                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | B        |  |  |  |
| MW-0143  | 28-Jul-89                                                                                               | 0       | 0       |          | 0    | 0        | 0   | 0   | 0        | С        | B        |  |  |  |

g:\umerida\j\_zamwalwoog\TABLEK-6.XLS

Ξ.

,

. ...

05/11/94

)

| Location |            |            |          | .1100       |                 | 111 704    |            | VO  | Risk for | Operable |   |
|----------|------------|------------|----------|-------------|-----------------|------------|------------|-----|----------|----------|---|
| MW-0143  | 17-0-1-80  | LIDIA      | 1,1-005  | 61,41A.6    | <u>гсь</u><br>0 | 1,1,1-10.4 | 102        |     | Paraways | C        | • |
| MW-0143  | 16.100.09  |            | 0        |             | 0               | 0          | 0          |     | 0        |          | - |
| MW-0143  | 27-Am-90   |            | 0        |             | 0               | 0          | 0          | 0   | 1.70E-07 | <u> </u> | • |
| MW-0143  | 08-4119-90 |            |          |             | 0               | 0          | 0          | 0   | 0        | <u> </u> | • |
| MW-0143  | 28-Jan-91  | ot         |          |             | 0               | 0          | 0          | 0   | 0        | <u> </u> | • |
| MW-0143  | 07-May-91  |            | 0        |             | 0               | 0          | 0          | 0   | 0        | <u> </u> | • |
| MW-0143  | 17-Jul-92  | 0          | 0        | 0           | 0               | 0          | 0          | 0   | 0        | <u> </u> | • |
| MW-0143  | 19-Jul-93  | 0          | 0        | 0           | 0               | 0          | 0          | 0   | 0        | C        | • |
| MW-0145  | 24-Mar-89  | 0          | 0        |             | 0               | 0          | 1.3        | 0   | 4.06E-07 | В        | • |
| MW-0145  | 31-Jul-89  | 0          | 0        |             | 0               | 0          | 0          | 0   | 1.32E-07 | B        | • |
| MW-0145  | 02-Jan-90  | 0          | 0        |             | 0               | 0          | 2.1        | 0   | 6.55E-07 | B        | 1 |
| MW-0145  | 25-Jan-90  | 0          | 0        |             | 0               | 0          | 1.9        | 0   | 5.93E-07 | B        | 1 |
| MW-0145  | 25-Apr-90  | 0          | 0        |             | 0               | 0          | 1.8        | 0   | 5.62E-07 | В        | ĺ |
| MW-0145  | 02-Aug-90  | 0          | 0        |             | 0               | 0          | 2.9        | 0   | 9.05E-07 | В        |   |
| MW-0145  | 02-Nov-90  | 0          | 0        |             | 0               | 0          | 1.5        | 0   | 4.68E-07 | B        |   |
| MW-0145  | 25-Jan-91  | 0          | 0        |             | 0               | 0          | 2.4        | 0   | 1.12E-06 | B        |   |
| MW-0145  | 03-May-91  | 0          | 0        |             | 0               | 0          | 2.2        | 0   | 6.87E-07 | B        |   |
| MW-0145  | 17-Jul-91  | 0          | 0        |             | 0               | 0          | 1.9        | 0   | 5.93E-07 | В        |   |
| MW-0145  | 08-Apr-93  | 0          | 0        | 0.319999999 | 0               | 0          | 1          | 0   | 6.35E-07 | B        |   |
| MW-0145  | 19-Jul-93  | 0.38600001 | 0        | 0.36199999  | 0               | 0          | 1.23000002 | 0   | 2.75E-06 | B        | • |
| MW-0146  | 24-Mar-89  | 0          | 0        |             | 0               | 0          | 0          | 0   | 0        | <u>B</u> | • |
| MW-0146  | 11-Jul-89  | 0          | 0        |             | 0               | 0          | 0          | 0   | 0        | <u>B</u> | • |
| MW-0146  | 21-Dec-89  |            | 0        |             | 0               | 0          | 0          | 0   | 0        | <u>B</u> | • |
| MW-0146  | 08 14-1-00 |            | 0        |             | 0               | 0          | 0          | 0   | 0        | <u>B</u> | • |
| MW-0146  | 30 Ort 90  |            | 0        |             |                 | 0          | 0          | - 0 | 0        | <u>B</u> | • |
| MW-0146  | 03. May 91 |            | 0        |             |                 | 0          | 0          | - 0 |          | <u>B</u> | , |
| MW-0146  | 21-bil-03  |            | 0        |             |                 | 0          | 0          | 0   |          | B        | , |
| MW-0147  | 20-Mar-89  | - 0        | 0        |             | 0               | 0          | 0          | 0   | Ő        | <u>5</u> | • |
| MW-0147  | 11-Jul-89  |            |          |             | 0               | 0          | 0          | 0   | 0        | B        | • |
| MW-0147  | 21-Dec-89  | 0          | 0        |             | <u>`</u>        | 0          | 0          | 0   | 0        | B        | • |
| MW-0147  | 06-Feb-90  | 0          | 0        |             | 0               | 0          | 0          | 0   | 0        | В        |   |
| MW-0147  | 09-May-90  | 0          | 0        |             | 0               | 0          | 0          | 0   | 0        | В        |   |
| MW-0147  | 23-Oct-90  | 0          | 0        |             | 0               | 0          | 0          | 0   | 0        | В        |   |
| MW-0147  | 03-May-91  | 0          | 0        |             | 0               | 0          | 0          | 0   | 0        | B        |   |
| MW-0148  | 30-Mar-89  | 0          | 0        |             | 0               | 0          | 8.7        | 0   | 3.21E-06 | B        |   |
| MW-0148  | 06-Apr-89  | 0          | 0        |             | 0               | 0          | 7.2        | 0   | 2.25E-06 | B        |   |
| MW-0148  | 07-Jul-89  | 0          | 0        |             | 0               | 0          | 5.3        | 0   | 1.87E-06 | B        |   |
| MW-0148  | 07-Jui-89  | 0          | 0        |             | 0               | 0          | 6          | 0   | 1.87E-06 | B        |   |
| MW-0148  | 19-Oct-89  | 0          | 0        |             | 0               | 0          | 7.6        | 0   | 2.77E-06 | B        |   |
| MW-0148  | 22-Dec-89  | 0          | 0        |             | 0               | 0          | 6.8        | 0   | 2.12E-06 | <u> </u> | • |
| MW-0148  | 07-Feb-90  | 0          | 0        |             | 0               | 0.39       | 7.2        | 0   | 2.40E-06 | <u>B</u> | • |
| MW-0148  | 01-May-90  | 0.14       | 0        |             | 0               | 0          | 8.6        | 0   | 3.28E-06 | <u>B</u> | • |
| MW-0148  | 30-Jul-90  | 0          | 0        |             | 0               | 0          | 0.65       | 0   | 2.03E-07 | B        | • |
| MW-0148  | 08-0ct-90  | 0          | 0        |             | 0               | 0          | 6.8        | U   | 2.28E-06 | B        | • |
| MW-0148  | 08-0ct-90  | 0          | 0        |             | 0               | 0          | 7.3        | 0   | 2.285-06 | <u> </u> | • |
| MW-U148  | 23-Jan-91  | 0          | 0        |             | 0               | 0          |            | - 0 | 4.27E 04 | 8        | • |
| MW-U148  | 01-MAY-91  | U          | <u> </u> |             |                 |            | 14         |     | 4.3/E-U0 | <u> </u> | • |
| MW-U148  | 01-A08-91  |            | 0        |             |                 | 0          | 11         |     | 4./4E-00 | D<br>D   | • |
| MW-0146  | 27.1-02    |            | 0        |             |                 | 0          | 12         |     | A 69E 04 | <u>q</u> |   |
| MW-0148  | 27-10-02   |            |          |             |                 |            | 15         |     |          | D<br>R   |   |
| MW.0140  | 4/-J62-74  |            |          |             |                 | 3          | 13         |     | 4 OKE OK | R        | • |
| MW_0149  | 1-14-76    |            |          | 4           |                 | ۰<br>۱     | 13         |     | 2.755_04 | R        | • |
| MW_0149  | 12,140.02  |            | U        |             |                 | 0          | 0.0        |     | 2.13E-00 | R        | • |
| MW_0149  | 21. Jan 93 | 0.17       | ~ ~      | 2.3         |                 | 0          | 7.1        |     | 8.0KF_04 | R        | • |
| MW.0140  | 25.4       | 0.37       |          | 4.03        |                 | 0          | 0.73       |     | 7.185_04 | B        | • |
| MW-0149  | 12.h.l.89  |            |          |             |                 | 0          | 0.34       | 0   | 1.06E-07 | B        | • |
| MW_0149  | 22-Dac_10  |            |          |             |                 | 0          | 0.71       | 0   | 2.22E-07 | <u>B</u> | • |
|          |            | · · · ·    | ~        |             |                 | v          |            |     |          | _        |   |

g:\users\day\_mmrailwong\TABLEK-6.XLS

÷.

.

Page 29 of 60

05/11/94

.

.

- -

|          |            |         | VOC GSAP C | oscentrations | Table K-6<br>up to Third Qu | arter 1993 Sat | npling Period |     |                      |                  |               |
|----------|------------|---------|------------|---------------|-----------------------------|----------------|---------------|-----|----------------------|------------------|---------------|
| Location | Log Date   | 1.2-DCA | 1.1-DCE    | ~1.2-DCE      | PCE                         | 1.1.1-TCA      | тск           | vc  | Risk for<br>Pathways | Operable<br>Unit | Zome          |
| MW-0149  | 02-Jul-90  | 0       | 0          |               | 0                           | 0              | 1.2           | 0   | 3.75E-07             | B                | D             |
| MW-0149  | 22-Oct-90  | 0       | 0          |               | 0                           | 0              | 0.83          | 0   | 9.85E-07             | В                | D             |
| MW-0149  | 09-Jan-91  | 0       | 0          |               | 0                           | 0              | 6.2           | 0   | 3.06E-06             | B                | D             |
| MW-0149  | 09-Jan-91  | 0       | 0.24       |               | 0.13                        | 0.48           | 7.3           | 0   | 3.06E-06             | B                | D             |
| MW-0149  | 01-May-91  | 0       | 0          |               | 0                           | 0              | 3.7           | 0   | 1.15E-06             | 3                | Э             |
| MW-0149  | 01-Aug-91  | 0       | 0          |               | 0                           | 0              | 1.4           | 0   | 4.37E-07             | B                | D             |
| MW-0149  | 04-Oct-91  | 0       | 0          |               | 0                           | 0              | 1.7           | 0   | 5.31E-07             | B                | D             |
| MW-0149  | 27-Jan-92  | 0       | 0          |               | 0                           | 0              | 0.54          | 0   | 1.69E-07             | B                | D             |
| MW-0149  | 22-Jui-92  | 0       | 0          | 0             | 0                           | 0              | 2.2           | 0   | 6.87E-07             | B                | D             |
| MW-0149  | 09-Oct-92  | 0       | 0          | 0             | 0                           | 0              | 0.73          | 0   | 2.28E-07             | В                | D             |
| MW-0149  | 19-Jan-93  | 0       | 0          | 0             | 0                           | 0              | 0.68          | 0   | 2.12E-07             | B                | D             |
| MW-0149  | 08-Apr-93  | 0       | 0          | 0             | 0                           | 0              | 0.38          | 0   | 2.48E-07             | B                | D             |
| MW-0149  | 08-Apr-93  | 0       | 0          | 0             | 0                           | 0              | 0.39          | 0   | 2.48E-07             | <u>_</u>         | D             |
| MW-0150  | 24-Mar-89  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | <u>B</u>         |               |
| MW-0150  | 14-Jul-89  | 0       | 0          |               | 18                          |                | 0             | 0   | 2.30E-05             | <u> </u>         | A             |
| MW-0150  | 20-Dec-89  | 0       | 0          |               | 26                          | 0.32           | 0             |     | 1.49E-05             |                  | A             |
| MW-0150  | 14 Mar 00  | 0       |            |               |                             | 0              | 0             | 0   | 3.20E-06             | 8                | A             |
| MW-0150  | 14-May-90  | 0       | 0          |               | 0.52                        |                | 0             | - 0 | 2.65E-06             | B                |               |
| MW-0150  | 06.101.90  |         | 0          | ······        | 0.54                        | 0              | 0.25          |     | 9.87E-07             | B                |               |
| MW-0150  | 11-00-90   | - 0     | 0          |               | 0                           | 0              | 0.25          | 0   | 2.6712-07            | 8                | A             |
| MW-0150  | 31-Jan-91  |         | 0          |               | 1.6                         | 0              |               |     | 3.16E-06             | B                |               |
| MW-0150  | 10-May-91  | 0       |            |               | 2.8                         | 0              | 0.51          | 0   | 3.74E-06             | B                | A             |
| MW-0150  | 11-Jul-91  | 0       | 0          |               | 2.6                         | 0              | 0             | 0   | 6.60E-06             | В                | A             |
| MW-0150  | 18-Oct-91  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | В                | A             |
| MW-0150  | 29-Jan-92  | 0       | 0          |               | 0.59                        | 0              | 0             | 0   | 3.16E-06             | В                | A             |
| MW-0150  | 20-Jui-92  | 0       | 0          | 0             | 0                           | 0              | 0             | ð   | 1.85E-06             | В                | A             |
| MW-0150  | 05-Oct-92  |         |            |               |                             |                |               |     | 6.27E-07             | В                | A             |
| MW-0150  | 05-Oct-92  | 0       | 0          | 0             | 0.49                        | 0              | 0             | 0   | 6.27E-07             | В                | A             |
| MW-0150  | 08-Jan-93  | 0       | 0          | 0             | 0.2                         | 0              | 0             | 0   | 2.56E-07             | B                | A             |
| MW-0150  | 08-Jan-93  | 0       | 0          | 0             | 0.43                        | 0              | 0             | 0   | 2.56E-07             | B                | <u>A</u>      |
| MW-0150  | 09-Apr-93  | 0       | 0          | 0             | 1.30                        | 0.55           | 0             | 0   | 3.81E-06             | B                | A             |
| MW-0150  | 02-Aug-93  | 0       | 0          | 0             | 0.14                        | 0              | 0             | 0   | 4.67E-06             | B                | <u> </u>      |
| MW-0151  | 20-Mar-89  | 0       | 0          |               | 0                           | 0              | 0             | - 0 | 0                    | <u> </u>         | B             |
| MW-0151  | 13-34-89   | 0       |            |               | 9.9                         | 0              | 0             |     | <u>1.4/E-05</u>      | <u>ם</u>         | - B           |
| MW-0151  | 19-Dec-89  | 0       |            |               |                             |                |               |     | 7.915.04             | 2                | D D           |
| MW-0151  | 23.477.00  | 0       | 0          |               | 0.1                         | 0              |               | 0   | 7.812-00             | B                | B             |
| MW-0151  | 16. Ini-90 | 0       | 0          |               | 0.31                        |                | 74            | - 0 | 2 71E-06             | B                | B             |
| MW-0151  | 15-Oct-90  | 0       | 0          |               | 0                           | 0              |               |     | 2.712.00             | B                | B             |
| MW-0151  | 31-Jan-91  | 0       | 0          |               | 0.83                        | 0              | 0             | 0   | 1.06E-06             | B                | B             |
| MW-0151  | 05-Apr-91  | 0       | 0          |               | 0.53                        | 0              | 0             | 0   | 6.79E-07             | B                | B             |
| MW-0151  | 10-Jul-91  | 0       | 0          |               | 0.47                        | 0              | 0             | 0   | 6.02E-07             | В                | B             |
| MW-0151  | 21-Oct-91  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | В                | B             |
| MW-0151  | 29-Jan-92  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | В                | B             |
| MW-0151  | 05-Oct-92  | 0       | 0          | 0             | 0                           | 0              | 0             | 0   | 0                    | В                | B             |
| MW-0151  | 09-Apr-93  | 0       | 0          | 0             | 7.90                        | 0              | 0             | 0   | 2.31E-05             | В                | B             |
| MW-0152  | 17-Mar-89  | 0       | 0          |               | 0                           | 0              | 0             | 0   | Õ                    | B                | С             |
| MW-0152  | 14-Jul-89  | 0       | 0          |               | 1.2                         | 0              | 0             | 0   | 1.54E-06             | B                | С             |
| MW-0152  | 20-Dec-59  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | C             |
| MW-0152  | 08-Feb-90  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | C             |
| MW-0152  | 14-May-90  | 0       | 0          |               | 0                           | 0              | 0.26          | 0   | 8.12E-08             | B                | C             |
| MW-0152  | 13-Jui-90  | 0       | 0          |               | 0                           | 0              | 18            | 0   | 5.62E-06             | B                | C             |
| MW-0152  | 03-Oct-90  | Ō       | C          |               | 0                           | 0              | 0             | 0   | 0                    | B                | C             |
| MW-0152  | 07-Jan-91  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | <u> </u>      |
| MW-0152  | 05-Apr-91  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                |               |
| MW-0152  | 29-Jul-91  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                |               |
| MW-0152  | 07-Oct-91  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | $\frac{c}{c}$ |
| MW-0152  | 29-Jan-92  | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | $\frac{c}{c}$ |
| MW-0152  | 20-Jul-92  | 0.37    | 0          |               | 0                           | 0              | 0             | 0   | 2.00E-05             | 8                | +             |
| MW-0152  | 05-0d-92   | 0       | 0          | 0             | 0                           | 0              | 0             | 0   | 0                    | B                |               |

g:\uers\de\j\_zumwal\wong\TABLEK-6.XLS

05/11/94

. . . . . . . .

|          | Table K-6           VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period           Location         Risk for         Operable           D         Loc Data         L2-DCE         PCE         L1-1-TCA         TCR         VC         Pathwarm         Time |         |          |           |       |           |       |     |          |          |               |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|-------|-----------|-------|-----|----------|----------|---------------|--|--|--|
| Location |                                                                                                                                                                                                                                                                         |         |          |           |       |           |       |     | Risk for | Operable |               |  |  |  |
| D        | Log Date                                                                                                                                                                                                                                                                | 1,2-DCA | 1,1-DCE  | e-1.2-DCE | PCE   | 1,1,1-TCA | TCE   | vc  | Pathways | Unit     | Zane          |  |  |  |
| MW-0152  | 08-Jan-93                                                                                                                                                                                                                                                               | 0       | 0        | 0         | 0     | 0         | 0     | - 0 | 0        | <u>B</u> | C             |  |  |  |
| MW-0152  | 27_htt_03                                                                                                                                                                                                                                                               |         | 0        | 0         | 0     | 0         | 0     |     |          | р<br>В   |               |  |  |  |
| MW-0152  | 05-May-89                                                                                                                                                                                                                                                               | 0       | 0        | <b>`</b>  | 0     | 0         | 12    | - 0 | 4.80E-06 | B        |               |  |  |  |
| MW-0153  | 13-Jul-89                                                                                                                                                                                                                                                               | 0       | 0        |           | 0.76  | 0         | 10    | - 0 | 4.57E-06 | B        | A             |  |  |  |
| MW-0153  | 20-Dec-89                                                                                                                                                                                                                                                               | 0       | Ö        |           | 4.4   | 0         | 43    | 0   | 2.22E-05 | B        | A             |  |  |  |
| MW-0153  | 20-Dec-89                                                                                                                                                                                                                                                               | 0       | 0        |           | 4.7   | 0         | 52    | 0   | 2.22E-05 | B        | A             |  |  |  |
| MW-0153  | 21-Feb-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 6.5   | 0         | 150   | 0   | 5.51E-05 | B        | A             |  |  |  |
| MW-0153  | 21-Feb-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 9.8   | 0         | 140   | 0   | 5.51E-05 | B        | A             |  |  |  |
| MW-0153  | 02-May-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 3.8   | 0         | 62    | 0   | 2.54E-05 | B        | A             |  |  |  |
| MW-0153  | 27-Jul-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 11    | 0         | 130   | 0   | 9.92E-05 | B        | <b>A</b>      |  |  |  |
| MW-0153  | 27-Jul-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 53    | 0         | 97    | 0   | 9.92E-05 | B        | A             |  |  |  |
| MW-0153  | 22-Oct-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 45    | 0   | 1.40E-05 | <u>B</u> | <b>A</b>      |  |  |  |
| MW-0153  | 22-Jan-91                                                                                                                                                                                                                                                               | 0       | 0        |           | 3.7   | 0         | 10    |     | 2.00E-05 | B        | A             |  |  |  |
| MW-0155  | 01-May-91                                                                                                                                                                                                                                                               |         | 0        |           | 43    | 0         | 07    |     | 3.70E-05 | B        | A             |  |  |  |
| MW-0153  | 21.00.91                                                                                                                                                                                                                                                                | 0       | <u>0</u> |           | 0.12  | 0         | 12    | 0   | 4.13E-06 | B        | A             |  |  |  |
| MW-0153  | 21-Oct-91                                                                                                                                                                                                                                                               | 0       | 0        |           | 0.74  | 0         | 14    | 0   | 4.13E-06 | B        | A             |  |  |  |
| MW-0153  | 22-Jan-92                                                                                                                                                                                                                                                               | 0       | 0        |           | 0.48  | 0         | 17    | 0   | 7.64E-06 | B        | A             |  |  |  |
| MW-0153  | 14-Jul-92                                                                                                                                                                                                                                                               | 0       | 0        | 6         | 7.1   | 0         | 110   | 0   | 5.65E-05 | В        | A             |  |  |  |
| MW-0153  | 14-Jul-92                                                                                                                                                                                                                                                               | 0       | 0        | 7.6       | 10    | 0         | 140   | 0   | 5.65E-05 | В        | A             |  |  |  |
| MW-0153  | 21-Oct-92                                                                                                                                                                                                                                                               | 0       | 0        | 13        | 21    | 0         | 170   | 0   | 8.26E-05 | B        | A             |  |  |  |
| MW-0153  | 08-Jan-93                                                                                                                                                                                                                                                               | 0       | 0        | 0         | 13    | 0         | 180   | 0   | 7.28E-05 | B        | A             |  |  |  |
| MW-0153  | 08-Jan-93                                                                                                                                                                                                                                                               | 0       | 0        | 0         | 17    | 0         | 220   | 0   | 7.28E-05 | B        | A             |  |  |  |
| MW-0153  | 09-Apr-93                                                                                                                                                                                                                                                               | 0       | 0        | 5.5       | 4.70  | 0         | 56    | 0   | 4.93E-05 | B        | A             |  |  |  |
| MW-0153  | 29-Jul-93                                                                                                                                                                                                                                                               | 0       | 0        | 6.39      | 15.90 | 0         | 155   | 0   | 1.46E-04 | B        | A             |  |  |  |
| MW-0154  | 01-May-89                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 0.27  | 0   | 9 435 09 | D        |               |  |  |  |
| MW-0154  | 20-Dec 80                                                                                                                                                                                                                                                               |         | 0        |           | 0.72  | 0         | 0.27  |     | 1 375-06 | B        | $\frac{c}{c}$ |  |  |  |
| MW-0154  | 08-Feb-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 0.72  | 0         | 0.83  | 0   | 2.59E-07 | B        | c             |  |  |  |
| MW-0154  | 08-May-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 1.7   | 0         | 0.57  | 0   | 2.35E-06 | B        | C             |  |  |  |
| MW-0154  | 19-Jul-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 8.7   | 0         | 0.93  | 0   | 1.18E-05 | В        | C             |  |  |  |
| MW-0154  | 03-Oct-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 0     | 0   | 0        | B        | С             |  |  |  |
| MW-0154  | 23-Jan-91                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 0.56  | 0   | 8.04E-07 | В        | C             |  |  |  |
| MW-0154  | 25-Apr-91                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 1.3   | 0   | 4.06E-07 | B        | C             |  |  |  |
| MW-0154  | 05-Aug-91                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 2.4   | 0   | 7.49E-07 | В        | C             |  |  |  |
| MW-0154  | 18-Oct-91                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 1.4   | 0   | 4.37E-07 | 8        | C             |  |  |  |
| MW-0154  | 30-Jan-92                                                                                                                                                                                                                                                               |         | 0        |           | 0     | 0         | 4.1   |     | 3.935-00 | 8        |               |  |  |  |
| MW-0154  | 20-0-4-02                                                                                                                                                                                                                                                               |         | 0        | 0.03      | 0     | 0         | 3.8   |     | 4.70F-06 | B        | C             |  |  |  |
| MW-0154  | 14. Jan. 93                                                                                                                                                                                                                                                             |         | 0        |           | 0     | 0         | 4.4   | 0   | 6.47E-06 | B        | c             |  |  |  |
| MW-0154  | 29-Jul-93                                                                                                                                                                                                                                                               |         | 0        | 0         | 0     | 0         | 3.17  | 0   | 2.01E-06 | B        | C             |  |  |  |
| MW-0155  | 14-Sep-89                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 48    | 0   | 1.50E-05 | В        | A             |  |  |  |
| MW-0155  | 10-Oct-89                                                                                                                                                                                                                                                               |         |          |           |       |           |       |     | 0        | B        | A             |  |  |  |
| MW-0155  | 07-Feb-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 0     | 0   | 1.12E-07 | B        | A             |  |  |  |
| MW-0155  | 14-May-90                                                                                                                                                                                                                                                               | 1.3     | 0        |           | 0     | 0         |       | 0   | 6.24E-06 | B        | <b>A</b>      |  |  |  |
| MW-0155  | 06-Jul-90                                                                                                                                                                                                                                                               | 0.24    | 0        |           | 0     | 0         | 22    | 0   | 8.36E-06 | B        | <b>A</b>      |  |  |  |
| MW-0155  | 30-Oct-90                                                                                                                                                                                                                                                               | 0       | 0        |           | 0     | 0         | 38    | 0   | 1.19E-05 | 8        | A .           |  |  |  |
| MW-0155  | 30-Jan-91                                                                                                                                                                                                                                                               | 0.28    | 0        |           | 0     | 0         | 28    | 0   | 1.01E-05 | 8        |               |  |  |  |
| MW-0155  | 24-Apr-91                                                                                                                                                                                                                                                               | 0.69    | 0        |           | 0     | 0         | 20    |     | 1.205-05 | D        |               |  |  |  |
| MW_0144  | 07-0-01                                                                                                                                                                                                                                                                 | 0.93    | 0        |           | 0     |           | 32    |     | 3.025.05 | R        | A             |  |  |  |
| MW_0144  | 24. Jan. 07                                                                                                                                                                                                                                                             | 0.55    | 0        |           | 0     | 0         | 33    |     | 1.76F-05 | B        |               |  |  |  |
| MW-0155  | 24-Jan-92                                                                                                                                                                                                                                                               | 0.72    | 0        |           |       | 0         | 40    | ŏ   | 1.76E-05 | B        |               |  |  |  |
| MW-0155  | 20-Jul-92                                                                                                                                                                                                                                                               | 0.74    | 0        | 18        | 0     | 0         | 18    | 0   | 9.20E-06 | B        | A             |  |  |  |
| MW-0155  | 06-Oct-92                                                                                                                                                                                                                                                               | 0.76    | 0        | 19        | 0     | 0         | 28    | 0   | 1.55E-05 | B        | A             |  |  |  |
| MW-0155  | 12-Jan-93                                                                                                                                                                                                                                                               | 0.61    | 0        | 13        | 0     | 0         | 19    | 0   | 1.12E-05 | B        | A             |  |  |  |
| MW-0155  | 12-Jan-93                                                                                                                                                                                                                                                               | 0.63    | 0        | 14        | 0     | 0         | 24    | 0   | 1.12E-05 | В        | A             |  |  |  |
| MW-0155  | 09-Apr-93                                                                                                                                                                                                                                                               | 0.44    | 0        | 15        | 0     | 0         | 25    | 0   | 2.48E-05 | B        | A             |  |  |  |
| MW-0155  | 28-Jui-93                                                                                                                                                                                                                                                               | 0       | 0        | 16.80     | 0     | 0         | 29.70 | 0   | 2.64E-05 | B        | <b>A</b>      |  |  |  |
| MW-0156  | 14-Sep-89                                                                                                                                                                                                                                                               | 0       | 0        | L         | 0     | 0         | 78    | 0   | 2.43E-05 | B        | B             |  |  |  |

g:\userv\de\j\_zumwa\\wong\TABLEK-6.XLS

í Ì

,

١.

.

ł

-

e le le la companya

Page 31 of 60

05/11/94

يها داميده متصفف ما ما والامو

|           | Table K-6 VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location |         |         |           |       |           |       |     |                      |          |          |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|-------|-----------|-------|-----|----------------------|----------|----------|--|--|--|
| Location  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         |           |       |           |       |     | Risk for             | Operable |          |  |  |  |
| <u>ID</u> | Log Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-DCA | L,1-DCE | c-1,2-DCE | PCE   | 1,1,1-TCA | TCE   | VC  | Pathwaye             | Unit     | Zame     |  |  |  |
| MW-0156   | 26-Feb-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 0     | 0         | 100   | 0   | 3.12E-05             | B        | В        |  |  |  |
| MW-0156   | 14-May-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2     | 0       |           | 0     | 0         | 92    | 0   | 3.13E-05             | 8        | B        |  |  |  |
| MW-0156   | 02-Aug-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 0     | 0         | 150   | 0   | 4.68E-05             | <u> </u> | 8        |  |  |  |
| MW-0156   | 29-0a-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0       |           | 0     | 0         | 94    | 0   | 2.93E-05             | B        | в        |  |  |  |
| MW-0150   | 29-00-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0       |           | 0     | 0         | 100   | - 0 | 2.935-03             |          | 8        |  |  |  |
| MW-0156   | 15-Jan-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 0     | 0         | 120   | 0   | 3.75E-03             | D        | D        |  |  |  |
| MW-0156   | 27-Apt-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0     |         |           |       | 0         | 250   |     | 4.06E.05             | B        | D<br>B   |  |  |  |
| MW-0156   | 01-Aug-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |           |       | 0         | 110   | 0   | 3.43E-05             | B        | B        |  |  |  |
| MW-0156   | 00-04-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       |         |           |       | 0         | 110   | 0   | 6.09E-05             | B        | B        |  |  |  |
| MW-0156   | 22-Jan-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 0     | 0         | 180   | 0   | 6.73E-05             | B        | B        |  |  |  |
| MW-0156   | 08-Jul-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |           |       |           |       |     | 0                    | B        | B        |  |  |  |
| MW-0156   | 08-Oct-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | Ō       | 64        | 0     | 0         | 81    | 0   | 2.53E-05             | B        | В        |  |  |  |
| MW-0156   | 27-Jan-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.98    | 0       | 38        | 0     | 0         | 93    | 0   | 3.39E-05             | В        | В        |  |  |  |
| MW-0156   | 19-Apr-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 25        | 0     | 0         | 85    | 0   | 6.29E-05             | В        | В        |  |  |  |
| MW-0156   | 19-Apr-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 29        | 0     | 0         | 99    | 0   | 6.29E-05             | В        | В        |  |  |  |
| MW-0156   | 29-Jul-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 38.10     | 0     | 0         | 114   | 0   | 7.38E-05             | B        | В        |  |  |  |
| MW-0157   | 21-Sep-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 390   | 0         | 4800  | 0   | 2.00E-03             | В        | A        |  |  |  |
| MW-0157   | 19-Feb-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 1400  | 0         | 5400  | 0   | 3.48E-03             | В        | A        |  |  |  |
| MW-0157   | 19-Mar-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 1100  | 0         | 7700  | 0   | 3.83E-03             | B        | A        |  |  |  |
| MW-0157   | 20-Apr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 1400  | 0         | 8000  | 0   | 4.29E-03             | B        | A        |  |  |  |
| MW-0157   | 05-Jul-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 740   | 0         | 7700  | 0   | 3.35E-03             | B        | A        |  |  |  |
| MW-0157   | 05-Jul-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 170     |           | 580   | 0         | 5800  | 0   | 3.35E-03             | B        | A        |  |  |  |
| MW-0157   | 30-Oct-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 700   | 0         | 6000  | 0   | 2.77E-03             | B        | A        |  |  |  |
| MW-0157   | 07-Jan-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 700   | 0         | 6000  | 0   | 2.77E-03             | B        | A        |  |  |  |
| MW-0157   | 08-May-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 0     | 0         | 30    | 0   | 9.36E-06             | B        | A        |  |  |  |
| MW-0157   | 06-Aug-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 250   | 0         | 3900  | 0   | 1.54E-03             | B        | A        |  |  |  |
| MW-0157   | 21-Oct-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 150   | 0         | 2500  | 0   | 9.72E-04             | B        | A        |  |  |  |
| MW-0157   | 21-Oct-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 180   | 0         | 2300  | 0   | 9.72E-04             | <u> </u> | A        |  |  |  |
| MW-0157   | 30-Jan-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           |       | 0         | 2300  | 0   | 9.10E-04             | B        | A        |  |  |  |
| MW-0157   | 28-301-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 0         | 70    | 0         | /40   | 0   | 3.74E-04             | D<br>D   |          |  |  |  |
| MW-0157   | 14 Jan 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           |       | 0         | 460   | - 0 | 2.932-04             | D        |          |  |  |  |
| MW-0157   | 14.Jan-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       | 0         | 68    | 0         | 670   | 0   | 2.905-04             | B        |          |  |  |  |
| MW-0157   | 29-Jul-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 0         | 86.20 | 4.84      | 664   | 0   | 6.82E-04             | B        |          |  |  |  |
| MW-0158   | 05-Oct-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |           |       |           |       |     | 4.15E-04             | B        | A        |  |  |  |
| MW-0158   | 05-Oct-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 80    | 0         | 1000  | 0   | 4.15E-04             | B        | A        |  |  |  |
| MW-0158   | 13-Feb-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 210   | 29        | 1500  | 0   | 7.42E-04             | В        | A        |  |  |  |
| MW-0158   | 13-Apr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 320   | 0         |       | 0   | 4.10E-04             | В        | A        |  |  |  |
| MW-0158   | 12-Jul-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 0     | 0         | 7700  | 0   | 2.69E-03             | B        | A        |  |  |  |
| MW-0158   | 23-Oct-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 60    | 0         | 6800  | 0   | 2.20E-03             | B        | A        |  |  |  |
| MW-0158   | 22-Jan-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |           |       |           |       |     | 0                    | B        | A        |  |  |  |
| MW-0158   | 08-May-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 890   | 0         | 8700  | 0   | 3.85E-03             | B        | A        |  |  |  |
| MW-0158   | 11-Jul-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 1100  | 0         | 6900  | 0   | 3.56E-03             | B        | A        |  |  |  |
| MW-0158   | 08-Oct-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 430   | 0         | 7300  | 0   | 4.00E-03             | B        | A        |  |  |  |
| MW-0158   | 08-Oct-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 690   | 0         | 10000 | 0   | 4.00E-03             | B        | A        |  |  |  |
| MW-0158   | 23-Jan-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |           |       |           |       |     | 0                    | B        | A        |  |  |  |
| MW-0158   | 26-Feb-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 400   | 0         | 2700  | 0   | 1.35E-03             | B        | A        |  |  |  |
| MW-0158   | 17-Jul-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 28        | 190   | 0         | 1300  | 0   | 6.49E-04             | B        | A        |  |  |  |
| MW-0158   | 22-Oct-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 58        | 68    | 0         | 430   | 0   | 2.21E-04             | B        | A        |  |  |  |
| MW-0158   | 14-Jan-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 18        | 110   | 0         | 950   | 0   | 4.37E-04             | B        | A        |  |  |  |
| MW-0158   | 03-Aug-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       | 15.90     | 50.70 | 0         | 467   | 0   | 4.50E-04             | B        | <b>A</b> |  |  |  |
| MW-0159   | 28-Dec-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0       |           | 1.3   | 0         | 85    | 0   | 3.34E-05             | B        | <b>A</b> |  |  |  |
| MW-0159   | 11-May-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1     | 0       |           | 0     | 0         | 140   | 0   | 4.61E-05             | 8        |          |  |  |  |
| MW-0159   | 05-Jul-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 55      |           | 29    | 0         | 940   | 0   | 4.59E-04             | B        |          |  |  |  |
| MW-0159   | 07-Nov-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |           | 0     | 0         | 103   | 0   | 2.64E-05             | 8        |          |  |  |  |
| MW-0159   | U7-Nov-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7     | 0       |           | 0     | 0         | 66    | 0   | 2.645-05             | <u> </u> |          |  |  |  |
| MW 0159   | 07-Jan-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4     | 0       |           | 5     | 0         | 110   | 0   | 4.8/5-05             | 8        |          |  |  |  |
| MW-0140   | 02-Apr-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0     | 0       |           | 3.9   | 0         | 55    | 0   | 3.10E-05             | 9        |          |  |  |  |
| MW.0160   | 25.0-4 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1     |         |           | 0.12  |           | 23    |     | 3.438-03<br>A 11E 04 | P<br>R   |          |  |  |  |
| M #-0139  | 43-UCI-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2     | 0       | L         | 1.2   | 0         | 6/    | U   | 4.11E-05             |          |          |  |  |  |

g:\users\da\j\_zumwal\woog\TABLEK-6.XLS

i

Ì

T

.

÷

h

,

. .

Page 32 of 60

05/11/94

)

-

| - | • | • | - | ٠ | <br> | <br>_ |
|---|---|---|---|---|------|-------|
|   |   |   |   |   |      |       |

| Londler 1 |                                                                                                                 |          |                                         |           |      | T         |       | <u> </u> | Did for              | O        | Ť |
|-----------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------|------|-----------|-------|----------|----------------------|----------|---|
| D D       | Log Date                                                                                                        | 1,2-DCA  | 1,1-DCE                                 | e-1,2-DCE | PCE  | 1,1,1-TCA | TCE   | vc       | Raik ser<br>Pathways | Unit     | l |
| MW-0159   | 31-Jan-92                                                                                                       | 0        | 0                                       |           | 0    | 0         | 120   | 0        | 5.45E-05             | B        | I |
| MW-0159   | 31-Jan-92                                                                                                       | 2.1      | 0                                       |           | 2.9  | 0         | 110   | 0        | 5.45E-05             | B        | ţ |
| MW-0159   | 17-Jul-92                                                                                                       | 1.1      | 0                                       | 55        | 5    | 0         | 110   | 0        | 5.05E-05             | B        | 1 |
| MW-0159   | 09-Oct-92                                                                                                       | 2.6      | 0                                       | 77        | 10   | 0         | 110   | 0        | 6.41E-05             | B        | 1 |
| MW-0159   | 14-Jan-93                                                                                                       |          |                                         |           |      |           |       |          | 5.49E-05             | B        | 1 |
| MW-0159   | 14-Jan-93                                                                                                       | 0        | 0                                       | 42        | 6.3  | 0         | 150   | 0        | 5.49E-05             | B        | 1 |
| MW-0159   | 03-Aug-93                                                                                                       | 0        | 0                                       | 38.70     | 32.5 | 0         | 263   | 0        | 2.72E-04             | B        | 1 |
| MW-0160   | 11-Oct-89                                                                                                       | 0        | 0                                       |           | 0    | 0         | 3.6   | 0        | 5.64E-06             | ٨        | 1 |
| MW-0160   | 11-Oct-89                                                                                                       | 0        | 0                                       |           | 0    | 0         | 4     | 0        | 5.64E-06             | ٨        |   |
| MW-0160   | 16-Oct-89                                                                                                       |          |                                         |           |      |           |       |          | ō                    | Α        | 1 |
| MW-0160   | 17-Jan-90                                                                                                       | 0        | 0                                       |           | 0    | 0         | 13    | 0        | 1.15E-05             | A        |   |
| MW-0160   | 20-Mar-90                                                                                                       | 0        | 0                                       |           | 0    | 0         | 21    | 0        | 1.64E-05             | A        | 1 |
| MW-0160   | 12-May-90                                                                                                       | 0.34     | 0                                       |           | 0    | 0         | 27    | 0        | 2.22E-05             | A        |   |
| MW-0160   | 08_419-90                                                                                                       | 0        |                                         |           | 0    | 0         | 31    | 0        | 2.14E-05             | A        |   |
| MW-0160   | 08-4119-90                                                                                                      |          |                                         |           |      |           | 29    |          | 2.14E-05             |          | 1 |
| MW-0160   | 16.00.00                                                                                                        | 17       |                                         | <u> </u>  |      |           | 21    | 0        | 1.77E-04             |          | - |
| MW-0160   | 08_Jan_01                                                                                                       | 23       | 0.85                                    |           | 2.4  | 0.58      | 56    | <u> </u> | 3.57E-05             | A        |   |
| MW-0160   | 25.Arv-01                                                                                                       |          | 0.03                                    |           | 0    |           | 54    |          | 4.09F-05             |          | - |
| MW-0160   | 25-Apr-01                                                                                                       | 3.1      |                                         |           |      |           | 61    | - 0      | 4.09F_05             | A        |   |
| MW-0160   | 00.1.1.01                                                                                                       |          |                                         |           |      |           |       | - 0      | \$ 03E-05            | A        | - |
| MW-0160   | 21-002                                                                                                          |          | 66                                      | 48        | 0    |           | 72    |          | 4.34F_04             | <u> </u> |   |
| MW-0161   | 06-00-20                                                                                                        |          |                                         |           |      |           |       |          |                      |          |   |
| MW-0161   | 11.00.00                                                                                                        |          |                                         |           |      |           |       | - 0      | 0                    | A        | _ |
| MW_0141   | 16.00 80                                                                                                        | <b>y</b> |                                         |           |      |           |       |          |                      | A        | - |
| MW_0161   | 27-Dec 20                                                                                                       |          |                                         |           |      | 0         | 0     |          |                      | A        | 1 |
|           | 16 May 00                                                                                                       |          | ~ ~                                     |           |      |           |       |          |                      | <u> </u> | - |
| MW_0141   | 30 Iul 00                                                                                                       |          |                                         |           |      |           |       |          | 0                    | A        | • |
| MW-0101   | 08.7                                                                                                            |          |                                         | ł         |      |           |       |          | 6 275.00             |          | - |
|           | 06.410-01                                                                                                       |          | ~ ~                                     |           |      |           | 0.22  |          | 8125-08              |          |   |
| MW-0161   | 26. Jul.02                                                                                                      |          |                                         |           |      |           | 0.25  |          | 7.71F_07             | A        | - |
| MW_0141   | 26-141-03                                                                                                       |          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |           |      |           | 0.73  |          | 7.715.07             | A        |   |
| MW_0162   | 04 Dec 20                                                                                                       |          |                                         | f         |      | 037       | 30    |          | 1.22F_05             | R        | - |
| MW_0162   | 04.000.00                                                                                                       |          | 0.10                                    |           |      | 0         | 26    |          | 1 22F_04             | B        | _ |
| MW-0162   | 20-Me-00                                                                                                        |          |                                         |           |      | 0.63      | 9.8   | - 0      | 3.35E.06             | B        |   |
| MW_0162   | 20-Ma-00                                                                                                        |          |                                         |           | 0.42 | 0.70      | 6.5   | <u> </u> | 3.35E-06             | B        |   |
| MW_0142   | 06.404.00                                                                                                       |          |                                         |           | 0.78 | 0.13      | 0.5   |          | 1 ARF_04             | R        |   |
| MW-0162   | 06.400.00                                                                                                       |          | 0.05                                    |           |      | 0         |       |          | 1 ARF-04             | R        | _ |
| MW_0162   | 30.04.00                                                                                                        | 0.74     |                                         |           |      |           | 19    |          | 5 675-04             | B        | ~ |
| MW_0142   | 08 Mer 01                                                                                                       |          |                                         |           |      |           | 01    |          | 2 84E_04             | R        |   |
| MW 0142   | 07 101 02                                                                                                       |          |                                         | 0.00      |      |           | 7.1   |          | 2.040-00             | R        |   |
| MW_0142   | 27. Jul 02                                                                                                      |          |                                         | 0.39      | 2 10 |           | 19 20 | - 0      | 2.312-00             | R        | - |
| MW-0162   | 21-14-93                                                                                                        |          |                                         |           | 3.18 |           | 10.30 |          | 2.130-03             | R        | - |
| MW-0103   | 24 Am 00                                                                                                        |          |                                         | <u> </u>  |      |           |       |          | 3 000.04             | R        |   |
| MW 0163   | 24-Apt-90                                                                                                       |          |                                         |           |      |           | 0.5   |          | 3.092-00             | <u>p</u> |   |
| MW-0103   | 24-Apt-90                                                                                                       | 0        |                                         |           |      |           | 7.9   |          | 3.070-00             | 2        | - |
| MW-0103   | 0/-Aug-90                                                                                                       |          |                                         |           |      | 0         |       |          | 2.310-00             | <u>а</u> |   |
| m W-U103  | 23-Ua-90                                                                                                        | U        | 0                                       |           | U    | U         |       | U        | 4.162-00             | D<br>    |   |
| MW-0103   | 43-JAD-91                                                                                                       |          |                                         | <b> </b>  |      |           |       |          | U                    |          | - |
| MW-0103   | 22-301-91                                                                                                       | 0        | 0                                       |           |      |           | 8.4   |          | 1.040-00             | P        | - |
| MW-0163   | 27-Jan-93                                                                                                       | 0        | 0                                       | 0.69      | 0    | 0         |       | 0        | 1./25-06             | <u> </u> | - |
| MW-0164   | U/-Nov-89                                                                                                       | 0        | 0                                       |           | 0    | 0         |       | 0        | 9./9E-06             |          |   |
| MW-0164   | 26-Jua-90                                                                                                       | 0.16     | 0                                       |           | 0    | 0         |       | 0        | 5.28E-06             | B        |   |
| MW-0164   | 30-Oct-90                                                                                                       | 0        | 0                                       | <b>-</b>  | 0    | 4.5       | 14    | 0        | 4.37E-06             | B        | _ |
| MW-0164   | 14-Jan-91                                                                                                       | 0.3      | 1.2                                     |           | 0.47 | 0.46      | 17    | 0        | 6.55E-06             | B        |   |
| MW-0164   | 09-Apr-91                                                                                                       | 0.45     | 1.7                                     |           | 0    | 0         | 13    | 0        | 6.62E-06             | В        |   |
| MW-0164   | 29-Jul-91                                                                                                       | 0        | 0                                       |           | 0    | 0         | 13    | 0        | 6.84E-06             | B        |   |
| MW-0164   | 29-Jul-91                                                                                                       | 0.47     | 0                                       |           | 0    | 0         | 13    | 0        | 6.84E-06             | <u> </u> |   |
| MW-0164   | 19-Apr-93                                                                                                       | 0.15     | 0.82                                    | 10        | 0    | 0         | 17    | 0        | 1.61E-05             | B        |   |
| MW-0164   | 19-Apr-93                                                                                                       | 0.31     | 1.30                                    | 10        | 0    | 0         | 16    | 0        | 1.61E-05             | B        |   |
| MW-0165   | 08-Nov-89                                                                                                       | 0        | 0                                       |           | 0    | 0         | 170   | 0        | 5.78E-05             | В        |   |
|           | The second second second second second second second second second second second second second second second se |          |                                         |           |      |           |       |          |                      |          |   |

g:\usen\de\j\_zamwal\woeg\TABLEK-6.XLS

7

,

,

,

ł

ţ

- -

1 ... in state water

.

Page 33 of 60

05/11/94

Table K-6 VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period

|          |           | ******************** | VOC GSAP C | encentrations | Table K-6<br>up to Third Qu | marter 1993 Sa | mpling Period |     |          |          |            |
|----------|-----------|----------------------|------------|---------------|-----------------------------|----------------|---------------|-----|----------|----------|------------|
| Location |           | r                    |            |               |                             | ·              |               |     | Risk for | Operable |            |
| <u> </u> | Log Date  | 1,2-DCA              | 1,1-DCE    | €-1,2-DCE     | PCL                         | 1,1,1-TCA      | TCE           | VC  | Pathways | Unit     | 2          |
| MW-0165  | 18-Oct-90 | 0                    | 0          | <u> </u>      | 0                           | 0              | 140           | 0   | 5.36E-05 | B        | B          |
| MW-0165  | 09-Apr-91 | 0                    | 0          | ļ             | 0                           | 0              | 160           | 0   | 5.158-05 | <u> </u> | B          |
| MW-0166  | 06-NOV-89 | 0                    | 0          | ļ             | 0                           | 0              | 100           |     | 5.122-05 |          |            |
| MW-0100  | 27-JUE-90 | 0                    | 3.3        |               |                             | 0              | 130           | 0   | 3.022-03 |          |            |
| MW-0100  | 14 100.01 |                      |            |               | 0                           |                | 130           | 0   | 1755.05  | 8        |            |
| MW-0166  | 09.Anr.91 |                      | 0          |               | 0                           | 0              | 120           | 0   | 3.75E-05 | B        |            |
| MW-0166  | 09-Apr-91 | 0                    | 0          |               | 0                           | 0              | 130           | 0   | 3.75E-05 | B        | c l        |
| MW-0166  | 30-Jul-91 | 1.1                  | 0          |               | 0                           | Ō              | 100           | 0   | 3.56E-05 | B        | t c l      |
| MW-0167  | 15-Dec-89 | 0                    | 0          |               | 0                           | 0              | 79            | 0   | 2.47E-05 | B        | D          |
| MW-0167  | 11-Jul-90 | 0.73                 | 0          |               | 0                           | 0              | 82            | 0   | 2.72E-05 | B        | D          |
| MW-0167  | 24-Oct-90 | 0                    | 0          |               | 0                           | 0              | 66            | 0   | 2.06E-05 | B        | D          |
| MW-0167  | 18-Jan-91 | 0                    | 0          |               | 0                           | 0              | 53            | 0   | 1.65E-05 | B        | D          |
| MW-0167  | 09-Apr-91 | 0                    | 0          |               | 0                           | 0              | 67            | 0   | 2.09E-05 | B        | D          |
| MW-0167  | 30-Jul-91 | 0.77                 | 0          |               | 0                           | 0              | 57            | 0   | 1.94E-05 | B        | D          |
| MW-0167  | 19-Apr-93 | 0.36                 | 0          | 11            | 0                           | 0              | 28            | 0   | 1.96E-05 | B        | D          |
| MW-0168  | 19-Jan-90 | 0                    | 0          |               | 0                           | 0              | 70            | 0   | 1.96E-05 | B        | D          |
| MW-0168  | 19-Jan-90 | 0.82                 | 0          |               | 0                           | 0              | 57            | 0   | 1.96E-05 | B        | D          |
| MW-0168  | 10-Apt-90 | 0                    | 0          |               | 0                           | 0              | 54            | 0   | 9.74E.09 | 8        |            |
| MW-0168  | 25-0d-90  | 0                    | 0          |               |                             | 0              | 0.28          | 0   | 8.74E-08 | <u>B</u> |            |
| MW-0169  | 28.540.00 | 0                    |            |               |                             | 0              | 22            | - 0 | 6.87E-07 | <u> </u> |            |
| MW-0169  | 08-1ap-91 | 0                    | 0          |               | 0                           | 0              | 9.3           |     | 3.61E-06 |          |            |
| MW-0169  | 08-Apr-91 | 0                    | 0          |               | 0                           | 0              | 7.9           | 0   | 2.47E-06 | A        |            |
| MW-0169  | 05-Aug-91 | 0                    | 0          |               | 0                           | 0              | 5             | 0   | 1.56E-06 | A        |            |
| MW-0169  | 30-Jap-92 |                      |            |               |                             |                |               |     | 0        | A        |            |
| MW-0169  | 25-Feb-92 | 0                    | 0          |               | 0                           | 0              | 10            | 0   | 4.71E-06 | A        |            |
| MW-0169  | 20-Jul-92 | 0                    | 0          | 0             | 0                           | 0              | 2.7           | 0   | 8.43E-07 | A        | A          |
| MW-0169  | 20-Jul-92 | 0                    | 0          | 0             | 0                           | 0              | 3.9           | 0   | 8.43E-07 | A        | A          |
| MW-0169  | 12-Oct-92 | 0                    | 0          | 0             | 0                           | 0              | 3.3           | 0   | 1.03E-06 | A        | A          |
| MW-0169  | 12-Oct-92 | 0                    | 0          | 0             | 0                           | 0              | 4.7           | 0   | 1.03E-06 | <u>A</u> | A          |
| MW-0169  | 19-Jan-93 | 0                    | 0          | 0             | 0.25                        | 0              | 7.3           | 0   | 2.605-06 | <u>A</u> |            |
| MW-0169  | 06-Apr-93 | 0                    | 0          | 0             | 0                           | 0              | 6.70          | 0   | 4.25E-00 | A        |            |
| MW-0169  | 04 Aug 03 | 0                    | 0          | 0             |                             | 0              | 0.80          | 0   | 4.23E-00 | <u>^</u> | <b>^</b> - |
| MW-0170  | 05.100.90 |                      |            |               |                             | 0              |               | 0   | 2.052-00 | <u> </u> | B          |
| MW-0170  | 11-May-90 | 0                    | 0          |               | 0                           | 0              | 0             | Ő   | 0        | A        | B          |
| MW-0170  | 23-Jul-90 | 0                    | 0          |               | 0                           | 0              | 0             | 0   | 0        | A        | B          |
| MW-0170  | 08-Jan-91 | 0                    | 0          |               | 0                           | 0              | 0             | 0   | 8.30E-08 | A        | B          |
| MW-0170  | 05-Aug-91 | 0                    | 0          |               | 0                           | 0              | 0             | 0   | 0        | A        | B          |
| MW-0170  | 14-Oct-91 | 0                    | 0          |               | 0                           | 0              | 0             | 0   | 9.67E-07 | A        | В          |
| MW-0170  | 30-Jan-92 |                      |            |               |                             |                |               |     | 0        | A        | B          |
| MW-0170  | 25-Feb-92 | 0                    | 0          |               | 0                           | 0              | 0             | 0   | 0        | <u>A</u> | B          |
| MW-0170  | 08-Apr-93 | 0                    | 0          | 0             | 0                           | 0              | 0             | 0   | 0        | <u> </u> | B          |
| MW-0171  | 22-Dec-89 | 0                    | 0          |               | 0                           | 0              | 0             | 0   | 0        | <u>A</u> | C C        |
| MW-0171  | 14-May-90 | 0                    | 0          |               | 0                           | 0              | 0             |     | 0        | A        |            |
| MW-01/1  | 27-JUL-90 | 0                    | 0          | <b></b>       |                             |                | 0             | - 0 | 0        | A        |            |
| MW_0171  | 01.64.02  | 0                    |            |               | 0                           | 0              |               |     |          | A        |            |
| MW-0171  | 12-0-1-07 |                      |            |               |                             | 0              |               | - 0 | 0<br>0   | Ā        | t c        |
| MW-0172  | 09-Feb-90 | 0                    | 600        |               |                             | 0              | 15000         | 0   | 6.36E-03 |          |            |
| MW-0172  | 30-M#-90  | 0                    | 0          |               | 0                           | 0              | 20000         | 0   | 1.20E-02 | A        |            |
| MW-0172  | 30-Mar-90 | 0                    | 0          |               | 0                           | 0              | 21000         | 0   | 1.20E-02 | A        | A          |
| MW-0172  | 13-Jul-90 | 0                    | 0          |               | 0                           | 0              | 14000         | 0   | 1.49E-02 | A        | A          |
| MW-0172  | 13-Jul-90 | 0                    | 2000       |               | 0                           | 0              | 26000         | 0   | 1.49E-02 | A        | A          |
| MW-0172  | 11-Jan-91 | 0                    | 490        |               | 0                           | 0              | 10000         | 0   | 7.07E-03 | A        | A          |
| MW-0172  | 11-Jan-91 | 60                   | 800        |               | 120                         | 0              | 16000         | 0   | 7.07E-03 | A        | A          |
| MW-0172  | 30-Apt-91 | 0                    | 0          |               | 0                           | · 0            | 15000         | 0   | 8.30E-03 | A        | A          |
| MW-0172  | 09-Aug-91 | 0                    | 0          |               | 0                           | 0              | 15000         | 0   | 7.33E-03 | A        | A          |
| MW-0172  | 09-Aug-91 | 0                    | 0          |               | 0                           | 0              | 17000         | 0   | 7.33E-03 | <u>A</u> | A          |
| MW-0173  | 23-Jan-90 | Ō                    | 0          |               | 0                           | 0              | 12            | 0   | 2.97E-05 | <b>A</b> | B          |

g:\users\dayi\_zumwal\woog\TABLEK-6.XLS

.

1

Ì

1

.

.

1

(

,

7

ł

Ì

05/11/94

-----

)

\_

يرد در مورد معدمه الد مرد مارد

-

|                |             |          | VOC GSAP C                              | oncentrations : | up to Third Qu | mrter 1993 Sa                           | mpling Period |          |                      |                  |
|----------------|-------------|----------|-----------------------------------------|-----------------|----------------|-----------------------------------------|---------------|----------|----------------------|------------------|
| Location<br>ID | Los Date    | 1.2-DCA  | 1.1-DCE                                 | e-1.2-DCE       | PCE            | I.I.I-TCA                               | TCE           | VC       | Risk for<br>Pathware | Operable<br>Unit |
| MW-0173        | 09-May-90   | 0.14     | 0.44                                    |                 | 0              | 0                                       |               | 0        | 3.70E-05             | A                |
| MW-0173        | 18 Jul 90   | 0.17     | 0                                       |                 |                | 0                                       | 25            | 0        | 5.08E-05             | A                |
| MW-0173        | 16.0+00     | 0.57     |                                         |                 |                |                                         | 52            |          | 6 15E 06             |                  |
| MW-0173        | 10-00-90    |          |                                         |                 |                | 0                                       | 52            |          | 0.332-03             |                  |
| MW-0173        | 09-340-91   | 0        | 1.5                                     |                 | 0              | 0                                       | 91            |          | 9.71E-05             | A                |
| MW-0173        | 09-Jan-91   | 0        | 1.8                                     |                 | 0              | 0                                       | 99            | - 0      | 9.71E-05             | <u> </u>         |
| MW-0173        | 08-May-91   | 0        | 0                                       |                 | 0              | 0                                       | 140           | 0        | 4.37E-05             | A                |
| MW-0173        | 06-Aug-91   | 0        | 0                                       |                 | 0              | 0                                       | 48            | 0        | 4.61E-05             | <u> </u>         |
| MW-0173        | 29-Jul-93   | 0        | 0                                       | 0               | 0              | 0                                       | 257           | 0        | 3.70E-04             | <b>A</b>         |
| MW-0174        | 19-Dec-89   | 0        | 0                                       |                 | 0              | 0                                       | 0.7           | 0        | 2.18E-07             | A                |
| MW-0174        | 03-May-90   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0174        | 06-Aug-90   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0174        | 16-Oct-90   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0174        | 25-Jan-91   |          |                                         |                 |                |                                         |               |          | 0                    | A                |
| MW-0174        | 07-May-91   | 0        | 0                                       |                 | 0              | 0                                       | 6.2           | 0        | 1.94E-06             | A                |
| MW-0174        | 06-409-91   | 0        | 0                                       |                 |                | 0                                       | 2.1           | 0        | 1.38E-06             | A                |
| MW-0174        | 13.4.03     | <u>_</u> |                                         |                 | - <u> </u>     |                                         | 0.77          | <u> </u> | 4 89F_07             | A                |
| MW.0174        | 26 04 90    |          |                                         |                 |                | 0                                       |               |          |                      | A                |
| MW 0178        | 01. Mar: 00 |          | X                                       |                 |                |                                         |               | - 0      |                      | A                |
| MW-01/3        | 12 Tul 00   | 0        |                                         |                 |                | 0                                       |               |          | 1.405.00             | <u> </u>         |
| MW-U1/3        | 12-J01-90   |          |                                         |                 |                | 0                                       | 0.45          |          | 1.406-07             | <u>A</u>         |
| MW-U1/5        | 10-04-90    | U        | 0                                       | ·               | U              | 0                                       | U             | 0        | 0                    | A                |
| MW-0175        | 09-Jan-91   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | <b>^</b>         |
| MW-0175        | 05-Apr-91   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | <u>A</u>         |
| MW-0175        | 02-Aug-91   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | <b>A</b>         |
| MW-0175        | 11-Oct-91   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 5.32E-06             | <u> </u>         |
| MW-0175        | 28-Jan-92   | 0        | 0                                       |                 | 1.3            | 0                                       | 3.2           | 0        | 2.66E-06             | <b>A</b>         |
| MW-0175        | 14-Oct-92   | 0        | Ō                                       | 0               | 0              | 0                                       | 0             | 0        | 0                    | Α                |
| MW-0175        | 08-Apr-93   | 0        | 0                                       | 0               | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0176        | 26-Oct-89   |          |                                         |                 |                |                                         |               |          | 0                    | A                |
| MW-0176        | 26-Oct-89   | 0        | 0                                       | 0               | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0176        | 01-May-90   | 0        | ō                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0176        | 01-Aug-90   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0176        | 09-Jan-91   | 0        | Ö                                       | ······          | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0176        | 24-Jul-91   | 0        | u                                       |                 | 0              | 0                                       | 0             | 0        | 2.42E-07             | A                |
| MW-0176        | 11-00-91    |          |                                         |                 | 0              | 0                                       | 0             |          | 2.42E-06             | A                |
| MW-0176        | 01.5eb-92   | 0        |                                         |                 |                | 1.6                                     | 14            | 0        | 4.37E-07             | A                |
| MW-0176        | 17. Jul-92  |          | ů                                       |                 |                | 0.94                                    |               |          | 0                    |                  |
| MW-0176        | 14.0+92     |          | — ől                                    |                 |                | 0                                       | 0.80          | - 0      | 2 78F-07             |                  |
| MW 0176        | 11 100.92   |          |                                         |                 |                | <u>_</u>                                | 0.65          |          | 2.102-01             |                  |
| MW-0170        | 11-Jan-93   |          |                                         |                 |                | 0                                       |               |          | 2 81 8 07            | -                |
| MW 0177        | 26 Ic= 00   |          | ×                                       | U               |                |                                         | 0.00          |          | 3.61E-U/             | <u> </u>         |
| MW-01//        | 20-388-90   |          |                                         |                 |                | 0                                       |               | <u> </u> |                      | A                |
| MW-U1//        | 27-Apt-90   |          | 0                                       |                 |                | 0                                       | 0             |          |                      | A                |
| MW-0177        | 10-Jul-90   | 0        | 0                                       |                 | 0              | 0                                       | 4.7           | U        | 1.47E-06             | <b>A</b>         |
| MW-0177        | 01-Aug-91   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | <b>A</b>         |
| MW-0177        | 07-Oct-91   | 0        | 0                                       |                 | 0              | 0                                       | 0.2           | 0        | 2.24E-06             | <b>A</b>         |
| MW-0177        | 29-Jan-92   | 0        | 0                                       |                 | 0              | 0                                       | 0             | 0        | 0                    | <u>A</u>         |
| MW-0177        | 24-Jul-92   |          |                                         |                 |                |                                         |               |          | 0                    | A                |
| MW-0177        | 24-Jul-92   | 0        | 0                                       | 0               | 0              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0177        | 14-Oct-92   | 0        | 0                                       | 0               | o              | 0                                       | 0             | 0        | 0                    | A                |
| MW-0177        | 19-Jan-93   |          |                                         |                 |                | · · · · · · · · · · · ·                 |               | f        | 0                    | A                |
| MW-0177        | 19-Jan-93   | 0        | 0                                       | 0               |                | 0                                       | 0             | 0        | 0                    | A                |
| MW-0178        | 17-Jan-90   | 0        |                                         |                 |                | 0                                       | 60            | 0        | 4.56E-05             | •                |
| MW-0178        | 30-Mar-90   |          |                                         |                 |                | 0                                       | 66            | 0        | 2.06F-05             |                  |
| MW.0178        | 16-hal-00   |          |                                         |                 | 0.79           |                                         |               |          | 7.225_04             |                  |
| MW_A174        | OK New M    |          |                                         |                 |                |                                         |               |          | A 64E 04             |                  |
| MW-V1/8        | 06-1404-20  |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                 |                | 0                                       | 08            | ~ ~      | 4 44E A4             |                  |
| MW-V1/8        | 00-100-50   |          |                                         |                 | 0.55           | 0                                       | C8            | 0        | CU-3PC.P             | <u> </u>         |
| MW-0178        | 05-140-91   | 0        | 0                                       |                 | 0              | 0                                       | 71            | U        | 8.891-05             | <b>A</b>         |
| MW-0178        | 23-Apr-91   | 0        | 0                                       |                 |                | 0                                       | 76            | 0        | 8.63E-05             | <b>A</b>         |
| MW-0178        | 23-Apr-91   | 0        | 0                                       |                 |                | 0                                       | 90            | 0        | 8.63E-05             | <b>A</b>         |
| MW-0178        | 07-Aug-91   | 0        | 0                                       |                 |                | 0                                       | 130           | 0        | 1.48E-04             | <b>A</b>         |
| MW-0178        | 13-Apr-93   | 0        | 0                                       | 0               | 0              | 0                                       | 89            | Ō        | 2.51E-04             | A                |
|                | 1           |          |                                         |                 |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |               |          |                      |                  |

www.davj\_zazzwai/woog/TABLEK-6.XLS 8°4

í

1

----

,

1

۱

05/11/94

|          |                       |         | VOC GSAP C | Concentrations                                | Table K-6<br>up to Third Qu | narter 1993 Su | mpling Period |          |          |          |          |
|----------|-----------------------|---------|------------|-----------------------------------------------|-----------------------------|----------------|---------------|----------|----------|----------|----------|
| Location | 1                     | l       |            | l                                             |                             |                |               |          | Risk for | Operable |          |
| D.       | Log Date              | 1,2-DCA | 1,1-DCE    | ~1,2-DCE                                      | PCE                         | LLI-TCA        | TCE           | VC       | Pathways | Unit     | Zane     |
| MW-0179  | 02-May-90             | 0       | 0          | ļ                                             | 0.21                        | 0              | 0             | 0        | 2 605 07 | <u> </u> | B        |
| MW-0179  | 18.0.4.90             | 0       |            | <u>                                      </u> | 0.21                        | 0              | 0             | 0        | 2.092-07 |          | R        |
| MW-0179  | 15-0c-90              | 0       | 0          | {                                             | 0                           | 0              | 0.32          | 0        | 9.99E-08 | <u>A</u> | B        |
| MW-0179  | 07-May-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        |          | B        |
| MW-0179  | 07-Aug-91             | 0       | 0          |                                               | 0                           | 0              | 2.5           | 0        | 7.80E-07 | A        | B        |
| MW-0179  | 13-Apr-93             | 0       | 0          | 0                                             | 0                           | 0              | 0             | 0        | 0        | A        | B        |
| MW-0180  | 11-Jan-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | A        | c        |
| MW-0180  | 03-May-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | A        | c        |
| MW-0180  | 07-Nov-90             | 0       | 0          | ·····                                         | 0                           | 0              | 0             | 0        | 0        | •        | C        |
| MW-0180  | 25-Jan-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | A        | С        |
| MW-0180  | 07-Aug-91             | 0       | 0          | <u> </u>                                      | 0                           | 0              | 5.9           | 0        | 1.84E-06 | A        | С        |
| MW-0181  | 20-Dec-89             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | В        | С        |
| MW-0181  | 28-Sep-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | B        | С        |
| MW-0181  | 09-Jan-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | B        | С        |
| MW-0181  | 25-Jul-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | В        | С        |
| MW-0181  | 28-Jan-93             | 0       | 0          | 0                                             | 0                           | 0              | 0.63          | 0        | 1.97E-07 | B        | C        |
| MW-0182  | 15-Feb-90             | 0       | 0          |                                               | 0                           | 0              | 3.4           | 0        | 1.06E-06 | B        | <b>A</b> |
| MW-0182  | 23-Mar-90             | 0       | 0          |                                               | 0                           | 0              | 3.1           | 0        | 1.58E-06 | B        | A        |
| MW-0182  | 13-Jul-90             | 0.12    | 0          |                                               | 0                           | 0              | 31            | 0        | 1.09E-05 | 8        | A        |
| MW-0182  | 09-Nov-90             | 0       | 0          | ļ                                             | 0                           | 0              | 3.1           | 0        | 9.08E-07 | B        | A        |
| MW-0182  | 1/-Jan-91             | 0.1     | 0          |                                               | 0                           | 0              | 4.5           | 0        | 2.28E.06 | D        | A        |
| MW-0182  | 19-Apt-91             | 0.42    | 0          |                                               | 0                           | 0              | 3.4           | 0        | 1.125.06 | B        |          |
| MW-0182  | 11-Jul-91             | 0       | 0          |                                               | 0                           | 0              | 3.4           | 0        | 1.12E-06 | B        | A        |
| MW-0182  | 13-Feb-90             | 0       | 0          | <u> </u>                                      | 0                           | 0.31           | 0             | 0        | 0        | B        | B        |
| MW-0183  | 22-Mar-90             | 0       | 0          |                                               | 0                           | 0              | 3.3           | 0        | 1.03E-06 | B        | B        |
| MW-0183  | 19-Jui-90             | 0       | 0          |                                               | 3.8                         | 0              | 2             | 0        | 5.49E-06 | В        | B        |
| MW-0183  | 17-Oct-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | В        | B        |
| MW-0183  | 17-Jan-91             | 0       | 0.42       |                                               | 0                           | 0.24           | 14            | 0        | 7.10E-06 | В        | В        |
| MW-0183  | 19-Apr-91             | 0       | 0          |                                               | 0                           | 0              | 0.68          | 0        | 2.12E-07 | B        | B        |
| MW-0183  | 25-Jul-91             |         |            |                                               |                             |                |               |          | 0        | B        | B        |
| MW-0183  | 25-Jul-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | B        | B        |
| MW-0183  | 26-Jan-93             | 0       | 0          | 0                                             | 0                           | 0              | 0             | 0        | 0        | B        | B        |
| MW-0184  | 06-Feb-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | B        | C        |
| MW-0184  | 22-Mar-90             | 0       | 0          | ļ                                             | 0                           | 0              | 0             | 0        | 0        | <u>B</u> | C        |
| MW-0184  | 16-Jul-90             | 0       | 0          | ļ                                             | 0                           | 0              | 2             | 0        | 6.24E-07 | B        | C        |
| MW-0184  | $\frac{17-0a-90}{20}$ | 0       |            | ·                                             | 0                           | U              | 0             | 0        | 1.665.07 | B        |          |
| MW-0184  | 28-Jag-91             | 0       |            |                                               | 0                           | 0              |               |          | 1.55E-07 | D        |          |
| MW-0184  | 24 Jul 01             | 0       |            |                                               | 0                           | 0              |               | - 0      |          | B        |          |
| MW_0124  | 27-54-91<br>22-5-6-00 | 0       |            |                                               | 0                           |                | 11            | 0        | 3.43F-07 | н        | TĂ.      |
| MW-0185  | 12-3-90               |         | 0          |                                               | 0                           | 0              | 6.5           | <u> </u> | 2.17E-06 | н.       |          |
| MW-0185  | 18-Oct-90             | 0       | 0          | <u> </u>                                      | 0                           | 0              | 3.2           | 0        | 9.99E-07 | H        | Ā        |
| MW-0185  | 05-Feb-91             | 0       | 0          |                                               | 0                           | 0              | 3             | 0        | 9.36E-07 | н        | A        |
| MW-0185  | 0ú-May-91             | 0       | 0          |                                               | 0                           | 0              | 4.3           | 0        | 1.34E-06 | н        | A        |
| MW-0185  | 20-Jul-92             | 0       | 0          | 4.3                                           | 0                           | 0              | 2.3           | 0        | 7.18E-07 | Н        | A        |
| MW-0185  | 13-Apr-93             | 0       | 0          | 2.10                                          | 0                           | 0              | 3.5           | 0        | 2.22E-06 | Н        | A        |
| MW-0186  | 09-Apr-90             | 0       | 0          |                                               | 0                           | 0              |               | 0        | 2.21E-06 | A        | A        |
| MW-0186  | 11-Jun-90             | 0       | 0          |                                               | 0                           | 0              | 38            | 0        | 1.40E-05 | Α        | A        |
| MW-0186  | 04-Dec-90             | 0       | 0          |                                               | 0                           | 0              | 29            | 0        | 1.08E-05 | A        | A        |
| MW-0186  | 04-Dec-90             | 0       | 0          |                                               | 0                           | 0              | 37            | 0        | 1.08E-05 | A        | A        |
| MW-0186  | 05-Feb-91             | 0       | 0          |                                               | 0                           | 0              | 24            | 0        | 1.27E-05 | Å        | A        |
| MW-0186  | 08-May-91             | 0       | 0          |                                               | 0                           | 0              | 44            | 0        | 2.10E-05 | A        | A        |
| MW-0186  | 05-Aug-91             | 0       | 0          |                                               | 0                           | 0              | 43            | 0        | 2.22E-05 | <b>A</b> | <b>A</b> |
| MW-0187  | 07-Mar-90             | 0       | 0          |                                               | 0                           | 0.99           | 0             | 0        | 0        | <b>A</b> | C        |
| MW-0187  | 22-Jun-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | <b>A</b> | C C      |
| MW-0187  | 12-Oct-90             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | A        |          |
| MW-0187  | 04-Feb-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 1.12E-07 | <b>A</b> |          |
| MW-0187  | 03-May-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | A        |          |
| MW-0187  | 05-Aug-91             | 0       | 0          |                                               | 0                           | 0              | 0             | 0        | 0        | A        |          |

g:\users\da\j\_zumwal\woog\TABLEK-6.XLS

.

\*\*\*\*

and the second second second second second second second second second second second second second second second

1

05/11/94

| l              |           |          | VOC GSAP C | encentrations | up to Third Qu | mater 1993 Sa     | mpling Period |     |                      |                  |   |
|----------------|-----------|----------|------------|---------------|----------------|-------------------|---------------|-----|----------------------|------------------|---|
| Location<br>ID | Los Date  | 1.2-DCA  | 1.1-DCE    | ~1,2-DCE      | PCE            | 1.1.1 <b>-TCA</b> | TCE           | vc  | Risk for<br>Pathways | Operable<br>Unit |   |
| MW-0187        | 23-Apr-93 | 0        | 0          | 0             | 0.31999999     | 0                 | 1.60000002    | 0   | 1.95E-06             | A                | - |
| MW-0188        | 23-Mar-90 | 0        | 0          |               | 0              | 0                 | 0.3           | 0   | 2.00E-07             | C                |   |
| MW-0188        | 11-Jun-90 | 0        | 0          |               | 0              | 0                 | 0.46          |     | 3 24E-06             | Č                | - |
| MW-0188        | 12-0:1-90 |          | 0          |               | 0              |                   | 0             | 0   | 0                    | <u> </u>         | - |
| MW-0188        | 23-Jan-91 | 0        | 0          |               | 0              |                   | 0             | 0   | 8 91 F-08            | <u> </u>         |   |
| MW-0188        | 18-Any-91 | 0        | 0          |               | 0              | 0                 |               | 0   | 4 14F-07             | <u> </u>         | - |
| MW-0188        | 30.5.4.91 | 0        |            | <u>}</u> -    | 0              | 2                 | 26            | 0   | 8 12F-07             | - <del>C</del>   | - |
| MW-0188        | 19.100.93 |          | <u>_</u>   | 0             | 0              |                   | 2.0           | 0   | 3.12E-07             |                  | - |
| MW 0190        | 17.4      |          | 0          |               |                |                   |               |     | 5.122-01             |                  |   |
| MW 0180        | 21.500.00 | 0        | 0 17       |               |                |                   |               | 0   |                      | <u> </u>         |   |
| MW-0189        | 21-300-90 |          |            |               |                |                   |               |     | 0                    | <u> </u>         | - |
| MW-0187        | 16 100 01 |          |            | <b> </b>      |                |                   |               | - 0 | 1.045.07             | <u> </u>         | - |
| MW-0189        | 10-Jan-91 |          |            |               | 0              |                   | 0             |     | 1.05E-07             | <u> </u>         | - |
| MW-0189        | 29-301-91 | 0        |            |               | 8 60000038     | 0                 | 0             | 0   | 4.425.05             | <u> </u>         | - |
| MW-0189        | 21-Apr-93 | 0        | 0          | 0             | 8.0000038      | 0                 | 30            | 0   | 4.42E-05             | <u> </u>         | - |
| MW-0190        | 19-Mar-90 | 0        |            |               | 0              | 0                 | 0             | 0   | 1.5/2-00             | <u> </u>         | - |
| MW-0190        | 22-0d-90  | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | <u> </u>         |   |
| MW-0190        | 29-541-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | <u> </u>         | - |
| MW-0191        | 02-Mar-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | B                | • |
| MW-0191        | 12-Jun-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0191        | 19-Oct-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 9.19E-07             | B                | , |
| MW-0191        | 15-Jan-91 | 0        | 0.41       |               | 0.76           | 0.23              | 5.3           | 0   | 2.63E-06             | B                |   |
| MW-0191        | 02-May-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 5.32E-07             | B                |   |
| MW-0191        | 05-Aug-91 | 0        | 0          |               | 0              | 0                 | 3.7           | 0   | 3.07E-06             | B                |   |
| MW-0191        | 12-Apr-93 | 0        | 0          | 0             | 0.13           | 0                 | 0.75          | 0   | 8.57E-07             | B                |   |
| MW-0192        | 27-Feb-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0192        | 18-Jun-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0192        | 19-Oct-90 | 0        | 0.34       |               | 0              | 0                 | 0             | 0   | 9.19E-07             | B                |   |
| MW-0192        | 15-Jan-91 |          |            |               |                |                   |               |     | 0                    | B                |   |
| MW-0192        | 09-Apr-91 | 0        | 0          |               | 0              | 0                 | 0.57          | 0   | 1.78E-07             | B                |   |
| MW-0192        | 05-Aug-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0192        | 15-Apr-93 | 0        | 0          | 0             | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0193        | 20-Feb-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | В                |   |
| MW-0193        | 18-Jun-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0193        | 22-Oct-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 9.43E-07             | B                |   |
| MW-0193        | 04-Feb-91 |          |            |               |                |                   |               |     | 0                    | В                |   |
| MW-0193        | 05-Aug-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 6.29E-07             | В                |   |
| MW-0193        | 21-Apr-93 | 0        | 0          | 0             | 0              | 0                 | 0             | 0   | 0                    | B                |   |
| MW-0194        | 29-Mar-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                | Ì |
| MW-0194        | 27-Sep-90 |          |            |               |                |                   |               |     | 0                    | G                | ĺ |
| MW-0194        | 12-Dec-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                |   |
| MW-0194        | 24-Jan-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 1.44E-07             | G                |   |
| MW-0194        | 19-Apr-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                | 1 |
| MW-0194        | 14-Apr-93 | 0        | 0          | 0             | 0.39           | 0                 | 8.10          | 0   | 6.29E-06             | G                | • |
| MW-0195        | 28-Mar-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                |   |
| MW-0195        | 15-Jun-90 | 0        | 0          | <u> </u>      | 0              | 0                 | 0             | 0   | 0                    | G                | • |
| MW-0195        | 18-Oct-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                | 1 |
| MW-0195        | 22-Apr-93 | 0        | 0          | 0             | 1.40           | 0                 | 1.80          | 0   | 5.24E-06             | G                |   |
| MW-0196        | 26-Mar-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                |   |
| MW-0196        | 15-Jun-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                | 1 |
| MW-0196        | 18-Oct-90 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | G                | • |
| MW-0196        | 28-Jul-93 |          | 4.07       | <u> </u>      | 0              | 80.0              | 1.53          | 0   | 1.23E-06             | G                |   |
| MW_0107        | 05-4      |          |            |               | 0              | 0.50              |               | - 0 | 0                    | A                | • |
| MW_0107        | 12.500.00 |          |            |               |                |                   |               |     | 0                    | A                | • |
| MW_0107        | 01-N-00   |          |            |               |                |                   |               |     |                      |                  | • |
| MN 77-V17/     | 19 10-01  | <u> </u> | U          |               | 0              |                   | 2.0           |     | 2 000 04             |                  | • |
| MW-VI7/        | 10-J88-91 |          | 13         |               | 0.3            | 4.8               | 0.8           |     | 3.09E-00             | <u> </u>         | • |
| MW-019/        | 01-MEY-91 | <u>-</u> |            |               |                | <u> </u>          |               |     | 0                    | <u> </u>         | • |
| MW-U197        | 01-May-91 | 0        | 0          |               | 0              | 0                 | 0             | 0   | 0                    | <u> </u>         | • |
| MW-0197        | UD-Aug-91 | 0        | 0          | <u> </u>      | 0              | 0                 | 0             | 0   | 0                    | <b>A</b>         | - |
| MW-U197        | 13-0d-92  | 0        | 0          | 0             | 0              | 0                 | 0             | 0   | 0                    | <b>A</b>         | - |
| MW-0197        | 15-Apr-93 | 0        | 0          | 0             | 0.75           | 0                 | 6.40          | 0   | 0.26E-06             | <b>A</b>         | - |
| MW_0107        | 04-Aug-93 | 0        | Ō          | 0             | . Ū            | 0                 | 0             | 0   | 0                    | A                |   |

g:\umara\da\j\_mmara\wong\TABLEK-6.XLS

4

¥.

1

4

· •

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

.

05/11/94

|          |             | •       | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | mrter 1993 Sa | mpling Period |     |           |          |            |
|----------|-------------|---------|------------|---------------|-----------------------------|---------------|---------------|-----|-----------|----------|------------|
| Location |             |         |            |               |                             |               |               |     | Risk for  | Operable |            |
| D        | Log Date    | 1,2-DCA | 1,1-DCL    | e-1,2-DCE     | PCE                         | LLI-TCA       | TCE           | VC  | Pathways  | Unit     | 2          |
| MW-0198  | 16-Apr-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | <u> </u> | B          |
| MW-0198  | 13-Jua-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | <u>A</u> | B          |
| MW-0196  | 18 100-90   | 0       | 19         |               | 0                           | 17            |               | 0   | 6 625 07  | <u>A</u> | 8          |
| MW-0198  | 25. Ann. 01 | 0       | 3.8        |               | 0                           | 1.7           | 1.0           | 0   | 3.02E-07  | A        | 8          |
| MW-0198  | 09. Jul.91  | 0       | 0          |               | - 0                         | 0             | 0.0           |     | 1.672-07  | <u>^</u> | B          |
| MW-0198  | 09-Jul-91   | 0       | 0          |               | 0                           | 0.96          | 0             | - 0 | 0         | A        | B          |
| MW-0198  | 15-Apr-93   | 0       | 0          | 0             | 0                           | 0             | 1.30          | 0   | 8.26E-07  | A        | B          |
| MW-0199  | 12-Apr-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | A        | c          |
| MW-0199  | 14-Jun-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | A        | С          |
| MW-0199  | 01-Nov-90   | 0       | 0          | [             | 0                           | 0             | 0             | 0   | 0         | A        | С          |
| MW-0199  | 30-Jan-91   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | A        | С          |
| MW-0199  | 09-Aug-91   | 0       | 0          |               | 0                           | 0             | 2.5           | 0   | 7.80E-07  | A        | C          |
| MW-0199  | 20-Oct-92   | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0         | A        | С          |
| MW-0199  | 15-Apr-93   | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0         | A        | С          |
| MW-0200  | 19-Apr-90   | 0       | 0          |               | 0                           | 0             | 2.4           | 0   | 7.491E-07 | В        | <b>A</b>   |
| MW-0200  | 28-Jun-90   | 0.21    | 0          | L             | 0                           | 0             | 7.8           | 0   | 4.11E-06  | B        | <b>A</b>   |
| MW-0200  | 02-Nov-90   | 0       | 0          |               | 0                           | 0             | 4             | 0   | 1.25E-06  | B        | A          |
| MW-0200  | 08-Jan-91   | 0.3     | 0          |               | 0.65                        | 0             | 8.1           | 0   | 4.89E-06  | B        | <b>A</b>   |
| MW-0200  | 22-Apt-91   | 0.03    | 0          |               | 0                           | 0             | 12            | 0   | 7.62E-06  | B        | A          |
| MW-0200  | 10.04.91    | 12      | 0          |               | 0                           | 0             | 9.5           | 0   | 5.21E-00  | B        |            |
| MW-0200  | 24 [ap.97   | • 054   |            |               | 0                           | 0             | 0.7           | 0   | 7.74E-06  | B        | <b>A</b>   |
| MW-0200  | 21-Jul-92   | 0.78    | 0          | 19            | 0                           | 0             | 91            |     | 7.04E-06  | <u>B</u> |            |
| MW-0200  | 19-Oct-92   | 0.46    | 0          | 14            | 0                           | 0             | 10            | 0   | 7.75E-06  | B        | A          |
| MW-0200  | 19-Oct-92   | 0.59    | 0          | 13            | 0                           | 0             | 9.3           | 0   | 7.75E-06  | B        | Å          |
| MW-0200  | 15-Jan-93   | 0.36    | 0          | 16            | 3.5                         | 0             | 27            | 0   | 1.48E-05  | B        | <b>A</b>   |
| MW-0200  | 06-Apr-93   | 0.33    | 0          | 10            | 0.48                        | 0             | 11            | 0   | 1.56E-05  | B        | A          |
| MW-0200  | 04-Aug-93   | 0.32    | 0          | 17.60         | 0                           | 0             | 15.80         | 0   | 1.95E-05  | В        | A          |
| MW-0201  | 09-Mar-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 1.16E-07  | B        | B          |
| MW-0201  | 05-Feb-91   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | B        | B          |
| MW-0201  | 05-Aug-91   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | B        | B          |
| MW-0201  | 09-Apr-93   | 0       | 0          | 0             | 0                           | 0             | 0.71          | 0   | 4.51E-07  | B        | B          |
| MW-0202  | 08-04-90    | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | A        | A          |
| MW-0202  | 19 0 190    | 0       | 0.28       |               | 0                           | 0             | 0             | 0   | 0         | A        |            |
| MW-0202  | 13-00-90    | 0       | 0          |               |                             |               | 0             | 0   | 0         | <u>A</u> |            |
| MW-0203  | 02-An-90    |         |            |               | 0                           |               | 13            | 0   | 4 37E-06  |          | - <u>-</u> |
| MW-0203  | 02-Apr-90   | 0       | 0          |               | 0                           | 0             | 14            | 0   | 4.37E-06  | A        |            |
| MW-0203  | 12-Jun-90   | 0       | 0          |               | 0                           | 0             | 36            | 0   | 1.12E-05  | A        | A          |
| MW-0203  | 17-Oct-90   | 0       | 0          |               | 0                           | 0             | 21            | 0   | 6.55E-06  | A        | A          |
| MW-0203  | 16-Jan-91   | 0       | 0          |               | 0                           | 0             | 26            | 0   | 8.12E-06  | A        | A          |
| MW-0203  | 18-Apr-91   | 0       | 0          |               | 0                           | 0             | 33            | 0   | 2.00E-05  | A        | A          |
| MW-0203  | 18-Apr-91   | 0       | 0          |               | 0                           | 0             | 64            | 0   | 2.00E-05  | A        | A          |
| MW-0203  | 09-Jul-91   | 0       | 0          |               | 0                           | 0             | 19            | 0   | 5.93E-06  | A        | <b>A</b>   |
| MW-0204  | 06-Apr-90   | 0       | 0          |               | 0                           | 0             | 0.39          | 0   | 1.22E-07  | A        | B          |
| MW-0204  | 19-Jun-90   | 0       | 0          |               | 0                           | 0             | 0.79          | 0   | 1.53E-06  | A        | B          |
| MW-0204  | 17-Oct-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | <b>A</b> |            |
| MW-0404  | 10-JAB-91   | 0       | 0          |               | 0                           | 0             | 1.6           | 0   | 0.11E-07  | A        | L D        |
| MW_0004  | 10-APT-91   | 0       |            |               | 0                           |               | 0.38          |     | 1.196-01  | A<br>    | D<br>D     |
| MW_0204  | 74 h-1.07   | U<br>A  |            |               | 0                           | <u>v</u>      | U A           |     |           | A        | R          |
| MW-0204  | 21.12.03    | 0       | 0          |               | 0                           |               | 0.64          |     | 2 03 5.07 |          | R          |
| MW-0204  | 04-Aug-93   | 0       | 0          |               | 0                           |               | 0.03          |     | 3.23F_07  | Å        | B          |
| MW-0205  | 03-Anr-90   | 0       | 0          |               |                             | 0             | 0.51          |     | 0         | A        | ⊢-ī-       |
| MW-0205  | 19-Jua-90   | 0       | 0          |               | 0                           | 0             | 1.9           | 0   | 3.01E-06  | Α        | c          |
| MW-0205  | 17-Oct-90   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | A        | c          |
| MW-0205  | 04-Feb-91   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 2.26E-07  | A        | c          |
| MW-0205  | 18-Apr-91   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 1.14E-06  | A        | С          |
| MW-0205  | 07-Aug-91   | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0         | A        | С          |
| MW-0205  | 04-Aug-93   | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0         | A        | С          |

g:\umm\de\j\_zamwal\wong\TABLEK-6.XLS

· 1

05/11/94

|          |                      |         | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | arter 1993 Sa     | npling Period |     |          |          |          |
|----------|----------------------|---------|------------|---------------|-----------------------------|-------------------|---------------|-----|----------|----------|----------|
| Location |                      |         |            |               |                             |                   |               |     | Rick for | Operable |          |
| D        | Log Date             | 1,2-DCA | 1,1-DCE    | 0-1,2-DCE     | PCE                         | 1,1,1 <b>-TCA</b> | TCE           | ٧C  | Pathways | Unit     | Zana     |
| MW-0206  | 01-Feb-90            | 0       | 0          |               | 0                           | 0                 | 1.5           | 0   | 4.68E-07 | C        | A        |
| MW-0206  | 21-Mar-90            | 0       | 0          |               | 0                           | 0                 |               | 0   | 2.385-00 | C        | A        |
| MW-0206  | 26.00.90             | 0       | 0          |               | 0                           | 0                 | 4             | - 0 | 1.20E-00 |          |          |
| MW-0206  | 16-[an-9]            | 013     | 0          |               | 0                           | 0                 | 5.2           | 0   | 2.08E-06 | C C      | A        |
| MW-0206  | 16-Jan-91            | 0.14    | 0          |               | 0                           | 0                 | 5.3           | 0   | 2.08E-06 | c        |          |
| MW-0206  | 24-Apr-91            | 0       | 0          |               | 0                           | 0                 | 6.3           | 0   | 2.96E-06 | С        | A        |
| MW-0206  | 09-Aug-91            | 0       | 0          |               | 0                           | 0                 | 7.5           | 0   | 2.34E-06 | С        | A        |
| MW-0206  | 06-Feb-92            | 0.42    | 0          |               | 0                           | 0                 | 8.3           | 0   | 5.88E-06 | С        | A        |
| MW-0206  | 27-Feb-92            |         |            |               |                             |                   |               |     | 0        | С        | A        |
| MW-0206  | 10-Jui-92            | 0.23    | 0          | 3.6           | 0                           | 0                 | 4.7           | 0   | 1.96E-06 | С        | <b>A</b> |
| MW-0206  | 21-Jan-93            | 0       | 0          | 2.5           | 0                           | 0                 | 3.1           | 0   | 9.68E-07 | C        | A        |
| MW-0206  | 03-Aug-93            | 0       | 0          | 1.43          | 0                           | 0                 | 2.01          | 0   | 2.52E-06 | C        | A        |
| MW-0207  | 02-Feb-90            | 0       | 0          |               | 0                           | 0                 | 0 63          | 0   | 7.785.07 |          | B        |
| MW-0207  | 21-Mile-90           | 0       | 0          |               | 0                           | 0                 | 0.03          | 0   | 7.78E-07 |          | D<br>B   |
| MW-0207  | 06-Aug-90            | 0       | 0          |               | 0                           | 0                 | 0.95          | 0   | 3.12E-07 | <u> </u> | B        |
| MW-0207  | 25-Oct-90            | 0       | 0          |               | 0                           | 0                 | 0.63          | 0   | 1.97E-07 | c        | B        |
| MW-0207  | 22-Jan-91            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | С        | B        |
| MW-0207  | 24-Apr-91            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | С        | B        |
| MW-0207  | 25-Jul-91            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | С        | B        |
| MW-0208  | 30-Jan-90            | 0       | 0          |               | 0                           | 0                 | 2             | 0   | 3.77E-06 | C        | C        |
| MW-0208  | 21-Mar-90            | 0       | 0          |               | 0                           | 0                 | 2.6           | 0   | 8.12E-07 | С        | C        |
| MW-0208  | 16-Jul-90            | 0       | 0          |               | 0                           | 0                 | 2.7           | 0   | 1.01E-06 | C        | C        |
| MW-0208  | 26-0d-90             | 0       | 0          |               | 0                           | 0                 | 2.8           | 0   | 8.74E-07 |          | C        |
| MW-0208  | 24-Jan-91            | 0       |            |               | 0                           |                   | 1.4           | 0   | 4.3/E-0/ |          |          |
| MW-0208  | 25-74-71<br>25-14-91 |         | 0          |               | 0                           |                   | 2.2           | 0   | 7 18F-07 | <u> </u> | C        |
| MW-0208  | 02-Aug-93            | - O     | 0          | o             | 0                           | 0                 | 1.63          | 0   | 1.94E-06 | c        | c        |
| MW-0209  | 20-Sep-90            | 4       | 0          |               | 0                           | 0                 |               | 0   | 1.25E-04 | A        | A        |
| MW-0209  | 30-Jan-91            | 0       | 0          |               | 0                           | 0                 | 2300          | 0   | 7.63E-04 | A        | A        |
| MW-0209  | 23-Apr-91            | 0       | 0          |               | 0                           | 0                 | 2400          | 0   | 8.63E-04 | A        | A        |
| MW-0209  | 09-Aug-91            | 0       | 0          |               | 0                           | 0                 | 3000          | 0   | 9.36E-04 | A        | A        |
| MW-0210  | 06-Jun-90            | 0       | 0          |               | 0                           | 0                 | 3             | 0   | 1.92E-05 | A        | A        |
| MW-0210  | 04-Sep-90            |         |            |               |                             |                   | 0.75          |     | 1.66E-05 | ·A       |          |
| MW-0210  | 04-Sep-90            | 0       | 0.54       |               | 0                           | 0                 | 0.75          | 0   | 1.00E-03 | A        |          |
| MW-0210  | 02.Mey.01            | 0       | 0          |               | 0                           | 0                 | 37            | - 0 | 1.75E-05 |          |          |
| MW-0210  | 02-May-91            | 0       | 0.76       |               | 0                           | 0                 | 4.1           | 0   | 1.75E-05 | A        |          |
| MW-0210  | 07-Aug-91            | 0       | 0          |               | 0                           | 0                 | 7.6           | 0   | 3.51E-05 | A        | A        |
| MW-0210  | 22-Apr-93            | 0       | 0          | Ō             | 9                           | 0                 | 21            | 0   | 9.06E-05 | A        | A        |
| MW-0210  | 06-Aug-93            | 0.68    | 0          | 0             | 0.64                        | 0                 | 6.85          | 0   | 4.50E-05 | A        | A        |
| MW-0211  | 05-Jun-90            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | Α        | B        |
| MW-0211  | 04-Sep-90            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | A        | B        |
| MW-0211  | 31-Jan-91            | 0       | 0          |               | 0                           | 0                 | 0.51          | 0   | 1.39E-06 | A        | B        |
| MW-0211  | 02-May-91            | 0       | 0          |               | 0                           | 0                 | 1             | 0   | 1.28E-06 | <b>A</b> | B        |
| MW-0211  | 07-Aug-91            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | A        | B        |
| MW-0212  | 29-Aug-90            | - 0     | 0          |               | 0.86                        | 0                 | 0             | 0   | 5.10E-06 | <u> </u> | A        |
| MW-0212  | 14-UC-90             | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0 678-07 |          |          |
| MW-0212  | 22.Arr.01            |         | 0          |               | 0.6                         | 0.87              | 4.4           | 0   | 3.12E-04 | A        |          |
| MW-0212  | 07-Apr-91            | 0       | 0          | ö             | 0.0                         | 0.67              | 0             | 0   | 3.47E-06 | A        |          |
| MW-0213  | 08-Jun-90            | 0       | 0          | <b>-</b>      | 0                           | 0                 | 0             | 0   | 0        | A        | B        |
| MW-0213  | 04-Sep-90            | - ol    | 0          |               | 0                           | 0                 | 0             | 0   | 0        | A        | B        |
| MW-0213  | 30-Jan-91            | 0       | 0          | ·             | 0                           | 0                 | 0             | 0   | 1.74E-07 | A        | B        |
| MW-0213  | 23-Apr-91            | 0       | 0          |               | 0                           | 0                 | 0             | 0   | 0        | Α        | B        |
| MW-0213  | 10-Jul-92            | 0       | 0          | 0             | 0                           | 0                 | 0             | 0   | 0        | A        | B        |
| MW-0213  | 22-Jui-93            | 0       | 0          | 0             | 0.                          | 0                 | 0             | 0   | 0        | A        | B        |
| MW-0214  | 30-May-90            | 0.15    | 0          |               | 0                           | 0                 | 7.4           | 0   | 3.81E-06 | B        | <b>A</b> |
| MW-0214  | 31-Aug-90            | 0       | 0          |               | 0                           | 0                 | 7.9           | 0   | 2.61E-06 | B        |          |
| MW-0214  | 31-Aug-90            | 0       | 0          |               | 0                           | 0                 | 8.1           | 0   | 2.61E-06 | В        | <u> </u> |

g:\umars\da\j\_zamwai\woag\TABLEK-6.XLS

·····

٠.,

. ...

ĺ

(

Ć

١

05/11/94

|          |                        |         | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | nrter 1993 Sa | mpling Period |     |          |          |          |
|----------|------------------------|---------|------------|---------------|-----------------------------|---------------|---------------|-----|----------|----------|----------|
| Location |                        | 10.000  |            | . 13 007      |                             |               |               | VG  | Risk for | Operable |          |
|          | 02-Nov-90              | I, FOCA | 1,1-00.5   | CI,FULE       |                             | 1,1,1·ICA     | 11            |     | A 16E-06 |          | Lame     |
| MW-0214  | 24-Jan-91              | 0       | 0          |               | 0                           | 0             | 6.6           | 0   | 3.31E-06 | B        |          |
| MW-0214  | 06-May-91              | 0       | 0          |               | 0                           | 0             | 6.8           | 0   | 2.12E-06 | B        |          |
| MW-0214  | 06-May-91              | 0       | 0          |               | 0.23                        | 0             | 6.6           | 0   | 2.12E-06 | B        | A        |
| MW-0214  | 19-Jul-91              | 0.11    | 0          |               | 0                           | 0             | 15            | 0   | 7.96E-06 | B        | A        |
| MW-0214  | 13-Oct-92              | 0.18    | 0          | 12            | 0                           | 0             | 8             | 0   | 2.88E-06 | B        | A        |
| MW-0214  | 12-Apr-93              | 0       | 0          | 11            | 0.31                        | 0             | 7.60          | 0   | 9.12E-06 | B        | A        |
| MW-0217  | 25-May-90              | 0       | 0          |               | 0                           | 0             | 54            | 0   | 2.18E-05 | B        | <b>A</b> |
| MW-0217  | 21-Aug-90              | 0.85    | 0          |               | 0                           | 0             | 21            | 0   | 1.05E-05 | <u>B</u> |          |
| MW-0217  | 01-NOV-90              | 0.36    | 0          |               |                             |               | 33            |     | 1.09E-05 | B        |          |
| MW-0217  | 29-Jan-91              | 0.36    | 0.49       |               | 01                          |               | 25            |     | 1.24E-05 | B        |          |
| MW-0217  | 07-May-91              | 0.50    | 0          |               | 0                           | 0             | 35            | 0   | 1.53E-05 | B        |          |
| MW-0217  | 10-Jul-91              | 1.1     | 0          |               | 0.17                        | 0             | 50            | 0   | 2.34E-05 | B        | A        |
| MW-0217  | 08-Oct-91              | 0       | 0          |               | 0                           | 0             | 53            | 0   | 1.65E-05 | B        | A        |
| MW-0217  | 08-Oct-91              | 0       | 0          |               | 0                           | 0             | 56            | 0   | 1.65E-05 | B        | A        |
| MW-0217  | 24-Jan-92              |         |            |               |                             |               |               |     | 0        | B        | A        |
| MW-0217  | 25-Feb-92              | 0       | 0          |               | 0                           | 0             | 50            | 0   | 2.67E-05 | B        | A        |
| MW-0217  | 22-Jul-92              |         |            |               |                             |               |               |     | 0        | B        | A        |
| MW-0217  | 20-Aug-92              | 1.9     | 0          | 37            | 2.4                         | 0             | 57            | 0   | 2.50E-05 | <u>B</u> | <b>A</b> |
| MW-0217  | 20-0d-92               | 1.1     |            | 37            |                             | 0             | 63            |     | 2.94E-05 | 8        |          |
| MW-0217  | 15-Jan-93              | 0.52    | 0          | 25            | 0.24                        |               | 38            | 0   | 2.42E-05 | B        | +        |
| MW-0217  | 21-Apr-93              | 0.52    | <u>0</u>   | 17            | 0                           | 0             | 33            | 0   | 3.36E-05 | B        |          |
| MW-0217  | 23-Jul-93              | 0.21    | 0          | 29.10         | 1.98                        | 0             | 75.40         | 0   | 6.28E-05 | B        | A        |
| MW-0218  | 23-May-90              | 0       | 0          |               | 0                           | 0             | 1.6           | 0   | 4.99E-07 | B        | B        |
| MW-0218  | 21-Aug-90              |         |            |               |                             |               |               |     | 0        | В        | B        |
| MW-0218  | 11-Sep-90              | 0       | 0          |               | 0                           | 0             | 2             | 0   | 6.24E-07 | B        | В        |
| MW-0218  | 09-Nov-90              | 0       | 0          |               | 0                           | 0             | 1.3           | 0   | 4.06E-07 | B        | B        |
| MW-0218  | 14-Jan-91              | 0       | 0          |               | 0                           | 0             | 1.8           | 0   | 5.62E-07 | B        | B        |
| MW-0218  | 19-Apt-91<br>31-Jul-01 | 0       | 0          | ······        | 0                           | - 0           | 2.8           | 0   | 8.74E-07 | B        | B        |
| MW-0218  | 14-Oct-91              | 0       | 0          |               |                             | 1.4           | 1.2           | 0   | 4.99E-07 | B        | B        |
| MW-0218  | 30-Jan-92              | 0       | 0          |               | 0                           | 0             | 2.6           | 0   | 8.12E-07 | B        | B        |
| MW-0218  | 20-Aug-92              | 0       | 0          | 2.8           | 0                           | 0             | 1.4           | 0   | 2.95E-06 | B        | B        |
| MW-0218  | 20-Oct-92              | 0       | 0          | 3             | 0                           | 0             | 1.5           | 0   | 4.68E-07 | B        | В        |
| MW-0218  | 15-Jan-93              | 0       | 0          | 1.5           | 0                           | 0             | 2.5           | 0   | 7.80E-07 | B        | B        |
| MW-0218  | 18-Jan-93              |         |            |               |                             |               |               |     | 0        | B        | В        |
| MW-0218  | 21-Apr-93              | 0       | 0          | 1.10          | 0                           | 0             | 7             | 0   | 4.45E-06 | B        | B        |
| MW-0218  | 23-Jul-93              | 0       | 0          | 0.62          | 0                           | 0             | 1.5           | 0   | 7.49E-07 | <u>B</u> | B        |
| MW-0218  | 23-JUI-93              | 0 33    |            | 0.67          | 0                           |               | 1.18          | - 0 | 1.49E-07 | B        | B        |
| MW-0219  | 17.Aug.90              | 0.32    | 0          |               | 0                           | 0             | 26            | - 0 | 8.12E-06 | <u>B</u> | C C      |
| MW-0219  | 08-Nov-90              | 0       |            |               | 0                           | 0             | 26            | 0   | 8.12E-06 | B        | Ċ        |
| MW-0219  | 31-Jap-91              | 0.23    | 0          |               | 0                           | 0             | 27            | 0   | 1.04E-05 | B        | C        |
| MW-0219  | 31-Jan-91              | 0.25    | 0          |               | 0.12                        | 0             | 29            | 0   | 1.04E-05 | В        | C        |
| MW-0219  | 09-May-91              | 0       | 0          |               | 0                           | 0             | 21            | 0   | 6.55E-06 | B        | С        |
| MW-0219  | 31-Jul-91              | 0.47    | 0          |               | 0                           | 0             | 20            | 0   | 7.25E-06 | B        | С        |
| MW-0219  | 09-Oct-91              | 0       | 0          |               | 0                           | 0             | 33            | 0   | 1.03E-05 | B        | С        |
| MW-0219  | 30-Jan-92              | 0       | 0          |               | 0                           | 0             | 19            | 0   | 5.93E-06 | B        | C        |
| MW-0219  | 22-Jul-92              |         |            |               |                             |               |               |     | 0        | B        | C        |
| MW-0219  | 20-Aug-92              | 0.74    | 0          | 5.7           | 0.6                         | 0             | 9.6           | 0   | 0.75E-06 | B        |          |
| MW-0219  | 20-00-92               | 0.20    |            | A 0           |                             |               | 77            |     | 3.038-00 | B<br>R   | +        |
| MW-0219  | 15. Jan.01             | 0.29    |            | 7.6           |                             |               | 1.1           |     | 1 728_06 | R        |          |
| MW-0219  | 23-Jui-93              | 0       | - 0        | 6.41          |                             | 1.02          |               |     | 1.14E-05 | B        |          |
| MW-0220  | 26-Jul-90              | 0       | 0          | 0.41          |                             | 0             | 0             | 0   | 1.14E-06 | B        | B        |
| MW-0220  | 26-Jul-90              | 0       | 0          |               | 0.89                        | 0             | 0             | 0   | 1.14E-06 | B        | B        |
| MW-0220  | 13-Sep-90              | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | В        | В        |
| MW-0220  | 31-Jan-91              | 0       | 0          |               | 0                           | 0             | 5.4           | 0   | 1.82E-06 | В        | B        |
| MW-0220  | 19-Apr-91              | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | B        | B        |

g:\users\ds\j\_mmwal\woag\TABLEK-6.XLS

.

•

1.1

ر اي منه الرويني والمالية الرويني ومنها به المحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والم

05/11/94

)

|          |            | ,        | VOC GSAP C | oucestrations ( | up to Third Qu | narter 1993 San | npling Period |          |          |                      |               |
|----------|------------|----------|------------|-----------------|----------------|-----------------|---------------|----------|----------|----------------------|---------------|
| Location | I an Data  | 12.004   | 11.007     | ~12-DCE         | PCT            | 1.1.1.704       |               | VC       | Rink for | Operable<br>Elizie   | -             |
| MW-0220  |            | 1,000.0  | 0          | -1,-D-L         | 0              | 0               |               |          |          | R                    | B             |
| MW-0220  | 04.409.93  | 0        | 0          | 0               | 0              | 0               | 0             |          | <u>0</u> | R                    | R             |
| MW-0220  | 13-Nov-90  | - 0      |            |                 | 0              | 0               |               |          | <u>0</u> | R                    | C C           |
| MW-0221  | 30-Nov-90  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | B                    | - C           |
| MW-0221  | 30-1101-90 | 0        | 0          |                 | 0              | 0               | <u> </u>      | 0        | 7 04F-08 | R                    | $\frac{1}{c}$ |
| MW-0221  | 06-Aug-01  | 0        |            |                 |                | 0               | 0             |          | 0        | R                    | $\frac{1}{c}$ |
| MW-0221  | 12 Apr 93  | - 0      |            | 0               | <u>(</u>       | 0               |               |          |          | R                    |               |
| MW-0221  | 20 Jun 90  |          |            | <b>`</b>        | 0              | 0               |               |          | 6 74E 07 |                      |               |
| MW-0222  | 29-Jun-90  |          |            |                 | 0              | 0               | 0.53          |          | 6 74E 07 |                      |               |
| MW-0222  | 23-Jun-90  |          |            |                 | 0              | 0               | 0.55          |          | 0.142-01 | <u> </u>             |               |
| MW-0222  | 00 New 00  |          |            |                 | 0              |                 |               |          |          | <u>^</u>             |               |
| MW-0222  | 22 1 01    |          |            |                 |                |                 |               | <u> </u> |          |                      | <b></b>       |
| MW-0222  | 23-Jan-91  | 0        |            |                 | 0              | 0               |               |          | 1125.06  |                      | <b>⊢</b>      |
| MW-0222  | 10-May-91  | 0        | 0          |                 | 0              | 0               | 2.5           |          | 3.125-00 | <u>^</u>             | <b>^</b>      |
| MW-0222  | 10-May-91  | 0        |            |                 | 0              | 0               | 2.0           |          | 3.145-06 | <u> </u>             | <b>^</b>      |
| MW-0222  | 06-Aug-91  | 0        |            |                 | 0              | 0               |               | 0        | 1.01E-05 | A                    |               |
| MW-0222  | 05-Feb-92  | 0        | 0          |                 | 0              | 0               | 1.3           | 0        | 4.06E-07 | A                    | <b>A</b>      |
| MW-0222  | 12-Apr-93  | 0        | 0          | 0.5             | 0              | 0               | 3.70          | 0        | 1.14E-05 | <b>A</b>             | <b>A</b>      |
| MW-0222  | 05-Aug-93  | 0        | 0          | 3.97            | 0              | 0               | 20.60         | 0        | 4.78E-05 | A                    | A             |
| MW-0223  | 27-Jun-90  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | A                    | B             |
| MW-0223  | 31-Aug-90  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | •                    | B             |
| MW-0223  | 08-Nov-90  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | <u>A</u>             | B             |
| MW-0223  | 10-Jui-91  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | <u>A</u>             | B             |
| MW-0223  | 08-Jui-92  | 0        | 0          | 0               | 0              | 0               | 0             | 0        | 0        | <u>A</u>             | B             |
| MW-0223  | 05-Aug-93  | 0        | 0          | 0               | 0              | 0               | 0             | 0        | 2.61E-05 | A                    | B             |
| MW-0224  | 09-Jul-90  | 0        | 0          |                 | 0              | 0               | 3400          | 0        | 1.42E-03 | A                    | A             |
| MW-0224  | 05-Sep-90  | 10       | 0.34       |                 | 5.1            | 0               | 8100          | 0        | 2.96E-03 | A                    | A             |
| W-0224   | 24-Jan-91  | 0        | 0          |                 | 0              | 0               | 9300          | 0        | 3.17E-03 | A                    | A             |
| MW-0224  | 24-Apr-91  | 0        | 0          |                 | 0              | 0               | 8200          | 0        | 3.13E-03 | A                    | A             |
| MW-0224  | 07-Aug-91  | 0        | 0          |                 | 0              | 0               | 15000         | 0        | 4.68E-03 | Α                    | <b>A</b>      |
| MW-0224  | 07-Aug-91  | 0        | 0          |                 | 0              | 0               | 19000         | 0        | 4.68E-03 | Α                    | A             |
| W-0224   | 19-Aug-92  | 0        | 0          | 520             | 0              | 0               | 9600          | 0        | 3.09E-03 | A                    | A             |
| MW-0224  | 19-Aug-92  | 0        | 0          | 570             | 0              | 0               | 9900          | 0        | 3.09E-03 | A                    | A             |
| MW-0224  | 13-Apr-93  | 0        | 0          | 210             | 0              | 0               | 14000         | 0        | 8.87E-03 | Α                    | A             |
| MW-0225  | 03-Jul-90  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | A                    | B             |
| MW-0225  | 05-Sep-90  | 0        | 0          |                 | 0.54           | 0               | 262           | 0        | 9.19E-05 | A                    | B             |
| MW-0225  | 29-Jan-91  | 0        | 0          |                 | 0.17           | 0               | 11            | 0        | 5.59E-06 | A                    | B             |
| MW-0225  | 24-Apr-91  | 0        | 0          |                 | 0              | 0               | 29            | 0        | 9.05E-06 | A                    | B             |
| MW-0225  | 07-Aug-91  |          |            |                 |                |                 |               |          | 3.36E-05 | Ā                    | B             |
| MW-0225  | 07-Aug-91  | 0        | 0          |                 | 0              | 0               | 86            | 0        | 3.36E-05 | A                    | B             |
| MW-0225  | 08-Jul-92  | ō        | 0          | 0               | 0              | 0               | 32            | 0        | 9.99E-06 | A                    | B             |
| MW-0225  | 05-Aug-93  | 0        | 0          | 0               | 0              | 0               | 51.5          | 0        | 4.08E-05 | A                    | B             |
| MW-0226  | 10-Sep-90  | 0        | 0          |                 | 0              | 0               | Ö             | 0        | 0        | H                    | A             |
| MW-0226  | 08-Oct-90  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | Н                    | A             |
| WW-0226  | 15-Jan-91  | 0        | 0          |                 | 0              | 0               | 0             | 0        | 0        | H                    | A             |
| W-0226   | 22-Apr-91  |          | 0          |                 | 0              | 0               | 0             | 0        | 0        | Н                    | A             |
| MW-0226  | 22-Jul-92  | Ť        |            |                 |                |                 |               |          | 0        | H                    | A             |
| W-0226   | 19-Aug-92  |          | <u>n</u> t |                 |                | 0               | 7.3           | 0        | 2.96E-06 | н                    | A             |
| MW-0226  | 16-Anr.01  |          |            |                 | 0.29           |                 | 7 4           | 0        | 5.61E-06 | н                    | A             |
| WW.0007  | 18_San_00  |          |            | <b>`</b>        | 0.25           |                 | 0             | 0        | 0        | H                    | B             |
| MW_0007  | 10-30-30   |          |            |                 |                |                 |               |          | 8 105.07 | н н                  |               |
| WW_mm    | 04 E-6 01  |          |            |                 |                |                 |               | <u> </u> | 7 095 09 | н н                  |               |
| W.0001   | 01. May 01 | <u> </u> |            |                 |                |                 | U             | ~ ~      | 1 032 07 | ш                    |               |
|          | 00 5-100   |          | ^          |                 | 0              |                 | 0.33          | ~ ~      | 1.036-07 | <u>u</u>             |               |
|          | 09-JUI-92  | V        |            | <u> </u>        | 0              |                 |               | ~ ~      |          | <u>n</u><br><u>u</u> |               |
| MW-UZZ7  | 28-Jul-93  | 0        | 0          | 0               | 0              | 0               | 0             | 0        | 0        | <u> </u>             | + <u>B</u>    |
| MW-0228  | U3-Oct-90  | 7.6      | 2.1        |                 | 0              | 0               | 1.2           | 0        | 2.43E-05 | <b>A</b>             | + 4           |
| MW-0228  | 19-Oct-90  | 17       | 11         |                 | 0              | 0               | 6.9           | 0        | 5.75E-05 | <b>^</b>             | <b>↓</b> ↑    |
| MW-0228  | 01-Feb-91  | 2.9      | 2          |                 | 0              | 0               | 2.1           | 0        | 1.84E-05 | A                    | <b>^</b>      |
| MW-0228  | 22-Apr-91  | 4.4      | 4.7        |                 | 0              | 0               | 4             | 0        | 1.81E-05 | A                    |               |
| MW-0228  | 07-Aug-91  | 15       | 19         |                 | 0              | 0               | 50            | 0        | 6.61E-05 | <u>A</u>             | <b>A</b>      |
| MW-0228  | 28-Jul-92  | 42       | 4          | 0               | 0.94           | 0               | 5.2           | 0        | 1.00E-04 | <b>A</b>             |               |
| MW-0228  | 28-Jul-92  | 43       | 4.4        | 0               | 0.21           | 0               | 6.6           | 0        | 1.00E-04 | •                    |               |

g:\users\da\j\_zumwal\woag\TABLEK-6XLS

The second second second second second second second second second second second second second second second s

.

ł

• •

05/11/94

|          |           |        | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | mrter 1993 Sni | mpling Period |     |                      |                  |          |
|----------|-----------|--------|------------|---------------|-----------------------------|----------------|---------------|-----|----------------------|------------------|----------|
| Location | Les Data  | 12.004 | 1 LDCF     |               | PCT                         | 111.7004       | TT            | vc  | Rick for<br>Pathware | Operable<br>Unit | 7        |
| MW-0228  | 16.400.93 | 18     | 8.80       | 0.40          | 0.21                        | 1,4,1-10.4     | 14            |     | 1 15E-04             |                  |          |
| MW-0228  | 05-Aug-93 | 30,10  | 2.80       | 0             | 0                           | 0              | 1.74          | 0   | 1.72E-04             | A                | Ā        |
| MW-0228  | 05-Aug-93 | 30.5   | 0          | 0             | 0                           | 0              | 2.17          | 0   | 1.72E-04             | A                |          |
| MW-0229  | 26-Sep-90 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | A                | B        |
| MW-0229  | 04-Jan-91 | 0      | 0.43       |               | 0                           | 0              | 0.68          | 0   | 2.12E-07             | Α.               | В        |
| MW-0229  | 13-May-91 | 0      | 0          |               | 0.42                        | 0              | 0             | 0   | 5.38E-07             | A                | В        |
| MW-0229  | 07-Aug-91 | 0      | 0          |               | 0                           | 0              | 30            | 0   | 1.07E-05             | A                | В        |
| MW-0229  | 28-Jul-92 | 0      | 0          | 0             | 0                           | 0              | 0.41          | 0   | 1.28E-07             | A                | В        |
| MW-0229  | 16-Apr-93 | 0      | 0          | 0             | 0                           | 0              | 0.46          | 0   | 2.92E-07             | A                | В        |
| MW-0230  | 18-Oct-90 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | E        |
| MW-0230  | 13-Nov-90 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | E        |
| MW-0230  | 03-May-91 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | E        |
| MW-0230  | 15-Jul-92 | 0      | 0          | 0             | 0                           | 0              | 0             | 0   | 0                    | В                | Е        |
| MW-0230  | 16-Apr-93 | 0      | 0          | 0             | 0                           | 0              | 0             | 0   | 0                    | B                | E        |
| MW-0231  | 26-Jun-90 | 0      | 0          |               | 0                           | 0              | 0.22          | 0   | 1.66E-07             | B                | E        |
| MW-0231  | 05-Sep-90 | 0      | 0          |               | 0                           | 0              | 1.1           | 0   | 3.43E-07             | B                | E        |
| MW-0231  | 18-Jan-91 | 0      | 1.1        |               | 0                           | 0              | 0.82          | 0   | 2.56E-07             | B                | E        |
| MW-0231  | 09-Aug-91 | 0      | 0          |               | 0                           | 0              | 1.7           | 0   | 5.31E-07             | B                | E        |
| MW-0232  | 21-Jun-90 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | E        |
| MW-0232  | 02-04-90  | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | 8                | E        |
| MW-0232  | 03-May-91 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | E        |
| MW-0235  | 08-Aug-91 | 0      | 0          |               | 420                         | 0              | 2900          | 0   | 1.44E-03             | <u>н</u>         | A        |
| MW-0235  | 10-0d-91  | 0      | 0          |               | /50                         | 0              | 2800          | 0   | 1.83E-03             | 9<br>19          | <b>A</b> |
| MW-0235  | 20-Jan-92 | 0      | 0          | 0             | 1800                        | 0              | 5500          | 0   | 5.39E-03             | B                |          |
| MW-0235  | 21-Jul-72 | 0      | 0          | 0             | 2100                        | 0              | 9500          |     | 1.02E-03             | B                |          |
| MW-0236  | 08-Aug-91 | 0      | 0          | <b>v</b>      |                             | 0              | 2500          | 0   | 8.22E-04             | B                | Å        |
| MW-0236  | 10-0d-91  | 0      | 0          |               | 47                          | 0              | 830           | 0   | 5.06E-04             | B                | A        |
| MW-0236  | 10-Oct-91 | 0      | 0          |               | 78                          | 0              | 1300          | 0   | 5.06E-04             | B                | A        |
| MW-0236  | 06-Feb-92 | 0      | 0          |               | 210                         | 0              | 2300          | 0   | 9.87E-04             | B                | A        |
| MW-0236  | 21-Jul-92 | 0      | 0          | 0             | 130                         | 0              | 900           | 0   | 4.47E-04             | В                | A        |
| MW-0236  | 21-Oct-92 | 0      | 0          | 0             | 87                          | 0              | 840           | 0   | 3.81E-04             | B                | A        |
| MW-0236  | 15-Jan-93 | 0      | 0          | 0             | 72                          | 0              | 1100          | 0   | 4.36E-04             | В                | A        |
| MW-0236  | 04-Aug-93 | 0      | 0          | 0             | 104                         | 0              | 1120          | 0   | 1.02E-03             | B                | A        |
| MW-1000  | 12-Dec-85 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 1.69E-06             | В                | AB       |
| MW-1000  | 07-Mar-86 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 03-Oct-86 | 0      | 0          |               | 0.11                        |                | 0.3           | 0   | 2.34E-07             | B                | AB       |
| MW-1000  | 13-Jan-87 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 27-Apr-87 | 0      | 0          |               | 0                           | 0              | 0.94          | 0   | 2.93E-07             | В                | AB       |
| MW-1000  | 01-Aug-87 | 0      | 0          |               | 0                           | 0              | 0.86          | 0   | 5.80E-07             | B                | AB       |
| MW-1000  | 08-Oct-87 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | <u> </u>         | AB<br>AB |
| MW-1000  | 13-Jan-88 | 0      | 0          |               | 0                           | 0              | 0             | - 0 | 0                    | פ                | AD       |
| MW-1000  | 20-Apt-66 | 0      |            |               |                             |                | 0             | 0   |                      | ط<br>و           |          |
| MW-1000  | 00 100 80 | 0      | 0          |               | 0                           | 0              | 0             | 0   |                      | 8                | AB       |
| MW-1000  | 12-Apr-89 | 0      | 0          |               |                             | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 02-Aug-89 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 13-Oct-89 | 0      | 0          |               |                             |                | 0             | Ő   | 0                    | <br>             | AB       |
| MW-1000  | 19-Feb-90 | 0      | 0          |               | 0                           |                | 0             | 0   | 4,36E-07             | B                | AB       |
| MW-1000  | 03-Aug-90 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | <br>B            | AB       |
| MW-1000  | 23-Jan-91 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 9.82E-08             | B                | AB       |
| MW-1000  | 09-Apr-91 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 15-Oct-91 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 13-Jul-92 | 0      | Ō          | 0             | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 14-Jan-93 | 0      | 0          | 0             | 0                           | 0              | 0             | 0   | 0                    | B                | AB       |
| MW-1000  | 06-Aug-93 | 0      | 0          | 0             | 0                           | Ő              | 0             | 0   | 0                    | B                | AB       |
| MW-1001  | 18-Dec-85 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 6.44E-05             | D                | B        |
| MW-1001  | 04-Apr-86 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 3.74E-06             | D                | B        |
| MW-1001  | 26-Jan-87 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | D                | B        |
| MW-1001  | 08-May-87 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | D                | B        |
| MW-1001  | 08-Aug-87 | 0      | 0          |               | 0                           | 0              | 0             | 0   | 0                    | D                | В        |

g:\umarida\j\_zumwal\wong\TABLEK-6.XLS

T

.

· •

Page 42 of 60

05/11/94

| 1              |             | 1       | VOC GSAP C | oncentrations | up to Third Qu | mrter 1993 Sai | mpling Period |          |                      |                                               |    |
|----------------|-------------|---------|------------|---------------|----------------|----------------|---------------|----------|----------------------|-----------------------------------------------|----|
| Location<br>ID | Log Date    | 1,2-DCA | 1,1-DCE    | e-1,2-DCE     | PCE            | I,LI-TCA       | TCE           | vc       | Risk for<br>Pathways | Operable<br>Unit                              | T  |
| MW-1001        | 09-Oct-87   | 0       | 0          |               | 0              | 0              | Ō             | 0        | 0                    | D                                             | 1  |
| MW-1001        | 20-Jan-88   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | T  |
| MW-1001        | 27-Apr-88   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | +  |
| MW-1001        | 22-Jul-88   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | t  |
| MW-1001        | 18-Oct-88   | 0       | 0          |               | 0              | 0              | Ō             | 0        | 0                    | D                                             | -+ |
| MW-1001        | 17-Jan-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | +  |
| MW-1001        | 13-Apr-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | 1  |
| MW-1001        | 03-Aug-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | 1  |
| MW-1001        | 10-Oct-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | 1  |
| MW-1001        | 31-Jan-90   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | -  |
| MW-1001        | 25-Jul-90   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | ٦  |
| MW-1001        | 08-Jan-91   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | -  |
| MW-1001        | 09-Jul-91   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | ~  |
| MW-1001        | 06-Oct-92   | 0       | 0          | 0             | 0              | 0              | 0             | 0        | 0                    | D                                             | -  |
| MW-1001        | 07-Apr-93   | 0       | 0          | 0             | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1002        | 07-Nov-85   | 0       | 2.4        |               | 0              | 0              | i.1           | 0        | 3.43E-07             | D                                             |    |
| MW-1002        | 02-Apr-86   | 0       | 0.9        |               | 0              | 0              | 0.9           | 0        | 5.46E-07             | D                                             | -  |
| MW-1002        | 02-Apr-86   | 0       | 1          |               | 0              | 0              | 0.9           | 0        | 5.46E-07             | D                                             | -  |
| MW-1002        | 25-Sep-86   | 0       | 3.3        |               | 0              | 0              | 1.7           | 0        | 1.59E-06             | D                                             | -  |
| MW-1002        | 04-Feb-87   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1002        | 04-May-87   | 0       | 0          |               | 0              | 0              | 1.2           | 0        | 3.75E-07             | D                                             | -  |
| MW-1002        | 08-Aug-87   | 0       | 1.8        |               | 0              | 0.42           | 0             | 0        | 0                    | D                                             | -  |
| MW-1002        | 15-Oct-87   | 0       | 0.98       |               | 0              | 0              | 0.32          | 0        | 4.80E-07             | D                                             | ~  |
| MW-1002        | 21-Jan-88   | 0       | 0.96       |               | 0              | 0              | 0.39          | 0        | 6.48E-07             | D                                             | -  |
| MW-1002        | 27-Apr-88   | 0       | 0          |               | 0              | 0              | 0.31          | 0        | 2.29E-07             | D                                             |    |
| MW-1002        | 19-Jul-88   | 0       | 0.66       |               | 0              | 0              | 0.29          | 0        | 9.05E-08             | D                                             |    |
| MW-1002        | 17-Oct-88   | 0       | 0.4        |               | 0              | 0              | 0.25          | 0        | 7.80E-08             | D                                             |    |
| MW-1002        | 13-Jan-89   | 0       | 0.49       |               | 0              | 0              | 0.46          | 0        | 1.44E-07             | D                                             |    |
| MW-1002        | 19-Apr-89   | 0       | 0.16       |               | 0              | 0              | 0.22          | 0        | 6.87E-08             | D                                             |    |
| MW-1002        | 24-Jul-89   | 0       | 0.3        |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1002        | 19-Dec-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 3.53E-07             | D                                             |    |
| MW-1002        | 17-Jan-90   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1002        | 10-Apr-90   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1002        | 02-Aug-90   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | _  |
| MW-1003        | 18-Dec-85   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1003        | 18-Mar-86   | 0       | 0          |               | 0              | 0              | 0             | 0        | 7.27E-07             | D                                             |    |
| MW-1003        | 15-Oct-86   | 0       | 0.16       |               | 0              | 0              | 0             | 0        | 3.32E-06             | D                                             | _  |
| MW-1003        | 23-Jan-87   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | _  |
| MW-1003        | 08-May-87   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | _  |
| MW-1003        | 08-Aug-87   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             | _  |
| MW-1003        | 09-Oct-87   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1003        | 20-Jan-88   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | D                                             |    |
| MW-1003        | 27-Apt-88   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | <u>D</u>                                      | -  |
| MW-1003        | 22-301-88   | 0       | 0          |               | 0              | 0              | 0             |          | 0                    |                                               | _  |
| MW-1003        | 18-04-88    | 0       | 0          |               | 0              | 0              | 0             |          | 0                    |                                               | _  |
| MW-1003        | 1/-Jan-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | <u> </u>                                      | _  |
| MW-1003        | 13-Apt-89   | 0       | 0          |               | 0              |                | 0             | 0        | 0                    |                                               | _  |
| MW-1003        | 07-Aug-89   | 0       | 0          |               | 0              | 0              | 0             | 0        | 0                    | <u> </u>                                      | _  |
| MW-1003        | 10-00-89    | 0       | 0          |               | 0              | 0              |               |          | 6 82E 07             |                                               | _  |
| MW-1003        | 31-Jan-90   | 0       |            |               | 0              | 0              | 0             | 0        | 5.84E-07             | <u> </u>                                      | _  |
| MW-1003        | 25-Jul-90   | 0       | 0          |               | 0              | 0              | 0             | 0        | 3.700-00             |                                               | _  |
| MW-1003        | 08-Jab-91   | 0       | 0          |               |                | 0              |               |          |                      | <u> </u>                                      | -  |
| MW-1003        | 09-101-91   | 0       | 0          |               | 0              | 0              | 0             | <u> </u> | 0                    |                                               |    |
| MW-1003        | 00-0d-92    | 0       | 0          | 0             | 0              | 0              | 0             | 0        | 0                    | <u> </u>                                      | _  |
| MW-1004        | 18-Dec-85   | 0       | 120        |               | 0              | Z.1            | 14            | 0        | 4.492-00             |                                               | _  |
| MW-1004        | 18-Mar-80   | 0.7     | 59         |               |                | 3.2            | 15            | 0        | 0.435-06             |                                               | _  |
| MW-1004        | 29-56p-80   |         | 91         |               |                | 1.5            | 23            |          | 1.220-05             | <u>u</u>                                      | -  |
| M W-1004       | 29-300-80   | 1.9     | 100        |               |                | 1.4            |               | 0        | 1.240-03             | <u>– – – – – – – – – – – – – – – – – – – </u> | -  |
| VIN 1/21-      | i 20-J30-X7 | 0 (     | 6Z (       | 6             | 01             | 6.7            | 181           | U        | 0.102-00             | <b>U</b>                                      |    |
| MW-1004        | 09 14       |         |            |               |                |                |               | ~ ~      | 9 425 04             | ħ                                             | _  |

g:\umas\da\j\_zumwal\wong\TABLEK-6.XLS

1

.

05/11/94

-

,

and a second second second second second second second second second second second second second second second

| Table K-6           VOC GSAP Concentrations up to Third Quarter 1993 Sampling Period |            |         |          |           |        |           |        |      |           |          |      |
|--------------------------------------------------------------------------------------|------------|---------|----------|-----------|--------|-----------|--------|------|-----------|----------|------|
| Location                                                                             |            |         |          |           | D.C.T. |           |        |      | Rink for  | Operable |      |
|                                                                                      | Log Date   | 1,2-DCA | 1,1-DCE  | c-1,2-DCE | PCE    | 1,1,1-ICA | 1CE (2 | ve   | Pathways  |          | Lone |
| MW-1004                                                                              | 09-04-87   | 0.79    | 41       |           | 0      | 1.1       | 7.2    | 0    | 3.95E-06  | <u></u>  |      |
| MW-1004                                                                              | 20- Jan-88 | 0.88    | 23       |           | 0      | 0.6       | 3.6    | 0    | 1.98E-06  | <u> </u> |      |
| MW-1004                                                                              | 27-Apr-88  | 0.4     |          |           | 0      | 0.0       | 3.2    | 0    | 9.99E-07  | D        |      |
| MW-1004                                                                              | 27-Apr-88  | 0.26    | 16       |           | 0      | 0         | 2.4    | 0    | 9.99E-07  | D        |      |
| MW-1004                                                                              | 22-Jul-88  | 0.25    | 12       |           | 0      | 0         | 2.2    | 0    | 1.23E-06  | D        | A    |
| MW-1004                                                                              | 18-Oct-88  | 0.2     | 14       |           | 0      | 0         | 2.4    | 0    | 1.18E-06  | D        | A    |
| MW-1004                                                                              | 17-Jan-89  | 0.22    | 7        |           | 0      | 0         | 1.3    | 0    | 8.80E-07  | D        | A    |
| MW-1004                                                                              | 13-Apr-89  | 0       |          |           | 0      | 0.28      | 0.86   | 0    | 2.68E-07  | D        | A    |
| MW-1004                                                                              | 02-Aug-89  | 0       | 5.3      |           | 0      | 0         | 0.74   | 0    | 2.31E-07  | D        | A    |
| MW-1004                                                                              | 10-Oct-89  | 0       | 4.2      |           | 0      | 0         | 0.83   | 0    | 2.59E-07  | D        | A    |
| MW-1004                                                                              | 31-Jan-90  |         | 0        |           | 0      | 0         | 0.43   | 0    | 1.34E-07  | D        | A    |
| MW-1004                                                                              | 31-Jan-90  | 0       | 0        |           | 0      | 0         | 0.74   | 0    | 1.34E-07  | <u>D</u> | A    |
| MW-1004                                                                              | 09-Apr-90  | 0       | 1.3      |           | 0      | 0         | 0.3    | 0    | 9.36E-08  | D        | A    |
| MW-1004                                                                              | 25-Jul-90  | 0       | 0 70     |           | 0      | 0         | 0.36   | 0    | 1./3E-06  | <u>D</u> |      |
| MW-1004                                                                              | 17-Oct-90  | 0       | 0.79     |           | 0      | 0         | 0      | 0    | 1 625 07  | <u>u</u> |      |
| MW-1004                                                                              | 00-May 01  | 0       | 0.78     |           | 0      | 0         | 0.52   | 0    | 1.04E-07  | <u></u>  |      |
| MW-1004                                                                              | 09-11-01   | 0       | 0        |           | 0      | 0         | 0      | 0    |           | <u></u>  |      |
| MW-1004                                                                              | 20-Jan-92  | 0       | <u>0</u> |           | 0      | 0         | 0      | 0    | 9.13E-08  | D        | A    |
| MW-1004                                                                              | 06-Oct-92  | 0       |          | 0         | 0      | 0         | 0      | 0    | 0         | D        | A    |
| MW-1005                                                                              | 17-Dec-85  | 5       | 160      |           | 0      | 16        | 100    | 0    | 4.60E-05  | D        | A    |
| MW-1005                                                                              | 14-Mar-86  | 9.1     | 86       |           | 0.1    | 5.6       | 47     | 0    | 3.64E-05  | D        | A    |
| MW-1005                                                                              | 25-Sep-86  | 13      | 110      |           | 0.33   |           | 76     | 0.43 | 7.34E-05  | D        | A    |
| MW-1005                                                                              | 25-Sep-86  | 14      | 110      |           | 0.32   |           | 80     | 0.41 | 7.34E-05  | D        | A    |
| MW-1005                                                                              | 09-Jan-87  | 5.7     | 100      |           | 0.21   | 2.6       | 59     | 0    | 3.30E-05  | D        | A    |
| MW-1005                                                                              | 09-Jan-87  | 5.7     | 102      |           | 0.18   | 0         | 54     | 0    | 3.30E-05  | <u>D</u> | A    |
| MW-1005                                                                              | 16-Apr-87  | 6       | 160      |           | 0.26   | 3.3       | 53     | 0    | 2.98E-05  | D        | A    |
| MW-1005                                                                              | 16-Apr-87  | 7.9     | 140      |           | 0.37   | 4.3       | 95     | 0    | 2.98E-05  | <u>D</u> | A    |
| MW-1005                                                                              | 31-Jul-87  | 0       | 2/0      |           | 0      | 2.3       | //     |      | 2.40E-05  | <u> </u> | A    |
| MW-1005                                                                              | 31-JUI-8/  | 19      | 280      |           |        | 0         | 22     | 0    | 2.40E-05  | <u>0</u> |      |
| MW-1005                                                                              | 15.04.87   | 5.0     | 70       |           | 0      | 0         | 22     |      | 1.785-05  | D        |      |
| MW-1005                                                                              | 19-Jan-88  | 2       | 51       |           | 0      | 0         | 15     | 0    | 9.11E-06  |          | A    |
| MW-1005                                                                              | 19-Jan-88  | 2.2     | 58       |           | 0      | 0         | 14     | -0   | 9.11E-06  |          | A    |
| MW-1005                                                                              | 27-Apr-88  | 1.4     | 36       |           | 0      | 0         | 10     | 0    | 6.14E-06  | D        | A    |
| MW-1005                                                                              | 19-Jul-88  | 1       | 33       |           | 0      | 5.1       | 9.7    | 0    | 7.36E-06  | D        | A    |
| MW-1005                                                                              | 19-Jul-88  | 2.1     | 32       |           | 0      | 1.1       | 9.1    | 0    | 7.36E-06  | D        | Α    |
| MW-1005                                                                              | 17-Oct-88  | 0       | 32       |           | 0      | 0         | 9.7    | 0    | 3.43E-06  | D        | A    |
| MW-1005                                                                              | 17-Oct-88  | 0       | 33       |           | 0      | 0         | 11     | 0    | 3.43E-06  | D        | A    |
| MW-1005                                                                              | 13-Jan-89  | 0.64    | 21       |           | 0      | 0.29      | 5.2    | 0    | 3.00E-06  | D        | A    |
| MW-1005                                                                              | 20-Apr-89  | 0.96    | 14.5     |           | 0      | 0.36      | 3.2    | 0    | 3.28E-06  | D        | A    |
| MW-1005                                                                              | 20-Apr-89  | 1       | 13       |           | 0      | 0.27      | 3.6    | 0    | 3.28E-06  | D        |      |
| MW-1005                                                                              | 02-Aug-89  | 0       | 3.9      |           | 0      | 0         | 0.8    | 0    | 4.50E-07  | <u> </u> |      |
| MW-1005                                                                              | 17-Dec-89  |         | 11       |           |        | 0         | 3      | 0    | 9.30E-U/  | 4        |      |
| MW-1005                                                                              | 24. Are 00 | 0.32    |          |           | 0      |           |        |      | 2 61 - 04 |          |      |
| MW-1005                                                                              | 03-4110-90 | 0.37    |          |           |        | 0         | 20     | 0    | 9.05E-07  | <u>a</u> |      |
| MW-1005                                                                              | 24-Oct-90  | 0.26    |          |           | 0      | 0         | 1.7    | 0    | 1.09E-06  | <br>D    | A    |
| MW-1005                                                                              | 25-Jan-91  | 0       | 5.1      |           |        | 0         | 1.6    | 0    | 4.99E-07  | D        | A    |
| MW-1005                                                                              | 25-Jan-91  | 0       | 5.2      |           | 0      | 0         | 1.8    | 0    | 4.99E-07  | D        | A    |
| MW-1005                                                                              | 10-May-91  | 0.43    | 7.5      |           | 0      | 0         | 2.2    | 0    | 1.61E-06  | D        | A    |
| MW-1005                                                                              | 29-Jul-91  | 0.25    | 3.5      |           | 0      | 0         | 1.2    | 0    | 9.13E-07  | D        | A    |
| MW-1005                                                                              | 24-Jan-92  | 0       | 0        |           | 0      | 0         | 1.5    | 0    | 4.68E-07  | D        | A    |
| MW-1005                                                                              | 24-Jan-92  | 0       | 6.6      |           | 0      | 2.5       | 1.9    | 0    | 4.68E-07  | D        | A    |
| MW-1009                                                                              | 19-Dec-85  | 0       | 0        |           | 0      | 0         | 0      | 0    | 0         | D        | A    |
| MW-1009                                                                              | 21-Mar-86  | 0       | 0        |           | 0      | 0         | 0      | 0    | 0         | D        | A    |
| MW-1009                                                                              | 03-Feb-87  | 0       | 0        |           | 0      | 0         | 0      | 0    | 0         | D        | A    |
| MW-1009                                                                              | 17-Apr-87  | 0       | 0        |           | 0      | 0         | 0      | 0    | 0         | D        | A    |
| MW-1009                                                                              | 31-Jul-87  | 0       | 0        |           | 0      | 0         | 0      | 0    | 0         | D        | A    |
| MW-1009                                                                              | 15-Oct-87  | 0       | 0        |           | 0      | 0         | 0      | 0    | 2.28E-07  | D        | A    |

g:\users\da\j\_zumwal\wong\TABLEK-6.XLS

-----

Page 44 of 60

05/11/94

.
|          |                   |         | VOC GSAP C | oucentrations | Table K-6<br>up to Third Qu | narter 1993 Su | mpling Period |    |          |          |               |
|----------|-------------------|---------|------------|---------------|-----------------------------|----------------|---------------|----|----------|----------|---------------|
| Location |                   |         |            |               |                             |                |               |    | Riek for | Operable |               |
| D        | Log Date          | 1,2-DCA | 1,1-DCE    | e-1,2-DCE     | PCE                         | 1,1,1-TCA      | TCE           | VC | Pathways | Unit     | Zame          |
| MW-1009  | 18-Jan-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | D        | <b>A</b>      |
| MW-1009  | 19-Apr-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | <u>D</u> | A             |
| MW-1009  | 26-Jul-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | <u> </u> | <u> </u>      |
| MW-1009  | 12-04-88          | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        |          |               |
| MW-1009  | 03-Jan-90         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        |          |               |
| MW-1009  | 07-May-91         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | <u>D</u> |               |
| MW-1009  | 15-Jul-92         | 0       |            | U             | 0                           | 0              | 0             |    | 2 405 04 |          |               |
| MW-1010  | 08-Apt-80         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 2.496-00 |          |               |
| MW-1010  | 13-Jan-8/         | 0       |            |               | 0                           | 0              | 0             |    | 0        | <u> </u> | AB            |
| MW-1010  | 04-May-8/         |         |            |               |                             | 0              | 0             | 0  | 0        | <u> </u> |               |
| MW-1010  | 31-JUI-8/         |         |            |               |                             |                | 0             | 0  | 0        | <u> </u> |               |
| MW-1010  | 15-0 <b>C</b> -8/ |         | 0          |               |                             |                |               | 0  | 0        |          |               |
| MW-1010  | 10-Jan-00         |         | 0          |               |                             | 0              | 0             | 0  | 0        |          |               |
| MW-1010  | 23-Apt-88         |         |            |               |                             | 0              | 0             | 0  | 0        | <u> </u> |               |
| MW-1010  | 12-Jui-88         | 0       |            |               | 0                           |                | 0             |    | 0        |          |               |
| MW-1010  | 03.1== 00         |         | ~ ~ ~      |               | 0                           | 0              | 0             |    |          |          |               |
| MW-1010  | 26.0-00           |         |            |               | 0                           |                |               |    |          | <u>-</u> |               |
| MW.1010  | 16.0+01           |         |            |               | 0                           | 0              | 0             |    | 0        |          |               |
| MW-1010  | 10.100.03         |         |            | 0             | 0                           |                | <u> </u>      |    | 0        | D        | AR            |
| MW.1011  | 05-Nov-85         |         |            | <u>_</u>      | 0                           | 0              | 0             | 0  |          | R        |               |
| MW-1011  | 27-M=-86          | - ôl    |            |               |                             |                |               | 0  | 1.64E-06 | B        |               |
| MW-1011  | 06-04-86          |         |            |               | 0                           | 0              | 0             | 0  | 2.28E-06 | B        |               |
| MW-1011  | 06-Jan-87         | 0       |            |               | 0                           | 0              | 0             | 0  | 0        | B        |               |
| MW-1011  | 27-Arr-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        |               |
| MW-1011  | 05-Aug-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        |               |
| MW-1011  | 22-Oct-87         | 0       | 0          |               | 0                           | 0.25           | 0             | 0  | 0        | B        | A             |
| MW-1011  | 25-Jan-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        | A             |
| MW-1011  | 22-Apr-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        | A             |
| MW-1011  | 15-Jul-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        | A             |
| MW-1011  | 04-Oct-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        | A             |
| MW-1011  | 02-Jan-90         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        | A             |
| MW-1012  | 15-Nov-85         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 06-Mar-86         | 0       | 0          |               | 0                           | 0.2            | 0             | 0  | 0        | F        | A             |
| MW-1012  | 23-Jan-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 05-May-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 27-Jul-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 26-Oct-87         | 0       | 0          |               | 0                           | 0.28           | 0             | 0  | 0        | F        | A             |
| MW-1012  | 21-Jan-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 20-Apr-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 26-Jul-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | A             |
| MW-1012  | 17-Oct-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        |               |
| MW-1012  | 09-Jan-90         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        |               |
| MW-1012  | 26-Oct-90         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        | <b>A</b>      |
| MW-1012  | 23-Oct-91         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | F        |               |
| MW-1013  | 12-Nov-85         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        |               |
| MW-1013  | 11-Mar-86         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        |               |
| MW-1013  | 07-Oct-86         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 4.77E-05 | B        |               |
| MW-1013  | 15-Jan-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | B        |               |
| MW-1013  | 20-Apr-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        |               |
| MW-1013  | 03-Aug-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        |               |
| MW-1013  | 22-Oct-87         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | <u> </u> | <b>↓</b> ♣ ┨  |
| MW-1013  | 19-Jan-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | 8        | <b>↓</b> ↑ ↓  |
| MW-1013  | 22-Apr-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        | <b>↓</b> ↑    |
| MW-1013  | 15-Jul-88         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        | +             |
| MW-1013  | 11-Oct-88         | 0       | 0          | <u>_</u>      | 0                           | 0              | 0             | 0  | 0        | <u> </u> | <u>↓</u> ↑ ↓  |
| MW-1013  | 18-Jan-89         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | 8        | +             |
| MW-1013  | 20-Apr-89         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | В        | <u>⊢</u> ́_ ́ |
| MW-1014  | 14-Nov-85         | 0       | 0          |               | 0                           | 0              | 0             | 0  | 0        | A .      | +             |
| MW-1014  | 12-Mar-50         | 0       | 0          |               | 0                           | 0              | 0             | 0  | <u> </u> | A        | ┼╌┨           |
| MIW-1014 | 10-188-8/         | 0       | 0          |               | 0                           | 0              | 0             |    | <b>U</b> | A        | <u> </u>      |

g:\uaers\de\j\_zumwai\wong\TABLEK-6.XLS

.

,

١.

- ----

\_\_\_\_

Page 45 of 60

05/11/94

----

|          |           |        | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | arter 1993 Sar | npling Period |          |          |          |          |
|----------|-----------|--------|------------|---------------|-----------------------------|----------------|---------------|----------|----------|----------|----------|
| Location |           | 1100   | 11 DCF     | . 1 2 DCE     |                             | 111764         | TVT           | VC       | Rink for | Operable | -        |
|          | 27 Are 87 | I,FUCA | 1,1-00.8   | C-1,4-DCE     | n.e                         | 1,1,1-1CA      | 102           | <u> </u> | PREWays  |          | 2.000    |
| MW-1014  | 01-44-87  | 0      | 0          |               | 0                           | 0              | 0             | 0        | 145E-07  | A        | Â        |
| MW-1014  | 26-0ct-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | A        | A        |
| MW-1014  | 25-Jan-88 | 0      | 0          |               | 0                           | 0              | 0             |          | 0        | A        | A        |
| MW-1014  | 27-Apr-88 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | A        | A        |
| MW-1014  | 19-Jul-88 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | A        | A        |
| MW-1014  | 27-Oct-88 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | A        | A        |
| MW-1014  | 24-Jan-89 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | A        | A        |
| MW-1014  | 27-Apr-89 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | A        | A        |
| MW-1015  | 14-Dec-85 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 2.18E-06 | В        | A        |
| MW-1015  | 25-Mar-86 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1015  | 07-Oct-86 | 0      | 0          |               | 0.1                         | 0              | 0             | 0        | 4.16E-06 | B        | Α        |
| MW-1015  | 14-Jan-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1015  | 04-May-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 01-Aug-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 17-Oct-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 19-Jan-88 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 22-Apr-88 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 15-Jul-88 | 0      | 0          |               | 0                           |                | 0             | 0        | 0        | B        | A        |
| MW-1015  | 11-Oct-88 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | <u>B</u> | A        |
| MW-1015  | 10-Jan-89 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | 8        | A        |
| MW-1015  | 06-Apr-89 | 0      | 0          |               | 0                           | 0              | 0             |          | 0        | 8        | <b>^</b> |
| MW-1015  | 31-JUI-89 | 0      | 0          |               | 0                           |                |               | 0        | 0        | 5        | Â        |
| MW-1015  | 16-Dec-89 | 0      |            |               | 0                           |                | 0             |          |          | <br>     |          |
| MW-1015  | 20-Jan-90 |        | 0          |               |                             |                | 0             |          | 0        | B        |          |
| MW-1015  | 01-Nov-90 | 0      | 0          |               |                             | 0              | 0             | 0        |          | B        | A        |
| MW-1015  | 28-lan-91 |        |            |               |                             |                |               |          | 0        | B        | A        |
| MW-1015  | 10-May-91 | 0      | 0          |               |                             | 0              | 0             | - 0      | 0        | B        | A        |
| MW-1015  | 21-Oct-91 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 21-Jan-92 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1015  | 05-Oct-92 |        |            |               |                             |                |               |          | 0        | B        | A        |
| MW-1015  | 05-Oct-92 | 0      | 0          | 0             | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1015  | 30-Jul-93 | 0      | 0          | 0             | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1016  | 14-Nov-85 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1016  | 12-Mar-86 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | <b>A</b> |
| MW-1016  | 07-Oct-86 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 1.46E-07 | B        | A        |
| MW-1016  | 16-Jan-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1016  | 07-May-87 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 4.37E-07 | <u> </u> | A        |
| MW-1016  | 01-Aug-87 | 0      | e          |               | 0                           | 0              | 0             | 0        | 2.28E-07 | B        | A        |
| MW-1016  | 10-Oct-87 | 0      | <u>U</u>   |               | 0                           |                | 0             |          | 0        | 8        |          |
| MW-1016  | 14-Jan-88 | 0      |            |               | 0                           |                |               |          | 0        | Ø<br>9   |          |
| MW, 1014 | 10 1.1 49 |        |            |               | U0                          |                | 0             |          | 0        | R        |          |
| MW.1016  | 12-04-88  |        |            |               | 0                           |                |               |          | 1.315_06 | B        |          |
| MW-1016  | 11-128.80 | 0      |            |               | 0                           |                | 0             | 0        | 1.93E-07 | B        | A        |
| MW-1016  | 10-Anr-89 | 0      | 0          |               | 0                           | <u>0</u>       | 0             | 0        | 0        | B        | A        |
| MW-1016  | 26-Jul-89 |        |            |               | Ő                           |                | 0             |          | 2.25E-07 | B        | A        |
| MW-1016  | 13-Oct-89 | 0      |            |               | 0                           |                | 0             |          | 9.82E-07 | B        | A        |
| MW-1016  | 26-Jan-90 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1016  | 23-Apt-90 | 0      | 0          |               | 0.2                         | 0              | 0             | 0        | 2.56E-07 | B        | A        |
| MW-1016  | 02-Aug-90 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 2.65E-06 | B        | A        |
| MW-1016  | 01-Nov-90 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1016  | 23-Jan-91 | 0      | 0          |               | Ō                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1016  | 03-May-91 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1016  | 22-Jul-91 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1016  | 14-0a-91  | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1016  | 21-Jan-92 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | В        | A        |
| MW-1016  | 05-Oct-92 | 0      | 0          | 0             | 0                           | 0              | 0             | 0        | 0        | B        | A        |
| MW-1017  | 08-Nov-85 | 0      | 0          |               | 0                           | 0              | 0             | 0        | 0        | С        | A        |
| MW-1017  | 18-Mar-86 | 0      | 0          |               | 0                           | Ō              | 0             | 0        | 0        | С        | A        |

g:\users\da\j\_zumwal\woog\TABLEK-6.XLS

T

1

ŧ

4

05/11/94

-----

E: WHEN'S & BUILD & WOOL ( A BLELL'O. & L.

n. \_

~ · · · m.

.

| ٠ | * | ٠ | ** | • | <br> | _ | - 1 |
|---|---|---|----|---|------|---|-----|

|          |           | <u>.    .                               </u> | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | narter 1993 Sa | npling Period |            |          |            |            |
|----------|-----------|----------------------------------------------|------------|---------------|-----------------------------|----------------|---------------|------------|----------|------------|------------|
| Location | r         | I I                                          |            |               |                             |                |               |            | Rink for | Operable   |            |
| ( ID     | Log Date  | 1,2-DCA                                      | 1,1-DCE    | e-1,2-DCE     | PCE                         | 1,1,1-TCA      | TCE           | vc         | Pathways | Unit       | Zome       |
| MW-1017  | 20-Jan-87 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | С          | A          |
| MW-1017  | 20-Apr-87 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | Ĉ          | A          |
| MW-1017  | 28-Jul-87 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | С          | A          |
| MW-1017  | 17-Oct-87 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | C          | A          |
| MW-1017  | 21-Jan-88 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | C          | A          |
| MW-1017  | 20-Apr-88 | 0                                            | 0          | ······        | 0                           | 0              | 0             | 0          | 0        | С          | A          |
| MW-1017  | 12-Jul-88 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | С          | A          |
| MW-1017  | 13-Oct-88 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | C          | <b>A</b>   |
| MW-1017  | 09-Jan-90 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | C          | <b>A</b>   |
| MW-1017  | 10-Apr-90 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | C          | <b>A</b>   |
| MW-1018  | 18-Nov-85 | 0                                            | 0          |               | 0                           | 0              | 0.7           | 0          | 2.18E-07 | <u> </u>   | <b>A</b>   |
| MW-1018  | 12-Mar-80 |                                              | 0          |               | 0                           | 0              | 0.7           |            | 3.51E-07 | <u> </u>   | <b>A</b>   |
| MW-1018  | 23-Sep-80 |                                              | 0          |               | 0                           | 0              | 0.94          |            | 5.192-07 | <u> </u>   | A          |
| MW-1018  | 04-160-87 |                                              | 0          |               | 0                           | 0              |               |            | 6 315 07 | <u> </u>   | <u> </u>   |
| MW-1018  | 01-MAY-8/ |                                              |            |               | 0                           |                | 1./           |            | J.J1E-07 | <u> </u>   |            |
| MW-1018  | 08-0      |                                              |            |               |                             | 0              | 0.57          |            | 3 405-07 | <u> </u>   |            |
| MW-1018  | 14.700.99 |                                              |            |               |                             |                | 0.57          |            | 3.00-07  |            |            |
| MW-1018  | 13.4      |                                              |            |               | 0                           | 0              | 0.0           |            | 1.875-07 | - c        |            |
| MW-1018  | 23-Jul-88 | 0                                            |            |               |                             |                | 0.58          | - <u> </u> | 3,66E-07 | c          | A          |
| MW-1018  | 20-Oct-88 | 0                                            | 0          |               | 0                           | ō              | 0.56          | 0          | 1.75E-07 | c          |            |
| MW-1018  | 20-Oct-88 | 0                                            | 0          |               | Ō                           | 0              | 0.58          | - 0        | 1.75E-07 | C          | + <u>-</u> |
| MW-1018  | 03-Jan-90 | 0                                            | 0          |               | 0                           | 0              | 0.64          | 0          | 2.00E-07 | C          | A          |
| MW-1018  | 06-Apr-90 | 0                                            | 0          |               | 0                           | 0              | 0.47          | 0          | 1.47E-07 | С          | A          |
| MW-1018  | 17-Jan-91 |                                              |            |               |                             |                |               |            | 0        | С          | A          |
| MW-1018  | 09-Apr-91 | 0                                            | 0          |               | 0                           | 0              | 0.66          | 0          | 2.06E-07 | С          | A          |
| MW-1018  | 24-Jan-92 |                                              |            |               |                             |                |               |            | 0        | С          | A          |
| MW-1018  | 26-Feb-92 | 0                                            | 0          |               | 0                           | 0              | 0             | 0          | 0        | С          | A          |
| MW-1018  | 15-Apr-93 | 0                                            | 0          | 0             | 0                           | 0              | 0             | 0          | 0        | С          | A          |
| MW-1019  | 19-Dec-85 | 0                                            | 0          |               | 0                           | 0              | 0.5           | 0          | 4.73E-06 | D          | A          |
| MW-1019  | 08-Apr-86 | 0                                            | 0          |               | 0.4                         | 0.2            | 2             | 0          | 1.89E-06 | D          | Α          |
| MW-1019  | 24-Sep-86 | 0                                            | 0          |               | 0                           | 0              | 1.6           | 0          | 1.07E-04 | D          | <u>A</u>   |
| MW-1019  | 09-Jan-87 | 0                                            | 0          |               | 0.22                        | 0              | 1.3           | 0          | 9.13E-07 | D          | A          |
| MW-1019  | 20-Apr-87 | 0                                            | 0          |               | 1.1                         | 0              | 2.6           | 0          | 2.63E-06 | D          | A          |
| MW-1019  | 20-Apr-87 | 0                                            | 0          |               | 1.1                         | 0              | 3.7           | 0          | 2.63E-06 | D          | <b>A</b>   |
| MW-1019  | 07-Aug-87 | 0                                            | 0          |               | 1.2                         | 0.68           | 4             | 0          | 2.79E-06 | <u>D</u>   | <u> </u>   |
| MW-1019  | 21-00-87  | 0.13                                         | 0          |               | 1.1                         | 0.26           | 1.5           |            | 2.51E-06 | <u> </u>   | <u> </u>   |
| MW-1019  | 25-Jan-88 | 0                                            | 0.1        |               | 0.53                        | 0              | 1.3           | - 0        | 1.71E-06 |            | + <u>^</u> |
| MW 1019  | 23-340-00 | 0                                            | 0.11       |               | 0.61                        |                | 1.7           | - 0        | 1.125-06 | <u>– u</u> |            |
| MW-1019  | 11.101.88 |                                              |            |               | 0.43                        |                | 1.3           |            | 1.121-00 | <u>D</u>   |            |
| MW-1019  | 12.04.88  |                                              |            |               | 0.5                         | 0              | 1.5           |            | 1.52F-06 | D          |            |
| MW-1019  | 18-Jan-89 |                                              |            |               | 0.55                        |                | 1.2           | - 0        | 1.17E-06 |            |            |
| MW-1019  | 19-Anr-89 |                                              |            |               | 0.6                         | 0              | 1.1           |            | 1.43E-06 | D          | A          |
| MW-1019  | 19-Apr-89 | 0                                            | 0          |               | 0.64                        | 0              | 1.2           | 0          | 1.43E-06 | D          | A          |
| MW-1019  | 28-Jul-89 | ōt                                           | 0          |               | 0                           |                | 1.2           | 0          | 3.75E-07 | D          | A          |
| MW-1019  | 21-Dec-89 | 0                                            | 0          |               | 0.83                        | 0              | 1.5           | 0          | 1.88E-06 | D          | A          |
| MW-1019  | 21-Dec-89 | 0                                            |            |               | 0.87                        | 0              | 1.7           | 0          | 1.88E-06 | D          | A          |
| MW-1019  | 01-Feb-90 | 0                                            | 0          |               | 1                           | 0              | 2.1           | 0          | 1.94E-06 | D          | A          |
| MW-1019  | 06-Apr-90 | 0                                            | 0          |               | 1.1                         | 0              | 2.5           | 0          | 2.37E-06 | D          | A          |
| MW-1019  | 03-Aug-90 | 0                                            | 0          |               | 0.6                         | 0              | 1.3           | 0          | 1.17E-06 | D          |            |
| MW-1019  | 24-0a-90  | 0                                            | 0          |               | 0                           | 0              | 1.4           | 0          | 4.37E-07 | D          | A          |
| MW-1019  | 22-Jan-91 | 0                                            | 0          |               | 0.52                        | 0              | 1             | 0          | 9.78E-07 | D          | <b>A</b>   |
| MW-1019  | 22-Jan-91 | 0                                            | 0          |               | 0.59                        | 0              | 1.4           | 0          | 9.78E-07 | D          |            |
| MW-1019  | 08-Apr-91 | 0                                            | 0          |               | 0.49                        | 0              | 2.6           | 0          | 1.44E-06 | D          | A          |
| MW-1019  | 11-Jul-91 | 0                                            | 0          |               | 0.53                        | 0              | 1.5           | 0          | 1.15E-06 | D          | A          |
| MW-1019  | 04-Oct-91 | 0                                            | 0          |               | 0.32                        | 0              | 1.2           | 0          | 7.84E-07 | D          | A          |
| MW-1019  | 21-Jan-92 | 0                                            | 0          |               | 0.38                        | 0              | 1.7           | 0          | 2.74E-06 | D          | A          |
| MW-1019  | 20-Oct-92 | 0                                            | 0          | 0             | 0                           | 0              | 0.24          | 0          | 7.80E-08 | D          | A          |
| MW-1019  | 20-Oct-92 | 0                                            | 0          | 0             | 0                           | 0              | 0.25          | 0          | 7.80E-08 | D          | <b>A</b>   |
| MW-1019  | 18-Jan-93 | 0                                            | 0          | 0             | 0                           | 0              | 0.54          | 0          | 1.69E-07 | D          | <u> </u>   |

|          |             | · · · · · · · · · · · · · · · · · · | VOC GSAP C | Concentrations | Table K-6<br>up to Third Or | mrter 1993 Sa | npling Period |      |          |            |          |
|----------|-------------|-------------------------------------|------------|----------------|-----------------------------|---------------|---------------|------|----------|------------|----------|
| Location |             |                                     | 11 000     |                |                             |               |               | VC   | Risk for | Operable   |          |
|          | Log Date    | 1,2-DCA                             | 1,1-DCE    | CL.FDCE        | FCE                         | 1,11-1CA      | 0.17          | VC 0 | 2 15E 07 |            | 2000     |
| MW-1019  | 20-14-03    | 0                                   | 0          |                |                             | 0             | 0.57          | - 0  | 3715-07  | <u></u>    |          |
| MW-1020  | 08-Nov-85   | 0                                   |            |                | 0                           | 0             | 0.50          | 0    | 0        | B          | Å        |
| MW-1020  | 07-Mar-86   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | B          |          |
| MW-1020  | 03-Oct-86   | 0                                   | 0          |                | 0.16                        |               | 0             | 0    | 2.05E-07 | B          | A        |
| MW-1020  | 13-Jan-87   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | B          | A        |
| MW-1020  | 30-Apr-87   | 0                                   | 0          |                | 0                           | 0             | 0.3           | 0    | 9.36E-08 | В          | A        |
| MW-1020  | 01-Aug-87   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 2.28E-07 | B          | A        |
| MW-1020  | 08-Oct-87   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | B          | A        |
| MW-1020  | 13-Jan-88   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | В          | A        |
| MW-1020  | 18-Apr-88   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | B          | A        |
| MW-1020  | 15-Jul-88   | 0                                   | 0          |                | 0                           | 0.26          | 0             | 0    | 0        | B          | A        |
| MW-1020  | 18-Jan-89   | 0                                   | 0          |                | 0                           | 0             | 0.32          | 0    | 9.99E-08 | B          | A        |
| MW-1020  | 10-Apr-89   | 0                                   | 0          |                | 0                           | 0             | 0.23          | 0    | 7.18E-08 | B          | A        |
| MW-1020  | 26-Jul-89   | 0                                   | 0          |                | 0                           | 0             | 0.31          | - 0  | 9.68E-08 | B          | <b>A</b> |
| MW-1020  | 13-Oct-89   |                                     | 0          |                | 0                           | 0             | 0.43          |      | 1.395-07 | B          | A        |
| MW-1020  | 01-1-00-90  |                                     |            |                | 0                           | 0             | 0.43          | - 0  | 1.346-07 | B          |          |
| MW.1020  | 03.414.90   |                                     | 0          |                | 0                           | 0             |               | - 0  |          |            |          |
| MW-1020  | 01-Nov-90   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | <u>0</u> | B          | A        |
| MW-1020  | 15-Jan-91   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | B          | A        |
| MW-1020  | 09-Apr-91   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | В          | A        |
| MW-1020  | 19-Jul-91   | . 0                                 | 0          |                | 0                           | 0             | 0             | 0    | 0        | В          | A        |
| MW-1020  | 15-Oct-91   | 0                                   | 0          |                | 0                           | 0             | 0             | 0    | 0        | В          | A        |
| MW-1020  | 13-Jul-92   | 0                                   | 0          | 0              | 0                           | 0             | 0             | 0    | 0        | B          | A        |
| MW-1020  | 08-Jan-93   | 0                                   | 0          | 0              | 0                           | 0             | 0             | 0    | 0        | В          | A        |
| MW-1021  | 07-Nov-86   | 0                                   | 0          |                | 2.8                         | 0             | 57            | 0    | 2.17E-05 | B          | A        |
| MW-1021  | 26-Jan-87   | 0                                   | 0          |                | 0                           | 0             | 32            | 0    | 1.29E-05 | B          | A        |
| MW-1021  | 27-Apr-87   | 0                                   | 0          |                | 5.6                         | 0             | 57            | 0    | 2.78E-05 | B          | A        |
| MW-1021  | 03-Aug-87   | 0                                   | 0          |                | 2.1                         | 0             | 40            | - 0  | 1./8E-05 | B          | A        |
| MW-1021  | 10. Inc. 88 | 0                                   |            |                | 1.3                         | 0             |               | - 0  | 5 35E-06 | - B<br>- R |          |
| MW-1021  | 21-Anr-88   | 0                                   | 0          |                | 1.2                         | 0             | 14            | 0    | 5.91E-06 | B          | A        |
| MW-1021  | 19-Jul-88   | 0                                   |            |                | 1.8                         | 0             | 18            | 0    | 8.19E-06 | B          | A        |
| MW-1021  | 11-Oct-88   | 0                                   | 0          |                | 1.4                         | 0             | 10            | 0    | 5.57E-06 | В          | A        |
| MW-1021  | 11-Oct-88   | 0                                   | 0          |                | 1.5                         | 0             |               | 0    | 5.57E-06 | В          | A        |
| MW-1021  | 19-Jan-89   | 0                                   | 0          |                | 1.4                         | 0             | 15            | 0    | 6.78E-06 | B          | A        |
| MW-1021  | 10-Apr-89   | 0                                   | 0          |                | 1                           | 0             | 8.5           | 0    | 4.58E-06 | B          | A        |
| MW-1021  | 10-Apr-89   | 0                                   | 0          |                | 1.1                         | 0             | 9.3           | 0    | 4.58E-06 | В          | <b>A</b> |
| MW-1021  | 25-Jul-89   | 0                                   | 0          |                | 2                           | 0             | 14            | 0    | 7.13E-06 | B          | A        |
| MW-1021  | 21-Dec-89   | 0                                   | 0          |                | 0                           | 0             | 15            | 0    | 1.61E-05 | <u>B</u>   | A        |
| MW-1021  | 01-Feb-90   | 0                                   | 0          |                | 0.77                        | 0             | 12            | - 0  | 5.09E-00 | B          | A        |
| MW-1021  | 24.455-90   |                                     |            |                | 1.4                         |               | 13            |      | 7.685-06 | B          |          |
| MW-1021  | 02-Aug-90   |                                     |            |                | 1.4                         | 0             | 17            | 0    | 7.85E-06 | B          | A        |
| MW-1021  | 23-Oct-90   | 0                                   | <b>0</b>   |                | 1.3                         | 0             | 13            | - 0  | 5.72E-06 | B          | A        |
| MW-1021  | 25-Jan-91   | ō                                   | 0          |                | 0.39                        | 0             | 7.4           | 0    | 2.94E-06 | B          | A        |
| MW-1021  | 25-Jan-91   | 0                                   | 0          |                | 0.41                        | 0             | 10            | 0    | 2.94E-06 | В          | A        |
| MW-1021  | 26-Apr-91   | 0                                   | 0          |                | 0.59                        | 0             | 12            | 0    | 4.50E-06 | В          | A        |
| MW-1021  | 01-Aug-91   | 0                                   | 0          |                | 0                           | 0             | 11            | 0    | 3.43E-06 | B          | Ā        |
| MW-1021  | 18-Oct-91   | 0                                   | 0          |                | 0                           | 0             | 6.7           | 0    | 2.09E-06 | B          | A        |
| MW-1021  | 18-Oct-91   | 0                                   | 0          |                | 0                           | 0             | 7.1           | 0    | 2.09E-06 | B          | A        |
| MW-1021  | 16-Jan-92   | 0                                   | 0          |                | 0.42                        | 0             | 11            | 0    | 4.79E-06 | B          | <b>A</b> |
| MW-1021  | 14-Jul-92   | 0                                   | 0          | 2.5            | 0.45                        | 0             | 9.3           | 0    | 3.48E-06 | B          | <b>A</b> |
| MW-1021  | 21-Jan-93   | . 0                                 | 0          | 0              | 0                           | 0             | 3.3           | 0    | 1.03E-06 | B          | <b>A</b> |
| MW-1021  | 20-Apr-93   | 0                                   | 0          | 1.90           | 0                           | 0             | 6.20          | 0    | 6.34E-06 | <u>B</u>   | A        |
| MW-1021  | 40-JUL-93   |                                     | 0          | 2.84           | 0                           | 0.65          | 9.99          |      | 0./3E-00 | <u>D</u>   |          |
| MW-1022  | 23-10-17    |                                     |            |                | 0.54                        | 0             | 13            |      | 2 125-04 | R          | R        |
| MW-1022  | 27-Am-87    |                                     | 0          |                | 0.57                        | 0             | 20            | ŏ    | 7.65E-06 | B          | B        |
| MW-1022  | 03-Aug-87   | 0                                   | 0          |                | 0.77                        | 0             | 21            | ō    | 7.54E-06 |            | B        |

g:\unars\day\_zumwa\\woag\TABLEK-6.XLS

1

1

١

-----

.

05/11/94

. . . . . . . . .

Page 48 of 60

|                 |                   | •       | VOC GSAP C | encentrations | up to Third Qu | mrter 1993 Sa | mpling Period |          |          |          |   |
|-----------------|-------------------|---------|------------|---------------|----------------|---------------|---------------|----------|----------|----------|---|
| Location        | L on Doop         | 12.004  | 11.007     | -12-DCW       | <b>P</b> CT    | 111.000       |               | VC       | Rick for | Operable | ; |
| MW-1022         | 20.04.97          | 1,2-0CA | .,         | 0.000         |                | 0             | 0.4           | <u> </u> | 2.935.06 | 2        | - |
| MW-1022         | 10 /20 89         |         |            |               | 0.16           |               | 9.4           |          | 2.932-06 |          | - |
| MW-1022         | 19-Jan-88         | 0       |            |               | 0.36           | 0             | 4.0           |          | 2.12E-06 | B        | _ |
| MW-1022         | 21-Apr-88         | 0       | 0          |               | 0.56           | 0             | 12            | 0        | 4.46E-06 | В        | _ |
| MW-1022         | 19-Jul-88         | 0       | 0          |               | 0              | 0             | 6.1           | 0        | 1.90E-06 | <u>B</u> |   |
| MW-1022         | 19-Jul-88         | 0       | 0          |               | 0.64           | 0             | 9.7           | 0        | 1.90E-06 | B        |   |
| MW-1022         | 21-Oct-88         | 0       | 0          |               | 0.61           | 0             | 10            | 0        | 3.94E-06 | В        |   |
| MW-1022         | 21-Oct-88         | 0       | 0          |               | 0.64           | 0             | 10            | 0        | 3.94E-06 | B        |   |
| MW-1022         | 19-Jan-89         | 0       | 0          |               | 0.8            | 0             | 10            | 0        | 4.16E-06 | В        |   |
| MW-1022         | 19-Jan-89         | 0       | 0          |               | 0.81           | 0             | 9.1           | 0        | 4.16E-06 | В        |   |
| MW-1022         | 10-Apr-89         | 0       | 0          |               | 0.5            | 0             | 5.2           | 0        | 2.66E-06 | B        |   |
| MW-1022         | 25-Jul-89         | ō       | 0          |               | 1.2            | 0             | 8.8           | 0        | 4.43E-06 | B        | - |
| MW-1022         | 03-148-90         |         | 0          |               | 0.31           | 0             | 57            | 0        | 2 18E-06 | 8        | - |
| MW 1002         | 01 Eab 90         |         |            |               | 0.51           |               | 5.7           |          | 1 845 06 |          |   |
| MW-1022         | 01-1-00-90        |         |            |               | 0.78           |               | 5.9           | 0        | 1.046-00 | B        | - |
| MW-1022         | 23-Apr-90         | 0       | 0          |               | 0.78           | 0             | 12            | U        | 4.901-00 | 8        | _ |
| MW-1022         | 02-Aug-90         | 0       | 0          |               | 0.92           | 0             | 16            | 0        | 6.17E-06 | B        | _ |
| MW-1022         | 23-Oct-90         | 0       | 0          |               | 1.1            | 0             | 11            | 0        | 4.84E-06 | B        | _ |
| MW-1022         | 25-Jan-91         | 0       | 0          |               | 0.44           | 0             | 9.4           | 0        | 3.68E-06 | B        |   |
| MW-1022         | 26-Apr-91         | 0       | 0          |               | 0.48           | 0             | 12            | 0        | 4.36E-06 | B        |   |
| MW-1022         | 01-Aug-91         | 0       | 0          |               | 0.27           | 0             | 9.8           | 0        | 3.40E-06 | B        |   |
| MW-1022         | 18-Oct-91         | 0       | 0          |               | 0              | 0             | 7.2           | 0        | 2.25E-06 | В        |   |
| MW-1022         | 21-Jan-92         | 0       | 0          |               | 0.36           | 0             | 13            | 0        | 5.84E-06 | В        | - |
| MW-1022         | 14-Jul-92         | - Ó     | 0          | 1.1           | 0.49           | 0             | 10            | 0        | 3.75E-06 | B        | - |
| MW-1022         | 08-Oct-92         |         | 0          | 1.8           | 0.51           | 0             | 7.3           | 0        | 2.98E-06 | B        | - |
| MW-1022         | 08.04.92          |         |            |               | 0.52           |               | 74            | 0        | 2.98E-06 | R        | - |
| MW 1022         | 21 100 02         |         |            |               | 0.52           |               | 9.4           |          | 2.965-00 | B        | _ |
| MW-1022         | 21-740-93         |         |            |               |                |               | 0.3           | 0        | 2.03E-00 |          | _ |
| MW-1022         | 28-102-93         |         |            | 0.60          | 0              | 0             | 9.21          | 0        | 0.492-00 | В        | _ |
| MW-1023         | 04-Nov-85         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | 8        | _ |
| MW-1023         | 19-Jan-87         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | _ |
| MW-1023         | 15-Apr-87         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1023         | 11-Aug-87         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | В        | _ |
| MW-1023         | 22-Oct-87         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1023         | 13-Jan-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | В        |   |
| MW-1023         | 15-Apr-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1023         | 08-Jul-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | В        | - |
| MW-1023         | 05-Oct-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | - |
| MW-1023         | 11-Jan-89         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | В        | - |
| MW-1023         | 07.Anr.89         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | - |
| MW-1023         | 03.440.89         |         | 0          |               |                |               | 0             | 0        | 0        | B        | - |
| MW 1023         | 22 Dec 80         |         |            |               |                | 0             |               |          | 2 295 07 |          | - |
| MW-1023         | 10 1-000          |         |            |               | 0              | <b>v</b>      |               | 0        | 2.201-01 |          | _ |
| MW-1023         | 18-348-90         | 0       |            |               | 0              |               | 0             | 0        | 0        |          | _ |
| MW-1023         | 20-Apr-90         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | _ |
| MW-1023         | 11-Oct-90         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | _ |
| MW-1023         | 07-Jan-91         |         |            |               |                |               |               |          | 0        | B        |   |
| MW-1023         | 19-Jul-91         | 0       | 0          |               | 0              | 0             | 0             | 0        | 1.04E-07 | B        |   |
| MW-1023         | 17-Oct-91         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1023         | 14-Jan-92         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | В        |   |
| MW-1023         | 09-0a-92          | 0       | 0          | 0             | 0              | 0             | 0             | 0        | 0        | B        | Ī |
| MW-1024         | 04-Nov-86         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1024         | 19-Jan-87         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | - |
| MW-1024         | 15.Am.87          |         |            |               |                |               |               | 0        |          |          | - |
| MAN 1004        | 11 Aug 07         |         |            |               | č              |               |               |          |          |          | - |
| MW-1024         | 11-Aug-07         |         |            |               |                | 0             | 0             | 0        |          |          | - |
| MW-1024         | 15-0 <b>G-8</b> / | U       | 0          |               | 0              | 0             | U             | 0        | 0        | D        | - |
| MW-1024         | 12-Jan-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        | _ |
| MW-1024         | 15-Apr-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1024         | 08-Jul-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1024         | 05-Oct-88         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1024         | 10-Jan-89         | 0       | 0          |               | 0              | 0             | 0             | 0        | 0        | B        |   |
| MW-1024         | 07-Apr-89         |         | 0          |               |                | 0             | 0             | 0        | 0        | В        | - |
| MW-1024         | 21-Jul.29         |         |            |               |                | <u>,</u>      |               | 0        | 0        | B        | • |
| MW-1024         | 12-0              |         |            | ·             |                |               |               | - 0      | <u> </u> | R        | - |
| 174 TT - 1 V6/T | 14-000-07         | v       | <u> </u>   |               | U              | J             |               | V        |          |          | _ |

g:\umers\da\j\_zumwai\woag\TABLEK-6.XLS

1

1

05/11/94

-----

|          |            |         | VOC GSAP C | Concentrations                        | Table K-6<br>up to Third Qu | mrter 1993 Sa | mpling Period |     |              |          |              |
|----------|------------|---------|------------|---------------------------------------|-----------------------------|---------------|---------------|-----|--------------|----------|--------------|
| Location | T Date     | 1.1 000 | 11.008     |                                       |                             | 111704        | 17.9          | VC  | Risk for     | Operable |              |
| MW-1024  | 19.477-90  | 1,000   | 1,1-10-15  | CI, FUCE                              | O                           | 1,LI-ICA      |               |     | Panwaye<br>O | B        | 2,0000       |
| MW-1024  | 03-Aug-90  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | ů            | B        | A            |
| MW-1024  | 11-Oct-90  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        |              |
| MW-1024  | 07-Jan-91  | 0       | 0          | t                                     | 0                           | 0             | 0             | 0   | 1.41E-07     | B        |              |
| MW-1024  | 01-Feb-91  |         |            |                                       |                             |               |               | -   | 0            | B        | A            |
| MW-1024  | 19-Jul-91  | 0       | 0          | · · · · · · · · · · · · · · · · · · · | 0                           | 0             | 0             | 0   | 0            | B        | A            |
| MW-1024  | 04-Oct-91  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | A            |
| MW-1024  | 17-Jan-92  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | A            |
| MW-1024  | 14-Jul-92  | 0       | 0          | 0                                     | 0                           | 0             | 0             | 0   | 0            | В        | A            |
| MW-1024  | 18-Jan-93  | 0       | 0          | 0                                     | 0                           | 0             | 0             | 0   | 0            | В        | A            |
| MW-1025  | 03-Nov-86  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1025  | 19-Jan-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1025  | 15-Apr-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1025  | 11-Aug-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1025  | 15-Oct-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | В            |
| MW-1025  | 12-Jan-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1025  | 15-Apr-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | В            |
| MW-1025  | 08-Jul-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | B            |
| MW-1025  | 05-Oct-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | B            |
| MW-1025  | 10-Jan-89  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | B            |
| MW-1025  | 07-Apr-89  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1025  | 21-Jul-89  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | <u> </u> | В            |
| MW-1025  | 12-04-89   | 0       | 0          |                                       | 0                           | 0.42          | 0             | 0   | 0            | 8        | В            |
| MW-1025  | 18-Jan-90  | 0       | 0          |                                       | 0                           | 0.47          | 0             | 0   | 0            |          | B            |
| MW-1025  | 19-Apt-90  | 0       | 0          |                                       | 0                           | 0             |               | 0   | 0            | B        |              |
| MW-1025  | 11.04.90   | 0       | 0          |                                       |                             |               | 0             | 0   |              | B        | B            |
| MW-1025  | 07-1-00-90 |         |            |                                       |                             |               |               |     | 0            | B        | B            |
| MW-1025  | 07-May-91  | 0       | 0          |                                       |                             | 0             | 0             | 0   | 0            |          | B            |
| MW-1025  | 19-Jul-91  | 0       | 0          |                                       | <u>0</u>                    | 0             | 0             | 0   |              | B        | B            |
| MW-1025  | 04-Oct-91  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | B            |
| MW-1025  | 14-Jan-92  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | B        | B            |
| MW-1025  | 14-Jui-92  | 0       | 0          | 0                                     | 0                           | 0             | 0             | 0   | 0            | В        | B            |
| MW-1025  | 09-Oct-92  | 0       | 0          | 0                                     | 0                           | 0             | 0             | 0   | 0            | B        | B            |
| MW-1025  | 13-Jan-93  | 0       | 0          | 0                                     | 0                           | 0             | 0             | 0   | 0            | В        | В            |
| MW-1026  | 05-Nov-86  | 0       | Ó          |                                       | 0                           | 0             | 0             | 0   | 0            | D        | A            |
| MW-1026  | 14-Jan-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | D        | A            |
| MW-1026  | 17-Apr-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 3.32E-07     | D        | <b>A</b>     |
| MW-1026  | 05-Aug-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | D        | A            |
| MW-1026  | 14-Oct-87  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | D        | A            |
| MW-1026  | 15-Jan-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | D        | A            |
| MW-1026  | 18-Apr-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | D        | A            |
| MW-1026  | 13-Jul-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            |          | <b>A</b>     |
| MW-1026  | 10-Oct-88  | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | D        |              |
| MW-1020  | 18.0-100   | 0       | 0          |                                       | 0                           | 0             | 0             | 0   | 0            | <u> </u> |              |
| MW-1020  | 18-00-90   | 0       | 0          |                                       | 0                           | 0             | Ű             |     | 1 1 1 1      |          | <b>⊢</b> .   |
| MW-1020  | 22-00-91   | 0       | 0          |                                       | 0.54                        | 0             | 8.1           |     | 3.44E-00     |          | <b>⊢</b> ≏ ∣ |
| MW-1020  | 27-JUI-92  | U       | 0          | 0                                     | 1.3                         | 0             | 5./           | 0   | 3.44E-00     |          | +            |
| MW-1020  | 21-Jan-95  | U       | 0          | U                                     | <u> </u>                    | 0             | 0.94          | 0   | 1.005-07     |          |              |
| MW-1027  | 23-NOV-80  |         | 0          |                                       | 0                           | 0             | 0             | - 0 | 4.000-00     | 2        |              |
| MW-104/  | 17. Are 07 | 0       | 0          |                                       | 0                           | 0             | U             |     |              |          |              |
| MW-1027  | 05.414.97  | 0       |            |                                       |                             | 0             | 0             | 0   |              |          |              |
| MW.1027  | 14.04.97   |         |            |                                       |                             | 0             | 0             |     |              | D        | B            |
| MW-1027  | 15.700-07  |         | v          |                                       | 0                           |               | <u>ل</u>      |     |              | D        | R            |
| MW.1027  | 18.Am.81   | - 0     |            |                                       |                             | 0             |               | - 0 | 0            | <u> </u> | B            |
| MW-1027  | 13-Jul-22  | 0       |            |                                       |                             | 0             | 0             | - 0 | 0            |          | B            |
| MW-1027  | 10-0-11    | J<br>0  |            |                                       | 0                           | 0             | 0             | 0   | 0            | <u> </u> | B            |
| MW-1027  | 13-Nov.89  | 0       |            |                                       | 0                           | 0             |               | 0   | 0            | D        | B            |
| MW-1027  | 18-Oct-90  | 0       | 0          |                                       |                             | 0             | 0             | 0   | 0            |          | B            |
| MW-1027  | 23-Oct-91  | 0       |            |                                       |                             | 0             | 0             | 0   | 0            | <u> </u> | B            |
|          |            | V       |            | L                                     |                             | <u> </u>      |               |     | - · · ·      |          |              |

g: \umans\da\j\_mammal\woogTABLEK-6.XLS

•

۱ ۱

;

ł

05/11/94

-

. . . . . . . . . . . .

|          |           | •                                                                                                               | VOC GSAP C | oncentrations ( | up to Third Qu | mater 1993 Sam | pling Period |          |                       |                   |   |
|----------|-----------|-----------------------------------------------------------------------------------------------------------------|------------|-----------------|----------------|----------------|--------------|----------|-----------------------|-------------------|---|
| Location | Lon Data  | 1.2-DCA                                                                                                         | 1.1.0CE    | e-1.2-DCE       | PCE            | LLL-TCA        | TTE          | VC       | Risk for<br>Patherone | Operable<br>Elait | T |
| MW-1027  | 21-Jan-93 | 0                                                                                                               | 0          | 0               | 0              | 0              | 0            |          | 0                     | D                 | ╇ |
| MW-1028  | 07-Aug-87 | 0                                                                                                               | 0          |                 | 0              | 0              |              | 0        | 8 30F-08              | D                 | + |
| MW-1028  | 14-00-87  | 0                                                                                                               | 0          |                 | 0              | 0              |              | 0        | 0                     | D                 | ÷ |
| MW-1028  | 15 Jan 88 |                                                                                                                 | 0          |                 |                |                |              | 0        | 0                     | <u> </u>          | ┽ |
| MW-1028  | 18-Arr-88 | 0                                                                                                               | 0          |                 | 0              |                |              | 0        | 0                     |                   | + |
| MW-1028  | 13_14_88  |                                                                                                                 | 0          |                 |                | 0              |              | 0        | 0                     | D D               | + |
| MW-1028  | 10-04-88  |                                                                                                                 | 0          |                 | 0              |                |              |          | 0                     | D                 | 1 |
| MW-1028  | 04-Tan-90 |                                                                                                                 |            |                 |                |                |              | 0        |                       | D                 | + |
| MW-1028  | 18-04-90  | 0                                                                                                               | 0          |                 | Ŏ              |                |              | - 0      |                       | D D               | - |
| MW-1028  | 24.00.91  |                                                                                                                 |            |                 |                |                |              |          |                       | D                 | - |
| MW-1028  | 15 100-91 |                                                                                                                 | <u>0</u>   |                 |                |                |              | 0        | 0                     | - <u>p</u>        | - |
| MW-1028  | 15-Jul-92 |                                                                                                                 |            |                 |                |                |              | - 0      | 0                     | D                 | - |
| MW-1028  | 21-1-02   |                                                                                                                 |            |                 |                |                |              |          |                       |                   | - |
| MW-1026  | 11 Nov 96 |                                                                                                                 | 0.17       | <b>v</b>        |                |                |              |          | 3 435 07              | <u>D</u>          | - |
| MW-1027  | 11-Nov-80 |                                                                                                                 | 0.17       |                 |                | 0              |              | - 0      | 3.435-07              | <u> </u>          | - |
| MW-1029  | 11-NOV-80 |                                                                                                                 | 0.19       |                 |                |                | 0.79         |          | 3.435-07              | D                 | - |
| MW-1029  | 00-120-07 |                                                                                                                 |            |                 |                | 0              | 0.78         | - 0      | 2.436-07              | D                 | - |
| MW-1029  | 20. 4 97  |                                                                                                                 |            |                 |                |                |              |          | 6.43E-U/              |                   | - |
| MW-1029  | 47-Apt-8/ | <u>v</u>                                                                                                        |            |                 |                |                |              |          | 9.308-07              |                   | - |
| MW-1029  | 0/-Aug-8/ |                                                                                                                 | 0          |                 |                | 0              | 4.3          |          | 1.43E-06              | <u> </u>          | _ |
| MW-1029  | 12-00-87  |                                                                                                                 |            |                 | 0              |                | 1.4          | 0        | 9.67E-07              | <u> </u>          | _ |
| MW-1029  | 12-00-87  | 0                                                                                                               |            |                 | 0              |                | 1.8          | - 0      | 9.67E-07              | <u> </u>          | _ |
| MW-1029  | 18-Jan-88 | 0                                                                                                               | 0          |                 | 0              |                | 1./          |          | 8.62E-07              | <u>D</u>          |   |
| MW-1029  | 14-Apr-88 | 0                                                                                                               | 0.1        |                 | 0              |                | 1.8          | - 0      | 7.34E-07              | <u>D</u>          | _ |
| MW-1029  | 03-04-88  |                                                                                                                 | 0          |                 | 0              | 0.61           | 1.9          | 0        | 5.93E-07              | <u>D</u>          | _ |
| MW-1029  | 16-Oct-89 | 0.13                                                                                                            | 0          |                 | 0              | 0              | 4            | 0        | 1.94E-06              | <u>D</u>          | _ |
| MW-1029  | 09-Apr-90 | 0                                                                                                               | 0          |                 | 0              |                | 4.1          | 0        | 1.86E-06              | <u> </u>          | _ |
| MW-1029  | 09-Apr-90 | 0                                                                                                               | 0          |                 | 0              | 0              | 4.6          | 0        | 1.86E-06              | D                 | _ |
| MW-1029  | 23-Oct-90 | 0                                                                                                               | 0          |                 | 0              | 0              | 2.7          | 0        | 8.43E-07              | <u>D</u>          | _ |
| MW-1029  | 05-Apr-91 | 0                                                                                                               |            |                 | 0              | 0              | 1.8          | 0        | 5.62E-07              | <u>D</u>          | _ |
| MW-1029  | 27-Jan-92 | 0                                                                                                               | 0          |                 | 0              | 0.68           | 3.8          | 0        | 2.201-06              | <u>D</u>          | - |
| MW-1030  | 08-Jan-8/ | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | <u>D</u>          |   |
| MW-1030  | 29-Apr-8/ | 0                                                                                                               |            |                 | 0              |                | 0            | - 0      | 0                     | <u> </u>          |   |
| MW-1030  | 0/-Aug-8/ |                                                                                                                 | 0          |                 | 0              | 0              | 0            | 0        | 3.39E-07              | <u> </u>          | _ |
| MW-1030  | 12-0d-87  | 0                                                                                                               | 0          |                 | 0              | 0              |              | 0        | 0                     | <u> </u>          | - |
| MW-1030  | 17-Jan-88 | 0                                                                                                               | 0          |                 | 0              | 0              |              | 0        | 0                     | <u>D</u>          | _ |
| MW-1030  | 14-Apr-88 | 0                                                                                                               | 0          |                 | 0              |                |              | 0        | 0                     | <u> </u>          | _ |
| MW-1030  | 16-04-89  | 0                                                                                                               | 0          |                 |                |                |              | 0        | 0                     |                   | _ |
| MW-1030  | 23-0d-90  | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | <u> </u>          | _ |
| MW-1030  | 05-Apr-91 | 0                                                                                                               |            |                 | 0              | 0              |              | - 0      | 0                     | <u> </u>          | _ |
| MW-1030  | 15-Jan-92 |                                                                                                                 | 0          |                 |                | U              | 0            |          | 1.028-07              | <u> </u>          | _ |
| MW-1051  | 18-NOV-80 |                                                                                                                 |            |                 | 0              | U              | 0            |          | 0                     |                   | _ |
| MW-1051  | 08-Jan-8/ |                                                                                                                 | 0          |                 | 0              | U              |              |          |                       | <u> </u>          | _ |
| MW-1051  | 29-Apr-87 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            |          |                       | <u> </u>          | _ |
| MW-1031  | 10-Aug-87 |                                                                                                                 |            |                 |                |                | 0            | <u> </u> |                       | <u> </u>          | _ |
| MW-1051  | 12-00-87  |                                                                                                                 | 0          |                 |                | V              | 0            |          | U                     | <u> </u>          | _ |
| MW-1031  | 1/-Jan-88 | 0                                                                                                               | 0          |                 | 0              | U              | 0            |          | 0                     | <u> </u>          |   |
| MW-1031  | 14-Apr-88 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | <u> </u> | 0                     | <u>D</u>          |   |
| MW-1031  | 04-0d-88  | 0                                                                                                               |            |                 | 0              | 0              | 0            | 0        | 0                     | <u>D</u>          | - |
| MW-1031  | 10-Oct-89 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | <u>D</u>          | _ |
| MW-1031  | 23-0d-90  | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | D                 | _ |
| MW-1031  | 17-Oct-91 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | <u>D</u>          | _ |
| MW-1032  | 19-Nov-86 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | C                 | - |
| MW-1032  | 13-Jan-87 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | <u> </u>          | _ |
| MW-1032  | 01-May-87 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | <u> </u>          | _ |
| MW-1032  | 04-Aug-87 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 1.89E-07              | C                 | _ |
| MW-1032  | 09-Oct-87 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 9.96E-08              | C                 | _ |
| MW-1032  | 14-Jan-88 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | С                 | _ |
| MW-1032  | 13-Apr-88 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | С                 |   |
| MW-1032  | 14-Jui-88 | 0                                                                                                               | 0          |                 | 0              | 0              | 0            | 0        | 0                     | С                 |   |
|          |           | the second second second second second second second second second second second second second second second se |            |                 |                |                |              |          |                       |                   |   |

g:\umrs\da\j\_zumwal\woog\TABLEK-6.XLS

ł

1

ì

۱

ى <sub>مە</sub>دى<del>يە ئۆتۈرۈك بۇمىيەتچىمىك</del>ە مەم ،

Page 51 of 60

05/11/94

|                                       |           |         | VOC GSAP C | oncentrations                         | Table K-6<br>up to Third Qu           | narter 1993 Sa | mpling Period |     |          |          |          |
|---------------------------------------|-----------|---------|------------|---------------------------------------|---------------------------------------|----------------|---------------|-----|----------|----------|----------|
| Location                              |           |         |            |                                       |                                       |                |               |     | Rink for | Operable |          |
| D                                     | Log Date  | 1,2-DCA | 1,1-DCE    | ~1,2-DCE                              | PCE                                   | 1,1,1-TCA      | TOE           | VC  | Pathways | Unit     | Zar      |
| MW-1032                               | 10-Apr-90 | 0       | 0          |                                       | <u> </u>                              | 0              | 0             | 0   | 0        | <u> </u> | - B      |
| MW-1032                               | 29-Jan-91 |         |            | ļ                                     |                                       |                |               |     | 0        | <u> </u> | B        |
| MW-1032                               | 13-May-91 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | <u>с</u> | 8        |
| MW-1032                               | 17-Jul-72 | 0       | 0          | 0                                     | 0                                     | 0              | 0             | 0   | 1 585.06 | <u> </u> | D<br>D   |
| MW-1032                               | 09.100.87 | 0       | 0          | · · · · · · · · · · · · · · · · · · · | 0                                     | 0              | 0             | 0   | 1.505-00 | B        | D A      |
| MW-1033                               | 28-Apr-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        |          |
| MW-1033                               | 10-Aug-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | A        |
| MW-1033                               | 13-Oct-87 | 0       | 0          |                                       | 0                                     | Ő              | 0             | 0   | 0        | B        | •        |
| MW-1033                               | 12-Jan-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | A        |
| MW-1033                               | 15-Apr-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | A        |
| MW-1033                               | 13-Jul-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | В        | A        |
| MW-1033                               | 14-Oct-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | В        | A        |
| MW-1034                               | 08-Jan-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | В        | AB       |
| MW-1034                               | 28-Apr-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | AB       |
| MW-1034                               | 10-Aug-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | AB       |
| MW-1034                               | 13-Oct-87 | 0       | 0          |                                       | 0.2                                   | 0              | 0             | 0   | 2.56E-07 | B        | AB       |
| MW-1034                               | 12-Jan-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | AB       |
| MW-1034                               | 15-Apr-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | AB       |
| MW-1034                               | 13-JUI-88 | 0       | 0          |                                       | 0                                     | 0              | 0             |     | 0        |          | AB       |
| MW-1034                               | 14-00-88  |         | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | AB       |
| MW-1034                               | 20-4-7-90 | 0       | 0          |                                       | 0.28                                  | 0              | 0             | 0   | 3 59F-07 | B        | AB       |
| MW-1034                               | 26-Apr-91 | 0       | 0          |                                       | 0.20                                  | 0              | 0             |     | 0        | B        | AB       |
| MW-1035                               | 08-Jap-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | B        |
| MW-1035                               | 28-Anr-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | В        |
| MW-1035                               | 10-Aug-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | B        |
| MW-1035                               | 13-Oct-87 | 0       | 0          | ·                                     | 0                                     | 0              | 0             | 0   | 0        | В        | В        |
| MW-1035                               | 12-Jan-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | В        | В        |
| MW-1035                               | 15-Apr-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | В        | В        |
| MW-1035                               | 13-Jul-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | В        | B        |
| MW-1035                               | 14-Oct-88 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | B        |
| MW-1035                               | 13-Oct-89 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | B        | B        |
| MW-1035                               | 09-Apr-90 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | <u>B</u> | В        |
| MW-1035                               | 26-Apr-91 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | 8        | В        |
| MW-1035                               | 28-JUI-92 | 0       | 0          | 0                                     | 0                                     | 0              | 0.96          | 0   | 4 675 07 | <u>В</u> | B        |
| MW-1036                               | 19-N0V-00 | 0       | 0          |                                       |                                       | 0              | 0.60          | 0   | 1.07E-07 | <u> </u> |          |
| MW-1036                               | 23-Anr-87 |         | 0          |                                       | 0                                     | 0              | 12            | 0   | 3.75E-07 | <u> </u> | Â        |
| MW-1036                               | 06-Aue-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | <u> </u> | Ā        |
| MW-1036                               | 21-Oct-87 | 0.12    | 0          |                                       | 0                                     | 0              | 0.55          | 0   | 6.20E-07 | C        | A        |
| MW-1036                               | 21-Oct-87 | 0.14    | 0          |                                       | 0                                     | 0              | 0.51          | 0   | 6.20E-07 | С        | A        |
| MW-1036                               | 14-Jan-88 | 0       | 0          |                                       | 0                                     | 0              | 0.25          | 0   | 9.99E-08 | С        | A        |
| MW-1036                               | 14-Jan-88 | 0       | 0          |                                       | 0                                     | 0              | 0.32          | 0   | 9.99E-08 | С        | A        |
| MW-1036                               | 22-Apr-88 | 0       | 0          |                                       | 0                                     | 0              | 0.4           | 0   | 1.25E-07 | С        | <b>A</b> |
| MW-1036                               | 22-Jul-88 | 0       | 0          |                                       | 0                                     | 0              | 0.36          | 0   | 1.12E-07 | C        | A        |
| MW-1036                               | 05-Jan-90 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | С        | A        |
| MW-1036                               | 06-Apr-90 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | С        | A        |
| MW-1036                               | 02-May-91 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | C        | A        |
| MW-1037                               | 31-Oct-86 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | <u>A</u> | <b>A</b> |
| MW-1037                               | 15-Jan-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | <b>A</b> |          |
| MW-1037                               | U7-May-87 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | <b>A</b> |          |
| MW-1037                               | 12-Aug-8/ | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | A        |          |
| MW-105/                               | 15-00-8/  | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | A        |          |
| MW-1037                               | 12-Jan-65 | 0       | 0          |                                       |                                       | 0              | 0             |     | 0        | <u> </u> |          |
| MW.1037                               | 10-747-00 | 0       | 0          |                                       |                                       | 0              |               |     | 0        |          |          |
| MW-1037                               | 06.04.88  | 0       | 0          | ·                                     |                                       |                |               |     | 0        |          |          |
| MW-1037                               | 11-Jan.89 | 0       | 0          |                                       | 0                                     |                |               | - o | 0        | A        |          |
| MW-1037                               | 05-Apr-89 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | •        | A        |
| MW-1037                               | 12-Jul-89 | 0       | 0          |                                       | 0                                     | 0              | 0             | 0   | 0        | A        | A        |
| · · · · · · · · · · · · · · · · · · · |           |         |            |                                       | · · · · · · · · · · · · · · · · · · · |                |               |     |          |          | ·        |

g:\users\de\j\_zumwal\woag\TABLEK-6.XLS

Page 52 of 60

05/11/94

.

· · · · <u>-</u> ·· ·

|          | •         |        | VOC GSAP C | encentrations | Table K-6<br>up to Third Qu | mrter 1993 Su | mpling Period |    |                       |                   |            |
|----------|-----------|--------|------------|---------------|-----------------------------|---------------|---------------|----|-----------------------|-------------------|------------|
| Location | Les Data  | 12-004 | LIDCE      | 61.2-DCE      | RCE                         | LLL-TCA       | TCT           | VC | Risk for<br>Pathtness | Operable<br>Eluit | 7          |
| MW-1037  | 22-Dec-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 2.70E-07              | A                 |            |
| MW-1037  | 19-Jan-90 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 |            |
| MW-1037  | 31-Jul-90 | ot     | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | -          |
| MW-1037  | 01-May-91 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | A          |
| MW-1037  | 14-Oct-91 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | •                 | Ā          |
| MW-1037  | 21-Jul-92 | 0      | 0          | 0             | 0                           | 0             | 0             | 0  | 0                     | A                 | A          |
| MW-1037  | 20-Jan-93 | 0      | 0          | 0             | 0                           | 0             | 0             | 0  | 0                     | A                 | A          |
| MW-1037  | 30-Jul-93 | 0      | 0          | 0             | 0                           | 0             | 0             | 0  | 0                     | A                 | A          |
| MW-1038  | 20-Nov-86 | 0      | 0          |               | 0                           | 0             | 1.4           | 0  | 1.07E-06              | A                 | B          |
| MW-1038  | 15-Jan-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 30-Apr-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 04-Aug-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 13-Oct-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 15-Jan-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 18-Apr-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 14-Jul-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | •                 | B          |
| MW-1038  | 06-Oct-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 11-Jan-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 05-Apr-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | В          |
| MW-1038  | 12-Jul-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 11-Oct-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 19-Jan-90 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 31-Jul-90 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | Α                 | B          |
| MW-1038  | 01-May-91 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 14-Oct-91 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1038  | 20-Jan-93 | 0      | 0          | 0             | 0                           | 0             | 0             | 0  | 0                     | A                 | B          |
| MW-1039  | 20-Nov-86 | 0      | 0          |               | 0                           | 0             | 0             | 0  | с.,                   | A                 | C          |
| MW-1039  | 15-Jan-87 | 0      | 0          | _             | 0                           | 0             | 0             | 0  | 0                     | A                 | С          |
| MW-1039  | 30-Apr-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | С          |
| MW-1039  | 03-Aug-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | Α                 | С          |
| MW-1039  | 13-Oct-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | C          |
| MW-1039  | 27-Jan-88 | 0      | 0.75       |               | 0                           | 0             | 0             | C  | 0                     | <u> </u>          | C          |
| MW-1039  | 18-Apr-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | C          |
| MW-1039  | 14-Jul-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | A                 | C          |
| MW-1039  | 06-Oct-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | C          |
| MW-1039  | 11-Jan-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | C          |
| MW-1039  | 05-Apr-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          |            |
| MW-1039  | 12-Jul-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <b>A</b>          | C          |
| MW-1039  | 21-Dec-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | C          |
| MW-1039  | 19-Jan-90 | 0      | 0          |               | 0                           |               | 0             | 0  | 0                     | <u> </u>          |            |
| MW-1039  | 31-Jui-90 | 0      |            |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          |            |
| MW-1039  | 01-May-91 |        | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>A</u>          | C          |
| MW-1039  | 14-08-91  | 0      | 0          |               | 0                           |               | 0             | 0  | 0                     | A                 |            |
| MW-1039  | 20-Jan-93 |        |            |               | 0                           | 0             | 0             | 0  | 0                     |                   |            |
| MW-1040  | 17-NOV-80 |        |            |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          |            |
| MW-1040  | 21-Jan-8/ | 0      | 0          |               | 0                           | Û             | 0             | 0  | 0                     | <u> </u>          | C          |
| MW-1040  | US-MAY-8/ | 0      | 0          | <u> </u>      | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          | C          |
| MW-1040  | 27-301-87 | 0      |            |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          | C          |
| MW-1040  | 20-0a-87  | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          | C          |
| MW-1040  | 20-Jan-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          |            |
| MW-1040  | 25-Apr-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          |            |
| MW-1040  | 20-Jul-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          | <u>⊢ c</u> |
| MW-1040  | 17-Oct-88 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u> </u>          |            |
| MW-1040  | 16-Dec-89 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | G                 |            |
| MW-1040  | 24-0d-90  | 0      | 0          |               | 0                           | 0             | 0             | 0  | 1.22E-07              | G                 |            |
| MW-1040  | 22-0ct-91 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | <u>G</u>          |            |
| MW-1041  | 14-Nov-86 | 0      | 0          |               | 0                           | 0             | 1             | 0  | 4.99E-06              | D                 |            |
| MW-1041  | 14-Nov-86 | 0      | 0          |               | 0                           | 0             | 16            | 0  | 4.99E-06              | D                 |            |
| MW-1041  | 22-Jan-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | D                 |            |
| MW-1041  | U6-May-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | D                 | <b>A</b>   |
| MW-1041  | 06-Aug-87 | 0      | 0          |               | 0                           | 0             | 0             | 0  | 0                     | D                 |            |

g:'users'de'j\_numwal'woog'TABLEK-6.XLS

-----

.

.

,

....

Page 53 of 60

05/11/94

• • • • • • • • • • • •

|           |             |         | VOC GSAP C | oucentrations | Table K-6<br>up to Third Qu | narter 1993 Sm | upling Period |          |                       |                  |                     |
|-----------|-------------|---------|------------|---------------|-----------------------------|----------------|---------------|----------|-----------------------|------------------|---------------------|
| Location  | L Data      | 13.000  | 11.007     | 412.DCF       | BCF.                        | 111.704        | TYP           | VC       | Rink for<br>Betherese | Operable<br>Date | 7-                  |
| MW 1041   | 14.00.87    | 1,400.0 | 1,1-DCB    | 6-1,4-DCB     |                             |                |               |          |                       | D                | 2.000               |
| MW-1041   | 18.Tan.88   |         | 0          |               | 0                           | 0              | 0             | 0        | 0                     | <u> </u>         |                     |
| MW-1041   | 19-Apr-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     |                  |                     |
| MW-1041   | 15-Jul-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     |                  | A                   |
| MW-1041   | 19-Oct-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | A                   |
| MW-1041   | 03-Jan-90   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | A                   |
| MW-1041   | 22-Oct-90   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | A                   |
| MW-1041   | 15-Oct-91   | 0       | 0          | · · · · · ·   | 0                           | 0              | 0             | 0        | 0                     | D                | A                   |
| MW-1041   | 11-Jan-93   | 0       | 0          | 0             | 0                           | 0              | 0             | 0        | 0                     | D                | A                   |
| MW-1042   | 21-Nov-86   | 0       | 0          |               | 0                           | 0              | 0.41          | 0        | 1.28E-07              | D                | AB                  |
| MW-1042   | 22-Jan-87   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | AB                  |
| MW-1042   | 06-May-87   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | AB                  |
| MW-1042   | 06-Aug-87   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | AB                  |
| MW-1042   | 14-Oct-87   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | <u>D</u>         | AB                  |
| MW-1042   | 18-Jan-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | AB                  |
| MW-1042   | 19-Apr-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     |                  | AB                  |
| MW-1042   | 15-Jul-88   | 0       | 0          | ······        | 0                           | 0              | 0             | 0        | 0                     | <u>D</u>         | AB                  |
| MW-1042   | 19-00-88    | 0       | 0          | L             | 0                           | 0              | 0             |          | 0                     | <u> </u>         | AB                  |
| MW-1042   | 10-00-89    | 0       | 0          |               |                             | 0              | 0             | - 0      | 0                     | <u> </u>         | AB                  |
| MW-1042   | 16 Oct 91   | 0       | 0          |               | 0                           | 0              | 0             |          |                       | <u> </u>         | AD                  |
| MW-1042   | 11.1.00.91  |         | 0          |               | 0                           | 0              |               |          | 0                     | <u> </u>         | AB                  |
| MW-1042   | 21-Nov-86   | 0       | 0          |               | 0                           | 0              |               | - 0      | 0                     | <u>D</u>         | R                   |
| MW-1043   | 22-1-100-00 |         | 0          |               | 0                           | 0              | 0             | 0        | 0                     |                  | B                   |
| MW-1043   | 06-May-87   | o       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 06-Aug-87   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 14-Oct-87   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 18-Jan-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 19-Apr-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 15-Jul-88   | 0       | 0          | ·····         | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 19-Oct-88   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | Ď                | B                   |
| MW-1043   | 16-Oct-89   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 22-Oct-90   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 16-Oct-91   | 0       | 0          |               | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1043   | 11-Jan-93   | 0       | 0          | 0             | 0                           | 0              | 0             | 0        | 0                     | D                | B                   |
| MW-1044   | 08-Apr-89   | 0       | 0          |               | 0                           | 0              | 3.2           | 0        | 9.78E-06              | B                | <b>A</b>            |
| MW-1044   | 31-Jul-89   | 0       | 1.5        |               | 0.19                        | 0              |               |          | 1.41E-05              | <u>B</u>         | <u><u></u> </u>     |
| MW-1044   | 18-Dec-89   | 0       | 0          |               | 0                           | 0              | 4.1           | 0        | 1.78E-05              | D                |                     |
| MW-1044   | 26-Jan-90   | 0       | 0          |               | 0                           | 0              | 3.3           |          | 1.11E-05              | B                | $+\hat{\mathbf{r}}$ |
| MW-1044   | 24-Apr-90   |         | 12         |               | 0.36                        | 0              | 4.6           | 0        | 5 53E-05              | B                |                     |
| MW-1044   | 17-Jul-90   |         |            |               | 0.50                        | 0              | 2.9           | å        | 1.96E-05              | B                | A                   |
| MW-1044   | 01-Nov-90   | 0       | 0          |               | 0                           | 0              | 3.5           | 0        | 1.59E-05              | B                | A                   |
| MW-1044   | 28-Jan-91   | 0       | 0          |               | 0                           | 0              | 2.1           | 0        | 2.27E-05              | B                | A                   |
| MW-1044   | 28-Jan-91   | 0       | 0          |               | 0                           | 0              | 2.4           | 0        | 2.27E-05              | B                | A                   |
| MW-1044   | 10-May-91   | 0       | 0          |               | 0                           | 0              | 3.6           | 0        | 3.58E-05              | В                | A                   |
| MW-1044   | 30-Jul-91   | 0       | 0          |               | 0                           | 0              | 2.5           | 0        | 1.32E-05              | B                | A                   |
| MW-1044   | 18-Oct-91   | 0       | 0          |               | 0                           | 0              | 3.4           | 0        | 8.61E-06              | B                | A                   |
| MW-1044   | 17-Jan-92   | 0       | 0          |               | 0                           | 0              | 7.4           | 0        | 1.25E-05              | B                | A                   |
| MW-1044   | 08-Oct-92   | 0       | 0          | 4             | 0                           | 0              | 4             | 0        | 6.02E-06              | B                | A                   |
| MW-1044   | 26-Jan-93   | 0       | 0          | 1.3           | 0                           | 0              | 3.6           | 0        | 8.28E-06              | B                | A                   |
| MW-1044   | 19-Apr-93   | 0       | 0          | 0.93          | 0                           | 0              | 4.30          | 0        | 1.26E-05              | B                | A                   |
| MW-1044   | 05-Aug-93   | 0       | 0          | 0.52          | 0                           | 0              | 1.78          | 0        | 5.15E-06              | B                | A                   |
| MW-1045   | 06-Apr-89   | 0       | 0          |               | 0                           | 0              | 3.4           | 0        | 1.06E-06              | B                | B                   |
| MW-1045   | 10-Jul-89   | 0       | 0          |               | 0                           | 0              | 2.2           | 0        | 6.87E-07              | B                | B                   |
| MW-1045   | 12-Jul-89   | 0       | 0          |               | 0                           | 0              | 2.3           | 0        | 7.18E-07              | B                | B                   |
| MW-1045   | 09-Oct-89   | 0       | 0          |               | 0                           | 0              | 5             | 0        | 1.81E-06              | B                | B                   |
| MW-1045   | 09-Oct-89   | 0       | 0          |               | 0                           | 0              | 5.8           | 0        | 1.81E-06              | <u>B</u>         |                     |
| MW-1045   | 12-Feb-90   | 0       | 0          |               | 0                           | 0              | 4             | 0        | 1.25E-06              | B                | B                   |
| MW-1045   | 10-May-90   | 0       | 0          |               | 0                           | 0              | 8.4           | <u> </u> | 2.628-06              | B                | 8                   |
| WI M-1042 | 30-00-90    | 0       | 0          | L             | 0                           | 0              | 9.9           | 0        | 3.09E-06              | đ                | L R                 |

g:\uman\da\j\_mmwal\woog\TABLEK-6.XLS

and a second second second second second second second second second second second second second second second

3

:

ļ

1

05/11/94

1

-----

| L              |           | ۱<br>   | VOC GEAP C | oncentrations t | p to Third Qu | mrter 1993 Sam | pling Period |     |                      |                  |   |
|----------------|-----------|---------|------------|-----------------|---------------|----------------|--------------|-----|----------------------|------------------|---|
| Location<br>ID | Log Date  | 1,2-DCA | 1,1-DCE    | €-1,2-DCE       | PCE           | 1,1,1-TCA      | TCE          | vc  | Risk for<br>Pathways | Operable<br>Unit |   |
| MW-1045        | 11-Feb-91 | 0       | 0          |                 | 0             | 0              | 9.2          | 0   | 2.87E-06             | B                |   |
| MW-1045        | 01-May-91 | 0       | 0          |                 | 0             | 0              | 20           | 0   | 6.24E-06             | B                |   |
| MW-1045        | 24-Jul-91 | 0       | 0          |                 | 0             | 0              | 27           | 0   | 8.43E-06             | B                |   |
| MW-1045        | 17-Oct-91 | 0.74    | 0          |                 | 0             | 0              | 40           | 0   | 1.84E-05             | <u>B</u>         |   |
| MW-1045        | 04-Feb-92 | 0.47    | 0          |                 | 0             | 0              | 36           | 0   | 1.40E-05             | B                |   |
| MW-1045        | 13-Jul-92 | 0.4     | 0          | 11              | 0             | 0              | 34           | 0   | 1.18E-05             | B                | _ |
| MW-1045        | 07-Oct-92 | 0.43    | 0          | 13              | 0             | 0              | 32           | 0   | 1.41E-05             | <u> </u>         |   |
| MW-1045        | 11-Jan-93 | 0       | 0          | 3.1             | 0             | 0              | 11           | 0   | 3.12E-06             | B                |   |
| MW-1045        | 11-Jan-93 | 0       | 0          | 3.2             | 0             | 0              | 10           | 0   | 3.12E-06             | <u> </u>         | _ |
| MW-1045        | 05-Aug-93 | 0       | 0          | 2.64            | 0             | 0              | 8.72         | 0   | 5.54E-06             | B                | _ |
| MW-1046        | 30-Mar-89 | 0.25    | 0.26       |                 | 0             | 0              | 21           | 0   | 7.82E-06             | B                | _ |
| MW-1046        | 30-Mar-89 | 0.3     | 0.19       |                 | 0             | 0              | 23           | 0   | 7.82E-06             | B                |   |
| MW-1046        | 06-Apr-89 | 0.33    | 0          |                 | 0             | 0              | 30           | 0   | 1.01E-05             | В                |   |
| MW-1046        | 10-Jul-89 | 0       | 0.26       |                 | 0             | 0              | 17           | 0   | 6.32E-06             | B                |   |
| MW-1046        | 10-Jul-89 | 0.18    | 0          |                 | 0             | 0              | 18           | 0   | 6.32E-06             | B                | - |
| MW-1046        | 09-Oct-89 | 0.17    | 0.12       |                 | 0             | 0              | 20           | 0   | 7.02E-06             | B                |   |
| MW-1046        | 14-Feb-90 |         | 0          | 0               | 0             | 0.35           | 20           | 0   | 6.81E-06             | B                |   |
| MW-1046        | 14-May-90 | 0       | 0          |                 | 0             | 0              | 14           | 0   | 4.37E-06             | B                |   |
| MW-1046        | 31-Jul-90 | 0       | 0          |                 | 0             | 0              | 19           | 0   | 5.93E-06             | В                |   |
| MW-1046        | 19-Oct-90 | 0       | 0          |                 | 0             | 0              | 10           | 0   | 3.12E-06             | В                |   |
| MW-1046        | 01-Feb-91 | 0       | 0          |                 | 0             | 0              | 8.3          | 0   | 2.59E-06             | B                |   |
| MW-1046        | 09-May-91 | 0       | 0          |                 | 0             | 0              | 7.3          | 0   | 2.56E-06             | B                |   |
| MW-1046        | 09-May-91 | 0       | 0          |                 | 0             | 0              | 8.2          | 0   | 2.56E-06             | В                | ~ |
| MW-1046        | 24-Jul-91 | 0       | 0          |                 | 0             | 0              | 6.8          | 0   | 2.12E-06             | В                |   |
| MW-1046        | 24-Oct-91 | 0       | 0          |                 | 0             | 0              | 7.6          | 0   | 2.37E-06             | B                |   |
| MW-1046        | 03-Feb-92 | 0       | 0          |                 | 0             | 0              | 11           | 0   | 3.43E-06             | B                |   |
| MW-1046        | 03-Feb-92 | 0       | 0          |                 | 0             | 0              | 12           | 0   | 3.43E-06             | В                | - |
| MW-1046        | 13-Jul-92 | 0       | 0          | 1.9             | 0             | 0              | 6.4          | 0   | 2.00E-06             | В                |   |
| MW-1046        | 07-Oct-92 | 0       | 0          | 1.8             | Ô             | 0              | 6.2          | 0   | 1.94E-06             | В                |   |
| MW-1046        | 11-Jan-93 | 0       | 0          | 0               | 0             | 0              | 1.7          | 0   | 5.31E-07             | B                |   |
| MW-1046        | 05-Aug-93 | 0       | 0          | 1.23            | 0             | 0              | 4.06         | 0   | 2.58E-06             | B                | - |
| MW-1047        | 06-Apr-89 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | B                |   |
| MW-1047        | 21-Apr-89 | 0       | 0          |                 | 0             | 0              | 0.31         | 0   | 9.68E-08             | B                | Ī |
| MW-1047        | 19-Jul-89 | 0       | 0          |                 | 0             | 0              | 2            | 0   | 0                    | B                |   |
| MW-1047        | 06-Oct-89 | 0       | 0          |                 | 0             | 0              |              | 0   | 0                    | В                |   |
| MW-1047        | 14-Feb-90 | 0       | 0          |                 | 0             | 0              | V            | 0   | 0                    | B                |   |
| MW-1047        | 09-May-90 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | В                |   |
| MW-1047        | 05-Nov-90 | 0       | 0          | 1               | 0             | 0              | 0            | 0   | 0                    | В                |   |
| MW-1047        | 16-Jan-91 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | В                |   |
| MW-1047        | 02-May-91 | 0       | 0          |                 | 0             | 0              | Ō            | 0   | 7.68E-06             | В                |   |
| MW-1047        | 24-Jul-91 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | B                |   |
| MW-1047        | 11-Oct-91 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 5.80E-06             | B                |   |
| MW-1047        | 31-Jan-92 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | B                | ĺ |
| MW-1047        | 13-Jul-92 | 0       | 0          | 0               | Ō             | 0              | 0            | 0   | 0                    | B                |   |
| MW-1047        | 07-Oct-92 | 0       | 0          | 0               | 0             | 0              | 0            | 0   | 0                    | B                | ĺ |
| MW-1047        | 11-Jan-93 | 0       | 0          | 0               | Ō             | 0              | 0            | 0   | 0                    | B                |   |
| MW-1047        | 03-Aug-93 | 0       | 0          | 0               | 0             | 0              | 0            | 0   | 0                    | В                | _ |
| MW-1048        | 19-Apr-89 | 0       | 0          |                 | 0             | 0              | 0.36         | 0   | 1.12E-07             | В                | _ |
| MW-1048        | 21-Apr-89 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | В                | Ĵ |
| MW-1048        | 17-Jul-89 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | В                | _ |
| MW-1048        | 05-Oct-89 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | B                | _ |
| MW-1048        | 15-Feb-90 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | В                |   |
| MW-1048        | 04-May-90 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | В                |   |
| MW-1048        | 23-Oct-90 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | B                |   |
| MW-1048        | 30-Apr-91 | 0       | 0          |                 | 0             | 0              |              | 0   | 0                    | В                | - |
| MW-1048        | 11-Oct-91 | 0       | 0          |                 | 0             | 0              | 0            | - 0 | 0                    | В                |   |
| MW-1048        | 31-Jan-92 | 0       | 0          |                 | 0             | 0              | 0            | 0   | 0                    | B                |   |
| MW-1049        | 24-Apr-89 | 0.2     | 0          |                 | 0             | 0              | 7            | 0   | 2.91E-06             | В                | - |
| MW-1049        | 20-Jul-89 | 0       | 0          |                 | 0             | 0              | 7.5          | 0   | 2.49E-06             | В                | - |
| MW-1049        | 15-Dec-89 | 0       | 0          | <b>├</b> ────┤  | 0             | 0              | 8.5          | 0   | 2.65E-06             | В                | - |
|                | 1         | ·       | -          |                 |               | Ŧ              |              | -   |                      |                  | - |

g:\users\de\j\_zuzowai\woog\TABLEK-6.XLS

i

ł

. .

. .

05/11/94

|          |             |         | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | nrter 1993 Sal | npling Period | _   |          |          |               |
|----------|-------------|---------|------------|---------------|-----------------------------|----------------|---------------|-----|----------|----------|---------------|
| Location |             |         |            |               |                             |                |               |     | Risk for | Operable |               |
| D        | Log Date    | 1,2-DCA | 1,1-DCE    | c-1,2-DCE     | PCE                         | 1,1,1-TCA      | TOE           | vc  | Pathways | Unit     | Zame          |
| MW-1049  | 15-May-90   | 0.13    | 0          |               | 0.12                        | 0              | 18            |     | 6.49E-06 | <u> </u> | - A           |
| MW-1049  | 03-Aug-90   | 0       | 0          |               |                             |                | 70            | - 0 | 3.75E-06 | <u>B</u> | <b></b>       |
| MW-1049  | 10 fee 01   | 013     | 0          |               | 0.17                        | 0              | 9.6           |     | 3 725.06 | <u>a</u> |               |
| MW-1049  | 10-Jan-91   | 0.13    | 0          |               | 0.17                        |                | 9.0           | - 0 | 4 265-06 | B        | <b>^</b>      |
| MW 1049  | 08 May 01   | 0       | 0          |               | 0.26                        |                | 13            |     | 4.20E-00 | B        |               |
| MW-1049  | 23. b.l.01  | 0.21    | 0          |               | 0.20                        |                |               |     | 1.20E-06 |          |               |
| MW-1049  | 08.00.91    | 0       | 0          |               | 0                           | 0              | 11            |     | 3.25E-05 | B        |               |
| MW-1049  | 31-1an-92   | 0       | 0          |               | 0                           |                | 14            | 0   | 5.60E-06 | <u>B</u> |               |
| MW-1049  | 28-Jul-92   | 0       | 0          | 4.6           | 0                           | ō              |               | 0   | 3.43E-06 | B        | <b>A</b>      |
| MW-1049  | 16-Oct-92   | 0       | 0          | 3.5           | 0                           | 0              | 8.1           | 0   | 2.53E-06 | В        | A             |
| MW-1049  | 16-Oct-92   | 0       | 0          | 3.6           | 0                           | 0              | 8.6           | 0   | 2.53E-06 | В        | A             |
| MW-1049  | 22-Jan-93   | 0       | 0          | 2.3           | 0                           | 0              | 6.7           | 0   | 2.47E-06 | В        | A             |
| MW-1049  | 22-Jan-93   | 0       | 0          | 2.6           | 0                           | Ō              | 7.9           | 0   | 2.47E-06 | B        | A             |
| MW-1049  | 20-Apr-93   | 0       | 0          | 2.40          | 0                           | 0              | 6.90          | 0   | 4.38E-06 | В        | A             |
| MW-1049  | 02-Aug-93   | 0       | 0          | 3.44          | 0                           | 0              | 10            | 0   | 6.35E-06 | В        | A             |
| MW-1050  | 24-Apr-89   | 0       | 0          |               | 0                           | 0              | 1             | 0   | 3.12E-07 | В        | В             |
| MW-1050  | 26-Jul-89   | 0       | 0          |               | 0                           | Ō              | 1.6           | 0   | 4.99E-07 | В        | В             |
| MW-1050  | 08-Nov-89   | 0       | 0          |               | 0                           | 0              | 1.7           | 0   | 1.38E-06 | B        | В             |
| MW-1050  | 27-Dec-89   | 0       | 0          |               | 0                           | 0              | 1.1           | 0   | 3.43E-07 | B        | В             |
| MW-1050  | 09-Feb-90   | 0       | 0          |               | 0                           | 0.35           |               | 0   | 0        | B        | B             |
| MW-1050  | 15-May-90   | 0       | 0          |               | 0                           | 0              | 1.2           | 0   | 8.38E-07 | <u>B</u> | B             |
| MW-1050  | 15-May-90   | 0       | 0          |               | 0.24                        | 0.26           | 1.7           | 0   | 8.38E-07 | <u>B</u> | B             |
| MW-1050  | 02-Aug-90   | 0       | 0          |               | 0                           | 0              | 3             | 0   | 9.36E-07 | <u>B</u> | В             |
| MW-1050  | 04-Oct-90   | 0       | 0          |               | 0                           | 0              | 0.54          |     | 1.69E-07 | <u></u>  | B             |
| MW-1050  | 05-Nov-90   |         |            |               |                             |                |               |     | 1 125 06 | <u>p</u> | B             |
| MW-1050  | 20 4 -= 01  | 0       | 0          |               | 0                           | 0              | 3.0           | - 0 | 5.625.07 | D        | D             |
| MW-1050  | 29-Apt-91   | 0       | 0          |               |                             | 0              | 4.0           |     | 1.53E-06 | <u>B</u> | - <u>B</u> -  |
| MW-1050  | 09.04.91    | 0       | 0          |               |                             |                | 4.9           | 0   | 7.09E-06 | <u>B</u> | B             |
| MW-1050  | 23-[ap-92   | 0       |            |               | 0                           |                | 2.4           | 0   | 7.49E-07 | B        | B             |
| MW-1050  | 09-Jul-92   | 0       | 0          | 1.4           | 0                           | 0              | 4.4           | 0   | 1.37E-06 | В        | В             |
| MW-1050  | 16-Oct-92   | 0       | 0          | 1.9           | 0                           | 0              | 5.3           | 0   | 1.65E-06 | В        | B             |
| MW-1050  | 22-Jan-93   | 0       | 0          | 0.47          | 0                           | 0              | 2.6           | 0   | 8.12E-07 | В        | В             |
| MW-1050  | 02-Aug-93   | 0       | 0          | 0.65          | 0                           | 0              | 2.75          | 0   | 2.63E-06 | В        | B             |
| MW-1050  | 02-Aug-93   | 0       | 0          | 0.80          | 0.123                       | 0              | 2.94          | 0   | 2.63E-06 | B        | В             |
| MW-1051  | 08-Apr-89   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | B        | C             |
| MW-1051  | 21-Jul-89   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | B        | C             |
| MW-1051  | 27-Dec-89   | 0       | 0          |               | 0                           | 0              | 0.31          | 0   | 9.68E-08 | <u> </u> | C             |
| MW-1051  | 09-Feb-90   | 0       | 0          |               | 0.41                        | 0.47           | 2             | 0   | 1.15E-06 | <u> </u> | C             |
| MW-1051  | 15-May-90   | 0       | 0          |               | 0.45                        | 0              | 1.6           | 0   | 1.08E-06 | <u>B</u> | C             |
| MW-1051  | 08-Aug-90   | 0       | 0          |               | 0                           | 0              | 1.5           | 0   | 4.68E-07 | <u> </u> |               |
| MW-1051  | 19-Oct-90   | 0       | 0          |               | 0                           | 0              |               | 0   | 4.84E-07 | <u>B</u> |               |
| MW-1051  | 14-Jan-91   |         |            |               |                             |                |               |     | 2.302-07 | B        |               |
| MW-1051  | [4-J80-9]   | 0       |            |               | 0                           | 0              | 0.82          |     | 2.30E-07 | D        |               |
| MW-1051  | 22 Jul 01   |         |            |               |                             |                |               | 0   | 3.675.06 |          |               |
| MW-1051  | 23-341-91   |         |            |               |                             |                |               |     | 5.87E-07 | <u>B</u> |               |
| MW-1051  | 09-Oct-91   |         |            |               | 0                           |                |               |     | 6.87E-07 | <u>B</u> | - C           |
| MW-1051  | 03-5-02-91  |         |            |               | 0                           |                | 0.57          | 0   | 1.78E-07 | <u>B</u> | $\frac{1}{c}$ |
| MW-1041  | 23. http:// |         |            |               |                             |                | 10            |     | 5.93E-07 | <u>B</u> | - č           |
| MW-1051  | 16-Oct-92   |         |            |               | 0                           | 0              | 5.6           | 0   | 1.75E-06 | B        | Ċ             |
| MW-1051  | 22-Jan-01   |         |            |               |                             | 0              | 0             | - 0 | 0        | <br>B    | t c           |
| MW-1051  | 20-Apr-93   |         | 0          | 0.52          |                             |                | 1.60          |     | 1.02E-06 | B        | c             |
| MW-1051  | 02-Aug-93   |         |            | 2.12          |                             | 2.20           | 7.42          | - 0 | 5.11E-06 | B        | c             |
| MW-1052  | 17-Apr-89   | 0       |            |               |                             | 0              | 0             | - 0 | 0        | B        | D             |
| MW-1052  | 21-Jul-89   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | B        | D             |
| MW-1052  | 21-Dec-89   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | В        | D             |
| MW-1052  | 12-Feb-90   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | B        | D             |
| MW-1052  | 08-Aug-90   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | B        | D             |
| MW-1052  | 14-Jan-91   | 0       | 0          |               | 0                           | 0              | 0             | 0   | 0        | B        | D             |

g: weers daij\_zumwal woog TABLEK-6.XLS

· 1

.

4

-----

ى روا<del>يد ويكرون دى برور</del> بېرې يې د مې د

1

Page 56 of 60

05/11/94

----

a second second second

|                |           | ,        | OC GSAP C | oncentrations ( | ap to Third Qu | iarter 1993 Sag | npling Period |    |                      |                  |         |
|----------------|-----------|----------|-----------|-----------------|----------------|-----------------|---------------|----|----------------------|------------------|---------|
| Location<br>ID | Log Date  | 1,2-DCA  | 1,1-DCE   | e-1,2-DCE       | PCE            | 1,1,1-TCA       | TCE           | vc | Risk for<br>Pathways | Operable<br>Unit | Zam     |
| MW-1052        | 23-Jul-91 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 0                    | В                | D       |
| MW-1052        | 09-Oct-91 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 0                    | В                | D       |
| MW-1052        | 04-Feb-92 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 0                    | В                | D       |
| MW-1052        | 23-Jul-92 | 0        | 0         | 0               | 0              | 0               | 0             | 0  | 0                    | В                | D       |
| MW-1052        | 16-Oct-92 | 0        | 0         | 0               | 0              | 0               | 0             | 0  | 0                    | В                | T D     |
| MW-1052        | 22-Jan-93 | 0        | 0         | 0               | 0              | 0               | 0             | 0  | 0                    | В                | D       |
| MW-1052        | 02-Aug-93 | 0        | 0         | 0               | 0              | 0               | 0             | 0  | 0                    | В                | D       |
| MW-1053        | 15-Sep-89 | 0        | 0         |                 | 0              | 0               | 0,            | 0  | 0                    | В                | A       |
| MW-1053        | 23-Feb-90 | 0        | 0         |                 | 0              | 0               | 0.66          | 0  | 2.06E-07             | В                | A       |
| MW-1053        | 15-May-90 | 0        | 0         |                 | 0              | 0               | 0.99          | 0  | 3.09E-07             | В                | A       |
| MW-1053        | 18-Jul-90 | 0        | 0         |                 | 0              | 0               | 1.7           | 0  | 5.31E-07             | В                | A       |
| MW-1053        | 08-Nov-90 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 0                    | B                | A       |
| MW-1053        | 01-Feb-91 | 0        | e         |                 | 0              | 0               | 0.22          | 0  | 2.31E-07             | B                | A       |
| MW-1053        | 10-May-91 | 0        | 0         |                 | 0              | 0               | 1             | 0  | 3.12E-07             | В                | A       |
| MW-1053        | 08-Aug-91 | 0        | 0         |                 | 0              | 0               | 2.1           | 0  | 6.55E-07             | В                | A       |
| MW-1053        | 04-Oct-91 | 0        | 0         |                 | 0              | 0               | 0.68          | 0  | 2.12E-07             | B                | A       |
| MW-1053        | 31-Jan-92 | 0        | 0         |                 | 0              | 0               | 0.95          | 0  | 2.97E-07             | В                | Α       |
| MW-1053        | 27-Jul-92 | 0        | 0         | 0               | 0              | 0               | 0.43          | 0  | 1.34E-07             | B                | A       |
| MW-1053        | 15-Oct-92 | 0        | 0         | 0               | 0              | 0               | 4.7           | 0  | 1.47E-06             | В                | Α       |
| MW-1053        | 25-Jan-93 | 0        | 0         | 0               | 0              | 0               | 0.23          | 0  | 7.18E-08             | В                | A       |
| MW-1053        | 13-Apr-93 | 0        | ō         | 0               | 0              | 0               | 0             | 0  | 0                    | В                | A       |
| MW-1053        | 03-Aug-93 | 0        | 0         | 0               | 0              | 0               | 0             | 0  | 0                    | B                | A       |
| MW-1054        | 03-Oct-89 | 0        | 0         |                 | 0.17           | 0               | 1.1           | 0  | 8.13E-07             | В                | A       |
| MW-1054        | 16-May-90 | 0        | 0         |                 | 0              | 0               | 0.98          | 0  | 3.06E-07             | В                | A       |
| MW-1054        | 18-Jul-90 | 0        | 0         |                 | 0              | 0               | 1.4           | 0  | 4.37E-97             | В                | A       |
| MW-1054        | 07-Nov-90 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 7.01E-07             | В                | A       |
| MW-1054        | 01-Feb-91 |          |           |                 |                | 1               |               |    | 2.12E-07             | B                | A       |
| MW-1054        | 01-Feb-91 | 0        | 0         |                 | 0              | 0               | 0.68          | 0  | 2.12E-07             | В                | A       |
| MW-1054        | 23-Apr-91 | 0        | 0         |                 | 0              | 0               | 0.83          | 0  | 2.59E-07             | В                | Α       |
| MW-1054        | 17-Jul-91 | 0        | 0         |                 | 0              | 0               | 0.96          | 0  | 3.00E-07             | В                | A       |
| MW-1054        | 08-Oct-91 | 0        | 0         |                 | 0              | 0               | 0.68          | 0  | 6.74E-06             | B                | A       |
| MW-1054        | 04-Feb-92 | 0        | Ō         |                 | 0              | 0               | 1.5           | 0  | 1.38E-06             | B                | A       |
| MW-1054        | 27-Jul-92 | 0        | 0         | 0               | 0              | 0               | 1.1           | 0  | 3.43E-07             | B                | A       |
| MW-1054        | 15-Oct-92 |          |           |                 |                |                 |               |    | 2.93E-07             | B                | A       |
| MW-1054        | 15-Oct-92 | 0        | 0         | 0               | 0              | 0               | 0.94          | 0  | 2.93E-07             | B                | A       |
| MW-1054        | 20-Apr-93 | 0        | 0         | 0               | 0              | 0               | 0.32          | 0  | 2.03E-07             | В                | A       |
| MW-1054        | 30-Jul-93 | 0        | 0         | 0               | 0              | 0               | 0.37          | 0  | 2.34E-07             | <u>B</u>         | A       |
| MW-1055        | 06-Oct-89 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 0                    | В                | В       |
| MW-1055        | 16-May-90 | 0        | 0         |                 | 0              | 0               | 0             | 0  | 0                    | В                | B       |
| MW-1055        | 03-Aug-90 | 0        | 0         |                 | 0.5            | 0               | 0             | 0  | 6.40E-07             | В                | H B     |
| MW-1055        | 31-Oct-90 | 0        | 0         |                 | 0              | 0               | 0             |    | 0                    | 8                | B       |
| MW-1055        | 22-Jan-91 | 0        | 0         |                 | 0              | 0               |               |    | 5.25E-07             | <u>a</u>         | - D     |
| MW-1055        | 23-Apt-91 | 0        | 0         |                 | 0              | 0               | 0             |    | 1 605 06             | 0                |         |
| MW-1055        | 31-Jul-91 | 0        | 0         |                 | 0              | 0               |               |    | 1.091-00             | B                | B       |
| MW-1000        | 09-00-91  |          |           |                 |                |                 |               |    |                      | <u>0</u>         |         |
| MW-1055        | 09-00-91  | <u>0</u> |           |                 |                | 0               |               |    |                      | B                | D D     |
| MW-1055        | 28-Jan-92 |          | 0         |                 |                |                 | 0             |    | 0                    |                  | <u></u> |
| MW-1055        | 27-JUI-92 | 0        |           | 0               | 0              |                 | U             |    |                      | 4                | 1 B     |
| MW-1055        | 15-0d-92  | 0        | 0         | 0               | 0              | 0               | 0             |    | 0                    | <u>B</u>         | 4       |
| NIW-1000       | 30-301-93 |          | 0         |                 |                |                 | 0             |    | 1 760 04             | B                |         |
| 0001-WIW-1050  | 27-Dec-89 |          | 0         |                 |                |                 | 4.4           |    | 1.752-00             | D<br>R           | +       |
| MW-1006        | 2/-Dec-89 | 0        | 0         | <u> </u>        | <u> </u>       |                 | 4.0           |    | 1./3E-00             | <u>م</u>         |         |
| MW-1030        | 10-MAY-90 |          |           |                 | 0              |                 | 2             |    | 9 425 07             | 0<br>a           |         |
| MW-1056        | 07-Aug-90 | 0        | 0         |                 |                |                 | 2.7           |    | 8.43E-U/             | 8                |         |
| MW-1050        | 31-0d-90  |          | 0         |                 |                |                 | 2.5           |    | 1.000-07             | <u>B</u>         | +       |
| MW-1050        | 21-Jan-91 | 0        | 0         |                 | 0              |                 | 3.8           | 0  | 1.195-00             | <b>B</b>         | +       |
| MW-1056        | 23-Apt-91 | 0        | 0         |                 | 0              |                 | 3.9           |    | 1.225-00             | <b>B</b>         |         |
| MW-1056        | 31-Jul-91 | 0        | 0         | - <u></u>       | 0              |                 | 2.7           | 0  | 1.83E-06             | <b>B</b>         |         |
| MW-1056        | U8-Oct-91 | 0        | 0         |                 | 0              | 0               | 2.2           | 0  | 0.8/2-07             | 8                |         |
| MW-1056        | 28-Jan-92 | 0        | 0         |                 | 0              | 0               | 2.6           | 0  | 8.125-07             | 8                |         |
| MW-1056        | 27-Jul-92 | 0        | 0         | 0               | 0              | 0               | 1.5           | 0  | 4.08E-07             | B                |         |

g:\users\da\j\_zumwal\wong\TABLEK-6.XLS

÷

05/11/94

\_

· · - - - \_

|          |           |         | VOC GSAP C | oncentrations | Table K-6<br>up to Third Qu | arter 1993 Sa | npling Period |     |          |          |          |
|----------|-----------|---------|------------|---------------|-----------------------------|---------------|---------------|-----|----------|----------|----------|
| Location |           |         |            |               |                             |               |               |     | Riek for | Operable | r1       |
| D        | Log Date  | 1,2-DCA | 1,1-DCE    | ~1,2-DCB      | PCE                         | 1,1,1-TCA     | TCE           | VC  | Pathways | Unit     | Zone     |
| MW-1056  | 15-Oct-92 | 0       | 0          | 0             | 0                           | 0             | 1.8           | 0   | 5.62E-07 | B        | C        |
| MW-1056  | 30-Jul-93 | 0       | 0          | 0             | 0                           | 0             | 0.74          | 0   | 4.69E-07 | B        | c        |
| MW-1057  | 27-Sep-89 | 0       | 0          |               | 0                           | 0             | 0             |     | 8.51E-08 | B        | D        |
| MW-1057  | 10-May-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | a<br>2   |          |
| MW-1057  | 00-Aug-90 |         | 0          |               | 0                           | 0             |               | - 0 | 0        | <u>р</u> |          |
| MW-1057  | 18 Jul 01 |         |            |               | 0                           | 0             |               | 0   | 1 985-06 | B        |          |
| MW-1057  | 08.04.91  |         | 0          |               | 0                           | 0             |               |     | 1.562-00 | 8        |          |
| MW-1057  | 03-Eeb-07 | 0       |            |               | 0                           | 0             | 0             | - 0 | 0        | B        |          |
| MW-1057  | 27-Jul-92 | 0       | 0          | 0             | 0                           | 0             | 0.49          | 0   | 1.53E-07 | R        | D        |
| MW-1057  | 15-Oct-92 | 0       | 0          | 0             | 0                           | 0             | 0.79          | 0   | 2.47E-07 | B        | D        |
| MW-1057  | 20-Apr-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | B        | D        |
| MW-1057  | 30-Jul-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | B        | D        |
| MW-1058  | 18-Oct-89 | ō       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | A        |
| MW-1058  | 08-Feb-90 | 0       | 0          |               | 0                           | 0             | 1.8           | 0   | 5.62E-07 | Α        | A        |
| MW-1058  | 19-Apr-90 | 0       | 0          |               | 0                           | 0             | 0             | ō   | 1.76E-06 | A        | A        |
| MW-1058  | 18-Jul-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | A        |
| MW-1058  | 25-Oct-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | Α        | A        |
| MW-1058  | 11-Jan-91 | 0       | 0          |               | 0.41                        | 0.52          | 2.9           | 0   | 1.94E-06 | A        | A        |
| MW-1058  | 10-May-91 | 0       | 0          |               | 0                           | 0             | 0.51          | 0   | 1.59E-07 | A        | A        |
| MW-1058  | 08-Aug-91 | 0       | 0          |               | 0                           | 0             | 2.5           | 0   | 1.98E-06 | A        | Α        |
| MW-1058  | 16-Oct-91 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | Α        |
| MW-1058  | 31-Jan-92 | . 0     | 0          |               | 0                           | 0             | 0             | Ō   | 0        | A        | Α        |
| MW-1058  | 23-Jul-92 | 0       | 0          | 0             | 0.44                        | 0             | 1.2           | 0   | 9.38E-07 | A        | Α        |
| MW-1058  | 23-Jul-92 | 0       | 0          | 0             | 0.52                        | 0             | 1.5           | 0   | 9.38E-07 | A        | A        |
| MW-1058  | 06-Oct-92 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | A        |
| MW-1058  | 25-Jan-93 | 0       | 0          | 0             | 0                           | 0             | 0.26          | 0   | 8.12E-08 | A        | A        |
| MW-1058  | 07-Apr-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | <u>A</u> | A        |
| MW-1058  | 03-Aug-93 | 0       | 0          | 0             | 0                           | 0             | 0.68          | 0   | 4.30E-07 | A        | A        |
| MW-1059  | 17-00-89  | 0       |            | 0             | 0                           | 0             | 0             | 0   | 0        | A        |          |
| MW-1059  | 23-MIR-90 | 0       |            |               | 0                           |               |               |     | 0        | A .      | D<br>B   |
| MW-1059  | 17-Jul-90 | 0       |            |               |                             | 0             | 0.94          |     | 2 935-07 | <u> </u> | B        |
| MW-1059  | 08_409.01 | 0       | 0          | ·····         | -0                          |               | 0.54          |     | 1.56E-07 | A .      | B        |
| MW-1059  | 15-Oct-91 | 0       | 0          |               | 0                           | 0             | 0.5           | - ů | 0        | <u>A</u> | B        |
| MW-1059  | 28-Jan-92 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | B        |
| MW-1059  | 09-Jul-92 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | B        |
| MW-1059  | 06-Oct-92 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | В        |
| MW-1059  | 25-Jan-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | В        |
| MW-1059  | 03-Aug-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | В        |
| MW-1060  | 16-Oct-89 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | A        | С        |
| MW-1060  | 15-Mar-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | С        |
| MW-1060  | 17-Jul-90 | 0       | 0          |               | 0                           | 0             | 0.29          | 0   | 9.05E-08 | A        | С        |
| MW-1060  | 26-Oct-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | С        |
| MW-1060  | 11-Jan-91 | 0       | 0          |               | 0.28                        | 0             | 1.4           | 0   | 7.96E-07 | A        | С        |
| MW-1060  | 02-May-91 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | <u>A</u> | С        |
| MW-1060  | 08-Aug-91 | 0       | 0          |               | 0                           | 0             | 1.5           | 0   | 4.68E-07 | A        | С        |
| MW-1060  | 16-Oct-91 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | C        |
| MW-1060  | 28-Jan-92 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        | C        |
| MW-1060  | 23-Jul-92 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 1.47E-07 | A        | C        |
| MW-1060  | 23-Jul-92 | 0       | 0          | 0             | 0                           | 0             | 0.47          | 0   | 1.47E-07 | <b>A</b> | C        |
| MW-1060  | 06-Oct-92 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | <b>A</b> | <u> </u> |
| MW-1060  | 25-Jan-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | <b>A</b> | C C      |
| MW-1060  | 05-Apr-93 | 0       | 0          | 0             | 0                           | 0             | 2.70          | 0   | 1.71E-06 | <b>^</b> | C        |
| MW-1060  | 03-Aug-93 | 0       | 0          | 0             | 0                           | 0             | 0             | 0   | 0        | <b>A</b> | <u> </u> |
| MW-1061  | 16-Mar-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | <b>^</b> |          |
| MW-1061  | 14-Jun-90 | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | <b>A</b> |          |
| MW-1061  | 26-0d-90  | 0       | 0          |               | 0                           | 0             | 0             | 0   | 0        | A        |          |
| MW-1051  | 29-Jan-91 | 0       | 0          |               | 0.13                        | 0             | 0.25          | 0   | 1.02E-06 |          |          |
| MW-1001  | 02-May-91 | 0       | 0          |               | 0                           | 0             | 0             | 0   |          | A        |          |
| MW-1061  | 17-0d-91  | 0       | 0          |               | 0                           | 0             | 0             | 0   | 1.04E-06 | <b>A</b> |          |

g:\uners\da\j\_mmswal\woog\TABLEK-6.XLS

:

.

•

•

•

1

Page 58 of 60

05/11/94

)

.....

ł

|                |            | •       | VOC GSAP C | oncentrations (                 | up to Third Qu                          | arter 1993 San | npling Period |          |                      |                  |   |
|----------------|------------|---------|------------|---------------------------------|-----------------------------------------|----------------|---------------|----------|----------------------|------------------|---|
| Location<br>ID | Log Date   | 1.2-DCA | 1,1-DCE    | e-1,2-DCE                       | PCE                                     | 1,1,1-TCA      | TCE           | vc       | Risk for<br>Pathways | Operable<br>Unit | 1 |
| MW-1061        | 03-Feb-92  | 0       | 4.5        |                                 | 0                                       | 4.2            | 3             | 0        | 9.36E-07             | A                | - |
| MW-1061        | 23-Apr-93  | 0       | 0          | 0                               | 0.85                                    | 0              | 0.68          | 0        | 2.92E-06             | A                |   |
| MW-1061        | 05-Aug-93  | 0       | 0          | 0                               | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1062        | 14-Mar-90  | 0       | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1062        | 20-Jun-90  | 0       | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1062        | 29-Oct-90  | 0       | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1062        | 02-May-91  | 0       | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1062        | 17-Oct-91  | 0       | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1062        | 29-Jan-92  | 0       | 0          |                                 | 0                                       | 0.84           | 0.85          | 0        | 2.65E-07             | A                | - |
| MW-1062        | 12-Oct-92  | 0       | 0          | 0                               | 0                                       | 0              | 0             | 0        | 0                    | <u>A</u>         |   |
| MW-1062        | 05-Aug-93  | 0       | 0          | 0                               | 0                                       | 0              | 0             |          | 0                    | <u>A</u>         | - |
| MW-1063        | 13-Mar-90  | 0       | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1063        | 20-Jun-90  | 0       | 0          | i                               | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1063        | 29-0ct-90  | 0       | 0          |                                 | 0                                       |                | 0             |          | 0                    | A                | - |
| MW-1063        | 02-May-91  | 0       | 0          |                                 |                                         | 0              | 0             |          | 0                    | A                | - |
| MW-1063        | 17-00-91   | 0       | 0          | <u> </u>                        |                                         | 0              |               | 0        | 0                    | A                | - |
| MW-1063        | 31-Jan-92  |         | 0          |                                 | 0                                       | 0              | 0             | 0        | 0                    | A                | - |
| MW-1063        | 22-Jul-92  | 0       | 0          | 0                               | 0                                       | 0              | 0             |          | 0                    | A                | - |
| MW-1063        | 12-00-92   | 0       |            | 0                               |                                         | 0              |               | 0        | 0                    | A                | - |
| MW-1063        | 26-lan-93  |         | <u>0</u>   | 0                               | <u>0</u>                                | 0              | 0             | - 0      | 0                    | A                |   |
| MW-1064        | 08-May-90  | 0       |            | <b>`</b>                        |                                         | 0              |               |          | 0                    | <u> </u>         | - |
| MW-1064        | 28-lun-90  | 0       |            |                                 |                                         |                |               | 0        | 0                    | D                | - |
| MW-1064        | 09-Nov-90  | 0       | 1.3        |                                 | 0.26                                    | 1.5            | 2.2           |          | 1.67E-06             | <u>D</u>         | - |
| MW-1064        | 30-Jan-91  | 0       | 0          |                                 |                                         |                | 0             | - 0      | 0                    | D                |   |
| MW-1064        | 22-477-91  |         |            |                                 | <b>-</b>                                |                |               | ~        | 0                    |                  | - |
| MW-1064        | 22-Apr-91  | 0       | 0          | h                               | 0                                       | 0              | 0             | 0        | 0                    | D                | - |
| MW-1064        | 23.04.91   |         |            |                                 | <u>`</u>                                | 0              |               | <u> </u> | 0                    | <u> </u>         | - |
| MW-1064        | 20-lan_93  |         | 0          | 0                               |                                         |                | 0             |          |                      |                  | - |
| MW-1065        | 20-4110-90 | 0       |            |                                 |                                         |                | 0 14          |          | 6.02E-06             | A                | - |
| MW-1065        | 11-Sep-90  | 0       |            |                                 | 2.6                                     |                | 0             | 0        | 3.67E-06             | A                | - |
| MW-1065        | 28-Jan-91  |         |            |                                 | 2.0                                     |                | 0             |          | 4.38E-06             | A                | - |
| MW-1065        | 29-Apr-91  | 0       | 0          | ├                               | 3.7                                     |                | 0.99          | 0        | 6.37E-06             | A                | - |
| MW-1065        | 15-Jul-91  |         |            |                                 |                                         |                |               |          | 9.80E-07             | A                | - |
| MW-1065        | 15-Jul-91  |         | 0          |                                 | 0                                       | 0              |               | 0        | 9.80E-07             | A                |   |
| MW-1065        | 15-Oct-91  | 0       | 0          | └──── <b>┟</b> ───── <b>┟</b>   | 0.8                                     | 0              | 0             | 0        | 2.31E-06             | Ä                |   |
| MW-1065        | 15-Jul-92  |         |            | 1.3                             | 2.2                                     | 0              |               |          | 3.94E-06             | A                |   |
| MW-1065        | 15-Jul-92  | 0       |            | 1.3                             | 2.3                                     | 0              | 0             |          | 3.94E-06             | A                |   |
| MW-1065        | 20-Jan-93  |         |            |                                 |                                         |                |               |          | 2.05E-06             | A                |   |
| MW-1065        | 20-Jan-93  |         | 0          | 0.65                            | 1.6                                     | 0              | 0             | 0        | 2.05E-06             | A                |   |
| MW-1065        | 04-Aug-93  | 0       | 0          | 0.92                            | 1.59                                    | 0              | 0.463         | 0        | 6.25E-06             | A                | - |
| MW-1066        | 28-Aug-90  |         | 0          |                                 | 5                                       |                | 0             |          | 6.93E-06             | A                | - |
| MW-1066        | 28-Aug-90  | 0       | 0          |                                 | 6.1                                     | 0              |               | 0        | 6.93E-06             | A                | - |
| MW-1066        | 28-Sep-90  |         | 0          | ┝─────┤                         | 5.6                                     | o              | 0             | 0        | 7.49E-06             | A                | - |
| MW-1066        | 01-Feb-91  | 0       | 0          | <u>├────</u>                    | 3.9                                     |                | 0.26          | 0        | 5.40E-06             | A                | • |
| MW-1066        | 23-Apr-91  |         | 0          | ├────┤                          | 2.7                                     |                | 1.3           | 0        | 4.72E-06             | A                | • |
| MW-1066        | 15-Jul-91  |         | 0          | ┝─── <b>─</b> ─                 | 5.7                                     |                | 0.43          |          | 8.37E-06             | A                | - |
| MW-1066        | 15-Oct-91  | 0       | 0          | ┝────────────────────────────── | 2.8                                     |                | 0             | 0        | 3.59E-06             | A                | - |
| MW-1066        | 15-Jui-92  |         | 0          | 4.1                             | 4.8                                     |                | 0.5           | 0        | 7.32E-06             | A                |   |
| MW-1066        | 20-Jan-93  |         | 0          | 0.59                            | 1.5                                     |                | 0             | 0        | 1.92E-06             | A                | - |
| MW-1067        | 14-Aug-90  |         |            |                                 | 0                                       |                | 0             | - 0      | 0                    | A                | - |
| MW-1067        | 13-Sen-90  | 0       |            | <u>├  </u>                      |                                         | 0              |               |          | 6.18E-06             | A                | - |
| MW-1067        | 05-Feb.91  |         | - <u> </u> | ┝━━━━━╋                         |                                         |                |               |          | 4,36E-06             | <u> </u>         | - |
| MW-1067        | 23-Arr-91  | ñt      |            | <b>├───</b>                     |                                         |                | 0.85          |          | 5.36F.06             | A                | - |
| MW-1067        | 16-hiLQ1   |         |            | ┝                               | 0                                       |                |               |          | 9.09F.04             | A                | - |
| MW.1047        | 15.04.01   | ¥       |            | ┝                               |                                         |                |               |          | 6 665-06             | A                | • |
| MW.1067        | 1504-01    |         |            | ├─── <b>├</b>                   |                                         |                | 0.36          |          | 6 66F_06             | A                | - |
| MW.1067        | 28 Inc. 02 |         |            | ┝━━━━╋                          |                                         |                | 0.50          |          | 8 70F.04             | <u> </u>         | - |
| MW.1047        | 27-141-76  |         |            | <u> </u>                        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                | 0.73          | <u> </u> | 7758.04              |                  | - |
| MW.1067        | 27-141-74  |         |            |                                 |                                         |                | 0.16          |          | 7755.04              |                  | - |
| MW-1047        | 21.0+02    |         |            |                                 |                                         |                |               |          | 6052.04              |                  | - |
| wr 44 - 100 /  | 41-00-96   | v       | U          | U U                             | U                                       | U              | 1.3           | U        | 0.735-00             | <b>"</b>         |   |

g:\umathig\_zamwa\woag\TABLEK-6.XLS

į

۰.

.

,

,

4

05/11/94

------

1

|          |           |         | NOC CEAR C |              | Table K-6      |               |              |    |          |          |          |
|----------|-----------|---------|------------|--------------|----------------|---------------|--------------|----|----------|----------|----------|
| Location | Γ         |         | VOC GSAP C | OUCCURATIONS | ap to Inira Qa | mrter 1993 56 | npang reriod |    | Rink for | Operable |          |
| D        | Log Dute  | 1,2-DCA | 1,1-DCE    | €-1,2-DCE    | PCE            | 1,1,1-TCA     | TCE          | vc | Pathways | Unit     | Zone     |
| MW-1067  | 13-Apr-93 | 0       | 0          | 0            | 0              | 0             | 0.33         | 0  | 1.21E-05 | <u>A</u> | A        |
| MW-1067  | 13-Apr-93 | 0       | 0          | 0            | 0              | 0             | 0.34         | 0  | 1.21E-05 | <b>A</b> | <b>A</b> |
| MW-1067  | 04-Aug-93 | Ó       | 0          | 0            | 0              | 0             | 1.43         | 0  | 1.38E-05 | A        | A        |
| MW-1068  | 16-Aug-90 | Ō       | 0          |              | 0              | 0             | 0            | 0  | 1.41E-07 | A        | B        |
| MW-1068  | 13-Sep-90 | 0       | 0          |              | 0              | 0             | 0            | 0  | 0        | A        | B        |
| MW-1068  | 05-Feb-91 | 0       | 0          |              | 0              | 0             | 0            | 0  | 0        | A        | В        |
| MW-1068  | 29-Apr-91 | 0       | 0          |              | 0              | 0             | 2.4          | 0  | 7.49E-07 | A        | B        |
| MW-1068  | 16-Jul-91 | 0       | 0          |              | 0              | 0             | 0            | 0  | 0        | A        | B        |
| MW-1068  | 15-Oct-91 | 0       | 0          |              | 0              | 0             | 0            | 0  | 9.91E-07 | A        | B        |
| MW-1068  | 03-Feb-92 | 0       | 0          |              | 0              | 0             | 0            | 0  | 0        | A        | B        |
| MW-1068  | 27-Jul-92 | 0       | 0          | 0            | 0              | 0             | 0            | 0  | 0        | A        | B        |
| MW-1068  | 21-Oct-92 | 0       | 0          | 0            | 0              | 0             | 0            | 0  | 0        | A        | B        |
| MW-1068  | 20-Jan-93 | 0       | 0          | 0            | 0              | 0             | 1.5          | 0  | 4.68E-07 | Α        | B        |
| MW-1068  | 04-Aug-93 | 0       | 0          | 0            | 0              | 0             | 0            | 0  | 0        | A        | B        |
| MW-1069  | 29-Aug-90 | 0       | 0          |              | 0              | 0             | 0            | 0  | 6.66E-07 | В        | A        |
| MW-1069  | 29-Aug-90 | 0       | 0          |              | 0.52           | 0             | 0            | 0  | 6.66E-07 | В        | A        |
| MW-1069  | 14-Sep-90 | 0       | 0          |              | 0              | 0             | 0            | 0  | 0        | B        | A        |
| MW-1069  | 24-Jan-91 | 0       | 0          |              | 0              | 0             | 4            | 0  | 1.25E-06 | В        | A        |
| MW-1069  | 25-Apr-91 | 0       | 0          |              | 0              | 0             | 1.2          | 0  | 3.75E-07 | B        | A        |
| MW-1069  | 23-Jul-91 | 0       | 0          |              | 0              | 0             | 0.43         | 0  | 1.34E-07 | B        | A        |
| MW-1069  | 09-Oct-91 | 0       | 0          |              | 0              | 0             | 0            | 0  | 0        | B        | A        |
| MW-1069  | 27-Jul-92 | 0       | 0          | 0            | 0              | 0             | 0.5          | 0  | 1.56E-07 | В        | A        |
| MW-1069  | 22-Jan-93 | 0       | 0          | 0            | 0              | 0             | 1.3          | 0  | 4.06E-07 | B        | A        |
| MW-1069  | 13-Apr-93 | 0       | 0          | 0            | 0              | 0             | 0            | 0  | 0        | B        | A        |

Ì

------

Appendix L1

١

.....

 $\left( \begin{array}{c} 1 \end{array} \right)$ 

#### TECHNICAL MEMORANDUM L1



PREPARED FOR: McClellan Air Force Base

DATE: November 7, 1993

SUBJECT: Innovative Technologies Screening Groundwater OU RI/FS Report Delivery Order No. 5066

**PROJECT:** SAC28722.66.NT

## **Overview and Approach**

The scope of the Groundwater Operable Unit Feasibility Study at McClellan AFB includes the evaluation and screening of applicable innovative technologies to remediate contaminated groundwater. These technologies passed through a two-tiered screening process and the field was narrowed down to the most promising technologies. The screening process followed the sequence of steps:

- 1. Site Information Review
- 2. Kickoff Brainstorming Session
- 3. Primary Technology Information Review
- 4. Initial Technology Identification
- 5. Primary Technology Screening
- 6. Murder Board Meeting
- 7. Secondary Technology Information Review
- 8. Secondary Screening
- 9. Alternatives Development Update/Consensus Meeting
- 10. Screening Documentation

The primary literature review identified 37 technologies to be potentially applicable for groundwater remediation at McClellan AFB. The primary screening reduced this number to 16, and the secondary screening further reduced this list to 7 technologies. McClellan AFB and applicable agencies participated in the selection and screening process.

Three preliminary assumptions were made for technology screening. The first was that the innovative technologies initially would be implemented in Monitoring Zone A since the A zone reportedly contains greater than 90 percent of the contaminant mass in the groundwater at McClellan AFB. The second was that trichloroethene (TCE) would be the primary contaminant targeted for cleanup, although other important chemicals were also considered. The third was that innovative technologies initially would be implemented in contaminant hot spots to achieve the greatest remedial

RDD10012D48.WP5

 $\bigcap$ 

11/7/93

benefit. TCE "hot spots" were initially defined as 1,000  $\mu$ g/l, though later changed to 500  $\mu$ g/l.

# **Primary Technology Information Review**

Identifying potentially applicable technologies and obtaining information for screening were the two objectives of the primary literature review. The list of information sources consulted is presented in Table L1-1. The information gathered from these sources is summarized in Tables L1-2 through L1-6.

### **Primary Screening**

.

4

The potentially applicable technologies were organized into five categories:

- In Situ Biological Treatment
- In Situ Physical/Chemical Treatment
- Ex Situ Biological Groundwater Treatment
- Ex Situ Physical/Chemical Groundwater Treatment
- Offgas Treatment

Three primary screening criteria were established to evaluate the technologies:

- Potential effectiveness
- Development status
- Relative cost

Using the primary screening information summarized in Tables L1-2 through L1-6, five team members independently graded each treatment technology. The technologies were graded by assigning a score for each criterion based on a scale of 1 to 5, where 1 represented "least favorable" and 5 represented "most favorable." For development status, a more objective scale was used:

- 1 =sub-bench scale
- 2 = bench-scale
- 3 = pilot-scale
- 4 = demonstration scale
- 5 =full-scale

Each technology was scored relative to others within the same category. Each of the three criteria were weighted equally, so the maximum composite score was 15.

| Table L1-1<br>Initial Innovative Technology Information Sources                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Databases and Bulletin Boards<br>VISITT Database<br>ATTIC Database<br>CLU-IN Electronic Bulletin Board<br>RREL Database                                                                                                                                                                                                      |
| ORD Electronic Bulletin Board                                                                                                                                                                                                                                                                                                |
| Reports and Programs<br>EPA Bioremediation Action Committee<br>EPA Bioremediation Field Initiative<br>EPA SITE Program (Site Technology Profiles: Fifth Edition, November 1992)<br>EPA Innovative Treatment Report                                                                                                           |
| Literature and Proceedings<br>EPA Groundwater Currents<br>HazTec News<br>Hazardous Waste Consultant<br>Water Environment Research<br>Nineteenth Annual RREL Haz Waste Research Proceedings<br>Battelle's 1993 Bioreclamation Conference Abstracts<br>Hill AFB 1993 Environmental Restoration Technical Interchange Symposium |
| Other Sources<br>Internal experts<br>Subconsultants (Dr. Perry McCarty and Dr. Lewis Semprini)<br>Ciba-Geigy Corporation                                                                                                                                                                                                     |

The scores from each of the five team members were averaged. The average scores were reviewed by the team and modified by eliminating outlying values that disproportionately skewed the results. The average composite scores were plotted (Figures L1-1 through L1-5), and the primary technology screening was performed by arbitrarily selecting a cutoff score for retaining/eliminating technologies. No statistical analysis was conducted to evaluate significant differences between scores. The objective of the primary screening process was to reduce the list of technologies to a manageable size for further development. The scoring process made the screening somewhat quantitative, but professional judgment was the ultimate basis used to develop the list of technologies retained after primary screening (Table L1-7).

### **Murder Board Meeting**

The Murder Board Meeting was held on July 21, 1993, to present the primary screening results to McClellan AFB staff, regulatory agencies, and other interested parties. Participation was encouraged at this meeting, and feedback was requested on the screening process. Screening criteria, scoring tables, and bar charts were presented, and consensus was reached on the retained technology list. However, three action items to be addressed resulted from this meeting:

|       |             |                                                                                                                    | Table L1.2<br>Primary Screening Inf<br>In Situ Biological Groundwater Tr                                                                                                                                                      | formation<br>tratment Technologies                                                                  |                                                                                                                                                  | Pege 1 of 2                                                                                                                 |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|       | Technology  | Vender/Centert                                                                                                     | Tochnology Description                                                                                                                                                                                                        | Current Status                                                                                      | Perceived Highlights                                                                                                                             | Perceived Lawiights                                                                                                         |
|       | Acrobic     | Bioremediation (SVSS<br>remediation technol-<br>ogy)<br>Billings & Associates<br>Rick M. Billings<br>(505)345-1116 | In situ technology consists of three stages: air<br>injection below water table, vapor withdrawal<br>abowe water table, and stimulation of micro-<br>bial community to increase bioremediation of<br>less volatile compounds. |                                                                                                     | Claimed to be significantly<br>cheaper than conventional<br>pump-and-treat systems.<br>Claimed to breakdown any-<br>thing that is biodegradable. | Adequate information on<br>the success of treatment of<br>halogenated VOCs is not<br>available                              |
|       |             | In aitu bioremediation<br>Ground Water Tech-<br>nology Inc.<br>Ron Hicks<br>(510)671-2387                          | In situ technology stimulates natural biodegra-<br>dation systems by supplying nutrients and<br>oxygen to contaminated groundwater.                                                                                           | Full-scale.                                                                                         | Destructive natural process<br>cheaper than alternatives<br>such as SVE and incinera-<br>tion.                                                   | Performance limited for heavity chlorinated water.                                                                          |
| T.1-4 |             | Augmented in situ<br>subburface bioremedi-<br>stion process<br>BIO-REM Inc<br>David Mann<br>800-428-4626           | Uses proprietary blend of microacrophilic<br>bacteria and micronutrients to treat hydrocar-<br>bons and chlorinated compounds.                                                                                                | Accepted into SITE in<br>1991. Is being demon-<br>strated at Williams<br>AFB in AZ.                 | Process does not require<br>additional anygen or anygen-<br>producing compounds. Bac-<br>teria can operate in a wide<br>temperature range.       | May be more applicable to<br>hydrocarbons than chlori-<br>nated solvents. Very little<br>information available in<br>SITTE. |
|       | Cometabolic | In situ biodegradation<br>ECOVA Corp<br>John Kinsella<br>206-883-1900                                              | Proprietary process uses a nontoxic inducer to<br>stimulate microbial activity.                                                                                                                                               | Pilot demonstration<br>completed and<br>ECOVA awaiting<br>authorization for full-<br>scale testing. | Pilot demonstration was<br>successful, as TCE went<br>from 3,000 ppb to less than<br>100 ppb.                                                    | How does it work with<br>other chlorinated solvents?<br>Is it cometabolic?                                                  |
|       |             | Chlorinated hydrocar-<br>bon bioremediation<br>Groundwater Technol-<br>ogy Inc<br>Ronald Hicks<br>\$10-671-2387    | Cometabolic process to treat PCE, TCE, and vinyl chloride.                                                                                                                                                                    | Pilot study conducted<br>in 1989 and 1990. Full<br>design has now begun.                            | Pilot study was successful.                                                                                                                      | Cost unknown.                                                                                                               |
|       |             | Perry McCarry<br>Western Region Haz-<br>ardous Substance<br>Research Center                                        |                                                                                                                                                                                                                               |                                                                                                     |                                                                                                                                                  |                                                                                                                             |

. . .

.

-

RDD10012D4C.WP5

)

11/7/93

\_

ï

.....

|                                   |                                                                                                         | Table Li-2<br>Primary Screening Ini<br>In Situ Biological Groundwater Tr                                                                                                                                                             | ormation<br>eatment Technologies                                                                         |                                                                                                                                                                                                                                 | Page 2 of 2                                                                                                                                                                                                               |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology                        | Vender/Centact                                                                                          | Technology Description                                                                                                                                                                                                               | <b>Current Status</b>                                                                                    | Perceived Highlights                                                                                                                                                                                                            | Perceived Lowlights                                                                                                                                                                                                       |
| Asserubic                         | Biocat II (bioremedia-<br>tion) proceas<br>Mary Hunter<br>YellowStone Env.<br>Sc. Inc<br>(406) 586 3905 | This in situ bioremediation process entails<br>addition of sulfate, nitrate, or equivalent elec-<br>tron acceptors into the subsurface. Methane-<br>producing microorganisms may be added to<br>accomplish dehalogenation reactions. | Demonstrated on<br>laboratory scale to<br>remove 1,1,1-TCA and<br>TCE.                                   | Claimed to have several<br>advantages over other biore-<br>mediation technologies<br>including natural pH control,<br>immobilization of metals to<br>protect methanogens and<br>conversion of breakdown<br>products to methane. | Applicable only in situa-<br>tions in which a sequence<br>of cavironments (denitrify-<br>ing and/or aultate-reducing<br>and then methane-produc-<br>ing) can be induced to<br>occur in a zone of contami-<br>nated water. |
| Sequential Asserobic -<br>Aerobic | Two-zone plume inter-<br>ception<br>ABB Environmental<br>Services Inc<br>Sam Fogel<br>617-245-6606      | First zone is anaerobic and partially dechlor-<br>inates highly chlorinated solvents, such as<br>PCE. Second zone is immediately downgra-<br>dient, is aerobic, and encourages oxidation of<br>the partially chlorinated products.   | Accepted into SITE in<br>July 1989. Bench-scale<br>testing is 75% com-<br>plete as of September<br>1992. | Uses dechlorinating bacteria<br>specially adapted to high<br>concentration of chlorinated<br>solvents.                                                                                                                          | Results and effectiveness<br>are unknown at this time.                                                                                                                                                                    |
| Eazyme Treatment                  | US EPA<br>Dave Wolfe<br>Athena, GA                                                                      | Dehalogenase enzyme used (e.g., in permeable reaction wall) to dehalogenate chlorinated organics.                                                                                                                                    | Laboratory develop-<br>ment.                                                                             |                                                                                                                                                                                                                                 | Results and effectiveness<br>are unknown at this time.                                                                                                                                                                    |
| Natural Attenuation               |                                                                                                         |                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           |
| la Situ Recirculation<br>Unit     | 1 EG (UVB)                                                                                              | An immobilized-cell bioremediator is con-<br>structed inside a groundwater recirculation<br>unit (well). Groundwater is circulated through<br>the unit, achieving in situ treatment.                                                 | At initial development<br>stages.                                                                        | The treatment control achie-<br>vable with an engineered<br>reactor can be achieved<br>without groundwater with-<br>drawal to the surface.                                                                                      | No sufficiently developed to<br>understand potential and<br>limitations.                                                                                                                                                  |
| Permeable Reaction<br>Wall        | Robert Taylor<br>Lawrence Livermore<br>National Laboratory                                              | A biologically active zone is constructed in the path of groundwater flow.                                                                                                                                                           | Conceptual develop-<br>ment.                                                                             | Groundwater control is not necessary.                                                                                                                                                                                           | Treatment duration could be quite lengthy.                                                                                                                                                                                |

. ...

ŗ

RDD10012D4C.WP5

11/1/93

L1-5

|     |                                               |                                                                                                                            | Table L1-3<br>Primary Screening Information<br>In Sitte Physical/Chemical Groundwater Treatmen                                                                                                                                                                                                                                                                                                                                                      | it Technologies                                                                                                                                    |                                                                                           | Page 1 of 2                                                                                                             |
|-----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|     | Technology                                    | Vender/Centact                                                                                                             | Technology Description                                                                                                                                                                                                                                                                                                                                                                                                                              | Current Status                                                                                                                                     | Perceived Highlights                                                                      | Perceived Lowlights                                                                                                     |
|     | Sparping/SVE                                  | Subsurface Volatilization<br>and Ventilation System<br>(SVVS)<br>Billings and Associates.<br>Gale Billings<br>505-345-1116 | Network of injection and extraction wells to treat contami-<br>nation via SVE combined with in situ biodegradation.                                                                                                                                                                                                                                                                                                                                 | Accepted into SITE<br>program in 1991. A<br>site in Michigan selec-<br>ted to demonstrate<br>SVVS for remediation<br>of BTEX, TCE, PCE<br>and DCE. | Technology designed<br>specifically to enhance<br>bioremediation.                         | Microbiological<br>effectiveness<br>unproven, especially<br>chlorinated solvents.                                       |
| т.1 |                                               | In aitu air sparging<br>(Sparge Vac)<br>Terra Vac Inc.                                                                     | Vapor extraction wells are installed and manifolded to a<br>knock-out pot. A vacuum is induced to extract the soil<br>vapors for offgas treatment. In addition to extraction<br>wells, sparging wells are used to sparge air or nitrogen into<br>groundwater. Volatile organics in the groundwater volatil-<br>ize and diffuse into the air bubbles created by sparging.<br>When the bubbles reach the vadose zone, the SVE system<br>removes them. | Full-scale; successful<br>remediation demon-<br>strated.                                                                                           | Well proven technol-<br>ogy, several vendors<br>have the same or simi-<br>lar technology. | Contaminants that<br>form completes with<br>soil matrix are not<br>applicable.                                          |
| -6  | Steam Injection/<br>Vapor Extraction          | In Situ Steam-Enhanced<br>Extraction (ISSE)<br>Udell Technologica Inc<br>Lloyd Stewart<br>510-653-9477                     | Steam is forced through soil by injection wells, while<br>extraction wells pump water and move steam and vaporized<br>contaminants.                                                                                                                                                                                                                                                                                                                 | Part of SITE demon-<br>stration at McCicllan<br>AFB.                                                                                               | CH2M HILL familiar<br>with technology.                                                    | Realty is a soil treat-<br>ment, though vendor<br>claims both above<br>and below water<br>table. Cost could be<br>high. |
|     | Steam Injection<br>Vapor Extraction<br>(SIVE) | Hughes Environmental<br>Systems<br>John Dablow<br>213-536-6548                                                             | Steam is forced through soil by injection wells, while<br>extraction wells pump water and move steam and vaporized<br>contaminants.                                                                                                                                                                                                                                                                                                                 | Site demonstration in<br>Huntington Beach,<br>California.                                                                                          | CH2M HILL familiar<br>with technology.                                                    | Really is a soil treat-<br>ment, though vendor<br>claims both above<br>and below water<br>table. Cost could be<br>high. |
|     | Soil Heating/ Vapor<br>Extraction             | ERACE (Electrical<br>Remediation at Contam-<br>inated Environment)<br>Battelle                                             | Electrodes are planted in a 100-foot-diameter circle, apply-<br>ing current to the soil. Water and volatile organics form a<br>steam-contaminant mixture which is vacuum stripped.                                                                                                                                                                                                                                                                  | Field tests planned at<br>Savannah River, sum-<br>mer 1993.                                                                                        | Mass transfer limita-<br>tions of hot air or<br>steam injection are<br>available.         | Primarily a soil treat-<br>ment process.                                                                                |
|     | Chemical Oxidation                            | "Oxy-Vac"<br>Terra Vac                                                                                                     | Injectival of hydrogen peroxide into DNAPL zone oxidizes<br>contaminants and reportedly helps stimulate acrobic degra-<br>dation.                                                                                                                                                                                                                                                                                                                   | At development stage.                                                                                                                              |                                                                                           |                                                                                                                         |
|     |                                               | Waterloo Centre for<br>Groundwater Research<br>Graham Farquar                                                              | Permanganate injection/extraction oxides contaminants.                                                                                                                                                                                                                                                                                                                                                                                              | At development stage.                                                                                                                              |                                                                                           |                                                                                                                         |

......

.

!

,

н».

RDD10012D4C.WP5

)

11//93

|                                   |                                                                                                        | Table LA-3<br>Primary Screening Information<br>In Situ Physical/Chemical Groundwater Treatmei                                                                                                                                                                                                                                             | at Technologies                                                |                                                                                                                                                                                                        |                                                                                                                                                                                                                               |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                                                                                                                        | Page 2 of 2                                                                                                                                                                                                                   |
| Technology                        | Vender/Centect                                                                                         | Technology Description                                                                                                                                                                                                                                                                                                                    | Current Status                                                 | Perceived Highlights                                                                                                                                                                                   | Perceived Lewlights                                                                                                                                                                                                           |
| Metal-Catalyzed<br>Dehalogenation | Metal-enhanced degra-<br>dation<br>EaviroMetal Technol-<br>ogies Inc.<br>John Quayle<br>(519) 824-0432 | In situ treatment technology that involves constructing an<br>iron based permeable catalyst wall across the path of the<br>contaminated groundwater plume. The metal catalyst<br>degrades (dehalogenates) at rates 3 to 6 orders of magni-<br>tude greater than natural rates. <u>Source Haz Waste Cons.</u><br>Page 1.18, May/June 1993. | Laboratory and field<br>demonstrations are<br>being conducted. | Claimed to be cheaper<br>than conventional<br>pump-and-treat tech-<br>nologies. TCE and<br>PCE destruction rates<br>of 95% and 91%,<br>respectively, have been<br>achieved in the demon-<br>strations. | Long-term integrity<br>and effectiveness in a<br>range of hydrogeo-<br>logical environments<br>is yet to be deter-<br>mined. Presence of<br>and potential for<br>formation of break-<br>down products has<br>not been tested. |
| Surfactant Flushing               | State University of New<br>York at Buffalo<br>John Fountain<br>716-645-3996                            | Surfactant flushing process capable of removing DNAPLs from aquifer. A surfactant-containing solution is injected into the subsurface, then contaminants are recovered from withdrawn groundwater.                                                                                                                                        | Bench-scale successful.<br>Pilot field test under-<br>way.     | Was successful at<br>removing free phase<br>PCE.                                                                                                                                                       | Unknown costs and<br>effectivences at other<br>compound DNAPLs.                                                                                                                                                               |
| Solvent Flushing                  |                                                                                                        |                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                                                                                                                        |                                                                                                                                                                                                                               |
| Hydrofracturing                   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                                                                                                                        |                                                                                                                                                                                                                               |
| Pneumatic<br>Fracturing           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                                                                                                                        |                                                                                                                                                                                                                               |
| In Situ Treatment of              | Contaminated Ground Water                                                                              | : An Inventory of Research and Field Demonstrations and Str                                                                                                                                                                                                                                                                               | ategies for Improving Grou                                     | nd Water Remediation Tech                                                                                                                                                                              | inologies.                                                                                                                                                                                                                    |

L1-7

1.1.4

.

ř

RDD10012D4C.WP5

11///93

---

|                                                            | Page 1 of 3 | Perceived Lowitights        | Effectivences and robustness not<br>demonstrated. Advantage over<br>standard fured-film biological<br>system not demonstrated.<br>Unknown extent of air emis-<br>sions. Aerobic rector not expec-<br>ted to be effective in achieving<br>chlorinated VOC reduction.   | Effectiveness and robustness not<br>demonstrated. Advantage over<br>standard fixed-film biological<br>system not demonstrated.<br>Unknown extent of air emis-<br>sions. Aerobic reactor not<br>expected to be effective in achie-<br>ving chlorinated VOC reduction. | May not be able to handle high<br>flow rates. Treatment effective-<br>ness not yet demonstrated Bio-<br>reactor is acrobic and not<br>expected to achieve chlorinated<br>VOC reduction.                                                                                                   | Throughput rate may be limited<br>by reactor(s) size. Robustness<br>and cost-effectiveness of tech-<br>nology not yet demonstrated.        |
|------------------------------------------------------------|-------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ejes                                                       |             | Perceived Highlights        | Likely to have high treatment<br>capacity, compact design,<br>reduced O&M costs, and low<br>sludge production.                                                                                                                                                        | Likely to have reduced O&M<br>costs and low studge produc-<br>tion. Appears to require mini-<br>mal operator attention.                                                                                                                                              | System is compact.                                                                                                                                                                                                                                                                        | Anaerobic treatment could be<br>effective and incepensive com-<br>pared to other technologies.                                             |
| ble L1-4<br>æning Information<br>dwater Treatment Technolo |             | Current Status              | Treatability and dem-<br>onstration testing has<br>been conducted (G&H<br>Landfill in Utica, MI).                                                                                                                                                                     | Performed pilot test in<br>1986-87. Since then has<br>installed more than 20<br>full-scale systems and<br>performed several<br>other pilot tests.                                                                                                                    | No demonstration yet<br>conducted.                                                                                                                                                                                                                                                        | This emerging technol-<br>ogy has been tested at<br>the bench-scale. Pilot-<br>scale equipment is<br>available for use.                    |
| Ta<br>Primary Scre<br>Ex Situ Biological Groum             |             | Technology Description      | Fixed-film biotreatment system<br>designed to maximize biological activ-<br>ity and contact between biofilm and<br>contaminants. Applicable to a wide<br>range of organic contaminants (for<br>acrobic system) and chlorinated sol-<br>vents (with anaerobic system). | Patented biological treatment system<br>using heated influent in an immo-<br>bilized-biomass, multiple cell reactor.<br>Can be operated under aerobic (fine<br>bubble membrane diffusers) or anaer-<br>obic conditions.                                              | Process consists of a bioreactor com-<br>bined with an ultrafiltration mem-<br>brane system to recover and recycle<br>biological solids and high molecular<br>weight organics. Results in a system<br>that can treat high BOD wastes at a<br>long sludge retention time but short<br>HRT. | Proprictary technology uses fixed film<br>bioreactors under anacrobic condi-<br>tions to achieve degradation of halo-<br>genated solvents. |
|                                                            |             | Example<br>Venders/Contacts | Immobilized Cell Bio-<br>reactor<br>Allied Signal, Inc.<br>(ICB Biotreatment<br>System)<br>Ralph Nussbaum or<br>Timothy Love<br>(201 455-3190)                                                                                                                        | Biological Aqueous<br>Treatment System<br>(BATS)<br>Biotrol, Inc.<br>Dennis Chilcote<br>(612-448-2515)                                                                                                                                                               | ZenoGem Process<br>Zenon Environmental<br>Systems, Inc.<br>Tony Tenelli<br>(416-639-6320)                                                                                                                                                                                                 | Cognis, Inc.<br>Kieth Weerts<br>(707-576-6200)                                                                                             |
|                                                            |             | Technol 27                  | Aerobic                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                                                            |

.

4

RDD10012D4C.WP5

)

11/7/93

|                     |                                                                                                                                                | Tab<br>Primary Scree                                                                                                                                                                                                                                                                                                                                       | ie LL→<br>mine Information                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                | Ex Situ Biological Ground                                                                                                                                                                                                                                                                                                                                  | water Treatment Technolog                                                                                                                                                                                                                                              | jes                                                                                                                                       | Page 2 of 3                                                                                                                                                             |
| Technology          | Example<br>Venders/Contacts                                                                                                                    | Technology Description                                                                                                                                                                                                                                                                                                                                     | Current Status                                                                                                                                                                                                                                                         | Perceived Highlights                                                                                                                      | Perceived Lowilghts                                                                                                                                                     |
| Aerobic Cometabolic | Methanotrophic Bio-<br>reactor System<br>Biotrol, Inc.<br>Durtell Dobbins<br>(612-48-2515)                                                     | Process utilizes cometabolism and the methane monocygenase enzyme to achieve TCE reduction.                                                                                                                                                                                                                                                                | Bench- and pilot-acale<br>testing has been com-<br>pleted. Final report<br>from testing was sched-<br>uled to be submitted to<br>EPA in January 1993.<br>Much literature is<br>available on this tech-<br>nology, and one good<br>paper (Radian) has<br>been obtained. | Appears to achieve very high<br>rates of reduction of TCE.<br>Appears to be less expensive<br>than GAC and competitive with<br>stripping. | Robustness and capability of handling a variety of constitu-<br>ents is not demonstrated.                                                                               |
|                     | Radian Corp (Michigan<br>Biotechnology Institute)<br>R. Legrande<br>(512-454-4797)                                                             |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                         |
|                     | Eavirogen                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                         |
|                     | Gerald Speitel<br>Univ. of Texas at<br>Austin                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                         |
| Anacrobic           | Immobilized Cell Bio-<br>reactor<br>Allied Signal, Inc.<br>(ICB Biotreatment<br>System)<br>Raiph Nussbaum or<br>Timothy Love<br>(201 455-3190) | Fixed-film biotreatment system<br>designed with (1) a unique reactor<br>medium that maximizes biological<br>activity, and (2) a reactor design<br>which maximizes contact between<br>biofilm and contaminants. Applicable<br>to a wide range of organic contami-<br>nants (for aerobic system) and chlori-<br>nated solvents (with anacrobic sys-<br>tem). | Treatability and dem-<br>onstration testing<br>(G&H Landfill in<br>Utica, MI).                                                                                                                                                                                         | Likely to have high treatment<br>capacity, compact design,<br>reduced O&M costs, and low<br>sludge production.                            | Effectiveness and robustness not<br>demonstrated. Advantage over<br>standard fixed-film biological<br>system not demonstrated.<br>Unknown extent of air emis-<br>sions. |
| Anacrobic           | Biological Aqueous<br>Treatment System<br>(BATS)<br>Biotrol, Inc.<br>Dennis Chilcote<br>(612-448-2515)                                         | Patented biological treatment system<br>using heated influent in an immo-<br>bilized-biomass, multiple cell reactor.<br>Can be operated under aerobic (fine<br>bubble membrane diffusers) or anaer-<br>obic conditions.                                                                                                                                    | Performed pilot test in<br>1986-87. Since then has<br>installed more than 20<br>full-scale systems and<br>performed several<br>other pilot tests.                                                                                                                      | Likely to have reduced O&M<br>costs and low sludge produc-<br>tion. Appears to require mini-<br>mal operator attention.                   | Effectiveness and robustness not<br>demonstrated. Advantage over<br>standard fixed-film biological<br>system not demonstrated.<br>Unknown extent of air emis-<br>sions. |

-

١

ŕ

7 1 RDD10012D4C.WP5

L1-9

11/193

. . . . .. ...

|                                   |                                                    | Tat<br>Primary Scre<br>Ex Sita Biological Ground                                                                                                                                                                                                                                                | ole L1-4<br>ening Information<br>water Treatment Technolog                                                              | 2                                                                                              |                                                                                                                                     |
|-----------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                | Page 3 of 3                                                                                                                         |
| Technology                        | Example<br>Venders/Contacts                        | Technology Description                                                                                                                                                                                                                                                                          | Carrent Status                                                                                                          | Percelved Highlights                                                                           | Perceived Lowlights                                                                                                                 |
| Austrobic (contin-<br>ued)        | Cognis, Iac.<br>Kieth Weerts<br>(707-576-6200)     | Proprietary technology uses fixed-film<br>bioreactors under anacrobic condi-<br>tions to achieve degradation of halo-<br>genated solvents.                                                                                                                                                      | This emerging technol-<br>ogy has been tested at<br>the bench-scale. Filot-<br>scale equipment is<br>available for use. | Anacrobic treatment could be<br>effective and inexpensive com-<br>pared to other technologies. | Throughput rate may be limited<br>by reactor(s) size. Robustness<br>and cost-effectiveness of tech-<br>nology not yet demonstrated. |
| Sequential Anacrobic<br>- Acrobic | David Stenael<br>Univ. of Washington               |                                                                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                |                                                                                                                                     |
| PACT                              | Zimpro Passivani<br>William Copa<br>(715-359-7211) | Biological treatment and powdered<br>activated carbon are combined to<br>achieve treatment standards which<br>cannot be met by biological treatment<br>alone. Contact-aeration tanks are<br>followed by clarifiers to achieve car-<br>bon and biosolids recycle similar to<br>activated sludge. |                                                                                                                         |                                                                                                |                                                                                                                                     |

L1-10

· · ·

RDD10012D4C.WP5

Y

11/7/93

---

|                                            |                                                                                                                                                  | Table Li -5<br>Primary Screening Informat<br>Ex Sith Physical/Chemical Groundwater Tree                                                                                                                                                                | ion<br>siment Technologies                                                                                                                                                             |                                                                                                                                                                                | Page 1 of 5                                                                                                                                                                                                            |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology                                 | Vender/Centact                                                                                                                                   | Technology Description                                                                                                                                                                                                                                 | Carrent Status                                                                                                                                                                         | Perceived Highlights                                                                                                                                                           | Perceived Lowhights                                                                                                                                                                                                    |
| Evaporation w/<br>Catalytic Onida-<br>tion | PO•WW•ER<br>Chemical Waste Man-<br>agement, Inc.<br>Brick Neuman or Matt<br>Hussin<br>(708-513-4500)                                             | Proprietary technology combines evaporation with cata-<br>lytic oxidation to concentrate and destroy contaminants.<br>Achieves volume reduction by concentration of nonvola-<br>tile constituents in a waste stream (requiring further<br>treatment).  | One demonstration test at<br>developer's pilot plant in<br>Lake Charles, LA. A<br>commercial system (50<br>gpm capacity) was nearing<br>completion in Hong Kong<br>at the end of 1992. | Treats a wide spec-<br>trum of contaminants,<br>produces a high qual-<br>ity effluent, destroys<br>volatile pollutants.                                                        | Produces a brine which<br>would require further<br>treatment (unless it<br>could be recombined<br>with effluent stream).<br>Appears to be fairly<br>energy-intensive, and<br>not practical at very<br>high flow rates. |
| Chemical Oxida-<br>tion                    | CIO <sub>2</sub> Chemical Oxida-<br>tion<br>EXXON Chemical<br>Company and RIO<br>Linda Chemical Com-<br>pany<br>Brent Bourfand<br>(713-460-6822) | Utilitzes an onaite CIO <sub>2</sub> generator to oxidize contami-<br>nants.                                                                                                                                                                           | No demonstration repor-<br>ted to date.                                                                                                                                                | Will not form THMs.                                                                                                                                                            | Not expected to be<br>effective against this<br>waste stream in redu-<br>cing VOCs. Operating<br>costs are anticipated to<br>be high.                                                                                  |
| Photolytic Oxida-<br>tion                  | CAV-OX Process<br>Magnum Water Tech-<br>sology                                                                                                   | Uses a combination of hydrodynamic cavitation and UV radiation to oxidize contaminants in water. UV lamp output can be varied from 60 watts to over 15,000 watts depending on contaminant stream.                                                      | Has been tested several<br>times at private and public<br>sites. Was tentatively<br>scheduled for demonstra-<br>tion at Edwards AFB in<br>February 1993.                               | Docan't release air<br>emissions, treatment<br>costs estimated at half<br>UV oxidation systems<br>and substantially less<br>than GAC. Mainte-<br>nance costs are mini-<br>mai. | Cannot handle free<br>product or highly turbid<br>waste atreams. No<br>results available on<br>success of treating TCE,<br>DCE, etc. (Achieved<br>>95% R.E. for 1,1-<br>DCA)                                           |
|                                            | Laser-Induced Photo-<br>chemical Oxidative<br>Destruction<br>Energy and Environ-<br>mental Engineering, Inc.<br>James Porter<br>(617-666-5500)   | Technology photochemically oxidizes organic compounds<br>using an oxidant $(H_2O_2)$ and UV radiation from an<br>Excimer laser. Process can be used as a final treatment<br>step for reducing organic contamination to acceptable<br>discharge limits. | This is an emerging tech-<br>nology which has been<br>accepted into the SITE<br>Demonstration Program.<br>Pilot-scale system of 1<br>gpm.                                              | Vendor claims cost<br>competitiveness with<br>AOP and GAC.                                                                                                                     | Robustness and cost-<br>effectiveness of technol-<br>ogy not yet demonstra-<br>ted. Reaction times on<br>order of 100 hours.<br>Appears expensive at<br>\$30 to \$70 per 1,000<br>gallons.                             |

÷

•

 $\left( \begin{array}{c} \end{array} \right)$ 

rz. . .

RDD10012D4C.WP5

11/7/93

|                                       |                                                                                                                                              | Table L1-5<br>Primary Screening Informati                                                                                                                                                                                                                                                                                                                                                                | h                                                                                                                           |                                                                                                   |                                                                                                                                                                  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                              | Ex Sita Physical/Chemical Groundwater Trea                                                                                                                                                                                                                                                                                                                                                               | stment Technologies                                                                                                         |                                                                                                   | Page 2 of 5                                                                                                                                                      |
| Technology                            | Vender/Center                                                                                                                                | Technology Description                                                                                                                                                                                                                                                                                                                                                                                   | Current Status                                                                                                              | Perceived Highlights                                                                              | Perceived Lowinghts                                                                                                                                              |
| Photolytic Oxida-<br>tion (continued) | Light Activated Reduc-<br>tion of Chemicala<br>(LARC)<br>Arctech, Inc.<br>Donald Shileaky<br>(703-642-4189)                                  | Patented photochemical process which uses UV light<br>and an optimized reducing environment to dehalogenate<br>organic compounds.                                                                                                                                                                                                                                                                        | This emerging technology<br>has been evaluated at the<br>bench-scale. Mobile pilot-<br>testing unit should be<br>available. | Vendor claims cost-<br>competitiveness with<br>existing technologies<br>for treatment of<br>PCBs. | Vendor has not yet<br>demonstrated cost effec-<br>tive treatment of halo-<br>genated VOCs (but<br>claims they will demon-<br>strate effectiveness).              |
|                                       | Photothermal Detontifi-<br>cation Unit<br>University of Dayto<br>Datema? Dayten?<br>Research Institute                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                   |                                                                                                                                                                  |
|                                       | Pulaed UV Contiauum<br>Ultraviolet Energy Gen-<br>erators Inc<br>Alex Wethof<br>510-272-0547                                                 | Wethof flashlamp similar to xenon, but operates under<br>parameters and high current density to produce pulsing<br>continuum.                                                                                                                                                                                                                                                                            | Texts conducted at<br>Lawrence Livermore                                                                                    | Xenon lamp can also<br>achieve this, but con-<br>ditions greatly shorten<br>its life.             | Unknown how much<br>more effective con-<br>tinuum is than standard<br>UV. Still most effective<br>when used with peroxide<br>and catalyst (titanium<br>dioxide). |
|                                       | Photolyric oxidation<br>Purus, Inc<br>Paul Bhystone<br>408-453-7804                                                                          | Uses xenon pulsed plasma flashlamp that emits short<br>wavelength ultraviolet (UV) light.                                                                                                                                                                                                                                                                                                                | Accepted into SITE Emer-<br>ging technologics program<br>in March 1991.                                                     | Well documented<br>success. Full-scale<br>prototype began in<br>October 1991.                     | Standard technology by<br>definition.                                                                                                                            |
|                                       | TIO <sub>2</sub> Photocatalytic<br>Water Theatment<br>Matrix Photocatalytic,<br>Inc.<br>Brian Buttera<br>(Ontario, Canada)<br>(519-457-2963) | Removes and destroys organic contaminants from water<br>through use of a TIO <sub>2</sub> semiconductor which is excited<br>by UV-A light and produces hydroxyl radicals. For<br>more refractive contaminants, oxidants are added in<br>small quantities (0.0003 mol/l) to enhance the process.<br>Direct operating cost for mini pilot-scale system was<br>reported to be \$1 to \$2 per 1,000 gallons. | This is an emerging tech-<br>nology which has been<br>taken to the pilot plant (5<br>gpm) stage.                            | Can treat a wide<br>range of contaminants<br>down to the very low<br>ppb range.                   | Potentially high cost,<br>especially with chemical<br>usage.                                                                                                     |

-----

RDD10012D4C.WP5

}

11/193

1

L1-12

|                                           |                                                                                                                                                | Primary Screening Informat<br>Ex Sita Physical/Chemical Groundwater Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion<br>stment Technologies                                                                   |                                                                                                        |                                                                                                                                                                                    |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                        | Page 3 of 5                                                                                                                                                                        |
| Technology                                | Vender/Centeci                                                                                                                                 | Technology Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Current Status                                                                                | Perceived Highlights                                                                                   | Perceived Lewlights                                                                                                                                                                |
| Membrane Sepa-<br>ration                  | Cross-Flow Pervapora-<br>tion System<br>Wastewater Technology<br>Centre<br>Rob Booth<br>(Ontario, Canada)<br>(416-336-4689)<br>Ron Turner, EPA | Permeable membranes that preferentially adsorb VOCs<br>are used to partition them from contaminated water.<br>The VOCs diffuse from the membrane-water interface<br>through the membrane and are drawn under a vacuum.<br>Upstream of the vacuum pump, a condensing all the vapor<br>contains the permeating vapors, condensing all the vapor<br>to avoid fugitive emissions. The VOC-rich condensate<br>is recovered for further treatment/disposal. For low<br>concentrations of VOCs wendor claims cost to be com-<br>petitive with air stripping and GAC. | This is an emerging tech-<br>nology that has been devel-<br>oped to the pilot-plant<br>stage. | Appears to have a high removal capacity with no fugitive emissions.                                    | A VOC-rich condensate<br>is produced which<br>requires further treat-<br>ment. Unknown perfor-<br>mance with mixed waste<br>streams and high con-<br>centrations of VOCs.          |
| Membrane Sepa-<br>ration (contin-<br>ued) | Rochem Diac Tube<br>Module System<br>Rochem Separation<br>Systems, Inc.<br>David LaMcnica<br>(310-370-3160)                                    | Uses a reverse comosis/ultrafiltration system to achieve<br>separation of pure water from contaminated liquids.                                                                                                                                                                                                                                                                                                                                                                                                                                               | A demonstration was<br>planned for fall 1992. No<br>results reported.                         |                                                                                                        | Probably not cost-effec-<br>tive for chlorinated<br>VOC removal when<br>compared with other<br>technologies. Produces<br>brine which requires<br>further treatment/ dis-<br>posal. |
|                                           | VaporSep Membrane<br>Technology and<br>Research                                                                                                | VOC-laden air stream is passed through a compressor/<br>condenser. Liquids are stored, and the remaining<br>vapors are passed through the VaporSep membrane<br>modules. The membranes are permeable to organics<br>and separate the organics from the air. The membrane-<br>concentrated organics are recycled to the condenser.                                                                                                                                                                                                                              | Units installed in 17 loca-<br>tions, 10 of which are full-<br>scale.                         | Can achieve concen-<br>tration of most<br>CVOCa. More cost-<br>effective than conden-<br>sation alone. | Optimal for high con-<br>centration low flow air<br>streams. Potentially<br>costly due to energy<br>requirements.                                                                  |
|                                           | Membrane Separation<br>and Biological Treat-<br>ment<br>SBP Technologies, Inc.                                                                 | System is composed of a hyperfiltration unit to concen-<br>trate organic contaminants. The concentrate is then<br>treated biologically.                                                                                                                                                                                                                                                                                                                                                                                                                       | Demonstrated under SITE<br>program October 1991;<br>scale unknown.                            | Vendor claims to be<br>able to treat TCE.                                                              | May not be cost-effice-<br>tive for removal of low<br>molecular weight com-<br>pounds.                                                                                             |
| Photolytic<br>Reduction                   | Reductive Photo-<br>Dechlorination<br>M.L. Energia Inc<br>Moshe Lavid<br>609-79770                                                             | Reducing atmosphere and UV light are used to remove chlorine atoms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Site emerging technologies<br>in summer 1992.                                                 | Well documented<br>technology for treat-<br>ment of water and<br>gas.                                  | Unknown what disting-<br>uishes this from other<br>UV/oxidation.                                                                                                                   |
| Resin Adsorption                          | PADRE<br>Purus, Inc.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                        |                                                                                                                                                                                    |

Table L1-5 nerv Screenine Inform

Į

RDD10012D4C.WP5

L1-13

11*111*93

- - - - -

|                                          |                                                                                                                                                                                                                                                                                                                     | Table Li -5<br>Primary Screening Informat<br>Ex Situ Physical/Chemical Groundwater Tree                                                                                                                                                                                                                                                                           | tion<br>atment Technologies                                                                                                                                                                                                                                                                  |                                                                                                                                       | Page 4 of 5                                                                                                                                                  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tochashy                                 | Vender/Centact                                                                                                                                                                                                                                                                                                      | Technology Description                                                                                                                                                                                                                                                                                                                                            | Current Status                                                                                                                                                                                                                                                                               | Perceived Highlights                                                                                                                  | Perceived Lewilghts                                                                                                                                          |
| Surfactant Sepa-<br>ration               | GHEA Associates Pro-<br>cess<br>New Jensey Institute of<br>Technology<br>Itzhak Gotlieb<br>(201-802-1946)                                                                                                                                                                                                           | Contaminated water is treated with a dose of surfactant.<br>The surfactant sorbs the contaminants, then is separated<br>from the water phase. The water phase undergoes ultra-<br>filtration then air flotation prior to discharge. The con-<br>taminant undergoes desorption from the surfactant and<br>is recovered. The surfactant is recycled in the process. | This is an emerging tech-<br>nology which has under-<br>gone treatability testing at<br>bench-scale and in a 25-<br>gallon pilot plant. Final<br>report on the pilot plant<br>was due in June 1993.                                                                                          | Vendor claims very<br>high removal rates<br>and no emissions.                                                                         | Potcatially high cost and<br>not demonstrated to be<br>effective over a wide<br>range of contaminant<br>types and concentra-<br>tions.                       |
| Metal-Catalyzed<br>Dehalogenation        | Environmental Technol-<br>ogics, Inc.                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   | Emerging technology cur-<br>rently developed to bench-<br>scale.                                                                                                                                                                                                                             | Technology has some potential.                                                                                                        | Not sufficiently devel-<br>oped.                                                                                                                             |
| High-Energy<br>Electron Irradia-<br>tion | Electron Beam Research<br>Facility,<br>Forida International<br>University and Univer-<br>aity of Miami<br>william Cooper<br>William Cooper<br>(205-348-3049)<br>High Voltage Environ-<br>mental Applications<br>Thomas Waite<br>(305-253-9143)<br>ZAPIT<br>ZAPIT<br>ZAPIT<br>ZAPIT<br>ZAPIT<br>Fulse Sciences, Inc. | High energy electron irradiation produces the aqueous electron ( $e_{aq}$ ), the hydrogen radical, and the hydroxyl radical, which transform organic contaminants. Indical, which transform organic contaminants. Indicate the hydroxyl radical and break up contaminant molecules. A linear induction accelerator gen-                                           | This is an emerging tech-<br>nology which has been<br>accepted into the SITE<br>Demonstration Program.<br>Pilot-scale studies conduc-<br>ted at 100 gpm.<br>ted at 100 gpm.<br>This is an emerging tech-<br>nology which has only<br>been tested at the bench-<br>social The under is in the | System has been<br>found to be effective<br>on VOCs and BTEX.<br>Vendor claims tech-<br>nology to be effective<br>for a wide range of | Robustness and cost-<br>effectiveness of technol-<br>ogy not yet demonstra-<br>ted.<br>Not as effective for<br>some compounds (such<br>as CC4, which require |
|                                          |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                   | process of designing a 5<br>MeV plant.                                                                                                                                                                                                                                                       | cially TCA, TCE, and<br>benzene), safe, and<br>comparable with<br>respect to costs of<br>alternative processes.                       | sioner flow rates.                                                                                                                                           |
| Wet Air Oxida-<br>tion                   | Zimpro/Passavant<br>Wietox<br>Kenox Corp.                                                                                                                                                                                                                                                                           | An aqueous waste stream is heated to 350° to 650°F at<br>high pressure, oxidizing the organics and inorganics in<br>groundwater.                                                                                                                                                                                                                                  | This is an established<br>technology for other (non-<br>hazardous) treatment pro-<br>cesses.                                                                                                                                                                                                 |                                                                                                                                       | Technology is more<br>appropriate for more<br>highly concentrated<br>waste atreams. No<br>likely to be cost-effec-<br>tive.                                  |

·····

RDD1012D4C.WP5

)

11/7/93

-----

|                                  |                                            | Table L1-5<br>Primary Screening Informa<br>Ex Situ Physical/Chemical Groundwater Tre    | lien<br>atment Technologies                                          |                      | Page 5 of 5                                                                                                         |
|----------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|
| Technology                       | Vender/Centect                             | Technology Description                                                                  | Current Status                                                       | Perceived Highlights | Perceived Lowlights                                                                                                 |
| Supercritical<br>Water Oxidation | MODAR<br>Sandia National Labora-<br>tories | Similar to wet oxidation except that higher temperatures<br>and pressures are employed. | Some bench-scale and<br>demonstration testing has<br>been conducted. |                      | Has not gained wide<br>acceptance. Perceived<br>to be more appropriate<br>for mixed hazardous/<br>radioactive waste |
|                                  |                                            |                                                                                         |                                                                      |                      |                                                                                                                     |

:

1

RDD10012D4C.WP5

11/7/93

.....

~.

|     |                         |                                                                                                      | Table LI -6<br>Primary Screening Informa<br>Offgas Treatment Technolo                                                                                                                                                                     | lien<br>des                                                                                                             |                                                                                                                                                                                   |                                                                                                                  |
|-----|-------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|     |                         |                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                   | Page 1 of 3                                                                                                      |
|     |                         | V ender/Centert                                                                                      | Technology Description                                                                                                                                                                                                                    | Current Status                                                                                                          | Perceived Highlights                                                                                                                                                              | Perceived Lowinghas                                                                                              |
|     | Photolytic Obdation     | TiO2 Photocatalytic Air<br>Treatment<br>Matrix Photocatalytic, Inc.<br>Brian Butters<br>519-457-2963 | Contaminated air flows through a fixed TiO2 catalyst bed activated by UV-A light.                                                                                                                                                         | Accepted into SITE<br>Emerging Technology<br>Program in 1992.                                                           | Testing has included<br>TCE and PCE.                                                                                                                                              | Potentially high cost.                                                                                           |
|     |                         | Solaire Process<br>Solarchem Eavironmental<br>Systems<br>Peter O'Connor<br>702-255-7055              | Contaminated air is passed through a chamber<br>with a UV lamp. A proprietary adsorber is<br>used to increase effectiveness.                                                                                                              | Bench-scale tests are<br>being completed. Field<br>demonstration scheduled<br>for fall 1993.                            | Higher efficiencies than<br>TID <sub>2</sub> systems are<br>claimed by vendor.                                                                                                    | Potentially high cost for<br>complete mineralization<br>of contaminants.                                         |
| L1- |                         | Photolytic Oxidation Process<br>Purus, Inc.<br>Paul Blyatone<br>(408-453-7804)                       | The system uses a xenon pulsed-plasma<br>flashlamp that emits short wavelength UV light<br>at very high intensities to treat vapor-phase<br>VOCa. UV treatment converts the VOCs into<br>less hazardous compounda.                        | Field tested at air flows<br>up to 500 cfm and TCE<br>= 500 ppm.                                                        |                                                                                                                                                                                   | Undeairable<br>intermediates are<br>formed (chloroaceryl<br>chloride and<br>dichlorocarbonyl).                   |
| 16  | Membrane<br>Separation  | VaporSep<br>Victi Simmons<br>Membrane Technology<br>(415) 328 2228                                   | The VaporSep process removes and condenses<br>organic vapors from off.gas produced by<br>innovative remediation technologies such as<br>SVE, thermal desorption, etc. Organics pass<br>through a membrane which is impermeable to<br>air. | Full-scale demonstrations<br>completed successfully.                                                                    | Removals of 90 to 99%<br>have been achieved.<br>Since the volume of<br>recovered solvent<br>condensate is small,<br>ultimate disposal of the<br>same is substantially<br>cheaper. | At vapor concentrations<br>below 1,000 ppm, other<br>conventional<br>technologies may be<br>more cost effective. |
|     | Biotratment/<br>Aerobic | Biofiltration                                                                                        |                                                                                                                                                                                                                                           | Pilot- and full-scale units<br>in operation for<br>numerous applications.                                               | Generally good for high<br>flow rates and low<br>concentrations.                                                                                                                  | Success treating<br>chlorinated VOCs w/<br>conventional aerobic<br>biofilter not established.                    |
|     |                         | Bioacrubber<br>Aluminum Company of<br>America<br>Paul Liu<br>412-826-3711                            | Bioscrubber contains activated carbon medium<br>to support microbial growth.                                                                                                                                                              | SITE Emerging<br>Technology Program in<br>1990. Bench-scale<br>complete, pilot-scale<br>scheduled for November<br>1992. | High efficiency removal<br>of hazardous organics in<br>lab scale tests.                                                                                                           | Effective for BTEX,<br>unproven for<br>chlorinated solvents.                                                     |

. . . .

:

.

.

RDD10012D4C.WP5

11/7/93

|                                       |                                                                                                                    | Table L1-6<br>Primary Screening Informat                                                                                                                                                                                                                                                                                                                                                                                     | lon                                                     |                                                                                                                                                   |                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                       |                                                                                                                    | Offgas Treatment Technolog                                                                                                                                                                                                                                                                                                                                                                                                   | ţe:                                                     |                                                                                                                                                   | Page 2 of 3                                                          |
| Technology                            | Vemder/Cemteri                                                                                                     | Technelegy Description                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Current Status</b>                                   | Perceived Highlights                                                                                                                              | Perceived Londights                                                  |
| Biotreatment/<br>Cometabolic          | Gas Phane Methanotrophic<br>Bioreactor<br>Remediation Technologics<br>(ReTeC)<br>Dr. Hans F. Stroo<br>206-624-9349 | Upflow methanotrophic biofilm reactor for gas<br>streams cometabolizes volatile chlorinated<br>solvents. Three designs: compost biofilter,<br>fluidized bed biofilter, and a stacked/staged<br>activated carbon biofilter.                                                                                                                                                                                                   | Emerging Technology<br>Program (ETP) of SITE.           | Flexible design<br>alternatives.<br>Staged/stacked biofilter<br>also adsorbs VOCs.                                                                | Biofilter susceptible to<br>flooding and rapid<br>biogrowth.         |
|                                       | Earvirogen<br>Bill Guarini<br>609-936-9300                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                                   |                                                                      |
|                                       | Fred Bishop<br>EPA RREL<br>513-569-7629                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                                   |                                                                      |
| Adactption                            | PADRE<br>Purus Inc                                                                                                 | Simultancous destruction of VOCs from vapor<br>extraction wells and a groundwater air stripper.<br>Process involves adsorbing air-phase<br>contaminants on a reain and then desorbing and<br>recovering them as a liquid.                                                                                                                                                                                                    | Trying to locate a site for demonstration.              | Reportedly more cost-<br>effective than vapor-<br>phase GAC.                                                                                      | Condentate stream<br>from reain regeneration<br>must be treated.     |
| Scrubbing                             | Chemtact Gaacous Waste<br>Treatment<br>OUAD Environmental<br>Technologies Corp<br>Robert Rafson<br>708-564-5070    | Atomizing nozzles within scrubber chamber<br>disperse droplets of controlled chemical<br>solution. This is essentially a concentration<br>process.                                                                                                                                                                                                                                                                           | Accepted into SITE<br>demonstration Program<br>in 1989. | Units are mobile. Can<br>be used with air<br>strippers. Is best suited<br>for VOCa.                                                               | Has been demonstrated<br>with BTEX, but not<br>chlorinated solvents. |
| Photolytic Reduction                  | M.L. Energia, Inc                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                                   |                                                                      |
| High Energy<br>Electron Irradiation   | ERACE                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                                   |                                                                      |
|                                       | ZAPPIT                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                                   |                                                                      |
| High Temperature<br>Steam Destruction | Synthetica<br>Terry Galloway<br>510-525-3000                                                                       | A contaminated vapor stream which has been<br>concentrated (such as from the regeneration of<br>a GAC bed) is fed into a detoxification reactor<br>which oxidizes organics in a flameleas heater,<br>forming CO, $CH_4$ , and $H_2O$ (syngas). A<br>catalytic converter oxidizes offgases to $CO_2$ and<br>$H_2O$ . An adsorber bed collects any trace<br>organics and metals, and Selectsorb removes any<br>trace halogens. | Full-scale units are now<br>being constructed.          | Disposal volumes are<br>almost eliminated. Can<br>regenerate GAC beds<br>with offgas from unit.<br>Syngas can be recycled<br>as an energy source. | Solvent wastes are destroyed rather than recovered.                  |

1

ł

•

.

. . . .

ł

5

\*\*\*\*

RDD10012D4C.WP5

11/7/93

|                                               |                | Table L1-6<br>Primary Screening Informat<br>Offgas Treatment Technolog | tion<br>gies          |                      | Page 3 of 3         |
|-----------------------------------------------|----------------|------------------------------------------------------------------------|-----------------------|----------------------|---------------------|
| Technology                                    | Vender/Centect | Technology Description                                                 | <b>Current Status</b> | Perceived Highlights | Perceived Lowilghts |
| Flameless<br>(Catalyzed) Thermal<br>Oxidation | TherMatrix     | Information not yet available.                                         |                       |                      |                     |

. . ...

-----

.

.

•

\* \* \* \*

•

÷ •...

)

11/7/93



. .....

÷.,




·. .....

,

· ····

CHMHILL ·



)

-----



-

| Table L1-7         Retained Technologies After Primary Screening         (Preliminary)                                       |
|------------------------------------------------------------------------------------------------------------------------------|
| In Situ Biological Treatment<br>Cometabolic<br>Anaerobic<br>Anaerobic/Aerobic                                                |
| In Situ Physical/Chemical Treatment<br>Sparging/Soil Vapor Extraction                                                        |
| Ex Situ Biological Groundwater Treatment<br>Cometabolic<br>Anaerobic<br>Anaerobic/Aerobic                                    |
| Ex Situ Physical/Chemical Groundwater Treatment<br>Photolytic Oxidation<br>High Energy Electron Irradiation                  |
| Offgas Treatment<br>Photolytic Oxidation<br>Biotreatment/Cometabolic<br>Resin Adsorption<br>High Energy Electron Irradiation |
| Miscellaneous<br>Natural Attenuation<br>Implementation Methods<br>In Situ Recirculation Unit                                 |

- 1. To contact additional sources of information:
  - DOD/DOE: Savannah River, Hanford
  - Tyndall AFB: Catherine Vogel
  - AFCEE: Colonel Miller

• EPA: Terry Vandall, Terry Lyons

### 2. To reconsider three technologies that were initially screened out:

- Steam Injection/Vapor Extraction (SIVE)
- Metal-Catalyzed Dehalogenation
- Resin Adsorption (Ex Situ Groundwater Treatment)
- 3. To add four technologies that had not been included into the primary round:
  - Dual Phase High Vacuum Extraction (In situ Physical/Chemical)
  - High Temperature Steam Destruction (Ex Situ Physical/Chemical)
  - Flameless Thermal Oxidation (Offgas)
  - Wet Oxidation (Ex Situ Physical/Chemical)

4

1

. . . . . .....

}

# **Secondary Technology Information Review**

This task included addressing the action items from the Murder Board Meeting, as well as preparing for the secondary screening. The first action item was to contact additional sources of information. A list of contacts and subjects discussed is presented in Table L1-8.

The second action item was to add several technologies to the screening process. Dual Phase High Vacuum Extraction was a technology being considered, but the appropriateness of including it in the screening was unclear because it is currently being tested at McClellan AFB by Radian Corporation. McClellan AFB staff assured the group that it is appropriate to include in this study. Further research and contacting of vendors provided information to screen the other three additional technologies. All four of these were subjected to the primary screening process. Dual Phase High Vacuum Extraction and Flameless Thermal Oxidation both scored high enough to be retained, while High Temperature Steam Destruction and Wet Oxidation were eliminated from consideration at the primary level.

The final action item was to reconsider several technologies that did not score well enough to be retained to the secondary round. McClellan AFB staff wanted steam injection/vapor extraction (SI/VE) reconsidered since it scored relatively low in the primary screening, even though this technology is proposed for pilot testing at the Base. It was pointed out that if SI/VE were retained through primary screening, Metal-Catalyzed Dehalogenation and Resin Adsorption (for groundwater treatment) should also be reconsidered, since those technologies scored higher than SI/VE.

Upon reconsideration and further research, SI/VE was retained, but not the other two, into the secondary screening. Metal-Catalyzed Dehalogenation is relatively undeveloped; the developer gave a reserved endorsement of the technology. Consultation with resin manufacturers did not reveal any significant advancements in the development of resins for removing chlorinated solvents from groundwater, so that technology was eliminated from further consideration.

The revised list of retained technologies from primary screening is shown as Table L1-9. Further research (literature review, vendor contracts, consultation with internal and external consultants) was conducted to obtain more detailed information on these retained technologies.

RDD10012D48.WP5

| Table L1-8         Additional Information Sources      |                                                                                         |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| Contact Technologies/Projects Discussed                |                                                                                         |  |  |  |
| Sara Madearis<br>Clean Sites                           | Air sparging<br>Resin adsorption                                                        |  |  |  |
| Terry Lyons<br>EPA                                     | Emerging technologies                                                                   |  |  |  |
| Ron Lewis<br>EPA                                       | Biological, physical/chemical processes                                                 |  |  |  |
| Kim Kreiton<br>EPA                                     | Biological processes                                                                    |  |  |  |
| Franklin Alvarez<br>EPA                                | Savannah River projects                                                                 |  |  |  |
| Catherine Vogel<br>Tyndall AFB                         | Bioremediation                                                                          |  |  |  |
| Kumar Topudurti<br>PRC Environmental<br>Management Inc | Savannah River projects                                                                 |  |  |  |
| Patrick Haas<br>AFCEE                                  | Surfactants, natural attenuation,<br>cometabolic reactors, reductive<br>dehalogenation. |  |  |  |
| Scott Vance<br>Battelle (Hanford)                      | General DOE projects                                                                    |  |  |  |
| Terry Walton<br>Battelle (Hanford)                     | General DOE projects                                                                    |  |  |  |
| Brian Looney<br>Savannah River                         | General DOE work,<br>E-Beam (groundwater)                                               |  |  |  |
| John Haslow<br>Savannah River                          | E-Beam (vapor)                                                                          |  |  |  |
| Jane Bibler<br>Savannah River                          | E-Beam (groundwater)                                                                    |  |  |  |
| Dolloff Bishop, Jr.<br>EPA                             | Biofiltration                                                                           |  |  |  |

.

~

| Table L1-9         Retained Technologies from Primary Screening         (Final) |                                         |  |
|---------------------------------------------------------------------------------|-----------------------------------------|--|
| In Situ Treat                                                                   | ment                                    |  |
| •                                                                               | Anaerobic Biotreatment                  |  |
| •                                                                               | Cometabolic Biotreatment                |  |
| •                                                                               | Anaerobic/Aerobic Biotreatment          |  |
| •                                                                               | Sparging/Soil Vapor Extraction (SVE)    |  |
| •                                                                               | Steam Injection/Vapor Extraction (SIVE) |  |
| •                                                                               | High Vacuum Dual Phase Extraction       |  |
| Ex Situ Groundwater Treatment                                                   |                                         |  |
| •                                                                               | Anaerobic Biotreatment                  |  |
| •                                                                               | Cometabolic Biotreatment                |  |
| •                                                                               | Anaerobic/Aerobic Biotreatment          |  |
| •                                                                               | Photolytic Oxidation                    |  |
| •                                                                               | High Energy Electron Irradiation        |  |
| Offgas Treata                                                                   | pent                                    |  |
| •                                                                               | Cometabolic Biofiltration               |  |
| •                                                                               | Resin Adsorption                        |  |
| •                                                                               | Photolytic Oxidation                    |  |
| •                                                                               | High Energy Electron Irradiation        |  |
| •                                                                               | Flameless Thermal Oxidation             |  |

## **Secondary Screening**

In this round of screening, the number of categories was reduced from five to three:

- In Situ Treatment
- Ex Situ Groundwater Treatment
- Offgas Treatment

All in situ processes were grouped together and all ex situ groundwater processes were grouped together. Technologies were again screened only against the others within a given category. In other words, in situ biological processes were now grouped together with and scored against in situ physical/chemical processes.

The secondary screening criteria and subcriteria are shown in Table L1-10.

For each technology, all subcriteria were assigned a score from 1 to 3, with 1 representing "least favorable" and 3 representing "most favorable." Some semiobjective guidelines were provided to aid scoring:

| Table L1-10<br>Secondary Screening Criteria |  |  |
|---------------------------------------------|--|--|
| Effectiveness                               |  |  |
| Achievable Level of Treatment               |  |  |
| Treatment Consistency                       |  |  |
| Advantages over Standard Technology         |  |  |
| Robustness                                  |  |  |
| Range of Compounds                          |  |  |
| Turnup/Turndown Capability                  |  |  |
| Susceptibility to Upsets                    |  |  |
| Implementability                            |  |  |
| Vendor Availability                         |  |  |
| State of Development                        |  |  |
| Patent Issues                               |  |  |
| Permitting Issues                           |  |  |
| Relative Cost                               |  |  |

For Achievable Level of Treatment:

----

-

- 3 =greater than 90 percent
- 2 = 80 to 90 percent
- 1 = less than 80 percent

For Vendor Availability (including in-house capabilities):

- 3 = many
- 2 = some
- 1 = few

For State of Development:

- 3 =Full-scale
- 2 = Pilot-scale
- 1 = Bench-scale

For Patent Issues:

- 3 = Not applicable
- 2 = Unknown
- 1 = Applicable

For Permitting Issues:

- 3 = Not applicable
- 2 = Unknown
- 1 = Applicable

RDD10012D48.WP5

٠

11/7/93

)

البلغاء الممتالعا مراجاتها والمراج

--

For secondary screening, technology scoring was performed by a panel of six team members. These scores were compiled by criteria and averaged. In order to arrive at the most feasible alternatives for McClellan AFB, a weighting system was used to score the technologies. Effectiveness and implementability were determined to be more important criteria; therefore, they received a weighting factor of 30 percent each. Robustness and relative cost received a 20 percent weighting factor. The scores were comparatively examined, and isolated high and low values were eliminated. Composite average scores were computed and plotted (Figures L1-6 through L1-8).

Based on the secondary scoring results, seven technologies were tecommended to be retained for further development:

In Situ Treatment

- Sparging/Soil Vapor Extraction
- Dual Phase High Vacuum Extraction
- Anaerobic Biotreatment
- Cometabolic Biotreatment

Ex Situ Groundwater Treatment

• High Energy Electron Irradiation

Offgas Treatment

Į

Í

- Resin Adsorption
- Cometabolic Biofiltration

The justification for retaining a disproportionately large number of in situ technologies, compared to ex situ technologies, is that in situ treatment has the potential to provide a greater benefit to the overall Base remediation program. It is possible that in situ technologies will be capable of reducing the mass of contaminants more quickly than pump-and-treat alone, and thereby reduce the overall remedial duration. In contrast, the best that can possibly achieved by ex situ technologies is treatment effectiveness comparable to standard technologies (because proven standard technologies exist that are demonstrated effective), at a lower cost or providing some other benefit such as public perception.

Two possible applications exist for the offgas treatment technologies: treatment of air stripper offgas or treatment of offgas from an in situ soil venting technology.

RDD10012D48.WP5

# **Alternatives Development Update/Consensus Meeting**

----

The secondary screening and scoring process were presented to McClellan AFB staff, regulatory agencies, and other interested parties on August 25, 1993, at the Alternatives Development Update/Consensus Meeting. Comments were solicited and received from the attendees on the screening process and results. Consensus was reached on the seven recommended technologies. Implementation plans will be developed for those technologies.







Appendix L2

.. . .. ..

· · ·

 $\langle \gamma \rangle$ 

### **TECHNICAL MEMORANDUM L2**

| PREPARED FOR: | McClellan Air Force Base                                                                                     |
|---------------|--------------------------------------------------------------------------------------------------------------|
| DATE:         | November 7, 1993                                                                                             |
| SUBJECT:      | In Situ Anaerobic Biotreatment Implementation Plan<br>Groundwater OU RI/FS Report<br>Delivery Order No. 5066 |
| PROJECT:      | SAC28722.66.NT                                                                                               |

#### **Technology Overview**

#### Description

In situ anaerobic biotreatment is an emerging technology for remediating groundwater contaminated with chlorinated VOCs. It uses anaerobic microbial metabolism to transform chlorinated VOCs to less chlorinated or nonchlorinated products. In situ anaerobic biotreatment refers to the process of adding chemical amendments (such as a readily degradable organic substrate, and inorganic nutrients) to the groundwater to stimulate anaerobic biodegradation.

Anaerobic biodegradation of chlorinated organics occurs by reductive dehalogenation, in which chlorine atoms are removed from the contaminant molecule one at a time and replaced with hydrogen. Current evidence indicates that microorganisms can use halogenated organics as the electron acceptor in biological reactions (Semprini, 1993). An organic substrate (for example, benzoate, acetate, formate, and lactate) is normally added to provide a readily available source of carbon and energy. The organic substrate donates electrons to drive the transformation reaction. Nitrogen and phosphorus are essential nutrients that can also be added to the groundwater, if needed.

Chlorinated aliphatic hydrocarbons (CAHs) are the principal organic contaminants in groundwater at McClellan AFB. Four of the groundwater CAH contaminants are common industrial solvents: trichloroethene (TCE), tetrachloroethene (PCE), carbon tetrachloride (CT), and 1,1,1-trichlorethane (1,1,1-TCA). All four of these contaminants are amenable to anaerobic biodegradation. Other important CAHs found in groundwater at the Base include 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), chloroform (CF), cis- or trans-1,2-dichloroethene (1,2-DCE), methylene chloride (MC), and vinyl chloride (VC). These compounds either may have been used at McClellan AFB for some purpose or may have appeared in groundwater as a result of anaerobic biodegradation of parent CAH solvents. According to McCarty, 1993, some anaerobic transformation products are:

CHANHILL

| Parent Compound | Transformation Products          |  |  |
|-----------------|----------------------------------|--|--|
| СТ              | CF, MC                           |  |  |
| 1,1,1-TCA       | 1,1 <b>-DCA</b>                  |  |  |
| TCE             | 1,2-DCE, VC, ethene, ethane      |  |  |
| PCE             | TCE, 1,2-DCE, VC, ethene, ethane |  |  |
|                 |                                  |  |  |

In addition to these intermediate transformation products, end-products of anaerobic treatment include methane, carbon dioxide, and inorganic compounds. Under the best conditions, reductive dehalogenation would be complete, and the remaining non-chlorinated compounds, which have significantly reduced associated health risks, would slowly degrade aerobically when ambient conditions are reestablished at the conclusion of anaerobic treatment system operation. Many of the transformation products are also amenable to aerobic treatment. For example, vinyl chloride transforms rapidly in aerobic conditions.

### **Implementation Methods**

There are four basic configurations for implementing in situ anaerobic biotreatment:

- In situ recirculation wells
- Vertical injection and extraction wells
- Horizontal injection and extraction wells
- Reactive walls

These four alternatives are depicted schematically in Figure L2-1, and are described below. Additional configurations are possible, including combinations of the systems described.

An in situ recirculation well consists of a vertical well that has two separate screened intervals in the saturated zone and a seal in the well above the upper screen. A submersible pump is positioned between the screens to force water out the bottom screen while drawing water in through the top screen (or vice versa). Pumping groundwater in this fashion results in flow paths like those depicted in Figure L2-1. Chemical amendments are added to the groundwater within the well.

A combination of vertical injection and extraction wells is the traditional system used for in situ groundwater bioremediation. Substrate and nutrients are injected and pumped through the contaminated groundwater zone between injection and extraction wells to create a biologically active zone where treatment occurs. Horizontal injection and extraction wells function similarly to vertical wells except that the wells are oriented horizontally in the contaminated zone and therefore can influence a larger lateral area.

Reactive walls are either trenches or a linear array of wells designed to create a curtain through which groundwater passes under ambient gradients and in which the desired biological reactions occur.

RDD10012E23.WP5





. . . .

The four basic implementation alternatives have different applicabilities and advantages and disadvantages with respect to site and contaminant distribution conditions. Because of the great depth to groundwater at McClellan AFB, vertical wells and in situ recirculation units are probably the two most feasible implementation alternatives for in situ anaerobic biotreatment at the Base.

### **Development Status**

Extensive bench-scale research on anaerobic biotreatment of contaminated groundwater has been conducted at universities and by vendors. Effective anaerobic treatment of CAHs is well documented.

One full-scale application of in situ anaerobic biotreatment of CAH-contaminated groundwater has been performed at DuPont's Victoria, Texas, site. Complete dehalogenation of PCE to ethene was demonstrated. Because of these promising results, DuPont is actively looking for other sites at which to implement this technology.

Field pilot testing of in situ anaerobic biotreatment of CAHs in groundwater is reportedly planned for next year at the Moffett Naval Air Station site by Stanford University researchers.

# **Potential Benefits**

This section describes the performance, advantages and disadvantages, and cost benefits associated with in situ anaerobic biotreatment. This information is intended to provide a basis for evaluating the potential benefits of implementing the technology as part of the overall McClellan AFB groundwater cleanup program.

# **General Performance**

#### Effectiveness

- The ability of aquifer microorganisms to effectively biodegrade under anaerobic conditions is well demonstrated.
- CAHs can be completely biodegraded to nonchlorinated end products.
- In situ biotreatment effectively degraded PCE to ethene at a full-scale groundwater remediation project in Victoria, Texas.

#### Robustness

• Anaerobic biotreatment is effective, to some degree, at degrading all of the CAHs present in McClellan AFB groundwater.

RDD10012E23.WP5

- Relatively minor contaminants in Base groundwater, such as benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and ketones, may be degraded more slowly under anaerobic conditions than aerobic conditions.
- In situ anaerobic biotreatment is subject to inhibitory effects.
- As with all in situ technologies, control over subsurface conditions is critical to treatment performance, as heterogeneities and mass transfer requirements limit effectiveness.

### **Potential Risk Reduction**

In situ anaerobic treatment has the potential to reduce risk by biodegrading groundwater contaminants and thereby reducing the contaminant mass in the subsurface. By accelerating contaminant removal, the time to achieve remedial goals may be shortened. Injection of chemicals into groundwater and formation of intermediate transformation products could constitute new, albeit temporary, sources of risk, but adequate hydrologic control would be maintained to mitigate these risks during system operation.

# **Advantages Compared to Other Technologies**

- Destruction of contaminants occurs in-place. Because treatment occurs in situ, contaminant desorption is accelerated.
- High concentrations of contaminants (tens of mg/l) can be treated.
- This technology may be effective at treating contaminant mixtures.
- This technology is capable of treating highly halogenated solvents such as PCE, CT, and freons, which are not degradable under anaerobic conditions.
- In general, as more highly halogenated contaminants are biodegraded, the transformation products become more mobile, which may enhance their removal via groundwater pumping.
- If groundwater extracted in conjunction with implementation of in situ anaerobic biotreatment could be reinjected without aboveground treatment (e.g., during implementation using vertical injection and extraction wells), the cost of this technology would be significantly reduced relative to other technologies requiring aboveground treatment. EPA has prepared a position statement allowing for reinjection of contaminated water when appropriate for such a treatment scheme.
- The difficulty and expense of supplying oxygen to groundwater, as required for in situ aerobic biotreatment, is avoided with anaerobic treatment.

- Anaerobes are slow growing, so biofouling problems should be minimal.
- Complete biodegradation of CAHs to nontoxic end products is possible with this technology. Even if dechlorination is incomplete, transformation byproducts are more amenable to aerobic treatment (following operation of the in situ anaerobic biotreatment system) than the parent compounds.

# **Disadvantages Compared to Other Technologies**

- If adequate populations of anaerobic bacteria capable of degrading CAHs are not present, bioaugmentation may be necessary, though added microbes may not thrive in the subsurface environment. However, contaminant data indicate that anaerobic biodegradation of CAHs is already occurring at certain locations in McClellan AFB groundwater, indicating the presence of the necessary microorganisms.
- If electron acceptors such as oxygen, nitrate, sulfate, or ferric iron are present in Base groundwater, they must first be depleted before reductive dehalogenation of target contaminants will occur. This is achieved by adding sufficient organic substrate to allow biological utilization of those electron acceptors.
- Vinyl chloride is a toxic transformation product of anaerobic biodegradation of PCE, TCE, and DCE. It has a higher risk factor than the parent compounds and can be difficult to treat by some aboveground treatment processes.
- If required, aboveground water treatment will significantly increase the cost of the technology and will have permitting requirements.
- Reinjection of groundwater (with or without treatment) and injection of chemical amendments will require regulatory approval.
- Water quality problems, such as reduced iron and manganese, methane, fermentation products, and sulfide can result from anaerobic conditions.

# **Relative Cost Benefit**

The cost benefits of in situ anaerobic biotreatment would result from increased rates of contaminant removal that could shorten the pump-and-treat remediation time. Cost benefits should be evaluated through an analysis of savings associated with the reduced operation time of pump-and-treat after accounting for the capital and operating costs of the in situ anaerobic biotreatment system.

RDD10012E23.WP5

### **Potential Locations**

In situ anaerobic biotreatment is potentially applicable at many locations on the Base where groundwater is contaminated with halogenated solvents. Implementation of the technology in hot spot areas is likely to provide the most benefit to the groundwater cleanup program. Moderate to high permeability areas and relatively homogeneous conditions in the saturated zone are most favorable for effective treatment.

Hot spot locations in OUs C and D are potentially most suitable because of the generally higher subsurface permeabilities in those areas. OU D is an especially likely location because contaminant data indicate that anaerobic treatment is occurring naturally around some OU D wells.

The contaminants in OUs A and B are also amenable to anaerobic biodegradation, but those sites are potentially less favorable because of generally lower permeabilities.

# Approach

### **Information Needs and Sources**

Table L2-1 lists information requirements and the sources for implementation of in situ anaerobic biotreatment.

#### Information Gathering and Review

Information gathering to date has included the review of published and available unpublished technology information, vendor interviews, consultation with subcontracted experts, and an overview of McClellan AFB subsurface characteristics and groundwater contaminant data. Expert consultants for this technology are Dr. Lewis Semprini of the Department of Civil Engineering, Oregon State University, and Dr. Perry McCarty of the Department of Civil Engineering, Stanford University. Drs. McCarty and Semprini are considered to be leading experts on in situ biological treatment processes.

The first step for implementation of this technology should be a detailed review of the existing literature on anaerobic biotreatment of CAHs, paying particular attention to field data, and of the groundwater contaminant data for the Base. New information should be reviewed as it becomes available.

| Table L2-1         In Situ Anacrobic Biotreatment         Information Needs and Sources                                                          |       |             |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------|--|
|                                                                                                                                                  |       | Info Source |       |  |
| Information Needs<br>for Pilot and Full-Scale Tests                                                                                              | Bench | Pilot       | Full  |  |
| Contaminant Characterization                                                                                                                     |       |             |       |  |
| Contaminant Types                                                                                                                                | S     | S           | S     |  |
| Concentrations                                                                                                                                   | S     | S           | S     |  |
| Treatment Goals                                                                                                                                  | L     | L           | L     |  |
| <ul> <li>Inhibitory/Toxicity Factors</li> </ul>                                                                                                  |       | B,L         | P,L   |  |
| Contaminant Geometry                                                                                                                             | S     | S,L         | S,L   |  |
| Subsurface Characterization                                                                                                                      |       |             |       |  |
| Environmental Factors (pH. temp)                                                                                                                 | s     | s           | P.S   |  |
| Water/soil chemistry parameters                                                                                                                  | S     | B.S         | P.S   |  |
| • Flow                                                                                                                                           | L     | M           | M     |  |
| • Static Water Levels over time                                                                                                                  | -     | S.L         | S.L   |  |
| Soil Type                                                                                                                                        | s     | S.L         | S.L   |  |
| Soil Heterogeneity                                                                                                                               | s     | S.L         | S.L   |  |
| Sorotion/Retardation                                                                                                                             | м     | M           | M     |  |
| Microorganisms present                                                                                                                           | S     | B.S         | P.S   |  |
| Electron Acceptors                                                                                                                               | S     | B,S         | P,S   |  |
| System Design: Physical Configuration                                                                                                            | 1     | <u> </u>    |       |  |
| <ul> <li>Number of wells, type</li> </ul>                                                                                                        | -     | B,L,M       | P,L,M |  |
| Well spacing                                                                                                                                     |       | B,L,M       | P,L,M |  |
| Residence Time (zone)                                                                                                                            | L     | B,L,M       | P,L,M |  |
| Well Diameter                                                                                                                                    |       | B,L         | P,L   |  |
| • Screen depth, length                                                                                                                           |       | Ĺ           | P,L   |  |
| Patent Requirements                                                                                                                              | -     | Í V         | v     |  |
| System Design: Treatment Requirements                                                                                                            | 1     |             |       |  |
| Nutrient Additions                                                                                                                               | L     | B.L         | P,L   |  |
| Inducer Addition                                                                                                                                 | L     | B.L         | P,L   |  |
| Microorganism Addition                                                                                                                           | L     | B,L         | P,L   |  |
| Permitting Requirements                                                                                                                          | -     | Ĺ           | Ĺ     |  |
| System Design: Equipment Requirements                                                                                                            |       |             |       |  |
| <ul> <li>Equipment Requirements</li> </ul>                                                                                                       |       | L,V         | P,V   |  |
| O & M Requirements                                                                                                                               | L     | L,V         | P,V   |  |
| Performance Capabilities                                                                                                                         |       | ľ           |       |  |
| <ul> <li>Monitoring (Sampling and Analysis Requirements)</li> </ul>                                                                              | L     | L           | L     |  |
| Byproduct formation                                                                                                                              | S     | B,L,S       | P,L,S |  |
| Notes:B = Beach ScaleL = Literature/ExpertsB = Beach ScaleP = Pilot ScaleS = Sampling ResultsV = VendorM = Modeling/Other Technology Evaluations |       |             |       |  |

CVOR365/044.WP5

.

and a second second second second second second second second second second second second second second second

•

A detailed analysis of chemical distribution in three dimensions is needed to identify target volumes for treatment. After the existing chemical data have been thoroughly reviewed and analyzed and potential target areas have been roughly identified, it is likely that some additional site characterization data will be needed to fine-tune the selection of target zones, evaluate chemical amendment requirements, and collect samples of aquifer material for bench-scale testing. Samples for analysis and testing could be collected through the use of boreholes or cone penetrometers. Analytical parameters should include organic contaminants, possible anaerobic transformation products (ethenes, ethane, methane), potential electron acceptors (DO, nitrate, sulfate, ferric iron), and water quality parameters (Eh, pH, metals, COD, and/or TOC).

### **Implementation Issues**

- Potential permitting/regulatory approval issues associated with in situ anaerobic biotreatment include:
  - Reinjection or discharge of extracted groundwater
  - The need for aboveground treatment of extracted groundwater if it is to be reinjected within a contained plume
  - Treatment requirements for groundwater and offgas if aboveground treatment of extracted groundwater is required
  - Injection of organic substrates and nutrients into groundwater
  - Formation of transformation products, particularly vinyl chloride
- Potential patent issues include the patent held by DuPont on the in situ anaerobic treatment process and the patent held by IEG Technologies, Inc., on the in situ recirculation unit. The applicability of these patents is currently unclear and would need to be resolved by patent attorneys.
- Other issues that could affect implementation are associated with newly generated site characterization data that may influence technology effectiveness or cost (and therefore feasibility) at target areas, including permeability, heterogeneity, contaminant distribution, and anaerobic biological activity information.

### **Bench-Scale Testing**

#### **Objectives**

Bench-scale testing would consist of microcosm studies using aquifer material collected from target zones. The microcosm studies will help determine:

• Whether the desired anaerobes are present in the subsurface

RDD10012E23.WP5

- Whether they can be stimulated through the addition of an appropriate growth substrate
- Whether they can degrade the target contaminants and, if so, what transformation products are formed
- The concentration range over which effective transformation can be achieved
- The optimal organic substrate (the literature suggests that benzoate, methanol, and formate are some of the best substrates to drive anaerobic transformations)
- The benefit of adding an electron acceptor such as sulfate
- Whether high concentrations of electron donors should be added initially, or lower concentrations pulse-fed

### Approach

Į

Different types of microcosms might be employed, including batch reactors, batch-fed soil columns, and continuous-flow soil columns. Anaerobic bacteria have slow growth rates so several months may be required to achieve effective transformation, particularly if the necessary microbes are absent or present in low numbers. If core samples are taken from an active anaerobic zone, the anaerobic population should begin treatment more quickly. Bench-scale testing is likely to require 6 months to compare.

If indigenous anaerobic microorganisms are not present or are not capable of transforming the contaminants of concern, it may be possible to introduce anaerobes to the subsurface. In this event, microcosm studies could be used to determine if the introduced strain would survive and flourish under field conditions.

#### **Pilot-Scale Testing**

#### **Objectives**

Pilot-scale tests would be necessary to develop information for designing and operating a full-scale treatment system. Data would be obtained on the effectiveness of treatment, areal extent of treatment, and optimal methods of chemical addition. A probable duration for pilot testing is 6 months to 1 year.

Pilot-scale testing objectives include the evaluation of:

• Proper well spacing and number of wells required for full-scale implementation

RDD10012E23.WP5

- Required organic substrate and nutrient addition rates, and optimal pattern of delivery
- Characteristics of extracted groundwater
- Transformation product formation and disappearance rates
- Contaminant reduction rates and estimated treatment duration
- Estimated contaminant mass reductions achievable during treatment
- Estimated full-scale capital and operating costs
- Cost benefits associated with implementing the technology

### Approach

Pilot-scale testing would involve the installation of one or two injection wells and two to four extraction wells, and operation of the system for a sufficiently long duration to obtain data needed to develop design and operating parameters for full-scale implementation. (For the purpose of this Implementation Plan, the use of vertical injection and extraction wells is assumed for pilot testing, but in situ recirculation units should also be considered.) The specific objectives and approach of the pilot testing program would be refined and detailed following the information gathering and review and bench-scale testing tasks. The general approach to pilot testing is outlined below.

- 1. Confirm appropriateness of target location selected for pilot testing.
- 2. Conduct modeling to support pilot system design. This work would include hydrodynamic modeling, advective transport modeling, and possibly, modeling of mass transfer and biological processes.
- 3. Prepare system installation and operation work plan.
- 4. Install injection, extraction, and groundwater monitoring wells. Set up aboveground nutrient delivery system.
- 5. Operate the system at different rates and patterns of substrate/nutrient delivery, holding each amendment condition constant for sufficient time to evaluate treatment performance (determined by groundwater sampling and analysis).
- 6. Analyze data to evaluate the performance under different testing conditions and evaluate potential benefits of in situ anaerobic biotreatment to the overall Base groundwater remediation program.
- 7. Decide whether to proceed with implementation at full scale.

RDD10012E23.WP5

# Full-Scale Implementation

Pilot-scale results are necessary to develop a full-scale system design. However, an example conceptual design is outlined below to illustrate the major elements of a full-scale system and to provide a basis for a rough order-of-magnitude cost estimate. Rather than developing a conceptual design for a particular location, a modular approach was used to develop an estimated range of costs per unit acre for full-scale implementation.

The example conceptual design is based on the following key assumptions:

- Each module consists of nine injection and nine extraction wells, a piping system from the extraction wells to a groundwater treatment unit, a substrate feed system, and piping from the substrate feed system to the injection well (Figure L2-2).
- The spacing of wells varies from 30 to 60 feet based on initial modeling estimates.
- Approximate coverage by one module ranges from 8,100 ft<sup>2</sup> (5.4 modules/acre) to 32,400 ft<sup>2</sup> (1.3 modules/acre), depending on well spacing.
- Groundwater extraction and injection rate is 3 gpm per well.
- There will be one groundwater monitoring well per every 10 extraction/ injection wells.
- Electron donor is sodium benzoate applied at a rate of 10 grams per gram of contaminants. Sulfate addition would be added at the same mass ratio. Nutrient addition in the form of diammonium phosphate would occur at a ratio of 1 gram per gram of contaminants.
- The extracted groundwater is treated to MCLs at a single treatment system at the target location. This system consists of air stripping with vapor-phase GAC adsorption. Most (≥90 percent) of the treated groundwater is chemically amended and reinjected, and a small blowdown stream (≤10 percent) is discharged to maintain a net groundwater withdrawal (for containment).

RDD10012E23.WP5



)

• A single chemical feed system-including chemical storage, mixing, and feed tanks, mixers, pumps, and controls-services the entire in situ treatment system (Figure L2-3).

# **Technology Limitations and Uncertainties**

The critical limitations and uncertainties of technology implementation are listed below.

- The suitability of hot spot areas at the Base for application of in situ anaerobic biotreatment will depend on subsurface characteristics such as soil permeabilities, heterogeneities, and contaminant distribution.
- It is unknown whether aboveground treatment of extracted groundwater will be required prior to reinjection. If so, it will significantly increase cost and permitting requirements.
- Other potential permitting issues are associated with reinjection of groundwater and injection of chemical amendments. Patent issues that must be resolved are associated with the use of the in situ anaerobic biotreatment process and the use of in situ recirculation units.
- Achievable contaminant treatment rates are unknown and must be determined through testing.
- The formation of toxic transformation products such as vinyl chloride could affect the risk associated with Base groundwater.
- The presence of natural anaerobic biological activity is only indicated at a few Base locations, based on existing groundwater contaminant data. The necessary microorganisms may or may not be present at potential target areas for implementation of the technology. The success of bioaugmentation is uncertain.

# Schedule

A possible implementation schedule is provided in Figure L2-4.



. ŧ

1=1.0

Ì)



#### Cost

This section presents an estimated range for order-of magnitude implementation costs based on the conceptual design. Implementation costs include costs associated with ongoing literature review, further site characterization, bench-scale testing, pilot-scale testing, and full-scale capital and annual operations and maintenance. The scope of each of these cost-related activities is summarized below:

- Literature Review. Technology researchers (i.e., universities, industry, consultants) are likely to further develop the technology such that enhancements (optimization) and limitations will be better understood. The decision to proceed with further implementation of in situ anaerobic biotreatment requires ongoing assessment and review of these research results. While this activity is not a significant cost factor of implementation, it is an important implementation activity.
- Further Site Characterization. This activity is necessary to confirm the location of a proposed implementation site and to provide the necessary soil cores for bench-scale microcosm studies. Associated costs are related to fieldwork (streamlined SAP, QAPP, sampling labor and expenses, analytical expenses, report, etc.) designed to identify site subsurface characteristics and collect and analyze samples for bench-scale testing.
- **Bench-Scale Testing.** This activity includes scope and workplan development, contract procurement, and the cost of conducting and overseeing soil microcosm studies.
- **Pilot-Scale Testing.** This activity includes costs associated with scope and workplan development, contract procurement, equipment procurement, system installation, system operation, demobilization, sampling and analysis (system monitoring), evaluation of system performance, and reporting.
- **Full-Scale Capital.** Capital costs are direct and indirect costs required to initiate and install the technology system components, including (but not limited to) engineering design, mobilization and demobilization of equipment and people, site construction activities (i.e., well installation), contractor bonding and insurance, equipment procurement and installation, licensing and permitting, health and safety, and supervision during construction.
- Full-Scale Operation and Maintenance. Operation and maintenance (O&M) costs represent those costs which would be incurred during each year of operation from initial startup to final shutdown of the full-scale system. O&M costs include operations and maintenance labor, sampling and analysis, power, and (optionally) groundwater treatment prior to reinjection. Since annual O&M costs occur over a period of

years, future costs have been discounted to the present year's equivalent value (i.e., the present value cost) using 5 percent interest, so that annual costs remain comparable. Actual annual costs are likely to be much higher during the first year(s) of operation as the system is commissioned and optimized for operation, and due to higher chemical usage rates and associated labor required for treating higher initial concentrations. Therefore, the annual costs are intended to represent the anticipated average yearly cost of operation over the life of the system.

A contingency of 30 percent has been applied to the full-scale implementation cost to account for possible project cost increases due to scope and bid variations that typically occur with hazardous waste remediation projects. These increases are typically caused by the changes which normally occur as part of final design and implementation, based on observation of actual field conditions/contamination, and factors which affect the cost of subcontracted services, such as labor and material shortages. Not included in the estimates are any agency or Air Force administrative costs, nor any costs associated with modifications of the existing groundwater treatment system(s).

Typically, order-of-magnitude cost estimates for general construction projects are intended to reflect an accuracy of within 50 percent greater to 30 percent less than actual costs. The estimates summarized below are expected to be within these ranges; however, there is greater uncertainty of accuracy as a result of the lesser degree of development associated with this innovative technology compared to general construction technologies. Current pricing data based on quoted equipment costs, construction cost data (e.g., Means, 1993), previous local project experience, and engineering judgment have been used to generate the estimates, using adjustments for local McClellan AFB costs when available. Final project costs will depend on actual labor and material costs, actual site conditions at the time of implementation, productivity, competitive market conditions, final project scope and schedule, contractors selected to perform activities, and many other variables. As a result, the final project costs will differ from the exact value of any estimates presented here, but should still remain within the estimated range.

The following order-of-magnitude implementation costs are estimated for in situ anaerobic biotreatment:

- Literature review will require approximately \$14,000 over a period of two years.
- It is estimated that further site characterization could be completed for approximately \$50,000.
- It is estimated that bench-scale testing could be completed for approximately \$68,000.
- Pilot-scale testing is estimated to cost approximately \$345,000.

RDD10012E23.WP5

Full-scale implementation costs on a per acre basis are summarized in Table L2-2. The estimated costs for construction and operation of a full-scale system range from approximately \$1.2 M/acre (for 60 feet well spacing, 2 years operation, and no groundwater treatment prior to reinjection) to \$7.5 M/acre (for 30 feet well spacing, 5 years operation, and groundwater treatment prior to reinjection). The added cost of groundwater treatment prior to reinjection is estimated to be approximately \$100,000/acre. Key assumptions associated with the implementation cost estimate, in addition to those previously described, include:

| Table L2-2         In Situ Anaerobic Biotreatment         Order-of-Magnitude Implementation Cost Summary |                  |                                    |                                     |                   |
|----------------------------------------------------------------------------------------------------------|------------------|------------------------------------|-------------------------------------|-------------------|
| Range of Costs (\$/acre)                                                                                 |                  |                                    |                                     |                   |
| Activity                                                                                                 | Low <sup>1</sup> | Low -<br>Intermediate <sup>2</sup> | Intermediate<br>- High <sup>3</sup> | High <sup>4</sup> |
| Full-Scale Capital                                                                                       | 900,000          | 900,000                            | 3,900,000                           | 3,900,000         |
| Full-Scale O&M<br>(Present Worth for All<br>Years)                                                       | 300,000          | 400,000                            | 1,600,000                           | 3,700,000         |
| Full-Scale Implementation<br>Cost                                                                        | 1,200,000        | 1,300,000                          | 5,500,000                           | 7,600,000         |

#### Notes:

<sup>1</sup>Based on 60 feet well spacing, 2 years of operation, and no groundwater treatment prior to reinjection. <sup>2</sup>Based on 60 feet well spacing, 2 years of operation, and groundwater treatment prior to reinjection. <sup>3</sup>Based on 30 feet well spacing, 2 years of operation, and groundwater treatment prior to reinjection. <sup>4</sup>Based on 30 feet well spacing, 5 years of operation, and groundwater treatment prior to reinjection. Other significant assumptions include: 100 percent system on-time; annual sampling and analysis costs, and performance evaluations included in operational cost; 30 percent contingency factor applied.

- Full-scale costs are reported on a per-acre basis. Costs were estimated for a five-module (45 extraction well) system and converted to per-acre costs.
- Nine man-days/well plus drilling costs are needed to install wells. This includes drilling, well completion and development, and surface plumbing.
- Groundwater treatment unit operational costs are \$200/lb VOCs, and approximately 600 lb of contaminants will require aboveground removal per year.
- Average groundwater concentration is 5 mg/l total chlorinated VOCs.
- System monitoring includes 240 man-days/year for system operation and maintenance, and the collection of nine samples per module.

• The substrate feed system is constructed inside a corrugated metal roofcovered building.

# Works Cited

Semprini, Lewis. Oregon State University, Memo to CH2M HILL, September 24, 1993.

Semprini, Lewis. Oregon State University, Memo to CH2M HILL, August 13, 1993.

McCarty, Perry. Stanford University, Memo to CH2M HILL, August 15, 1993.

----

----

ļ
Appendix L3

.....

....

۱

#### TECHNICAL MEMORANDUM L3

| PREPARED FOR: | McClellan Air Force Base                                                                                       |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------|--|--|
| DATE:         | March 24, 1994                                                                                                 |  |  |
| SUBJECT:      | In Situ Cometabolic Biotreatment Implementation Plan<br>Groundwater OU RI/FS Report<br>Delivery Order No. 5066 |  |  |
| PROJECT:      | SAC28722.66.NT                                                                                                 |  |  |

#### **Technology Overview**

### Description

In situ (aerobic) cometabolic biotreatment is an emerging technology for remediating groundwater contaminated with chlorinated aliphatic hydrocarbons (CAHs). In situ cometabolic biotreatment refers to the process of adding a primary organic substrate to groundwater to induce production of nonspecific enzymes by a certain group of microorganisms under aerobic conditions. These enzymes fortuitously degrade CAHs, which are otherwise resistant to aerobic biodegradation. For purposes of this report, the term cometabolic biotreatment is used to describe only aerobic cometabolism, so oxygen is added along with the primary organic substrate. The most promising substrates are methane, phenol, and toluene. Inorganic nutrients (primarily nitrogen and phosphorus) may also be added to the groundwater if needed.

CAHs are the principal organic contaminants in groundwater at McClellan AFB. The CAHs of interest at the Base include: trichloroethene (TCE), tetrachloroethene (PCE), carbon tetrachloride (CT), 1,1,1-trichloroethane (1,1,1-TCA), cis- and trans-1,2-dichloroethene (1,2-DCE), vinyl chloride (VC), 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), chloroform (CF), and methylene chloride (MC). TCE, 1,2-DCE, and VC can be effectively treated by aerobic cometabolism; 1,1-DCE, 1,1,1-TCA and 1,1-DCA are not effectively treated by this method; and PCE and CT are recalcitrant. In this process, TCE and other chlorinated organics can be completely oxidized to carbon dioxide, water, and inorganic salts.

### **Implementation Methods**

There are four basic configurations for implementing in situ cometabolic biotreatment:

RDD10012E24.WP5

3/24/94

- In situ recirculation wells
- Vertical injection and extraction wells
- Horizontal injection and extraction wells
- Reactive walls

These four alternatives are depicted schematically in Figure L3-1, and are described below. Additional configurations are possible, including combinations of the systems described.

An in situ recirculation well consists of a vertical well that has two separate screened intervals in the saturated zone and a seal in the well above the upper screen. A submersible pump is positioned between the screens to force water out the bottom screen while drawing water in through the top screen (or vice versa). Pumping groundwater in this fashion results in flow paths like those depicted in Figure L3-1. Chemical amendments are added to the groundwater within the well.

A combination of vertical injection and extraction wells is the traditional system used for in-situ groundwater bioremediation. Substrate and nutrients are injected and pumped through the contaminated groundwater zone between injection and extraction wells to create a biologically active zone where treatment occurs. Horizontal injection and extraction wells function similarly to vertical wells except that the wells are oriented horizontally in the contaminated zone and, therefore, can influence a larger lateral area.

Reactive walls are either trenches or a linear array of wells designed to create a curtain through which groundwater passes under ambient gradients and in which the desired biological reactions occur.

The four basic implementation alternatives have different applicabilities and advantages and disadvantages with respect to site and contaminant distribution conditions. Because of the great depth to groundwater at McClellan AFB, vertical wells and in situ recirculation units are probably the two most feasible implementation alternatives for in situ cometabolic biotreatment at the Base.

## **Development Status**

The capability of cometabolic biotreatment to degrade CAHs in aquifer material has been well established in bench-scale studies. Considerable laboratory work on this technology has been conducted by university researchers and vendors over the past several years.

Stanford University researchers have conducted a multi-year, small-scale, field pilot study of in situ cometabolic biodegradation of CAHs in a shallow water table aquifer at Moffett Maval Air Station. These studies have yielded very favorable results, but they were conducted using simple combinations of (approximately four) contaminants at a time.



-----

.



The technology has been developed to the point where it is ready to be implemented in an appropriate full-scale application, but has not yet been applied for full-scale groundwater remediation to-date.

## **Potential Benefits**

This section describes the performance, advantages and disadvantages, and cost benefits associated with in situ cometabolic biotreatment. This information is intended to provide a basis for evaluating the potential benefits of implementing the technology as part of the overall McClellan AFB groundwater cleanup program.

### **General Performance**

### Effectiveness

- Field pilot testing has demonstrated that removal efficiencies on the order of 90 percent can be achieved for TCE, 1,2-DCE, and VC for initial concentrations up to 1,000  $\mu$ g/l.
- CAHs that are amenable to cometabolic treatment can be completely mineralized to CO<sub>2</sub>, water, and chloride.

### Robustness

- TCE, 1,2-DCE, VC, and possibly other prevalent CAHs are treatable by cometabolic biotreatment.
- Cometabolic biotreatment is not effective for CT, PCE, 1,1-DCE, 1,1-DCA, 1,1,1-TCA, or Freons.
- The technology is sensitive to toxic and inhibitory effects.
- High TCE concentrations (up to 10 mg/l) are not expected to be inhibitory.
- BTEX compounds, acetones, and other relatively minor nonhalogenated contaminants in Base groundwater are readily biodegradable under aerobic conditions.
- As with all in situ technologies, control over subsurface conditions is critical to treatment performance, as heterogeneities and mass transfer requirements limit effectiveness.

# **Potential Risk Reduction**

In situ cometabolic biotreatment has the potential to reduce risk by biodegrading groundwater contaminants and thereby reducing the contaminant mass in the subsurface. By accelerating contaminant removal, the time to achieve remedial goals may be shortened. Injection of chemicals into groundwater and formation of intermediate transformation products could constitute new, albeit temporary, sources of risk, but adequate hydrologic control would be maintained to mitigate these risks during system operation.

# **Advantages Compared to Other Technologies**

- Destruction of contaminants occurs in-place. Because treatment occurs in situ, contaminant desorption is accelerated.
- May treat high concentrations of amenable CAHs (tens of mg/l).
- Aerobic conditions are maintained, promoting better water quality (compared to naturally occurring or induced anaerobic conditions).
- The fast growth rates typical of aerobic microorganisms may allow rapid development of a contaminant-degrading culture.
- This technology is effective at degrading some anaerobic transformation products of PCE and TCE. The transformation products, which the cometabolic process would be effective on, are: cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride.
- At least simple contaminant mixtures are treatable using this technology.
- Complete degradation of TCE to nontoxic end products is possible.
- No significant transformation products are formed during treatment of CAHs that have higher associated risks than the parent compounds (e.g., VC).
- If groundwater extracted in conjunction with implementation of in situ cometabolic biotreatment could be reinjected without aboveground treatment (e.g., during implementation using vertical injection and extraction wells), the cost of this technology would be significantly reduced relative to other technologies requiring aboveground treatment. EPA has prepared a position statement allowing for reinjection of contaminated water when appropriate for such a treatment scheme.

# **Disadvantages Compared to Other Technologies**

- Does not effectively degrade PCE, CT, 1,1-DCE, 1,1-DCA, 1,1,1-TCA, or Freons.
- Competitive inhibition occurs between the added organic substrate and some target CAHs.
- Because microorganisms are fast growing, it may be difficult to achieve distributed growth in subsurface. Biofouling is also a potential problem.
- This technology requires oxygenation of groundwater, which is expensive and can be difficult to achieve over extended volumes.
- Groundwater oxygenation can cause iron precipitation and plugging.
- If adequate populations of bacteria capable of producing CAH-degrading enzymes are not present, bioaugmentation may be necessary, but added microbes may not thrive in the subsurface environment. However, these microorganisms have been found to be fairly widespread in the environment.
- If required, aboveground water treatment will significantly increase the cost of the technology and will have permitting requirements.
- Reinjection of groundwater (with or without treatment) and injection of chemical amendments will require regulatory approval.

## **Relative Cost Benefit**

The cost benefits of in situ cometabolic biotreatment would result from increased rates of contaminant removal that could shorten the pump-and-treat remediation time. Cost benefits should be evaluated through an analysis of savings associated with the reduced operation time of pump-and-treat after accounting for the capital and operating costs of the in situ anaerobic biotreatment system.

## **Potential Locations**

Cometabolic biotreatment is potentially applicable at locations on the Base where TCE, 1,2-DCE, and/or VC are the predominant groundwater contaminants. Implementation of the technology in hot spot areas is likely to provide the greatest benefit to the overall groundwater cleanup program. Moderate to high permeabilities and relatively homogeneous conditions in the saturated zone are most favorable for effective treatment.

(

Hot spot locations in OU C are potentially most suitable because of the relatively high permeabilities found in that area and because TCE is the predominant CAH present.

## Approach

#### **Information Needs and Sources**

Table L3-1 lists information requirements and sources for implementation of in situ cometabolic biotreatment.

## **Information Gathering and Review**

Information gathering to date has included the review of published and available unpublished technology information, vendor interviews, consultation with subcontracted experts, and an overview of McClellan AFB subsurface characteristics and groundwater contaminant data. Expert consultants for this technology are Dr. Lewis Semprini of the Department of Civil Engineering, Oregon State University, and Dr. Perry McCarty of the Department of Civil Engineering, Stanford University. Drs. McCarty and Semprini are considered to be leading experts on in situ biological treatment processes

The first step for implementation of this technology should be a detailed review of the existing literature on cometabolic biotreatment of CAHs, paying particular attention to field data, and of the groundwater contaminant data for the Base. New information should be reviewed as it becomes available.

A detailed analysis of chemical distribution in three dimensions is needed to identify target volumes for treatment. After the existing chemical data have been thoroughly reviewed and analyzed and potential target areas have been roughly identified, it is likely that some additional site characterization data will be needed to fine-tune the selection of target zones, evaluate chemical amendment requirements, and collect samples of aquifer material for bench-scale testing. Samples for analysis and testing could be collected through the use of boreholes or cone penetrometers. Analytical parameters should include organic contaminants, major anions and cations, metals (iron), Eh, pH, DO, sulfide, methane, ethane, and COD, or TOC.

#### **Implementation** Issues

- Potential permitting/regulatory approval issues associated with in situ cometabolic biotreatment include:
  - Reinjection or discharge of extracted groundwater

| Table L3-1<br>In Situ Cometabolic Biotreatment<br>Information Needs and Sources |            |                  |       |  |  |
|---------------------------------------------------------------------------------|------------|------------------|-------|--|--|
|                                                                                 | Test Scale |                  |       |  |  |
| Information Need                                                                |            | Pilot            | Full  |  |  |
| Contaminant Characterization                                                    |            |                  |       |  |  |
| Contaminant Types                                                               | S          | S                | S     |  |  |
| Concentrations                                                                  | S          | S                | S     |  |  |
| Treatment Goals                                                                 | L          | L                | L     |  |  |
| <ul> <li>Inhibitory/Toxicity Factors</li> </ul>                                 | L          | B,L              | P,L   |  |  |
| Contaminant Geometry                                                            |            | S,L              | S,L   |  |  |
| Subsurface Characterization                                                     |            |                  |       |  |  |
| <ul> <li>Environmental Factors (pH, temp)</li> </ul>                            | S          | S                | P,S   |  |  |
| Water/soil chemistry parameters                                                 | S          | B,S              | P,S   |  |  |
| • Flow                                                                          | L          | M                | М     |  |  |
| Water Levels over time                                                          |            | S,L              | S,L   |  |  |
| Soil type                                                                       | S          | S,L              | S,L   |  |  |
| Soil heterogeneity                                                              | S          | S,L              | S,L   |  |  |
| Sorption/Retardation                                                            | L          | М                | М     |  |  |
| <ul> <li>Microorganisms present</li> </ul>                                      | S          | B,S              | P,S   |  |  |
| Electron Acceptors                                                              | S          | B,S              | P,S   |  |  |
| System Design: Physical Configuration                                           |            |                  |       |  |  |
| • Number of wells, type                                                         |            | B,L,M            | P,L,M |  |  |
| • Well spacing                                                                  |            | B,L,M            | P,L,M |  |  |
| Residence Time (zone)                                                           | L          | B,L,M            | P,L,M |  |  |
| • Well Diameter                                                                 |            | B,L              | P,L   |  |  |
| • Screen depth, length                                                          |            | L,V              | P,L,V |  |  |
| System Design: Treatment Requirements                                           |            |                  |       |  |  |
| Nutrient Additions                                                              | L          | B.L              | P.L   |  |  |
| Metabolite Addition                                                             | L          | B.L              | P.L   |  |  |
| Microorganism Addition                                                          | L          | B.L              | P.L   |  |  |
| Oxygen Additions                                                                | L          | B.L              | P.L   |  |  |
| Permitting Requirements                                                         |            | L                | Ĺ     |  |  |
| System Design: Equipment Requirements                                           | [          |                  |       |  |  |
| Equipment Requirements                                                          | lι         | L.V              | P.V   |  |  |
| O&M Requirements                                                                | L          | L.V              | P,V   |  |  |
| Performance Canabilities                                                        | <u> </u>   | ├ <u>──</u> └─── |       |  |  |
| Monitoring (Semiling and Analysis Requirements)                                 | Т          | T.               | T.    |  |  |
| By-product formation                                                            | ŝ          | B.L.S            | P.L.S |  |  |
| Notes:                                                                          | l          |                  |       |  |  |
| I = I iterature/Experts                                                         |            |                  |       |  |  |
| B = Bench Scale                                                                 |            |                  |       |  |  |
| P = Pilot Scale                                                                 |            |                  |       |  |  |
| S = Sempling Results                                                            |            |                  |       |  |  |
| V = Vendor                                                                      |            |                  |       |  |  |
| M = Modeling/Other Technology Evaluations                                       |            |                  |       |  |  |

- ----

----

- The need for aboveground treatment of extracted groundwater if it is to be reinjected within a contained plume
- Treatment requirements for groundwater and offgas if aboveground treatment of extracted groundwater is required
- Injection of organic substrates and nutrients into groundwater
- Formation of transformation products
- A potential patent issue pertains to the patent held by IEG Technologies, Inc., on the in situ recirculation unit. The applicability of this patent is currently unclear and would need to be resolved by patent attorneys.
- Other issues that could affect implementation are associated with newly generated site characterization data that may influence technology effectiveness or cost (and therefore feasibility) at target areas, including permeability, heterogeneity, contaminant distribution, and cometabolic biological activity information.

### **Bench-Scale Testing**

#### **Objectives**

Bench-scale testing would consist of microcosm studies using aquifer material collected from target zones. The microcosm studies will help determine:

- What growth substrate is most effective (phenol, toluene, or methane)
- Whether the necessary microbial cultures are present in the subsurface and can be stimulated to degrade the target contaminants
- Whether they can degrade the target contaminants and how efficiently
- The concentration range over which effective transformation can be achieved
- The best method and rate for the addition of organic growth substrate

#### Approach

Different types of microcosms might be employed, including batch reactors, batch-fed soil columns, and continuous-flow soil columns. Bench-scale tests may take up to 6 months to complete.

3/24/94

If indigenous microorganisms are not present or they are not capable of mineralizing the contaminants of concern, it may be possible to introduce microbes to the subsurface. In this event, microcosm studies could be used to determine if the introduced strain would survive and flourish under field conditions.

## **Pilot-Scale Testing**

### **Objectives**

Pilot-scale tests would be necessary to develop information for designing and operating a full-scale treatment system. Data would be obtained on the effectiveness of treatment, areal extent of treatment, and optimal methods of chemical addition. A probable duration for pilot testing is 6 months to 1 year.

Pilot-scale testing objectives include the evaluation of:

- Proper well spacing and number of wells required for full-scale implementation
- Required organic substrate and nutrient addition rates, and optimal pattern of delivery
- Characteristics of extracted groundwater
- Transformation product formation, if any of significance, and disappearance rates
- Contaminant reduction rates and estimated treatment duration
- Estimated contaminant mass reductions achievable during treatment
- Estimated full-scale capital and operating costs
- Cost benefits associated with implementing the technology

### Approach

Pilot-scale testing would involve the installation of one or two injection wells and two to four extraction wells, and operation of the system for a sufficiently long duration to obtain data needed to develop design and operating parameters for full-scale implementation. (For the purpose of this Implementation Plan, the use of vertical injection and extraction wells is assumed for pilot testing, but in situ recirculation units should also be considered.) The specific objectives and approach of the pilot testing program would be refined and detailed following the information gathering and review and bench-scale testir; tasks. The general approach to pilot testing is outlined below.

RDD10012E24.WP5

3/24/94

- 1. Confirm appropriateness of target location selected for pilot testing.
- 2. Conduct modeling to support pilot system design. This work would include hydrodynamic modeling, advective transport modeling, and possibly, modeling of mass transfer and biological processes.
- 3. Prepare system installation and operation work plan.
- 4. Install injection, extraction, and groundwater monitoring wells, and set up aboveground chemical delivery system.
- 5. Operate the system at different rates and patterns of substrate/nutrient delivery, holding each amendment condition constant for sufficient time to evaluate treatment performance (determined by groundwater sampling and analysis).
- 6. Analyze data to evaluate the performance under different testing conditions and evaluate potential benefits of in situ cometabolic biotreatment to the overall Base groundwater remediation program.
- 7. Decide whether to proceed with implementation at full scale.

### **Full-Scale Implementation**

Pilot-scale results are necessary to develop a full-scale system design. However, an example conceptual design is outlined below to illustrate the major elements of a full-scale system and to provide a basis for a rough order-of-magnitude cost estimate. Rather than developing a conceptual design for a particular location, a modular approach was used to develop an estimated range of costs per unit acre for full-scale implementation.

The example conceptual design is based on the following key assumptions:

- Each module consists of nine injection and nine extraction wells, a piping system from the extraction wells to a groundwater treatment unit, a substrate feed system, and piping from the substrate feed system to the injection well (Figure L3-2).
- The spacing of wells varies from 30 to 60 feet based on initial modeling estimates.
- Approximate coverage by one module ranges from 8,100 ft<sup>2</sup> (5.4 modules/acre) to 32,400 ft<sup>2</sup> (1.3 modules/acre), depending on well spacing.
- Groundwater extraction and injection rate is 3 gpm per well.
- There will be one groundwater monitoring well per every 10 extraction/ injection wells.



\_\_\_\_\_

- The organic growth substrate is toluene, added at a ratio of 25 grams per gram of TCE. Oxygen is added to the groundwater using  $H_2O_2$  at a ratio of 100 grams per gram of TCE. Inorganic nutrients are added as diammonium phosphate at a ratio of 1 gram per gram of TCE.
- The extracted groundwater is treated to MCLs at a single treatment system at the target location. This system consists of air stripping with vapor-phase GAC adsorption. Most (≥90 percent) of the treated groundwater is chemically amended and reinjected, and a small blowdown stream (≤10 percent) is discharged to maintain a net groundwater withdrawal (for containment).
- A single chemical feed system-including chemical storage, mixing, and feed tanks, mixers, pumps, and controls-services the entire in situ treatment system (Figure L3-3).

# **Technology Limitations and Uncertainties**

The critical limitations and uncertainties of technology implementation are listed below.

- The suitability of hot spot areas at the Base for application of in situ cometabolic biotreatment will depend on subsurface characteristics such as soil permeabilities, heterogeneities, and contaminant types and distribution.
- It is unknown whether aboveground treatment of extracted groundwater will be required prior to reinjection. If so, it will significantly increase cost and permitting requirements.
- Other potential permitting issues are associated with reinjection of groundwater and injection of chemical amendments. Patent issues that must be resolved are associated with the use of in situ recirculation units.
- Achievable contaminant treatment rates are unknown and must be determined through testing.
- The presence of naturally occurring microorganisms capable of initiating transformation of CAHs is unknown. The necessary microorganisms may or may not be present at potential target areas for implementation of the technology, but they have been found to be widespread in the environment. The success of bioaugmentation is uncertain.

. .....

Ì



;

.0

• Complete utilization/biodegradation and/or recovery of injected organic substrate must be accomplished to avoid adding contaminants (and associated risk) to the groundwater.

## Schedule

A possible implementation schedule is provided in Figure L3-4.

### Cost

This section presents an estimated range of order-of magnitude implementation costs based on the conceptual design. Implementation costs include costs associated with: ongoing literature review, further site characterization, bench-scale testing, pilot-scale testing, and full-scale capital and annual operations and maintenance. The scope of each of these cost-related activities is summarized below:

- Literature Review. Technology researchers (i.e., universities, industry, consultants) are likely to further develop the technology such that enhancements (optimization) and limitations will be better understood. The decision to proceed with further implementation of in situ cometabolic biotreatment requires ongoing assessment and review of these research results. While this activity is not a significant cost factor of implementation, it is an important implementation activity.
- Further Site Characterization. This activity is necessary to confirm the location of a proposed implementation site and to provide the necessary soil cores for bench-scale microcosm studies. Associated costs are related to fieldwork (streamlined SAP, QAPP, sampling labor and expenses, analytical expenses, report, etc.) designed to identify site subsurface characteristics and collect and analyze samples for bench-scale testing.
- **Bench-Scale Testing.** This activity includes scope and work plan development, contract procurement, and the cost of conducting and overseeing the soil microcosm studies previously described.
- **Pilot-Scale Testing.** This activity includes costs associated with scope and work plan development, contract procurement, equipment procurement, system installation, system operation, demobilization, sampling and analysis (system monitoring), evaluation of system performance, and reporting.

3/24/94



.

ı

- ----

- **Full-Scale Capital.** Capital costs are direct and indirect costs required to initiate and install the technology system components, including (but not limited to) engineering design, mobilization and demobilization of equipment and people, site construction activities (i.e., well installation), contractor bonding and insurance, equipment procurement and installation, licensing and permitting, health and safety, and supervision during construction.
- Full-Scale Operation and Maintenance. Operation and maintenance (O&M) costs represent those costs that would be incurred during each year of operation from initial startup to final shutdown of the full-scale system. Since annual O&M costs occur over a period of years, future costs have been discounted to the present year's equivalent value (i.e., the present value cost) using 5 percent interest, so that annual costs remain comparable. Actual annual costs are likely to be much higher during the first year(s) of operation as the system is commissioned and optimized for operation, and due to higher chemical usage rates and associated labor required for treating higher initial concentrations. Therefore, the annual costs are intended to represent the anticipated average yearly cost of operation over the life of the system.

A contingency of 30 percent has been applied to the full-scale implementation cost to account for possible project cost increases due to scope and bid variations that typically occur with hazardous waste remediation projects. These increases are typically caused by the changes that normally occur as part of final design and implementation, based on observation of actual field conditions/contamination, and factors, which affect the cost of subcontracted services, such as labor and material shortages. Not included in the estimates are any agency or Air Force administrative costs, nor any costs associated with modifications of the existing groundwater treatment system(s).

Typically, order-of-magnitude cost estimates for general construction projects are intended to reflect an accuracy of within 50 percent greater to 30 percent less than actual costs. The estimates summarized below are expected to be within these ranges; however, there is greater uncertainty of accuracy as a result of the lesser degree of development associated with this innovative technology compared to general construction technologies. Current pricing data based on quoted equipment costs, construction cost data (e.g., Means, 1993), previous local project experience, and engineering judgment have been used to generate the estimates, using adjustments for local McClellan AFB costs when available. Final project costs will depend on actual labor and material costs, actual site conditions at the time of implementation, productivity, competitive market conditions, final project scope and schedule, contractors selected to perform activities, and many other variables. As a result, the final project costs will differ from the exact value of any estimates presented here.

The following order-of-magnitude implementation costs are estimated for in situ cometabolic biotreatment:

RDD10012E24.WP5

L3-18

1

- Literature review will require approximately \$14,000 over a period of 2 years.
- It is estimated that further site characterization could be completed for approximately \$50,000.
- It is estimated that bench-scale testing could be completed for approximately \$68,000.
- Pilot-scale testing is estimated to cost approximately \$355,000.

Full-scale implementation costs on a per acre basis are summarized in Table L3-2. The estimated costs for construction and operation of a full-scale system range from approximately \$1.9M/acre (for 60-foot well spacing, 2 years' operation, and no groundwater treatment prior to reinjection) to \$14.7M/acre (for 30-foot well spacing, 5 years' operation, and groundwater treatment prior to reinjection). The added cost of groundwater treatment prior to reinjection is estimated to be approximately \$100,000/acre. Key assumptions associated with the implementation cost estimate, in addition to those previously described, include:

- Full-scale costs are reported on a per acre basis. Costs were estimated for a five-module (45 extraction wells) system and converted to per acre costs.
- Nine man-days/well plus drilling costs are needed to install wells. This includes drilling, well completion and development, and surface plumbing.
- Groundwater treatment unit operational costs are \$200/lb VOCs, and approximately 600 lb of contaminants will require aboveground removal per year.
- Average groundwater concentration is 5 mg/l total chlorinated VOCs.
- System monitoring includes 240 man-days/year for system operation and maintenance, and the collection of nine samples per module.
- The substrate feed system is constructed inside a corrugated metal roofcovered building.
- Toluene is added at a rate of 15,000 lb/module per year at a cost of \$4/lb; hydrogen peroxide is the oxygen source and is added at a rate of 59,000 lb/module per year at a cost of \$3.50/lb. Chemical costs include shipping and handling.

RDD10012E24.WP5

í

3/24/94

. . . . . . . .

Each module consists of four extraction wells piped to a DPE skid. The skid contains an air/water separator: a high vacuum, continuous-duty

| Table L3-2           In Situ Cometabolic Biotreatment           Order-of-Magnitude Implementation Cost Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                        |                                      |                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|--------------------------------------|-------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Range of Costs (\$/acre) |                                        |                                      |                   |  |  |
| Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low                      | Low -<br>Intermediat<br>e <sup>b</sup> | Intermedia<br>te - High <sup>c</sup> | High <sup>d</sup> |  |  |
| Full-Scale Capital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900,000                  | 900,000                                | 3,900,000                            | 3,900,000         |  |  |
| Full-Scale O&M<br>(Present Worth for All<br>Years)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,000,000                | 1,100,000                              | 4,600,000                            | 10,800,000        |  |  |
| Full-Scale<br>Implementation Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,900,000                | 2,000,000                              | 8,500,000                            | 14,700,000        |  |  |
| Notes:<br><sup>a</sup> Based on 60 feet well spacing, 2 years of operation, and no groundwater<br>treatment prior to reinjection.<br><sup>b</sup> Based on 60 feet well spacing, 5 years of operation, and groundwater treatment<br>prior to reinjection.<br><sup>c</sup> Based on 15 feet well spacing, 2 years of operation, and groundwater treatment<br>prior to reinjection.<br><sup>d</sup> Based on 15 feet well spacing, 5 years of operation, and groundwater treatment<br>prior to reinjection.<br><sup>d</sup> Based on 15 feet well spacing, 5 years of operation, and groundwater treatment<br>prior to reinjection.<br>Other significant assumptions include: 100 percent system on-time; annual<br>sampling and analysis costs, and performance evaluations included in operational<br>cost; 30 percent contingency factor applied. |                          |                                        |                                      |                   |  |  |

## Works Cited

Semprini, Lewis. Oregon State University, Memo to CH2M HILL, September 24, 1993.

Semprini, Lewis. Oregon State University, Memo to CH2M HILL, August 13, 1993.

McCarty, Perry. Stanford University, Memo to CH2M HILL, August 15, 1993.

RDD10012E24.WP5

÷ • • •

L3-20

3/24/94

Ś

- -

. . . . . .

Appendix L4

1

\$

### TECHNICAL MEMORANDUM L4

| PREPARED FOR: | McClellan Air Force Base                                                                                  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------|--|--|
| DATE:         | November 7, 1993                                                                                          |  |  |
| SUBJECT:      | Dual Phase Extraction (DPE) Implementation Plan<br>Groundwater OU RI/FS Report<br>Delivery Order No. 5066 |  |  |
| PROJECT:      | SAC28722.66.NT                                                                                            |  |  |

### **Technology Overview**

### Description

Dual Phase Extraction (DPE) is a groundwater remediation technology that simultaneously extracts contaminants from the vadose, capillary fringe, and saturated zones. While conventional soil vapor extraction (SVE) systems and conventional pump-andtreat systems address only the zones above and below the water table, respectively, neither one directly addresses the capillary fringe. Insoluble contaminants tend to collect in the capillary fringe or "smear" zone due to low air flow and low water flows. This tends to represent one of the most difficult zones to remediate. DPE potentially can remediate all three zones at the same time.

There are two primary approaches for extracting water and soil vapors simultaneously from a single well. The first, known as DPE, uses pumping equipment located at the surface and an aspiration "straw" to remove groundwater and air in a common extraction stream. The other, known as Dual Extraction (DE), consists of a combination of conventional SVE and pump-and-treat systems in a single well. DE has been employed as an enhancement in settings conducive to conventional pump-and-treat (higher relative permeabilities), while DPE was developed specifically for very low permeability sites for which conventional pump-and-treat has been considered difficult or infeasible. The case histories for both systems include applications with groundwater depths that are much shallower than is typical at McClellan AFB. This Implementation Plan has been developed for DPE, as opposed to DE, because of the direct applicability of the DPE technology to very fine-grained, saturated zones of contamination, and, therefore, its potential applicability at McClellan AFB. However, this discussion of DPE is based on prior experience at groundwater depths of 10 to 30 feet, and whether its applicability holds true at groundwater depths of 100 feet remains to be demonstrated.

RDD10012E25.WP5

11/7/93

CHANHILL

The DPE system consists of one or more wells, screened over a depth approximately 5 to 10 feet above the water table to a depth of about 10 feet below the water table; an aboveground unit consisting of a high vacuum blower, an air/water separator, and piping connections to offgas and groundwater treatment systems; and (optionally) a system of passive or active injection wells screened above the equilibrium water table surface established during system operation.

High vacuum conditions are essential for DPE to be fully utilized. Also referred to as Two-Phase Extraction and High Vacuum Extraction, the process uses high vacuum (18 to 29 inches of mercury) at the smear zone/capillary fringe to remove soil vapor and groundwater by entrainment. The system extracts the groundwater and soil vapors using a central lift pipe, or "straw," as shown in Figure L4-1. In deep groundwater settings, the diameter of this straw can be a critical design parameter, since it directly influences the blower power requirements, the total flow rates, and the vacuum at the bottom of the straw. One of the side benefits is that volatiles present in the aqueous phase are stripped during transport up the straw, transferring as much as 95 percent by weight of the VOCs to the vapor phase (Radian, 1993).

DPE enhances groundwater removal rates and volatilizes contaminants from the sorbed and free-product phases. The high vacuum exerted by DPE increases the hydraulic gradient toward an extraction well, increasing well yield and extraction of dissolved contaminants. A dewatered zone is created in the vicinity of the well by pumping and is enhanced by the high vacuum applied. Air is drawn toward the well in the vadose and dewatered zones, and is extracted simultaneously with the water. The dewatering of the soil is vital for DPE to mobilize contaminants. The dewatered effect is maximized in fine-grained soils, where high vacuums can be maintained. Vapor-phase contaminants are entrained in the extracted air and removed from the subsurface; this effect is highest for contaminants with high Henry's constants, such as TCE and PCE. Contaminants that are sorbed onto the soil matrix may also be effectively removed in the air flow. A key benefit of the high vacuum employed by DPE is the ability to mobilize and remove NAPLs that are located in otherwise diffusion-limited formations such as moist clay.

The process can simplify remedial actions by eliminating the need for groundwater recovery pumps within individual wells. DPE also reduces water treatment requirements by volatilizing most of the aqueous phase contaminants during entrainment in the straw, resulting in lower concentrations in the aqueous phase requiring treatment. (Figure L4-1 shows a simplified schematic of DPE.)

### **Development Status**

Full-scale field demonstrations have been performed at Xerox Corporation sites in New York, California, Illinois, and Canada (H&A). Multiple-well systems have been used in shallow applications (less than 30 feet) at sites in Webster, New York, and Irvine, California. Only one pilot test has occurred at depths of around 100 feet. Radian performed this single-well test for a confidential client in California.

Xerox Corporation is the developer of the DPE technology and holds the patent for all dual-phase systems that utilize a straw. H&A and Xerox have developed a prewired, skid-mounted system that can be purchased commercially. Use of the Xerox system/approach involves the payment of licensing and patent fees.

Radian is scheduled to conduct a DPE pilot test at three locations at McClellan AFB in the fall of 1993.

## **Potential Benefits**

This subsection describes the performance, advantages and disadvantages, and cost benefits associated with DPE. This information is intended to provide a basis for evaluating the potential benefits of implementing the technology as part of the overall McClellan AFB groundwater cleanup program.

### **General Performance**

The performance of DPE is measured by its ability to enhance contaminant mass removal rates from the subsurface.

### Effectiveness

- Expected to be effective for removal of VOCs with Henry's constants greater than or equal to about 10<sup>-3</sup> atm-m<sup>3</sup>/mol.
- VOCs are removed from both the vadose zone and groundwater. This includes removal of persistent NAPLs that are otherwise difficult to remediate.
- According to Radian, achievable groundwater extraction rates can be increased 5 to 10 times compared to conventional pumping systems, and 95 percent of VOCs in extracted groundwater are transferred to the vapor phase in the straw.
- Deep groundwater at the Base could necessitate greater power requirements or alternative straw design relative to documented applications to achieve effective treatment.

## Robustness

• The consistency of treatment is largely based on the ability to maintain high vacuum conditions. Layered strata at McClellan AFB could inhibit consistent and effective treatment.



• The DPE system possesses a low to moderate turnup/turndown capability, and is fairly inflexible with respect to changes in flow rate of vapor and ground-water extraction systems. However, modular units could be operated in clusters to increase turnup capacity.

### **Potential Risk Reduction**

DPE has the potential for removing contaminants from the zones that are otherwise difficult to remediate. NAPLs and sorbed sources in the capillary fringe can potentially be removed by this technology. Thus, some incremental risk reduction might be achieved through source removal.

- Contaminant mass reduction in the vadose zone and capillary fringe may reduce the risk of continuing groundwater contamination.
- Contaminant mass reduction in groundwater may reduce the risk of residual groundwater contamination.
- Enhancement of contaminant removal may shorten the overall groundwater remediation time, and thus, risk.

## **Advantages Compared to Other Technologies**

- Enhances removal of contaminants and NAPLs in the capillary fringe, which is otherwise difficult to treat.
- Effective contaminant removal has been demonstrated from low permeability soils (e.g., clays, silts) that are otherwise difficult to remediate.
- Enhancement of contaminant removal from the subsurface may reduce the overall groundwater remediation time.
- Groundwater and soil vapors are extracted from the same well by the same surface pump resulting in a decrease in equipment complexity.
- The high vacuum dewaters the vadose zone, exposing more unsaturated soil to vapor recovery.
- Groundwater extraction rates can be increased compared to conventional pump-and-treat.
- Groundwater mounding is less than that which is normally encountered during conventional soil vapor extraction due to the simultaneous water extraction.
- As much as 95 percent of the VOCs in extracted groundwater is transferred to the vapor phase, which is more cost-efficient to treat.

# **Disadvantages Compared to Other Technologies**

- DPE has been demonstrated to be effective at depths that are much shallower than will be necessary at McClellan AFB. At depths of about 100 feet, the advantage over conventional technologies may be reduced because of frictional losses in the aspiration straw. This uncertainty necessitates feasibility screening and design work efforts, which are not required for other technologies.
- The most successful demonstrations of DPE, compared to conventional technologies, have been in formations with very low hydraulic conductivities (e.g., silty clay). It is not yet clear that the low-to-moderate hydraulic conductivities more characteristic of McClellan AFB represent the same potential relative advantage for DPE. To resolve this uncertainty and verify the relative advantage of DPE at the Base will require pilot testing and/or extended operation, above and beyond that required by conventional technologies.
- The advantages (effectiveness and cost) of DPE over conventional DE systems are uncertain for sites with insufficiently low permeabilities to maintain high vacuum conditions.
- Application of the DPE technology is covered by patents held by the Xerox Corporation. The license fees are currently \$5,000 per well used for more than pilot test purposes (more than 14 days). This represents an additional cost relative to other, non-patented technologies.
- Application of the technology in multiple-well configurations is not well documented in available case histories, and design guidance is not available for the well configurations expected to be needed at McClellan AFB. Relative to other technologies, this suggests an additional cost will be necessary to develop criteria for well spacing, optimum flows and vacuums, and other design parameters.

# **Relative Cost Benefit**

To evaluate the overall potential effectiveness of DPE, one must look at each of the phases involved. In the vadose zone, DPE provides essentially no benefit over conventional soil vapor extraction systems. Below the water table, the groundwater pumping rate can be increased due to the high vacuum applied near the water table. More significantly, the upper portions of formerly submerged soil may be exposed to the air stream.

The greatest benefit of DPE applies to the capillary fringe that exists between the two zones. In this stasis zone, where air and water flows are very low, contaminants tend to be held in place. The soil is typically at least 60 to 80 percent saturated, a factor which significantly limits air permeability. This zone also retains insoluble contaminants. By lowering the water table, DPE reduces the moisture content of the capil-

)

lary fringe and increases air permeability. The result is a change from a diffusionlimited condition to one in which removal is governed by the air flow rate.

The cost benefit of DPE would result from the increased rates of contaminant removal that could shorten the pump-and-treat operation time. Although a quantitative cost benefit cannot yet be accurately determined, it should be evaluated through an analysis of estimated savings associated with the reduced operation time of the pumpand-treat system compared with the capital and operating costs of the DPE system.

### **Potential Locations**

Application of this technology should occur in regions of fine-grained, low permeability soils to support high vacuum conditions and maximize water drawdown and exposure of the capillary fringe. DPE systems should be located within hot spot plumes that have significant contamination in the smear zone at the surface of the water table, to maximize the potential contaminant mass removal.

The use of existing wells is limited to those that are screened over both the vadose and saturated zones. The screen would need to span about 5 feet above and 10 feet below the water table.

Locations on the east side of the base are, in general, less permeable than those on the west side. For this reason, Radian is performing DPE pilot testing in OU A and OU B. Hot spot areas in OUs A and B with appropriately low permeabilities are potentially suitable locations for full-scale implementation of DPE. However, specific location recommendations should be deferred until the pilot testing performance is evaluated.

### Approach

## **Information Needs and Sources**

Table L4-1 lists information requirements and sources for implementation of DPE.

### **Information Gathering and Review**

Preliminary information gathering has consisted of a review of available reports, including the Radian Work Plan for the Fall 1993 pilot test, and conversations with Xerox representatives about the modular treatment units. Further information gathering should focus on the results of the McClellan AFB pilot test. Radian will perform that study in two stages at three locations. The first stage will consist of shortterm tests of approximately 1 to 2 days duration per well (Radian, 1993). The second stage will consist of either additional short-term tests at alternate test wells or longterm tests of greater than 100 hours duration. How well the technology performs will

RDD10012E25.WP5

Í

influence the implementation program and design. Analysis of the results will indicate whether additional pilot testing is needed, what refinements are necessary, and what locations are potentially applicable. Alternately, the pilot testing results may indicate that the technology is not applicable or cost-effective at McClellan AFB and that implementation should be halted for DPE, and possibly transferred to a DEbased program.

## **Implementation Issues**

- For DPE, both the extracted groundwater and the offgas stream will require treatment and discharge, resulting in the need for permits.
- The DPE system is patented and costs \$20,000 per site for the licensing fee, plus \$5000 per well where DPE is applied for more than 14 days.
- Other issues that could affect implementation include the generation of additional data suggesting that DPE could not be cost-effectively implemented in the target locations. For example, contaminant distributions or zones of higher permeability soils in hot spot areas may make DPE impractical.

# **Bench-Scale Testing**

Bench-scale testing is not needed for the implementation of DPE at McClellan AFB.

# **Pilot-Scale Testing**

## **Objectives**

The two primary goals of pilot-scale testing are to evaluate the feasibility of DPE at McClellan AFB, and, if feasible, to determine critical full-scale design and operating parameters. The feasibility evaluation includes the following objectives:

- Evaluate contaminant removal rates achieved by DPE compared to conventional groundwater extraction.
- Characterize the aquifer response (drawdown) created by a network of DPE wells.
- Measure the air flow rate achievable and water the yield compared to conventional pumping.
- Evaluate the ability to establish and maintain target vacuum levels at the capillary fringe (i.e., at the bottom of the straw) in a deep well.

L

| Table L4-1         Dual Phase Extraction         Information Requirements and Sources         |                                          |             |             |       |
|-----------------------------------------------------------------------------------------------|------------------------------------------|-------------|-------------|-------|
|                                                                                               |                                          |             | Info Source |       |
|                                                                                               | Information Needed for                   |             |             |       |
| Pilot and Full-Scale Implementations                                                          |                                          |             | Pilot       | Fuli  |
| Contaminant C                                                                                 | haracterization                          |             |             |       |
| •                                                                                             | Contaminant Types                        |             | s           | S     |
| •                                                                                             | Soil Gas Concentrations                  |             | s           | S,P   |
| •                                                                                             | Aqueous Concentrations                   |             | s           | S,P   |
| •                                                                                             | Treatment Requirements                   | ]           | L           | L     |
| •                                                                                             | Contaminant Geometry                     |             | S,L         | S,L   |
| Subsurface Cha                                                                                | racterization: Hydrogeology              |             |             |       |
| •                                                                                             | Flows                                    |             | м           | Μ     |
| •                                                                                             | Static Water Levels over time            |             | S,L         | S,L   |
| •                                                                                             | Water Chemistry Parameters               |             | S           | S     |
| Subsurface Cha                                                                                | racterization: Geology                   |             |             |       |
| •                                                                                             | Soil Types                               |             | S           | S     |
| •                                                                                             | Soil Heterogeneity                       |             | S,M         | P,S   |
| •                                                                                             | Air Permeability                         |             | S,L         | P     |
| System Design                                                                                 | Physical Configuration                   |             |             |       |
| •                                                                                             | Number of wells                          |             | L,M         | P,L,M |
| •                                                                                             | Well spacing                             |             | L,M         | P,L,M |
| •                                                                                             | Screened Intervals                       |             | L           | P,L   |
| •                                                                                             | Straw Diameter                           |             | L,V         | P,L,V |
| •                                                                                             | Straw Depth                              |             | L,M,V       | P,L,V |
| System Design                                                                                 | Equipment Requirements                   |             |             |       |
| •                                                                                             | Number of Modular Units                  |             | L,V         | P,V   |
| •                                                                                             | Patent Requirements                      |             | v           | v     |
| •                                                                                             | O & M Requirements                       |             | L,V         | P,V   |
| •                                                                                             | Blower Size                              |             | L,V         | P,L   |
| Performance C                                                                                 | apabilities                              |             |             |       |
| •                                                                                             | Air Flow Rates, Concentrations           |             | L,S         | P,S   |
| •                                                                                             | Water Flow Rates, Concentrations         |             | L,S         | P,S   |
| •                                                                                             | Mass Removal Rates                       |             | L,M         | P,M   |
| •                                                                                             | Vacuum applied/received ratio            |             | L           | Р     |
| •                                                                                             | Monitoring (Sampling & Analysis Recu     | uirements)  | L           | L,P   |
| •                                                                                             | Response to Waste Stream Variabilities   | -           | L,V         | P,V   |
| Residuals Man                                                                                 | agement                                  |             |             | ·     |
| •                                                                                             | Physical Configuration (inlet separators | , piping)   | L,V         | P,V   |
| • Vapor flows, concentrations                                                                 |                                          | S,L         | P           |       |
| <ul> <li>Aqueous flows, concentrations</li> </ul>                                             |                                          | S,L         | P           |       |
| •                                                                                             | Permitting Requirements                  |             | L           | L     |
| Notes:                                                                                        |                                          | Berch Coole |             |       |
| D = Dilot Scale 		 D = Complian Description                                                   |                                          |             |             |       |
| $r \neq ruor conc \qquad \qquad S \equiv Sampling Results$ $V = Vadating (Other Euclidetics)$ |                                          |             |             |       |
| V = VORUNT M = MODELING/URET EVALUATIONS                                                      |                                          |             |             |       |

•...• • • • • • • • • • • • • •

CVOR365/042.WP5

1

,

ŧ

.

.

- Establish preliminary ranges of geologic, engineering, and economic parameters for selection of DPE over conventional groundwater extraction.
- Evaluate the cost-effectiveness of DPE compared to a conventional groundwater pump-and-treat system. Develop order-of-magnitude cost estimates and schedule for full-scale remediation.

If DPE appears feasible, the second objective of pilot-scale testing would be to determine the following design and operating parameters:

- Optimum straw depth and diameter
- Determine adjacent site response
- Effect of a central, passive injection well in a multiple well setting
- Radius of influence and well spacing in a multiple well application
- Effect of different applied vacuums and injection well flow rates

### Approach

It is presumed that a multiple-well, modular system will be required to treat hot spot plumes at McClellan AFB. Multiple-well pilot-scale testing would involve the installation of up to three DPE wells and one injection well that would be used to collect design and operation parameters necessary for full-scale implementation. In order to compare DPE with conventional pump-and-treat, a standard 24-hour aquifer test would be performed prior to DPE operation. Evaluation of multiple-well spacing and zone of influence, optimal straw diameter, and the benefits of a passive injection well would be the major parameters evaluated in a second phase of pilot testing. The specific objectives and approach of the pilot-testing program would be refined and detailed following additional information gathering and review. The general approach to pilot-scale testing is outlined below.

- 1. Prepare system installation and operation work plan.
- 2. Select an appropriate hot spot for test site. The areas of the existing DPE pilot testing could be considered for possible modification and use as the test site.
- 3. Conduct modeling using conventional groundwater and soil vapor extraction approaches to estimate the radius of influence for DPE wells and target extraction vacuum.
- 4. Perform a 24-hour conventional aquifer test.
- 5. Initially, install one DPE well within the hot spot, screened over an interval approximately 5 feet above and 10 feet below the water table.

- 6. Install nested piezometers at radial distances from the extraction/ injection wells in two directions, separated by an angle of 90 degrees. Nested piezometers should be screened at a minimum of two depths in the vadose zone and in the saturated zone.
- 7. Bring the first DPE well online. Once performance has been established, additional DPE wells would be constructed and brought online. The piezometers would be monitored to determine radius of influence of each DPE well and, possibly, to characterize the effects of heterogeneities with respect to depth in the subsurface between the DPE wells and piezometer nests.
- 8. Install one passive injection well within the radius of influence of the extraction well screened such that the screened interval is in the vadose zone, within 20 feet of the top of the saturated zone. The well would have flow control achieved through a valve and flowmeter placed at the top of the well.
- 9. After the multiple-well system reaches equilibrium, additional adjustments to vacuum and flows would be made to determine optimal performance and test multiple well systemic effects.
- 10. The system would be operated for a period sufficient for the system to reach equilibrium between adjustments.
- 11. The pilot system would require an offgas treatment system such as GAC, and extracted groundwater would be transported or piped directly to the existing groundwater treatment plant.
- 12. Analyze data to evaluate performance of each test condition and assess the potential benefit of DPE to the overall groundwater remediation program.
- 13. Decide whether to proceed with full-scale implementation.

# **Full-Scale Implementation**

Pilot-scale results are necessary to complete a full-scale system design. However, an example conceptual design is outlined below to illustrate the major elements of a full-scale system and to provide a basis for a rough order-of-magnitude cost estimate. Rather than developing a conceptual design for a particular location, a modular approach was used to develop an estimated range of costs per unit acre for full-scale implementation.

The example conceptual design is based on the following key assumptions:

RDD10012E25.WP5

- Each module consists of four extraction wells piped to a DPE skid. The skid contains an air/water separator; a high vacuum, continuous-duty blower; and piping connections to the offgas and groundwater treatment systems. A process schematic is provided in Figure L4-2. A conceptual layout of modules at a hypothetical hot spot is depicted in Figure L4-3.
- The spacing of the DPE wells varies from 30 to 50 feet on center, based on initial calculations of radius of influence. These calculations presumed the following generic conditions:
  - Water transmissivities of 10 ft<sup>2</sup>/day and 100 ft<sup>2</sup>/day to provide range
  - Well efficiency is 100 percent
  - Groundwater extraction from DPE is approximately 5 to 10 times greater than under ambient conditions
  - Well screen length is 15 feet, from 10 feet below and 5 feet above the water table prior to extraction
- Approximate coverage by one module ranges from 3,600 ft<sup>2</sup> (12.1 modules per acre) to 10,000 ft<sup>2</sup> (4.4 modules per acre), depending on well spacing.
- Approximate ranges of flows from each module are 50 to 250 cfm vapor and 2 to 10 gpm water.
- Each DPE conceptual module includes two injection wells. For every ten extraction and injection wells, there will be one groundwater monitoring well.
- Offgas treatment is localized at the hot spot, and shared by all modules.

## **Technology Limitations and Uncertainties**

The critical limitations and uncertainties of technology implementation are listed below.

• Subsurface heterogeneities are expected to significantly influence DPE effectiveness. Zones of low-to-moderate permeability will result in difficulty maintaining sufficiently high vacuums. Careful site characterization during well installation should identify these zones prior to completion of the well.



.



1=1.0



1=1.0

ì
- The operational parameters and design requirements for deep well systems have not been defined. There is warranted concern that frictional forces in a small-diameter straw will impose head loss, which prevents reaching the target vacuum of 20 inches of mercury at the base of the well. Modifications to the DPE system may be necessary to correct this problem.
- The effect of repeated startup/shutdown periods on the movement of contaminants is uncertain.
- The interactions of DPE wells in a multiple-well setting have not been well documented. The above approach to pilot-scale testing attempts to investigate these interactions. Of particular concern is the behavior of groundwater and the capillary fringe in the area between DPE wells.

### Schedule

An implementation schedule is shown in Figure L4-4.

#### Cost

This section presents an estimated range for order-of magnitude implementation costs based on the conceptual design. Implementation costs include costs associated with: ongoing literature review, pilot-scale testing, and full-scale capital expenses and annual operations and maintenance. The scope of eac' of these cost-related activities is summarized below:

- Literature Review. Technology researchers are likely to further develop the technology such that enhancements (optimization) and limitations will be better understood. The decision to proceed with further implementation of DPE requires ongoing assessment and review of these research results. While this activity is not a significant cost factor of implementation, it is an important implementation activity.
- **Pilot-Scale Testing.** This activity includes costs associated with scope and work plan development, contract procurement, equipment procurement, system installation, system operation, demobilization, sampling and analysis (system monitoring), evaluation of system performance, and reporting.

ţ



T

- **Full-Scale Capital.** Capital costs are direct and indirect costs required to initiate and install the technology system components, including (but not limited to) engineering design, mobilization and demobilization of equipment and people, site construction (i.e., well installation) activities, contractor bonding and insurance, equipment procurement and installation, licensing and permitting, health and safety, and supervision during construction.
- Full-Scale Operation and Maintenance. Operation and maintenance (O&M) costs represent those costs which would be incurred during each year of operation from initial startup to final shutdown of the full-scale system. O&M costs include operations and maintenance labor, power, sampling and analysis, and residual waste stream treatment. Since annual O&M costs occur over a period of years, future costs have been discounted to the present year's equivalent value (i.e., the present value cost) using 5 percent interest, so that annual costs remain comparable. Actual annual costs are likely to be much higher during the first year(s) of operation as the system is commissioned and optimized for operation, and due to higher chemical usage rates and associated labor required for treating higher initial concentrations. Therefore, the annual costs are intended to represent the anticipated average yearly cost of operation over the life of the system.

A contingency of 30 percent has been applied to the full-scale implementation cost to account for possible project cost increases due to scope and bid variations that typically occur with hazardous waste remediation projects. These increases are typically caused by the changes which normally occur as part of final design and implementation, based on observation of actual field conditions, and factors which affect the cost of subcontracted services, such as labor and material shortages. Not included in the estimates are any agency or Air Force administrative costs, nor any costs associated with modifications of the existing groundwater treatment system(s).

Typically, order-of-magnitude cost estimates for general construction projects are intended to reflect an accuracy of within 50 percent greater to 30 percent less than actual costs. The estimates summarized below are expected to be within these ranges; however, there is greater uncertainty of accuracy as a result of the lesser degree of development associated with this innovative technology compared to general construction technologies. Current pricing data based on quoted equipment costs, construction cost data (e.g., Means, 1993), previous local project experience, and engineering judgment have been used to generate the estimates, using adjustments for local McClellan AFB costs when available. Final project costs will depend on actual labor and material costs, actual site conditions at the time of implementation, productivity, competitive market conditions, final project scope and schedule, contractors selected to perform activities, and many other variables. As a result, the final project costs will differ from the exact value of any estimates presented here.

The following order-of-magnitude implementation costs are estimated for DPE:

RDD10012E25.WP5

ł

- Literature review will require approximately \$24,000 over a period of 2 years.
- Multiple-well pilot-scale testing is estimated to cost approximately \$340,000.

Full-scale implementation costs on a per acre basis are summarized in Table L4-2. The estimated costs for construction and operation of a full-scale system range from approximately \$5.9 M/acre (for 50-foot well spacing and 3 years' operation) to \$22.6 M/acre (for 30-foot well spacing and 5 years' operation). Key assumptions associated with the implementation cost estimate, in addition to those previously described, include:

- Full-scale costs are reported on a per acre basis. Costs were estimated for a five-module (20 DPE wells) system and converted to per acre costs.
- Licensing costs are a one-time \$20,000 site fee, plus \$5,000 per well in which DPE is utilized for more than 14 days.
- DPE skid-mounted units (from H&A of New York) can be purchased for approximately \$50,000. These units include a 50 hp high vacuum blower, an air water separator, and piping connections for offgas and groundwater treatment systems.
- Twelve man-days per well are assumed to install a DPE well. This includes drilling, well completion and well development, straw installation, and all surface plumbing. Nine man-days per well are assumed for a passive injection wells, and nine man-days per well for groundwater monitoring wells.
- VOCs are removed at an average rate of 100 lb/day per module in the vapor phase over the operational period of the system. Assumed cost for offgas treatment is \$5/lb VOCs, and is a significant cost factor.
- It is assumed that one 30 hp offgas blower rated at 900 cfm at 2-inch of mecury can service five modules for offgas collection for onsite treatment.
- It is assumed that one pump, rated at 5 to 50 gpm, can service ten modules for groundwater transport to the existing groundwater treatment plant. Additional costs for groundwater treatment are included in the estimate.
- Each module contains 500-foot PVC pipe.

| Table L4-2           Dual Phase Extraction           Order-of-Magnitude Implementation Cost Summary                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                    |                                     |                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|-------------------------------------|-------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Range of Costs (\$/acre) |                                    |                                     |                   |  |
| Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low                      | Low -<br>Intermediate <sup>b</sup> | Intermediate<br>- High <sup>e</sup> | High <sup>4</sup> |  |
| Full-Scale Capital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,960,000                | 1,960,000                          | 5,390,000                           | 5,390,000         |  |
| Full-Scale O&M<br>(Present Worth for All<br>Years)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,930,000                | 6,250,000                          | 10,810,000                          | 17,190,000        |  |
| Full-Scale Implementation<br>Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,890,000                | 8,210,000                          | 16,200,000                          | 22,580,000        |  |
| Notes:<br>Based on 50 feet well spacing and 3 years of operation.<br>Based on 50 feet well spacing and 5 years of operation.<br>Based on 30 feet well spacing and 3 years of operation.<br>Based on 30 feet well spacing and 5 years of operation.<br>Other significant assumptions include:<br>- \$5/lb VOCs offgas treatment cost<br>- 100 lbs/day per module average removal rate<br>- 90 percent system on-time<br>- Annual sampling and analysis, and performance evaluations included in operational cost<br>- 30 percent continuences |                          |                                    |                                     |                   |  |

• System operational time is assumed 90 percent, or 7,884 hours per year per well.

# Works Cited

H&A, New York, New York. Conversations with representatives during October 1993.

Radian Corporation, Operable Units A & B Dual Phase Extraction Pilot Testing, Draft Work Plan, September 1993.

Two-Phase Vacuum Extraction, "Business Confidential" Enclosures, McClellan AFB Private-Public Partnership Meeting, Alexandria, Virginia, December 1992. Appendix L5

١

(

(

#### TECHNICAL MEMORANDUM L5

CHEMHILL

PREPARED FOR: McClellan Air Force Base

DATE: November 7, 1993

SUBJECT: SVE/Sparging Implementation Plan Groundwater OU RI/FS Report Delivery Order No. 5066

PROJECT: SAC28722.66.NT

#### **Technology Overview**

#### Description

Soil vapor extraction/sparging, also referred to as "groundwater aeration" or "sparging," is sometimes used as an enhancement of conventional soil vapor extraction (SVE) for the removal of volatile contaminants from the saturated and unsaturated zones. Sparging involves injecting air into the saturated zone to mobilize VOCs dissolved in the groundwater and adsorbed to soil. The sparged air travels upward into the vadose zone through buoyant forces, and the contaminants are withdrawn through standard vapor extraction wells installed in the vadose zone. Air sparging may enhance biodegradation of contaminants amenable to aerobic degradation through the increased supply of oxygen to the subsurface; and, conversely, may inhibit biodegradation of compounds by anaerobic mechanisms. The most likely niche for SVE/ sparging is at sites with readily (aerobically) biodegradable contaminants in or near the smear zone immediately above the groundwater surface (capillary fringe) and/or floating light nonaqueous phase liquid (LNAPL).

Soil vapor extraction implemented without enhancements (i.e., air sparging or steam injection) is effective at removing contaminants from the vadose zone and can reportedly remove contaminants from the saturated zone. However, the slow transport rates of dissolved contaminants in the aqueous phase to the air-water interface limit removal effectiveness. Air sparging is expected to significantly increase this rate of contaminant transport within soil macropores that are developed (Noonan et al., 1993), especially in the smear zone/capillary fringe.

Schematics showing the two most common configurations of an SVE/sparging system are depicted in Figure L5-1. Figure L5-1 shows vertical and horizontal well configurations; other configurations such as a combination of vertical and horizontal wells, are also possible. The optimal configuration for implementation of SVE/sparging at a given site at McClellan AFB will depend on the lithology, contaminant distribution, and size of the targeted treatment area.

RDD10012E26.WP5



SVE wells are installed in the vadose zone, generally in close proximity to the groundwater table. Vapor extraction and contaminant removal is achieved with an aboveground system consisting of an air/water separator, vacuum blower, and offgas treatment system. An air sparging system consists of a well screened only in the saturated zone and an aboveground, oil-free compressor that is used to inject air into the well. Under certain circumstances an alternative injection gas, such as nitrogen, can be injected. For example, nitrogen sparging could be employed to avoid disruption of natural anaerobic biodegradation of contaminants.

The design of an air sparging system requires: the knowledge of subsurface properties such as air permeability, soil particle size, soil stratification, soil classification, and groundwater behavior; identification of injection and extraction well locations and design; desired air flows and expected SVE offgas contaminant concentrations; and the selection and sizing of aboveground equipment.

#### **Development Status**

A recent review (Camp, Dresser and McKee, Inc., 1992) listed 20 sites that have been remediated using SVE/sparging. In approximately half of those sites, chlorinated VOCs (PCE, TCE, TCA, etc.) were the primary contaminants. The technology has primarily been applied at sites with fairly homogeneous, permeable soils or highly fractured rock formations. Of the 20 sites identified, only two had depths to groundwater of roughly 100 feet bgs (90 and 135 feet bgs).

There are a number of companies that claim to have air sparging experience. The most aggressive promoters of the technology are Groundwater Technology and Vapex Environmental Technologies, Inc. (VAPEX). CH2M HILL has had mixed success with sparging. In some cases sparging has been very successful, but on other projects the results have been less conclusive. A perceived limitation of air sparging is that much of the published literature has not received peer review, and many of the failures of sparging are not reported. Therefore the applications and potential benefits may sometimes be overstated. However, this limitation is beginning to change as consultants and university researchers have begun to provide a more critical analysis of air sparging.

### **Potential Benefits**

This subsection describes the performance, advantages and disadvantages, and cost benefits associated with SVE/sparging. This information is intended to provide a basis for evaluating the potential benefits of implementing the technology as part of the overall McClellan AFB groundwater cleanup program.

# **General Performance**

The performance of SVE/sparging is measured by its ability to enhance contaminant mass removal from the subsurface.

### Effectiveness

- Expected to be effective for removal of prevalent VOCs in subsurface at McClellan AFB. Contaminant removal will be most effective in the smear zone/capillary fringe, but removal effectiveness in saturated zone is uncertain.
- Contaminant removal efficiency will depend on soil stratigraphy, soil air permeability, aquifer characteristics, well layout, and process control.

#### Robustness

- VOCs are amenable to removal by SVE/sparging.
- Semi-VOCs and nonvolatile organics are not physically removed by stripping but may be biodegraded.
- Potentially effective over a wide range of concentrations. In general, mass removal rates are higher when contaminant concentrations are greater.
- System efficiency may be reduced by chemical or biological fouling of well screens.
- A properly designed monitoring and control system is required to maintain operational consistency and identify process upsets.

#### **Potential Risk Reduction**

- Removing contaminant mass from the vadose zone and smear zone reduces the risk of continuing groundwater contamination.
- Enhancing contaminant mass removal rates may reduce the time required to reach groundwater remediation goals.

## **Advantages Compared to Other Technologies**

- SVE/sparging can potentially enhance removal of contaminants from the smear zone, which is otherwise difficult to treat.
- Contaminant desorption from soils in the saturated zone may be enhanced through the induced mixing and turbulence at soil-air-water interfaces, primarily in macropores.

- VOCs removed in the vapor phase are generally less expensive to treat than those removed in the liquid phase.
- Treatment of aerobically biodegradable organics may be promoted.
- SVE/sparging in conjunction with pump-and-treat can potentially reduce remediation time compared to pump-and-treat alone.

## **Disadvantages Compared to Other Technologies**

- SVE/sparging may not effectively remove contaminants from groundwater. Air channeling is likely to occur, resulting in poor treatment in saturated zone.
- Horizontal channeling can reduce effectiveness and result in the uncontrolled migration of contaminants.
- Biological fouling and metals precipitation on well screens can occur, reducing effectiveness.
- Naturally occurring anaerobic degradation of some chlorinated organics may be inhibited.
- Air bubbles can become trapped in saturated macropores limiting overall contaminant removal and oxygen transfer.

## **Relative Cost Benefit**

The cost benefit of SVE/sparging would result from increased rates of contaminant removal that could shorten the pump-and-treat operation time. Cost benefit should be evaluated through an analysis of estimated savings associated with the reduced operation time of the pump-and-treat system compared to the capital and operation costs of the SVE/sparging system.

## **Potential Locations**

SVE/sparging is most effective when applied to the removal of contaminants from the smear zone in highly permeable soils with relatively low heterogeneity. Implementation of this technology at McClellan AFB would be most effective when applied in areas with high contaminant levels in the smear zone/capillary fringe subsurface hot spots. This type of application would provide source reduction in the smear zone, reducing the potential for long-term contamination of groundwater.

Because moderate-to-high permeabilities are required, hotspot locations in OU C and OU D are potentially suitable for SVE/sparging application at the Base. However, a thorough review of subsurface characterization data would be needed to select an

RDD10012E26.WP5

exact location with the appropriate conditions (with respect to permeability, heterogeneity, and contaminant distribution) for implementation.

#### Approach

#### **Information Needs and Sources**

Table L5-1 provides a summary of the information needs and sources for implementation of SVE/sparging.

#### Information Gathering and Review

Information on SVE/sparging collected to date includes published literature, conference presentations, vendor literature and interviews, and consultations with CH2M HILL experts (see Works Cited section). The first step for implementation of this technology should be a detailed review of case studies of actual applications of the technology and of McClellan AFB subsurface characterization data. The intent of this review would be to evaluate the feasibility and potential effectiveness of SVE/ sparging at the Base and to identify appropriate location(s) for implementation. If the existing site characterization data are not entirely sufficient to determine implementation locations, collection of additional field data, such as soil boring data and/or soil gas measurements may be needed.

#### **Implementation** Issues

- The SVE offgas would have to be treated to reduce VOC concentrations to levels compatible with the Basewide air emissions permit.
- Environmental Improvement Technologies (Billings and Associates, Albuquerque, New Mexico) has been awarded a patent that covers the broad application of air sparging. The applicability of the patent to implementation of SVE/sparging at the Base would need to be investigated.
- The potential for lateral migration of contaminants resulting from horizontal channeling of injected air would have to be minimized through proper location selection and system design and operation. Control of any horizontal migration would be demonstrated during startup of system operation.

#### **Bench-Scale Testing**

No bench-scale testing is needed for the implementation of SVE/sparging at McClellan AFB.

RDD10012E26.WP5

11/7/93

ì

| Information Needs         Project Scale           Pilot         Full           Contaminant Characteristics         S           •         Contaminant Types         S           Soil Gas Concentrations         O,S         P           •         Aqueous Concentrations         O,S         P           •         Treatment Requirements         S         S           Subsurface Characterization         S         S         S           •         Soil Types and Stratigraphy         S         S         P           •         Soil Types and Stratigraphy         S         S         P           •         Groundwater Behavior         S         S         S           •         Mater Chemistry Parameters         S         S         S           •         Water Chemistry Parameters         L,O         P,O         P,O           •         Number and Location of Wells         L,O         P,O         I,O         P,O           •         Number and Location of Wells         L,O         P,O         I,O         P,O           •         Mell Configuration (Diameters and Screened Depth)         L,O         P,O         I,D         P,O           •         Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table L5-1           SVE/Air Sparging           Information Needs and Sources |                                                   |               |          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|---------------|----------|--|
| Information NeedsPilotFullContaminant CharacteristicsSS• Contaminant TypesSS• Soil Gas ConcentrationsO,SP• Treatment RequirementsSSSubsurface CharacterizationSS• Soil Types and StratigraphySS• Air PermeabilitySP• Groundwater BehaviorSP• Groundwater BehaviorSS• Water Chemistry ParametersSSSystem DesignL,OP,O• Number and Location of WellsL,OP,O• Mell Configuration (Diameters and Screened Depth)L,OP,O• Mell Configuration (Diameters and Screened Depth)L,OP,O• Offgas Treatment RequirementsLL• Priping and Control SystemsLP• Primiting RequirementsLL• Preformance CapabilitiesLL• Mass Removal RatesL,OP• Monitoring (Sampling and Analysis Requirements)LP• Operations & MaintenanceLL• Preventative MaintenanceLL• Preventative Maintenance RequirementsLL• SafetyLL,PNotes:LLL = Literature/Experts<br>O = Other Technology Evaluations, Modeling<br>P = Pilot ScaleS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                   | Project Scale |          |  |
| Contaminant Characteristics       S       S         • Contaminant Types       S       S         • Soil Gas Concentrations       S       S         • Aqueous Concentrations       O,S       P         • Treatment Requirements       S       S         Subsurface Characterization       S       S         • Soil Types and Stratigraphy       S       S         • Air Permeability       S       P,S         • Groundwater Behavior       S       S         • Water Chemistry Parameters       S       S         System Design       L,O       P,O         • Well Configuration (Diameters and Screened Depth)       L,O       P,O         • Mumber and Location of Wells       L,O       P,O         • Well Configuration (Diameters and Screened Depth)       L,O       P,O         • Offgas Treatment Requirements       L       L         • Offgas Treatment Requirements       L       L         • Priping and Control Systems       L       L         • Permitting Requirements       L       L         • Patent Requirements       L       L         • Mass Removal Rates       L       L         • Monitoring (Sampling and Analysis Requirements)       L <th></th> <th>Information Needs</th> <th>Pilot</th> <th>Full</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               | Information Needs                                 | Pilot         | Full     |  |
| <ul> <li>Contaminant Types</li> <li>Soil Gas Concentrations</li> <li>Aqueous Concentrations</li> <li>Aqueous Concentrations</li> <li>Treatment Requirements</li> <li>Soil Types and Stratigraphy</li> <li>Soil Types and Stratigraphy</li> <li>Soil Types and Stratigraphy</li> <li>Soil Types and Stratigraphy</li> <li>Groundwater Behavior</li> <li>Groundwater Behavior</li> <li>Water Chemistry Parameters</li> <li>Water Chemistry Parameters</li> <li>System Design</li> <li>Well Configuration (Diameters and Screened Depth)</li> <li>Up Provide Characterization Flow Rates and Pressures</li> <li>Offgas Treatment Requirements</li> <li>L</li> <li>Piping and Control Systems</li> <li>Patent Requirements</li> <li>L</li> <li>Piping and Control Systems</li> <li>L</li> <li>Piping and Control Systems</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>Utility Connections/Installation Requirements</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>Preventative Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contaminant                                                                   | Characteristics                                   |               |          |  |
| <ul> <li>Soil Gas Concentrations</li> <li>Aqueous Concentrations</li> <li>Treatment Requirements</li> <li>Treatment Requirements</li> <li>Soil Types and Stratigraphy</li> <li>Soil Types and Stratigraphy</li> <li>Soil Types and Stratigraphy</li> <li>Soil Types and Stratigraphy</li> <li>Air Permeability</li> <li>Groundwater Behavior</li> <li>Water Chemistry Parameters</li> <li>Water Chemistry Parameters</li> <li>Water Chemistry Parameters</li> <li>System Design</li> <li>Number and Location of Wells</li> <li>Well Configuration (Diameters and Screened Depth)</li> <li>U,O</li> <li>P,O</li> <li>Well Configuration (Diameters and Pressures</li> <li>U,O</li> <li>P,O</li> <li>Injection/Extraction Flow Rates and Pressures</li> <li>U,O</li> <li>Offgas Treatment Requirements</li> <li>L</li> <li>Permitting Requirements</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Utility Connections/Installation Requirements</li> <li>Utility Connections/Installation Requirements</li> <li>L,D</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>L,P</li> <li>Safety</li> <li>L</li> <li>L,P</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>L,P</li> <li>Safety</li> <li>Notes:</li> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                             | Contaminant Types                                 | s             | S        |  |
| <ul> <li>Aqueous Concentrations</li> <li>Treatment Requirements</li> <li>S</li> /ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                             | Soil Gas Concentrations                           | S             | S        |  |
| • Treatment Requirements       S       S         Subsurface Characterization       S       S         • Soil Types and Stratigraphy       S       S         • Air Permeability       S       P         • Groundwater Behavior       S       P.S         • Water Chemistry Parameters       S       S         • Water Chemistry Parameters       S       S         System Design       L,O       P,O         • Number and Location of Wells       L,O       P,O         • Well Configuration (Diameters and Screened Depth)       L,O       P,O         • Mass Treatment Requirements       L       L       L         • Offgas Treatment Requirements       L       L       L         • Priping and Control Systems       L       P       P         • Permitting Requirements       L       L       L         • Performance Capabilities       L       L       P         • Mass Removal Rates       L,O       P       P         • Mass Removal Rates       L       P       P         • Mass Removal Rates       L       P       P         • Utility Connections/Installation Requirements       L       P         • Preventative Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                             | Aqueous Concentrations                            | O,S           | P        |  |
| Subsurface CharacterizationImage: solution of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco | •                                                                             | Treatment Requirements                            | S             | S        |  |
| • Soil Types and Stratigraphy       S       S         • Air Permeability       S       P         • Groundwater Behavior       S       P,S         • Water Chemistry Parameters       S       S         System Design       L,O       P,O         • Number and Location of Wells       L,O       P,O         • Well Configuration (Diameters and Screened Depth)       L,O       P,O         • Injection/Extraction Flow Rates and Pressures       L,O       P,O         • Offgas Treatment Requirements       L       L         • Piping and Control Systems       L       L         • Permitting Requirements       L       L         • Patent Requirements       L       L         • Mass Removal Rates       L,O       P         • Mass Removal Rates       L,O       P         • Monitoring (Sampling and Analysis Requirements)       L       L,P         • Response to Waste Stream Variability       L       P         • Operations & Maintenance       L       L         • Utility Connections/Installation Requirements       L       L,P         • Safety       L       L,P       L,P         Notes:       L       L       L,P         C = Other Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subsurface C                                                                  | haracterization                                   |               |          |  |
| <ul> <li>Air Permeability</li> <li>Groundwater Behavior</li> <li>Groundwater Behavior</li> <li>Groundwater Behavior</li> <li>Groundwater Behavior</li> <li>Water Chemistry Parameters</li> <li>Water Chemistry Parameters</li> <li>S</li> <li>P,S</li> <li>S</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                             | Soil Types and Stratigraphy                       | S             | s        |  |
| <ul> <li>Groundwater Behavior</li> <li>Water Chemistry Parameters</li> <li>Water Chemistry Parameters</li> <li>S</li> <lis< li=""> <li>S</li> <li></li></lis<></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                             | Air Permeability                                  | s             | Р        |  |
| •       Water Chemistry Parameters       S       S         System Design       •       Number and Location of Wells       L,O       P,O         •       Number and Location of Wells       L,O       P,O         •       Well Configuration (Diameters and Screened Depth)       L,O       P,O         •       Injection/Extraction Flow Rates and Pressures       L,O       P,O         •       Offgas Treatment Requirements       L       L       L         •       Priping and Control Systems       L       L       P         •       Permitting Requirements       L       L       L,P         •       Patent Requirements       L       L       L         Performance Capabilities       L       L       L       P         •       Mass Removal Rates       L,O       P       L       L,P         •       Monitoring (Sampling and Analysis Requirements)       L       L,P       P         •       Monitoring (Sampling and Analysis Requirements)       L       P         •       Monitoring (Sampling and Analysis Requirements)       L       P         •       Utility Connections/Installation Requirements       L       L,P         •       Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                             | Groundwater Behavior                              | s             | P.S      |  |
| System Design       I.O       P,O         •       Number and Location of Wells       L,O       P,O         •       Well Configuration (Diameters and Screened Depth)       L,O       P,O         •       Injection/Extraction Flow Rates and Pressures       L,O       P,O         •       Offgas Treatment Requirements       L       L       L         •       Priping and Control Systems       L       L       P         •       Permitting Requirements       L       L       L         •       Patent Requirements       L       L       L         •       Patent Requirements       L       L       L         •       Patent Requirements       L       L       L         •       Mass Removal Rates       L       O       P         •       Monitoring (Sampling and Analysis Requirements)       L       L,P         •       Response to Waste Stream Variability       L       P         Operations & Maintenance       L       L       P         •       Utility Connections/Installation Requirements       L       L,P         •       Safety       L       L,P       L,P         •       Safety       L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                             | Water Chemistry Parameters                        | s             | s        |  |
| <ul> <li>Number and Location of Wells</li> <li>L,O</li> <li>P,O</li> <li>Well Configuration (Diameters and Screened Depth)</li> <li>L,O</li> <li>P,O</li> <li>Injection/Extraction Flow Rates and Pressures</li> <li>L,O</li> <li>P,O</li> <li>Offgas Treatment Requirements</li> <li>L</li> <li>L</li> <li>Piping and Control Systems</li> <li>L</li> <li>Permitting Requirements</li> <li>L</li> <li>P</li> <li>Permitting Requirements</li> <li>L</li> <li>L,P</li> <li>Patent Requirements</li> <li>L</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>L,P</li> <li>Response to Waste Stream Variability</li> <li>L</li> <li>P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>L,P</li> <li>Safety</li> <li>L</li> <li>L,P</li> <li>Notes:</li> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | System Desig                                                                  | μ                                                 |               |          |  |
| <ul> <li>Well Configuration (Diameters and Screened Depth)</li> <li>L,O</li> <li>P,O</li> <li>Injection/Extraction Flow Rates and Pressures</li> <li>L,O</li> <li>P,O</li> <li>Offgas Treatment Requirements</li> <li>L</li> <li>L</li> <li>Piping and Control Systems</li> <li>L</li> <li>Permitting Requirements</li> <li>L</li> <li>L,P</li> <li>Patent Requirements</li> <li>L</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>L,O</li> <li>P</li> <li>Performance Capabilities</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>L,P</li> <li>Response to Waste Stream Variability</li> <li>P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>P</li> <li>Safety</li> <li>Notes:</li> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                             | Number and Location of Wells                      | L,O           | P,O      |  |
| <ul> <li>Injection/Extraction Flow Rates and Pressures</li> <li>U,O</li> <li>Offgas Treatment Requirements</li> <li>Piping and Control Systems</li> <li>L</li> <li>Piping and Control Systems</li> <li>L</li> <li>Permitting Requirements</li> <li>L</li> <li>L,P</li> <li>Patent Requirements</li> <li>L</li> <li>L</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>L,O</li> <li>P</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>L,P</li> <li>Response to Waste Stream Variability</li> <li>L</li> <li>P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>L,P</li> <li>Safety</li> <li>L</li> <li>L,P</li> <li>Notes:</li> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                             | Well Configuration (Diameters and Screened Depth) | L,O           | P,O      |  |
| <ul> <li>Offgas Treatment Requirements</li> <li>Piping and Control Systems</li> <li>L</li> <li>Permitting Requirements</li> <li>L</li> <li>L,P</li> <li>Patent Requirements</li> <li>L</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L,O</li> <li>P</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>P</li> <li>Safety</li> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                             | Injection/Extraction Flow Rates and Pressures     | L,O           | P,O      |  |
| <ul> <li>Piping and Control Systems</li> <li>Permitting Requirements</li> <li>Patent Requirements</li> <li>L</li> <li>L,P</li> <li>Patent Requirements</li> <li>L</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>L,P</li> <li>Response to Waste Stream Variability</li> <li>L</li> <li>P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>P</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>L,P</li> <li>Safety</li> <li>L</li> <li>L,P</li> <li>L,P</li> <li>L,P</li> <li>E Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                             | Offgas Treatment Requirements                     |               | L        |  |
| <ul> <li>Permitting Requirements</li> <li>Patent Requirements</li> <li>L L,P</li> <li>L L,P</li> <li>L</li> <li>L</li> <li>Performance Capabilities</li> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L L,P</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L L,P</li> <li>Response to Waste Stream Variability</li> <li>L P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>L P</li> <li>Safety</li> <li>L L,P</li> <li>Notes:</li> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                             | Piping and Control Systems                        |               | P        |  |
| <ul> <li>Patent Requirements</li> <li>L</li> <li>L</li> <li>Performance Capabilities         <ul> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>L, O</li> <li>P</li> </ul> </li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>L</li> <li>L, P</li> <li>Response to Waste Stream Variability</li> <li>L</li> <li>P</li> <li>Operations &amp; Maintenance         <ul> <li>Utility Connections/Installation Requirements</li> <li>L</li> <li>P</li> </ul> </li> <li>Operative Maintenance Requirements</li> <li>L</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>Notes:         <ul> <li>L = Literature/Experts</li> <li>O = Other Technology Evaluations, Modeling</li> <li>P = Pilot Scale</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                             | Permitting Requirements                           | L             | L,P      |  |
| Performance Capabilities       L,O       P         • Mass Removal Rates       L,O       P         • Monitoring (Sampling and Analysis Requirements)       L       L,P         • Response to Waste Stream Variability       L       P         Operations & Maintenance       L       P         • Utility Connections/Installation Requirements       L       P         • Preventative Maintenance Requirements       L       L,P         • Safety       L       L,P         Notes:       L       L,P         L       L,P       L,P         Potent Technology Evaluations, Modeling       P         P       Pilot Scale       Valuations, Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                             | Patent Requirements                               | L             | L        |  |
| <ul> <li>Mass Removal Rates</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Response to Waste Stream Variability</li> <li>P</li> <li>Operations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>Utility Connections/Installation Requirements</li> <li>P</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>L</li> <li>L, P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Performance                                                                   | Capabilities                                      |               |          |  |
| <ul> <li>Monitoring (Sampling and Analysis Requirements)</li> <li>Response to Waste Stream Variability</li> <li>L, P</li> <li>Coperations &amp; Maintenance</li> <li>Utility Connections/Installation Requirements</li> <li>Preventative Maintenance Requirements</li> <li>L</li> <li>P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>L, P</li> <li>L, P</li> <li>L, P</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>L, P</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>L, P</li> <li>L</li> <li>L, P</li> <li>L</li> <li>L, P</li> <li>Safety</li> <li>L</li> <li>L, P</li> <li>L</li> <li>L<td>•</td><td>Mass Removal Rates</td><td>L,O</td><td>Р</td></li></ul>                                                                                                                                                                                                                                                                                                                                                                              | •                                                                             | Mass Removal Rates                                | L,O           | Р        |  |
| • Response to Waste Stream Variability       L       P         Operations & Maintenance       Image: Connections/Installation Requirements       L       P         • Utility Connections/Installation Requirements       L       P         • Preventative Maintenance Requirements       L       L, P         • Safety       L       L, P         Notes:       L       L, P         Get Cher Technology Evaluations, Modeling       P       Pilot Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                             | Monitoring (Sampling and Analysis Requirements)   | L             | L,P      |  |
| Operations & Maintenance       L       P         •       Utility Connections/Installation Requirements       L       P         •       Preventative Maintenance Requirements       L       L,P         •       Safety       L       L,P         Notes:       L       L,P       L       L,P         Notes:       0 = Other Technology Evaluations, Modeling       P       Pilot Scale       F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                             | Response to Waste Stream Variability              | L             | Р        |  |
| <ul> <li>Utility Connections/Installation Requirements</li> <li>Preventative Maintenance Requirements</li> <li>Safety</li> <li>L</li> <li>L,P</li> <li>L,P</li> <li>L</li> <li>L,P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Operations &                                                                  | Maintenance                                       |               |          |  |
| Preventative Maintenance Requirements     L     L,P     Safety     L     L,P     L     L,P     L     L,P     L     L     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                             | Utility Connections/Installation Requirements     | L             | Р        |  |
| Safety     L     L,P  Notes:     L = Literature/Experts     O = Other Technology Evaluations, Modeling     P = Pilot Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                             | Preventative Maintenance Requirements             | L             | L.P      |  |
| Notes:<br>L = Literature/Experts<br>O = Other Technology Evaluations, Modeling<br>P = Pilot Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                             | Safety                                            | Ĺ             | L,P      |  |
| L = Literature/Experts<br>O = Other Technology Evaluations, Modeling<br>P = Pilot Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes:                                                                        |                                                   |               | <u> </u> |  |
| O = Other Technology Evaluations, Modeling<br>P = Pilot Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L = Literature/Experts                                                        |                                                   |               |          |  |
| P = Pilot Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O = Other Technology Evaluations, Modeling                                    |                                                   |               |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = Pilot Scale                                                               |                                                   |               |          |  |
| S = Sampling Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S =                                                                           |                                                   |               |          |  |

\_

----

-----

------

CVOR365/026.WP5

,

.

# **Pilot-Scale Testing**

### **Objectives**

- Determine air permeability of vadose zone soils and evaluate heterogeneities in the saturated and unsaturated zones in the target area.
- Determine mass removal rates for each contaminant by SVE, and the net increase in the removal rate by sparging.
- Establish a radius of influence for the sparging and vapor extraction wells at varying flow rates and pressures.
- Provide a basis for the determination of number and location of wells.
- Determine the offgas characteristics in order to identify offgas treatment system details.
- Develop design and operating criteria for aboveground equipment for a fullscale system.
- Evaluate the efficacy of sparging at >100-foot bgs depth and assess operational problems associated with depth.

#### Approach

Pilot-scale testing would involve the installation of one or more extraction and sparging wells that would be used to develop design and operation parameters necessary for full-scale implementation. The specific objectives and approach of the pilottesting program would be refined and detailed following additional information gathering and review. The general approach to pilot-scale testing is outlined below.

An economical location for conducting a SVE/sparging test would be Site S in OU D. Significant cost savings could be achieved because vapor extraction wells/equipment, piezometers, and an offgas treatment system are installed and operational. Also, site characterization, air permeability, and SVE performance data exists for that location. New equipment required for the SVE/sparging pilot test would be limited to one or more injection wells and associated aboveground compressors for air injection.

- 1. Confirm appropriateness of Site S for SVE/sparging pilot test.
- 2. Prepare system installation and operation workplan.
- 3. Estimate required sparging pressure based on soil permeability, depth below groundwater table, and expected friction loses.

- 4. Install one or more injection wells.
- 5. With the extraction wells at equilibrium, begin air injection at a target pressure.
- 6. Operate the system until pressure at piezometers and offgas contaminant concentrations stabilize.
- 7. Operate the system at different pressures and/or flow rates, and evaluate effects of intermittent blowers and compressors.
- 8. Analyze data to evaluate performance, incremental contaminant removal due to sparging, and potential benefit of the SVE/sparging technology to the overall groundwater remediation program.
- 9. Decide whether to proceed with implementation at full-scale.

### **Full-Scale Implementation**

Pilot-scale results are necessary to complete a full-scale system design. However, an example conceptual design is outlined below to illustrate the major elements of a full-scale system and to provide a basis for a rough order-of-magnitude cost estimate. Rather than developing a conceptual design for a particular location, a modular approach was used to develop an estimated range of costs per unit acre for full-scale implementation.

The example conceptual design is based on the following key assumptions:

- Each module consists of four vertical extraction and four vertical sparging wells piped to a skid containing an air/water separator, continuous-duty vacuum blower, oil-free air compressor, and piping connections to the offgas and groundwater treatment systems. A process schematic is provided in Figure L5-2. A conceptual layout of modules at a hypothetical hotspot is depicted in Figure L5-3.
- The spacing of the extraction wells varies from 40 to 70 feet on center, based on initial estimates of radius of influence. This range is based on:
  - A soil permeability of 0.1 to 1.0 darcy
  - An extraction vacuum applied to the subsurface of 40 inches of  $H_2O$
- Approximate coverage by one module ranges from 6,400 ft<sup>2</sup> (6.8 modules/acre) to 19,600 ft<sup>2</sup> (2.2 modules/acre), depending on well spacing.



t ,

=1.0



1=1.0

- Approximate ranges of flows from each module are 10 to 100 cfm.
- For every 10 extraction and injection wells there will be 1 groundwater monitoring well.
- Offgas treatment is localized at the hotspot, and shared by all modules.
- Sparging flow rates are 5 to 50 cfm per module at an injection pressure of 10 to 15 psi.

### **Technology Limitations and Uncertainties**

The critical limitations and uncertainties of technology implementation are below.

- The extent to which subsurface heterogeneities will decrease the effectiveness of sparging or will lead to uncontrolled lateral movement of contaminants cannot be verified until the full-scale system begins operation.
- Researchers have observed that air sparging may create relatively few, small, widely spaced, and stationary air channels in the saturated zone. Under these conditions mass transfer requirements may significantly limit contaminant removal, particularly from the saturated zone (Johnson, 1993).
- Low soil permeabilities (<0.1 darcy) can significantly reduce the radius of influence of extraction and sparging wells. Because the number of wells required to treat a given area increases as the radius of influence decreases, technology application in areas of relatively low permeability will result in significantly higher costs, and may decrease or eliminate the cost benefits of implementation.
- There is limited previous experience with sparging at depths >100 feet, but no theoretical limitations prevent deep applications. This lack of deep application experience creates the need for more extensive monitoring than that typically employed for near-surface applications, especially during pilot-scale testing.
- Verification of acceptable site characteristics (such as air permeability, subsurface heterogeneities, and contaminant distribution) at target hot spots is required prior to technology implementation.

### Schedule

A possible implementation schedule is shown in Figure L5-4.

#### Cost

This section presents an estimated range for order-of-magnitude implementation costs based on the conceptual design. Implementation costs include costs associated with: ongoing literature review, pilot-scale testing, and full-scale capital expenses and annual operations and maintenance. The scope of each of these cost-related activities is summarized below:

- Literature Review. Technology researchers are likely to further develop the technology such that enhancements (optimization) and limitations will be better understood. The decision to proceed with further implementation of SVE/sparging requires ongoing assessment and review of these research results. While this activity is not a significant cost factor of implementation, it is an important implementation activity.
- **Pilot-Scale Testing.** This activity includes costs associated with scope and workplan development, contract procurement, equipment procurement, system installation, system operation, demobilization, sampling and analysis (system monitoring), evaluation of system performance, and reporting.
- **Full-Scale Capital.** Capital costs are direct and indirect costs required to initiate and install the technology system components, including (but not limited to) engineering design, mobilization and demobilization of equipment and people, site construction (i.e., well installation) activities, contractor bonding and insurance, equipment procurement and installation, licensing and permitting, health and safety, and supervision during construction.
- Full-Scale Operation and Maintenance. Operation and maintenance (O&M) costs represent those costs which would be incurred during each year of operation from initial startup to final shutdown of the full-scale system. O&M costs include operation and maintenance labor, power, sampling and analysis, and residual waste stream treatment. Since annual O&M costs occur over a period of years, future costs have been discounted to the present year's equivalent value (i.e., the present value cost) using 5 percent interest, so that annual costs remain comparable. Actual annual costs are likely to be much higher during the first year(s)

RDD10012E26.WP5



-

۱

•

of operation as the system is commissioned and optimized for operation, and due to higher chemical usage rates and associated labor required for treating higher initial concentrations. Therefore, the annual costs are intended to represent the anticipated average yearly cost of operation over the life of the system.

A contingency of 30 percent has been applied to the full-scale implementation cost to account for possible project cost increases due to scope and bid variations that typically occur with hazardous waste remediation projects. These increases are typically caused by the changes which normally occur as part of final design and implementation, based on observation of actual field conditions/contamination, and factors which affect the cost of subcontracted services, such as labor and material shortages. Not included in the estimates are any agency or Air Force administrative costs, nor any costs associated with modifications of the existing groundwater treatment system(s).

Typically, order-of-magnitude cost estimates for general construction projects are intended to reflect an accuracy of within 50 percent greater to 30 percent less than actual costs. The estimates summarized below are expected to be within these ranges; however, there is greater uncertainty of accuracy as a result of the lesser degree of development associated with this innovative technology compared to general construction technologies. Current pricing data based on quoted equipment costs, construction cost data (e.g., Means, 1993), previous local project experience, and engineering judgment have been used to generate the estimates, using adjustments for local McClellan AFB costs when available. Final project costs will depend on actual labor and material costs, actual site conditions at the time of implementation, productivity, competitive market conditions, final project scope and schedule, contractors selected to perform activities, and many other variables. As a result, the final project costs will differ from the exact value of any estimates presented here.

The following order-of-magnitude implementation costs are estimated for SVE/sparging:

- Literature review will require approximately \$12,000 over a period of one year.
- Pilot-scale testing is estimated to cost approximately \$135,000 if conducted using the existing SVE pilot system at Site S in OU D.

Full-scale implementation costs on a per acre basis are summarized in Table L5-2. The estimated costs for construction and operation of a full-scale system range from approximately \$2M/acre (for 70-foot well spacing and 3 years' operation) to \$10.6M/acre (for 40-foot well spacing and 8 years' operation). Key assumptions associated with the implementation cost estimate, in addition to those previously described, include:

RDD10012E26.WP5

- Full-scale costs are reported on a per acre basis; costs were estimated using a system comprised for a five-module (20 extraction wells) system and converted to per acre costs.
- Nine man-days/well plus drilling costs are needed to install wells and piezometer nests. This includes drilling, well completion and development, and surface plumbing.
- Offgas treatment cost is \$5/lb VOCs, and is a significant O&M cost factor.
- Each module contains 500 feet of PVC pipe.
- Contaminants are removed at an average rate of 50 lbs/day per module over the operational period of the system.
- System operational time is assumed 50 percent, or 4,380 hours/year/well.
- System monitoring includes 45 man-days per year for system operation and maintenance, and the collection of five samples per module for laboratory analysis, quarterly.

| Table L5-2           SVE/Sparging           Order-of-Magnitude Implementation Cost Summary                                                     |                                                                                                            |                                              |                                     |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|-------------------|
|                                                                                                                                                | Range of Costs (\$/acre)                                                                                   |                                              |                                     |                   |
| Activity                                                                                                                                       | Low                                                                                                        | Low -<br>Intermediate <sup>b</sup>           | Intermediate<br>- High <sup>c</sup> | High <sup>4</sup> |
| Full-Scale Capital                                                                                                                             | 920,000                                                                                                    | 920,000                                      | 2,850,000                           | 2,850,000         |
| Full-Scale O&M<br>(Present Worth for All<br>Years)                                                                                             | 1,060,000                                                                                                  | 2,520,000                                    | 3,290,000                           | 7,800,000         |
| Full-Scale Implementation<br>Cost                                                                                                              | 1,980,000                                                                                                  | 3,440,000                                    | 6,140,000                           | 10,650,000        |
| Notes:<br>*Based on 70 feet well spacing<br>*Based on 70 feet well spacing<br>*Based on 40 feet well spacing<br>*Based on 40 feet well spacing | and 3 years of ope<br>and 8 years of ope<br>and 3 years of ope<br>and 8 years of ope<br>and 8 years of ope | eration.<br>eration.<br>eration.<br>eration. |                                     |                   |
| Other significant assumptions                                                                                                                  | include:                                                                                                   |                                              |                                     |                   |
| - \$5/lb VOCs offgas treatm                                                                                                                    | nent cost                                                                                                  |                                              |                                     |                   |
| <ul> <li>50 lbs/day per module av</li> </ul>                                                                                                   | erage removal rate                                                                                         |                                              |                                     |                   |

- 50 los/day per module average removal rate
- 50 percent system on-time (to allow for cyclical operation)
- Annual sampling and analysis, and performance evaluations included in operational cost
- 30 percent contingency factor applied

## Works Cited

Angell, K. G. 1992. In Situ Remedial Methods: Air Sparging, The National Environmental Journal, February 1992, pp. 20-23.

Billings, et al. 1993. Subsurface Contaminant Remediation. Biodegradation and Extraction Methods and Apparatuses, U.S. Patent 5,221,159.

Boersma, P., K. Piontek, and T. Simpkin. Internal memorandum to CH2M HILL staff: re Air Sparging Issues, May 11, 1993.

Camp, Dresser, and McKee, Inc. 1992. Technology Assessment of Soil Vapor Extraction and Air Sparging. PB93-100154, September 1992.

Eisenbeis, J. J., D. D. Wilson, and B. E. Allen. Use of Horizontal Well for Soil Vapor Extraction in a Low Permeability Soil, Presented at AIChE 1993 Summer Meeting, August 1993, Seattle, Washington.

RDD10012E26.WP5

Johnson, P. E., M. W. Kemblowski, J. D. Colthart, D. L. Byers, and C. C. Stanley. A Practical Approach to the Design, Operation, and Monitoring of In Situ Soil Venting Systems, date unknown.

Johnson, R. 1993. Oregon Graduate Institute. Presentation at REMCON '93. September 1993, Portland, Oregon.

Johnson, R. L., W. Bagby, M. Perrott, and C. Chen. 1992. Experimental Examination of Integrated Soil Vapor Extraction Techniques. Presented at: Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection and Restoration, November 1992, Houston, Texas.

Marley, M. C., D. J. Hazebrouck, and M. T. Walsh. The Application of In Situ Air Sparging as an Innovative Soils and Ground Water Remediation Technology, reprinted from the Spring 1992 issue of Ground Water Monitoring Review.

Noonan, D. C., W. K. Glynn, and M. E. Miller. 1993. Enhance Performance of Soil Vapor Extraction, June 1993, pp. 55-61.

Appendix L6

(

 $\bigcap$ 

#### **TECHNICAL MEMORANDUM L6**

CHEMHILL

| PREPARED FOR: | McClellan Air Force Base                                                                              |
|---------------|-------------------------------------------------------------------------------------------------------|
| DATE:         | November 7, 1993                                                                                      |
| SUBJECT:      | Electron Beam Treatment Implementation Plan<br>Groundwater OU RI/FS Report<br>Delivery Order No. 5066 |
| PROJECT:      | SAC28722.66.NT                                                                                        |

#### **Technology Overview**

#### Description

Electron Beam (E-Beam) Treatment is a developing technology that can be used to treat either liquid waste streams, such as contaminated groundwater, or gaseous waste streams. This Implementation Plan has been developed for groundwater treatment applications.

Electron Beam Treatment is an innovative advanced oxidation process (AOP) that can destroy organic compounds in aqueous solution. Known generally as High Energy Electron Irradiation, the process involves the irradiation of a thin aqueous stream with high-energy electrons. This results in the formation of highly reactive, short-lived chemical species. These transient reactive species initiate chemical reactions with dissolved organic compounds. In most cases these compounds are oxidized to carbon dioxide, water, and inorganic species, although organic byproducts of transformation can also be formed (EPA SITE, 1992).

High energy electron accelerators have been used for years in industry for the crosslinking of polyethylene, the polymerization of lubricants, and the vulcanization of rubber (Nickelsen et al., 1992). Electron accelerators function by using a current to produce a stream of electrons which are accelerated by applying an electric field generated at a given voltage. The number of electrons generated per unit time is proportional to the beam current and thus the beam power. The amount of energy from the beam that is absorbed by an irradiated material per unit time is called dose. The absorbed dose depends on the type and thickness of the material, the beam power, and the length of time the material is exposed to the electron beam (Westinghouse, 1993). The dose is determined by measuring the temperature increase of the aqueous stream as a result of beam contact.

In all E-Beam accelerators, electrons are formed in a high vacuum by thermal emission from a hot surface, usually a tungsten filament or oxide coated surface. The

RDD10012E27.WP5

electrons are focused into a beam and accelerated through a DC voltage potential, typically 300 kV to 5 MV. In E-Beam treatment, a liquid waste stream either passes through  $\vartheta$  slit or flows over a weir that forms a continuous sheet of liquid that is directed across a window, as shown in Figure L6-1. The flow over the window is intended to maintain a uniform thickness of the liquid.

The irradiation of aqueous streams by an electron beam results in the formation of highly energized species, the most reactive of which are aqueous electrons  $(e_{aq})$  hydrogen radicals (H•) and hydroxyl radicals (OH•) (Nickelsen et al., 1992). These species are short-lived as they either quickly recombine or transfer their energy into other compounds present in solution. The subsequent mechanisms of reaction with hazardous compounds, such as chlorinated and nonchlorinated hydrocarbons, are understood to be similar to those of other AOPs; however, the proportions of the individual reactive species generated by E-Beam differ significantly from other AOPs, which may result in increased effectiveness for chlorinated hydrocarbons.

The treatment efficiency of the process is related to three major parameters: contaminant concentrations, irradiation dose, and water quality. Nickelsen et al. (1992) report that experimental data collected during the irradiation of potable water and wastewater containing BTEX compounds indicate that solute destruction is first order with respect to dose. Water chemistry can seriously affect removal efficiencies due to both scavenging effects and the formation of by-products. The presence of scavengers in the aqueous treatment stream causes the reactive species to be consumed before initiating the desired destruction reactions. Principal scavengers include dissolved oxygen, bicarbonate/carbonate, nitrate, and dissolved organic carbon.

### **Development Status**

- The technology has been in existence for 30 years for applications such as sterilization of medical supplies, disinfection of wastewater, and food preservation.
- A full-scale plant (120 gpm) is in operation at the Miami-Dade Central Water District wastewater treatment Plant in Miami, Florida. It is known as the Electron Beam Research Facility (EBRF), and can be used for pilot testing (but requires a tanker truck volume of the sample to be tested).
- Two technology vendors have been identified: High Voltage Environmental Applications (HVEA) and Raychem Corporation. Each has mobile units under construction. Raychem appears to be further along in equipment development, though HVEA, which is associated with the EBRF, appears to have further developed E-Beam theory. (Zappit Technology has developed an E-Beam system for treating contaminated gas streams, but not liquid waste steams.)



- An EPA SITE demonstration is planned for early next year at Savannah River by HVEA, although it has not been determined whether the project will involve treatment of chlorinated organics or benzene contaminated groundwater.
- Bench-scale testing of chlorinated VOCs has been performed by vendors.

## **Potential Benefits**

This section describes the performance, advantages and disadvantages, and cost benefits associated with E-Beam treatment of extracted groundwater. This information is intended to provide a basis for evaluating the potential benefits of implementing this technology at the Base as an innovative alternative to standard groundwater treatment processes, such as aqueous phase carbon adsorption, air stripping, and conventional AOPs (e.g., UV/peroxide, UV/ozone, ozone/peroxide oxidation).

### **General Performance**

### Effectiveness

- E-Beam technology vendors report that the technology can achieve 95 to 99 percent destruction efficiency of halogenated and nonhalogenated organics in treatment of single contaminant liquid streams.
- Data reviewed on treatment of multiple-contaminant streams indicates that the technology is capable of achieving effective removal of certain chlorinated aliphatic hydrocarbons (CAHs) and chlorinated and nonchlorinated aromatic compounds, but high treatment efficiencies were not always achieved.
- E-Beam treatment is capable of treating amenable contaminants to low  $\mu g/l$  levels.

#### Robustness

- E-Beam treatment efficiency appears to vary considerably for different compounds. The process is capable of achieving effective treatment of chlorinated ethenes (including TCE and PCE) and trihalomethanes, whereas chlorinated ethanes (such as 1,1,1-TCA and 1,1-DCA) are less effectively treated.
- The E-Beam technology does not treat ketones effectively.
- The E-Beam system can potentially handle a range of flows and concentrations by adjusting dose and via the use of modular units.

• High concentrations of scavengers (alkalinity, dissolved oxygen, or dissolved organic carbon) in the liquid stream increases the dose required to achieve a given level of treatment.

## **Potential Risk Reduction**

It is difficult to quantify risk reduction provided by E-Beam treatment because the potential benefit of the technology is associated with its potential to reduce contaminant mass in extracted groundwater more economically than standard treatment technologies. E-Beam treatment will not provide more extensive treatment than standard technologies, but it would reduce contaminant levels compared to no treatment. Because it is a destruction technology, E-Beam treatment causes a reduction in contaminant mass compared to nondestructive technologies that transfer contaminants to another phase.

## **Advantages Compared to Other Technologies**

- Destructive technology with no residual streams (other than possible reaction by-products in the effluent).
- Nonselective treatment may be effective for at least simple mixtures of compounds.
- Technology expected to be robust with respect to changing flows and concentrations.

### **Disadvantages Compared to Other Technologies**

- Operation may have high energy requirements.
- Not yet demonstrated at the pilot-scale level for chlorinated aliphatic hydrocarbons.
- Treatment effectiveness varies considerably between contaminant types. Chlorinated alkanes and ketones may not be effectively treated.
- Residual by-products include formaldehydes, formic acid, ozone.
- May not achieve treatment requirements without using very high doses resulting in relatively high operating costs.
- Some evidence suggests that the treatment effectiveness may be significantly reduced for complex mixtures of contaminants like those found in McClellan AFB groundwater.

## **Relative Cost Benefit**

The cost benefit of E-Beam treatment would result from its use in place of a more costly ex situ groundwater treatment technology or through its use in combination with other technologies reducing overall treatment costs. Cost benefits should be evaluated on the basis of \$/gallon of groundwater treated to a given quality.

### **Potential Locations**

The potential application locations (uses) are the treatment of extracted groundwater at the groundwater treatment systems associated with pump-and-treat operations at the Base.

#### Approach

## **Information Needs and Sources**

Table L6-1 summarizes information needs and sources for implementation of E-Beam treatment.

#### Information Gathering and Review

Technology information reviewed to date includes published literature, vendor information and data, and vendor interviews. Also, Westinghouse staff were interviewed about the planned E-Beam demonstration project at the DOE Savannah River site. New information should be reviewed as it becomes available, especially the results of the Savannah River demonstration.

#### **Implementation Issues**

- A major implementation constraint at the present is the unavailability of pilotand full-scale equipment. Pilot units are reportedly being constructed by both equipment vendors, but there is only one full-scale system in existence. For this reason, it is difficult or impossible to anticipate implementation factors, such as scale-up problems, full-scale equipment durability and treatment reliability, long-term treatment performance, and full-scale capital and operating costs.
- The ability of E-Beam systems to treat all of the contaminants requiring reduction through treatment in the complex mixtures of contaminants found in Base groundwater is unproven. Thus the feasibility of implementing E-Beam treatment at McClellan AFB cannot currently be determined.

| Table L6-1           Electron Beam Treatment           Information Requirements and Sources                         |             |       |                                       |
|---------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------------------------|
|                                                                                                                     | Info Source |       | · · · · · · · · · · · · · · · · · · · |
| for Pilot and Full-Scale Tests                                                                                      | Bench       | Pilot | Full                                  |
| Feed Stream Characteristics:                                                                                        |             |       |                                       |
| • Flow                                                                                                              |             | S     | S                                     |
| Contaminant types                                                                                                   | S           | S     | S                                     |
| <ul> <li>Contaminant concentrations</li> </ul>                                                                      | S           | S     | S,P                                   |
| Treatment goals                                                                                                     | L           | L     | L                                     |
| <ul> <li>Alkalinity, dissolved organic carbon</li> </ul>                                                            | S           | S     | S,P                                   |
| Flow/Concentration variability                                                                                      | S           | S     | S,P                                   |
| System Design: Physical Configuration                                                                               |             |       |                                       |
| • Unit Size                                                                                                         | v           | l v l | P.V                                   |
| Residence Time                                                                                                      | v           | LV    | P.V                                   |
| Concrete pad requirement                                                                                            | -           | v     | P,V                                   |
| System Design: Equipment Requirements                                                                               |             |       |                                       |
| • O & M Requirements                                                                                                | -           | V V   | P.V                                   |
| • Power Requirements                                                                                                | v           | V V   | P,V                                   |
| Utility connections                                                                                                 |             | v     | P,V                                   |
| Performance Capabilities                                                                                            |             |       |                                       |
| Destruction Removal Efficiencies                                                                                    | L           | B,V,L | P                                     |
| Response to Feed Stream Variability                                                                                 | L           | B,V,L | P                                     |
| <ul> <li>Monitoring (Sampling and Analysis</li> </ul>                                                               |             |       |                                       |
| Requirements)                                                                                                       | L,V         | L     | L                                     |
| Electron Dosage Requirements                                                                                        | L,V         | B,V,L | P,V                                   |
| Byproduct Formation                                                                                                 | L,S         | B,L   | P                                     |
| Source Notes:<br>L = Literature/Experts<br>B = Bench Scale<br>P = Pilot Scale<br>S = Sampling Results<br>V = Vendor |             |       |                                       |

CVOR365/004.WP5

ı.

----

L6-7

- Use of the E-Beam technology for treatment and discharge of extracted groundwater at the Base would require compliance with applicable permits (as is the case for any groundwater treatment system).
- Patents are pending for modifications to industrial electron beam systems. Application of this technology would require purchase or lease of proprietary equipment.

## **Bench Scale Testing**

## **Objectives**

Bench-scale testing would be conducted to address the following objectives:

- Determine if the technology can effectively treat the pertinent contaminants in complex mixtures characteristic of Base groundwater.
- Determine achievable contaminant reduction efficiencies and required dosages.
- Evaluate appropriate operating parameters such as electron beam dosage and additive requirements.
- Identify and quantify by-products formation during treatment.
- Assess the effects of scavengers present in Base groundwater.

#### Approach

Laboratory tests would be required prior to proceeding with a pilot test. Bench scale testing procedures are outlined below.

- At least three 2-gallon groundwater samples would be collected from different locations on the Base and shipped to a vendor for evaluation. The groundwater samples would be selected to contain different contaminant mixtures and different concentrations of potential oxidant scavengers. Aliquots of the samples would be transferred to a series of vials, which would receive electron injection at various doses and then be analyzed to evaluate treatment efficiencies and by-product formation.
- Once the optimal electron beam dose has been established based on the initial tests, new sample aliquots would be retreated at that dose and submitted to an EPA-approved laboratory for confirmation of initial test results.

- Tests would be repeated with additives if appropriate (e.g., if initial treatment efficiencies were unsatisfactory).
- Determine if the treatment performance achieved justifies processing with pilot-scale testing.

## **Pilot-Scale Testing**

### **Objectives**

Pilot-scale testing would be conducted to address the following objectives:

- Determine the achievable reduction efficiencies for individual contaminants and for total VOCs.
- Evaluate full-scale system design and operating parameters such as unit size, configuration, equipment requirements, and dose and power requirements.
- Demonstrate the efficacy and reliability of electron beam technology.
- Evaluate the ability of the technology to handle variations in feed stream characteristics.
- Evaluate residual concentrations of by-products formed during treatment and the need for polishing treatment.
- Evaluate the potential for coating or wear on the treatment window.
- Demonstrate system remote/automatic operation capability.
- Develop a basis for estimating full-scale costs.

## Approach

ŕ

Pilot testing should be conducted onsite at the Base if possible. HVEA's mobile pilot unit is presently under construction. It will contain a 25-kW electron beam and have a flow capacity of up to 40 gpm. Raychem's mobile trailer unit is also under construction, though a prototype currently exists. Consequently, the availability of pilot testing equipment is uncertain. As an alternative, a 5,000- to 6,000-gallon tanker could be shipped to Miami to be treated by the full-scale EBRF, although this option is not recommended.

Pilot-scale testing using Base groundwater would be necessary to rigorously evaluate technology feasibility and to develop design and operating parameters. The specific objectives and approach of the pilot testing program would be refined and detailed

following the information gathering and review and bench-scale testing tasks. The general pilot testing approach would include the following components.

- Select an appropriate extracted groundwater stream for testing E-Beam treatment. A slip stream from an existing pump-and-treat operation would likely be used.
- Develop pilot testing workplan.
- Prepare site and bring vendor system online.
- Operate E-Beam treatment system under the selected conditions.
- Analyze data to evaluate performance and evaluate potential benefits of implementing E-Beam treatment at the Base.
- Decide whether to proceed with implementation at full scale.

#### **Full-Scale Conceptual Design**

Because full-scale systems have not yet been built, an understanding of the full-scale implementation is very conceptual in nature. Treatment units may either be designed and constructed to meet the needs of a particular application, or may be modular systems connected in series and parallel to meet treatment objectives. Figure L6-2 illustrates how electron beam treatment technology may fit into a full-scale ground-water pump-and-treat system.

Full-scale application of electron beam treatment would involve the following major components:

- A pad of sufficient size to contain modular unit(s) and control equipment
- Power, cooling water, and telephone connections
- Plumbing connections to the groundwater treatment train
- A polishing treatment system to remove formaldehyde and other residual byproducts

#### **Technology Limitations and Uncertainties**

As a developing technology, E-Beam performance characteristics and operational difficulties have not been well defined. In addition, there are a number of uncertainties that affect the implementation of this technology.

RDD10012E27.WP5

L6-10



. . . . . . ....
- Full-scale units for commercial applications have not yet been constructed. The scale-up effects associated with full-scale units from benchscale systems are unknown.
- The ability of E-Beam to achieve required contaminant reductions for a complex mixture of chlorinated solvents and nonchlorinated organics has not been demonstrated. Antagonistic effects may result in high irradiation dose requirements.
- The dose required to achieve target contaminant reduction efficiencies may not be economically feasible.
- The long-term operational durability of a full-scale system is unknown.
- Chemical additives (e.g.,  $H_2O_2$ ) may be needed to achieve target treatment efficiencies, resulting in higher operating cost.
- The formation of reaction by-products may require polishing treatment.
- The presence of scavengers (e.g., alkalinity, dissolved oxygen, and organic carbon) may require pretreatment to enhance E-Beam effectiveness.

#### Schedule

An implementation schedule is provided in Figure L6-3. This schedule may change because equipment is unavailable. This technology is not yet sufficiently developed to identify a schedule for full-scale implementation.

### Cost

Bench- and pilot-scale testing costs are estimated at roughly \$50,000 and \$240,000, respectively. Full-scale implementation costs are impossible to estimate at this time because the required equipment is not commercially available.

#### Works Cited

Westinghouse Savannah River Company, Environmental Restoration, Electron Beam Technology Position Paper, July 23, 1993.

EPA SITE Emerging Technology Bulletin, Electron Beam Treatment for Removal of Trichloroethylene and Tetrachloroethylene from Streams and Sludge, October 1992.

RDD10012E27.WP5



(

.....

(

Raychem Corporation. Vendor literature and telephone conversations with Kirk Krappe.

Kurucz, C. N., T. Waite, B. Cooper, and M. Nicholsen. High Voltage Environmental Applications, Inc. Vendor supplied material, phone conversations with Charles Kurucz, Thomas Waite, Bill Cooper and Mike Nicholsen.

Kurucz, C. N. High Voltage Environmental Applications, Inc. Telephone conversation. September 1993.

Nickelsen, M. G., W. J. Cooper, C. N. Kurucz, and T. D. Waite. Removal of Benzene and Selected Alkyl-Substituted Benzenes from Aqueous Solution Utilizing Continuous High-Energy Electron Irradiation. ES&T, V. 26, pp. 144-149, 1992. Appendix L7

### **TECHNICAL MEMORANDUM L7**

CHEMIHILL

PREPARED FOR: McClellan Air Force Base

- DATE: November 9, 1993
- SUBJECT: Cometabolic Biofiltration Implementation Plan Groundwater OU RI/FS Report Delivery Order No. 5066

PROJECT: SAC28722.66.NT

### **Technology Overview**

#### Description

Biofiltration is an established treatment technology for the removal of certain organic and inorganic contaminants from gas streams. Biofiltration has most often been used to remove odor-causing chemicals from offgas streams, such as gases from municipal wastewater treatment plants. Recently, biofiltration has been employed to treat VOCs in industrial offgas streams. These applications have involved compounds that are readily biodegradable by aerobic microorganisms. The use of biofiltration for the treatment of vapor-phase chlorinated aliphatic hydrocarbons (CAHs) is a developing technology.

Many important CAHs, including TCE, are not biodegradable by ordinary aerobic microbial metabolism; however, TCE and certain other CAHs can be biodegraded via cometabolism under aerobic conditions. Cometabolism of CAHs is a process in which a biodegradable organic substrate induces the production of nonspecific enzymes by a certain group of microorganisms, which fortuitously initiate transformation of the CAH molecule. In cometabolic biofiltration, a primary substrate is added to the contaminated gas stream to stimulate cometabolism of CAHs. Substrates that have been most commonly used in studies of TCE cometabolism include methane, toluene, and phenol.

Biofiltration is a general term that encompasses two categories of biological vaporphase treatment: biofiltration and biotrickling filter (or bioscrubber) processes. Both categories function by the same general principal. The two processes differ primarily in the type of media employed and the mass transfer mechanisms that result. In both processes, a contaminated gas stream is passed through a bed of biologically active media where contaminants are exchanged to the aqueous phase and biodegraded. A schematic of biofiltration is shown in Figure L7-1.



In the biofiltration process, microorganisms are immobilized within the liquid biofilm layer on a porous media such as soil, compost, peat, granular activated carbon, or polyurethane foam. Contaminants are passed into the bed where they sorb to the media, dissolve into the liquid biofilm layer, and are degraded by the microbial culture. Treatment performance depends on the sorbability and biodegradability of the contaminants.

The biotrickling filter or bioscrubber approach differs primarily in the type of media upon which the microbial mass is attached (i.e., conventional air scrubber/stripper packing material instead of organic media). This type of system is operated with either a co-current or countercurrent flow of an aqueous solution providing nutrients, buffering capacity, and primary substrate. The efficiency of this type of system depends greatly on the extent to which contaminants can be transferred to the aqueous phase and subsequently degraded.

The control of temperature, pH, and nutrients is critical for both types of systems. For organic media biofilters, bed moisture content is also a critical parameter.

#### **Development Status**

Both types of biofiltration systems are receiving considerable attention by biofiltration vendors and university researchers for the degradation of chlorinated organics. Research groups that have been leading the investigation of biofiltration for CAHs include Envirogen (Lawrenceville, New Jersey), the EPA Risk Reduction Engineering Laboratory (in cooperation with the University of Cincinnati), and the EPA Environmental Research Laboratory in Gulf Breeze, Florida (in cooperation with the University of West Florida). Also active in biofiltration research for the treatment of chlorinated hydrocarbons are EG&G Biofiltration, Idaho Falls, Idaho; Remediation Technologies, Inc., Seattle, Washington; and Biotrol, Inc., Chaska, Minnesota.

Cometabolic biofiltration for the removal of CAHs is currently being developed at the laboratory scale. Pilot-scale systems are primarily at the conceptual design stage. Most of the present research efforts are focused on the bioscrubbing approach to treatment of chlorinated VOCs. A bench-scale airlift reactor (which operates similarly to a biotrickling filter without any media) has been operated by Envirogen and has achieved some initial success for the removal of TCE. However, cometabolic biofiltration systems have had difficulty treating TCE concentrations greater than about 25 ppmv effectively and in maintaining consistently high treatment efficiencies.

A field demonstration of cometabolic biofiltration at McClellan AFB is reportedly scheduled to occur in July of 1994 (Hoda, 1993).

### **Potential Benefits**

This subsection describes the performance, advantages and disadvantages, and cost benefits associated with biofiltration. This information is intended to provide a basis

RDD10012E28.WP5

11/9/93

for evaluating the potential benefits of implementing this technology at the Base as an innovative alternative to standard offgas treatment technologies such as vapor-phase carbon adsorption and catalytic and thermal oxidation.

### **General Performance**

### Effectiveness

- The effectiveness of cometabolic biofiltration has not been thoroughly evaluated and reported. No information was found for CAHs other than TCE.
- Greater than 95 percent reduction efficiency has been reported for TCE at concentrations in the low ppmv range. A removal rate of 0.2 g/m<sup>3</sup>/hr has been reported for TCE.
- TCE can be completely mineralized to  $CO_2$ , water, and chloride.
- Based on aqueous-phase testing of aerobic cometabolism, 1,2-DCE and vinyl chloride are also expected to be treatable by cometabolic biofiltration.

#### Robustness

- TCE can be effectively treated, but treatment consistency has been difficult to maintain over long periods or at concentrations greater than approximately 25 ppmv.
- Cometabolic biofiltration is not expected to effectively treat PCE, carbon tetrachloride, 1,1,1-TCA, 1,1-DCE, 1,1-DCA, or Freons, based on aqueous phase study results.
- Ketones, alcohols, BTEX, and fuel hydrocarbons can be effectively treated via biofiltration. Cometabolism is unnecessary for these compounds.
- Varying contaminant loads (resulting from variations in flows and/or concentrations) are likely to decrease treatment performance. The effects of periodic variations or shock loads may be temporary, whereas frequent variations may prevent the development of a stable microbial culture and result in inconsistent treatment.
- Polishing treatment probably will be necessary because of fluctuations in treatment performance.

#### **Potential Risk Reduction**

It is difficult to quantify risk reduction provided by biofiltration, because the potential benefit of the technology is associated with its potential to remove contaminant mass

from an offgas waste stream more economically than standard treatment technologies. Biofiltration will not provide more extensive treatment than standard technologies, but it would reduce VOC emissions compared to no treatment. Because it is a destruction technology, biofiltration causes a real reduction in contaminant mass compared to nondestructive technologies, which transfer contaminants to another phase.

### Advantages Compared to Other Technologies

- Overall offgas treatment costs may be reduced by using biofiltration either alone or in conjunction with GAC polishing.
- It is likely that cometabolic biofiltration can effectively treat vinyl chloride, which is difficult and costly to remove by adsorption processes.
- Contaminant mass reduction is achieved by destruction rather than transfer to another phase.
- Cometabolic biofiltration is capable of completely mineralizing TCE. Presumably, 1,2-DCE and vinyl chloride can also be mineralized, based on aqueous phase study results.
- The biofilter media is continuously regenerated, and does not require frequent replacement/disposal.
- Thermal/catalytic oxidation by-products such as HF and HCl would not be generated via biofiltration.
- Public perception of biofiltration is potentially more favorable than for thermal processes.

### **Disadvantages Compared to Other Technologies**

- If treatment of all contaminants is not complete, a contaminated liquid stream will be produced. Untreatable contaminants will accumulate in the scrubbing solution (with biotrickling filters) or leachate (with biofilters), necessitating a liquid blowdown stream.
- Biofiltration is probably more susceptible to upsets and inconsistent treatment than standard offgas treatment technologies.
- Several CAHs are not effectively treatable by cometabolic biofiltration.
- Polishing treatment following biofiltration probably would be required.
- The primary substrate added to induce cometabolism could itself become a contaminant in the effluent gas if not completely utilized during treatment.

RDD10012E28.WP5

11/9/93

- Competitive inhibition between primary substrate and target contaminants can occur, resulting in reduced treatment efficiencies.
- Complex mixtures of contaminants in the offgas may affect treatment performance.

### **Relative Cost Benefit**

The cost benefit of cometabolic biofiltration would result from its use in place of a more expensive offgas treatment technology or through its use in combination with other technologies, reducing the overall treatment cost. Cost benefits should be evaluated on the basis of \$1/mass of contaminants treated. When evaluating technology costs, residuals management should be included.

### **Potential Locations**

Potential application locations for cometabolic biofiltration at McClellan AFB include the treatment of offgas from: air stripping groundwater treatment, soil vapor extraction (SVE), SVE/sparging, bioventing, soil composting, or dual-phase extraction.

A suitable offgas stream for treatment via cometabolic biofiltration would be contaminated primarily with TCE, 1,2-DCE, and/or vinyl chloride (and maybe other monochlorinated CAHs). (Biofiltration without induction of cometabolism would also be potentially applicable for treating BTEX or fuel-contaminated gas streams.) Offgas streams containing significant concentrations of PCE, carbon tetrachloride, 1,1,1-TCA, 1,1-DCE, 1,1-DCA, or Freons are probably not suitable for treatment by cometabolic biofiltration.

Because TCE is the predominant CAH contaminant in OU C groundwater, offgas from the treatment of soil and/or groundwater that area of the Base might be suitable for treatment by cometabolic biofiltration.

### Approach

### **Information Needs and Sources**

Table L7-1 summarizes information needs and sources for implementation of cometabolic biofiltration.

11/9/93

| Table L7-1           Cometabolic Biofiltration           Information Needs and Sources                          |                                                        |               |       |      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|-------|------|--|--|--|--|
|                                                                                                                 | _                                                      | Project Scale |       |      |  |  |  |  |
| Information Needs                                                                                               |                                                        | Bench         | Pilot | Full |  |  |  |  |
| Feed S                                                                                                          | Feed Stream Characteristics                            |               |       |      |  |  |  |  |
|                                                                                                                 | Contaminant Types                                      | S             | S     | S    |  |  |  |  |
|                                                                                                                 | Contaminant Concentrations                             | S             | S     | S    |  |  |  |  |
|                                                                                                                 | Flow Rate                                              | L             | L     | 0    |  |  |  |  |
|                                                                                                                 | Flow/Concentration Variability                         | L,S           | O,S   | O,S  |  |  |  |  |
|                                                                                                                 | Treatment Requirements                                 | L             | L     | L    |  |  |  |  |
| System                                                                                                          | System Design                                          |               |       |      |  |  |  |  |
|                                                                                                                 | Unit Size                                              | L             | B,L,O | O,P  |  |  |  |  |
|                                                                                                                 | • Physical Configuration (e.g. flow regime, support    | L             | B,L   | L,P  |  |  |  |  |
|                                                                                                                 | media, microbial consortia, primary substrate)         |               |       |      |  |  |  |  |
|                                                                                                                 | Equipment Requirements                                 | L             | B,O   | O,P  |  |  |  |  |
| Performance Capabilities                                                                                        |                                                        |               |       |      |  |  |  |  |
|                                                                                                                 | Destruction Removal Efficiencies                       | L             | В     | Р    |  |  |  |  |
|                                                                                                                 | Flow Rate                                              | L             | В     | Р    |  |  |  |  |
|                                                                                                                 | Ancillary Treatment Requirements                       | L             | B,O   | O,P  |  |  |  |  |
|                                                                                                                 | <ul> <li>Monitoring (Sampling and Analysis)</li> </ul> |               | B     | Р    |  |  |  |  |
|                                                                                                                 | Response to Feed Stream Variability                    | L             | В     | P    |  |  |  |  |
| Operations & Maintenance                                                                                        |                                                        |               |       |      |  |  |  |  |
| -                                                                                                               | Biofilter Bed Life                                     | L             | В     | Р    |  |  |  |  |
|                                                                                                                 | Substrate Use Requirements                             | L             | В     | Р    |  |  |  |  |
|                                                                                                                 | Nutrient Requirements                                  | L             | В     | Р    |  |  |  |  |
|                                                                                                                 | Utility Connections/Installation Requirements          | L             | B,O   | O,P  |  |  |  |  |
|                                                                                                                 | • Biosolids Management (if any)                        | L             | В     | O,P  |  |  |  |  |
|                                                                                                                 | Preventative Maintenance Requirements                  | L             | B     | Р    |  |  |  |  |
| Notes:<br>L = Literature/Experts<br>O = Other Technology Evaluations<br>P = Pilot Scale<br>S = Sampling Results |                                                        |               |       |      |  |  |  |  |

CVOR365/029.WP5

.....

### **Information Gathering and Review**

Information gathering and review to-date has identified a number of vendors and research groups that are actively testing and developing biofiltration processes for treating CAH-laden gas streams. These groups are listed in the Development Status subsection of this Implementation Plan. Because of the relatively undeveloped status of this technology and the intricacies associated with the process, an intensive review of current and future research findings is needed. The progress of these groups in developing this technology should be closely monitored until sufficient information is available to confidently evaluate whether the technology is feasible for implementation in conjunction with remedial activities at McClellan AFB. The results of the field demonstration of biofiltration treatment of CAHs planned for McClellan AFB in July 1994, when available, will be particularly useful for evaluating the feasibility of implementing the technology at Base.

### **Implementation Issues**

- The treatment system will have to meet treatment objectives established to maintain compliance with the Basewide air emissions permit.
- The gas stream(s) selected for treatment by cometabolic biofiltration must have characteristics that are compatible with the capabilities and limitations of the treatment process.
- It may be practical to allow some period of time for the technology to be developed further before proceeding with implementation at the Base. At the present, it is not apparent that any of the research/vendor groups has developed a pilot-scale system that is ready for use in the field. Nevertheless, several groups are actively researching and developing the process, so the technology may be ready for field testing in the near future. Thus, it is important to closely monitor technology development progress and critically evaluate any treatment data generated so that the best system can be selected for testing.

### **Bench-Scale Testing**

Bench-scale testing should be performed by, or in conjunction with, one of the research groups or vendors active in developing the cometabolic biofiltration technology. The overall goals of bench-scale testing would be to make a preliminary evaluation of the feasibility of implementing the technology at the Base and to screen process variables to focus the design and operation of a pilot-scale system.

)

### **Objectives**

- Determine appropriate gas stream characteristics—including the ranges of contaminant loading rates, gas flow rates, and contaminant concentrations—that can be effectively treated.
- Determine the optimal primary substrate and microorganism group, substrate addition rate, residence time, and any other critical design parameters.
- Evaluate the potentially achievable contaminant reduction efficiencies, mass removal rates, and consistency of treatment performance.

#### Approach

Bench-scale biofiltration column systems probably would be used to test the technology, although the test system design should be based on the current research developments at the time of testing. Bench-scale testing could either be conducted at the Base using a small slip-stream of actual offgas (if a vapor stream contaminated primarily with treatable CAHs exists), or it could be conducted in a laboratory using a simulated gas stream containing at least a simple mixture of contaminants representative of a gas stream at the Base.

### **Pilot-Scale Testing**

#### **Objectives**

- Determine the maximum gas flow rates, influent contaminant concentrations, and contaminant mass loadings that can be treated effectively.
- Evaluate achievable contaminant reduction efficiencies, mass removal rates, and consistency of performance.
- Evaluate system response to influent stream variability, shock loads, and shutdown/startup.
- Evaluate the long-term effectiveness of a biofiltration bed, especially with respect to the management of biosolids.
- Determine appropriate operating parameters, such as liquid recycle rate, liquid blowdown rate, substrate addition rate, and nutrient and buffering requirements.
- Characterize any residual waste streams.
- Develop design and operating criteria and estimate the cost of a full-scale system.

RDD10012E28.WP5

L7-9

11/9/93

### Approach

If bench-scale testing results are promising, the next phase of implementation is pilotscale testing. Pilot-scale testing would involve the operation of an onsite treatment system designed to simulate the system that would be used at full-scale. The specific objectives and approach of the pilot-testing program would be refined and detailed based on the bench-scale testing results. The general approach to pilot-scale testing is outlined below and as shown in Figure L7-2.

- 1. Identify an appropriate offgas stream. Ideally, this would be done prior to bench-scale testing. This might be a slip stream from an air stripper treating extracted groundwater or from an in situ soil venting operation.
- 2. Develop the pilot testing workplan.
- 3. Select a vendor to supply a biofiltration system that is consistent with preliminary design criteria developed from the bench-scale testing results. If no vendor-supplied pilot-scale system is available, a system could be constructed by contracting the necessary design and construction engineering services.
- 4. Prepare the test site and mobilize the pilot unit onsite.
- 5. Operate the pilot test unit at a variety of loading conditions.
- 6. Operate the system for a sufficient duration to evaluate long-term performance.
- 7. Analyze data to evaluate performance and the potential benefit of implementing cometabolic biofiltration at the Base.
- 8. Decide whether to proceed with implementation at full-scale.

### **Full-Scale Implementation**

Cometabolic biofiltration has not been sufficiently developed to prepare a full-scale implementation conceptual design.

### **Technology Limitations and Uncertainties**

• Neither pilot- nor full-scale units have been constructed for treating CAHs. It is not known when these systems will be available.

11/9/93



۰.

1=1.0

- The gas stream characteristics for which cometabolic biofiltration would be an effective and economical treatment option have not been established. The maximum influent flows and contaminant concentrations and maximum contaminant mass loading rates are unknown.
- Treatment performance characteristics, such as achievable contaminant reduction efficiencies and mass removal rates, are not well established.
- The currently available information indicates that treatment performance is inconsistent; consequently, polishing treatment may be required.
- The ability of cometabolic biofiltration systems to effectively treat complex contaminant mixtures is unknown.
- Several different research groups are developing this technology. It is not yet clear which group has the best system.

### Schedule

A possible implementation schedule is shown in Figure L7-3.

#### Cost

Bench- and pilot-scale testing costs are estimated at roughly \$100,000 and \$210,000, respectively. Full-scale implementation costs are impossible to estimate at this time because of the relatively undeveloped status of the technology.

### Works Cited

Hoda, B. McClellan AFB, Personal communication with CH2M HILL, November 2, 1993.

11/9/93



*.*\*

Appendix L8

### **TECHNICAL MEMORANDUM L8**

| PREPARED FOR: | McClellan Air Force Base                                                                       |
|---------------|------------------------------------------------------------------------------------------------|
| DATE:         | November 7, 1993                                                                               |
| SUBJECT:      | Resin Adsorption Implementation Plan<br>Groundwater OU RI/FS Report<br>Delivery Order No. 5066 |
| PROJECT:      | SAC28722.66.NT                                                                                 |

#### **Technology Overview**

#### Description

Resin adsorption is an offgas treatment technology that employs synthetic adsorbents placed in packed or fluidized beds to remove VOCs. It is similar to vapor-phase carbon adsorption, but laboratory testing suggests that the absorbent media (resin) has superior capacity and durability. Consequently, the resin can be regenerated in-place, through a large number of cycles. Possible applications at McClellan AFB are emissions control of offgas from ex situ groundwater treatment (e.g., air stripping) or in situ treatment processes (e.g., soil vapor extraction).

There are two resin adsorption systems on the market. The first system is marketed by Purus, Inc., as the Purus Adsorption Desorption Remediation Equipment (PADRE) system; the other is the Polyad process, marketed in the United States by Weatherly Inc. The processes are similar in principle, with the primary distinction being the mechanisms of contaminant adsorption and adsorbent desorption. Recent technology evaluations conducted by CH2M HILL have indicated that the Purus PADRE system appears to be more economical and therefore, has been chosen for further evaluation. However, subsequent evaluations of resin adsorption at McClellan AFB should consider the Polyad process as cost improvements may accompany further technology development.

The Purus PADRE system consists of one or more modular units, which contain the following major components: knockout tank (air/water separator), parallel adsorption bed modules, blower, chiller/condenser, nitrogen storage tank, product recovery tank. and a process control panel. Figure L8-1 is a conceptual schematic showing the PADRE system components.

11/7/93

CHEMIHILL



The unit operates in a cycle of passive adsorption and thermal desorption. During passive adsorption, the contaminated influent air stream passes through two resinfilled filter beds connected in series. Each resin bed contains one or more proprietary synthetic polymeric adsorbents, which have been selected to optimize their affinity for adsorbing the particular suite of VOCs being treated. The treated gas stream that exits the beds is referred to as the primary effluent. It may require further treatment in the form of offgas polishing.

When the beds reach their maximum effective adsorption capacity, the influent gas stream is automatically diverted, on a pre-timed basis, to a parallel unit, and the contaminant-loaded beds begin the thermal desorption cycle. During this cycle, the resin bed is heated to about 150 to 250°C over a period of 60 minutes to volatilize the adsorbed organic contaminants and regenerate the beds. The heat is supplied by noncontact heat tracing cables evenly distributed within the bed supports. Once the desorption temperature is reached, the bed is purged with approximately 10- to 25-bed volumes of an inert carrier gas (typically nitrogen). The use of an inert carrier gas avoids the potential danger of explosion, as the desorbed gas can contain extremely high concentrations of contaminant compounds (several times their respective lower explosive limits). Following the inert gas purge, the bed is cooled to ambient temperatures through circulation of a heat transfer fluid (such as Dowtherm). The thermal desorption cycle is complete when the beds return to ambient temperature, ready to begin the next adsorption cycle.

The frequency of regeneration is limited by the thermal desorption cycle. This process takes approximately  $2\frac{1}{2}$  to 6 hours depending on the resin type and sorbed contaminants. Therefore, the number of adsorption/desorption cycles is limited to 4 to 10 cycles per day.

The purge gas (nitrogen) is passed through a chiller/condenser system where most of the gaseous contaminants are condensed to the liquid phase. The contaminant-lean nitrogen gas is then returned to the unit influent stream, or alternately, may be compressed and purified for reuse. The condensed liquid (condensate) may require organic/aqueous phase separation before the organic phase is transferred to a storage drum or tank, then transported for use as a fuel, or disposed as a hazardous waste. The separated aqueous phase would require further treatment.

#### **Development** Status

The resin adsorption technology has been demonstrated for industrial applications at the pilot-scale in the U.S. and Europe. There are several full-scale applications in use. Individual components have been tested in the laboratory and the field for hazardous waste remediation applications.

A field test of the PADRE system is being conducted at McClellan AFB in the Fall of 1993 in conjunction with the SVE system at Site S, OU D. The extent of further implementation of the resin adsorption technology in general, and the PADRE system in particular, at McClellan AFB, will depend on the results of this demonstration.

RDD10012E29.WP5

### **Potential Benefits**

This subsection describes the performance, advantages and disadvantages, and cost benefits associated with PADRE resin adsorption. This information is intended to provide a basis for evaluating the potential benefits of implementing this technology at the Base as an innovative alternative to standard offgas treatment technologies such as vapor-phase carbon adsorption and catalytic or thermal oxidation.

### **General Performance**

### Effectiveness

- Treatment efficiency is typically greater than 90 percent for removal of total VOCs.
- Treatment efficiency for single contaminant PCE and TCE offgas streams is typically 95 percent; slightly less for DCE.
- 90 to 95 percent removal is typical for aromatics, alighatics, alcohols, aldehydes, some ketones, and many chlorinated solvents.
- Relatively poor removal efficiencies of vinyl chloride and methylene chloride.
- The treatment efficiency for complex, highly concentrated waste streams is expected to vary, depending on the application, and is difficult to predict.

#### Robustness

- Halogenated and nonhalogenated VOCs are removed.
- Adsorption capacity for a given contaminant depends on its boiling point, molecular polarity, and competition with other compounds. Low boiling point and highly polar compounds are more difficult to remove.
- Contaminant influent concentrations up to 10,000 ppmv total organics have been treated.
- Resin adsorptive capacity may be maintained through many regenerative cycles, provided the system possesses sufficient desorption capacity. Some suites of compounds may cause very lengthy thermal desorption cycles, reducing overall cost-effectiveness.
- A complete treatment system can be assembled from modular units available for purchase or lease.

)

- The nature of the passive adsorption process results in some ability to accommodate fluctuations in influent concentrations, as well as a 20:1 turn-down capacity.
- Each modular unit contains a computer controlled/remote communication system for alarm reporting and system monitoring.

### **Potential Risk Reduction**

It is difficult to quantify the risk reduction provided by resin adsorption treatment because the potential benefit of the technology is associated with its potential to reduce contaminants from process offgas streams more economically than standard treatment technologies. Resin adsorption treatment is not likely to provide more extensive treatment than standard technologies, but it would reduce contaminant levels compared to no treatment. Contaminants are recovered in the liquid-phase for disposal/reuse. Although transport and reuse may have an associated risk increase compared to in-place destruction.

### Advantages Compared to Other Technologies

- The use of a regenerative resin results in less contaminated media requiring disposal than GAC.
- The media may be able to retain a high adsorptive capacity through numerous regeneration cycles.
- Performance is not as significantly impacted by the relative humidity of the influent stream compared to GAC, though high relative humidity may decrease treatment efficiency.
- The recovery of contaminants offers greater flexibility in determining their ultimate fate.
- Resin adsorption appears to have a niche for high flow, moderate concentration gas streams.
- Little to no HCl, HF, and NOx emissions occur compared to catalytic oxidation.

### **Disadvantages Compared to Other Technologies**

• Removal efficiencies vary by compound and with contaminant stream characteristics. For offgases that contain a wide variety of compounds, the treatment efficiency and cost-effectiveness of resin adsorption is expected to be insuperior to catalytic oxidation.

- Long-term (5 to 10 years) resin performance data is not available for chlorinated VOCs.
- Because it is not a destruction technology, there is further management associated with the condensate (i.e., storage, treatment, disposal or reuse).
- The primary effluent may require polishing treatment in order to achieve emission standards.
- Very few technology vendors are available, possibly limiting cost competitiveness and the rate of technology development.

### **Relative Cost Benefit**

The cost benefit of resin adsorption would result from its use in place of a more costly offgas treatment technology or through its combination with other technologies, reducing overall treatment cost. Cost benefits should be evaluated on the basis of \$/mass of contaminants treated. When evaluating technology cost, condensate management should be included.

### **Potential Locations**

Potential application locations for resin adsorption at McClellan AFB related to cleanup of contaminated soil and groundwater include the treatment of: air stripper offgas from groundwater treatment plant(s); SVE, SVE/sparging, or dual phase extraction offgas; and any other VOC-contaminated offgas stream generated at the Base. The operating flexibility of the system allows application to a wide range of locations, though highly complex or highly concentrated streams may be less appropriate, as well as those with vinyl chloride and/or methylene chloride as primary constituents.

#### Approach

#### **Information Needs and Sources**

Table L8-1 provides a summary of the information needs and sources for implementation of resin adsorption.

#### Information Gathering and Review

Information on resin adsorption collected includes vendor-supplied information on system design, performance, and operation, as well as preliminary results from the Fall 1993 project being performed at the SVE field demonstration site in Site S, OU D at the Base. Further information gathering should include a thorough review

RDD10012E29.WP5

| Table L8-1<br>Resin Adsorption |                                                                   |               |       |       |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------|---------------|-------|-------|--|--|--|--|
| Information Needs and Sources  |                                                                   |               |       |       |  |  |  |  |
|                                |                                                                   | Project Scale |       |       |  |  |  |  |
|                                | Information Needs                                                 | Bench         | Pilot | Full  |  |  |  |  |
| Feed St                        | Feed Stream Characteristics                                       |               |       |       |  |  |  |  |
|                                | Contaminant Types                                                 | S             | S     | S     |  |  |  |  |
|                                | Contaminant Concentrations                                        | S             | O,S   | O,S   |  |  |  |  |
|                                | <ul> <li>Contaminant Chemical/Thermodynamic Properties</li> </ul> | L             | L     | L     |  |  |  |  |
|                                | Flow Rate                                                         | V             | 0     | 0     |  |  |  |  |
|                                | Flow/Concentration Variability                                    | L,V           | O,S   | 0     |  |  |  |  |
| System                         | System Design                                                     |               |       |       |  |  |  |  |
|                                | • Unit Size                                                       | V             | В     | Р     |  |  |  |  |
|                                | Physical Configuration                                            | V             | V     | P,V   |  |  |  |  |
|                                | <ul> <li>Equipment Requirements</li> </ul>                        | v             | B,O,V | O,P,V |  |  |  |  |
|                                | • Patent Requirements                                             |               | V     | V     |  |  |  |  |
|                                | • Permitting Requirements                                         |               | L,O   | L,O   |  |  |  |  |
| ļ                              | Treatment Requirements                                            | L,V           | L,0   | L,O   |  |  |  |  |
| Perform                        | ance Capabilities                                                 |               |       |       |  |  |  |  |
|                                | <ul> <li>Destruction Removal Efficiencies</li> </ul>              | V             | В     | P     |  |  |  |  |
|                                | • Flow Rate                                                       | V             | B,V   | P,V   |  |  |  |  |
|                                | Ancillary Treatment Requirements                                  | V             | L,O,V | L,O,P |  |  |  |  |
|                                | <ul> <li>Monitoring (Sampling and Analysis)</li> </ul>            | V             |       |       |  |  |  |  |
|                                | Response to Feed Stream Variability                               | V             | B,L,V | L,P   |  |  |  |  |
| Operati                        | ons & Maintenance                                                 |               |       |       |  |  |  |  |
|                                | Cycle Times                                                       |               | B,V   | P,V   |  |  |  |  |
|                                | Nitrogen Use Requirements                                         | V             | B,V   | P,V   |  |  |  |  |
|                                | Gas Stream Temperatures                                           | v             | B,O   | P,O   |  |  |  |  |
|                                | Utility Connections/Installation Requirements                     |               |       |       |  |  |  |  |
|                                | Preventative Maintenance Requirements                             |               | V     |       |  |  |  |  |
|                                | • Salely                                                          |               | V V   | - v   |  |  |  |  |
| Residua                        | ls Management                                                     |               |       | -     |  |  |  |  |
|                                | • HCl and HF emission rates                                       |               | L,V   | P     |  |  |  |  |
|                                | • Vinyl Chloride, Methylene Chloride and Acetone                  | V             | B,V   | P     |  |  |  |  |
|                                | emission rates                                                    |               |       |       |  |  |  |  |
|                                | Condensed Contaminants     Standard (Discourse) (Discourse)       |               | L,V   | L,P   |  |  |  |  |
|                                | Storage/ I ransport/Disposal/Reuse                                | I             | l     |       |  |  |  |  |
| Notes:                         |                                                                   |               |       |       |  |  |  |  |
|                                | L = Literature/Experts                                            |               |       |       |  |  |  |  |
|                                | O = Other Technology Evaluations                                  |               |       |       |  |  |  |  |
|                                | $\mathbf{r} = \mathbf{r}_{100} \mathbf{s}_{cale}$                 |               |       |       |  |  |  |  |
|                                | S = Sampling Results                                              |               |       |       |  |  |  |  |
|                                | v = v endor(s)                                                    |               |       |       |  |  |  |  |

. . . . . .. ...

.....

CVOR366/020.WP5

. . . . . . .

L8-7

of the Site S demonstration final results when they are available, and a review of other demonstration test data from sites treating chlorinated solvent-containing offgas.

#### **Implementation Issues**

- The treatment system will have to meet the treatment objectives established to maintain compliance with the Basewide air emissions permit.
- Influent feed stream characteristics (i.e., contaminant distribution, temperature, and relative humidity) need to be compatible with the technology limitations. The use of resin adsorption in conjunction with another technology might be required in the event these limitations prevent sufficient treatment performance.
- A location with sufficient space and utilities connections is required for placement of the modular unit(s).
- A system for the safe management of condensed organics must be installed with the treatment units. Such a system would be composed of a contained storage facility, transfer piping, or a loading area, and a plan for organics disposal/use.
- The nature of the equipment procurement (lease versus buy) should be determined with a cost analysis. A combination lease-purchase agreement could be considered whereby the treatment modules are leased for a short duration at the beginning of operation, then purchased at a discount when successful treatment performance has been established.

### **Bench-Scale Testing**

Bench-scale testing will only be required if technology implementation is being considered for an offgas with contaminant characteristics significantly different than those of the SVE offgas at Site S, since the pilot test at Site S has already targeted these objectives. The vendor should assist in the evaluation of the necessity for bench-scale testing.

#### **Objectives**

- Identify the resin or combination of resins most suitable for the specific contaminant stream of interest.
- Evaluate the effect of relative humidity and temperature on adsorption to identify the benefits of controlling humidity and temperature on contaminant sorption.

- Evaluate desorption characteristics of contaminants from the resins selected for testing.
- Establish the working adsorptive capacity of the selected resin(s).

### Approach

- 1. Prepare bench-scale testing workplan.
- 2. Measure (or review) adsorption isotherms for various contaminants of concern using Purus' standard (vial headspace measurement) methods.
- 3. Conduct isotherm tests at varying temperatures and humidities to bracket the expected conditions for a specific application.
- 4. Conduct column studies with actual contaminant mixtures (if possible) simulating the specific application. A breakthrough curve will be measured. Air stream humidity and temperature should be controlled to match application conditions. The bed would be desorbed under standard conditions and the organics recovered in a condenser. At least three adsorption-desorption cycles should be tested.
- 5. Evaluate data and refine pilot-scale testing objectives.

## **Pilot-Scale Testing**

### **Objectives**

Pilot-scale testing is conducted to meet the following objectives:

- Determine the treatment efficiency achievable for individual contaminants and for total VOCs.
- Develop full-scale system design parameters such as unit size(s), equipment requirements, and process control parameters.
- Determine operations and maintenance criteria such as optimal (adsorption/desorption) cycle times, desorption gas requirements, and temperature or humidity controls.
- Establish the emission rates of HCl, HF, vinyl chloride, methylene chloride, and/or other effluent contaminants. Determine the need for ancillary offgas treatment systems.
- Establish the production rates of condensed liquid water phase and organic contaminants.

- Evaluate the cost benefits of full-scale implementation.
- Evaluate construction materials for treatment equipment, especially those associated with desorption cycle equipment.

### Approach

Pilot-scale testing using a Base offgas would be necessary to rigorously evaluate technology feasibility and to develop design and operating parameters for an offgas. The specific objectives and approach of the pilot testing program would be refined and detailed following the information gathering and review and evaluation of the Site S demonstration results. The general pilot testing approach would include the following components.

- Select an appropriate target offgas stream for testing resin adsorption. A slip stream from an existing system would likely be used.
- Develop the pilot-testing workplan, using the existing procedures from the Site S demonstration as a basis.
- Prepare the site and bring a modular unit online.
- Operate the PADRE treatment system under the selected conditions.
- Analyze data to evaluate performance and the potential benefits of implementing resin adsorption treatment of the Base.
- Decide whether to proceed with implementation at full-scale.

### **Full-Scale Implementation**

For the purpose of generating an order-of-magnitude cost estimate for implementation, a conceptual full-scale application of PADRE involves the following components:

- A successful pilot test establishing the potential cost benefit associated with implementation.
- A pad of sufficient size to support the unit(s) and control equipment.
- Utility connections, a nearby water source, a dedicated phone line, and a nitrogen supply system (storage and piping system).
- A condensate drain line and management system (adequately vented storage tanks with secondary containment provisions for disposal or use of the recovered organic phase, and transfer of the aqueous phase to a wastewater treatment system).

1

- Influent piping connections to the existing groundwater treatment plant offgas stream.
- Modular PADRE units sufficient to meet the contaminant loading rate.

A conceptual schematic of a PADRE system application is shown in Figure L8-2.

### **Technology Limitations and Uncertainties**

- Cost-effective treatment performance for a complex mixture of chlorinated VOCs has not yet been established.
- The desorption capacity of the resin for some contaminants may significantly limit treatment efficiency or reduce cost-effectiveness through excessively long desorption cycles.
- The relative proportion of poorly sorbing contaminants in the influent gas will reduce overall treatment efficiency. High concentrations of vinyl chloride or methylene chloride may significantly reduce cost-effectiveness.
- Resin adsorption treatment efficiency is limited to 90 to 95 percent for many compounds, which may result in an inability to meet discharge requirements or may require effluent polishing.
- The amount of operator attention may vary for each application. The degree of operator attention is a function of the feed stream variability (resulting in the need to adjust cycling times/parameters) and the amount of emissions monitoring.
- Final use, and consequently management costs, of condensed organics (e.g., disposal or recycling) may vary depending on characteristics.

#### Schedule

Figure L8-3 contains a possible implementation schedule for the incorporation of resin adsorption into the groundwater treatment system at the Base. A significant uncertainty in the schedule is the need for and duration of further pilot testing. The results of the Fall 1993 pilot test at Site S will determine the extent to which further evaluation is required prior to implementation.



۰.



-----

.....

1

(

.

#### Cost

This section presents an estimated range for order-of magnitude implementation costs based on the conceptual design. Implementation costs may include costs associated with: ongoing literature review, bench-scale testing, pilot-scale testing, and full-scale capital and annual operations and maintenance. The scope of each of these costrelated activities is summarized below:

- Literature Review. Vendors such as Purus and Weatherly are likely to further develop the technology such that enhancements (optimization) and limitations will be better understood. The decision to proceed with further implementation of resin adsorption requires ongoing assessment and review of field data. While this activity is not a significant cost factor of implementation, it is an important implementation activity.
- **Bench-Scale Testing.** This activity includes workplan development, contract procurement, and the cost of conducting and overseeing vial and column studies.
- **Pilot-Scale Testing.** This activity includes costs associated with scope and workplan development, contract procurement, equipment procurement, system installation, system operation, demobilization, sampling and analysis (system monitoring), evaluation of system performance, and reporting.
- **Full-Scale Capital.** Capital costs are direct and indirect costs required to initiate and install the technology system components, including (but not limited to) engineering design, mobilization and demobilization of equipment and people, site construction activities (i.e., equipment installation), contractor bonding and insurance, equipment procurement and installation, licensing and permitting, health and safety, and supervision during construction.
- Full-Scale Operation and Maintenance. Operation and maintenance (O&M) costs represent those costs which would be incurred during each year of operation from initial startup to final shutdown of the full-scale system. O&M costs include operation and maintenance labor, power, purge gas, condensed organics disposal, and sampling and analysis for system monitoring. Since annual O&M costs occur over a period of years, future costs have been discounted to the present year's equivalent value (i.e., the present value cost) using 5 percent interest, so that annual costs remain comparable. Actual annual costs are likely to be much higher during the first year(s) of operation as the system is commissioned and optimized for operation, and due to higher chemical usage rates and associated labor required for treating higher initial concentrations. Therefore, the annual costs are intended to represent

RDD10012E29.WP5

the anticipated average yearly cost of operation over the life of the system.

A contingency of 30 percent has been applied to the full-scale implementation cost to account for possible project cost increases due to scope and bid variations that typically occur with hazardous waste remediation projects. These increases are typically caused by the changes that normally occur as part of final design and implementation, based on observation of actual field conditions/contamination, and factors which affect the cost of subcontracted services, such as labor and material shortages. Not included in the estimates are any agency or Air Force administrative costs, nor any costs associated with modifications of the existing groundwater treatment system(s).

Typically, order-of-magnitude cost estimates for general construction projects are intended to reflect an accuracy of within 50 percent greater to 30 percent less than actual costs. The estimates summarized below are expected to be within these ranges; however, there is greater uncertainty of accuracy as a result of the lesser degree of development associated with this innovative technology compared to general construction technologies. Current pricing data based on quoted equipment costs, construction cost data (e.g., Means, 1993), previous local project experience, and engineering judgment have been used to generate the estimates, using adjustments for local McClellan AFB costs when available. Final project costs will depend on actual labor and material costs, actual site conditions at the time of implementation, productivity, competitive market conditions, final project scope and schedule, contractors selected to perform activities, and many other variables. As a result, the final project costs will differ from the exact value of any estimates presented here.

The following order-of-magnitude implementation costs are estimated for resin adsorption (presuming PADRE system):

- Literature review will require approximately \$9,000 over a period of one year.
- Bench-scale testing would cost approximately \$20,000, if necessary.
- Pilot-scale testing is estimated to cost approximately \$200,000, should the ongoing pilot-testing at Site S prove to be inconclusive.
- Full-scale implementation cost of a two-module system ranges from \$1.6M to \$3.4M. This corresponds to a treatment cost of \$2.70/lb to \$5.70/lb.

Key assumptions associated with the full-scale cost estimate, in addition to those previously described, include:

- System operation is for a period of 3 years.
- VOC loading per unit is 100,000 lbs/year.

RDD10012E29.WP5

11/7/93

ł

- Condensed organic disposal is \$300/drum.
- Purge nitrogen costs approximately \$3.20/operational hour; electrical costs are \$2.30/operational hour.
- System monitoring requires the collection and analysis of four canister samples per module per month.

# Works Cited

Means, 1993.

RDD10012E29.WP5

# CHEMHILL

### TECHNICAL MEMORANDUM M

PREPARED FOR:McClellan Air Force BaseDATE:March 25, 1994SUBJECT:Influent VOC Concentration Estimate<br/>Groundwater OU RI/FS<br/>Delivery Order No. 5066PROJECT:SAC28722.66.FS

#### Introduction

The objective of this technical memorandum is to calculate the groundwater influent concentrations for order-of-magnitude and budget level treatment cost estimates and plant sizing. Because order-of-magnitude costs were used to compare and rank alternatives, only relative accuracy was needed for the preliminary influent concentrations and flows. Therefore, treatment plant sizing and cost estimations were performed before the completion of the groundwater modeling. Absolute accuracy was needed for the final influent concentrations and flows for the budget level cost estimates. This was achieved by incorporating the results of the groundwater modeling after modeling was completed.

The strategy, procedures, and results of the influent concentration calculations for the order-of-magnitude cost estimates are presented first. Following that will be a discussion concerning the strategy, procedures, and results of the influent concentration estimates for the budget level treatment costs.

#### **Influent Concentrations for Order-of-Magnitude Cost Estimates**

### Strategy

VOC concentrations vary significantly with distance from the source areas. Concentrations tend to be highest near the source areas (centers of the plume) and tend to decrease logarithmically away from the center of the plume. For this reason, the contaminant plumes were divided into the following target areas, as discussed in Chapter 2, Conceptual Model, of the RI/FS Report:

RDD10012E38.WP5 (GW RI/FS)

- Areas with TCE concentrations greater than 500  $\mu$ g/l were considered hot spots. They could require separate hydraulic control and separate treatment trains, possibly innovative technologies. Influent concentrations from these areas would be high, but extraction flow rates would be low.
- Areas with TCE concentrations greater than 5  $\mu$ g/l and less than 500  $\mu$ g/l were considered the MCL containment areas.
- Areas with TCE concentrations greater than  $1 \mu g/l$  and less than 500  $\mu g/l$  were considered the background containment areas.

Influent concentrations would be low and extraction flow rates would be high from the MCL and background containment areas. Innovative technologies would only be part of this remedy if they are an innovation in the treatment process.

Influent VOC concentrations from each of the target volumes described above were estimated. TCE is the most prevalent groundwater VOC contaminant. Thus, the extent of TCE generally defined the target volumes. With few exceptions, other VOCs were detected only in areas where TCE was detected. Most recent sampling results for each well were used to estimate the influent concentrations.

#### Procedure

The VOC groundwater contamination was divided into three distinct plumes: the OU A, OU B/C, and the OU D plumes. Influent from the OU A plume would be piped to a proposed treatment plant on the east side of the Base. Influent from the OU B/C and the OU D plumes would be piped to the existing treatment plant on the west side of the Base.

Influent concentrations from the hot spots and the containment areas were estimated separately by taking the area weighted mean concentration of the plume for each zone, then compositing the zones to obtain the influent estimates for the plume. The zones would be composited by taking the flow weighted mean concentration for the plume. The following paragraphs will discuss the steps taken and the equations used to perform these estimates.

#### Area-Weighted Groundwater Concentrations by Plume and by Zone

Concentrations of VOCs in the groundwater were contoured using linear interpolation as discussed in Appendix K, VOC Mass Estimates. The concentrations within each target area (hot spot, MCL, and background) were estimated by taking an areaweighted average of the concentrations within each contour. For example, the areas and concentration intervals within the background target area of the OU D Monitoring Zone A plume are presented in Table M-1.

RDD10012E38.WP5 (GW RI/FS)

3/25/94
|                                     | Area-Weight<br>for OU D Monit                         | Table M-<br>ed TCE Influent C<br>oring Zone A Back | l<br>oncentration Average<br>ground Containment        | rs<br>Arca                                                     |
|-------------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| Concentration<br>Interval<br>(µg/l) | Average<br>Concentration<br>within interval<br>(µg/l) | Area Contour<br>Encloses<br>(ft <sup>2</sup> )     | Area of Contour<br>Interval Ring<br>(ft <sup>2</sup> ) | Ring Area * Average<br>Concentration<br>(ft <sup>2</sup> µg/l) |
| 1 to 5                              | 3                                                     | 19,341,735                                         | 8,943,221                                              | 26,829,663                                                     |
| 5 to 10                             | 7.5                                                   | 10,398,514                                         | 240,291                                                | 1,802,183                                                      |
| 10 to 100                           | 55                                                    | 10,158,223                                         | 3,747,466                                              | 206,110,630                                                    |
| 100 to 500                          | 300                                                   | 6,410,757                                          | 5,200,890                                              | 1,560,267,000                                                  |
| Total Backgroun                     | d Containment Are                                     | ea                                                 | 18,131,868                                             |                                                                |
| Summation of (I                     | Ring Area – Averag                                    | e Concentration)                                   |                                                        | 1,795,009,476                                                  |
| Area-Weighted 1                     | Background Concer                                     | ntration (Summatio                                 | on/Total Area)                                         | 98.998                                                         |

The calculations in Table M-1 were performed for the target volumes for each zone of each plume.

# Area-Weighted Concentrations from Each Zone

The area-weighted concentrations from each zone for a given target volume were combined by performing flow weighted averages. This concept is illustrated in the following equation:

$$C_{ouA} = \frac{C_{ZA} \cdot Q_{ZA} + C_{ZB} \cdot Q_{ZB} + C_{ZC} \cdot Q_{ZC}}{Q_{ZA} + Q_{ZB} + Q_{ZC}}$$

where:

 $C_{ouA}$  is the flow-weighted concentration in an OU.

 $C_{ZA}$  is the concentration in the A Zone.

 $C_{ZB}$  is the concentration in the B Zone.

 $C_{ZC}$  is the concentration in the C Zone.

 $Q_{ZA}$  is the flow from the A Zone.

RDD10012E38.WP5 (GW RI/FS)

M-3

# $Q_{ZB}$ is the flow from the B Zone. $Q_{ZC}$ is the flow from the C Zone.

|                         | Summary of | Table M-2<br>Extraction Rate:<br>(gpm) | s by Zone |       |
|-------------------------|------------|----------------------------------------|-----------|-------|
| <b>Background Plume</b> | Zone A     | Zone B                                 | Zone C    | Total |
| OU A                    | 90         | 60                                     | 0         | 150   |
| OU B/C                  | 72         | 180                                    | 462       | 714   |
| OU D                    | 30         | 75                                     | 0         | 105   |
| Total                   | 192        | 315                                    | 462       | 969   |

Table M-2 list the flow rates used from the groundwater model.

# **Concentrations from the West Treatment Plant**

The influent concentrations from the OU B/C and the OU D plumes were combined to be channeled to the west treatment plant by taking flow-weighted averages. This process is illustrated in the following equations:

C west plant = 
$$\frac{C_{B/C} \cdot Q_{B/C} + C_D \cdot Q_D}{Q_{BC} + Q_D}$$

Where:

C is the flow-weighted concentration to the west treatment plant.

 $C_{B/C}$  is the flow-weighted concentration from OU B/C (from Equation 1).

 $C_D$  is the flow-weighted concentration from OU D (from Equation 1).

 $Q_{B/C}$  is the flow from OU B/C.

 $Q_D$  is the flow from OU D.

RDD10012E38.WP5 (GW RI/FS)

}

# Summary of Influent Concentrations for Order-of-Magnitude Cost Estimates

Hot spots (VOC concentrations greater than 500  $\mu$ g/l) were located only in Monitoring Zone A. The flow weighted concentrations of several VOCs examined during the treatment plant sizing and order-of-magnitude cost estimates are presented in Table M-3.

|                       | Order-of   | -Magnitude Ir | Table M-3<br>afluent Concentr | ation Estimat | es (µg/1)    |            |
|-----------------------|------------|---------------|-------------------------------|---------------|--------------|------------|
|                       | West Treat | ment Plant    |                               | Eas           | st Treatment | Plant      |
| Parameter             | Hot Spot   | MCL           | Background                    | Hot Spot      | MCL          | Background |
| TCE                   | 3697       | 33            | 17                            | 4559          | 21           | 57         |
| 1,2-DCA               | .2         | 12.3          | 12.4                          | 6.5           | 12.7         | 12.7       |
| 1,1-DCA               | 7.2        | 1.0           | 1.1                           | 1.6           | 1.6          | 1.3        |
| 1,1,1-TCA             | 185        | 12.2          | 6.7                           | 840           | 0            | 1.9        |
| Acetone               | 148        | 6.5           | 5.6                           | 520           | 2.2          | 3.3        |
| Methylene<br>Chloride | 232        | .1            | 1.9                           | 2.9           | 0            | 0          |

Future conditions were assessed in determining the validity of using area-weighted averages for the hot spot target areas. The following assumptions were made:

- The initial concentration in the extraction well was considered the current estimated value at that location.
- The concentration gradients in the hot spots are steep.

The future concentrations can be predicted from surrounding concentrations. Using flow- and area-weighted averages, a lower concentration area of a hot spot in the future may have higher concentrations. Conversely, the highest concentration area may in the future have lower concentrations. Therefore, the area-weighted mean concentration will provide a reasonable estimate of the influent concentration and is valid even in hot spot areas.

RDD10012E38.WP5 (GW RI/FS)

# Influent Concentrations for Budget Level Cost Estimates

### Strategy

The order-of-magnitude cost estimates and treatment plant sizing concluded that treating the hot spot and containment area influents separately would not be more efficient or economically feasible than treating them together. Therefore, influent concentrations from the hot spots were not calculated separately, but were included in the containment target volume influent concentrations. The target volumes identified for the budget level cost estimates were as follows:

- Areas with TCE concentrations greater than 5  $\mu$ g/l were considered the MCL containment areas.
- Areas with TCE concentrations greater than 0.5  $\mu$ g/l were considered the background containment areas.
- Areas with cancer risk values greater than 10<sup>-6</sup> were considered the risk target volumes.

Because TCE is the most prevalent VOC contaminant, the MCL and background target volumes were defined by TCE concentrations. Generally, when other VOCs were detected, TCE was also measured at detectable levels.

#### Procedure

Because hot spots need not be isolated, it was possible to automate and greatly simplify the estimation of influent concentrations. Influent concentrations in the MCL, background, and risk target volumes were estimated by performing statistical analyses on wells with concentrations or risk values exceeding the criteria previously listed. The following paragraphs describe the procedures followed to estimate influent concentrations for the budget level cost analyses.

Monitoring wells were divided into two groups to estimate the east and west treatment plant influent concentrations. The samples from wells with easting coordinates greater than 2,169,853 were considered to delineate the target volumes on the east side. The samples from wells with easting coordinates less than 2,169,853 were considered to define the target areas on the west side.

The most recent VOC sampling results for each well sampled during or after 1988 were used to identify the wells with concentrations greater than MCLs or background. The most recent risk values were used to identify wells with risk values greater than  $10^{-6}$ . Once these wells were identified, summary statistics of all the most recent results of all these selected wells were performed to determine the mean influent concentration from these target volumes. For example, 63 wells on the west side had

RDD10012E38.WP5 (GW RI/FS)

3/25/94

more recent TCE sampling results greater than 5  $\mu$ g/l (MCL target volume). Summary statistics were calculated for all sampling results at those 63 wells.

Summary statistics include number of detects, number of samples, frequency of detection, and minimum and maximum detected value and mean concentration. Nondetect values were made equal to zero for these statistics because in many cases of frequently nondetect compounds, the detection levels were high. The summary statistics results for the background MCL and risk target volumes on the east and west sides of the Base are presented in Table M-4 through M-9.

# Summary of Influent Concentrations for Budget Level Cost Estimates

The influent concentrations for budget level cost estimates are summarized in Table M-10. These budget level influent concentration estimates for the target volumes are considerably higher than the order-of-magnitude influent concentration - estimates for the target volumes because they include the concentrations from the hot spots, whereas the order-of-magnitude concentrations isolated the hot spots. The order-of-magnitude estimates isolated hot spots from the MCL and risk target volumes. For example, order of magnitude influent concentrations from the MCL target volumes came from regions where TCE concentrations were greater than 5  $\mu$ g/l and less than 500  $\mu$ g/l. Conversely, budget-level influent concentrations from the MCL target, including the hot spots.

In addition, since background concentrations have not been established, it is not possible to differentiate between metals concentrations due to natural conditions such as mineral dissolution and metal contamination from Base activities.

The impact of metals concentrations on the effectiveness of the treatment system has been discussed in Chapter 13, Implentation Plans/Detailed Evaluation. The influent concentrations of metals were calculated in the same manner as influent VOC concentrations. Summary statistics were performed on the second and third quarter 1993 metals sampling results of wells that are located within the MCL, risk, and background target volumes. The target volumes were determined by VOC concentrations.

The influent concentrations for the three target volumes to the east and west treatment plants are presented in Tables M-4 to M-14. As discussed in Section 4, Conceptual Model, it is not possible to determine how these samples were collected, i.e., filterred or unfiltered or with high or low purge rates.

The estimates for vinyl chloride are conservative, because vinyl chloride has not been detected in any wells since 1991. The calculations included all sampling results for wells with most recent values with the target volume criteria.

|                                                                                 |              | Table M-                | 4                          |             |           |         |           |        |          |
|---------------------------------------------------------------------------------|--------------|-------------------------|----------------------------|-------------|-----------|---------|-----------|--------|----------|
| VOC Influent Concentration                                                      | s From the   | Background<br>Units ug/ | l Target Volume<br>1       | to the East | Treatment | Plant   |           |        |          |
|                                                                                 | Number       | Number                  | Frequency of               | Nondetec    | ted Value | Detecte | d Value   |        | Standard |
| Parameter                                                                       | of Detects   | of Samples              | Detection <sup>3</sup> (%) | Minimum     | Maximum   | Minimum | Maximum   | Mean2  |          |
| TRICHLOROETHYLENE (TCE)                                                         | 34           | 36                      | 8                          | 0.20        | C         | U 46    | 16 000 00 | 026.00 |          |
| cis-1,2-DICHLOROETHYLENE                                                        | 6            | 31                      | 29                         | 0.04        |           | 0.58    | 010 01 C  | 06.002 | 07.000.0 |
| CHLOROFORM                                                                      | 10           | 36                      | 28                         | 0.03        | 100       | 0.25    | 2) M      | 1 42   | 20.00    |
| CARBON TETRACHLORIDE                                                            | 6            | 36                      | 25                         | 0.04        | 300       | 0.81    | 22.40     | 2.05   | 5 81     |
| METHYLENE CHLORIDE                                                              | 7            | 32                      | 22                         | 0.04        | 400       | 0.48    | 51.40     | 1.89   | 10°C     |
| TETRACHLOROETHYLENE(PCE)                                                        | 2            | 36                      | 61                         | 0.04        | 100       | 0.29    | 1.59      | 0.17   | 0.43     |
| 1,2-DICHLOROETHANE                                                              | 5            | 36                      | 14                         | 0.03        | 100       | 0.50    | 30.30     | 110    | 513      |
| 1, 1-DICHLOROETHENE                                                             | 4            | 36                      | 11                         | 0.06        | 200       | 1.46    | 6.60      | 043    | 1 38     |
| 1,1-DICHLOROETHANE                                                              | 2            | 36                      | 9                          | 0.02        | 500       | 1.60    | 2 30      | 110    | 0.46     |
| BENZENE                                                                         | -            | 24                      | 4                          | 0.01        | 150       | 820.00  | 820.00    | 14 17  | 167 38   |
| XYLENES, TOTAL                                                                  | -            | 24                      | 4                          | 0.05        | 200       | 0.56    | 0.56      | 0.02   | 0.11     |
| 1,1,1-1 KICHLOROETHANE                                                          | -            | 36                      | 3                          | 0.14        | 170       | 0.98    | 0.98      | 0.03   | 0.16     |
| 1,2-DICHLOROPROPANE                                                             | -            | 36                      | 3                          | 0.02        | 1001      | 0.85    | 0.85      | 0.02   | 0.14     |
| trans-1, 3-DICHLOROPROPENE                                                      | 1            | 36                      | ر                          | 0.03        | 340       | 0.62    | 0.62      | 0.02   | 0.10     |
| Notes:                                                                          |              |                         |                            |             |           |         |           |        |          |
| <sup>1</sup> Calculations performed on data set are presented in Chapter 4, Con | ceptual Mod  | lel.                    |                            |             |           |         |           |        |          |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, in some c   | ases the mea | n may be les            | s than the detecti         | on limit.   |           |         |           |        |          |
| <sup>3</sup> Only parameters that were detected at least once are presented.    |              |                         |                            |             |           |         |           |        |          |

- ---

.

G?users' nder/mey/mtables/TABLEM-4.XLS

ļ

125/94

-

...

|                                                                          |                     | Table M      | -5                         |             |             |          |           |                   |           |
|--------------------------------------------------------------------------|---------------------|--------------|----------------------------|-------------|-------------|----------|-----------|-------------------|-----------|
| · VOC Influent Conce                                                     | atrations From the  | Background   | d Target Volume            | e to the We | st Treatmen | it Plant |           |                   |           |
|                                                                          |                     |              | 1                          |             |             |          |           |                   |           |
|                                                                          | Number              | Number       | Frequency of               | Nondetec    | ted Value   | Detecter | l Value   |                   | Standard  |
| Parameter                                                                | of Detects          | of Samples   | Detection <sup>3</sup> (%) | Minimum     | Maximum     | Minimum  | Maximum   | Mean <sup>2</sup> | Deviation |
| TRICHLOROETHYLENE (TCE)                                                  | 93                  | 102          | 16                         | 0.07        | 2           | 0.32     | 26.000.00 | 825.55            | 10 996 8  |
| cis-1,2-DICHLOROETHYLENE                                                 | 42                  | 80           | 53                         | 0.04        | 120         | 0.36     | 38.70     | 5.27              | 150       |
| METHYLENE CHLORIDE                                                       | 41                  | 95           | 43                         | 0.40        | 800         | 0.40     | 351.00    | 16 35             | 50 17     |
| TOTAL 1,2-DICHLOROETHENE                                                 |                     | 4            | 25                         | 0.20        | 400         | 2.20     | 0.0       | 0.55              | 11.50     |
| 1,1-DICHLOROETHENE                                                       | 22                  | 102          | 22                         | 0.06        | 400         | 8        | 13 600 00 | 281.05            | 1 570 01  |
| TETRACHLOROETHYLENE(PCE)                                                 | 22                  | 102          | 22                         | 0.04        | 200         | 0.10     | 2.100.00  | 34.64             | 223.69    |
| CHLOROFORM                                                               | 19                  | 102          | 19                         | 0.03        | 200         | 0.11     | 4.34      | 0.22              | 0.62      |
| 1,1-DICHLOROETHANE                                                       | 18                  | 102          | 18                         | 0.02        | 1,000       | 0.34     | 230.00    | 4.81              | 27.24     |
| 1,2-DICHLOROETHANE                                                       | 18                  | 102          | 18                         | 0.03        | 200         | 0.21     | 120.00    | 2.62              | 15.78     |
| 1,1,1-TRICHLOROETHANE                                                    | 14                  | 102          | 14                         | 0.14        | 400         | 0.65     | 1.290.00  | 26.16             | 177.05    |
| TOLUENE                                                                  | 5                   | 11           | 7                          | 0.03        | 400         | 0.24     | 51.00     | 0.74              | 6.05      |
| 1.2-DICHLOROBENZENE                                                      | 3                   | 102          | 3                          | 0.03        | 1,000       | 0.67     | 57.30     | 0.82              | 619       |
| BENZENE                                                                  | 2                   | 11           | 3                          | 0.01        | 400         | 0.94     | 1.10      | 0.03              | 0.17      |
| XYLENES, TOTAL                                                           | 2                   | 12           | 3                          | 0.05        | 400         | 0.51     | 2.69      | 0.05              | 0.32      |
| CARBON TETRACHLORIDE                                                     | 2                   | 102          | 2                          | 0.04        | 240         | 0.41     | 0.57      | 0.01              | 20.0      |
| 1.3-DICHLOROBENZENE                                                      | 3                   | 102          | 2                          | 0.02        | 640         | 0.27     | 1.05      | 0.01              | 0.11      |
| 1,4-DICHLOROBENZENE                                                      | 2                   | 102          | 2                          | 0.01        | 480         | 3.80     | 37.70     | 0.41              | 3.75      |
| 1,2-DICHLOROPROPANE                                                      | 2                   | 102          | 2                          | 0.02        | 200         | 0.22     | 0.25      | 0.00              | 0.03      |
| I KICHLOROFLUOROMETHANE                                                  | 2                   | 102          | 2                          | 0.06        | 400         | 3.70     | 15.00     | 0.18              | 1.53      |
| VINYL CHLORIDE                                                           | 2                   | 102          | 2                          | 0.08        | 400         | 83.00    | 360.00    | 4.34              | 36.50     |
| BROMODICHLOROMETHANE                                                     | -                   | 102          | 1                          | 0.01        | 200         | 0.76     | 0.76      | 0.01              | 0.08      |
| CHLOROBENZENE                                                            | 1                   | 102          | 1                          | 0.01        | 500         | 1.95     | 1.95      | 0.02              | 0.19      |
| Notes:                                                                   |                     |              |                            |             |             |          |           |                   |           |
| <sup>1</sup> Calculations performed on data set are presented in Chapter | er 4, Conceptual Mo | del.         |                            |             |             |          |           |                   |           |
| <sup>4</sup> I he mean was calculated with nondetects as zero. Thus, it  | n some cases the me | an may be le | ss than the detect         | tion limit. |             |          |           |                   |           |

ł

Ę

1

<sup>3</sup> Only parameters that were detected at least once are presented.

G:\users\daV\_under\mey\mtables\TABLEM-5.XLS

3/25/94

|                                                               |                | Table M                  | I-6                        |             |            |         |           |                   |           |
|---------------------------------------------------------------|----------------|--------------------------|----------------------------|-------------|------------|---------|-----------|-------------------|-----------|
| VOC Influent Conc                                             | ntrations Fron | n the Risk T.<br>Units u | arget Volume to<br>e/I     | the East Tr | catment Pl | ant     |           |                   |           |
|                                                               | Number         | Number                   | Frequency of               | Nonde'      | ted Value  | Detecte | d Value   |                   | Standard  |
| Parameter                                                     | of Detects     | of Samples               | Detection <sup>3</sup> (%) | Minimum     | Maximum    | Minimum | Maximum   | Meam <sup>2</sup> | Deviation |
| TRICHLOROETHYLENE (TCE)                                       | 27             | 30                       | 8                          | 0.04        | C          | 046     | 16 000 00 | 1 177 02          | 2 020 24  |
| cis-1,2-DICHLOROETHYLENE                                      | 6              | 25                       | 98                         | 0.04        | · ~        | 0.58    | 210.00    | 10.00             | +C.020°C  |
| CHLOROPORM                                                    | 10             | 30                       | 33                         | 0.03        |            | 30.0    | 00 00     | 10.72             | 00.74     |
| CARBON TETRACHLORIDE                                          | 6              | 05                       | 02                         | 0.0         | 30         | 10.0    | 07.77     | 7/1               | 4.26      |
| TETRACHLOROETHYLENE(PCE)                                      | , r            | 30                       | 2                          | 5.00        | A C        | 10.0    | 22.40     | 2.41              | 6.30      |
| METHYLENE CHLORIDE                                            | -              |                          | <b>67</b>                  | 40.0<br>1   | 8          | 0.29    | 1.59      | 0.20              | 0.46      |
|                                                               |                | 87                       | 18                         | 0.04        | 400        | 0.81    | 51.40     | 2.12              | 9.70      |
|                                                               | 5              | 30                       | 17                         | 0.03        | 100        | 0.50    | 30.30     | 1.32              | 5.61      |
| I.IDICHLURUEI HENE                                            | 4              | 30                       | 13                         | 0.06        | 700        | 1.46    | 6.60      | 0.52              | 1.51      |
| 1,1-DICHLOROETHANE                                            | 2              | 30                       | 7                          | 0.02        | 500        | 1.60    | 230       | 013               | 0.50      |
| BENZENE                                                       | 1              | 20                       | 5                          | 0.01        | 150        | 820.00  | 820.00    | 41 M              | 183 36    |
| KYLENES, TOTAL                                                |                | 20                       | 5                          | 0.05        | 200        | 0 56    | 0.56      | 0.03              |           |
| <b>DIBROMOCHLOROMETHANE</b>                                   | 1              | 30                       | 3                          | 0.01        | 300        | 070     | 010       |                   |           |
| rans-1,3-DICHLOROPROPENE                                      |                | 05                       |                            | 0.03        | 340        | C7 0    | 0.47      | 70.0              | <b>S</b>  |
| 2-DICHLOROPROPANE                                             |                | 05                       | 2 6                        | 8           |            | 20.02   | 70'0      | 0.02              |           |
| 1 1-TRICHI OROFTHANE                                          |                |                          |                            | 7.7         | 3          | C8.U    | C8.U      | 0:03              | 0.16      |
|                                                               |                | 06                       | 5                          | 0.14        | 170        | 0.98    | 0.98      | 0.03              | 0.18      |
| 40CcS:                                                        |                |                          |                            |             | 1          |         |           |                   |           |
| Calculations performed on data set are presented in Chapter 4 | Conceptual Mo  | odel.                    |                            |             |            |         |           |                   |           |
|                                                               |                |                          |                            |             |            |         |           |                   | -         |

.

<sup>2</sup> The mean was calculated with nondetects as zero. Thus, in some cases the mean may be less than the detection limit.

<sup>3</sup> Only parameters that were detected at least once are presented.

G:\user under\mey\mtables\TABLEM-6.XLS

)

46/52/E

|                                                                                |                 | Table M-                 | 7                          |             |            |          |           |                   |           |
|--------------------------------------------------------------------------------|-----------------|--------------------------|----------------------------|-------------|------------|----------|-----------|-------------------|-----------|
| VOC Influent Concent                                                           | rations From t  | he Risk Tar<br>Units ug/ | get Volume to ti<br>I      | he West Tre | atment Pla | ŧ        |           |                   |           |
|                                                                                | Number          | Number                   | Frequency of               | Nondetec    | ted Value  | Detecter | d Value   |                   | Standard  |
| Parameter                                                                      | of Detects      | of Samples               | Detection <sup>3</sup> (%) | Minimum     | Maximum    | Minimum  | Maximum   | Mean <sup>2</sup> | Deviation |
| TRICHLOROETHYLENE (TCE)                                                        | 76              | 80                       | 95                         | 0.20        | -          | 1.23     | 26,000.00 | 1,052.31          | 3,661.09  |
| cis-1.2-DICHLOROETHYLENE                                                       | 40              | 66                       | 61                         | 0.04        | 120        | 0.36     | 38.70     | 6.37              | 10.15     |
| METHYLENE CHLORIDE                                                             | 35              | 74                       | 47                         | 0.40        | 800        | 0.47     | 351.00    | 20.91             | 66.43     |
| TETRACHLOROETHYLENE(PCE)                                                       | 21              | 80                       | 26                         | 0.04        | 200        | 0.10     | 2,100.00  | 44.17             | 252.08    |
| 1.2-DICHLOROETHANE                                                             | 18              | 80                       | 23                         | 0.03        | 200        | 0.21     | 120.00    | 3.34              | 17.78     |
| I, I-DICHLOROETHENE                                                            | 18              | 80                       | 23                         | 0.06        | 400        | 1.06     | 13,600.00 | 355.63            | 1,722.15  |
| CHLOROFORM                                                                     | 18              | 80                       | 23                         | 0.03        | 200        | 0.18     | 4.34      | 0.28              | 0.69      |
| 1,1-DICHLOROETHANE                                                             | 16              | 80                       | 20                         | 0.02        | 1,000      | 1.30     | 230.00    | 6.11              | 30.67     |
| 1,1,1-TRICHLOROETHANE                                                          | 11              | 80                       | 14                         | 0.14        | 400        | 0.65     | 1,290.00  | 33.28             | 199.59    |
| TOLUENE                                                                        | 3               | 56                       | 5                          | 0.03        | 400        | 0.24     | 51.00     | 0.92              | 6.81      |
| BENZENE                                                                        | 2               | 56                       | 4                          | 10.0        | 400        | 0.94     | 1.10      | 0.04              | 0.19      |
| CARBON TETRACHLORIDE                                                           | 2               | 80                       | 3                          | 0.04        | 240        | 0.41     | 0.57      | 0.01              | 0.08      |
| 1,2-DICHLOROBENZENE                                                            | 2               | 80                       | 3                          | 0.03        | 1,000      | 25.50    | 57.30     | 1.03              | 6.98      |
| 1,4-DICHLOROBENZENE                                                            | 2               | 80                       | 3                          | 0.01        | 480        | 3.80     | 37.70     | 0.52              | 4.23      |
| 1.2-DICHLOROPROPANE                                                            | 2               | 80                       | £                          | 0.02        | 200        | 0.22     | 0.25      | 0.01              | 0.04      |
| VINYL CHLORIDE                                                                 | 2               | 80                       | 3                          | 0.08        | 400        | 83.00    | 360.00    | 5.54              | 41.19     |
| XYLENES, TOTAL                                                                 | 1               | 56                       | 2                          | 0.05        | 400        | 2.69     | 2.69      | 0.05              | 0.36      |
| BROMODICHLOROMETHANE                                                           | 1               | 80                       | 1                          | 0.01        | 200        | 0.76     | 0.76      | 0.01              | 0.09      |
| CHLOROBENZENE                                                                  | 1               | 80                       | 1                          | 0.01        | 500        | 1.95     | 1.95      | 0.02              | 0.22      |
| 1,3-DICHLOROBENZENE                                                            | 1               | 80                       | -                          | 0.02        | 640        | 1.05     | 1.05      | 0.01              | 0.12      |
| Notes:                                                                         |                 |                          |                            |             |            |          |           |                   |           |
| <sup>11</sup> Calculations performed on data set are presented in Chapter 4, 0 | Conceptual Mod  | lel.                     |                            |             |            |          |           |                   |           |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, in som     | e cases the mea | m may be les             | ss than the detect         | ion limit.  |            |          |           |                   |           |
| <sup>3</sup> Only parameters that were detected at least once are presented.   |                 |                          |                            |             |            |          |           |                   |           |

-

,

{ 1 .

G:\users\daV\_under\mey\mtables\TABLEM-7.XLS

.

3/25/44

- - ----

|                                                                                 |               | Table M-     | 20                         |             |             |          |           |                   |           |
|---------------------------------------------------------------------------------|---------------|--------------|----------------------------|-------------|-------------|----------|-----------|-------------------|-----------|
| VOC Influent Concentrat                                                         | tions From t  | he MCL Tai   | rget Volume to 1           | he East Tre | atment Plai | I        |           |                   |           |
|                                                                                 |               | Units µg/    | _                          |             |             |          |           |                   |           |
|                                                                                 | Number        | Number       | Frequency of               | Nondetect   | ed Value    | Detecter | i Value   |                   | Standard  |
| Parameter                                                                       | of Detects    | of Samples   | Detection <sup>3</sup> (%) | Minimum     | Maximum     | Minimum  | Maximum   | Mean <sup>2</sup> | Deviation |
| TRICHLOROETHYLENE (TCE)                                                         | 18            | 18           | 100                        |             |             | 1.96     | 16,000.00 | 1,870.72          | 4,839.15  |
| CHLOROFORM                                                                      | 8             | 18           | 4                          | 0.03        | 100         | 2.20     | 22.00     | 2.80              | 5.28      |
| CARBON TETRACHLORIDE                                                            | 7             | 18           | 39                         | 0.06        | 300         | 0.82     | 22.40     | 3.99              | 7.84      |
| cis-1,2-DICHLOROETHYLENE                                                        | 5             | 13           | 38                         | 0.04        | 3           | 1.90     | 210.00    | 20.69             | 58.37     |
| 1.2-DICHLOROETHANE                                                              | 5             | 18           | 28                         | 0.03        | 100         | 0.50     | 30.30     | 2.19              | 7.18      |
| 1,1-DICHLOROETHENE                                                              | 3             | 18           | 17                         | 0.06        | 200         | 1.46     | 6.60      | 0.64              | 1.71      |
| METHYLENE CHLORIDE                                                              | 3             | 18           | 17                         | 0.04        | 400         | 1.46     | 51.40     | 3.03              | 12.08     |
| TETRACHLOROETHYLENE(PCE)                                                        | 3             | 18           | 11                         | 0.04        | 100         | 0.29     | 0.64      | 0.07              | 0.18      |
| 1,1-DICHLOROETHANE                                                              | 2             | 18           | 11                         | 0.02        | 500         | 1.60     | 2.30      | 0.22              | 0.64      |
| BENZENE                                                                         | -             | 13           | œ                          | 0.08        | 150         | 820.00   | 820.00    | 63.08             | 227.43    |
| XYLENES, TOTAL                                                                  | 1             | 13           | œ                          | 0.08        | 200         | 0.56     | 0.56      | 0.04              | 0.16      |
| trans-1,3-DICHLOROPROPENE                                                       | 1             | 18           | 9                          | 0.03        | 340         | 0.62     | 0.62      | 0.03              | 0.15      |
| 1,2-DICHLOROPROPANE                                                             | -             | 18           | 9                          | 0.02        | 100         | 0.85     | 0.85      | 0.05              | 0.20      |
| Notes:                                                                          |               |              |                            |             |             |          |           |                   |           |
| <sup>1</sup> Calculations performed on data set are presented in Chapter 4, Con | nceptual Mod  | lel.         |                            |             |             |          |           |                   |           |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, in some c   | cases the mea | n may be les | s than the detect          | ion limit.  |             |          |           |                   |           |
| <sup>3</sup> Only parameters that were detected at least once are presented.    |               |              |                            |             |             |          |           |                   |           |

,

! + +

:

G:\user under/mey/mtables/TABLEM-8.XLS

)

3/25/94

| VOC Influent Concentrati | ons From th | i adie M-<br>ie MCL Tar<br>Ilnits ng/l | y<br>get Volume to 1       | he West Tr | eatment Pla | Ŧ       |           |                   |           |
|--------------------------|-------------|----------------------------------------|----------------------------|------------|-------------|---------|-----------|-------------------|-----------|
|                          | Number      | Number                                 | Frequency of               | Nondetec   | ted Value   | Detecte | d Value   |                   | Standard  |
| Parameter                | of Detects  | of Samples                             | Detection <sup>3</sup> (%) | Minimum    | Maximum     | Minimum | Maximum   | Mean <sup>2</sup> | Deviation |
| TRICHLOROETHYLENE (TCE)  | 99          | 69                                     | 96                         | 0.20       | 2           | 1.70    | 26,000.00 | 1,219.63          | 3,919.85  |
| cis-1,2-DICHLOROETHYLENE | 35          | 56                                     | 63                         | 0.04       | 120         | 09.0    | 38.70     | 7.40              | 10.69     |
| METHYLENE CHLORIDE       | 32          | 2                                      | 50                         | 0.40       | 800         | 0.40    | 351.00    | 23.97             | 71.01     |
| 1,1-DICHLOROETHENE       | 19          | 69                                     | 28                         | 0.06       | 400         | 1.06    | 13,600.00 | 415.38            | 1,849.31  |
| TETRACHLOROETHYLENE(PCE) | 18          | 69                                     | 26                         | 0.04       | 200         | 0.31    | 2,100.00  | 51.20             | 271.03    |
| 1,2-DICHLOROETHANE       | 16          | 69                                     | 23                         | 0.03       | 200         | 0.21    | 120.00    | 3.86              | 19.11     |
| CHLOROPORM               | 16          | 69                                     | 23                         | 0.03       | 200         | 0.18    | 4.34      | 0.30              | 0.73      |
| 1,1-DICHLOROETHANE       | 15          | 69                                     | 22                         | 0.02       | 1,000       | 1.30    | 230.00    | 7.06              | 32.96     |
| 1,1,1-TRUCHLOROETHANE    | 11          | 69                                     | 16                         | 0.14       | 400         | 0.65    | 1,290.00  | 38.60             | 214.65    |
| TOLUENE                  | 3           | 51                                     | 9                          | 0.03       | 400         | 0.24    | 51.00     | 1.02              | 7.14      |
| BENZENE                  | 2           | 51                                     | 4                          | 0.01       | 400         | 0.94    | 1.10      | 0.04              | 0.20      |
| 1,2-DICHLOROBENZENE      | 2           | 69                                     | ς.                         | 0.03       | 1,000       | 25.50   | 57.30     | 1.20              | 7.51      |
| 1,4-DICHLOROBENZENE      | 2           | 69                                     | 6                          | 0.01       | 480         | 3.80    | 37.70     | 0.60              | 4.55      |
| 1,2-DICHLOROPROPANE      | 2           | 69                                     | e                          | 0.02       | 200         | 0.22    | 0.25      | 0.01              | 0.04      |
| VINYL CHLORIDE           | 2           | 69                                     | <b>~</b>                   | 0.08       | 400         | 83.00   | 360.00    | 6.42              | 44.33     |
| XYLENES, TOTAL           | 1           | 51                                     | 7                          | 0.05       | 400         | 2.69    | 2.69      | 0.05              | 0.38      |
| BROMODICHLOROMETHANE     | 1           | 69                                     | -                          | 0.01       | 200         | 0.76    | 0.76      | 0.01              | 0.09      |
| CHLOROBENZENE            | 1           | 69                                     |                            | 0.01       | 500         | 1.95    | 1.95      | 0.03              | 0.23      |
| CARBON TETRACHLORIDE     | -           | 69                                     | -                          | 0.04       | 240         | 0.57    | 0.57      | 0.01              | 0.07      |
| 1,3-DICHLOROBENZENE      | 1           | 69                                     | 1                          | 0.02       | 640         | 1.05    | 1.05      | 0.02              | 0.13      |

ł

(

Notes:

<sup>1</sup> Calculations performed on data set are presented in Chapter 4, Conceptual Model.

<sup>2</sup> The mean was calculated with nondetects as zero. Thus, in some cases the mean may be less than the detection limit.

<sup>3</sup> Only parameters that were detected at least once are presented.

G?users/dav\_under/mey/mtables/TABLEM-9.XLS

.

1/25/41

|                                                                          |               | Tab         | le M-10                    |              |              |             |           |                   |           |
|--------------------------------------------------------------------------|---------------|-------------|----------------------------|--------------|--------------|-------------|-----------|-------------------|-----------|
| Metals Influent Concen                                                   | trations Fro  | m the Backg | ground Target              | /olume to th | ie East Trea | atment Plai | Į         |                   |           |
|                                                                          |               | Cn          | its µg/l                   |              |              |             |           |                   |           |
|                                                                          | Number        | Number      | Frequency of               | Nondetec     | ted Value    | Detecte     | d Value   |                   | Standard  |
| Parameter                                                                | of Detects    | of Samples  | Detection <sup>3</sup> (%) | Minimum      | Maximum      | Minimum     | Maximum   | Mean <sup>2</sup> | Deviation |
| ALUMINUM                                                                 | 6             | 14          | 3                          | . 28.00      | 45           | 60.00       | 310.00    | 00.111            | 113.16    |
| ARSENIC                                                                  |               | 14          |                            | 00.00        | 4            | 8.50        | 8.50      | 0.61              | 2.27      |
| BARIUM                                                                   | 14            | 14          | 100                        |              |              | 96.6        | 190.00    | 55.64             | 43.07     |
| CALCIUM                                                                  | 14            | 14          | 100                        |              |              | 10,000.00   | 68,000.00 | 20,035.71         | 14,604.56 |
| CHROMIUM, TOTAL                                                          | 14            | 14          | 10                         |              |              | 11.00       | 17,000.00 | 1,326.57          | 4,514.81  |
| COBALT                                                                   | 2             | 14          | 14                         | 3.00         | 7            | 9.20        | 18.00     | 1.94              | 5.23      |
| COPPER                                                                   | 4             | 14          | 29                         | 3.00         | 9            | 6.70        | 250.00    | 19.59             | 66.41     |
| IRON                                                                     | 14            | 14          | 10                         |              |              | 12.20       | 71,000.00 | 6,149.80          | 18,699.75 |
| LEAD                                                                     | 9             | 14          | 4                          | 3.00         | 3            | 3.00        | 4.20      | 1.53              | 1.86      |
| MAGNESIUM                                                                | 14            | 14          | 100                        |              |              | 6,860.00    | 47,000.00 | 14,282.86         | 9,951.38  |
| MANGANESE                                                                | 14            | 14          | 10(                        |              |              | 6.20        | 390.00    | 57.92             | 100.19    |
| MOLYBDENUM                                                               | 1             | 14          | -                          | 4.00         | 8            | 190.00      | 00.061    | 13.57             | 50.78     |
| NICKEL                                                                   | 12            | 14          | ×                          | 16.00        | 16           | 16.00       | 2,700.00  | 296.33            | 702.29    |
| POTASSIUM                                                                | 6             | 14          | 2                          | 3,000.00     | 3,000        | 3,000.00    | 8,170.00  | 2,905.00          | 2,556.14  |
| SODIUM                                                                   | 14            | 14          | 100                        |              |              | 13,800.00   | 33,000.00 | 17,292.86         | 4,862.49  |
| VANADIUM                                                                 | 14            | 14          | 100                        |              |              | 13.00       | 86.00     | 30.47             | 17.00     |
| ZINC                                                                     | 13            | 14          | 93                         | 3.00         | 3            | 3.60        | 1,400.00  | 155.75            | 366.17    |
| Notes:                                                                   |               |             |                            |              |              |             |           |                   |           |
| <sup>1</sup> Calculations performed on second and third quarter 1993 r   | monitoring re | sults.      |                            |              |              |             |           |                   |           |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, it   | n some cases  | the mean ma | ay be less than th         | ne detection | imit.        |             |           |                   |           |
| <sup>3</sup> Only parameters that were detected at least once are preser | nted.         |             |                            |              |              |             |           |                   |           |
|                                                                          |               |             |                            |              |              |             |           |                   |           |

•

.

underNmey/mtables/TABLM-10.XLS G?users

......

t6/57/1

|                                                                          |              | Tab          | le M-11                    |             |             |             |           |                   |           |
|--------------------------------------------------------------------------|--------------|--------------|----------------------------|-------------|-------------|-------------|-----------|-------------------|-----------|
| Metals Influent Concent                                                  | trations Fro | m the Backg  | ground Target Vo           | olume to th | e West Trea | atment Plai | et.       |                   |           |
|                                                                          |              | Un           | its µg/l                   |             |             |             |           |                   |           |
|                                                                          | Number       | Number       | Frequency of               | Nondetec    | ted Value   | Detecte     | d Value   |                   | Standard  |
| Parameter                                                                | of Detects   | of Samples   | Detection <sup>3</sup> (%) | Minimum     | Maximum     | Minimum     | Maximum   | Mean <sup>2</sup> | Deviation |
| ALUMINUM                                                                 | 25           | 51           | 49                         | 28.00       | 45          | 53.30       | 12,700.00 | 1,123.16          | 2,970.27  |
| ARSENIC                                                                  | 6            | 51           | 18                         | 0.00        | 4           | 4.00        | 21.90     | 1.62              | 4.26      |
| BARUM                                                                    | 51           | 51           | 100                        |             |             | 13.00       | 286.00    | 78.58             | 61.39     |
| BERYLLIUM                                                                | -            | 51           | 2                          | 0.00        | 1           | 1.00        | 1.00      | 0.02              | 0.14      |
| CADMIUM                                                                  | 1            | 51           | 2                          | 1.00        | 4           | 4.00        | 4.00      | 0.08              | 0.56      |
| CALCTUM                                                                  | 51           | 51           | 100                        |             |             | 11,500.00   | 59,500.00 | 22,891.18         | 10,856.50 |
| CHROMIUM, TOTAL                                                          | 48           | 51           | 94                         | 2.00        | 2           | 8.10        | 8,870.00  | 425.30            | 1,325.36  |
| COBALT                                                                   | 80           | 51           | 16                         | 3.00        | 2           | 8.10        | 15.90     | 1.82              | 4.40      |
| COPPER                                                                   | 21           | 51           | 41                         | 3.00        | 9           | 6.20        | 240.00    | 17.06             | 45.04     |
| RON                                                                      | 50           | 51           | 98                         | 6.00        | 9           | 10.00       | 46,600.00 | 4,694.83          | 8,843.04  |
| LEAD                                                                     | 29           | 51           | 57                         | 00.0        | 42          | 3.10        | 24.00     | 4.08              | 4.93      |
| MAGNESIUM                                                                | 51           | 51           | 100                        |             |             | 3,700.00    | 43,100.00 | 15,574.02         | 8,476.12  |
| MANGANESE                                                                | 47           | 51           | 92                         | 0.00        | 2           | 1.40        | 1,670.00  | 111.82            | 254.57    |
| MOLYBDENUM                                                               | 8            | 51           | 16                         | 4.00        | 8           | 00.6        | 94.80     | 3.99              | 14.19     |
| NICKEL                                                                   | 32           | 50           | 2                          | 00.6        | 16          | 16.35       | 894.00    | 100.88            | 169.58    |
| POTASSIUM                                                                | 11           | 15           | 22                         | 3,000.00    | 3,000       | 3,050.00    | 22,000.00 | 1,778.92          | 4,243.50  |
| SELENIUM                                                                 | 1            | 51           | 2                          | 0.00        | 41          | 2.20        | 2.20      | 0.04              | 0.31      |
| SODIUM                                                                   | 51           | 51           | 100                        |             |             | 13,200.00   | 36,000.00 | 19,089.22         | 4,473.59  |
| VANADIUM                                                                 | 48           | 51           | 94                         | 8.00        | 8           | 11.00       | 148.00    | 34.60             | 25.60     |
| ZINC                                                                     | 48           | 51           | 94                         | 3.00        | 3           | 3.00        | 1,060.00  | 123.75            | 223.06    |
| Notes:                                                                   |              |              |                            |             |             |             |           |                   |           |
| <sup>1</sup> Calculations performed on second and third quarter 1993 1   | monitoring r | esults.      |                            |             |             |             |           |                   |           |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, it   | n some cases | s the mean m | ay be less than th         | e detection | limit.      |             |           |                   |           |
| <sup>3</sup> Only parameters that were detected at least once are presei | nted.        |              |                            |             |             |             |           |                   |           |

....

• •

.

ł

G:\users\da\l\_under\mey\mtables\TABLM-11.XL.S

10/52/2

|                                                                       |              | Tab        | le M-12                    |             |             |           |           |                   |                  |
|-----------------------------------------------------------------------|--------------|------------|----------------------------|-------------|-------------|-----------|-----------|-------------------|------------------|
| Metals Influent Col                                                   | centrations  | From the R | isk Target Volu            | me to the E | ast Treatme | ent Plant |           |                   |                  |
|                                                                       |              | Un         | its µg/l                   |             |             |           |           |                   |                  |
|                                                                       | Number       | Number     | Frequency of               | Nondetee    | ted Value   | Detecte   | d Value   |                   | Standard         |
| Parameter                                                             | of Detects   | of Samples | Detection <sup>3</sup> (%) | Minimum     | Maximum     | Minimum   | Maximum   | Mean <sup>2</sup> | <b>Deviation</b> |
| ALUMINUM                                                              | 8            | 10         | 08                         | 28.00       | 45          | 60.09     | 310.00    | 120.90            | 103.62           |
| ARSENIC                                                               | 1            | 10         | 10                         | 0.00        | 4           | 8.50      | 8.50      | 0.85              | 2.69             |
| BARIUM                                                                | 10           | 10         | 100                        |             |             | 9.90      | 190.00    | 59.67             | 50.75            |
| CALCIUM                                                               | 10           | 10         | 100                        |             |             | 11,000.00 | 68,000.00 | 22,690.00         | 16,695.94        |
| CHROMIUM, TOTAL                                                       | 10           | 10         | 100                        | (           |             | 18.00     | 17,000.00 | 1,831.92          | 5,333.75         |
| COBALT                                                                | 2            | 10         | 20                         | 3.00        | 7           | 9.20      | 18.00     | 2.72              | 6.10             |
| COPPER                                                                | 3            | 10         | 30                         | 3.00        | 9           | 6.70      | 250.00    | 26.70             | 78.54            |
| IRON                                                                  | 10           | 10         | 100                        | (           |             | 200.00    | 71,000.00 | 8,064.20          | 22,135.46        |
| LEAD                                                                  | 4            | 10         | 40                         | 1.00        | 3           | 3.20      | 4.10      | 1.42              | 1.85             |
| MAGNESIUM                                                             | 10           | 10         | 100                        | (           |             | 7,800.00  | 47,000.00 | 15,847.00         | 11,470.85        |
| MANGANESE                                                             | 10           | 10         | 100                        | (           |             | 6.20      | 390.00    | 71.12             | 116.94           |
| MOLYBDENUM                                                            | 1            | 10         | 10                         | 4.00        | 8           | 190.00    | 190.00    | 19.00             | 60.08            |
| NICKET                                                                | 8            | 10         | 80                         | 16.00       | 16          | 16.00     | 2,700.00  | 335.73            | 834.90           |
| POTASSIUM                                                             | 5            | 10         | 50                         | 3,000.00    | 3,000       | 3,000.00  | 4,800.00  | 2,036.00          | 2,208.28         |
| SODIUM                                                                | 10           | 10         | 100                        | (           |             | 14,000.00 | 33,000.00 | 18,000.00         | 5,600.00         |
| VANADIUM                                                              | 10           | 10         | 100                        | (           |             | 13.00     | 86.00     | 31.08             | 20.02            |
| ZINC                                                                  | 6            | 10         | 96                         | 3.00        | 3           | 00.6      | 1,400.00  | 192.43            | 432.84           |
| Notes:                                                                |              |            |                            |             |             |           |           |                   |                  |
| <sup>1</sup> Calculations performed on second and third quarter 1993. | monitoring r | esults.    |                            |             |             |           |           |                   |                  |

. .

.

.

<sup>2</sup> The mean was calculated with nondetects as zero. Thus, in some cases the mean may be less than the detection limit.

<sup>3</sup> Only parameters that were detected at least once are presented.

G?users/d\* de?mey/mtables/TABLM-12.XLS

)

16/5

|                                                                          |                    | Tab        | le M-13                    |               |            |           |           |                   |           |
|--------------------------------------------------------------------------|--------------------|------------|----------------------------|---------------|------------|-----------|-----------|-------------------|-----------|
| Metals Influent Con                                                      | <b>centrations</b> | From the R | isk Target Volun           | ne to the W   | est Treatm | ent Plant |           |                   |           |
|                                                                          |                    | -<br>S     | its µg/l                   |               |            |           |           |                   |           |
|                                                                          | Number             | Number     | Frequency of               | Nondetec      | ted Value  | Detecte   | d Value   |                   | Standard  |
| Parameter                                                                | of Detects         | of Samples | Detection <sup>3</sup> (%) | Minimum       | Maximum    | Minimum   | Maximum   | Mean <sup>2</sup> | Deviation |
| ALUMINUM                                                                 | 21                 | 4          | 48                         | 28.00         | 45         | 53.30     | 12,700.00 | 1,288.00          | 3.170.80  |
| ARSENIC                                                                  | 2                  | 4          | 16                         | 0.00          | 4          | 4.00      | 12.20     | 1.09              | 2.85      |
| BARIUM                                                                   | 4                  | 4          | 100                        |               |            | 17.80     | 286.00    | 85.07             | 63.11     |
| BERYLLIUM                                                                | -                  | 4          | 2                          | 00.0          | 1          | 1.00      | 1.00      | 0.02              | 0.15      |
| CADMIUM                                                                  | -                  | 4          | 2                          | 1.00          | 4          | 4.00      | 4.00      | 0.09              | 0.60      |
| CALCIUM                                                                  | 4                  | 4          | 100                        |               |            | 11,500.00 | 59,500.00 | 24,132.95         | 11,135.58 |
| CHROMIUM, TOTAL                                                          | 42                 | 4          | 95                         | 7.00          | 7          | 9.30      | 2,500.00  | 282.70            | 585.96    |
| COBALT                                                                   | 2                  | 44         | 16                         | 3.00          | 2          | 8.10      | 15.50     | 1.75              | 4.17      |
| COPPER                                                                   | 19                 | 4          | 43                         | 3.00          | 9          | 6.20      | 203.00    | 13.58             | 33.93     |
| RON                                                                      | 43                 | 4          | 86                         | 6.00          | 9          | 10.00     | 36,900.00 | 3,860.00          | 6,875.85  |
| EAD                                                                      | 25                 | 44         | 57                         | 0.00          | 42         | 3.10      | 24.00     | 4.23              | 5.18      |
| VAGNESIUM                                                                | 44                 | 44         | 100                        |               |            | 3,700.00  | 43,100.00 | 16,370.34         | 8,819.82  |
| VANGANESE                                                                | 40                 | 44         | 16                         | 0.00          | 2          | 1.40      | 1,670.00  | 113.76            | 272.67    |
| MOLYBDENUM                                                               | 2                  | 4          | 16                         | 4.00          | 80         | 00.6      | 27.00     | 2.47              | 6.14      |
| VICKEL                                                                   | 29                 | 43         | 19                         | 00.6          | 16         | 16.35     | 534.00    | 86.26             | 128.34    |
| OTASSIUM                                                                 | 10                 | 44         | 23                         | 3,000.00      | 3,000      | 3,050.00  | 22,000.00 | 1,789.20          | 4,250.59  |
| SELENIUM                                                                 | 1                  | 44         | 2                          | 00.0          | 41         | 2.20      | 2.20      | 0.05              | 0.33      |
| (ODIUM)                                                                  | 44                 | 44         | 100                        |               |            | 13,200.00 | 36,000.00 | 19,478.41         | 4,667.25  |
| VANADIUM                                                                 | 43                 | 4          | 86                         | 8.00          | 8          | 11.00     | 96.80     | 34.34             | 19.99     |
| ZINC                                                                     | 41                 | 44         | 93                         | 3.00          | 3          | 3.00      | 1,060.00  | 109.69            | 211.28    |
| Votes:                                                                   |                    |            |                            |               |            |           |           |                   |           |
| <sup>1</sup> Calculations performed on second and third quarter 1993 n   | monitoring re      | ssults.    |                            |               |            |           |           |                   |           |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, in   | n some cases       | the mean m | ay be less than th         | e detection 1 | imit.      |           |           |                   | <u></u>   |
| <sup>3</sup> Only parameters that were detected at least once are presen | nted.              |            |                            |               |            |           |           |                   |           |

G:\users\daV\_under\mey\mtables\TABLM-13.XLS

125/94

|                                                                          |              | E          |                            |              |            |           |           |                   |           |
|--------------------------------------------------------------------------|--------------|------------|----------------------------|--------------|------------|-----------|-----------|-------------------|-----------|
| Metals Influent Conc                                                     | centrations  | From the M | le M-14<br>CL Target Volu  | me to the E  | ast Treatm | ent Plant |           |                   |           |
|                                                                          |              | Uni        | its µg/l                   |              |            |           |           |                   |           |
|                                                                          | Number       | Number     | Frequency of               | Nondetec     | ted Value  | Detecte   | d Value   |                   | Standard  |
| Parameter                                                                | of Detects   | of Samples | Detection <sup>3</sup> (%) | Minimum      | Maximum    | Minimum   | Maximum   | Mean <sup>2</sup> | Deviation |
| ALUMINUM                                                                 | 3            | 4          | 75                         | 28.00        | 28         | 67.00     | 310.00    | 161.75            | 151.48    |
| BARIUM                                                                   | 4            | 4          | 100                        |              |            | 48.00     | 190.00    | 95.35             | 65.29     |
| CALCIUM                                                                  | 4            | 4          | 100                        |              |            | 14,400.00 | 68,000.00 | 30,925.00         | 25,272.04 |
| CHROMIUM, TOTAL                                                          | 4            | 4          | 100                        |              |            | 77.00     | 720.00    | 281.15            | 302.06    |
| COBALT                                                                   | 1            | 4          | 25                         | 3.00         | L          | 9.20      | 9.20      | 2.30              | 4.60      |
| COPPER                                                                   | 1            | 4          | 25                         | 3.00         | 9          | 10.30     | 10.30     | 2.58              | 5.15      |
| RON                                                                      | 4            | 4          | 100                        |              |            | 410.00    | 3,300.00  | 1,750.00          | 1,219.04  |
| LEAD                                                                     | 2            | 4          | 50                         | 3.00         | 3          | 3.60      | 4.10      | 1.92              | 2.23      |
| MAGNESIUM                                                                | 4            | 4          | 100                        |              |            | 10,300.00 | 47,000.00 | 21,675.00         | 17,222.35 |
| MANGANESE                                                                | 4            | 4          | 100                        |              |            | 6.20      | 118.00    | 48.40             | 48.36     |
| NICKEL                                                                   | 4            | 4          | 100                        |              |            | 16.00     | 222.00    | 116.00            | 114.46    |
| POTASSIUM                                                                | 3            | 4          | 75                         | 3,000.00     | 3,000      | 4,460.00  | 4,800.00  | 3,465.00          | 2,314.21  |
| SODIUM                                                                   | 4            | 4          | 100                        |              |            | 14,400.00 | 33,000.00 | 20,300.00         | 8,595.35  |
| VANADIUM                                                                 | 4            | 4          | 100                        |              |            | 23.80     | 31.90     | 26.93             | 3.84      |
| ZINC                                                                     | 4            | 4          | 100                        |              |            | 12.00     | 289.00    | 95.48             | 130.18    |
| Notes:                                                                   |              |            |                            |              |            |           |           |                   |           |
| <sup>1</sup> Calculations performed on second and third quarter 1993 r   | nonitoring r | esults.    |                            |              |            |           |           |                   |           |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, ir   | some cases   | the mean m | ay be less than th         | ne detection | limit.     |           |           |                   |           |
| <sup>3</sup> Only parameters that were detected at least once are presen | ited.        |            |                            |              |            |           |           |                   |           |

\_

G?users' derbeyvmtables/TABL:M-14.XLS

)

t6/sZ.

|                                                                           |               | Tab         | le M-15                    |               |             |              |             |                   |            |
|---------------------------------------------------------------------------|---------------|-------------|----------------------------|---------------|-------------|--------------|-------------|-------------------|------------|
| Metals Influent Con                                                       | centrations   | From the M  | <b>CL Target Volu</b>      | me to the V   | Vest Treatm | ient Plant   |             |                   |            |
|                                                                           |               | a<br>N      | its µg/l                   |               |             |              |             |                   |            |
|                                                                           | Number        | Number      | Frequency of               | Nondetec      | ted Value   | Detecte      | d Value     |                   | Standard   |
| Parameter                                                                 | of Detects    | of Samples  | Detection <sup>3</sup> (%) | Minimum       | Maximum     | Minimum      | Maximum     | Mean <sup>2</sup> | Pariation  |
| ALUMINUM                                                                  | 19            | 39          | 49                         | · 28.00       | 45          | 02 23        | 12 700 M    | 1 446 01          | 2 2 2 8 01 |
| ARSENIC                                                                   | 5             | 39          | 13                         | 000           | <u> </u>    | 01.0         | 12 20       | 1 00              | 14.900,0   |
| BARIUM                                                                    | 39            | 02          |                            |               | •           | 100 61       | 07.21       | 1.02              | 56.7       |
| BERYLLIUM                                                                 |               | 30          | 81 °                       | W V           | -           | N9.11        | 780.00      | 90.48             | 64.87      |
| CADMIUM                                                                   | •             | 202         | ר   ר<br> <br>             | 3.0           |             | N.           | <b>N</b> .1 | 0.03              | 0.16       |
| CALCIUM                                                                   | - 62          | 202         |                            | <b>B</b> .1   | Ŧ           | 11 500 00    | 4.00        | 0.10              | 0.64       |
| CHROMIUM, TOTAL                                                           | 38            | 68          | 10                         | 7 00          | L           | 01.00.000.11 | 00,002,6C   | 07.010,02         | CC.204,11  |
| COBALT                                                                    | 1             | 39          | 18                         | 3.00          |             | 8 10         | 00'00C'7    | 001               | 06.100     |
| COPPER                                                                    | 17            | 39          | 4                          | 3.00          | 9           | 6.20         | 203.00      | 13.80             | 25.22      |
| IRON                                                                      | 38            | 39          | 16                         | 6.00          | 9           | 10.00        | 00 00 yr    | 4 m7 38           | 02.420 L   |
| LEAD                                                                      | 23            | 39          | 59                         | 0.00          | 42          | 3.10         | 24 00       | 0C-710'L          | 72.2       |
| MAGNESIUM                                                                 | 39            | 39          | 100                        |               |             | 3.700.00     | 43.100.00   | 17.076.28         | 9 043 11   |
| MANGANESE                                                                 | 35            | 39          | 6                          | 0.00          | 2           | 1 40         | 1 670 00    | 122 61            | 79970      |
| MOLYBDENUM                                                                | 9             | 39          | 15                         | 4.00          | ) oc        | 12.00        | 27 00       | 10.771            | 6 30       |
| NICKEL                                                                    | 25            | 38          | 99                         | 00.6          | 16          | 16.35        | 534.00      | 87.64             | 134.73     |
| POTASSIUM                                                                 | 80            | 39          | 21                         | 3,000.00      | 3,000       | 3,050.00     | 22,000.00   | 1.730.90          | 4.406.34   |
| SELENIUM                                                                  | -             | 39          | 3                          | 0.00          | 41          | 2.20         | 2.20        | 0.06              | 0.35       |
| SODIUM                                                                    | 39            | 39          | 100                        |               |             | 14,600.00    | 36.000.00   | 19.982.05         | 4 655 48   |
| VANADIUM                                                                  | 39            | 39          | 100                        |               |             | 11.00        | 96.80       | 35.88             | 19.93      |
| ZINC                                                                      | 36            | 39          | 92                         | 3.00          | 3           | 3.00         | 1.060.00    | 111.09            | 218 78     |
| Notes:                                                                    |               |             |                            |               |             |              |             |                   |            |
| <sup>1</sup> Calculations performed on second and third quarter 1993 n    | nonitoring re | sults.      |                            |               |             |              |             |                   |            |
| <sup>2</sup> The mean was calculated with nondetects as zero. Thus, in    | some cases    | the mean ma | v be less than the         | e detection [ | imit.       |              |             |                   |            |
| <sup>3</sup> Only parameters that were detected at least once are present | ted.          |             |                            |               |             |              |             |                   |            |

.

 $G?usersVdaV\_underMneyVmtablesVTABLM-15.XI_S$ 

3/25/94

. . . . . . . .

## TECHNICAL MEMORANDUM N

CHEMIHILL

| PREPARED FOR: | McClellan Air Force Base                                                                      |
|---------------|-----------------------------------------------------------------------------------------------|
| DATE:         | November 6, 1993                                                                              |
| SUBJECT:      | Production Well Pumping Information<br>Groundwater OU RI/FS Report<br>Delivery Order No. 5066 |
| PROJECT:      | SAC28722.66.DA                                                                                |

#### Introduction

The purpose of this technical memorandum is to describe the procedures used in collecting information on production wells within a 5-mile radius of McClellan AFB. This technical memorandum also summarizes availability of data for these wells. Compilation of data, discrepancies found in some of the data, pumping distribution and impacts, and potential future pumping condition are also discussed.

# **Compilation of Data**

Construction data and cumulative pumpage information have been summarized for all wells within a 5-mile radius of McClellan AFB. These wells are shown in Figure N-1 (located in a pocket at the end of this appendix). The production well owners within the specified radius include McClellan AFB, Arcade Water District, Caltrans, Northridge Water District, Rio Linda Water District, City of Sacramento, Del Paso Water Agency, Carmichael Water Agency, and Sacramento County.

A summary of contacts made and the type of data obtained are included in Table N-1. No information was obtained from Del Paso or Carmichael Water Agencies since their wells are located near the perimeter of the 5-mile radius and they do not pump large quantities of water. Sacramento County also has two wells near the perimeter of the 5-mile radius for which no information was obtained.

Many sources were reviewed to obtain construction and pumpage information. Initially, existing documents were reviewed to determine the extent of available data. Radian Corporation was also contacted for information on these wells. The main references consulted in compiling data include the following:

• Dewante and Stowell, Consulting Engineers. 1981. Arcade Water District Operations Planning Project, Water Master Plan. August.

RDD10012D9B.WP5 (GW RI/FS)

|                                                                                            |                                                           |                                                 | Sum                                  | imary of Types of Purv                                                  | eyor Data Obtain |                     |                     |                                |            |              |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|------------------|---------------------|---------------------|--------------------------------|------------|--------------|
| Infarm string                                                                              | Citimens<br>1 Hilling                                     | Nardhridea                                      | Amado"                               | City of                                                                 | County of        |                     | McClellan           |                                |            |              |
| Acronym                                                                                    | CU                                                        | ž                                               | ARC                                  | CW                                                                      | SAWWA            |                     |                     |                                | Carmichaef |              |
| Construction Data                                                                          | Well Drillers<br>Reports                                  | Summary List<br>from District                   | Arcade Master<br>Plan and Radian     | Well Drillers Reports<br>and Radian                                     | None             | Radian              | Radian              | Radian                         | None       | None         |
| Well Pumpage Data                                                                          | Annual Cumulative<br>and Radian <sup>k</sup>              | Annuel<br>Cumulative and<br>Radian <sup>2</sup> | Radiark                              | Monthly Volume and<br>Radian <sup>k</sup>                               | None .           | Radian <sup>k</sup> | Form 1461<br>Radian | Gross volume<br>not cumulative | None       | . None       |
| Pumpage Deta Year End                                                                      | 1992                                                      | 1992                                            | 4                                    | 1992                                                                    |                  | -                   | 1992                | 1989                           |            |              |
| Pumpage Data Year Begin                                                                    | 1970                                                      | 1972                                            |                                      | 8861                                                                    |                  | 7                   | 1987                | 1979                           |            |              |
| Contect Name                                                                               | Jim Mulligen                                              | Warren Jung                                     | Roy Hafar                            | Walt Short                                                              | Mike Crooks      | Ben Sanchez         |                     | Dan Pollock,<br>Area           |            |              |
| Contact Phone No.                                                                          | 916/481-7350                                              | 916/332-4111                                    | 916/972-7171                         | 916/264-7830                                                            | 916/440-6851     | 016/001-2044        |                     | Menoreminedus                  |            |              |
| FAX                                                                                        | 916/481-0230                                              | 916/332-6215                                    | 916/972-7639                         | 916/264-7955                                                            |                  | 916/991-6616        |                     | 1404-700 M14                   |            |              |
| Contects Made:                                                                             |                                                           |                                                 |                                      |                                                                         |                  |                     |                     |                                |            |              |
| Wortzhop                                                                                   | ×                                                         | No                                              | ×                                    | ×                                                                       | ×                | ×                   | ×                   | ×                              | Ŷ          | No           |
| Followup Rude Memo                                                                         | ×                                                         | ×                                               | ×                                    | ×                                                                       | ×;               | ×                   | No                  | ×                              | Ň          | Ŷ            |
| rotowup Laner Metho                                                                        | ¥                                                         | x                                               | ×                                    | ×                                                                       | Ŷ                | ×                   | Ŷ                   | No<br>No                       | °Ľ         | No           |
| Water District Maps:                                                                       |                                                           |                                                 |                                      |                                                                         |                  |                     |                     |                                |            |              |
| District Boundary                                                                          | ×                                                         | ×                                               | X                                    | City map                                                                | ×                | ×                   | ×                   | No                             | None       | None         |
| Main Distribution System                                                                   | < ×                                                       | < ×                                             | X (N. Highlands)<br>X (N. Highlands) | × %                                                                     | מ                | ××                  | X (Radian)<br>X     | No Map<br>No                   | None       | Nome<br>Nome |
| Other Information                                                                          | Static water level<br>and pumping rates                   | Online date was<br>given. Water                 | Efficiency and mecific capacity      | Well address,<br>capacity, and denth                                    |                  |                     |                     | Location by                    |            |              |
|                                                                                            | on seven<br>McCiellan AFB<br>area wells                   | level soundings<br>3/92 to 2/93                 | for some wells.                      | also given for standby<br>municipal wells and<br>park irrigation wells. |                  |                     |                     |                                |            |              |
| Citizens Utilities pumpage d<br>Tacomplete production data t<br>Waiting for pumpage inform | ata were used instead<br>that were available to<br>ation. | of Radian Corporati<br>1969, was not inclu      | ion's data.<br>ded.                  |                                                                         |                  |                     |                     |                                |            |              |

ļ

,

,

•

þ ł 1 were used.

CHY OI SECTEMENTO INCOMINY VOILING ISPORT IN "Wells are actually out of radius of influence.

N-2

<sup>1</sup>Variting for pumpage information. <sup>1</sup>Form 1461 is McClallan AFB's monthly operating report. Data unavailable prior to 1987. <sup>1</sup>Pumpage data not available. No construction data available. One number was given that represents pump capacity from 1979 to 1989. <sup>1</sup>No contact was made because of the limited number of wells in the radius of influence. <sup>1</sup>No contact was made because of the limited number of wells in the radius of influence.

Radian has some data for some wells from approximately October 1989 to December 1992.

11/1/93

- CH2M HILL. 1992. Well Closure Methods and Procedures Phase II Delivery Order 5031 McClellan AFB. August.
- CH2M HILL. 1990. Draft Well Closure Methods and Procedures. December.
- Radian Corporation. Production Well Data for McClellan AFB and Municipal Wells (Quarterly Reports for 1990, 1991, and 1992; second quarter report not available for 1992).
- Luhdorff & Scalmanini, Consulting Engineers. 1984. Final Report Sealing of Base Wells, McClellan AFB, California. February.

Well owners were contacted first through the initial screening workshop held August 10, 1993, (McClellan Air Force Base Contaminated Groundwater Cleanup Workshop). Water purveyor attendees included the following:

- Ernie Rinde-Caltrans
- Mike Crooks-Sacramento County
- Ben Sanchez-Rio Linda Water Agency
- Ed Schnabel-Sacramento Metropolitan Water Agency
- Walt Libal/C. J. DiPietro-Arcade Water District
- Jim Mulligan Citizens Utilities

A followup memorandum was then sent to those attendees. Followup calls were made to the major water purveyors and an information request memorandum was faxed to them. These major water purveyors include Citizens Utilities, Northridge Water District, Rio Linda Water Agency, and City of Sacramento. Caltrans was not contacted beyond the followup call because they had sent in all available information. Arcade Water District was not requested to provide construction data since that information was obtained from the Arcade Water District Master Plan.

Specific data requested of most of the purveyors included the following:

- Well ID number
- Well name
- Location information (street address and coordinates)
- Depth to screen
- Length of screen interval
- Casing diameter
- Average annual well pumping rate
- Annual cumulative pumpage from 1954 to 1993
- Specific capacity
- Estimated future pumping rates
- Anticipated future changes in groundwater management

Almost all the water districts sent the requested information. Most of the information on the well locations was received from the County of Sacramento. The County sent a well site location map for the Sacramento Area Water Works Association (SAWWA) Well Testing Program and a diskette containing the computer file for the map in AutoCAD format as well as the database inventory of the wells in dBASE IV format. The database file contains state well numbers and California coordinates (northing and easting) for the wells that are tested in the well testing program. The City of Sacramento is not included in this program.

Construction data are summarized in Table N-2. Construction data were obtained in different formats. Well drillers' reports were sent by Citizens Utilities and the City of Sacramento. Northridge Water District sent a summary list of the data requested. Rio Linda, Caltrans, and McClellan AFB well construction data were obtained from Radian.

Pumpage data are summarized in Table N-3. Pumpage data also came in different formats. Citizens Utilities and Northridge sent annual volumes and the City of Sacramento sent monthly volume reports. Monthly volumes for McClellan AFB were obtained from Form 1461, which was copied from microfiche records at the Base. Rio Linda and Arcade information came from Radian. These two purveyors are being contacted for more information.

Caltrans sent a gross weekly pumping volume that is actually based on the pump capacity and pumping rate from 1989, back to about 1979, for the irrigation season. These numbers are not actual pumping volumes since no volume is measured. Caltrans information on construction and cumulative pumpage was not pursued since the gross pumping volume indicated that Caltrans did not pump large quantities of water.

#### **Data Discrepanices**

Figure N-1 was created from information from Radian and SAWWA. The AutoCAD file was plotted and checked against District-supplied well location maps. The wells were off graphically in a southwestern direction because of the map base in the AutoCAD file. These well locations were adjusted to match the water district map locations. McClellan AFB wells located by coordinates were moved to align with the map base using Radian information as a guide.

Some discrepancies were found when compiling the data. The conflict was typically resolved by adhering to the information supplied by the water district. When district-supplied information was not available, the most reasonable information was used. Decisions are documented on the tables where necessary. Well names need to be verified in Table N-3.

# 

.

L

ſ

|          |            |                                |          |         |                |          |             | Product    | tion well Con  | struc    |
|----------|------------|--------------------------------|----------|---------|----------------|----------|-------------|------------|----------------|----------|
|          | Well       |                                |          |         | Ground         | TOC      |             | Completed  | Screen         |          |
| Purveyor | I.D.       | 1                              | 1        |         | Elevation      | above    | Borehole    | Well       | Begin          | 1        |
| (a)      | <b>(b)</b> | Well Name                      | Northing | Easting | above msi (ft) | msl (ft) | Length (ft) | Depth (ft) | Below TOC (ft) | Belo     |
| ARC      | 2A         | Park Estates                   | 342770   | 2172000 | 56             |          |             | 600        |                | †        |
| ARC      | 3A         | ?                              | 339540   | 2172220 | 48             |          |             | 440        | [              | 1        |
| ARC      | 5          | ?                              | 344440   | 2168670 | 40             |          |             | 425        |                | 1        |
| ARC      | 7          | Country Club Estates           | 349320   | 2172330 | 65             |          |             | 210        |                | 1        |
| ARC      | 8          | Hazeiwood East                 |          |         | 83             |          |             | 305        |                | 1        |
| ARC      | 9          | Hazelwood West                 | 344440   | 2182100 | 75             |          |             | 270        |                | 1        |
| ARC      | 10         | Country Club Estates           | 352000   | 2175000 | 75             |          |             | 265        |                |          |
| ARC      | 11         | Government Building            | 346550   | 2171200 | 59             |          |             | 310        |                | Γ        |
| ARC      | 12         | ?                              | 343540   | 2169000 | 40             |          |             | 294        |                | 1        |
| ARC      | 13         | Bohemian Gardens               | 347780   | 2172550 | 62             |          |             | 374        |                | 1        |
| ARC      | 14         | ?                              | 367362   | 2166810 | 60             |          |             | 470        |                |          |
| ARC      | 16         | North Haven                    | 365560   | 2176760 | 85             | 85       | 363         | 374        |                |          |
| ARC      | 18         | Arden Oaks                     | 340270   | 2180920 | 68             |          |             | 420        |                |          |
| ARC      | 19         | New Broadmoor                  |          |         | 68             |          |             | 365        |                | T        |
| ARC      | 22         | ?                              | 352330   | 2178000 | 80             |          |             | 350        |                |          |
| ARC      | 23         | Department of the Interior     | 347650   | 2170210 | 59             |          |             | 360        |                |          |
| ARC      | 24         | ?                              | 348880   | 2178880 | 70             |          |             | 360        |                | 1        |
| ARC      | 25         | Arden Oaks Vista               | 339780   | 2182980 | 75             |          |             | 318        |                |          |
| ARC      | 26         | ?                              | 347210   | 2183200 | 87             |          |             | 360        |                |          |
| ARC      | 27         | McClellan Meadows              | 370550   | 2178000 | 90             |          |             | 320        |                |          |
| ARC      | 28         | Red Robin                      |          |         | 45             |          |             | 370        |                |          |
| ARC      | 30         | ?                              | 341760   | 2165200 | 35             |          |             | 460        |                |          |
| ARC      | 32         | ?                              | 345760   | 2185870 | 93             |          |             | 360        |                |          |
| ARC      | 33         | Evergreen Estates              | 355320   | 2180170 | 72             |          |             | 320        |                |          |
| ARC      | 34         | Larchmont                      | 371320   | 2178880 | 93             |          |             | 400        |                |          |
| ARC      | 35         | Arden Oaks Vista               | 340880   | 2183200 | 79             |          |             | 297        |                |          |
| ARC      | 36         | Arcade Square                  | 350220   | 2175660 | 71             |          |             | 335        |                |          |
| ARC      | 37         | Parkhills                      | 342330   | 2174120 | 47             |          |             | 405        |                |          |
| ARC      | 38         | Larchmont                      | 353540   | 2176760 | 80             | 80       | 370         | 375        |                |          |
| ARC      | 39         | ?                              | 374260   | 2178230 | 98             |          |             | 385        |                |          |
| ARC      | 40         | District Yard                  | 351650   | 2171780 | 65             | 65       | 420         | 425        |                |          |
| ARC      | 41         | ?                              | 347010   | 2164870 | 52             | 50       | 420         | 425        |                |          |
| ARC      | 42         | Весента                        | 348000   | 2179540 | 75             |          |             | 410        |                |          |
| ARC      | 43         | Edison                         | 348990   | 2167650 | 49             | 45       | 385         | 390        |                |          |
| ARC      | 44         | Highlands Terrace              | 368440   | 2181660 | 110            |          | 577         | 575        |                |          |
| ARC      | 45         | Swanston Estates Gas           | 340550   | 2164760 | 37             |          |             | 395        |                |          |
| ARC      | 52         | Larchmont Submersible          | 374220   | 2182100 | 110            |          |             | 600        |                |          |
| ARC      | 54         | Woodcrest                      | 349540   | 2185760 | 80             |          |             | 550        |                | <b>_</b> |
| ARC      | 56         | Fruitvale                      | 367320   | 2177310 | 91             | 85       | 640         | 645        |                | <u> </u> |
| ARC      | 57         | Larchmont Commercial           | 377320   | 2176760 | 103            | 98       | 650         | 655        |                | $\vdash$ |
| ARC      | 58         | N.H. Assessment District No. 2 | 371890   | 2173560 | 78             | 77       | 747         | 690        |                |          |
| ARC      |            | Larchmont No. 21               | 377320   | 2179540 | 129            |          |             | 600        |                | <u> </u> |
| ARC      | 60         | Whitney Avenue                 |          |         | 89             |          |             | 450        |                | Ļ        |
| ARC      | 64         | Galbrath and Hutchins          | 376000   | 2178990 | 117            |          |             | 630        |                |          |
| ARC      | 05         | Merrily Way                    | 354110   | 2178330 | 80             | 75       | 460         | 347        | <u> </u>       | <b> </b> |
| ARC      | 06         | Eastern Avenue                 | 350000   | 2182100 | 80             |          |             | 398        | <u> </u>       | <b> </b> |
| ARC      | 20A        | Arden Village                  | 339320   | 2177200 | 65             |          |             | 475        |                |          |
| ARC      | 31A        | 7                              | 366770   | 2178880 |                |          |             |            |                | ┣        |
| ARC      | 69R        | 7                              | 338330   | 2172220 | 43             |          |             | 427        |                | ┣        |
| BW       |            | Building 231                   | 361830   | 2174380 |                | 76       | 400         | 396        | 162            | ┣        |
| RW I     | 2          | Building 232                   | 1 362330 | 2174380 |                | 76       | 298         | 296        | 100            | 1        |

\_\_\_\_\_

t

G:\users\da\lunder\5066\TableN-2.xis

ļ

| Tabl       | e N-2          |             |               | <u> </u> |          |          |                                                             |
|------------|----------------|-------------|---------------|----------|----------|----------|-------------------------------------------------------------|
| Well Con   | struction Info | mation      |               |          |          |          |                                                             |
| Screen     | Screen         | Depth       | Screen        | Screen   | Screen   | Casing   |                                                             |
| Begin      | End            | to          | Interval (ft) | Begin    | End      | Diameter |                                                             |
| w TOC (ft) | Below TOC (ft) | Screen (ft) | (c)           | bgs (ft) | bgs (ft) | (in)     | Location                                                    |
| <u></u>    |                | 170         | 245           |          |          | 14       | 2250 Park Estates                                           |
|            |                | 200         | 225           |          |          | 14       | 1191 Kubel Circle                                           |
|            |                | 230         | 82            |          |          | 10       | 2550 Bell Street                                            |
|            |                | n/a         | n/a           |          |          | 10       | 2798 Rubicon                                                |
|            |                | n/a         | 11/a          |          |          | 10       | 2625 Wrendale Way                                           |
|            |                | n/a         | n/a           |          |          | 12       | 4308 Ravenwood Avenue                                       |
|            |                | 210         | 50            |          | L        | · 10     | 3351 Potter Lane                                            |
|            |                | <u>n/a</u>  | n/a           |          |          | 12       | 2500 Marconi Avenue                                         |
|            |                | 168         | 63            |          |          | 16       | Santa Anita Park                                            |
|            |                | 350         | 18            |          |          | 14       | 2951 Calderwood Lane                                        |
|            |                | 403         | 10            | 246      |          | 14       | 2320 Marconi Avenue                                         |
|            |                |             | 14            | . 345    |          |          | A012 Diding Club Lang                                       |
|            |                |             | <br>          |          |          | 14       | 3120 Relmorel Drive                                         |
|            |                |             |               |          |          | 12       | 3812 West Way                                               |
|            |                | n/a         | n/a           |          |          | 14       |                                                             |
|            |                |             | 1/2           |          |          | 14       | 3858 Woodcrest Road                                         |
|            |                | D/A         | n/a           |          |          | . 14     | 4420 Thor Way                                               |
|            |                | 194         | 35            |          |          | 14       | 4501 Marconi Avenue                                         |
|            |                | OB          | OB            |          |          | 14       | 6503 Melrose Drive                                          |
|            |                | 222         | 32            |          |          | 14       | Red Robin Lane (end)                                        |
|            |                | 370         | 40            |          |          | 14       | 2116 Rockbridge Road                                        |
|            |                | 254         | 61            |          |          | 12       | Root Avenue and Eden Court                                  |
|            |                | 198         | 120           |          |          | 14       | Auburn Avenue and Norris                                    |
|            |                | 225         | 61            |          |          | 14       | 6503 La Cienga Drive                                        |
|            |                | 252         | 19            |          |          | 14       | 4421 Ulysses Drive                                          |
|            |                | OB          | OB            |          |          | 12       | 3405 Watt Avenue                                            |
|            |                | 180         | 220           |          |          | 14       | End of Morse Ave and Cottage Par'                           |
|            |                | 180         | 190           | 198      | 333      | 14       | 3830 Watt Avenue                                            |
|            |                | 195         | 185           |          |          |          | 6900 Thomas Drive                                           |
|            |                | 190         | 185           | 190      | 420      | 14       | 2736 Aubum Boulevard                                        |
|            |                | 105         | 240           | -180     | 420      |          |                                                             |
|            |                | 200         |               | 200      | 295      |          | 3927 Marcons Avenue                                         |
|            |                | 105         | 185           | 105      | 570      | 14       | 6048 Gillman Way                                            |
|            |                | 180         | 210           |          | 5/0      |          | 1848 Jamestown Drive                                        |
|            |                | 220         | 380           | ····     |          | 14       | 6820 Weddigan Avenue                                        |
|            |                | 160         | 176           |          |          | 14       | 4833 North Avenue                                           |
|            |                | 220         | 420           | 220      | 640      | 14       | Fairbairn, North end                                        |
|            |                | 250         | 400           | 250      | 650      | 14       | 7416 Watt Avenue                                            |
|            |                | 220         | 465           | 220      | 685      | 14       | 6609 32nd Street                                            |
|            |                | 258         | 342           |          |          | 14       | 3948 Bainbridge Drive                                       |
|            |                | 165         | 360           |          |          | 14       | Between 4528 and 4534 Whitney                               |
|            |                | 232         | 384           |          |          | 14       | Galbraith and Hutchins                                      |
|            |                | 187         | 155           | 187      | 342      | 14       | Merrily Way, East end                                       |
|            |                | 170         | 323           |          |          | 14       | 3312 Eastern Avenue                                         |
|            |                | 194         | 200           |          |          | 14       | Arden and Watt Avenues                                      |
|            |                |             |               |          |          | L        |                                                             |
|            |                | 195         | 230           |          |          | 14       | 2800 Hilldale Road                                          |
| 162        | 396            | 162         | 234           | 162      | 396      | 12       | Building 231                                                |
| 100        | 296            | 100         | 196           | 100      | 296      | 12       | Building 232                                                |
|            |                |             |               |          |          | 6        | SW in field near Bell Avenue and Kitzer Avenue - near BW-19 |

. . .....

٠

L

ł

.

------

ł

2

|            |            |                             |          |         |                |          |             | _              | Tabl           | e N-2     |
|------------|------------|-----------------------------|----------|---------|----------------|----------|-------------|----------------|----------------|-----------|
|            |            |                             |          |         |                |          |             | Product        | tion Well Con  | struction |
|            | Well       |                             |          |         | Ground         | тос      |             | Completed      | Screen         | Scree     |
| Purveyor   | I.D.       |                             |          |         | Elevation      | above    | Borehole    | Well           | Begin          | End       |
| <b>(a)</b> | <b>(b)</b> | Well Name                   | Northing | Easting | above msl (ft) | msl (ft) | Length (ft) | Depth (ft)     | Below TOC (ft) | Below TO  |
| BW         | 4          | Unknown                     | 361563   | 2177186 |                |          | 382         | 382            | 169            | 382       |
| BW         | 6          | Unknown                     | 361878   | 2168440 |                |          |             | No Data        |                |           |
| BW         | 7          | Unknown                     | 359599   | 2173892 |                |          | 398         | No Data        | 170            | 398       |
| BW         | 8          | Building 91                 | 362034   | 2176735 |                |          | 625         | 625 ?          | <u> </u>       |           |
| BW         | 9          | Unknown                     | 362923   | 2175990 |                |          | 660         | No Data        | <u> </u>       |           |
| BW         | 10         | Unknown                     | 364180   | 2176350 |                | 85       | 400         | 392            | 170            | 392       |
| BW         |            | Unknown                     | 359670   | 2176370 | l              | 80       | 400         | 400            | 154            | 378       |
| BW         | 12         | Building 395                | 361330   | 2174940 |                | 76       | 390         | 390            | 164            | 390       |
| BW         | 13         | Building 614                | 357350   | 2170750 |                | 62       | 391         | 391<br>No Data | 178            | 391       |
| BW         | 17         | Sile 22                     | 363300   | 2108830 |                | 57       | 300         | NO Data        | 216            | /8        |
| ow<br>ow   | 19         | Linknow                     | 357420   | 2168650 |                | 60       | 408         | 408            | 160            | 312       |
| BW BW      | 10         | Linknown                    | 357960   | 2168550 |                | 62       | 100         | 100            | 214            | 314       |
| BW         | 20         | L inknown                   | 362730   | 2106330 |                | 77       | 600         | 598            | 178            | 598       |
| BW         | 21         | Linknown                    | 359840   | 2169000 |                | 62       |             | No Data        | 78             | 98        |
| BW         | 22         | Unknown                     | 368100   | 2175050 |                | 85       |             | No Data        | 78             | 98        |
| BW         | 23         | Unknown                     | 367130   | 2173980 |                | 77       |             | No Data        | 78             | 98        |
| BW         | 24         | Unknown                     | 366990   | 2175010 |                | 80       |             | No Data        | 78             | 98        |
| BW         | 27         | Unknown                     | 367470   | 2166780 |                | 55       | 261         | No Data        | 17.5           | 260       |
| BW         | 28         | Unknown                     | 366830   | 2170100 |                | 67       | 263         | 263            | 14             | 236       |
| BW         | 31         | Unknown                     |          |         |                |          |             | No Data        |                |           |
| BW         | 33a        | Unknown                     | 358990   | 2165120 |                | 53       |             | No Data        |                |           |
| СМ         | 1          | Cottage Way                 | 341950   | 2185760 |                |          |             |                |                |           |
| СМ         | 2          | Engle                       | 352330   | 2187660 | ·              |          |             |                | ·              |           |
| CM         | 3          | Garfield                    | 348880   | 2190000 |                |          |             |                | <u></u>        | ļ         |
| СМ         | 4          | Hidden River Vista          | 338770   | 2190220 |                |          |             |                | <u> </u>       |           |
| CM         | 5          | Jan Dr                      | 357780   | 2194760 |                |          |             | l              | I              | ļ         |
| CM         | 0          | La Vista                    | 347780   | 2190880 |                |          |             | <b> </b>       | <u> </u>       |           |
| CM         |            | Paddock Research            | 357780   | 2193220 |                |          |             | <b> </b>       | <u> </u>       |           |
| CM         | 11         | Barrett School              | 35/440   | 2196390 |                |          |             |                |                |           |
| CT         | - 15       | Watt A venue Pump           | 352700   | 2173020 | •              | 65       |             |                | <u> </u>       |           |
| СТ         | 2          |                             | 355560   | 2171570 |                | 50       |             | <u> </u>       | <u> </u>       |           |
| СТ         | 3          | Orangegrove Pump            | 354280   | 2170010 |                | 52       |             | <u> </u>       | <u> </u>       |           |
| ст         | 4          | Fulton Avenue Pump          | 357320   | 2175830 |                | 77       | 535         |                | 4              | 535       |
| СТ         | 5          | Starlight Pump              |          |         | ·              | 50       |             |                |                |           |
| СТ         | 6          | Arden Way Pump              |          |         |                |          |             |                |                |           |
| CU         | 3          | Andrea No. 1                | 372770   | 2188320 |                |          | 516         | 506            |                |           |
| CU         | 4          | Andrea No. 2                | 374330   | 2190880 |                |          | 495         | 475            |                |           |
| CU         | 5          | Antelope Oaks (Twin Trails) | 384330   | 2182320 |                |          | 450         | 436            |                |           |
| CU         | 11         | Cherbourgh                  | 377210   | 2186890 |                |          | 510         | 490            |                |           |
| CU         | 15         | Colonnade Way               | 381210   | 2166000 |                |          | 495         | 495            |                |           |
| CU         | 19         | Covered Wagon               | 382660   | 2167100 |                |          | 495         | 395            |                |           |
| CU         | 21         | Davidson                    | 378550   | 2173650 |                |          | 506         | 506            |                |           |
| CU         | 22         | Diablo Drive                | 372880   | 2189780 |                |          | 410         | 410            |                |           |
| CU         | 28         | Fort Sutter                 | 366660   | 2188980 |                |          | 390         | 390            | ·              | ļ         |
| <u>CU</u>  | 34         | Auburn-Halifax              | 371390   | 2196090 |                |          | 364         | 364            | <u> </u>       |           |
| <u></u>    | 35         | Hemiock                     | 366000   | 2188430 |                |          | 354         | 354            | <b></b>        | <b> </b>  |
|            | - 56       |                             | 338440   | 2167100 |                | <u> </u> | 403         | 350            |                |           |
|            | 23         | Phine Way                   | 383210   | 2176100 |                |          | 495         | 495            | <u> </u>       |           |
|            | <br>       | Dotavilla Doed              | 383540   | 2168560 |                |          | 547         | 542            | <u> </u>       |           |
|            | <u> </u>   | UNSCAINE KORD               | 576330   | 2191320 | L              |          | 459         | 450 _          |                | L         |

. . . . . . . . . .

G:\users\da\lunder\5066\TabieN-2.xis

. . . .

.

(1

| Table<br>Well Cons | e N-2<br>struction Info | rmation               | <del></del>   |                   |                |            |                                                                         |
|--------------------|-------------------------|-----------------------|---------------|-------------------|----------------|------------|-------------------------------------------------------------------------|
| Screen             | Screen                  | Depth                 | Screen        | Screen            | Screen         | Casing     |                                                                         |
| Regin              | End                     | to                    | Interval (ft) | Regin             | Fnd            | Diameter   |                                                                         |
| w TAC (ft)         | Relay TOC (ft)          | Screen (ft)           | (c)           | begin<br>bas (ft) | has (ft)       | (in)       | Location                                                                |
| W TOC (II)         | 282                     |                       |               | Ugs (II)          | 0gs (IL)       | <u>(m)</u> |                                                                         |
| 109                | 382                     | 109                   |               | 109               | 382            | 12         | Near Watt Avenue and Roseville Road, off the base                       |
| 170                | 308                     | 170                   | 228           | 170               | 20.9           |            | Near Partol road and Buildings /14 and /15                              |
|                    |                         | 625                   | 440           | 625               | J98<br>No Dete | 12         | Near Building 429                                                       |
|                    |                         | 025                   |               | 04.5              | INU DALA       | 14         | Nearthy Building 200, on old many part BW-20                            |
| 170                | 392                     | 170                   | 222           | 170               | 392            | 12         | Fast near Building 93 on O'Malley Avenue                                |
| 154                | 378                     | 154                   | 192           | 154               | 346            | 12         | E of the Base near Watt A venue and Winona Street - located on old mans |
| 164                | 390                     | 164                   | 226           | 164               | 390            | 12         | Building 395                                                            |
| 178                | 391                     | 178                   | 213           | 178               | 391            | 12         | Building 614                                                            |
|                    | 78                      | 78                    |               | 78                | No Data        | No Data    | Site 22 on Patrol Road - located on old mans                            |
| 216                | 312                     | 216                   | 96            | 216               | 312            | 16         | Building 699                                                            |
| 169                | 387                     | 169                   | 218           | 169               | 387            | 14         | SW near Building 664 on Winters Street                                  |
| 214                | 314                     | 174                   | 186           | 174               | 360            | 14         | SW in field near Bell Avenue and Kilzer Avenue - near BW-3              |
| 178                | 598                     | 178                   | 420           | 178               | 598            | 14         | In parking lot south of Building 220                                    |
| 78                 | 98                      | 78                    | 20            | 78                | 98             | t          | Near Building 689                                                       |
| 78                 | 98                      | 78                    | 20            | 78                | 98             | f          | Near Building 1445                                                      |
| 78                 | 98                      | 78                    | 20            | 78                | 98             |            | Near Building 1445                                                      |
| 78                 | 98                      | 78                    | 20            | 78                | 98             |            | Near Building 1445                                                      |
| 17.5               | 260                     | 175                   | 185           | 175               | 360            | 12         | Near Building 1099                                                      |
| 14                 | 236                     | 144                   | 92            | 144               | 236            | 8          | Near Building 1082                                                      |
|                    |                         |                       |               |                   |                |            | Unknown                                                                 |
|                    |                         | 67                    | *             | 67                | No Data        | h          | Unknown                                                                 |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               |                   |                |            |                                                                         |
|                    |                         |                       |               | 4                 | 38             |            | West of Watt Avenue, above W/B 80 on ramp on Orangegrove Avenue         |
|                    |                         |                       |               | 4                 | 38             |            | End of the W/B off ramp W/B 80 at Longview                              |
|                    |                         |                       |               | 4                 | 38             |            | End of the Orangegrove Avenue off Auburn Boulevard                      |
| 4                  | 535                     |                       |               | 4                 | 535            |            | W/B Business 80 East of Fulton Avenue next to Haggin Oaks Golf Course   |
|                    |                         |                       |               | 4                 | 35             |            | W/B Business 80 East of Arden Way Off Ramp, next to Neon Sign Co.       |
|                    |                         |                       |               |                   |                |            | Arden Way West of Business 80 Interchange by Wonder Bread               |
|                    |                         | 218                   | 278           | 218               | 496            | 16         | 120' N of Andrea Blvd. and Leatherwood Drive (Larchmont Foothills)      |
|                    |                         | 252                   | 113           | 252               | 365            |            | Lot A, Andrera Boulevard                                                |
|                    |                         | 212                   | 214           | 212               | 426            | 16         | PFE Road (North Highlands)                                              |
|                    |                         | 290                   | 190           | 290               | 480            |            | Cherbourgh Well                                                         |
|                    |                         | 330                   | 150           | 330               | 480            | 14         | Lot A, approx 1/4 mi. South of Elverta Rd., 1 mi. West of Watt Avenue   |
|                    |                         |                       | 35            | 295               | 330            | 14         | 2 mi. West of Watt Avenue, 400' East Elverta Road                       |
|                    |                         | No Screen Information |               |                   |                | 14         | 32nd and U Streets (Rio Linda)                                          |
|                    |                         | 206                   | 194           | 206               | 400            | 14         | Diablo Drive (Foothill Oaks Sub.)                                       |
|                    |                         | 220                   | 158           | 220               | 378            | 12         | 350' E of Antelope Road, 1500' N of Auburn Blvd. (Foothills Farm Trust) |
|                    |                         | 274                   | 8             | 274               | 282            | 14         | Arlington Heights                                                       |
|                    |                         | 169                   | 162           | 169               | 331            | 12         | 1800' North of Auburn Boulevard., 2000' West of Antelope Road           |
|                    |                         | 180                   | 165           | 180               | 345            | 16         | Howe Avenue                                                             |
|                    |                         | 280                   | 195           | 280               | 475            | 16         | Corner Lot Prior Way and Elverta Road                                   |
|                    |                         | 300                   | 224           | 300               | 524            | 14         | NE of Intersection of Hague Way and Rhine Way, North of Elverta Road    |
|                    |                         | 260                   | 178           | 260               | 438            | 14         | 1 mi. NE of North Highlands, 1/2 mi N of Greenback and Roseville Road   |

~

Ð

|            |              |                                  |          |         |                     |              |                | Product           | Table<br>tion Well Con   | e N-2<br>structi                             |
|------------|--------------|----------------------------------|----------|---------|---------------------|--------------|----------------|-------------------|--------------------------|----------------------------------------------|
| Purveyor   | Well<br>I.D. |                                  |          |         | Ground<br>Elevation | TOC<br>above | Borehole       | Completed<br>Well | Screen<br>Begin          | Sc                                           |
| (2)        | <b>(b)</b>   | Well Name                        | Northing | Easting | above msl (ft)      | msi (ft)     | Length (ft)    | Depth (ft)        | Below TOC (ft)           | Below                                        |
| CU         | 59           | Rushmore                         | 369100   | 2188870 |                     |              | 316            | 316               |                          |                                              |
| CU         | 62           | Scotland                         | 379870   | 2172550 |                     |              | 602            | 602               |                          |                                              |
| CU         | 63           | Shenandosh                       | 368000   | 2188320 |                     |              | 312            | 312               |                          |                                              |
| CU         | 73           | Van Maren (Mercedes)             | 369540   | 2196650 |                     |              | No Well Report |                   |                          | $\square$                                    |
| CU         | 79           | Watt Avenue                      | 379650   | 2175660 |                     |              | 540            | 470               |                          |                                              |
| CU         | 86           | Wittkop                          | 337540   | 2169660 |                     |              | 322            | 322               |                          | Ļ                                            |
| CU         | 88           | Wyda Way                         | 340550   | 2168780 |                     |              | 295            | 295               | L                        |                                              |
| <u>C</u> W | 48           | Haggin Oaks Golf Course          | 352000   | 2169340 |                     | 50           | 250            | 250               |                          | <b></b>                                      |
| CW         | 50           | Haggin Oaks Golf Course          | 352720   | 2171010 |                     | 55           | 191            | 191               |                          | <b></b>                                      |
| CW         | 52           | Haggin Oaks Golf Course          | 353160   | 2171720 |                     | 45           | 387            | 387               |                          |                                              |
| CW         | 61           | Haggin Oaks Golf Course          | 354140   | 2173300 |                     | 45           | 390            | 390               |                          | L                                            |
| CW         | 91           | 2507 Northview Drive, Northgate  | 345879   | 2149546 |                     |              | 384            | 370               |                          |                                              |
| CW         | 92           | Nonhview and Bridgeford          | 348175   | 2149723 |                     |              | 435            | 422               | <u> </u>                 | ┫━━━━━                                       |
| CW         | 93           | 636 Tenaya Avenue                | 349264   | 2150164 |                     |              | 328            | 316               |                          | ╄───                                         |
| CW         | 94           | S. end K Mart, behind block wall | 351530   | 2150135 |                     |              | 351            | 351               | ·····                    | <u> </u>                                     |
| CW         | 109          | ?                                | 344267   | 2154217 |                     |              | No Well Report |                   | ļ                        | <u> </u>                                     |
| CW         | 110          | Southgate Road                   | 342203   | 2155530 |                     | L            | 390            | 390               | <b> </b>                 | ∔                                            |
| CW         | 111          | ?                                | 343750   | 2156509 |                     |              | 360            | 300               | <b>├</b> ─── <i>;</i> ── | ┫                                            |
| CW         | 112          | 1018 Calvados Avenue             | 343949   | 2160171 |                     |              | No Well Report |                   | · · ·                    | ┢───                                         |
| CW         | 114          | Swanston Plant                   | 342495   | 2160744 |                     |              | 366            | 366               |                          | ┢───                                         |
| CW         | 116          | 702 Plaza Avenue                 | 345880   | 2157622 |                     |              | 519            | 340               | <b></b>                  |                                              |
| CW         | 117          | <u>?</u>                         | 345505   | 2160796 |                     | [            | No Well Report | {                 | <b></b>                  | ╉────                                        |
| CW         | 119          | 7                                | 345447   | 2163495 |                     |              | No Well Report |                   |                          | ╄────                                        |
| - CW       | 120          | 2938 Branch Street               | 349555   | 2160301 | [                   |              | 440            | 440               | f                        | ╉────                                        |
| CW         | 122          | 1495 Juliesse Avenue             | 348638   | 2163601 | ļ                   |              | 422            | 422               | {                        | ╂────                                        |
| CW         | 123          | Near R.R. and Canal              | 350668   | 2152961 |                     |              | 305            | 305               | <u> </u>                 | ╋───                                         |
|            | 124          | 202 Danville way                 | 350307   | 2134243 |                     |              | Illegible Data |                   | <u> </u>                 |                                              |
| CW         | 125          | Pairoanks and Norwood Avenues    | 351180   | 2153908 |                     |              |                | 300               |                          | ╉────                                        |
|            | 120          | 140 and Rivera                   | 351873   | 2101728 |                     | 40           | 432            | 432               | <u> </u>                 | ╂────                                        |
|            | 127          | POS Marine Avenue                | 354240   | 2103400 |                     | 40           | 300            | 300               | <b> </b>                 | ╆───                                         |
|            | 127          | 1660 North August                | 354340   | 2138400 |                     |              | No Well Report | 300               | ł                        | ╆───                                         |
|            | 132          | 2035 Antonia Avenue              | 354910   | 2167070 |                     | 51           | 300            | 300               | }                        | +                                            |
| CW.        | 133          | 4600 Pell Drive                  | 359973   | 2152258 |                     |              | 514            | 514               |                          | <u> </u>                                     |
| CW CW      | 134          | 350 Bell Avenue                  | 358361   | 2155001 |                     |              | 515            | 513               | <u> </u>                 | ╂                                            |
| CW         | 135          | Hanginwood Park                  | 35/085   | 2162455 |                     | 40           | No Well Report |                   | <u> </u>                 | <u>+</u>                                     |
| CW         | 136          | Hagginwood Park                  | 350485   | 2162255 |                     | 40           | 385            | 385               | <u></u>                  | +                                            |
| CW         | 137          | Del Paso and Los Robles Blyds    | 352360   | 2165900 |                     |              | 410            | 410               | <u>∱</u>                 | ╂────                                        |
| CW         | 138          | 4106 Bell Street                 | 355340   | 2161500 |                     | 40           | 408            | 375               | <u>}</u>                 | <u>+</u>                                     |
| CW         | 139          | 7                                | 339881   | 2155588 |                     |              | No Well Report |                   |                          | <u>+</u>                                     |
| CW         | 142          | 2586 Norwood Awnue               | 346382   | 2155771 |                     |              | 390            | 384               | <u> </u>                 | <u> </u>                                     |
| CW         | 143          | 3001 Rio Linda Blvd.             | 349668   | 2158938 |                     |              | 330            | 330               | <u> </u>                 | <u> </u>                                     |
| CW         | 144          | 1709 Eldride: Avenue             | 349010   | 2164030 |                     |              | 400            | 396               | <u> </u>                 | <u>├</u> ───                                 |
| CW         | 150          | 4200 Astoria                     | 356940   | 2167340 |                     | 56           | 380            | 372               | t                        | <u> </u>                                     |
| CW         | 151          | 301 Jeffertion Avenue            | 343346   | 2152041 |                     |              | 395            | 346               | t                        | t                                            |
| CW         | 153          | Main Avenue and Rio Linda Blvd.  | 360881   | 2158156 |                     | [            | 643            | 626               | 1                        | t                                            |
| CW         | 154          | 5510 Dry Creek Road              | 365270   | 2160755 | <b> </b>            | 50           | 430            | 412               | 1                        | †                                            |
| CW         | 155          | 2320 Romoke Avenue               | 353040   | 2168340 |                     | 53           | 430            | 427               | t                        | <u> </u>                                     |
| CW         | 156          | Tribute Road and S.R. 160        | 340719   | 2159828 | <b> </b>            | <u> </u>     | 390            | 380               | 1                        | <u> </u>                                     |
| CW         | 158          | Challenge Way and Remonse Road   | 339718   | 2164850 |                     | <u> </u>     | 328            | 328               | 1                        | <u>†                                    </u> |
| Cw         | 159          | E. Bowman Avenue and Sump 102    | 347419   | 2152412 |                     |              | 375            | 375               |                          | <u>†                                    </u> |
| DP         | 1            | Avalon                           | 345540   | 2180560 | 1                   |              |                | <u> </u>          | 1                        | <u> </u>                                     |

------

ì

١

G:\users\da\under\5066\TableN-2.xis

.

-

 $\mathbf{O}$ 

| Table | N-2 |
|-------|-----|
|-------|-----|

Ξ

-

-

- - -

-

۱

+ -

n Well Construction Information

| Screen      | Seman                 | Denth                 | Some          | Samoan   | Sereen   | Cagina        |                                                                         |
|-------------|-----------------------|-----------------------|---------------|----------|----------|---------------|-------------------------------------------------------------------------|
| Durin       | Fred                  | Depu                  | Screen        | Durt     | End      | Diamata       |                                                                         |
| - Begin     |                       | 10                    | Interval (IL) | Begin    |          | Diameter      | <b>-</b>                                                                |
| tow TOC (n) | Below TUC (II)        | Screen (ft)           | (c)           | bgs (ft) | Dgs (II) | <u>(in)</u>   | Location                                                                |
|             |                       | 165                   | 119           | 165      | 284      | 14            | 100 North of Highway 40 Freeway, 300 yds West of Spruce Overpass        |
|             |                       | No Screen Information |               |          | 205      | 20            | Citrus Heights near Drive-in Theatre, corner Sandalwood and Cordelia    |
|             |                       | 290                   |               | 290      | 305      | - 12          | 1800 W/Antelope Kond, 150 S/Koneville Prwy (Hitchcock Homes Trict)      |
|             |                       |                       | 0             | 245      | 460      | 16            |                                                                         |
|             |                       | 245                   | 215           | 243      | 400      | 10            | Approx.100 yos NW of Watt Avenue and Blackroot Way interaction          |
|             |                       | 280                   | 34            | 280      | 314      | 14            | S OKCES SOURI OF AIGEN AND I BIOCK WER OF SE COMPET OF 119C             |
|             |                       | 120                   | 135           | 165      | 235      | 14            | Authurn Road and Bulton                                                 |
|             |                       | 65                    | 126           | 65       | 191      | 12            | 1100 North of Auburn 100 West of Fulton                                 |
|             |                       | 222                   | 153           | 222      | 375      | 14            | Autom Road and Bulton                                                   |
|             |                       | 176                   | 181           | 176      | 357      | No Data       | Aubum Road and Fulton                                                   |
|             |                       | 170                   | 174           | 170      | 344      | 12            | Northgate and West El Camino Avenues - North West Corner                |
|             |                       | 118                   | 190           | 118      | 308      | 12            | 997' W of intersection of Lower Marvsville Road and Bowman Avenue       |
|             |                       | 146                   | 56            | 146      | 202      | . 12          | South side of Tenaya Avenue, approx. 100' east of Northgate Drive       |
| ~           |                       | 288                   | 10            | 288      | 298      | 12            | NW of Lower Marysville/ San Juan Roads (200' W, 75' N of this junction) |
|             |                       | No Well Report        |               |          |          | No Data       |                                                                         |
|             | ······                | 152                   | 2/3           | 152      | 365      | 12            | Southgate Road                                                          |
| ~           |                       | 165                   | 181           | 105      | 346      | No Data       | No Data on report                                                       |
| -           |                       | No Well Report        |               |          |          | No Data       | 1018 Calvados Avenue                                                    |
| -           |                       | 166                   | 200           | 166      | 366      | 14            | Swanston Plant                                                          |
|             |                       | 200                   | 140           | 200      | 340      | . 14          | 702 Plaza Avenue                                                        |
|             |                       | No Well Report        |               |          |          | No Pata       |                                                                         |
|             |                       | No Well Report        |               |          |          | No Jaa        |                                                                         |
|             |                       | 265                   | 155           | 265      | 420      | 12            | 2938 Branch Street                                                      |
| -           |                       | 230                   | 170           | 230      | 400      | 12            | 1495 Juliesse Avenue                                                    |
|             |                       | Illegible Data        |               |          |          | 12            | Near R.R. and Canal                                                     |
| -<br>       |                       | Illegible Data        |               |          |          | No Data       |                                                                         |
| ]           |                       | 202                   | 89            | 202      | 291      | 12            | Fairbanks and Norwood Avenues                                           |
|             |                       | 188                   | 222           | 188      | 410      | No Data       | 14th and Riviera                                                        |
|             |                       | 161                   | 79            | 161      | 240      | 14            | 1650 Arcade Avenue                                                      |
| <u> </u>    |                       | 136                   |               | 136      | 186      | 14            | 806 Harris Avenue                                                       |
|             | · ··= · = ·· <u>·</u> | 36                    |               | 36       | 95       | No Data       |                                                                         |
| <u></u>     |                       | 191                   | 41            | 191      | 232      | 14            | SUU WER OF ASIONA AVENUE, 210 SOUTH OF NORTH AVENUE                     |
|             |                       | 260                   | 250           | 260      | 510      | 10            | OUU East of Pell Sures, vs mi. South of Main Sures                      |
|             |                       | AJU<br>No Well Beneri | 230           | 230      | 500      | 10<br>No Data | Between Saily and Austin                                                |
| ·           |                       | No wear Report        | 240           | - 26     | 285      | 14            | 120 West of Meruruille Boulevert 200' South of Los Bobles Reuleverd     |
|             |                       | 80                    | 175           | 80       | 244      | 14            | The Pase and I as Robles Rives                                          |
| ·           |                       | 111                   | 257           | 113      | 370      | 14            | 350' North of North Avenue, 50' East of Fell Street                     |
|             |                       | No Well Report        |               |          |          | No Data       |                                                                         |
|             |                       | 144                   | 96            | 144      | 240      | 14            | 75' West of Grove Avenue, 600 ' North of El Camino                      |
|             |                       | 140                   | 190           | 140      | 330      | 14            | 300' West of Rio Linda Blvd., 50' North of Acacia Street                |
|             |                       | 144                   | 252           | 144      | 396      | 14            | Ekkridge and Arcade                                                     |
|             |                       | 144                   | 228           | 144      | 372      | 14            | 630' South of Bell Avenue, 60' East of Astoria                          |
| <b>I</b>    |                       | 118                   | 227           | 118      | 345      | 14            | Jefferson and Levie                                                     |
|             |                       | 260                   | 256           | 260      | 516      | 16            | Main Avenue and Rio Linda Boulevard                                     |
| []          | · ·                   | 148                   | 264           | 148      | 412      | 14            | 5510 Dry Creek Road                                                     |
|             |                       | 175                   | 252           | 175      | 427      | 14            | 240' W of Winters Avenue, 60' S of Ronnoke Street N                     |
|             |                       | 190                   | 85            | 190      | 275      | 14            | SW Corner of Tribute Road (Cal EXPO Area)                               |
|             |                       | 113                   | 200           | 113      | 313      | 14            | 50' SW of Challenge Way, 100' NE of Response Road                       |
|             |                       | 112                   | 240           | 112      | 352      | 14            | End of Bowman Street and East Northgate Blvd                            |
|             |                       |                       |               |          |          |               |                                                                         |

-----

2

|           |              |                                     |          |         |                     |              |             | Produc            | Tabl<br>tion Well Con              | e :<br>st |
|-----------|--------------|-------------------------------------|----------|---------|---------------------|--------------|-------------|-------------------|------------------------------------|-----------|
| Purveyor  | Well<br>I.D. | Wall Name                           | Northing | Festine | Ground<br>Elevation | TOC<br>above | Borehole    | Completed<br>Well | Screen<br>Begin<br>Release TOC (#) |           |
|           |              | Well Nalle                          | Norumig  | Casung  | above misi (II)     |              | Lengui (it) |                   |                                    | ₽         |
| <u>DP</u> | 2            | Maryal                              | 342/70   | 2179980 | <u> </u>            |              |             | . <u> </u>        |                                    | ┢         |
|           | 3            |                                     | 343210   | 21/8880 |                     |              |             |                   |                                    | ╋╌        |
|           |              | 4205 Lusk                           | 343210   | 2181440 | <u> </u>            |              |             | <b></b>           | <u> </u>                           | ┢         |
|           |              |                                     | 345210   | 2176440 | l                   |              |             | ┢╍╌────           | <u> </u>                           | ┢         |
|           |              |                                     | 343210   | 21/09/0 |                     |              |             |                   | 180                                | ┢         |
|           |              | Evergreen                           | 350000   | 2182320 | 100                 |              |             | <b></b>           | 160                                | ┢         |
|           |              |                                     | 351720   | 2184880 | 100                 |              |             | ╉─────            | 210                                | ┢         |
| NK        | 3            | Hillsdale                           | 3/0320   | 2183860 | 142                 |              |             |                   | 210                                | ╊         |
| NK        | 0            |                                     | 365210   | 2190440 | 99                  |              |             | <b>_</b>          | 225                                | ┢         |
|           |              | Kolebud                             | 300//0   | 2190770 | 98                  |              |             |                   | 235                                | ╋         |
| NK        | 8            |                                     | 308550   | 2192040 | 109                 |              |             | ł                 | 330                                | ╋         |
| NK        | 9            | Cameron                             | 358440   | 2189090 | 103                 |              |             |                   | 220                                | ╋         |
|           | 10           |                                     | 363630   | 21858/0 | 123                 |              |             | <u> </u>          | 223                                | ╀         |
| NK        | 11           |                                     | 309580   | 2185430 | 133                 |              |             |                   | 230                                | ╋         |
|           | 12           | St. 20mms                           | 350880   | 2191980 | 119                 |              |             |                   | 200                                | ╋         |
| NK        | 14           | Orange Grove                        | 357/00   | 2173540 | 73                  | <b>└───</b>  |             |                   | 206                                | ╋         |
| NK        | 15           |                                     | 365540   | 2182/60 | 105                 |              |             | - <u> </u>        | 203                                | ╋         |
| NK        | 17           | Oakdale                             | 359890   | 2177200 | 87                  |              |             |                   | 220                                | ╀         |
| NR        | 18           | McCloud                             | 369320   | 2185430 | 134                 |              |             |                   | 293                                | ∔         |
| NK        | 19           |                                     | 351100   | 2181440 | 88                  | ļ            |             |                   | 243                                | ╇         |
| NK        | 20           | Cypress                             | 354880   | 2188100 |                     |              |             |                   | 350                                | ╀         |
| NK        | 21           | Yucca                               | 359890   | 2179870 | 95                  | <b>  </b>    |             | <u> </u>          | 214                                | ╀         |
| NR        | 22           | River College                       | 359890   | 2184880 | 99                  |              |             | <u> </u>          | 240                                | ╀         |
| NK        | 23           | Procway                             | 361650   | 2183780 | 104                 | ł            |             |                   | 2/0                                | ╀         |
| NK        | 24           | Don Julio                           | 372880   | 2182320 | 138                 | I            |             | <u> </u>          | 260                                | ╀         |
| NK        | 25           | Sutter                              | 374330   | 2181880 | 124                 |              | <u></u>     |                   | 260                                | ╀         |
| NK        | 26           | Monument                            | 376660   | 2184880 | 172                 |              |             | <u> </u>          | 316                                | ╇         |
| NK        | 27           | Jamestown                           | 361100   | 2196550 | 128                 |              |             |                   | 180                                | ╀         |
| NK        | 28           | Oakbrook                            | 366286   | 2197248 | 124                 |              |             |                   | 172                                | ╀         |
| NR        | 29           | Merrihill                           | 364000   | 2192780 | 118                 |              |             | <u> </u>          | 258                                | ╀         |
| NK        | 30           | Park Oeks                           | 367540   | 2195640 | 121                 | —————        |             |                   | 108                                | ╀         |
| NK        | 31           | Barret Meadows                      | 359540   | 2193660 | 139                 |              |             |                   | 180                                | ╀         |
| NR        | 32A          | Polter Lane No. 1                   | 379660   | 2191220 | 149                 |              |             |                   | 240                                | ŀ         |
| NK        | 328          | Poker Lane No. 2                    | 381000   | 2191200 | 149                 | i            |             |                   | 240                                | ╄         |
| RIO       | 1            | Number 1 - Office                   | 372660   | 2157330 |                     |              | 412         | 412               | <b> </b>                           | ╄         |
| RIO       | 2            | Number 2 - 6th and E Streets        | 374880   | 2156420 |                     |              | 136         | 136               | <b>ļ</b>                           | ╞         |
| RIO       | 3            | Number 3 - 1 Street                 | 371340   | 2153520 |                     |              | No Data     | No Data           | <b> </b>                           | ╋         |
| RIO       | 4            | Number 4                            | 368770   | 2160000 |                     | 45           | 492         | 492               | <b> </b>                           | ╄         |
| RIO       | 5            | Number 5 (New Liner Installed)      | 384770   | 2152100 | ļ                   |              | 508         | 508               | <b> </b>                           | ╀         |
| RIO       | 6            | Milidale                            | 379210   | 2160660 |                     |              | 520         | 520               | <b></b>                            | ┡         |
| RIO       | 7            | Number 7                            | 376880   | 2157330 |                     |              | 356         | 335               | <b></b>                            | ₽         |
| RIO       |              | 2349 Elkhora Boulevard              | 373860   | 2167760 |                     | 66           | 393         | 393               | <b> </b>                           | ╀         |
| RIO       | 9            | Elikhorn Boulevard and W 4th Street | 371430   | 2151000 |                     |              | 526         | 522               | <b> </b>                           | ┡         |
| RIO       | 10           | Marysville Boulevard                | 367450   | 2154440 |                     |              | 585         | 575               |                                    | Ł         |
| RIO       | 11           | Number 12                           | 370990   | 2165890 |                     |              | 435         | 417               | l                                  | Ł         |
| RIO       | 12           | Number 11                           | 372550   | 2157330 | 1                   |              | 605         | 585               |                                    | 1         |

 $\mathbf{F}$ 

-----

ł

• ---

i

.

-

.....

.....

| Table<br>Well Con              | e N-2                           | matian                                 | <u></u>                        | <u></u>                     | <u></u>                   |                            |                                                                             |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------|-----------------------------|---------------------------|----------------------------|-----------------------------------------------------------------------------|
| Screen<br>Begin<br>bw TQC (ft) | Screen<br>End<br>Below TOC (ft) | Depth<br>to<br>Screen (ft)             | Screen<br>Interval (ft)<br>(c) | Screen<br>Begin<br>bgs (ft) | Screen<br>End<br>bgs (ft) | Casing<br>Diameter<br>(in) | Location                                                                    |
|                                |                                 |                                        | <b></b>                        |                             |                           |                            |                                                                             |
|                                | [                               |                                        | {                              |                             |                           | [                          |                                                                             |
|                                |                                 |                                        | <u> </u>                       |                             |                           |                            |                                                                             |
|                                |                                 |                                        | t                              |                             |                           | <u> </u>                   |                                                                             |
| 180                            |                                 | ····                                   | 129                            |                             |                           | 14                         |                                                                             |
| 150                            |                                 |                                        | 135                            |                             |                           | 14                         |                                                                             |
| 210                            |                                 |                                        | 162                            |                             |                           | 14                         |                                                                             |
|                                |                                 |                                        | 0/1                            |                             |                           | 14                         |                                                                             |
| 235                            |                                 | ······································ | n/a                            |                             |                           | 14                         |                                                                             |
| 330                            |                                 |                                        | 165                            |                             |                           | 14                         |                                                                             |
| 220                            |                                 |                                        | 300                            |                             |                           | 14                         |                                                                             |
| 225                            |                                 |                                        | 300                            |                             |                           | 14                         |                                                                             |
| 250                            |                                 |                                        | 310                            |                             |                           | 14                         |                                                                             |
| 200                            |                                 |                                        | 324                            |                             | 5                         | 14                         |                                                                             |
| 206                            |                                 |                                        | 264                            |                             | `                         | 16                         | Jet Court and Orange Grove                                                  |
| 205                            |                                 |                                        | 276                            |                             |                           | 14                         | <u> </u>                                                                    |
|                                |                                 |                                        | 300                            |                             |                           | 14                         | l                                                                           |
|                                |                                 |                                        | 276                            |                             |                           | 14                         |                                                                             |
| 243                            |                                 |                                        | 372                            |                             |                           | 14                         |                                                                             |
|                                |                                 |                                        | 240                            |                             |                           | 14                         | <u></u>                                                                     |
|                                |                                 |                                        | 192                            |                             |                           | 14                         | <u> </u>                                                                    |
| 240                            | {                               |                                        | 300                            |                             |                           | 14                         |                                                                             |
| 270                            |                                 |                                        | 2/0                            |                             |                           | 14                         | <u></u>                                                                     |
| 260                            |                                 |                                        | 240                            |                             |                           | 14                         |                                                                             |
| 200                            |                                 |                                        | 122                            |                             |                           | 16                         |                                                                             |
| 180                            |                                 |                                        | 122                            |                             |                           | 14                         |                                                                             |
| 172                            |                                 |                                        | 1/a                            |                             |                           | 14                         |                                                                             |
| 258                            |                                 |                                        | 243                            |                             |                           | 14                         |                                                                             |
| 168                            |                                 |                                        | 234                            |                             |                           | 14                         |                                                                             |
| 180                            |                                 |                                        | to/a                           |                             |                           | 14                         |                                                                             |
| 240                            |                                 |                                        | 80                             |                             |                           | . 16                       |                                                                             |
| 240                            |                                 |                                        | 195                            |                             |                           | 14                         |                                                                             |
|                                |                                 | No Data                                | No Data                        | No Data                     | No Data                   | 15                         | Residential L Street, near R.R.                                             |
|                                |                                 | No Data                                | No Data                        | No Data                     | No Data                   | 15                         | "O" and 6th Streets                                                         |
|                                |                                 | 375                                    |                                | 375                         | No Data                   | 12                         | No location information                                                     |
|                                |                                 | No Data                                |                                | No Data                     | No Data                   | No Data                    | No location information                                                     |
|                                |                                 | 188                                    | 287                            | 188                         | 475                       | 10%                        | 50' West side of Rio Linda. Blvd., 14 mi. North of Elverta Boulevard        |
|                                |                                 | 445                                    | ļ                              | 445                         | No Data                   | 14                         | No location information                                                     |
|                                |                                 | 180                                    | 121                            | 180                         | 301                       | 12                         | 1/2 mi. North of Rio Linda Fire Station, .4 mi. East of Rio Linda Boulevard |
|                                |                                 | 243                                    | 142                            | 243                         | 385                       | 14                         | 330' West of 24th St - Rio Linda, 30' North of Elkhorn Boulevard            |
|                                | L                               | 435                                    | 24                             | 435                         | 459                       | 12                         | SW Corner Lot 99, 14 mi. E of RR track, 1 mi. W of Rio Linda Boulevard      |
|                                |                                 | 340                                    | 9                              | 340                         | 349                       | 14                         | 11/2 mi. South of Rio Linda, 100' East of Marysville Boulevard              |
|                                |                                 | 202                                    | 210                            | 202                         | 412                       | 16                         | Elichorn to 20th South ¼ mi. East Side                                      |
|                                |                                 | 210                                    | 370                            | 210                         | 580                       | 16                         | No location information                                                     |

. ....

.

1,

-----

11/5/93 2:10 PM

------

į

(J)

|            |                             |                                            |                |              |                    | *          |                    |                   | Tabl              | e N-2     |  |  |  |  |  |
|------------|-----------------------------|--------------------------------------------|----------------|--------------|--------------------|------------|--------------------|-------------------|-------------------|-----------|--|--|--|--|--|
|            |                             |                                            |                |              |                    |            |                    | Producti          | on Well Con       | structi   |  |  |  |  |  |
|            | Well                        |                                            |                |              | Ground             | TOC        |                    | Completed         | Screen            | Sc        |  |  |  |  |  |
| Purveyor   | I.D.                        |                                            |                |              | Elevation          | above      | Borehole           | Well              | Begin             | 1         |  |  |  |  |  |
| (2)        | <b>(b)</b>                  | Well Name                                  | Northing       | Easting      | above msi (ft)     | msi (ft)   | Length (ft)        | Depth (ft)        | ielow TOC (ft)    | Below     |  |  |  |  |  |
| (a) Purvey | or Acrony                   | yms and Data:                              |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| ARC -      | ARC - Arcade Water District |                                            |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| BW -       | McClell                     | an Air Force Base                          |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| СМ -       | Carmich                     | ael Water Agency                           |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| СТ -       | Caltrans                    |                                            |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| CU -       | Citizens                    | Utilities                                  |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| CW -       | City of S                   | acramento                                  |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| DP -       | Del Pasc                    | Water District                             |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| NK -       | Northrid                    | ge Water District                          |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| KIO -      | Rio Line                    | la Water District                          |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| WCII QE    | pun inton                   | manon for BW wells is from LUHDOR          | FF & SCAL      | MANINI P     | inal Report Sealin | ig of Base | Wells, February    | 1984.             |                   |           |  |  |  |  |  |
| Data Ior   | AKCW                        | elis taken from Arcade Water District O    | perations Pla  | inning Proje | ct, Water Master   | Pian 1981  | , Table 7-5, Radi  | an data.          |                   |           |  |  |  |  |  |
| Northeid   | non on C                    | altrans (CI) wells was provided by Cal     | trans.         |              |                    |            |                    |                   | <b>•</b> • • •    |           |  |  |  |  |  |
| (h) Well I | ige water                   | District (NK) construction data and pu     | mp rate intor  | manon was    | Obtained from N    | orthnage   | Water District, w  | ith the exceptio  | n of ground eleva | tion data |  |  |  |  |  |
| (c) Screen | D. – uuu<br>Interval i      | talicized indicates a calculated value for | sinder of that | organizauc   | n, outerwise prov  | vided by p | urveyor. TOC at    | ove msi for Kit   | J WELLS NO.4 and  | 3 NO.8 15 |  |  |  |  |  |
| Key to abb | eviations                   |                                            |                | on provided  | L <b>-</b>         |            |                    |                   |                   |           |  |  |  |  |  |
| OB = c     | oen botto                   |                                            |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| NG = r     | ot given                    |                                            |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| n/a = n    | ot availal                  | ble                                        |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| SAWW       | /A = Saci                   | ramento Area Water Works Association       |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| ? = Un     | known w                     | ell names or well names that have not b    | een verified.  |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| Toc = 7    | lop of Ca                   | sing                                       |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| bgs ≃ ]    | Below Gr                    | round Surface                              |                |              |                    |            |                    |                   |                   |           |  |  |  |  |  |
| Note: Diac | repancies                   | in data are the result of combining info   | rmation from   | n many diff  | erent sources. Th  | ese discre | pancies will be re | solved in the fir | nal report.       |           |  |  |  |  |  |

. . . . . . . . . . . . . . . . . .

.

1

G:\users\da\lunder\5066\TableN-2.xls

I

.

.

:

•

·····

 $\mathbf{O}$ 

| Tabl         | e N-2          |             |               |          |          |          |          |
|--------------|----------------|-------------|---------------|----------|----------|----------|----------|
| Well Con     | struction Info | rmation     |               |          |          |          |          |
| Screen       | Screen         | Depth       | Screen        | Screen   | Screen   | Casing   |          |
| Begin        | End            | to          | Interval (ft) | Begin    | End      | Diameter |          |
| ,ow TOC (ft) | Below TOC (ft) | Screen (ft) | (c)           | bgs (ft) | bgs (ft) | (in)     | Location |

 $^{\circ}$  )f ground elevation data, which was taken from the Northridge Water District Map or SAWWA.

<sup>1</sup>Wells N ... 4 and No.8 is from Radian (Radian calls it elevation).

.

\_ report.

•

1

,

0

11/5/93 2:10 PM

.....

1

|          |              | · · · · · · · · · · · · |                | Table N-3<br>Production Well Cumulative Pump<br>(Thousand Gallons Per Yea |               |          |          |          |               |                                       |               |              |            |         |              |
|----------|--------------|-------------------------|----------------|---------------------------------------------------------------------------|---------------|----------|----------|----------|---------------|---------------------------------------|---------------|--------------|------------|---------|--------------|
| Purveyor | Well<br>L.D. |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| (a)      | ക            | 1993                    | 1992           | 1991                                                                      | 1990          | 1989     | 1988     | 1987     | 1986          | 1985                                  | 1984          | 1983         | 1982       | 1961    | 1980         |
| ARC      | 5            |                         |                |                                                                           |               |          | L        |          |               |                                       |               |              |            |         |              |
| ARC      | 7            | <u> </u>                |                | h                                                                         |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 10           |                         |                |                                                                           |               |          | ŀ        |          |               |                                       |               |              |            |         | <u> </u>     |
| ARC      | 11           | †                       |                |                                                                           |               |          | <u> </u> |          |               | ·                                     |               |              |            |         |              |
| ARC      | 12           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 13           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 14           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         | ļ            |
| ARC      | 15           | ļ                       |                | ļ                                                                         |               |          | <b> </b> | ļ        |               |                                       |               |              | <u> </u>   |         |              |
| ARC      | 10           | ┢                       | 42             |                                                                           |               |          | [        | <b> </b> |               |                                       | <u>├</u>      | {            |            |         |              |
| ARC      | 22           | 1                       | h              |                                                                           |               | <u> </u> | <b> </b> | t        | }             |                                       | <u>}</u>      | <u> </u>     | t          |         |              |
| ARC      | 23           |                         |                |                                                                           |               |          |          | 1        |               |                                       |               |              |            |         |              |
| ARC      | 24           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 25           |                         |                |                                                                           |               |          | L        |          |               |                                       |               | l            |            |         |              |
| ARC      | 26           |                         |                |                                                                           |               |          | <b> </b> |          |               |                                       |               |              |            |         |              |
| ARC      | 2/           | <u> </u>                |                |                                                                           |               | ļ        | }        | }        |               |                                       |               |              | <b> </b>   |         |              |
| ARC      | 32           | <u> </u>                |                |                                                                           |               |          | <b> </b> |          |               |                                       | ł             | <u> </u>     |            |         |              |
| ARC      | 33           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 34           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 35           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 36           |                         |                | ļ                                                                         |               |          | ·        |          |               |                                       | <b></b>       | <b></b>      | · · · ·    |         |              |
| ARC      | 37           | <u> </u>                |                |                                                                           |               |          | ļ        | <u> </u> |               |                                       | <u> </u>      | <u> </u>     |            |         |              |
| ARC      | 30           | <u> </u>                |                | }                                                                         | }             | <u>├</u> | <u>├</u> |          |               |                                       | <u> </u>      | }            | <u>}</u>   | ·       |              |
| ARC      | 40           | <u> </u>                |                |                                                                           |               |          |          |          |               |                                       | <u>├</u> ──── | <u> </u>     |            |         |              |
| ARC      | 41           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 42           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 43           | ļ                       | L              |                                                                           | Ì             |          | <b> </b> |          | ļ             |                                       | ļ             | <b> </b>     |            |         |              |
| ARC      | 44           | <u> </u>                |                |                                                                           |               |          | L        |          | ļ             |                                       | <b> </b>      | <b></b>      |            |         | <u> </u>     |
|          | 52           | <b></b>                 | i              |                                                                           | [             |          |          | ·        |               | · · · · · · · · · · · · · · · · · · · | <u> </u>      | <u> </u>     |            |         |              |
| ARC      | 54           | t                       |                |                                                                           |               |          |          |          |               |                                       |               | <b> </b>     | <u> </u>   |         |              |
| ARC      | 56           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 57           |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 58           | <b> </b>                | 50,368         | 9,039                                                                     | 4,557         |          | l        | ļ        |               |                                       | ļ             | <b> </b>     | <u> </u>   |         | <b> </b>     |
| ARC      | 59           | f                       |                |                                                                           |               |          |          | <u> </u> |               | ┝                                     | <u> </u>      | <u> </u>     |            |         |              |
| ARC      | 65           | <b> </b>                |                |                                                                           | <u> </u>      | <u> </u> |          |          |               |                                       | ┠────         | <u> </u>     | <u> </u>   |         |              |
| ARC      | 66           |                         |                |                                                                           |               |          |          |          |               |                                       | t             | <u> </u>     | 1          |         | <u> </u>     |
| ARC      | 20A          |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| ARC      | 31A          |                         |                |                                                                           |               |          |          |          |               |                                       | ļ             |              |            |         |              |
| ARC      | 69R          | <b> </b>                |                |                                                                           |               |          | <b> </b> |          | ļ             |                                       | <b> </b>      | <b> </b>     | ļ          |         | <b> </b>     |
| BW       |              | <b>├</b> ───            | <b>├</b> ────┤ |                                                                           |               |          | <b> </b> | <b> </b> | <b>{</b>      | <b> </b>                              | <b> </b>      | ┟            | <b> </b>   |         | <b>├</b> ─── |
| RW       | 2.5          | <u> </u>                |                |                                                                           |               |          | {        | ┣        |               | <u> </u>                              | ł             | ╆────        | ┨─────     |         | <b> </b>     |
| BW       | 3            | t                       |                |                                                                           | <u>├</u> ──── | ļ        | t        |          |               | h                                     | <u>†</u>      | <u> </u>     | <u> </u>   |         | ┢────        |
| BW       | 4            |                         |                |                                                                           |               |          | [        |          | <u>i</u>      |                                       | t             | <u> </u>     | 1          |         |              |
| BW       | 6            |                         |                |                                                                           |               |          |          |          |               |                                       | 1             | 1            |            |         |              |
| BW       | 7            |                         |                |                                                                           |               |          |          |          |               |                                       |               |              |            |         |              |
| BW       | 8            | ļ                       |                |                                                                           |               |          | ļ        | ļ        | ļ             |                                       |               | ļ            | 336,178    | 142,942 | <b></b>      |
| BW       | 9            |                         | 196.011        | 140.000                                                                   | 214 144       | 199 6    | 100 (24) |          |               | h                                     | <b> </b>      | <b> </b>     | 0.00       | 00.001  | <b> </b>     |
| JW       |              | 211,171                 | 126,011        | 145,445                                                                   | 214,356       | 172,658  | 198,494  | 285,115  |               |                                       | <u> </u>      | <b> </b>     | 248,441    | 99,921  | <b> </b>     |
| 81       | 12           | <b> </b>                |                | ┝────                                                                     |               |          | }        |          | <u>├</u> ~~~~ | h                                     | <b> </b>      | <del> </del> | <u>Cac</u> | C0C,11  | <u> </u>     |
| BW       | 13           | t                       |                | <u> </u>                                                                  |               |          | 139.085  | 174.575  | 139.085       |                                       | <u> </u>      |              | 307.412    | 158.634 | <u> </u>     |
|          | 16           | t                       | h              |                                                                           | <b> </b>      |          |          |          |               | h                                     | <u> </u>      | <u> </u> -   |            |         | <b>├</b> ─── |

..

and a second second

,

ŧ

ł

ŀ

 $\bigcirc$ 

| Tab<br>ell Cur<br>sand G | le N-3<br>nulative<br>allons I                                                                                                                                 | : Pump<br>Per Yca | age Dat:<br>r) | A             |                        |                                               |               |               |                |            |            |            |                  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|---------------|------------------------|-----------------------------------------------|---------------|---------------|----------------|------------|------------|------------|------------------|
| 1982                     | 1961                                                                                                                                                           | 1960              | 1979           | 1978          | 1977                   | 1976                                          | 1975          | 1974          | 1973           | 1972       | 1971       | 1970       | Reference<br>(c) |
|                          |                                                                                                                                                                | <b></b>           |                | '             |                        | F                                             |               |               | <b>—</b>       | F          |            |            |                  |
|                          |                                                                                                                                                                |                   |                |               |                        | └───'                                         |               |               |                |            |            |            |                  |
|                          | <b>├</b> ──┤                                                                                                                                                   | t'                |                | <b> </b> '    | י                      | ┟───┘                                         | ──′           | <b>├</b> '    | <b> </b> '     | <u> </u> ' | <b> </b> ' | <b>{</b> ' |                  |
|                          |                                                                                                                                                                |                   |                |               |                        | <b> </b>                                      |               | L             |                |            |            |            |                  |
|                          | <u> </u>                                                                                                                                                       | <u> </u>          | <u>}</u>       | <u>+</u>      | <u>}</u>               | <u>├</u>                                      | <u>}</u>      | <u>├</u>      | <u>├</u> '     | <u>}-</u>  | <u> </u>   | <u>├</u>   |                  |
|                          | $\square$                                                                                                                                                      | F                 |                |               |                        |                                               |               |               | <b> </b> '     |            |            |            | Dation           |
|                          |                                                                                                                                                                |                   |                |               | <u> </u>               | <u></u>                                       |               |               |                |            |            |            |                  |
|                          | $ \begin{tabular}{ c c } \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline$ | /'                |                | f'            | $\square$              | <b></b> '                                     | $\square$     | f'            | <b>[</b> '     | F          | <b></b>    | F          | <b></b>          |
|                          |                                                                                                                                                                |                   |                |               | <u> </u>               | <u> </u>                                      | <u> </u>      | <u> </u>      |                |            | <u> </u>   | <u> </u>   | <u> </u>         |
| !                        | $\square$                                                                                                                                                      | ——'               |                | <b></b> '     | $\square'$             | F'                                            | <b>—</b> '    | <b></b> '     | <b>—</b> '     | F          | <b>—</b>   | F          |                  |
|                          |                                                                                                                                                                |                   |                |               | <u> </u> !             |                                               |               |               |                |            |            | <u> </u>   | ļ                |
| I                        | <b>—</b>                                                                                                                                                       | Ē'                | <b></b>        | f'            | <b></b>                | F'                                            | F'            | f'            | <b>—</b> _'    | <u></u>    | <b>F</b>   | F          |                  |
| ·                        |                                                                                                                                                                |                   |                |               | !                      | <u> </u>                                      |               |               |                |            |            | <u> </u>   |                  |
|                          | F                                                                                                                                                              | Ē'                |                | <b>[</b> '    | $\square$              | []                                            | ['            | <b>[</b> '    | <b>['</b>      | ╂          | <b>[</b>   | <b></b>    |                  |
|                          |                                                                                                                                                                |                   |                |               |                        | ļ!                                            | <u> </u> '    | ļ'            | <u> </u> '     |            |            |            |                  |
| ·!                       | <u> </u>                                                                                                                                                       | <b>├</b> ───′     | <b> </b> '     | <b>├</b> ───′ | ──┦                    | <b>├</b> /                                    | ┝───┘         | ┟┘            | <b> </b> '     | <u> </u>   | <b> </b>   | ╂          | <b>{</b>         |
|                          |                                                                                                                                                                |                   |                |               |                        |                                               |               |               | <u> </u> '     | <b></b>    |            |            |                  |
| ،!<br>!                  | <u> </u>                                                                                                                                                       | <b>├</b> ─────    | <b>├</b> ────' | <b> </b> '    | <b>├</b> ────!         | <b>├</b> ──────────────────────────────────── |               | <b>├</b> ──── | <b>{</b> '     | <b> </b>   | <b></b>    | <b></b>    |                  |
| ·'                       |                                                                                                                                                                |                   |                |               |                        |                                               |               |               |                |            | <u> </u>   |            |                  |
| ′                        | <u> </u>                                                                                                                                                       | '                 | <u> </u>       | <u>├'</u>     | <b>├</b> ─── <u></u> ! | <u>├</u> /                                    | <u> </u>      | <u>├</u> '    | <b>├</b> ────' | <u> </u>   | <u> </u>   | <u>}</u>   | <u>}</u>         |
| !                        |                                                                                                                                                                | $\square$         |                | <b></b> '     |                        |                                               |               |               | <u> </u> '     |            |            | <b></b>    |                  |
| ·!                       |                                                                                                                                                                | ·                 | <u>├</u>       | <u>├</u> ′    | <u>├</u> !             | - <u></u> -                                   | <u>├</u> /    | <u>├</u> /    | <u>├</u> /     | <u>├</u>   | <u> </u>   | <u> </u>   | <u> </u>         |
| !                        |                                                                                                                                                                | <b> </b> '        |                | <u> </u>      |                        |                                               |               |               | <b> </b> '     | <b></b>    |            |            |                  |
|                          |                                                                                                                                                                | ·                 | <u>├</u>       | t             |                        | <u>-</u> -                                    | <u>├</u> /    | ├ <u></u>     | <u>├</u> '     | <u>}</u> - | <u> </u>   |            | Radian           |
|                          |                                                                                                                                                                | <u>ا</u>          |                | <u> </u>      |                        |                                               |               |               | <b>[</b> '     |            |            |            |                  |
|                          |                                                                                                                                                                | ·                 | <u>├</u> ′     | <u>├</u> '    | <u> </u>               |                                               | <u>├</u> /    | ├ <u></u> -'  | <u>├</u> '     | ├          | <u>+</u>   | <u>}</u>   | <u> </u>         |
| ]                        |                                                                                                                                                                | <b>└──</b> ′      |                | <u> </u>      |                        |                                               | []            |               |                | •<br>•     |            | F          |                  |
|                          |                                                                                                                                                                | <u> </u>          | <u> </u>       | t             | ┝───┤                  |                                               | <u> </u> !    | ├ <u></u> -   | <u> </u>       |            | <u> </u>   | <u> </u>   |                  |
| ]                        |                                                                                                                                                                | <u> </u>          | <u> </u>       | <u> </u>      | $\square$              |                                               | $\square$     | <u>'</u> '    | <u> </u>       |            |            | F          | ·                |
|                          |                                                                                                                                                                | ſ′                | <u> </u>       | t             |                        | h!                                            | <u> </u> !    | ├ <u></u>     | <u>├</u>       |            | <u> </u>   | <u>}</u>   |                  |
|                          | $\square$                                                                                                                                                      | <u>ا</u>          | <b></b> '      | <u> </u>      |                        |                                               |               | ['            |                |            |            |            |                  |
|                          |                                                                                                                                                                |                   | <u> </u>       |               |                        | <u>   </u>                                    | <u> </u> !    | ├ <u></u>     | :              | <u></u>    | <u>+</u>   | <u> </u>   |                  |
|                          |                                                                                                                                                                | <u> </u>          | $\square'$     | <b>—</b> '    |                        |                                               |               | <u> </u>      | ['             | ļ          |            | F          |                  |
| 336,178                  | 142,942                                                                                                                                                        | <u> </u>          | <u> </u>       | t             |                        |                                               | <u> </u>      | <u> </u>      | <u> </u>       | i          | <u>}</u>   | <u>}</u>   | AFB Data 1461    |
| 249 441                  |                                                                                                                                                                |                   | <u> </u>       | <u> </u>      |                        |                                               |               | <b>[</b> '    | <b>—</b>       |            |            | F          |                  |
| 385                      | 17,565                                                                                                                                                         | ·!                | <u> </u>       | '             |                        |                                               | <u> </u> !    | ├ <u></u>     | <u>├</u>       | {          | <u>}</u>   | [          | APB Data 1461    |
| 107 412                  | 169 674                                                                                                                                                        |                   | $\square$      |               |                        | Ē                                             |               | <b></b> '     |                | <b></b>    |            |            | A EB Date 1461   |
|                          | 136,034                                                                                                                                                        | ·                 | <b>↓</b>       | t             | <b>├</b> ───┥          | j                                             | <b>├</b> ───┤ | t'            | h'             | <b> </b> ' | <u> </u>   | f'         | APD Use Invi     |

·····

· · ·

11/5/93 10:53 AM

. '

i

-----

O

1

|               |               |          |          |              |              |              |               |          |          |              | Table N-3 |                |              |                      |                |  |  |  |  |
|---------------|---------------|----------|----------|--------------|--------------|--------------|---------------|----------|----------|--------------|-----------|----------------|--------------|----------------------|----------------|--|--|--|--|
|               |               |          |          |              |              |              |               |          |          |              | Produ     | iction V       | Vell Cur     | nulative<br>oliono R | : Pump         |  |  |  |  |
|               | Well          |          |          |              | r            |              | r             |          |          |              |           |                | Isana G      | auons r              | er rea         |  |  |  |  |
| Purveyor      | LD.           |          | 1        | [            | [            |              | 1             | (        | [        |              | Í         |                | ĺ            | ĺ                    | (              |  |  |  |  |
| (a)           | (b)           | 1993     | 1992     | 1991         | 1990         | 1989         | 1988          | 1987     | 1986     | 1985         | 1984      | 1983           | 1982         | 1981                 | 1980           |  |  |  |  |
| BW            | 17            |          |          |              |              |              |               |          |          |              |           |                | 101,785      | 180,024              |                |  |  |  |  |
| BW            | 18            | 128,317  | 490,706  | 475,276      | 355,940      | 500,301      | 236,450       | 29,743   |          |              |           |                |              | 36,113               |                |  |  |  |  |
| BW            | 19            | <u> </u> | ļ        | ļ            |              | ļ            | <u> </u>      | <b> </b> | <b> </b> | <b></b>      | <b> </b>  |                |              | <b> </b>             | ļ              |  |  |  |  |
| BW            | 20            | <u></u>  |          | ļ            |              | <b> </b>     |               |          | ┠        | <b>{</b>     | ┨─────    | {              | <b></b>      | <b>{</b>             | ┣───           |  |  |  |  |
| BW            | 21            | <u> </u> | <u> </u> | <b> </b>     |              |              | ┠             | ┢────    |          | <b> </b>     | ┨────     | ļ              | <u> </u>     | <u> </u>             | <u> </u>       |  |  |  |  |
| BW            | 22            | +        |          | <b> </b>     |              | <u> </u>     | ┣────         |          |          | <u> </u>     | <u> </u>  |                | ╂────        | ┢────                |                |  |  |  |  |
| BW            | 24            | 1        | 1        | f            | <u> </u>     | <u>├────</u> | †             | <u> </u> | <u> </u> | <u> </u>     | !         |                | <u> </u>     |                      | <u> </u>       |  |  |  |  |
| BW            | 27            |          |          |              |              |              |               |          |          |              |           |                |              |                      |                |  |  |  |  |
| BW            | 29            | 42,045   | 156,173  | 157,297      | 279,946      | 213,443      | 242,296       | 312,317  |          |              |           |                | 65,325       |                      |                |  |  |  |  |
| BW            | 31            | <u> </u> | ļ        | L            |              | <b> </b>     |               | l        |          | <b> </b>     | <u> </u>  | <b> </b>       | <u> </u>     |                      | <b></b>        |  |  |  |  |
| BW            | 33a           | <u> </u> | <b>↓</b> |              |              | ł            |               | ┼        |          | <u> </u>     | <b> </b>  | ┠              | <b>↓</b>     | <b> </b>             | ┢────          |  |  |  |  |
|               | $\frac{1}{2}$ | ╉────    | <u>├</u> | ╂────        | <b>├</b> ─── | <u> </u>     | <u> </u>      | <u> </u> |          |              | <u> </u>  |                | ł            | ł                    | ┟────          |  |  |  |  |
|               | 3             | <u> </u> | <u> </u> |              |              | <u>∤</u>     | <u> </u>      | <u> </u> |          | <del> </del> | <u> </u>  | <u> </u>       | <u>  · ·</u> | <u>├</u> ────        | ╂────          |  |  |  |  |
| CM            | 4             |          | <u> </u> |              | <u> </u>     |              | t             | <u> </u> |          | t            | <u> </u>  | l              | 1            | <b></b>              | t              |  |  |  |  |
| CM            | 5             |          |          |              |              |              |               |          |          |              |           |                |              |                      |                |  |  |  |  |
| CM            | 6             |          |          |              |              |              |               |          |          |              |           |                |              |                      |                |  |  |  |  |
| CM            | 8             | <u> </u> | ļ        | <b></b>      | L            | <b> </b>     | <u> </u>      | ļ        | <b></b>  | <b> </b>     | <b></b>   | I              | ļ            | ļ                    | <b> </b>       |  |  |  |  |
| CM            | 11            |          | <u> </u> | ļ            |              | <b>↓</b>     | <u> </u>      | <u> </u> | <u> </u> | }            |           | <b> </b>       | <b> </b>     | ┟───                 | ┝───           |  |  |  |  |
| <u> </u>      | 15            | 3 744    | <u> </u> | <b>├</b> ─── |              | <u> </u>     | ┟────         | ┣───     | <u> </u> | ┨─────       |           | ┣────          |              | ┟────                | <b> </b>       |  |  |  |  |
| <u> </u>      | 2             | 94       | 1        |              | <u> </u>     | <u> </u>     | <u> </u>      | <u> </u> | ┣───     | <u> </u> -   |           | <u> </u>       |              |                      |                |  |  |  |  |
| CT            | 3             | 6.552    |          | <u> </u>     |              |              | <u> </u>      |          | <u> </u> | <u> </u>     |           | <u> </u>       | <u>{</u>     | f                    | <u> </u>       |  |  |  |  |
| ল             | 4             | 25,272   | <u> </u> |              |              |              |               |          |          |              |           | 1              |              |                      |                |  |  |  |  |
| СТ            | 5             | 1,872    |          |              |              |              |               |          |          |              |           |                |              |                      |                |  |  |  |  |
| ст            | 6             | 14,976   |          |              |              |              |               | L        | L        |              |           |                | <u> </u>     | 1                    |                |  |  |  |  |
|               | 3             | ┟        | 250,850  | 266,160      | 361,670      | 244,300      | 474,250       | 326,800  | 209,970  | 221,410      | 305,400   | 151,170        | 221,130      | 273,250              | 166,960        |  |  |  |  |
|               |               | ╂        | 360 240  | 220 440      | 250 490      | 14 649       | 40,172<br>NIS | NIS      | NIS      | NTS          | 407,170   | 479,090<br>NTS | 308,430      | 10,260<br>NTS        | 134,490<br>NIS |  |  |  |  |
| CU            | 11            | <u> </u> | 439.920  | 636,590      | 487,100      | 467.370      | 501.010       | 391.440  | 481.600  | 327.520      | 309.980   | 343.260        | 290.170      | 609,720              | 584.130        |  |  |  |  |
| CU            | 15            | t        | 134,190  | 64,005       | 91,189       | 20,561       | 80,359        | 49,018   | 45,174   | 27,083       | 3,585     | 15,404         | 2,303        | 598                  | 1,005          |  |  |  |  |
| CU            | 19            |          | 104,810  | 149,980      | 227,490      | 225,730      | 263,960       | 258,600  | 216,830  | 147,130      | 127,310   | 147,750        | 145,510      | 152,510              | 103,330        |  |  |  |  |
| ບງ            | 21            | L        | 55,899   | 63,075       | 96,833       | 16,640       | 54,789        | 106,610  | 140,200  | 138,970      | 74,516    | 104,750        | 208,310      | 137,450              | 175,200        |  |  |  |  |
| CU            | 22            | Ļ        | 494      | 105          | 734          | 2,236        | 241           | 728      | 1,608    | 44,693       | 10,740    | 1,349          | 1,195        | 2,487                | 996            |  |  |  |  |
|               | 28            | <u> </u> | 134      | 60           | 332          | 00           | 1 104         | 298      | 8,260    | 2,097        | 9,102     | 7,711          | 9,374        | 3,850                | 9,378          |  |  |  |  |
|               | 35            |          | 2 344    | 158          | 1,182        | 426          | 6,161         | 12.969   | 59,162   | 55,172       | 54 891    | 93 496         | 121.460      | 0,414                | 3,922          |  |  |  |  |
| CU            | 36            | 1        | 531,790  | 444,630      | 475,380      | 541,470      | 609,380       | NIS      | NIS      | NIS          | NIS       | NIS            | NIS          | NIS                  | NIS            |  |  |  |  |
| CU            | 48            |          | 224,270  | 147,660      | 145,650      | 63,519       | 168,740       | 94,021   | 94,234   | 181,520      | 1,406     | 30,438         | 70,610       | 152,630              | 160,960        |  |  |  |  |
| CU            | 50            |          |          |              |              |              |               |          |          |              |           |                |              |                      |                |  |  |  |  |
| CU            | 53            | ļ        | 326,870  | 571,600      | 625,780      | 528,050      | 0             | NIS      | NIS      | NIS          | NIS       | NIS            | NIS          | NIS                  | NIS            |  |  |  |  |
|               | 54            | ╂        | 29,102   | 3,323        | 4,933        | 79,372       | 37,102        | 4,213    | 3,967    | 13,738       | 31,545    | 597            | 1,544        | 2,795                | 521            |  |  |  |  |
|               |               | ┣────    | 181.910  | 206 210      | 205 950      | 146 840      | 138 430       | 249 560  | 105,870  | 117 840      | 147 270   | 05 351         | 07 449       | 97.606               | 102 920        |  |  |  |  |
| <del>cu</del> | 61            | 1        | 46.432   | 30,752       | 41.283       | 122.540      | 92.862        | 94.785   | 164.220  | 65,725       | 144.830   | 134.570        | 2,257        | 7,246                | 18.527         |  |  |  |  |
| CU            | 62            | 1        | 278      | 6,143        | 60,470       | 26,409       | 167,020       | 71,014   | 8,301    | 1,894        | 1,668     | 223            | 1 7          | 32                   | 27             |  |  |  |  |
| CU            | 63            |          | 7,917    | 7,013        | 328          | 55,459       | 702           | 34       | 142,120  | 10,988       | 10,986    | 116            | 4,578        | 72,003               | 34,623         |  |  |  |  |
| CU            | 73            |          | 314,090  | 290,400      | 236,130      | 142,070      | 192,190       | 78,489   | 167,910  | 110,400      | 131,680   | 90,373         | 201,150      | 203,900              | 185,190        |  |  |  |  |
| cu            | 79            | <b> </b> | 164,220  | 189,680      | 187,090      | 249,430      | 274,600       | 381,410  | 255,580  | 210,780      | 234,760   | 153,020        | 105,690      | 154,760              | 28,660         |  |  |  |  |
| <u>cu</u>     | 86            | <u> </u> | 1,442    | 55,886       | 41,181       | 10,985       | 41,087        | 181,980  | 120,900  | 141,260      | 145,500   | 101,290        | 56,372       | 111,200              | 21,950         |  |  |  |  |
|               |               | 4 2 200  | 127,400  | 124,120      | 217,160      | 165,110      | 5 600         | 395,550  | 335,250  | 360,290      | 357,250   | 292,490        | 328,480      | 345,450              | 293,24(        |  |  |  |  |
| CW CW         | 91            | 340      | 1,660    | 200          | 20           | 4.120        | 70            | t        | <u> </u> | <u> </u>     | <u> </u>  | <u> </u>       |              | <u> </u>             | <b> </b>       |  |  |  |  |
| CW            | 92            | 178.280  | 142.320  | 144.660      | 152.790      | 144,750      | 47.030        | t        | t        | <u> </u>     | <u> </u>  |                | <u> </u>     | †                    | <u> </u>       |  |  |  |  |
| CW            | 93            | 2,130    | 46,420   | 5,500        | 22,780       | 43,370       | 12,730        | 1.       | 1        | t            | <u> </u>  |                |              | 1                    |                |  |  |  |  |
| CW            | 94            | 178,890  | 89,820   | 127,060      | 176,370      | 152,650      | 87,950        |          |          |              |           |                |              |                      |                |  |  |  |  |
| CW            | 107           | 13,930   | 81,250   | 18.070       | 21,250       | 180.500      | 64,830        | 1        | 1        | 1            | 1         | 1              | 1            | 1                    | 1              |  |  |  |  |

G:\Users\DA\D\_Robert\Lanier\TableN-3.XLS

and the second second second second

·.....

 $\mathbf{O}$ 

ł

-----

|                 | Tat          | le N-3         |                |               |               | <b>-</b>                              |               |                                               | in the second second second second second second second second second second second second second second second |                                       |            |               |               |                    |
|-----------------|--------------|----------------|----------------|---------------|---------------|---------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|---------------|---------------|--------------------|
| n V             | Vell Cur     | milative       | Pumps          | age Dat       | 2             |                                       |               |                                               |                                                                                                                 |                                       |            |               |               |                    |
| nhour           | isand G      | allons F       | er Year        | -Br<br>r)     |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               |                    |
|                 |              |                |                | ŕ             |               | r                                     | <b></b>       | ·                                             | ·                                                                                                               | ,,                                    | ·          |               |               |                    |
| l               | 1 1          | '              | !              | 1 1           |               | 1 1                                   | 1 1           | 1                                             | 1 1                                                                                                             | I                                     | l          | ·             |               | Reference          |
| 83              | 1982         | 1981           | 1980           | 1 1979        | 1978          | 1977                                  | 1976          | 1975                                          | 1974                                                                                                            | 1973                                  | 1972       | 1971          | 1970          | (c)                |
|                 | 101,785      | 180,024        |                | <u> </u>      |               |                                       |               | <u>,                                     </u> | <u> </u>                                                                                                        | <b></b>                               | <u> </u>   |               |               | AFB Data 1461      |
|                 |              | 36,113         |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            | ·]            |               | AFB Data 1461      |
|                 |              |                |                | $\Box$        |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               |                    |
|                 | <u> </u>     |                |                | <b>لا</b>     | []            |                                       | Ē!            | <b> </b>                                      | l                                                                                                               |                                       |            |               |               |                    |
|                 | <b>↓</b> '   | ┣───┘          | <b>↓</b> /     |               | <b>↓</b> !    | <b>├</b> ────┤                        | k1            | <b>↓┦</b>                                     | <b>⊢</b>                                                                                                        |                                       | <b></b>    | J             | <b>├────┦</b> |                    |
|                 | ┝───┘        | <b>├</b> ───┤  | ┟────┦         | ┝──┤          | ┝───┦         | ┟───┤                                 |               |                                               | ┟┩                                                                                                              | ┢───┦                                 |            | <b> </b>      |               |                    |
|                 | /            | <b>├</b> ────┤ | <u>├</u> /     | <b> </b>      | <u>├</u> ┦    | <b>├──</b> ┤                          |               | <b>f</b>                                      | ├ <b>!</b>                                                                                                      | r                                     | <u>├</u> † | <b>†</b>      |               |                    |
|                 |              |                |                | <i> </i>      | l!            | +                                     | ·             | ·+                                            | r1                                                                                                              | <b>†</b>                              |            | ·+            |               |                    |
|                 | 65,325       |                |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               | AFB Data 1461      |
|                 | $\square'$   |                |                | $\square$     |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               |                    |
|                 | ┢─────┘      | <b>↓</b> ′     |                | <b>↓</b> ]    |               | F                                     | L]            |                                               | FJ                                                                                                              |                                       |            | J             |               |                    |
|                 | ┝───┘        | ┢────┘         | <b>↓</b> !     | <b>↓</b> ]    | <b>├</b> ───┤ | <b>├</b> ──┤                          | <b>├</b>      |                                               | ┝────┥                                                                                                          | <b>⊢−−−−</b> ┦                        | ┝───┦      | ┝────┦        | ┝━━━━┩        |                    |
|                 | ┢────┙       | <b>├</b> /     | <b>├</b> ────┦ | <b>├</b> ───┦ |               | ┢━━━━┩                                | <b>├───</b> ┤ | r{                                            | ┢────┩                                                                                                          |                                       |            |               |               |                    |
|                 | <i> </i>     | <u>├</u>       | ┢────┦         | <b>├──</b> ┤  | <b>├──</b> ┦  | ├ <b>┦</b>                            | <b>┌───┤</b>  | <del> </del>                                  | ┟────┦                                                                                                          | r1                                    | ├───┦      | / <b>ł</b>    |               | <u> </u>           |
|                 | <del>/</del> | <u>├</u> /     | <b>├</b> ──    | <i>י</i>      | ├─── <b>१</b> | +                                     | <b>/</b>      | <b>†</b>                                      | rt                                                                                                              | t                                     | <u> </u>   | <b>†</b>      |               |                    |
|                 |              |                |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               |                    |
|                 |              |                |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               |                    |
|                 | ┝───┘        | <b>↓</b> !     |                | $\square$     |               | FI                                    | I             | <b></b>                                       | F                                                                                                               | Ē                                     |            |               |               |                    |
|                 | ┝───┘        | <b>┟</b> ────┤ | <b>├</b> ──┤   | ┝───┤         |               | ┝────┦                                | <b>├</b>      | <b>┌───</b> ┦                                 | ┟────┩                                                                                                          | ┝────┦                                | $\vdash$   | ⊢┦            |               | Calination         |
|                 | ┌───┦        | <u>∤</u> /     | ┝───┦          | <b>├</b> ──┤  | ┢━━━━┩        | ┝┦                                    |               |                                               | j{                                                                                                              | <b> </b>                              | <u>├</u> ┦ | _ <b></b>     |               | Caltrans           |
|                 | / <b>/</b>   | <b>├</b> ───┦  |                | <b></b>       |               | <b>├</b>                              | <b> </b>      | ·                                             | <b>├</b>                                                                                                        | []                                    | +          | / <b>ł</b>    |               | Calitrans          |
|                 | ·            | <b>├</b> ───┤  | +              | ·             | └── <b>1</b>  | +                                     | ·             | []                                            | r1                                                                                                              | <del>,</del>                          | r+         | <u> </u>      |               | Caltrans           |
| $\Box$          |              |                |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               | Caltrans           |
|                 |              |                |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               | Caltrans           |
| .170            | 221,130      | 273,250        | 166,960        | 488,330       | 257,840       | 310,420                               | 387,120       | 283,790                                       | 144,030                                                                                                         | NIS (d)                               | NIS        | NIS           | NIS           | Citizens           |
| r,690<br>70     | 388,430      | 76,258         | 154,490        | 29,430        | NIS<br>NIS    | NIS                                   | NIS           | NIS                                           | NIS                                                                                                             | NIS NIS                               |            | NIS NIS       | NIS           | Citizens           |
| 260             | 290,170      | 609,720        | 584,130        | 172,880       | NIS           | NIS                                   | NIS           | NIS                                           | NIS                                                                                                             | NIS                                   | NIS        | NIS           | NIS           | Citizens           |
| 404             | 2.303        | 598            | 1.005          | 32,569        | 31.639        | 0                                     | 16.787        | NIS                                           | NIS                                                                                                             | NS                                    | NIS        | NIS           | NIS           | Citizens           |
| ,750            | 145,510      | 152,510        | 103,330        | 71,973        | 8,824         | 24,853                                | 129,300       | 167,850                                       | 14,253                                                                                                          | 46,729                                | 27,075     | 16,580        | 7,553         | Citizens           |
| ,750            | 208,710      | 137,450        | 175,200        | 119,220       | 42,511        | 47,108                                | 86,070        | 76,164                                        | 30,984                                                                                                          | 2,639                                 | 45,637     | 43,627        | 48,713        | Citizens           |
| 149             | 1,125        | 2,487          | 996            | 941           | 1,620         | 244                                   | 14,403        | 4,788                                         | 6,702                                                                                                           | 54,658                                | 57,195     | 47,649        | 104,880       | Citizens           |
| 11              | 9,374        | 3,850          | 9,378          | 6.002         | 13,429        | 10,117                                | 24,113        | 24,856                                        | 10,967                                                                                                          | 28,232                                | 39,169     | 11,187        | 32,570        | Citizens           |
| 406             | 121 460      | 0,414          | 1,827          | 19,706        | 133,040       | 320,030                               | 74,231        | 19,804                                        | 8,207                                                                                                           | 34,921                                | 53,148     | 40,304        | 10,441        | Citizens           |
| IS              | MIS          | NIS            | NIS            | NTE           | NIS           | NIS                                   | NIS           | NIS                                           | NIS                                                                                                             | NTS                                   | NTS        | 47,201<br>NIS | NIS           | Citizens           |
| 438             | 70,610       | 152,630        | 160,960        | 80,737        | 249,540       | 131,830                               | 135,150       | 103,980                                       | 26,542                                                                                                          | 181,210                               | 232,710    | 94,002        | 132,720       | Citizens           |
|                 |              |                |                |               |               |                                       |               |                                               |                                                                                                                 |                                       |            |               |               | Citizens           |
| ts              | NIS          | NIS            | NIS            | NIS           | NES           | NIS                                   | NIS           | NIS                                           | NIS                                                                                                             | NíS                                   | NIS        | NIS           | NIS           | Citizens           |
| <u>77</u>       | 1,544        | 2,795          | 521            | 8,683         | 22,283        | 11,609                                | 16,638        | 38,043                                        | 17,729                                                                                                          | NIS                                   | NIS        | NIS           | NIS           | Citizens           |
| 765             | 10,930       | 21,190         | 39,362         | 72,620        | 79,706        | 10,919                                | 34,299        | 52,812                                        | 115,340                                                                                                         | NIS                                   | NIS        | NIS           | NIS           | Citizens           |
| 351<br>570      | 2 257        | 7 746          | 12 527         | 7 902         | 4 732         | 0,00                                  | 210,380       | 32 685                                        | 113,130                                                                                                         | 149,970                               | 140,780    | 113,050       | 100,000       |                    |
| 3               | 7            | 32             | 27             | 71            | 97            | 174                                   | 19            | 65 225                                        | 29.157                                                                                                          | 57 670                                | 429        | 251           | 0             | Citizens           |
| 6               | 4,578        | 72,003         | 34,623         | 35,030        | 13,986        | 139,300                               | 75,945        | 243,890                                       | 154,130                                                                                                         | 229,180                               | 217.980    | 254,640       | 239.250       | Citizens           |
| 373             | 201,150      | 203,900        | 185,190        | \$3,426       | 106,710       | 223,150                               | 131,630       | 110,120                                       | 110,990                                                                                                         | 5,830                                 | NIS        | NIS           | NIS           | Citizens           |
| ,020            | 105,690      | 154,760        | 28,660         | 30,190        | 39,126        | NIS                                   | NIS           | NIS                                           | NIS                                                                                                             | NIS                                   | NIS        | NIS           | NIS           | Citizens           |
| 290             | 56,372       | 111,200        | 21,950         | 32,485        | 125,630       | 150,900                               | 141,210       | 24,045                                        | 91,803                                                                                                          | NIS                                   | NIS        | NIS           | NIS           | Citizens           |
| 490             | 328,480      | 345,450        | 295,240        | 341,050       | 272,700       | 309,130                               | 94,463        | 250,820                                       | 201,520                                                                                                         | 298,250                               | 303,100    | 251,320       | 248,180       | Citizens           |
| <del>ا</del> حد | <del> </del> | ┢╼╼╼╼┥         | ┝──┦           | <b>├───┤</b>  | ┝───┦         | ┝────┦                                | J             |                                               |                                                                                                                 | ·                                     | <b> </b>   |               |               | City of Sacramento |
| +               | <b>†</b>     | r              |                | <b></b>       |               | <b>├</b> ┦                            | /             | <b>†</b>                                      | / <b>/</b>                                                                                                      | r                                     | ┝───┥      | r             |               | City of Sacramento |
| .—†             |              | r!             |                |               | <b>├───</b> ┥ | +                                     | <b>†</b>      | +                                             | r+                                                                                                              | ·                                     | / <b>/</b> | ┌────┩        |               | City of Sacramento |
|                 |              |                |                |               |               | · · · · · · · · · · · · · · · · · · · |               |                                               | i — †                                                                                                           | · · · · · · · · · · · · · · · · · · · | it         | ·+            |               | City of Sacramento |
|                 |              |                |                |               |               |                                       |               |                                               |                                                                                                                 | ·                                     |            |               |               | City of Samento    |

and a construction

•

1

t

E)

1

-----

|           |              |              |            |         |         |         |         |          |          |                       | Table N-3<br>Production Well Cumulative Pure |              |                                              |          |              |  |  |  |
|-----------|--------------|--------------|------------|---------|---------|---------|---------|----------|----------|-----------------------|----------------------------------------------|--------------|----------------------------------------------|----------|--------------|--|--|--|
|           |              |              |            |         |         |         |         |          |          |                       | TTOUL                                        | (Thou        | isand G                                      | alions P | er Ye        |  |  |  |
| Purvevor  | Well<br>L.D. | <u> </u>     |            |         |         |         |         |          |          |                       |                                              | (            |                                              |          |              |  |  |  |
| (a)       | <b>(b)</b>   | 1993         | 1992       | 1991    | 1990    | 1989    | 1988    | 1987     | 1986     | 1985                  | 1984                                         | 1983         | 1982                                         | 1981     | 1980         |  |  |  |
| CW        | 109          | 0            | 2,900      | 0       | 0       | 0       | 0       |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | 110          | 0            | 39,260     | 0       | 40      | 40      | 0       |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | <u> </u>     | 0            | 0          | 60      | 1,880   | 120     | 60      |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | 112          | 0            | 8,220      | 4,430   | 10,040  | 470     | 7,800   |          | L        | <u> </u>              |                                              |              |                                              |          |              |  |  |  |
| CW        | 114          | 0            | 0          | 50      | 50      | 100     | 70      | L        | <b></b>  | L                     | ļ                                            | l            |                                              | ļ        | <b>_</b>     |  |  |  |
| CW        | 116          | 170,430      | 330,940    | 274,140 | 174,040 | 80      | 146,890 | <u> </u> | <b></b>  | ļ                     | ļ                                            | <u> </u>     | }                                            | ļ        |              |  |  |  |
| CW        | 117          | 260          | 50         | 190     | 320     | 50      | 100     |          | ┟────    | <u> </u>              | <u> </u>                                     |              | ┢────                                        |          | ·            |  |  |  |
| CW<br>CW  | 119          | 114 760      | 104 600    | 210     | 120 770 | 167 700 | 81.960  | <u> </u> | ┣        | <u> </u>              | <u>}</u>                                     | }            | <u> </u>                                     | <b> </b> | <b> </b>     |  |  |  |
|           | 120          | 234,260      | 499 240    | 397 150 | 287 590 | 242.540 | 158,160 |          | <u> </u> | <del> </del>          |                                              |              | <u> </u>                                     | <u> </u> |              |  |  |  |
|           | 123          | 0            | 3,190      | 830     | 2.470   | 720     | 360     | <u> </u> | <u> </u> | <u>∤</u>              |                                              |              | <u>}</u>                                     | <u> </u> | <u> </u>     |  |  |  |
| CW        | 124          | 43,380       | 209,480    | 207.870 | 172,900 | 173,890 | 142,110 |          |          | 1                     |                                              | t            | <b> </b>                                     |          |              |  |  |  |
| CW        | 125          | 0            | 0          | 0       | Ō       | 90,220  | 182,060 |          |          |                       |                                              | t            | †                                            |          |              |  |  |  |
| CW        | 126          | 0            | 0          | 30      | 0       | 0       | 140     |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | 127          | 500          | 2,090      | 28,220  | 5,270   | 590     | 18,730  |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | 129          | 178,390      | 365,860    | 359,210 | 361,890 | 330,400 | 175,550 |          | L        | L                     |                                              |              | L                                            |          |              |  |  |  |
| CW        | 131          | 166,820      | 338,380    | 256,960 | 298,760 | 254,430 | 168,560 |          | <b> </b> | ļ                     | ļ                                            | <b></b>      | <b></b>                                      | ļ        | L            |  |  |  |
| CW        | 132          | 0            | 0          | 19,050  | 0       | 119,480 | 155,060 |          | <u> </u> | <u> </u>              | <u> </u>                                     | <u> </u>     | <u> </u>                                     | }        | ļ            |  |  |  |
| CW        | 133          | 263,790      | 514,970    | 425,030 | 379,310 | 381,620 | 85,240  |          | ┣        | ┨────                 | <u> </u>                                     | <u> </u>     | <b> </b>                                     | <b> </b> | <b></b>      |  |  |  |
| CW        | 134          | 120 270      | 459,870    | 434,800 | 373,410 | 271 520 | 177 690 |          | ┣━━━━    | ┥                     |                                              | ┨────        | <del> </del>                                 | <u> </u> | ┢            |  |  |  |
|           | 130          | 129,370      | 274,510    | 459 330 | 346 410 | 405 400 | 249 480 |          | <u> </u> | <u> </u>              | <u> </u>                                     | <u> </u>     | ╂                                            | <u> </u> |              |  |  |  |
| CW        | 138          | 162.630      | 328.030    | 303.770 | 331.020 | 304.640 | 200.650 | <u> </u> | ┢╼────   | <u> </u>              | <u> </u>                                     | <u> </u>     | <u> </u>                                     | <u> </u> |              |  |  |  |
| CW        | 139          | 0            | 50         | 0       | 1,000   | 100     | 0       |          |          |                       |                                              | <u> </u>     | t                                            | <u> </u> | <u> </u>     |  |  |  |
| CW        | 142          | 129,230      | 296,200    | 331,210 | 314,210 | 248,930 | 13,610  | [        |          | 1                     |                                              |              | [                                            | [        |              |  |  |  |
| CW        | 143          | 180,780      | 360,420    | 318,810 | 299,900 | 296,100 | 192,560 |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | 144          | 161,960      | 318,240    | 280,640 | 261,150 | 262,560 | 159,980 |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| CW        | 150          | 0            | 0          | 0       | 0       | 19,730  | 24,700  |          |          |                       | <u> </u>                                     |              | <u>                                     </u> | ļ        | L            |  |  |  |
| CW        | 151          | 39,410       | 115,540    | 63,950  | 256,980 | 311,930 | 174,610 | ·        |          | ļ                     | ļ                                            | ļ            | f                                            | ļ        | <b> </b>     |  |  |  |
| CW        | 153          | 0            | 0          | 5,080   | 452,080 | 725,140 | 420,570 | l        |          | <u> </u>              | <u> </u>                                     | <b> </b>     | <b> </b>                                     | <b> </b> | ╂────        |  |  |  |
| <u>CW</u> | 154          | 109,720      | 305,330    | 280,010 | 242,860 | 226,260 | 138,750 |          |          |                       |                                              | <u> </u>     | ┢─── ──                                      | <u> </u> | <del> </del> |  |  |  |
| <u> </u>  | 155          | 235 670      | 409 330    | 316.070 | 151 030 | 92,690  | 192,020 |          | <u> </u> | <u> </u>              | ł                                            | <u> </u>     | t                                            | <u> </u> | ┣───         |  |  |  |
| CW        | 157          | 161,530      | 315,190    | 292.270 | 279.910 | 271,700 | 165,990 | <u>}</u> | <u> </u> |                       | <u> </u>                                     | <u>├──</u> ─ | ┼───                                         | <u> </u> | ╂───         |  |  |  |
| CW        | 158          | 11.830       | 75,500     | 41,680  | 305.110 | 314,950 | 46.530  | f        |          | f                     | f                                            | f            | f                                            | <u> </u> | <u> </u>     |  |  |  |
| CW        | 159          | 274,280      | 554,060    | 516,590 | 512,320 | 469,800 | 308,170 | h        |          | ·                     | 1                                            | <u> </u>     | 1                                            |          | h            |  |  |  |
| CW        | 161          | 0            | 0          | 0       | 0       | 90      | 0       |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| DP        | 1            |              |            |         |         |         |         |          |          |                       |                                              |              |                                              |          |              |  |  |  |
| DP        | 2            |              |            |         |         |         |         |          |          |                       |                                              |              |                                              |          | L            |  |  |  |
| DP        | 3            | ļ            |            | L       |         |         |         |          | ·        | L                     | <u> </u>                                     |              | <b> </b>                                     |          | <u> </u>     |  |  |  |
| DP        | 6            | ļ            |            |         |         |         |         | ļ        | <b></b>  | <u> </u>              | ļ                                            | ļ            | <u> </u>                                     | <u> </u> | <u> </u>     |  |  |  |
| DP        | 7            | <b>↓</b>     | [          | [       |         |         |         |          | <b> </b> |                       |                                              |              | <b> </b>                                     | <u> </u> |              |  |  |  |
| DP<br>MB  | 8            |              | 286 447    | 774 674 | 240.499 | 200 784 | 296 160 | 262 013  | 216 200  | 269 620               | 206 102                                      | 276.969      | 272.051                                      | 242 170  | 269 71       |  |  |  |
| NR<br>NP  |              |              | 200,447    | 140.051 | 271 584 | 209,784 | 407 820 | 203,913  | 453 216  | 207 105               | 428 972                                      | 250,858      | 320 841                                      | 350 740  | 283 52       |  |  |  |
| NR        |              | <del> </del> | 487 188    | 498 784 | 437 506 | 435 558 | 478 586 | 382 397  | 412 251  | 380 404               | 521 003                                      | 503.053      | 425.812                                      | 22.348   | 123.56       |  |  |  |
| NR        | 6            | t            | 0          | 158     | 62.749  | 51,707  | 131,713 | 44.239   | 50.054   | 57,881                | 57.615                                       | 41.262       | 41.072                                       | 66.342   | 88.04        |  |  |  |
| NR        | 7            | †            | 228.020    | 34.398  | 128.674 | 216.330 | 152,040 | 178.806  | 176.675  | 235,170               | 154.618                                      | 102.694      | 133,084                                      | 198,576  | 180,23       |  |  |  |
| NR        | 8            |              | 3,825      | 0       | 255     | 38,723  | 23,774  | 20,690   | 34,556   | 33,967                | 39,361                                       | 19,024       | 22,873                                       | 92,856   | 0            |  |  |  |
| NR        | 9            |              | 27,881     | 63,873  | 139,174 | 188,924 | 33,230  | 38,132   | 103,856  | 141,395               | 122,358                                      | 141,095      | 109,671                                      | 79,234   | 81,01        |  |  |  |
| NR        | 10           |              | 593,331    | 585,817 | 423,528 | 377,213 | 469,978 | 518,225  | 376,409  | 392,568               | 422,716                                      | 386,814      | 392,339                                      | 442,700  | 356,29       |  |  |  |
| NR        | 11           |              | 0          | 0       | 5,191   | 9,325   | 2,907   | 2,126    | 4,988    | 17,073                | 36,370                                       | 49,424       | 30,114                                       | 54,517   | 27,51        |  |  |  |
| NR        | 12           |              | 164,045    | 88,367  | 225,582 | 192,055 | 265,429 | 214,903  | 268,434  | 325,564               | 251,235                                      | 211,783      | 129,337                                      | 173,112  | 132,3        |  |  |  |
| NR        | 13           | ļ            | 0          | 0       | 0       | 0       | 7,667   | 0        | 800      | 5,597                 | 8,591                                        | 653          | 420                                          | 17,811   | 21,07        |  |  |  |
| NR        | 14           | Į            | 113,595    | 225,637 | 56,176  | 128,780 | 174,190 | 96,438   | 71,399   | 32,435                | 32,530                                       | 25,656       | 6,456                                        | 77,916   | 14,68        |  |  |  |
| NR        | 15           | <b> </b>     | 318,572    | 164,257 | 271,712 | 207,844 | 488,941 | 487,683  | 364,507  | 344,554               | 434,297                                      | 222,600      | 120,010                                      | 218,017  | 219,05       |  |  |  |
| NK        | 17           | <u> </u>     | 58,910     | 415     | 17,404  | 1,836   | 200,029 | 236,341  | 236,914  | 271,117               | 2/0,510                                      | 240,292      | 208,950                                      | 399,701  | 251,07       |  |  |  |
|           |              |              | . 16 / 153 |         |         |         |         |          |          | · · · · · · · · · · / | / /                                          | / 200        | 440.100                                      |          | الدائم ا     |  |  |  |

G:\Users\DA\D\_Robert\Lanier\TableN-3.XLS

.

O
| <b>7</b> .1 | J. N 2   |          | ·····    |              |          |              |          |               |               |              |          |              |                                                          |
|-------------|----------|----------|----------|--------------|----------|--------------|----------|---------------|---------------|--------------|----------|--------------|----------------------------------------------------------|
|             | DIE IN-J |          | _        |              |          |              |          |               |               |              |          |              |                                                          |
| Nell Cu     | mulativ  | e Pumpa  | age Data | a.           |          |              |          |               |               |              |          |              |                                                          |
| usand G     | allons I | Per Yea  | r)       |              |          |              |          |               |               |              |          |              |                                                          |
| 1           | 1        | T        | Í        | T            | T        | 1            | 1        |               | 1             | 1            | I        |              | الم المتحدين البلغ من مع الكمي - مع التفكر البلغ ال<br>ا |
|             |          |          |          |              |          |              | 1        |               | l             |              |          |              | Poference                                                |
| 1092        | 1091     | 1020     | 1979     | 1978         | 1077     | 1076         | 1075     | 1074          | 1073          | 1072         | 1071     | 1070         | Kelerence                                                |
| 1704        | 1.201    | 1,200    |          | 17/0         | 1977     | 1 1970       | 1973     | 15/4          | 1973          | 1974         | 19/1     | 1970         | (C)                                                      |
| ┿───        | ╉╾╼╼╼    |          | <u> </u> | <u>├</u> ──- | <u>}</u> | ł            | <u> </u> | <u> </u>      | <u> </u>      | ļ            |          |              | City of Sacramento                                       |
|             |          | <u> </u> |          |              |          | <u> </u>     |          |               | <u> </u>      | ┨─────       |          | <u> </u>     | City of Sacramento                                       |
| +           | <u> </u> | <u> </u> | <u> </u> | <u> </u>     | <u> </u> | <del> </del> |          |               | <u> </u>      | <u>├</u> ─── |          |              | City of Sarramanto                                       |
| +           |          | †        |          |              |          |              | <u> </u> |               | ┼───          | <u> </u>     |          | <u> </u>     | City of Secremento                                       |
| 1           | 1        | 1        |          | <u> </u>     |          |              |          |               |               |              |          |              | City of Sacramento                                       |
| +           | <u> </u> |          |          | 1            | ··       | t            |          |               | <u> </u>      |              |          | <u> </u>     | City of Sacramento                                       |
| 1           | 1        | 1        |          |              |          |              |          | t             | ·             | <u> </u>     |          | †            | City of Sacramento                                       |
|             | 1        | 1        |          |              |          |              |          |               | <u> </u>      | 1            |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               | 1             |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
| L           |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              | L        | <b> </b>     |          |               |               | ļ            |          |              | City of Sacramento                                       |
|             | ļ        | ļ        |          |              |          | ļ            |          | <u> </u>      | <u> </u>      | ļ            |          | ļ            | City of Sacramento                                       |
|             | ļ        | ļ        | L        | ļ            | L        | L            |          |               | <b></b>       | Ļ            | L        | <b> </b>     | City of Sacramento                                       |
| ∔           | ļ        | <u> </u> | <u> </u> | <u> </u>     |          |              |          | <u>├</u>      | <u> </u>      | Ì            |          | ļ            | City of Sacramento                                       |
| ┼────       | <b></b>  | <b> </b> | <u> </u> | <b> </b>     |          | <b></b>      | <b> </b> |               | ┣━━━━         |              | <u></u>  | <u> </u>     | City of Sacramento                                       |
| ┽─── ━━     |          | ł        |          |              |          | <u> </u>     |          |               | <b> </b>      | <u> </u>     |          | <b> </b>     | City of Sacramento                                       |
|             | +        |          | <u> </u> |              |          |              | <u> </u> | <u> </u>      | ┣───          | ┨────        |          | ├            | City of Sacramento                                       |
| ╋────       |          | ł        |          |              |          | <b> </b>     |          |               | }             | <u> </u>     | <u> </u> | <u> </u>     | City of Sacramento                                       |
| ┿────       | <u> </u> | <u> </u> |          |              |          |              |          |               |               |              | <u> </u> |              | City of Sacramento                                       |
| ╉╌──╼       |          |          |          | <u> </u>     | ·        |              |          |               | <u>├</u> ───  |              | <u> </u> | <u>}</u>     | City of Sacramento                                       |
| +           | <u> </u> | t        |          |              |          |              |          |               | <u>├─</u> ─── | }            |          |              | City of Sacramento                                       |
| ╀           | 1        | t        |          |              |          |              |          |               | <u>├─</u> ──  |              |          | <u> </u>     | City of Sacramento                                       |
| <u> </u>    | t        |          |          |              |          |              |          |               |               | <u> </u>     |          |              | City of Sacramento                                       |
| 1           | 1        |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
|             | <u> </u> |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
| ļ           |          |          |          |              |          |              |          |               |               |              |          |              | City of Sacramento                                       |
| ļ           |          |          |          |              |          |              |          |               |               |              |          | L            |                                                          |
|             |          |          |          | ļ            |          |              |          | <u> </u>      |               |              | L        | <u> </u>     |                                                          |
| <b> </b>    | <b> </b> |          | ļ        |              | ļ        |              |          | ļ             | <u> </u>      | L            | ļ        | <b> </b>     |                                                          |
| ┟           | ļi       |          |          |              |          |              |          |               |               | ļ            |          |              |                                                          |
| ╂~───       | <b> </b> |          |          |              |          |              |          |               |               |              | <u> </u> | ļ            |                                                          |
| 1 777 051   | 142.000  | 369 714  | 395 849  | 16 000       | 160.000  |              |          |               | 104 404       | 1/8 400      |          |              |                                                          |
| 272,051     | 344,17   | 308,710  | 333,843  | 10,090       | 100,090  |              |          |               | 190,080       | 147,380      |          |              | NR Water District                                        |
| 475 812     | 22 248   | 122 562  | 230,104  | 399,370      | 399,370  |              |          |               | 3/4,031       | 311,310      |          | <u> </u>     | NR water District                                        |
| 41.002      | 66 242   | 143,303  | \$1.611  | 4 904        | 319,064  |              |          |               | 495,590       | 490,340      |          |              | NR Water District                                        |
| 133.084     | 198 474  | 180 222  | 172 246  | 270 164      | 7,073    |              |          |               | 147 007       | 34,830       |          | <b>├</b> ─── | NR WHEE DISTRE                                           |
| 22.871      | 92 854   | 100,434  | 0        | 0            | A47,100  |              |          | <b>├</b> ───┤ | 20 5 0        | 37 660       |          |              | NP Water District                                        |
| 109.671     | 79.214   | 81.018   | 72.429   | 32.787       | 32 797   |              |          |               | 140 284       | 163.110      |          | ┟────        | NR Water District                                        |
| 392.339     | 442,700  | 356.294  | 209.694  | 336.374      | 336.374  |              |          |               | 311 414       | 342 140      | <u> </u> |              | NR Water District                                        |
| 30.114      | 54.517   | 27.511   | 16.483   | 2.088        | 2.088    |              | <u> </u> |               | 72 041        | 161 020      |          | <u> </u>     | NR Water District                                        |
| 129.337     | 173.112  | 132.354  | 122.758  | 58.794       | 58.794   |              |          |               | 80 486        | 85.420       |          |              | NR Water District                                        |
| 420         | 17,811   | 21.071   | 86.788   | 139          | 139      |              |          |               | 506           | 8.220        | <u></u>  |              | NR Water District                                        |
| 6,456       | 77,916   | 14,681   | 27,799   | 2,163        | 2,163    |              |          |               | 90,298        | 115.690      | h        |              | NR Water District                                        |
| 120,010     | 218,017  | 219,092  | 104,624  | 282,850      | 282,850  |              |          |               | 232.790       | 385.030      |          | <u> </u>     | NR Water District                                        |
| 208,936     | 399,701  | 231,625  | 144,687  | 83,077       | 83,077   |              |          |               | 187.127       | 16,760       | NIS      | NIS          | NR Water District                                        |
| 228,526     | 285,220  | 251,379  | 158,955  | 6,592        | 6,592    |              |          |               | 311.416       | NIS          | NIS      | NIS          | NR Water District                                        |

A

1

### Table N

1

**Production Well Cumula** 

. . . . . .....

(Thousand Gallor

|          |            |             |         |         |         |         |         |         |         |         |          | (1100                                 | Same O  |          |
|----------|------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------------------------------------|---------|----------|
|          | Well       |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| Purveyor | I.D.       |             | 1000    |         |         | 1000    | 1000    | 1007    | 1000    | 1000    | 1004     | 1002                                  | 1000    |          |
|          | <u>(b)</u> | <u>1993</u> | 1992    | 1991    | 1990    | 1989    | 1968    | 1987    | 1990    | 1992    | 1984     | 1983                                  | 1982    | 134      |
| NR       | 19         |             | 0       | 0       | 0       | 13      | 26      | 31      | 1,587   | 1,792   | 229      | 64                                    | 49      | 90       |
| NR       | 20         |             | 155,163 | 158,596 | 19,290  | 46,216  | 81,512  | 155,673 | 1,634   | 12,408  | 8,093    | 16,188                                | 36,349  | 15,4     |
| NR       | 21         |             | 1,696   | 164     | 111,032 | 41,072  | 24,184  | 42,841  | 50,783  | 43,736  | 66,074   | 8,521                                 | 8,217   | 17,5     |
| NR       | 22         |             | 133,637 | 40,193  | 140,345 | 164,557 | 267,711 | 312,606 | 296,680 | 443,619 | 314,314  | 368,985                               | 282,099 | 174,     |
| NR       | 23         |             | 22,799  | 22,299  | 105,643 | 49,325  | 67,194  | 17,585  | 101,554 | 115,389 | 126,877  | 78,411                                | 126,342 | 128,     |
| NR       | 24         |             | 170,604 | 250,820 | 67,944  | 264,806 | 291,647 | 192,161 | 241,049 | 164,893 | 533,925  | 585,607                               | 628,919 | 657,     |
| NR       | 25         |             | 610,231 | 117,665 | 381,105 | 814,734 | 729,933 | 754,403 | 809,140 | 811,143 | 139,534  | NIS                                   | NIS     | N        |
| NR       | 26         |             | 263,452 | 299,332 | 332,464 | 366,084 | 397,668 | 420,454 | 317,077 | 103,538 | NIS      | NIS                                   | NIS     | NI       |
| NR       | 27         |             | 84,564  | 167,804 | 129,796 | 146,248 | 114,593 | 160,868 | 15,973  |         |          |                                       | in en   |          |
| NR       | 28         |             | 108,699 | 203,783 | 387,516 | 324,918 | 0       | 173,399 | 59,370  | 내세요는    | 1441 H L |                                       |         | 161      |
| NR       | 29         |             | 93,606  | 374,268 | 316,002 | 86,962  | 242,662 | 414,698 | 569     |         | Se       | Note C Be                             | low     |          |
| NR       | 30         |             | 98,877  | 405,244 | 480,415 | 516,589 | 206,655 | 177,788 | 0       |         | KAN D    | 精制                                    |         |          |
| NR       | 31         |             | 186,257 | 426,733 | 418,849 | 352,621 | 419,258 | 366,765 | 46,664  |         | Parti    |                                       |         |          |
| NR       | 32A        |             | 62,541  | 92,748  | 318,984 | 185,349 | NIS     | NIS     | NIS     | NIS     | NIS      | NIS                                   | NIS     | N        |
| NR       | 32B        |             | 485,611 | 402,735 | 231,970 | NIS     | NIS     | NIS     | NIS     | NIS     | NIS      | NIS                                   | NIS     | N        |
| NR       | 34         |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 1          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 2          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 3          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 4          |             | 80,896  | 124,661 | 127,878 |         |         |         |         |         |          |                                       |         |          |
| RIO      | 5          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 6          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 7          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 8          |             | 80,699  | 36,266  | 47,043  |         |         |         |         |         |          |                                       |         |          |
| RIO      | 9          |             |         |         |         |         |         |         |         |         |          |                                       |         |          |
| RIO      | 10         |             |         |         |         |         |         |         |         |         |          | · · · · · · · · · · · · · · · · · · · | [       | <u> </u> |
| RIO      | 11         |             | 233,262 | 99,655  | 185,675 |         |         |         |         |         |          |                                       |         |          |
| RIO      | 12         |             |         |         |         |         |         |         |         |         |          |                                       |         |          |

a). Notes on Purveyor Acronyms:

ARC - Arcade Water District

BW - McClellan Air Force Base

CM - Carmichael Water Agency

CT - Caltrans

.....

CU - Citizens Utilities

CW - City of Sacramento

DP - Del Paso Water District

NR - Northridge Water District

RIO - Rio Linda Water District

b). Well I.D. = Number used by SAWWA if purveyor is member of that organization, otherwise provided by purveyor.

c). Radian = Information on production wells for Arcade and Rio Linda is still being obtained. For now, Radian data is used (1992 goes just through Novem) AFB Data 1461 = Form 1461 is the monthly operating report of McClellan Air Force Base wells.

Caltrans = Caltrans sent a memo with gross pumping volume for a week, which was based on the pumping rate from 1979 to 1989. This number is based Citizens = Citizens Utilities sent a summary of annual cumulative pumpage volumes.

City of Sacramento = Data came from two different sources. Radian data was used for 1992 and 1993 since the information supplied by the City was inco 1993 data is incomplete, missing July, August, September, October, November and December. These numbers should probably be higher than shown

NR Water District = Northridge Water District sent a summary of annual cumulative pumpage volumes. Complete monthly data was unavailable for 197( Water District on 10/31/86. Data for 1986 for these wells are probably not representative of total volume pumped.

d). NIS = Not in Service

| un<br>Y                                 | IT Table N-3<br>Yell Cumulative Pumpage Data |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
|-----------------------------------------|----------------------------------------------|------------------|----------|-----------|-------------|---------|--------|-----------|-------------|----------------|----------|---------------|-----------|-------------------|
| 198<br>50-                              | 1982                                         | alions r<br>1981 | 1960     | 1979      | 1978        | 1977    | 1976   | 1975      | 1974        | <b>197</b> 3   | 1972     | 1 <b>97</b> 1 | 1970      | Reference<br>(c)  |
| 3,37                                    | 49                                           | 902              | 504      | 3,773     | 185         | 185     |        |           |             | 7,738          | NIS      | NIS           | NIS       | NR Water District |
| 15,30                                   | 36,349                                       | 15,450           | 3,370    | 9.221     | 79,971      | 79,971  |        |           |             | 0              | NIS      | NIS           | NIS       | NR Water District |
| 29.0                                    | 8,217                                        | 17,938           | 15,307   | 34,050    | 34,482      | 34,482  |        |           |             | 4,510          | NIS      | NIS           | NIS       | NR Water District |
| 1.8                                     | 282,099                                      | 174,178          | 229,081  | 459,850   | 211,028     | 133,815 |        |           |             |                |          |               |           | NR Water District |
| 165,2                                   | 126,342                                      | 128,593          | 171,877  | 155,800   | 133,815     | 211,028 |        |           |             | 541,173        | 117,650  |               |           | NR Water District |
| NIS                                     | 628,919                                      | 657,530          | 665,225  | 599,456   | 227,449     | 227,449 |        |           |             |                | ·····    |               |           | NR Water District |
| NIS                                     | NIS                                          | NIS              | NIS      | NIS       | NIS         | NIS     | NIS    | NIS       | NIS         | NIS            | NIS      | NIS           | NIS       | NR Water District |
|                                         | NIS                                          | NIS              | NIS      | NIS       | NIS         | NIS     | NIS    | NIS       | NIS         | NIS            | NIS      | NIS           | NIS       | NR Water District |
|                                         | MAN                                          | 11111            |          | (FPI, 19) |             | HI HAR  |        |           | <b>MARK</b> |                | i i ttat |               | 1.1.114   | NR Water District |
| + + + + + + + + + + + + + + + + + + + + | 1111110                                      |                  | 11141    |           |             | HHAR    | ****   |           |             | <b>Hat</b> her | 计图相相     | 出出种机          | kt platt. | NR Water District |
| <u> </u>                                | W                                            |                  | i i Mali | ti Hitte  | 4444        | httitt  | 111144 | 4 10 11   |             |                |          |               |           | NR Water District |
|                                         | 封闭机                                          | 111110           | 111110   | 11111111  | 121211      | 计口语机    | 時中間に   | 1 11 11 1 | 11277       |                |          | THE           | Hanat     | NR Water District |
|                                         | 441.44                                       |                  | 14 14 14 | 1741111   | 1401, 1 h h |         | HARAD. |           |             | 11:412-1       |          |               |           | NR Water District |
|                                         | NIS                                          | NIS              | NIS      | NIS       | NIS         | NIS     | NIS    | NIS       | NIS         | NIS            | NIS      | NIS           | NIS       | NR Water District |
| ·`                                      | NIS                                          | NIS              | NIS      | NIS       | NIS         | NIS     | NIS    | NIS       | NIS         | NIS            | NIS      | NIS           | NIS       | NR Water District |
| <sup>`</sup>                            |                                              |                  |          |           |             |         |        |           |             |                |          |               |           | NR Water District |
| ——`                                     |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
| `                                       |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
| <u> </u>                                |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
| ]                                       |                                              |                  |          |           |             |         |        |           |             |                |          |               |           | Radian            |
| <u> </u>                                |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
|                                         |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
|                                         |                                              |                  |          |           |             |         |        |           | 1           |                |          |               |           |                   |
|                                         |                                              |                  |          |           |             |         |        |           |             |                | 1        |               |           | Radian            |
|                                         |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
|                                         |                                              |                  |          |           |             |         |        |           |             |                |          |               |           |                   |
| ]                                       |                                              |                  |          |           |             |         |        |           |             |                |          |               |           | Radian            |
| -                                       |                                              |                  |          |           |             | 1       |        |           |             |                |          |               |           |                   |

D

Rio I

hrough November for Rio Linda).

• •• •

----

.....

umber is based on irrigation season pumping rates.

١

for 1 e City was incomplete.
<sup>197</sup> her than shown. Data for 1988 is also incomplete, missing January, February, March, April, and May.
her than shown. 1074, 1074, 1075, and 1976. Wells 27 through 31 were purchased from Arvin

11/5/93 10:53 AM

.

· · · · · · · · · · · · · · · · · · ·

















-WATER PURVEYOR

ACRONYMS USED FOR WELLS ARE:

ARCADE WATER DISTRICT.

- NORTHRIDGE WATER DISTRICT
- CARMICHAEL WATER AGENCY
- CITIZENS UTILITIES
- **RIO LINDA WATER DISTRICT**
- CW CITY OF SACRAMENTO SA-NW. COUNTY OF SACRAMENTO
- DEL PASO WATER AGENCY
- MCCLELLAN AFB

CALTRANS

ALL PRODUCTION WELLS WITHIN A 5-MILE RADIUS OF THE BASE ARE SHOWN

# **FIGURE N-1 RODUCTION WELLS** N A 5-MILE RADIUS OF LLAN AIR FORCE BASE **GROUNDWATER OPERABLE UNIT RI/FS**

McCLELLAN AIR FORCE BASE SACRAMENTO, CALIFORNIA

CHANHILL (8)

۱



يستعوم يعدد الدار الأحجام



----



RDD 1454

**(**]

1

. .

GWOU/n-3.dgn

 $\langle D \rangle$ 



-----

•



GWOU/n-4.don

I.



ومعطومة ووجاد المردحات المتحاد



ROD 1464

@WOU/n-5.dgn

 $\bigcirc$ 

ACU-5 53 NR-32B × LEGEND NR-32A ł NR-33 -BW - BASE WELL - CALTRANS ĒΤ 1C-57 AHC-59 CU-11 NR RIO - RIO LINDA NR-2 ▲CU-58 CU - CITIZENS UTILITIES ARC-64 ARC - ARCADE NR - NORTHRIDGE CW - CITY WELL ACU-4 NR-25 \* ARC-52 ARC-39 \_NR-24 ACU-3 CU-22 CU-34 ARC-34 WELLS PUMPING < 30,000 AŘC-27 THOUSAND GALLONS/YEAR -5 RADIUS OF CIRCLE REPRESENTS CUMULATIVE PUMPAGE IN THOUSANDS OF GALLONS/YEAR CU-73 (- T CU-59 NR-8 ARC-44 J-63 1" - 2,500,000 NARC-56 NR-30 × CU-20 NR-7 ARC-31A NR-11 WELLS PUMPING ZERO . NR-28 OR NOT IN SERVICE CU-35 NR-6 × Ĵ NR-15 C-16 LW-2 NO PUMPING INFORMATION A TRIAX HOLE . AVAILABLE NR-29 LW-1 NR-13 NR-10 ..... LOCATION OF WELL )-23 NR-29 23 NR-27 NR 1R-17 \_NR-31 NR-21 NR-22 Ø<sup>NR-9</sup> OWNER'S IDENTIFICATION <sub>\*</sub>ст-з 111 CM-8 CM-5 CM-11 NR-1 • NR-12 12 CM-15 ARC-33 NR-20 ARC-65 A ARC-22 CM-2 J •3 NR-19 • ARC-60 • ARC-66 • ARC-24 **.**36 ARC-54 × CM-3 , ARC-42 CM-6 -26 ARC-26 12 DP-7 , DP-1 ARC-32 \* 5000 10000 0 . ARC-9 × DP-6 DP-3 SCALE IN FEET -CM-1 CP-2 FIGURE N-5 -35 ARC-35 ARC-18 PUMPING DISTRIBUTION OF 25 ARC-25 **PRODUCTION WELLS AROUND** RC-20A "CM-4 MCCLELLAN AIR FORCE BASE (1973) GROUNDWATER OPERABLE UNIT RI/F'S MCCLELLAN AIR FORCE BASE SACRAMENTO, CALIFORNIA

. .....

CHEM HILL-

### **Pumping Distribution and Impacts**

The available pumping volumes during 1973, 1980, 1986, and 1992 for wells within a 5-mile radius of the Base are presented in Figures N-2, N-3, N-4, and N-5, respectively. The information provided indicates that most water withdrawal occurred in the southwest and northeast region of McClellan AFB.

Pumping information was not made available for all production wells within a 5-mile radius of the Base. However, production wells that are not marked with a pumpage magnitude may actually have ben pumped and may contribute to flow directions. Wells marked as having zero pumpage were not pumped.

### **Potential Future Pumping Conditions**

No changes in pumping conditions are anticipated in the future by the City of Sacramento, Caltrans, or Citizens Utilities. The status of pumping conditions for the other water purveyors is unknown at this time.

( )

Revised Final Well Closure Methods and Procedures Report and Revised Final Field Summary Technical Memorandum for BW-8

> Delivery Order 5031 Line Item 0014

Prepared for McClellan Air Force Base Contract No. F04699-90-D-0035 Sacramento, California

Prepared by

CHEM HILL 3840 Rosin Court, Suite 110 Sacramento, California 95834

October 1993

SAC28722.31.A4

SAC/T207/030.51-1

ſ

Revised Final Well Closure Mett and Procedures Re and Revised Final Field Technical Memorandum

> Delivery Order 50. Line Item 0014

Prepared for McClellan Air Force B. Contract No. F04699-90-E Sacramento, Califor

Prepared by

CH2M HILL 3840 Rosin Court, Suite Sacramento, California

SAC28722.31.A4

SAC/T207/030.51-1

.

Revised Final Well Closure Methods and Procedures Phase II

Prepared for

McClellan Air Force Base

Sacramento, California



This document has been prepared under the direction of a registered geologist.

Prepared by

3840 Rosin Court, Suite 110 Sacramento, California 95834

SAC28722.31.A4

October 1993

SAC/T207/030.51-2

()

٠

Revised Final Well Closure Methods and Procedures Phase II

Prepared for

**McClellan** Air Force Base

Sacramento, California



This document has been prepared under the direction of a registered geologist.

Prepared by

CHAMHILL

3840 Rosin Court, Suite 110 Sacramento, California 95834

SAC28722.31.A4

October 1993

SAC/T207/030.51-2

.....

### DISCLAIMER

This report has been prepared for the United States Air Force for the purpose of aiding in the implementation of a final remedial action plan under the Interagency Agreement (IAG). As the report relates to actual or possible releases of potentially hazardous substances, its release prior to Air Force final decision on remedial action is in the public interest. The limited objectives of this report, the ongoing nature of remediation, and the evolving knowledge of site conditions and chemical effects on the environment and health all must be considered when evaluating this report, since subsequent facts may become known which may make this report premature or inaccurate. Acceptance of this report in performance of the contact under which it was prepared does not mean that the U.S. Air Force or the Department of Defense adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor only and do not necessarily reflect the official position of either department.

### DISCLAIMER

This report has been prepared for the United States Air Force for the purpose of aiding in the implementation of a final remedial action plan under the Interagency Agreement (IAG). As the report relates to actual or possible releases of potentially hazardous substances, its release prior to Air Force final decision on remedial action is in the public interest. The limited objectives of this report, the ongoing nature of remediation, and the evolving knowledge of site conditions and chemical effects on the environment and health all must be considered when evaluating this report, since subsequent facts may become known which may make this report premature or inaccurate. Acceptance of this report in performance of the contact under which it was prepared does not mean that the U.S. Air Force or the Department of Defense adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor only and do not necessarily reflect the official position of either department.

### Contents

Page

| troduction                                  |
|---------------------------------------------|
| ydrogeology                                 |
| ells to be Decommissioned or Modified       |
| atus of Water Supply Wells at McClellan AFB |
| ecommissioning Base Wells 42                |
| onclusion                                   |
| eferences                                   |
| ersonal Communications and Correspondence   |

### Appendixes

. ....

ŧ

(

-----

| Α | Site | Safety | Plan |
|---|------|--------|------|
|---|------|--------|------|

- Б Well Logs
- C Cement Bond Logs
- D Response to Comments

### Tables

#### Number Page Well Data: Base Well 7 ..... 11 1 2 Weil Data: Base Well 8 ..... 12 Well Data: Base Well 13 ..... 16 3 4 Well Data: Base Well 17 ..... 20 5 6 Weil Data: Base Weil 28 ..... 24 7

## Figures

### Number

-----

n in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

)

.

 $f \rightarrow$ 

### Page

ليا باليما المنتم معادمة

| 1  | Location of McClellan Air Force Base          |
|----|-----------------------------------------------|
| 2  | Production Wells at McClellan Air Force Base  |
| 3  | Wells at Camp Kohler 5                        |
| 4  | Geologic Setting of McClellan Air Force Base  |
| 5  | Location of Base Well No. 7 10                |
| 6  | Location of Base Well No. 8                   |
| 7  | Location of Base Well No. 13 17               |
| 8  | Location of Base Well No. 17 19               |
| 9  | Location of Base Well No. 20 22               |
| 10 | Location of Base Well No. 28 25               |
| 11 | Location of Base Wells No. 3 and 19 32        |
| 12 | Location of Base Well No. 16                  |
| 13 | Location of Base Wells No. 9 and 20 35        |
| 14 | Location of Base Wells No. 7 and 15 36        |
| 15 | Location of Base Well No. 29 and Nearby Wells |
| 16 | Location of Base Well No. 4                   |
| 17 | Location of Base Well No. 11 41               |

### Introduction

McClellan Air Force Base (AFB) is located about 7 miles northeast of downtown Sacramento, California (see Figure 1). The base was originally established in 1936 as an air repair depot and supply base for the War Department. During World War II, McClellan AFB became a major industrial facility; in the early 1950s, it became a jet fighter maintenance depot. Today, McClellan AFB is an Air Force Logistics Command Center, occupying about 2,600 acres and employing more than 20,000 people.

Historically, McClellan AFB has used a variety of hazardous materials as part of routine operations and maintenance activities. These hazardous materials have included industrial solvents, caustic cleaners, electroplating wastes containing heavy metals, jet fuels, and a variety of oils and lubricants (Radian Corporation, 1990). In August 1979, the McClellan AFB Environmental Protection Committee created a special groundwater contamination task force to determine whether groundwater quality problems existed in the area. This voluntary action was prompted by concern that previous use of toxic chemicals, particularly trichloroethylene (TCE), could have affected groundwater quality. Samples collected from several wells on and near the base during 1979 and 1980 confirmed the presence of TCE in certain wells. As a result, those wells were taken out of service.

Since the discovery of groundwater contamination, investigations have been conducted at McClellan AFB under the Air Force Installation Restoration Program. Results of these investigations show that contamination is mainly confined to the uppermost groundwater zones beneath the base. Drinking water wells in the vicinity of the base draw primarily from deeper groundwater zones (Radian Corporation, 1990). Heavy pumping from many of these wells has created a downward gradient of flow in the groundwater system beneath the base.

However, concern mounted that existing inactive water supply wells at McClellan AFB may serve as conduits, allowing contaminated groundwater near the water table to migrate to deeper zones through the casing and gravel pack and potentially threaten downgradient drinking water supplies. Therefore, McClellan AFB issued a Statement of Work in June 1990 that authorized a Water Well Abandonment Project to decommission several inactive water supply wells on the base.

Originally, eight inactive water supply wells were targeted for decommissioning. However, four of these wells (Base Wells [BW-] 3, 6, 16, and 19) were eliminated from consideration because they could not be located. Later, City Well 150 (CW-150), on Astoria Street near the southwestern base boundary, was added to the list for decommissioning. The general locations of the five wells abandoned during this project are shown in Figure 2.

ľ





On September 30, 1991, McClellan AFB issued a contract that initiated a second phase of water well decommissioning on and near the base. Phase II includes the decommissioning of BW-7, -13, -17, -20, and -28: five inactive water supply wells at McClellan AFB. One other inactive well, BW-8, will be sealed in its upper zone and then returned to service for standby use in fire emergencies. The general location of these wells is shown in Figure 2.

In addition, Phase II includes the decommissioning of two wells formerly constructed as part of a seismic survey at nearby Camp Kohler (see Figure 3). Two other wells at Camp Kohler, Laundry Wells (LW-) 1 and 2, have been previously abandoned by filling the casing with concrete. Neither of the wells are presently visible at the ground surface, and LW-2 has not been precisely located. LW-2 will be located, and LW-1 and LW-2 will be redrilled and decommissioned. The general location of these wells is shown in Figure 3. Thus, Phase II of the Water Well Abandonment Project at McClellan AFB provides for the modification or decommissioning of up to 10 additional wells.

This Well Closure Methods and Procedures Report addresses the decommissioning and modification of wells during Phase II. Based on a review of existing files and documents and field work conducted at Camp Kohler, the report will provide a brief history of the wells, describing their construction details and discussing their hydrogeological setting. An inventory of all McClellan AFB wells is also provided. This inventory lists McClellan AFB water supply wells and summarizes what is currently known about their status. The report also proposes an approach to decommissioning the Phase II wells and modifying BW-8. The approach to decommissioning is based on the successful approach followed during Phase I. A Site Safety Plan that will govern safety procedures during the field work is provided in Appendix A. Well logs obtained for McClellan AFB production wells from the California Department of Water Resources (DWR) are provided in Appendix B. Cement bond logs run on the two seismic wells at Camp Kohler are provided in Appendix C. Finally, Appendix D contains a response to comments received from the regulatory agencies on the Draft Well Closure Methods and Procedures Report for Phase II.

### Hydrogeology

The following discussion of geology and groundwater is taken primarily from investigations performed on behalf of McClellan AFB by Radian Corporation, whose staff has worked at the base since 1984. Hydrogeologic conditions in the immediate vicinity of base wells subject to decommissioning are described in the sections below.

### **Regional Geology**

McClellan AFB is located in the Great Valley Geologic Province, a large depositional basin bounded by the Sierra Nevada on the east and Coast Range on the west (see Figure 4). The basin is filled with a thick sequence of sedimentary deposits, mainly derived from the Sierra Nevada in the vicinity of the base.



ĺ

(



<sup>2</sup> 1

¥

Near-surface deposits near McClellan AFB are unconsolidated Quaternary sediments of the Riverbank, Turlock Lake, and Laguna Formations that extend from the surface to a depth of about 400 feet. These units consist of alluvium deposited by meandering streams, mainly as coarse-grained streambed sands and gravels, and fine-grained overbank silts and clays. As streams meandered across the valley, they alternately deposited, eroded, and redeposited sediment in a complex pattern. Thus, deposits exist as discontinuous interfingered lenses that are difficult to correlate from one location to another (Radian Corporation, 1991). Because of their similarity of origin and deposition, sediments of the Riverbank, Turlock Lake, and Laguna Formations are also diffi-

Underlying these formations in the vicinity of McClellan AFB is the Mehrten Formation, a Pliocene-age unit that lies at depths beneath about 400 feet. Although this formation also consists mainly of unconsolidated alluvium, it is distinguishable by its lithology and color. The Mehrten Formation is derived from volcanic material that was deposited as black to blue sands, silts, gravels, and clays (California DWR, 1978).

Although correlations have been difficult, geologic and geophysical logs collected from monitoring wells constructed between 1980 and 1991 have allowed investigators to distinguish several zones that appear to have roughly similar characteristics and be widely distributed at the base. These zones, designated as Zones A through F, are considered to act as preferential pathways for horizontal groundwater flow. However, evidence suggests that the subsurface system acts as one groundwater flow system, with hydraulic communication among the zones (Radian Corporation, 1991).

### Groundwater

cult to distinguish from each other.

Historically, groundwater in the McClellan AFB area moved from the northeast to the southwest. However, withdrawals from pumping wells in the region have gradually caused gradients to change and water levels to decline. Today, a regional pumping depression approximately centered under the base and south of the base has caused regional groundwater to flow generally to the south (Radian Corporation, 1990).

Monitoring wells installed at McClellan AFB as a part of ongoing environmental investigations have allowed groundwater levels to be monitored and local groundwater flow patterns to be determined. These efforts have revealed local deviations from the regional flow pattern, caused mainly by the operation of extraction wells on base and by on-base and off-base water supply wells (Radian Corporation, 1991). The locations of active and inactive base supply wells is shown in Figure 2.

In the southeast area of the base, groundwater in the upper zones, which roughly correspond to the A, B, and C zones described above, appears to flow mainly toward the west-southwest, probably toward active well BW-18 (Radian Corporation, 1991). Previous investigations had noted a local flow to the northeast toward BW-8 prior to 1985, when the well was taken off-line (McClaren, 1986). Active well BW-10 may still influence flow patterns in this area. Pumping wells southeast of McClellan AFB may also influence local flow patterns (Radian Corporation, 1991).

1

10/93

Groundwater flow in the southwest and central portions of the base appears to be toward the south-southwest. Locally, flow appears to be converging toward active production well BW-18. However, groundwater flow may also be influenced by the pumping of off-base supply wells located south of the base (Radian Corporation, 1991).

In the northwest area of the base, groundwater in the uppermost zones appears to be flowing toward extraction wells on the northwest base boundary. Flow directions in the north and northeast areas of the base are mainly toward the southwest in the uppermost zones. Lack of data prevent an understanding of flow directions in the deeper zones (Radian Corporation, 1991).

Vertical gradients of groundwater flow have been generally downward around McClellan AFB, as groundwater moves to points of discharge in pumping wells. The strongest downward gradients have been observed in the uppermost zones. However, gradients vary seasonally and locally in response to patterns of pumping (Radian Corporation, 1991).

Aquifer tests have been performed in many parts of the base by various contractors as part of ongoing environmental investigations. Results have been varied, both because of the different lengths of the tests and methods used to interpret the data, and because of the natural heterogeneity of the subsurface geology. Values of transmissivity have ranged from about 1,200 to 28,600 gpd/ft, while values of hydraulic conductivity have ranged from about 97 to 500 gpd/ft<sup>2</sup> (Radian Corporation, 1990).

Groundwater levels beneath McClellan AFB have declined more than 60 feet during the 20th century because of withdrawals for agriculture and urban water uses (McLaren, 1986). Today, the water table occurs at a depth of about 95 to 105 feet beneath the surface, with seasonal fluctuations of up to 5 feet. In the deeper zones, groundwater occurs under generally semiconfined conditions (Radian Corporation, 1991).

### Wells to be Decommissioned or Modified

Information on McClellan AFB production wells was obtained by a search of files at the base Civil Engineering Section and the California DWR, and by a review of environmental reports previously issued by the base.

McClellan AFB has established a consecutive numbering sequence for its supply wells. As it has acquired or constructed wells, it has assigned them the next available number in sequence. Today, 29 wells have been assigned numbers (Luhdorff and Scalmanini Consulting Engineers [LSCE], 1984).

This section provides information on the six base supply wells scheduled for decommissioning or modification under the present Phase II task order (BW-7, -8, -13, -17, -20, and -28) and the four wells at Camp Kohler (LW-1 and -2, and the two seismic wells). Available Well Drillers' Reports for base supply wells are presented in Appendix B. The known locations of the wells are shown in Figures 2 and 3.

SAC/T207/029.51

10/93
### **Base Well 7**

### History and Well Data

BW-7 is located in the southeastern part of McClellan AFB in a parking lot about 100 feet east of Building 429 (see Figure 5). All that is visible today is a 12-inch-diameter steel casing extending about 3 feet above the pavement and fitted with a removable steel cap. Previously, there was some confusion about whether this well was BW-7 or BW-16, thought to be located in the vicinity of Building 440 immediately across Dudley Boulevard. However, research has indicated that the well is most likely BW-7.

BW-7 was first located in 1982 by Engineering-Science as part of the Phase II Installation Restoration Program (IRP) at McClellan AFB. Establishing the location of BW-7 was included as an IRP activity because of the potential for cross-contamination of aquifers by contaminants. Interviews with base personnel had led Engineering-Science to believe that the well had been grouted in the late 1960s or early 1970s, but utility records provided only an approximate location for the well and contained no record of previous abandonment. Engineering-Science located the buried well building with a magnetic flux indicator, and the site was excavated. This excavation revealed that the well was sealed with a non-waterproof fabricated cap and confirmed previous records that described a 24-inch conductor casing enclosing the 12-inch casing, with a gravel pack annulus. After sounding the well, it was found that an obstruction was present at a depth of 80 feet. An extension was welded onto the casing to bring it above grade, and the excavation was filled in. Engineering-Science then attempted to drill out the obstruction, presumed to be grout, through "rotary-wash" drilling, but was unsuccessful (Engineering-Science, 1983).

Well construction details for BW-7, obtained from McClellan AFB Civil Engineering records, are summarized in Table 1. It is uncertain when the well was constructed. A well log obtained from DWR (Appendix B) indicates that the well was drilled in 1941 by "Aulman," but the lithology on this log conflicts with base records and casts doubt on its accuracy. According to Luhdorff and Scalmanini (1984), the gravel pack was not destroyed during the previous abandonment of BW-7. A recent sounding of BW-7 conducted for this project confirmed an obstruction at a depth of about 80 feet below grade.



| Table 1<br>Well Data: Base Well 7  |                                             |                            |                       |
|------------------------------------|---------------------------------------------|----------------------------|-----------------------|
| Location:                          |                                             | East of Build<br>Boulevard | ding 429 on Dudley    |
| Status:                            |                                             | Inactive sinc              | e 1955 due to contam- |
| Driller:                           |                                             | Auiman                     |                       |
| Method:                            | Rotary                                      | Date:                      | July 1941             |
| Surface Conductor Casing Diameter: | 24 inches                                   | Depth:                     | 50 feet               |
| Seal:                              | Concrete                                    | Depth:                     | 25 to 50 feet         |
| Blank Casing:                      | 12-inch-diameter #10<br>steel double casing | Depth:                     | 0 to 398 feet         |
| Borehole Diameter:                 | 22 inches                                   | Depth:                     | 50 to 398 feet        |
| Perforations:                      | Type of perforation<br>uncertain            | Depth:                     | 170 to 398 feet       |
| Gravel Pack:                       | Pea gravel                                  | Depth:                     | 0 to 398 feet         |

# Groundwater Quality

According to base records, BW-7 went inactive in 1955 due to the presence of a contaminant variously described as "oil" and "solvent." Engineering-Science referred to the contaminant as cresylic acid (Engineering-Science, 1983), and Luhdorff and Scalmanini referred to it as phenols (Luhdorff and Scalmanini, 1984). Base records indicate that the contaminant was first detected in a water main in November 1954, and discovered in BW-7 in June 1955. The well was placed on inactive status in July 1955 after a long period of pumping failed to eliminate the oily contamination. The pump was pulled in September 1955 and various attempts to rehabilitate the well through pumping out the contaminant were made through 1959. Records indicate that from 1.5 to 8 feet of floating product were measured in the well at various times during that period, with the source of the contamination uncertain. A video survey run in the well in 1959 found the casing to contain "heavy slime and algae," as well as oil.

Samples collected from monitoring wells in the vicinity of BW-7 have contained contaminants. Well 67, located about 1,200 feet northeast of BW-7, contained 1.1 ppb of 1,1,1-trichloroethane (1,1,1-TCA) in 1985, and 4.7 ppb of 1,2-dichloroethane (1,2-DCA) in 1986 (Radian Corporation, 1990). Recent investigations of shallow groundwater contamination found 64 ppb of TCE in the second quarter of 1991 in Well 203, about 250 feet northeast of BW-7, and 2,400 ppb in Well 209, about 750 feet north of BW-7. Each of these wells is potentially upgradient of BW-7. Lower concentrations of TCE were found at deeper zones in monitoring wells near BW-7 (Radian Corporation, 1991).

# Local Geology

A driller's log of subsurface geology encountered during the drilling of BW-7 was located in base records. This log describes varying intervals of clay, hardpan, sand, and gravel along the borehole. Of greatest concern in abandonment are the depths of sand and gravel zones, where formation losses of cement may potentially take place. Because the entire well is cemented during the decommissioning approach taken at McClellan AFB, the location of zones of lower permeability, such as clay and hardpan, are of lesser importance. The driller's log describes the following depths of sand and gravel zones: sand and fine gravel from 115 to 130 feet; sand and gravel from 181 to 192 feet; fine gravel and sand from 196 to 224 feet; fine gravel from 255 to 261 feet; fine sand and gravel from 269 to 277 feet; cobbles and gravel from 281 to 295 feet; and intermingled sand and gravel with hard layers from 325 to 398 feet. The most permeable of the intervals appear to be from 196 to 224 feet, 255 to 261 feet, and 281 to 295 feet. The water table was about 103 feet below the ground surface near BW-7 in the second quarter of 1991 (Radian Corporation, 1991).

### **Base Well 8**

#### History and Well Data

There are conflicting data both on well construction details and subsurface lithology at BW-8. This well is located in Pumphouse Building 91, which is adjacent to and north of Building 338 on Howard Street in the eastern part of McClellan AFB (see Figure 6). A well log for BW-8 obtained from DWR is included in Appendix B. McClellan AFB files and drawings, and a 1980 video survey were also reviewed for BW-8. Well construction details taken from the video survey and the LSCE (1984) report are summarized in Table 2.

| Table 2<br>Well Data: Base Well 8  |                                          |                                                                |
|------------------------------------|------------------------------------------|----------------------------------------------------------------|
| Location:                          |                                          | Inside Building 91 on Howard<br>Street (north of Building 338) |
| Status:                            |                                          | Inactive since 1985 due to high iron and magnesium levels      |
| Driller:                           |                                          | Unknown                                                        |
| Method:                            | Rotary                                   | Date: July 1942                                                |
| Surface Conductor Casing Diameter: | 24 inches                                | Depth: 43 feet                                                 |
| Scal:                              | Concrete                                 | Depth: 18 to 43 feet                                           |
| Blank Casing:                      | 12-inch-diameter 10-gage<br>double steel | Depth: 625 feet                                                |
| Borehole Diameter:                 | 22 inches                                | Depth: 732 feet                                                |
| Perforations:                      | Unknown                                  | Depth: Unknown                                                 |
| Gravel Pack:                       | Unknown                                  | Depth: Unknown                                                 |

SAC/T207/029.51



(

According to the well log obtained from DWR, BW-8 was drilled in July 1942. No other information is available on the age of the well. However, a notation on the log indicates the data were obtained from the Army, and other data on the log conflict with data on file at McClellan AFB. Well construction details are available on Drawing No. U-44 on file at the base, on the well log obtained from DWR, on a handwritten note on file at the base, from correspondence from a pump contractor (Odell, 1980), and from the L&S report (L&S, 1985). The L&S report references Air Force Drawing P.U. 662, not found during this investigation. Information was also obtained from a downhole video survey performed in 1980, and reviewed for this investigation.

All of the data sources agree that BW-8 contains a 43-foot, 24-inch-diameter, 10-gage double steel conductor casing. The outside of this conductor casing is sealed with concrete from 18 to 43 feet. Most of the sources agree that the production casing is 12-inch-diameter, 10-gage double steel. However, the pump contractor's letter states that the casing is 10 inches in diameter. According to the drawings and the handwritten note, the casing was contained within a 22-inch-diameter borehole that extended from the conductor casing to the bottom of the well.

The depth of the casing is uncertain. LSCE (1984) state that the casing extends to approximately 625 feet. This depth was confirmed in the 1980 video survey. However, the drawings show the casing extending to 389 feet, while the well log and handwritten note state that it extends to 398 feet. A note on one of the drawings declares that there is a "large cavity" from 666 feet to the bottom at 785 feet. The pump contractor also states that the depth of the well is 800 feet. The 1980 video survey revealed that an open hole extended beyond the bottom of the casing to a depth of 732 feet. This hole appeared to be larger than the casing.

Similarly, the perforated interval of the casing is uncertain. The drawings show the well as perforated from 170 to 389 feet. The well log and handwritten note state the perforations as extending from 170 to 398 feet. Luhdorff and Scalmanini state that information on the perforated interval was unavailable, while the handwritten note on the drawing states that there are no perforations. Perforations were not visible on the video survey, but this may have been due to the scale present on the casing. However, it is also uncertain whether the well casing is enclosed within a gravel pack.

BW-8 contains a Peerless oil-lubricated turbine pump with a 100-hp electric motor. Records conflict on the depth at which the pump is set, being either 170 feet (LSCE, 1985) or 200 feet (Odell, 1980). During a 1980 pump service, the pump column had to be jacked out of the well, since the pump column and well casing were apparently not in plumb (Odell, 1980). Base records indicate that in a pump test in 1980 the well discharged 1,046 gpm with a drawdown of 21 feet, for a specific capacity of 49.8 gpm/ft. BW-8 is completed below grade in Building 91, a concrete pumphouse. Access is through a 10-foot-square trapdoor in the roof.

During Phase II, the pump will be removed from BW-8 and a downhole video survey performed in the casing. If the casing is obscured by iron bacteria, it will be cleaned and a second video survey will be performed. The video survey will then reveal the

SAC/T207/029.51

10/93

Ì

actual construction details and confirm which data set, if any, actually describes the well construction details of BW-8.

# Groundwater Quality

According to base records, BW-8 was placed on standby status in 1985 due to high iron and magnesium levels. Other contaminants have also been detected in BW-8, the most notable being TCE. The highest level of TCE found in this well was 61 ppb in 1981 (Radian Corporation, 1991). There are few wells located in the immediate vicinity of BW-8. However, Monitoring Well (MW-) 178, located about 700 feet southwest of BW-8, contained 90 ppb of TCE and 16 ppb of carbon tetrachloride in April 1991 (Radian Corporation, 1991). BW-12, located about 700 feet west-southwest of BW-8, contained trace amounts of pesticides and herbicides and levels of TCE ranging up to 54 ppb in 1982 (Engineering Science, 1983). Monitoring Well 210, located about 900 feet north of BW-8, contained 3.7 ppb of TCE and 4.5 ppb of carbon tetrachloride in May 1991. Monitoring Well 212, located about 1,100 feet northeast of BW-8, contained 5.5 ppb of TCE, and trace amounts of 1,1,1-TCA and chloroform in April 1991. Each of the monitoring wells described here is completed in the shallow groundwater zone. Groundwater in this area flows mainly toward the southwest, although production wells located south of the base may influence flow directions in the vicinity of BW-8 (Radian Corporation, 1991).

## Local Geology

As with the well construction details, conflicting data represent the borehole lithology at BW-8. Three versions purport to represent the lithology recorded by the driller. One version is found on the well log obtained from DWR and a handwritten note on file at the base; another version is found on two separate drawings on file at the base; and a third version is found in LSCE (1984) and yet another drawing on file at the base.

Borehole lithology is important at BW-8 because this well is not intended to be decommissioned. Rather, the objective is to seal the uppermost groundwater zone where contaminants are potentially found (within about 200 feet of the ground surface), and then return the well to service on a standby basis for use in fire emergencies.

It would be desirable to seal the well in a unit of low permeability at a depth of between about 160 to 200 feet. Above this depth, it is useful to know the zones that may contain materials of high permeability, where losses of cement to the formation may potentially occur. The depth to groundwater in spring 1991 was about 107 feet (Radian Corporation, 1991).

Following the video survey of BW-8, it may be possible to determine which geologic log accurately depicts the lithology at BW-8. If the survey reveals one data set to accurately describe the well construction details, the associated geologic log will most likely will describe the subsurface lithology.

# Base Well 13

# History and Well Data

BW-13 is located in Building 614, a concrete pumphouse located about 150 feet south of Dudley Boulevard in the southern part of McClellan AFB. Figure 7 shows the location of BW-13 and Table 3 summarizes the available information on this well. Original construction drawings and well logs were not located for BW-13. Data are derived mainly from a photolog taken in 1961 and pump service records on file at Civil Engineering, and LSCE (1984).

| Table 3   Well Data: Base Well 13  |                                                                               |                                                                               |
|------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Location:                          |                                                                               | Inside Building 614 on Dudley<br>Boulevard (south edge of base)               |
| Status:                            |                                                                               | Inactive since 1988 due to TCE<br>and carbon tetrachloride contami-<br>nation |
| Driller:                           |                                                                               | Unknown                                                                       |
| Method:                            | Rotary                                                                        | Date: 1945                                                                    |
| Surface Conductor Casing Diameter: | Unknown                                                                       | Depth: Unknown                                                                |
| Seal:                              | Unknown                                                                       | Depth: Unknown                                                                |
| Blank Casing:                      | 14-inch-diameter steel<br>reducing to 12-inch-di-<br>ameter steel at 147 feet | Depth: 0 to 391 feet                                                          |
| Borehole Diameter:                 | Unknown                                                                       | Depth: 0 to 391 feet                                                          |
| Perforations:                      | Unknown type                                                                  | Depth: 178 feettotal depth                                                    |
| Gravel Pack:                       | Gravel                                                                        | Depth: 0 to 391 feet                                                          |

The 1961 photolog noted the following problems in the casing: possible hole from 120 to 122 feet; vertical seam open from 156 to 166 feet, 170 to 177 feet, and 192 to 196 feet; and light to moderate scale from 274 to 391 feet. During a servicing of the pump in 1982, it was noted that the well was very crooked. The pump is a Peerless turbine pump set at a depth of 160 feet, with an electric motor. A 1988 pump test found that the well discharged 424 gpm, with a specific capacity of 31.4 gpm/ft of draw-down. BW-13 is completed below grade. Access is through a 4-foot by 4-foot trapdoor in the roof of Building 614.



### Groundwater Quality

BW-13 was removed from service in September 1988 after a series of sampling episodes found carbon tetrachloride above the Maximum Contaminant Level (MCL) of 5 ppb. It had previously been taken out of service for a time in 1987 because tetrachloroethylene (PCE) concentrations exceeded the drinking water standard. Weekly samples collected between May and September 1988 found carbon tetrachloride concentrations ranging from 0.6-9.2 ppb. TCE was found at levels ranging from not-detected to 4.3 ppb. Other contaminants detected included chloroform, Freon-113, and toluene.

Few monitoring wells in the vicinity of BW-13 lie either upgradient or downgradient from BW-13. Groundwater in the area flows nearly due west, toward BW-18, which is located about 2,200 feet west of BW-13. MW-175, -176, and -177, located about 500 feet east of BW-13, contained no detectable levels of organic contaminants in April 1991 (Radian Corporation, 1991).

#### Local Geology

No borehole lithologic logs are available for BW-13. However, during the construction of MW-175, -176, and -177, a pilot hole (8-P) was drilled. Both a geologic and geophysical log are available for 8-P. Although alluvial deposits such as those in which BW-8 is constructed tend to be quite variable, the logs of 8-P identify permeable zones that could affect the decommissioning of BW-13. These logs show a very permeable sand unit from a depth of about 92 to 105 feet; a gravelly sand from about 220 to 230 feet; and a sand and gravel unit that extends from about 360 to 390 feet. The latter unit in particular may extend to BW-13. Groundwater was found about 100 feet below the ground surface in January 1991 (Radian Corporation, 1991).

#### Base Well 17

#### History and Well Data

BW-17 is located inside Building 699, a pumphouse on the east side of Kilzer Avenue about 750 feet north of Dudley Boulevard in the southwest part of the base. Information on BW-17 was taken from the well log on file at DWR and from McClellan AFB records. Table 4 summarizes the known data and Figure 8 shows the location of BW-17.



| Table 4<br>Well Data: Base Well 17 |                        |                                                          |
|------------------------------------|------------------------|----------------------------------------------------------|
| Location:                          |                        | Inside Building 699 on Kilzer<br>Avenue                  |
| Status:                            |                        | Inactive since 1985 due to TCE contamination             |
| Driller:                           |                        | Unknown                                                  |
| Method:                            | Cable Tool             | Date: Prior to 1947                                      |
| Surface Conductor Casing Diameter: | Unknown                | Depth: Unknown                                           |
| Scal:                              | Unknown                | Depth: Unknown                                           |
| Blank Casing:                      | 16-inch-diameter steel | Depth: 0 to 344 feet                                     |
| Borehole Diameter:                 | 16 inches              | Depth: 0 to 390 feet                                     |
| Perforations:                      | Unknown                | Depth: 216 to 224 feet; 286 to 294 feet; 302 to 312 feet |
| Gravel Pack:                       | Not applicable         | Depth: Not applicable                                    |

BW-17 was apparently drilled by the cable tool method, in which the casing is driven into the ground. Therefore, there is no gravel pack surrounding the casing. The well was originally drilled to 930 feet in depth. However, files indicate that the well was sealed off below 390 feet because of the high iron content of the water below that depth. This sealing took place in 1947 and consisted of filling the casing with mud from 760 to 930 feet, and sand from 420 to 760 feet. The casing was then ripped from 400 to 420 feet, and a concrete plug was set from 390 feet to 420 feet.

The original construction drawing for BW-17 described the perforations as extending from 216 to 225 feet, 262 to 270 feet, 284 to 290 feet, and 300 to 308 feet in depth. The perforated interval listed in Table 4 was based on a 1971 photographic survey performed in the well. This survey also described the bottom of the well as lying at 344 feet, rather than 390 feet. This discrepancy may be due to sediment filling the lowermost section of the casing.

BW-17 currently has installed a Floway oil-lubricated turbine pump with bowls set at 150 feet. In 1972 it discharged 1,100 gpm with a specific capacity of 61.1 gpm/ft of drawdown. BW-17 is a surface completion in a concrete pumphouse. Access is through a 4-foot by 4-foot trapdoor in the roof.

#### Groundwater Quality

Base records indicate that BW-17 was placed on inactive status in 1985 due to TCE contamination. However, the only sample results that have been located to date show no contamination in this well in 1982 (Engineering Science, 1983). Several monitoring wells are located about 700 feet north of BW-17 and are screened at various depths beneath the ground surface. Contamination appears to be confined mainly to the

SAC/T207/029.51

20

uppermost groundwater zone, and groundwater flows to the south in this part of the base toward BW-18. Monitoring Well 120, screened in this zone, yielded samples with TCE concentrations ranging from 9.3 to 26 ppb, chloroform ranging from 0.35 to 1.9 ppb, and 1,2-DCE ranging from not-detected to 18 ppb between 1986 and 1988. The historical maximum TCE value in this well was 87 ppb (Radian Corporation, 1990).

## Local Geology

The original drillers lithology log for BW-17 was located as part of this investigation. This log shows the following intervals of materials of potentially high permeability that may affect the decommissioning of BW-17: lava sand from 153 to 171 feet; sand and fine rock from 216 to 230 feet; lava sand from 262 to 275 feet; fine gravel from 284 to 290 feet and 300 to 311 feet; and soft lava sand from 376 to 390 feet. Groundwater was found about 100 feet below the ground surface in January 1991 (Radian Corporation, 1991).

#### **Base Well 20**

#### History and Well Data

BW-20 is located in a vault in a parking lot adjacent to Peacekeeper Way and just south of Building 200 in the eastern part of the base. It was drilled in 1953 to replace nearby BW-9, which supposedly collapsed, and has recently served as a standby emergency source for Building 200. Well construction details are taken mainly from construction drawings on file at McClellan AFB and are summarized in Table 5. Figure 9 shows the location of BW-20.

BW-20 is equipped with a Johnson oil-lubricated turbine pump with a 75-hp electric motor. Capacity of the well is uncertain. Access to the well is through a removable concrete lid supported by metal gridwork.



s .......

| Table 5<br>Well Data: Base Well 20 |                                 |                                                                                                     |
|------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Location:                          |                                 | South of Building 200 in parking<br>lot next to Peacekeeper Way                                     |
| Status:                            |                                 | Standby source for Building 200                                                                     |
| Driller:                           |                                 | Western Well Drilling Company                                                                       |
| Method:                            | Rotary                          | Date: October 1953                                                                                  |
| Surface Conductor Casing Diameter: | 32-inch steel                   | Depth: 67 feet                                                                                      |
| Seal:                              | Cement Grout                    | Depth: 0 to 67 feet                                                                                 |
| Blank Casing:                      | 14-inch-diameter steel          | Depth: 0 to 600 feet                                                                                |
| Borehole Diameter:                 | 32 inches                       | Depth: 67 to 600 feet                                                                               |
| Perforations:                      | 1/8-inch x 3-inch slots         | Depth: 178 to 190 feet, 234 to<br>274 feet, 338 to 374 feet,<br>494 to 506 feet, 564 to<br>598 feet |
| Gravel Pack:                       | 3/16- to 3/8-inch pea<br>gravel | Depth: 0 to 600 feet                                                                                |

# Groundwater Quality

No data were located on groundwater quality in BW-20. However, sample data exist for MW-210 and -211, located about 500 feet east of BW-20. Groundwater in this area of the base flows from east to west, so these wells are approximately upgradient from BW-20. MW-210, screened in the uppermost groundwater zone, contained TCE at 4.1 ppb, carbon tetrachloride at 6.1 ppb, and 1,1-DCE at 0.76 ppb in May 1991. MW-211, constructed adjacent to 210 and screened in a deeper zone, contained TCE at 1.0 ppb and benzene at 0.40 ppb in May 1991 (Radian Corporation, 1991).

# Local Geology

The original driller's log is available at McClellan AFB. This log shows units of potentially high permeability that may affect the decommissioning of BW-20 at the following depths: fine sand from 200 to 204 feet; loose fine to medium sand from 354 to 381 feet; fine to medium sand from 491 to 505 feet; and fine to coarse sand and sandy silt from 550 to 600 feet. A pilot hole drilled in conjunction with MW-210 and 211 in May 1990 lies about 500 feet from BW-20. Geologic and geophysical logs indicate that a zone of permeable sands and gravels lies at a depth of 145 to 160 feet.

#### **Base Well 28**

## History and Well Data

BW-28 is located on Patrol Road next to Building 1082 along the northwest boundary of McClellan AFB. According to base personnel this private domestic well was obtained by the Air Force during a land purchase. Construction details are derived from a diagram on file at McClellan AFB and are summarized in Table 6. Figure 10 shows the location of the well. BW-28 is located outdoors and contains a 2-hp Town and Country submersible pump capable of discharging about 30 gpm (LSCE, 1984). Water Department personnel stated that the water table dropped below the pump setting during the summer of 1991.

| Table 6<br>Well Data: Base Well 28 |                       |                                                                             |
|------------------------------------|-----------------------|-----------------------------------------------------------------------------|
| Location:                          |                       | Next to Building 1082 on Patrol<br>Road on the northwest base boun-<br>dary |
| Status:                            |                       | Inactive since about 1990                                                   |
| Driller:                           |                       | Unknown                                                                     |
| Method:                            | Cable Tool            | Date: 1966                                                                  |
| Surface Conductor Casing Diameter: | 14 inches             | Depth: 76 feet                                                              |
| Seal:                              | Cement Grout          | Depth: 0 to 60                                                              |
| Blank Casing:                      | 8-inch-diameter steel | Depth: 0 to 248 feet                                                        |
| Borehole Diameter:                 | Not applicable        | Depth: 76 to 248 feet                                                       |
| Perforations:                      | Milled slots          | Depth: 144 to 147 feet; 205 to<br>212 feet; 233 to 236 feet                 |
| Gravel Pack:                       | Not applicable        | Depth: Not applicable                                                       |

#### Groundwater Quality

Limited data are available for samples collected from BW-28. According to McClellan AFB records, samples collected in 1979 indicated levels of cadmium and chromium above drinking water standards, but these samples were later determined to be in error. Samples collected by Engineering-Science in 1982 found no detectable levels of volatile organics, but did find the herbicides 2,4-D and 2,4,5-T at levels of 0.008 ppb, and 0.002 ppb, respectively (Engineering-Science, 1983).



A double completion monitoring well was constructed in 1982 about 500 feet northeast of BW-28. Groundwater in this area appears to move south to southwesterly (Radian Corporation, 1991). The shallow well, MW-18s, was screened across the water table at a depth of 90 to 100 feet. The deeper well, MW-18d, was screened from 130 to 140 feet below the ground surface. Samples collected from MW-18s in 1982 contained the following concentrations of pesticides and herbicides: aldrin-0.052 ppb; alpha-BHC-0.032 ppb; lindane-0.036 ppb; heptachlor epoxide-0.027 ppb; and 2,4-D-0.138 ppb. A 1982 sample collected from MW-18d had the following concentrations of pesticides and herbicides: aldrin-0.01 ppb; beta-BHC-0.005 ppb; heptachlor epoxide-0.017 ppb; 2,4-D-0.122 ppb; and 2,4,5-T-0.022 ppb (Engineering-Science, 1983). More recent data have not been located for these wells.

# Local Geology

The driller's log showing lithology at BW-28 was not located for this investigation. A geologic log for nearby MW-18 was obtained, however. This log describes silts and clays for nearly the entire interval of the borehole, with only minor zones of sandy materials.

### **Camp Kohler Wells**

#### History and Well Data

Laundry Wells. Camp Kohler is a 35-acre annex of McClellan AFB located about 1 mile east of the main McClellan AFB facility on Roseville Road (see Figure 1). A large military laundry was operated here from about 1942 to 1973. This laundry has since been demolished and the site is currently vacant except for a Federal Aviation Administration radar facility and office building. Four wells are located at Camp Kohler, as shown on Figure 2.

The laundry used two water supply wells, identified as LW-1 and -2. Although the laundry operations discontinued in 1973, a previous investigation determined that the wells were used as a drinking water source until 1981. An attempt was made to sample the wells in 1985, but it was found that the wells were abandoned with their pumps still in place (Radian Corporation, 1985). These wells are not visible today. No records are available at McClellan AFB regarding the fate of these wells, nor do either of the two area water districts, Northridge Water District and Arcade Water District, have any information on the wells.

Investigation of McClellan AFB records uncovered slides taken during a photographic survey of LW-1 and -2 in 1971. In addition, an Eaton Drilling Company well log was located. According to Marshall Eaton, the log most likely refers to LW-2 (Eaton, 1991, pers. comm.). Other Camp Kohler well records were located at McClellan AFB and DWR, but appear to refer to one or more wells in other parts of Camp Kohler beyond the present boundaries. Formerly, Camp Kohler occupied a much larger tract of land than at present.

According to this research, LW-1 was about 420 feet deep. Although iron bacteria obscured much of the casing, perforations were visible at depths of 138 feet, 356 to 358 feet, 396 to 400 feet, and 404 to 420 feet. LW-2 was constructed in 1955 to a depth of 514 feet. This well contained a 50-foot, 24-inch-diameter conductor casing, and 496 feet of 14-inch-diameter, 3/16-inch steel production casing. Perforations consisted of 3/16-inch by 2-inch vertical slots at depths of 190 to 202 feet, 238 to 248 feet, 264 to 284 feet, 320 to 330 feet, 347 to 355 feet, 380 to 411 feet, 437 to 440 feet, 463 to 468 feet, and 476 to 496 feet. The casing was contained within a filter pack consisting of 3/8- to 3/4-inch pea gravel.

As a part of the present investigation, the locations of the former wells were tentatively identified by a team of surveyors using old maps of the laundry complex. These locations were then excavated with a backhoe. LW-1 was successfully located by this method. The excavation found that LW-1 was abandoned with concrete about 3 feet below the ground surface. No evidence of the pump was visible. However, LW-2 was not located, even though several pits were excavated. Based on the 1985 Radian report and the verification that LW-1 was abandoned, it is probably safe to conclude that LW-2 has also been abandoned.

Seismic Wells. The other two wells at Camp Kohler were constructed as part of a seismic survey. These wells, known as the Seismic Well and the Triax Hole, are still present. According to construction diagrams on file at McClellan AFB, the wells were constructed in 1969. It is uncertain why the survey was performed or who constructed the wells. The Seismic Well is 500 feet deep and contains 7-inch-diameter 17.0# API Grade steel casing that extends about 1.5 feet above grade. The borehole diameter is unknown. The Triax Hole is 200 feet deep and contains 11 3/4-inch-diameter 42# API Grade steel casing that extends about 2 feet above grade. The borehole diameter in this well is 13<sup>3</sup>/4 inches. Both wells are sealed along their entire length with cement and are not open to groundwater at any point. Both contain 10-foot cement plugs at their base.

Cement bond surveys were conducted in the seismic wells in December 1991 to evaluate the integrity of the cement seals in which they are encased. As a preparation for these surveys, the caps on the wells were removed and the wells filled with water. The quality of a cement bond survey is greatly enhanced if the sonic transmitter is immersed in water at a minimum pressure of about 200 pound per square inch (psi). Had the wells not been watertight, it would have been necessary to pump water into the wells during the survey. However, the wells held the water with no apparent leakage. The survey found that the seal on both wells was adequately bonded to the casing and the borehole wall to prevent groundwater from migrating among subsurface zones. In both wells, minor disruptions in the seals were noted at or above the water table. Copies of the cement bond logs are provided in Appendix C.

SAC/T207/029.51

R

()

# Groundwater Quality

Camp Kohler was investigated in 1984 as part of the overall IRP investigation taking place at McClellan AFB. The Camp Kohler investigation was prompted by concern about deteriorating water quality in Arcade Water District Well No. 31, located about 2,000 feet west of Camp Kohler. From about 1960 until the well was taken out of service in 1979, samples from the well indicated a gradual increase in levels of hardness, chlorides and total dissolved solids (TDS). Hardness (CaCO<sub>3</sub>) increased from about 150 to 600 mg/l during this time, while chlorides increased from about 75 to 450 mg/l and TDS increased from about 250 to about 850 mg/l (CH2M HILL, 1981). The old laundry at Camp Kohler had contained a concrete-lined wastewater holding basin that stored wastewater for pumping to a wastewater treatment plant. The concern was whether water may have leaked from the basin, infiltrated to the groundwater, and migrated to Arcade Well No. 31.

Soil and water samples were collected from the basin in March 1984. Results found levels of cadmium, chromium, copper, lead, nickel, and lead high enough to cause the sediments within the basin to be classified as hazardous (Radian Corporation, 1985). This finding initiated additional sampling, including 16 soil samples to a depth of 30 feet in 5 borings around the outside of the basin; seven exploratory borings drilled to an average depth of 310 feet, with collection of soil samples and groundwater samples at various depths; and additional sediment sampling within the basin.

Results of groundwater samples found chloride and TDS levels in excess of drinking water standards in deep samples from one boring located southwest of the basin, and the deepest sample from one other boring. Iron and manganese exceeded drinking water standards in all groundwater samples. Constituents in soil samples were generally at background levels, except for samples taken from within the former wastewater holding basin. These samples again exceeded hazardous levels (Radian Corporation, 1985).

The investigators concluded that the basin was not the source of the degraded water in Arcade Well No. 31, for the following reasons: the basin was lined with concrete; the groundwater samples containing high levels of chlorides and TDS were collected from deep zones, and were not found in the uppermost groundwater samples; and a 1979 sample from LW-1, taken when the well was being used as a drinking water source, had shown background levels of these constituents. The investigators speculated that contaminants may have originated at a wastewater treatment plant located east of Camp Kohler (Radian Corporation, 1985).

### Local Geology

A drillers' log was located for LW-2 as part of this investigation. This log showed an alternating sequence of gravel, sand, and clay. Subsurface permeable zones consisted of gravel units at 163 to 170 feet, 191 to 197 feet, 240 to 246 feet, 270 to 281 feet, 320 to 327 feet, 381 to 406 feet, and 435 to 439 feet; and a sand unit from 480 to 497 feet. Geologic logs were kept for the seven deep exploration borings completed during the 1984 IRP investigation at Camp Kohler.

SAC/T207/029.51

Geologic cross sections were prepared from these logs that reveal a heterogeneity typical of alluvial sediments in the McClellan AFB area. However, zones of sands and gravels were correlated at various depths among the boreholes. Major zones of materials of relatively high permeability were found at depths of about 140 to 160 feet; 230 to 260 feet; and 270 to 310 feet. Groundwater was found at a depth below 115 feet. Although the groundwater gradient was not well-defined in the area, it was believed to flowing toward the southwest (Radian Corporation, 1985).

#### Status of Water Supply Wells at McClellan AFB

A total of 35 wells have been identified during data collection activities associated with the well decommissioning program at McClellan AFB. These include 29 water supply wells designated in McClellan AFB files as BW-1 through BW-29. Over McClellan AFB's years of operation, McClellan AFB has constructed these wells or acquired land with existing wells. Two additional wells have been located at McClellan AFB as part of this investigation. Four wells are located at Camp Kohler—two former laundry wells, and two wells constructed as part of a seismic survey, as described earlier in this report. The locations of the McClellan AFB wells are shown in Figure 2 and the locations of the Camp Kohler wells are shown in Figure 3. Table 7 summarizes the status of production wells at McClellan AFB.

Four McClellan AFB wells and one City of Sacramento well were decommissioned during the first phase of well abandonment at the base. These include BW-1, BW-2, BW-12, BW-27, and City Well 150. Five wells at McClellan AFB, BW-7, BW-13, BW-17, BW-20, and BW-28, are scheduled for decommissioning during Phase II. BW-8 is scheduled for modification during Phase II. The four wells at Camp Kohler, LW-1, LW-2, the Seismic Well and the Triax Hole, are also scheduled for decommissioning during Phase II. Known data on these wells has been summarized in previous sections of this report. Three production wells—BW-10, BW-18, and BW-29—are currently actively pumping at McClellan AFB. This section will summarize the currently known information on the remaining McClellan AFB water supply wells.

#### Base Wells 3, 6, 16, and 19

BW-3, BW-6, BW-16, and BW-19 were originally scheduled for decommissioning during the first phase, but could not be located in 1990. BW-3, BW-16, and BW-19 have now been tentatively located. BW-3 and BW-19 are thought to be in the southwest part of the base near Buildings 662 and 667 at the intersection of Bell Avenue and Kilzer Avenue. A recent field inspection discovered what appears to be two former wells in a field about 200 yards west of the Bell/Kilzer intersection. The location of these wells is shown on Figure 11. One of the wells, presumed to be BW-3, has a 6-inch-diameter casing. BW-3 is thought to be an old agricultural well, acquired during an earlier expansion of the base. It was reportedly abandoned by McClellan AFB Water Department personnel (LSCE, 1984). The other well, presumed to be BW-19, contains a 14-inch-diameter casing. This well was reportedly constructed in 1952 to a depth of 360 feet, at about the same time that nearby wells BW-17 and BW-18 were constructed.

SAC/T207/029.51

( )

|          | Table 7       Status of Existing McClellan AFB Production Wells |                                                                                               |  |
|----------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
|          |                                                                 | Page 1 of 2                                                                                   |  |
| Well No. | Location                                                        | Comments                                                                                      |  |
| 1        | Building 231                                                    | Decommissioned in 1991.                                                                       |  |
| 2        | Building 232                                                    | Decommissioned in 1991.                                                                       |  |
| 3        | Southwest in field near Bell Avenue<br>and Kilzer Avenue        | Tentatively located with BW-19. Casing filled with concrete.                                  |  |
| 4        | Near Watt Avenue and Roseville<br>Road, off the base            | Inactive. Not visible. Located on old maps.                                                   |  |
| 5        | Off the base on Old Garden Highway                              | Known as "Old River Dock Well."<br>Constructed in 1941.                                       |  |
| 6        | Near Patrol Road and Buildings 714 and 715                      | Inactive. Has not been located. Thought to be old agricultural well.                          |  |
| 7        | Near Building 429                                               | Will be decommissioned during Phase II.                                                       |  |
| 8        | Building 91                                                     | Uppermost portion to be sealed during<br>Phase II, then returned to standby status.           |  |
| 9        | Near Building 200                                               | Reported to have collapsed. Not visible.<br>Located on old maps in parking lot near<br>BW-20. |  |
| 10       | East near Building 93 on O'Malley<br>Avenue                     | Active well.                                                                                  |  |
| 11       | Southeast of the Base, near Watt<br>Avenue and Winona Street    | Inactive. Not visible. Located on old maps.                                                   |  |
| 12       | Building 395                                                    | Decommissioned in 1991.                                                                       |  |
| 13       | Building 614                                                    | Will be decommissioned during Phase II.                                                       |  |
| 14       | Unknown                                                         | Uncertain status. No known location.<br>May be located at Whitney and Eastern<br>Avenue.      |  |
| 15       | North of Building 440 on Dudley<br>Boulevard                    | Inactive, status uncertain.                                                                   |  |
| 16       | Site 22 on Patrol Road                                          | Inactive. Not visible. Located on old maps.                                                   |  |
| 17       | Building 699                                                    | Will be decommissioned during Phase II.                                                       |  |
| 18       | Southwest near Building 664 on Winters Street                   | Active well.                                                                                  |  |
| 19       | Southwest in field near Bell Avenue<br>and Kilzer Avenue        | Tentatively located with BW-3. Casing filled with concrete. Reported to have collapsed.       |  |

-

and the second second second second second second second second second second second second second second second

| Table 7       Status of Existing McClellan AFB Production Wells |                                                     |                                                                                                                          |
|-----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                 |                                                     | Page 2 of 2                                                                                                              |
| Well No.                                                        | Location                                            | Comments                                                                                                                 |
| 20                                                              | In parking lot south of Building 200                | Will be decommissioned during Phase II.                                                                                  |
| 21                                                              | Near Building 689                                   | Status uncertain. Has not been located.<br>Thought to be an old agricultural well.<br>May have served the old Aero Club. |
| 22                                                              | Near Building 1445                                  | Status uncertain. Has not been located.<br>Thought to lie near northeast corner of<br>building.                          |
| 23                                                              | Near Building 1455                                  | May have been found during parking lot<br>construction. Thought to be an old<br>agricultural well.                       |
| 24                                                              | Near Building 1455                                  | May have been found during parking lot<br>construction. Thought to be an old<br>agricultural well.                       |
| 25                                                              | Off the base at the Lincoln<br>Communication site   | Active well.                                                                                                             |
| 26                                                              | Off the base at the Davis<br>Communication site     | Active well. Water may be contaminated.                                                                                  |
| 27                                                              | Near Building 1099                                  | Decommissioned in 1991.                                                                                                  |
| 28                                                              | Near Building 1082                                  | Will be decommissioned during Phase II.                                                                                  |
| 29                                                              | North area, in Building 1455 on<br>Perrin Avenue    | Active well.                                                                                                             |
| Old 29                                                          | About 25 feet northeast of BW-29                    | Was abandoned in 1984 due to sand; new BW-29 drilled just south of former site.                                          |
| Boy Scout Well                                                  | About 75 feet south of BW-29, near<br>Building 1457 | Casing is visible, but well status is uncertain.                                                                         |
| LW-1                                                            | Camp Kohler                                         | Uncovered by backhoe. Has been filled with concrete.                                                                     |
| LW-2                                                            | Camp Kohler                                         | Located on old maps, but not uncovered.<br>Thought to be abandoned.                                                      |
| Seismic Well                                                    | Camp Kohler                                         | Casing exterior sealed with cement. Not a water well.                                                                    |
| Triax Hole                                                      | Camp Kohler                                         | Casing exterior sealed with cement. Not a water well.                                                                    |

ŧ

۰.

í

1

- - -



These three wells served a nearby water treatment facility. Perforations in BW-19 extended from 174 to 193 feet, 214 to 239 feet, and 305 to 360 feet. BW-19 is said to have collapsed (LSCE, 1984). The casing in both BW-3 and BW-19 extends a few inches above the ground surface and is filled with concrete with gravel aggregate.

BW-16 was thought to be located in the southeast area of the base, based on the recollections of Water Department personnel and a previous investigation (LSCE, 1984). However, during this investigation an old map was located in McClellan AFB files that depicts the location of BW-16 in the western part of the base near Patrol Road. The location of the former well is shown in Figure 12. Although the exact location of the well is shown on the old map, it is not visible today and its status is unknown.

BW-6 is also thought to be located in the western part of the base, in the vicinity of the present industrial wastewater treatment plant (see Figure 2). According to LSCE (1984), this well is probably another former agricultural well acquired during an early expansion of the base. No records have been obtained for the well, nor has any visible structure been observed in the field.

#### Base Well 9

1

BW-9 is located in a parking lot south of Building 200 on Peacekeeper Way in the eastern portion of McClellan AFB. Previously the precise location of this well was unknown. However, during this investigation an old map was found that shows the location of this well relative to known features, including BW-20 and an existing water line. This location is shown on Figure 13, which indicates that BW-9 lies about 200 feet west of BW-20. There is currently no visible evidence of BW-9 at the site.

Very little is known about BW-9. Information presented in a previous investigation (LSCE, 1984) has been found to have been mistaken. According to Water Department personnel, BW-20 was constructed in 1953 to replace BW-9, which apparently had collapsed. Drawings indicate that BW-9 was located in subsurface vault, typical of wells constructed during WWII. Based on the well number, BW-9 was probably constructed after 1942, when BW-8 was constructed. No information has been found regarding BW-9 well construction details.

### **Base Well 15**

BW-15 was previously thought to be located several miles away from McClellan AFB, on the corner of Whitney and Eastern Avenues (LSCE, 1985). As part of this investigation, however, old maps dating from 1945 and 1955 were found that located BW-15 immediately north of Building 440, on Dudley Boulevard across the street from BW-7 in the southeast portion of the base. The location of well BW-15 is shown in Figure 14.

BW-16 had previously been thought to be located in this area (LSCE, 1985) but, as described above, was found to be located in the western part of the base. Robert Zenda of the Water Department recalled that a below-grade well was constructed on the corner of Whitney and Eastern Avenues at a site presently occupied by a church (conservation with Robert Zenda, December 18, 1991). However, field inspection failed to find any sign of a well.

SAC/T207/029.51







والمعولة المنافر والما

A well log was found at DWR that identified a well located at the Rubber Conservation Building at McClellan Field (see Appendix B). Old maps identify Building 440 as the Rubber Conservation Building, and the building to the west as the Dry Cleaning Facility (presently Building 443). Therefore, the log probably refers to BW-15. According to the log, BW-15 was constructed in 1943 to a total depth of 305 feet. The casing was 12 inches in diameter, and perforated from a depth of 245 to 270 feet. All that is visible today is a concrete pad with a circular hole covered with asphalt. Concrete footings that were probably used to support a pump motor are also visible, as is a drain leading away from the former well location.

### Wells in the Vicinity of Base Well 29

1

Four wells are known to be present in the immediate vicinity of BW-29, an active production well located on Perrin Avenue in the northeastern part of the base. These wells are thought to be BW-23, BW-24, "old" BW-29, and the "Boy Scout Well." The locations of the wells is shown in Figure 15. Another well, BW-22, is located at Building 1440 about 1,300 feet northeast of BW-29. The location of this well is shown in Figure 2.

According to a previous investigation, interviews with base personnel had indicated that BW-22, BW-23, and BW-24 were old agricultural wells acquired during early expansion of McClellan AFB. BW-23 and BW-24 were thought to be located in general vicinity of the present location of BW-29 (CSCE, 1984). Recent parking lot construction at BW-27 uncovered two old wells that may be BW-23 and BW-24. The well north of BW-29, assumed here to be BW-23, had a 6-inch-diameter casing. Workers determined that this well had not been abandoned, and welded a plate on the casing (conversation with Robert Zenda, December 18, 1991). The present investigation located a 1984 map that identified an "old agricultural well" at that location. Both BW-23 and BW-24 will be protected by the paving contractors for potential future access to the wells.

Mr. Zenda of the Water Department also described a well in this area called the "Boy Scout Well." Field inspection located a well with 6-inch-diameter casing sticking up out of the ground in front of Building 1457 on Perrin Avenue. Building 1457 has historically been used for Boy Scout activities at McClellan AFB. A cap has been welded onto the casing, so that field personnel were unable to determine whether the well has been grouted.

BW-29 has been constructed twice at this location. The original well was built in 1981 by Water Development Corporation. Drawings found during this investigation located the well at the position shown in Figure 15. Old BW-29 was drilled to a total depth of 604 feet, and then cemented to a depth of 400 feet. It contained 16-inch-diameter casing in a 26-inch-diameter borehole, with 50 feet of conductor casing. No information is available on the screened interval. Unfortunately, the gravel feed tube was inadvertently covered by the cement sanitary seal, so that gravel could not be added to the well. As a result, the well began pumping sand. Eventually, so much sand was pumped that a depression was visible at the ground surface. According to base Civil Engineering personnel, the casing was cut below grade and a metal plate was welded over it.



-----

This plate was then buried. The present BW-29 was constructed in 1984 by the Maggiora Brothers. BW-29 is 580 feet deep and contains 190 feet of screen, according to McClellan AFB files.

BW-22 was located near one of the corners of Building 1440, which houses recreational equipment checkout for base personnel. This well is thought to have been an agricultural well originally, and later served Building 1440. Eventually Building 1440 was placed on the McClellan AFB water supply system. The fate of the well is uncertain (Robert Zenda, 1992, pers. comm.). A field inspection revealed no sign of the well. However, a circuit box labeled "Well Pump" was found on the northeast corner of the building.

#### Wells Located Outside McClellan AFB Boundaries

Five wells are located outside the present boundaries of McClellan AFB: BW-4, BW-5, BW-11, BW-25, and BW-26. Two of these wells, BW-4 and BW-11, are presently inactive and no longer visible. The other wells are currently operating and serving off-base facilities. A sixth well is thought to have been located near the present corner of Whitney and Eastern Avenues, but the status and number of this well is uncertain as described previously.

Well BW-4 is located south of Roseville Road about 400 feet west of the intersection with Watt Avenue (see Figure 16). This area was formerly the Winstead Athletic Field, located in a region of McClellan AFB known informally as "Splinter City." BW-4 was located directly beneath the bleachers next to a baseball diamond, and served as an irrigation well for the field. As part of this investigation, maps were located that show the location of the former well. Field inspection revealed no sign of the well, but piles of concrete rubble are visible that are likely the remains of the old bleachers. BW-4 was a rotary well drilled in July 1941 to a depth of 382 feet. It contained 12-inch-diameter casing that was perforated from 169 to 382 feet, and a 24-inch-diameter conductor casing that extended to a depth of 81 feet. BW-4 is known to be gravel-packed, but the details of the pack and the borehole diameter are unknown (LSCE, 1984). It is uncertain when the well was taken out of service, but Winstead Athletic Field is thought to have been present until the mid 1980s.

Well BW-5 is known as the "Old River Dock well." This well is located on Old Garden Highway, several miles southwest of McClellan AFB. Constructed in 1941 to a depth of 368 feet, BW-5 is still in service. Construction drawings and geologic information on the well are on file at the base.

Well BW-11 is located about 75 feet north of the current intersection of Winona Street and Watt Avenue about one-half mile south of McClellan AFB, in the area formerly known as "Splinter City" (see Figure 17). It is not presently visible at the surface, but maps were located during this investigation that show the former location of the well. BW-11 was constructed in 1945 in a subsurface vault, as was typical of McClellan AFB wells from that time. The well was 378 feet deep, according to a photolog on file at the Base. Casing was 14-inch-diameter steel, reducing to 12 inches in diameter at a depth of 140 feet. Perforations extend from 154 feet to the total depth of the well.

SAC/T207/029.51

(





٠.

The well is thought to have been gravel packed. However, details of the borehole diameter and surface seal are unknown. It is also uncertain when or how the well was taken out of service. However, BW-11 was still online in 1984 (LSCE, 1984). At some point in the past, BW-11 was reported to have been contaminated with gasoline (conversation with Robert Zenda, January 3, 1992).

Well BW-25 is located at the Lincoln Communication site. It is reported to be an active well, drilled to a total depth of 408 feet. Other data has not been obtained for this well.

Well BW-26 is located at the Davis Communication site. This well is also an active well, being usec for fire protection, irrigation, and cooling tower water. Construction data on file at the base reveal that the well was constructed in 1951 to a depth of 358 feet, with 10-inch-diameter casing installed to a depth of 320 feet. However, the casing apparently collapsed at a depth of about 225 feet. Subsequently in 1986 8%-inch-diameter casing was inserted into the well. This casing is screened from depths of 102 to 122 feet, and 140 to 201 feet. A cement plug was placed in the casing below 201 feet. BW-26 has experienced contamination by TCE, PCE, and 1,1-DCE, according to records on file at the Water Department. Data from 1988 indicate that TCE concentrations ranged from trace amounts to 6.0 ppb between 1986 and 1988, while PCE concentrations ranged from trace amounts to 3.2 ppb, and 1,1-DCE ranged from trace amounts to 3.0 ppb. However, Mr. Zenda stated that TCE levels had ranged as high as 3,000 ppb in previous years (Robert Zenda, 1992, pers. comm.). Records indicate that underground storage tanks were removed from the site. Current remedial efforts include the implementation of a Remedial Investigation for groundwater contamination.

### **Other Wells**

Two wells have not been located at McClellan AFB. These include BW-14 and BW-21. No information has been found regarding the location or disposition of BW-14. It is possible that this well was located on the corner of Whitney and Eastern Avenues, several miles southeast of McClellan AFB. BW-21 is reported to be an old agricultural well. Apparently, this well served as the "Aero Club Well." At some point in the past the club was lodged in an original old farmhouse, that lay in the vicinity of the present Building 696 (Conversation with Robert Zenda, January 3, 1992). The general location of this well is in the south-central portion of the base (see Figure 2). Further search of old base maps may precisely locate this well.

#### **Decommissioning Base Wells**

Two subcontractors will be employed in the abandonment of base wells: a drilling subcontractor who will provide a drill rig or crane with a mast to hang equipment over the hole and other specialized equipment such as perforating equipment, and who can perform downhole television surveys; and a subcontractor who specializes in the mixing and pumping of grouts under pressure for well abandonments. All cementing operations will be performed under the supervision of a California Registered Geologist or Professional Engineer from CH2M HILL who will maintain a chronological record of field activities.

Field work will be arranged so that only personnel from the drilling crew will be allowed to work over the open well and handle oil or water removed from it. These personnel will be trained in safety aspects of work involving potential contact with hazardous materials and participate in an ongoing medical evaluation program, as required by the Occupational Safety and Health Administration. CH2M HILL will provide screening of ambient air with a photo-ionization instrument. It is not anticipated that base wells will pose a safety risk from hazardous materials if proper safety procedures are followed. Safety requirements are detailed in Appendix A in the Site Safety Plan.

During Phase I it was found that state or county permits were not necessary for well decommissioning at McClellan AFB, because the work is governed by the terms of the InterAgency Agreement, which provides for supervision by representatives of the various agencies of the county and state. The Well Closure Methods and Procedures Report prepared for Phase I (CH2M HILL, 1991) contains a complete description of ordinary permit requirements and well abandonment regulations.

All equipment used in well abandonment that may come into contact with groundwater will be decontaminated prior to arrival at each well. This decontamination will consist of steam-cleaning. Equipment will be steam-cleaned at the contractor's yard prior to arrival at the first well. Equipment that is used in wells and contacts groundwater will be steam-cleaned when it is pulled from the well. Steam-cleaning water will be allowed to run back down the well to avoid disposal problems. Disposal of wastewater, if necessary, is discussed at the end of this document.

#### **Preliminary Activities**

As preparation for abandonment or modification of base wells, a pump contractor will be supervised in the removal of existing turbine pumps from five inactive wells (BW-8, BW-13, BW-17, BW-20, and BW-28). Wells BW-8, BW-13, and BW-17 are each located inside buildings (BW-8 and BW-13 are contained in vaults) and will need to be removed through trapdoors in the roof. BW-20 is located in a vault in a parking lot. Concrete pads will have to be removed to gain access to this well. The contractor will mobilize a pump rig to each well head, dismantle the pump, and pull it from the well. All pump equipment-wellhead motors, pump column piping, pump shafts and bowls, strainers, etc., will be transported to the Defense Reutilization and Marketing Office (DRMO) at Building 700. Pump equipment will be steam-cleaned as it is pulled from the well, and prior to delivery to DRMO.

Plumbing at BW-8 will be temporarily capped pending reinstallation of the pump. At BW-13, the water line from the pump will be disconnected from the main line near the power pole and a blind flange installed on the "T." At BW-17, the 12-inch valve on the

supply line from the well located about 85 feet south of Building 663 will be removed, and blind flanges installed on both ends of the pipe. At BW-20, the 2-way valve in the vault will be removed and replaced with pipe spool.

A field log will be maintained during this and all other field activities. This log will provide a chronological record of all field activities. Field notes will be organized so that each page is numbered and dated. The well number or location will be written on each page. A fresh page will be used at each new well. The field notes will also include a daily sketch, if applicable, that depicts the well with grout intervals, perforated intervals, or other pertinent information. In addition, pictures will be taken to record the highlights of field work, and provide a basis for agency presentations. A record of pictures taken will be recorded in the notes.

Following removal of the pumps, a contractor specializing in downhole television surveys will lower a television camera down each well to be abandoned or modified. This survey will provide information on the condition of the casing, such as the presence of encrustations or obstructions in the casing or fill material in the bottom of the well, and the ability of the casing to withstand cementing pressures, as indicated by the presence of cracks and holes, and corrosion along the perforations. The television survey will also indicate whether pump lubricating oil is floating on the top of the water in the well, and provide a preliminary indication of well construction details (casing diameter, intervals of perforations, depth of the casing, etc.).

Any pump lubricating oil found in the wells will then be bailed from the wells and stored in 55-gallon drums. Arrangements will be made for the oil to be disposed to a petroleum recycler. Air Force personnel will sign any manifests or forms required by the petroleum recycler.

After the pump lubricating oil has been removed, it will be necessary to perform some rehabilitation on the wells. Based on experience gained during the first phase of well abandonment at McClellan AFB, it is expected that all wells except the seismic wells and redrilled wells will be contaminated with iron bacteria. However, wells revealed during the initial television survey to be free of obstructions that block a view of the casing will not require rehabilitation. Wells that are considered to require some rehabilitation will be cleaned with a steel brush fabricated for each well diameter to remove gelatinous masses of iron bacteria and encrustations of iron oxide. The purpose of the cleaning will be to allow improved evaluation of the condition of the well casing. For this reason, it is assumed that only the upper portion of BW-8. which will be sealed off, will require cleaning with a steel brush.

Following the cleaning of the casing, excessive debris lying in the bottom of the wells will be bailed out and stored in 55-gallon drums at the wellhead. Ten feet or less of soft sediment should not affect the cementing operations. If greater than 10 feet of sediment is found, then it will be necessary to remove it. It is assumed that no more than 25 55-gallon drums will be required for all the wells. Any salvageable materials found in the wells, such as piping, will be transported to DRMO.
Cores will then be drilled into the concrete pads at the wellhead of each well that will be abandoned or modified, with the exception of the seismic wells. The coring will be accomplished with a small hand-held drill, and cores will be extended to the top of the gravel pack annulus in each well, a distance of only about 1 to 2 feet. The purpose of the coring is to determine the composition of the gravel pack and the diameter of the annular space. This information will reduce uncertainty during cement volume calculations when the wells are being sealed.

A second television survey will be performed in each well that has been cleaned by brushing. As before, this survey will provide information on the condition of the casing, such as the presence of encrustations or obstructions in the casing and the ability of the casing to withstand cementing pressures, as indicated by the presence of cracks and holes, and corrosion along the perforations. The television survey will also provide an indication of well construction details.

When video tapes of the television survey of wells on base are received, a technical memorandum will be prepared for submission to the Air Force Project Officer. This memorandum will summarize field activities to that point and discuss the findings of the television survey and coring into the wellhead pads. If any additional work is found to be necessary prior to abandonment based on the results of the survey, that work will be described and recommendations made in the technical memorandum. Similarly, the technical memorandum will propose any modifications to the "Well Closure Methods and Procedures" report that appear to be necessary based on the results of the survey and coring. Agency approval will be obtained before performing any of the modifications recommended in the technical memorandum.

#### **Grout Materials**

Cement grout mixtures used to seal the annular space around a well casing must display certain properties. Grout should be of low permeability to resist the flow of fluids through them, be capable of bonding to both the well casing and borehole wall to provide a tight seal, develop sufficient strength within a short period to permit completion of the abandonment without excessive delay, be chemically inert or nonreactive with formation materials or groundwater, be easily mixed, be of a consistency that will allow the grout to remain in a pumpable state for an adequate period of time, have minimal penetration into permeable zones, and be safe to handle (Gaber and Fisher, 1988).

Various types of cement mixtures are available that display these properties and accommodate varying geological and chemical conditions found in the subsurface. Experience in the oil industry led the American Petroleum Industry (API) to establish specifications for classes of cement. API Class G and H cements, which are specially formulated to be used with additives and suitable under a wide range of pressure and temperature conditions, will be used in the decommissioning of base wells.

Common Portland cement is made from limestone (or other materials high in calcium carbonate), clay, or shale, with some iron and aluminum oxides added if they are not

present in sufficient quantity in the clay or shale. The principal compounds formed during the burning process that produces cement are tricalcium aluminate, tetracalcium aluminoferrite, tri-calcium silicate, and dicalcium silicate. API Class G or H cement is chemically similar to common Portland cement but is manufactured to more rigorous chemical and physical specifications which result in a more uniform, fine-grained product (Halliburton Services, 1981). The typical hydraulic conductivity of a neat cement, composed of Portland cement and water (6 gallons per 94-pound sack), is about  $10^{-7}$  centimeters per second (Gaber and Fisher, 1988).

Class H cement is commonly mixed by Halliburton Services in a 50/50 ratio with pozzolans, siliceous materials that develop cementing properties by reacting chemically in the presence of lime and water. When mixed with cement in dry bulk form, pozzolans decrease the weight of the slurry, provide low permeability and low water/solids ratio, and make pumping easier. The 50/50 mixture, marketed by Halliburton as Pozmix, has a hydraulic conductivity of less than  $10^{-10}$  cm/sec after curing (Halliburton Services, 1981). Pozmix will be the basic cement used in decommissioning wells at McClellan AFB.

A special cement known as standard fine cement will also be used during cementing operations. Marketed by Halliburton Services as Micro Matrix Cement, this cement will be used in wells with fragile casings or where long intervals of existing perforations are found in wells. Micro Matrix Cement is chemically similar to Portland cement. However, Matrix Cement particle sizes are approximately 10 times smaller than standard cement particles. This property reduces the viscosity of the cement and enables it to penetrate openings as fine as 0.05 mm (Halliburton Services, 1991).

The amount of water mixed with the cement has an important effect on the properties of the cement. Tests have indicated that 5.2 gallons of water are required to hydrolyze one 94-pound sack of Portland cement, producing a slurry weight of 15.6 lb/gal (Driscoll, 1986). Less water than this will not hydrate the cement and will cause a highviscosity product that is difficult to pump. Too much water causes shrinkage, as water is squeezed out of the mixture into permeable formations, or as cement settles to the bottom of the mixture. The proper mixture produces effective bridging of cement particles in the pores of permeable formations, which prevents penetration of the grout into these formations (Driscoll, 1986). DWR regulations specify that 4.5 to 6.5 gallons of water per sack of cement be used, depending on the cement type and additives used (DWR, 1981). The appropriate water-to-cement ratio will be continually monitored during the decommissioning of base wells through use of density measurements with an electronic cement balance.

Various additives may be added to the cement to improve the characteristics of the grout material. During the decommissioning of base wells, these may include bentonite powder, CFR-3, calcium chloride, Flocele, and quick-setting gypsum cement. Bentonite is a colloidal clay (chiefly montmorillonite). Addition of bentonite increases the slurry and set volume and reduces shrinkage because of the water adsorption properties of colloidal clay. Bentonite also reduces the weight of the cement column, which is beneficial where permeable formations will not sustain a high hydrostatic pressure. Finally,

addition of bentonite improves the fluidity of the mixture by increasing the suspension qualities, thus reducing the settling out or separation of cement particles from the slurry (Halliburton Services, 1985). If the percentage of bentonite exceeds about 6 percent, excessive shrinkage of the cement will occur (Driscoll, 1986). During the decommissioning of base wells, about 2 percent bentonite powder will be mixed with water prior to the addition of the cement.

CFR-3 is a dispersant, or friction reducer, that is composed of sulfonic acid salt. CFR-3 improves the mixing of other components of the grout by increasing the turbulent flow of the slurry. This is a property that aids when using small-diameter tremmie pipes and attempting to infiltrate gravel packs and formation walls. It also densifies the cement, aids in fluid-loss control, and increases salt tolerance of the grout if calcium chloride is added (Halliburton Services, 1985).

Calcium chloride is added to the mix in quantities of about 2 percent to accelerate the early strength of the cement, thus reducing the time required for the mix to set up. Available in either powdered or flake form, it can be added either to the dry mix or to the mixing water. For example, Class H cement with 2 percent calcium chloride achieves a compressive strength of 1,100 psi after 6 hours at 95°F (Halliburton Services, 1981).

Two other additives may be used to reduce losses to permeable formations. Flocele consists of cellulose film flakes, about 3/8-inch in diameter, that are chemically intert and do not affect the compressive strength of the cement (Halliburton Services, 1985). Flocele will be added to the mixing water at a ratio of about 0.75 percent by weight. Cal-Seal, or gypsum (calcium sulfate), sets up in 20 minutes when blended with Portland cement. In addition, it expands 0.3 percent in setting, forming a tight seal. These properties make Cal-Seal a good choice to seal lost circulation zones (Halliburton Services, 1985). Cal-Seal will be mixed with Class G cement at a ratio of about 8 percent to help seal off permeable zones.

Grout will be mixed in the field with a recirculating mixer. The mixer and a diesel-powered positive-displacement pump will be delivered to the site on a truck and trailer.

### **Grout Placement**

1

Several methods are commonly employed to decommission water wells. The most common technique involves first perforating the well casing adjacent to units of low permeability, such as clay or silt, and adjacent to aquifers containing deleterious water. A tremmie pipe is then suspended in the casing and grout pumped next to these zones, while sand is placed next to aquifers containing good quality water. A variation involves perforating and cementing the entire length of the casing in one lift. In all cases, the tremmie pipe is suspended near the bottom of the zone to be sealed, and grout is pumped from the bottom to the top of the zone. In addition, the uppermost 20 feet is always sealed.

SAC/T207/029.51

Improved grout control and gravel pack penetration is achieved by maintaining a desired level of pressure on the grout in excess of hydrostatic pressure as it sets up in the hole. The amount of pressure applied depends on the characteristics of the cement slurry, size of the perforations, characteristics of the gravel pack and formation, temperature, and depth of the interval being sealed. A maximum pressure, or fracture pressure, represents an upper limit that should not be exceeded in grout placement. Above this level, grout penetration of the gravel pack and formation may not be uniform, due to the development of fractures, or routes of less resistance, through which the grout would preferentially flow.

A step-rate injectivity test is commonly used in oil well abandonment to estimate the fracture pressure of a formation. However, an accepted practice in water-well abandonment is to limit pressures to less than 1 psi per foot of depth below the surface. In this way, each lift in the hole is grouted until the volume of grout is sufficient to fill the voids in a hypothetical cylinder of casing and surrounding soil, or until resistance builds up to the pressure limit (Albritton, 1982). In the bottom of a 400-foot-deep well, for example, pressures should not exceed 400 psi.

Pressure at the surface (downstream from the pump) will be monitored with a gauge. During Phase I, this pressure never exceeded about 50 psi. Since this pressure is propagated evenly throughout the fluid, the pressure downhole should be equal to the pressure at the pump plus the pressure exerted by the column of fluid (0.458 psi/ft for water above the water table). The water table at McClellan AFB lies about 100 feet below the ground surface. Therefore, the pressure in the well should not rise much above 100 psi.

Grout placement by applying external pressure in excess of hydrostatic pressure is known as squeeze grouting. Pressure is maintained by sealing off the casing while pumping fluid into the casing with a positive displacement pump and monitoring pressures at the surface with a gauge. When the seal is placed at the surface, the technique is referred to as a Bradenhead squeeze. This technique would be less effective in base wells because of pressure losses through perforations above the interval being sealed. Pressures may also be maintained downhole through the use of drillable grout plugs, or retrievable balloon packers, retrievable tension-set packers (set by applying a tension, or pull, on the packer with the pipe attached to the packer), or retrievable cup-packers (set by the fluid pressure below the packer, which creates a seal by forcing the cup against the well casing). Grout is squeezed through the perforations and into the gravel pack by the high forces developed through the hydraulic effect of transmitting pressure through a small-diameter pipe and into a large-diameter pipe (the casing).

Two main approaches were most successful in properly abandoning wells at McClellan AFB during the first phase of well decommissioning. One approach, application of a downhole squeeze utilizing a cup packer, is a low-cost method applicable for wells screened intermittently along the length of the casing with casing that is capable of withstanding the hydraulic pressures generated by the packer. The other approach, special low-viscosity cements and application of a head of water, is a more expensive method that is applicable for wells screened continuously along the length of the casing

SAC/T207/029.51

or those that contain weak or damaged casing. Both approaches call for the well to be cemented in stages, with external pressure applied to the cement to force it into the gravel pack. These approaches will be followed during Phase II. In either case, wells that are believed to pose fewer technical challenges will be decommissioned before more difficult wells.

#### Abandonment With a Packer

Wells that are perforated at intervals along the casing and judged to be capable of withstanding high pressures, based on television survey evaluation, are suitable for cementing using a cup packer. Grout may consist of Portland cement with additives to improve performance. At McClellan AFB, the grout mix that worked well in the first phase consisted of API Class H cement, pozzolans, 2 percent bentonite gel, and 3 percent calcium chloride. This grout should be pre-mixed dry at the plant, and mixed with water at the job site. The steps in abandoning with a packer are as follows:

- Perforate the casing immediately prior to cementing if necessary.
- Set the cup packer in a blank section of casing above the interval to be cemented. Chain the tremmie pipe down evenly at the wellhead.
- Calculate a volume of cement necessary to fill the casing and 40 percent of the gravel pack to a point about 2 feet above the perforated interval.
- Calculate a volume of water necessary to fill the casing above the cement and below the cup packer, plus the entire tremmie pipe, and all surface piping downstream from the volume gauge.
- Pump a sufficient amount of water into the well to establish circulation and estimate the permeability of the formation.
- Mix the required volume of grout with a recirculating mixer to the desired density. Collect a sample and set it aside in the shade.
- Pump the required volume of grout with a positive displacement pump. Monitor the injection rate (less than 20 gpm) and the pressure (less than 100 psi).
- Pump the required volume of water slowly (less than 20 gpm) and monitor the pressure (less than 100 psi). Watch the tremmie pipe and chains for possible buckling. This is especially important in wells with largediameter casing.
- Withdraw the cup packer from the well immediately to prevent it from being cemented in place.

SAC/T207/029.51

- Inject cement wash water into the well.
- Tag the cement in the well with a weighted line after the cement sample sets up (minimum of 3 hours).
- Perforate the next interval, if necessary.
- Cement the well in a series of lifts. The length of the lift is determined by the length of existing perforations, the expected lithology, and the outcome of the previous lift.

On the next-to-last lift, the casing should be perforated about 15 feet above the water table.

The cement volume should then be calculated to bring the top of the cement to about 1 or 2 feet above the water table. As the cement sets up, water should drain out of the casing into the formation above the water table. This avoids the need to dispose of potentially contaminated water. On the final lift, cement should be brought to within 5 to 10 feet of the ground surface. It will be necessary to pump cement wash water into a tank trunk for disposal on the final lift. The earth will be excavated and the casing cut about 3 feet below grade. Finally, the cement should be topped off to the ground surface on outdoor wells. Wells located within buildings will be cemented so that the top of the cement is flush with the floor surface. All equipment should be steamcleaned before use at the next well.

Perforation of the casing will take place immediately prior to cementing. The length of casing to be perforated will not exceed the length of the interval to be cemented on the next lift. Typically, perforation will be accomplished with a mills knife perforator, in which hydraulics cause the blade to cut into the casing. Four perforations will be cut per row, with one row per foot. Each perforation will be about one-third inch in thickness, and about 3 inches in length. Based on the conclusions drawn during the Preliminary Work, it may be necessary to employ an alternative method of perforation in certain wells. This method may be explosive shot perforation, hydro-jetting, or some other method, and will be described in the Technical Memorandum.

The length of the interval to be cemented will depend on the length of existing perforations and the experience of previous lifts in that well. Expected lithology may also affect the length. For example, shorter lengths may be necessary in zones of high permeability because of the need to employ special techniques (see the discussion below). In general, decommissioning at a given well will begin with a short lift of about 15 feet, and increase with experience to a maximum of no more than about 50 feet.

### Abandonment with a Low-Viscosity Cement

A different approach is necessary in wells that are perforated continuously for great lengths or that contain casing that is judged too weak to sustain the pressure generated by use of the cup packer. Setting a cup packer within a perforated zone is pointless

SAC/T207/029.51

because the closed piston necessary to generate hydraulic pressure may not be obtained. Setting a cup packer within a zone of weak casing risks casing collapse or may cause holes to open, thereby allowing sediment to flow into the well.

Studies performed by Halliburton have shown that neat cement, cement containing pozzolans, and cement containing CFR-3 will be forced through well perforations and into a surrounding gravelpack mixed with formation material under a driving pressure of less than 30 psi. The hydrostatic pressure of a column of water is about 0.433 psi per foot. Thus, a driving pressure of 30 psi is obtained by a column of water about 70 feet high. A feasible abandonment technique below a depth of 70 feet would therefore involve pumping grout into the interval to be sealed, raising the tremmie pipe above the grout, and then adding water sufficient to maintain a column of water at least 70 feet high above the grout. In other words, the hydrostatic pressure of a column of water greater than 70 feet should provide sufficient pressure to force the grout mixture into the gravel pack.

In wells with weak casing or that are perforated continuously for long lengths, the approach will be to cement the well in a series of lifts using a low-viscosity cement. At McClellan AFB standard fine cement with the addition of CFR-3 was found to work well during the first phase. The tremmie pipe should be set about 10 feet off the bottom, and water circulated down the hole prior to cementing. After the cement is pumped, an attempt should be made to apply a head of water to the well. At McClellan AFB, the static water level is about 90 to 110 feet below the ground surface. A head of water provides about 45 to 55 psi of pressure, which is transmitted directly to the top of the cement. It may not be possible to maintain a full head during the early stages of abandonment because the water will be lost to the formation. As the well is observed by comparing the calculated top of cement for the volume pumped with the actual top as measured by the tag.

#### Zones of High Permeability

Potential problems may result when grouting next to very permeable formations. Inability to maintain pressure at the wellhead may be countered by any or a combination of several techniques (Halliburton Services, 1985):

- Blocking circulation loss channels with flaky, fibrous, granular, or gelling additives. These may include walnut shells, bentonite, quick-setting gyp-sum cement, or Portland cement with an accelerator.
- Plugging with quick-setting cements which set up while flowing into channels.
- Lightening the column of slurry and/or decreasing the pressure.
- Using the hesitation method-placing cement in alternate pumping/waiting periods, encouraging the controlled deposition of cement solids against the formation.

1

### Modification of Base Well 7

Available records indicate that BW-7 is probably grouted from a depth of about 80 feet to a total depth of about 398 feet. In order to ensure that the gravel park is properly sealed, it will be necessary to drill the well out and perforate the entire length of casing. However, a potential problem may result from the fact that previous efforts to drill out the inside of the casing were unsuccessful. For example, the former pump or pump column may be in the casing. The television survey may provide insight that will assist in developing an appropriate approach. Alternative methods of abandonment may involve rotary overwash of the casing, or drilling out the gravel pack with a small diameter drill bit, followed by cementing the annulus with a tremmie pipe. Any abandonment approach that differs from the approach described in previous sections of this report will be approved by the regulatory agencies in advance. If this approach can be developed based on the results of the television survey, it will be outlined in the technical memorandum prepared after preliminary work on the McClellan AFB wells is complete.

### Modification of Base Well 8

Based on additional information collected during Phase II in 1992, BW-8 was found to have two well casings; a 12-inch well casing (assumed to be the original well which extended down to 389 feet) and a solid 10-inch casing or liner that extended to 662 feet. The total depth of the well was 779 feet. Three voids were noted during a 1992 television survey between 662 and 779 feet.

The lower portion of BW-8 extending from approximately 779 feet to 662 feet will be filled with a sand slurry cement to seal the three large voids. The 10-inch inner casing will then be perforated from 662 feet to 410 feet and sealed with another lift of sand slurry cement. From 380 to 410 feet the inner casing will be perforated to induce sand which might be in the annular space between the 10 and 12-inch casing to flow into the well.

The inner casing will then be cut at the bottom of the original well (around 389 feet) with a Mills knife. An attempt will be made to pull the 10 inch casing from the well. If the 10-inch casing is successfully removed, then the well will be bailed out and another downhole television survey will be performed. Depending on the conditions of the 12-inch casing, it may be necessary to clean the casing and perform a second television survey. The well would then be pressure grouted from 170 to 389 feet and then perforated and pressure grouted from 170 to 85 feet.

If the attempt to pull the liner is unsuccessful, it may be possible to cut shorter lengths of the casing and to pull these segments out using borehole "fishing" tools. If this method is unsuccessful, it may be necessary to shot-perforate through the liner and casing. BW-8 will then be decommissioned by pressure-grouting according to the procedures described in this report.

### Base Wells 17 and 28

BW-17 and BW-28 were both drilled by the cable tool method. The main difference between a well drilled by the cable tool method and one drilled by the rotary method from a well abandonment perspective is that there is no gravel pack associated with a cable tool well. Since there is no gravel pack, the calculations for cement volumes must be adjusted. Cement volumes will therefore be calculated based on the inside volume of the casing, plus an additional 10 percent to fill the micro-annulus outside the casing. This additional 10 percent is felt to be conservative since subsurface clays may be expected to have swelled up tightly against the well casing. Otherwise the decommissioning approach will be the same as other wells, with grout applied under pressure in a series of lifts.

### Camp Kohler Wells

LW-1 and LW-2 have been found to be abandoned at Camp Kohler, although it is uncertain whether the pumps were cemented in the casing. An initial step for these wells may be to drill a core into the concrete to determine whether the pump is present, and whether a gravel pack is present between the production casing and conductor casing. If no pump column is found, then the core will be extended into  $t^{\prime}$  a concrete for a few feet.

Afterward, the concrete may be drilled out using mud rotary techniques and a tricone drill bit. The casing would then be perforated and cemented as at other wells. The actual approach followed to decommission LW-1 and LW-2 will depend on field conditions. If an alternative approach to decommissioning the wells is developed, it will be submitted to the regulatory agencies for approval prior to beginning the work. It is expected that LW-1 and LW-2 will be decommissioned before BW-7, which is located in an area of potential contamination at McClellan AFB. Experience gained at LW-1 and LW-2 should be helpful at BW-7.

The Seismic Well and the Triax Hole were given a cement bond survey to evaluate the integrity of the cement seal that completely contains the casing throughout the length of the well. Copies of the cement survey logs are included in Appendix C. The surveys indicated that the seal appeared to be in relatively good condition in the Seismic Well, which is 500 feet deep. The cement seal in this well probably provides adequate isolation of aquifer zones.

The log for the Triax Hole appeared to be ambiguous, with conflicting signals of the quality of the cement seal. According to base records, the Triax Hole is 200 feet deep with a surface elevation of 110 feet. The water table elevation in the vicinity of Camp Kohler in 1989 was about -35 feet Mean Sea Level with long-term trends indicating gradual decline (Radian Corporation, 1991). Therefore, the depth to water at present is approximately 135-140 feet below the ground surface. The Seismic Well will be cemented in one continuous operation by pumping a sand cement mix through a tremmie pipe that has been lowered to within a few feet of the bottom of the wells.

The Triax Hole will be decommissioned by pressure-grouting. A detailed approach will be provided in the Technical Memorandum that will follow a television survey performed during the Preliminary Work.

#### **Disposal of Waste Materials**

Two main categories of waste may be generated during the decommissioning of base wells: pump lubricating oil removed from the casing prior to cementing; and water generated during the decontamination of equipment between wells. Pump lubricating oil will be stored in 55-gallon drums at the well site. Although the California Health and Safety Code requires that used oil be managed as a hazardous waste, provisions allow for the oil to be recycled. By recycling the used oil, the RCRA Land Ban is bypassed (California Department of Toxic Substances Control, 1990, pers. comm.).

Manifesting requirements for used oil are thus greatly simplified. The recycler must fill out a uniform hazardous waste manifest for each vehicle operated during a particular day, completing both the generator and hauler sections using the hauler's name. The hauler will attach receipts for each quantity of used oil received from a generator and give copies of receipts to each generator of used oil, identifying the generator and the hauler, the amount and the date, and stating the manifest number. The generator must keep receipts for at least 3 years.

Two tests must be performed on the oil by the recycler: a chloro-detect test and a flash point test. These tests may be performed in the field prior to hauling the oil. The chloro-detect test will detect chlorides and halides, including contaminants potentially present in water, at a level of 1,000 ppm. The flash point test will determine whether the oil has a flash point less than 140°F. If contaminants are present above 1,000 ppm, or if the flash point of the oil is less than 140°F, the oil can still be recycled, but the Air Force will be immediately notified. However, it is not expected that these levels will be exceeded.

CH2M HILL will make arrangements for shipping, handling, and disposal of the drummed oil as approved by the Air Force. However, the Air Force will sign any manifests as generator. The Air Force will be given 48-hour notice before collection of the oil by the recycler.

The decommissioning process has been designed so that no wastewater will be generated and will therefore require no disposal. If it should become necessary to generate wastewater for disposal from decontamination or some unanticipated event during the field work, this water will be pumped into a portable Baker tank and transported to the groundwater treatment plant on base for treatment and disposal. If the water is unacceptable for treatment at the groundwater treatment plant, such as because of high turbidity, it will be delivered to the industrial wastewater treatment plant. The Air Force will be given 48-hour notice before delivery of the well water to either treatment plant.

#### Conclusion

After base wells have been decommissioned or modified, CH2M HILL will prepare an Informational Field Report, summarizing all field activities associated with the field work, as recorded in the field log. This report will be prepared and signed by a licensed professional, and will include any conclusions and recommendations that may be necessary. All field notes will be included as appendixes.

#### References

Albritton, John A. 1982. Cement Grouting Practices U.S. Army Corps of Engineers. Grouting in Geotechnical Engineering. New York.

California Department of Water Resources. 1978. Evaluation of Groundwater Resources of Sacramento Valley. Bulletin 118-6.

. 1981. Water Well Standards: State of California. Bulletin 74-81.

Driscoll, Fletcher G. 1986. Groundwater and Wells. Johnson Division, St. Paul, Minnesota.

CH2M HILL, 1991. Well Closure Methods and Procedures. Prepared for McClellan AFB (Phase I Report).

CH2M HILL, 1991. Informational Field Report. Prepared for M<sup>2</sup> Ciellan AFB (Phase I Report).

Engineering Science. 1983. Draft Final Report, Installation Restoration Program. Phase II - Confirmation. McClellan AFB, Volume 1.

Gaber, Michael S., and Brant O. Fisher. 1988. Michigan Water Well Grouting Manual. Michigan Department of Public Health.

Halliburton Services. 1981. Halliburton Cementing Tables. Little's. Duncan, Oklahoma.

\_\_\_\_\_. 1985. Sales and Service Catalog.

Luhdorff and Scalmanini Consulting Engineers. 1984. Sealing of Base Wells. McClellan Air Force Base, California.

McLaren Environmental Engineering. April 1986. Area A Site Characterization Groundwater Report.

SAC/T207/029.51

)

1

McLaren Environmental Engineering. July 1986. Basewide Report on Contamination, McClellan Air Force Base, Sacramento, California.

Radian Corporation. September 1989. Area B Groundwater Operable Unit Remedial Investigation: Technical Report. Volume 1: Text and Plates; Volume 2: Appendixes.

\_\_\_\_\_. February 1990. Preliminary Groundwater Operable Unit Remedial Investigation (Hydrogeologic Assessment) Sampling and Analysis Plan.

. 1991. Preliminary Groundwater Operable Unit Remedial Investigation Report.

### **Personal Communications and Correspondence**

Pexton, Rob. Conversation with Robert Zenda, McClellan AFB Water Department, January 3, 1992.

\_\_\_\_\_. Conversation with Robert Zenda, McClellan AFB Water Department, December 18, 1991.

. Conversation with Leif Peterson, California Department of Health Services, October 22, 1990.

ber 9, 1991. Conversation with Marshall Eaton, Eaton Drilling Company, Decem-

Correspondence from George Odell to McClellan Air Force Contracting Officer, July 30, 1980.54

.

۱

Appendix A Site Safety Plan

a and a constraint of the second

SAC/T207/030.51-6

,

(

**(** 

· ,

-

## MASTER SITE SAFETY PLAN

# McCLELLAN AIR FORCE BASE Sacramento County, California

**Prepared** for

McCLELLAN AIR FORCE BASE Sacramento County, California

Prepared by

# CHEMHILL

3840 Rosin Court, Suite 110 Sacramento, California 95834

October 1991

SAC/T192/043.51

. ...

This document is the CH2M HILL Site Safety Plan (SSP) covering potential activities that may be required under CH2M HILL's master contract with McClellan AFB. Therefore, activities described in the SSP and Attachments A and B may not specifically apply to Well Abandonment work. The Addendum contains information specific to Well Abandonment activities.

# CH2M HILL SITE SAFETY PLAN

#### I. GENERAL INFORMATION

| CLIENT: McClellan Air Force Base                   | JOB NO: SAC28722                       |
|----------------------------------------------------|----------------------------------------|
| PROJECT MANAGER: Starr Dehn                        | ······································ |
| SITE NAME: McClellan Air Force Base (MA            | AFB)                                   |
| SITE LOCATION: McClellan Air Force Base            | , California                           |
| PURPOSE OF FIELD VISIT(S): Source testir           | ng, site survey, waste                 |
| minimization and treatability studies, site inspec | tions (see Attachment A).              |
| DATE OF VISIT(S): April 30, 1990 through 1         | 1992                                   |
| BACKGROUND INFORMATION: Complete                   | Preliminary X                          |
| INFORMATION AVAILABLE FROM: SAC                    | C (office)                             |
| OVERALL HAZARD SUMMARY: Seriou                     | s Moderate                             |
| Low                                                | Unknown X                              |

### II. SITE CHARACTERISTICS

- A. Site Description and Overview of Planned Activities (attach site map):
  - McClellan Air Force Base is located north of Sacramento, California. According to Dave Faulkner (Navy), the base is approximately 3 miles north-south and approximately 2 miles east-west in length
  - The description of planned activities are listed in Attachment A
  - The base is on the Central California Valley with excellent city street and interstate highway access. Access by air is excellent
  - Toxic or hazardous substances known or expected onsite, discussion of physical and chemical properties, and probable pathways of migration or dispersion will be addressed on a task-specific basis in the CH2M HILL Site Safety Plan Addendum (see attached addendum form)
  - Emergency response support is available from MAFB. First response is obtained from the fire department and calls can be made to the department directly or through the duty officer (see telephone numbers Section VI, J). The base has a Disaster Response Force, as second response, which consists of military personnel, the bioenvironmental group, and the on-base clinic.

1

B. Status (active, inactive, unknown; and nature of any site activity):

Active Air Force base

C. <u>History (worker or nonworker injury; complaints from public; previous</u> investigations or remedial action):

The MAFB is a RCRA facility and a CERCLA site. The site is on the National Priority List.

D. Principal Materials Handling Activities (type, amount, and location of wastes or hazardous materials disposed of, stored, treated, or handled at the site):

Not applicable.

E. <u>Features and Unusual Features (water supply, telephone, radio, power</u> lines, gas lines, watermains, suspect terrain, etc.):

Utility lines, both above ground and below ground, may pose a safety hazard for team members during excavation or boring. If a driller is used, the driller must maintain a safe clearance (at least 20 feet) between overhead utility lines and the drill-rig mast at all times during site operations. The location of utility lines must be determined prior to startup and the utility must be contacted 48 hours prior to excavation or drilling by contacting Underground Services Alert at 800/422-4133 and Tom Egan, MAFB Engineering at 916/643-4875.

### III. WASTE CHARACTERISTICS

### A. <u>Waste Type(s)</u>:

Liquid X Solid X Sludge X Gas X

### B. Characteristic(s):

Corrosive X Ignitable X Radioactive Mixed Waste

Volatile X Toxic X Reactive Unknown Other (name)

### **IV. HAZARD EVALUATION**

#### A. Overall Hazard Level:

The hazard level of each activity will be assessed and reported on the addendum form.

### B. Chemical Hazards:

The major types of processes in operation on the base are paint removal, painting, plating, and foundry. Each process has overall types of chemicals that are associated with the process. For example, in the removal of paint, paint removers containing compounds such as methylene chloride, are used. In the painting operations, toluene- and xylenebased paints are applied to parts. Plating processes contain several types of chemicals including degreasers, acids, rust removers, and cyanide. Finally, foundries may contain metallic fumes. The above processes are not inclusive of all the base operations as are the examples of the process associated chemicals. Therefore, for each task and/or site visit, a SSP addendum will be attached to the overall SSP which addresses each site's hazard. The addendum will contain more detailed information on chemical hazards and will address task and/or site-specific chemical hazards.

#### C. Physical Hazards:

The major potential physical hazards possible at the site are: flammability of vapors, explosive conditions; utilities; moving and mobile equipment; trips, slips, and falls; and heat stress. These physical hazards may not represent every site at MAFB, therefore, for each task and/or site, a SSP addendum will contain more detailed information on physical hazards and will address task and/or site-specific physical hazards.

Explosions of vapor in confined spaces can be fatal, and workers must be attentive to this danger and guard against carelessness at all times. The lower explosive limit (LEL) is compound specific. When the vapors are heavier than air, their explosivity and flammability hazard are increased. Vapors will tend to concentrate near the ground and in low lying areas, and will not be readily mixed or diluted with ambient air. When monitoring LEL, it is important to take measurements at ground level. In order to prevent explosivity and flammability hazards, each team member must make sure that no spark sources, such as lighters, matches, unapproved flashlights, etc., are brought into the exclusion zone. The Site Safety Coordinator (SSC) must inspect the exclusion zone for spark sources including wiring, motors, etc., and enforce the requirements for

1

ļ

fire prevention, including intrinsically safe electrical equipment, sparbarrestors on vehicles, and exclusion of unauthorized personnel.

### D. Hazards Posed by Site Activities:

Hazards may exist from moving process equipment (such as pumps and conveyors and mobile equipment (such as forklifts). Personnel must be alert for these hazards, and protect clothing and hair from entrapment in equipment, and use common sense in these situation. To protect from slips, trips, and falls, proper precautions and good judgement must be exercised. Personnel should be especially alert when working near pits and excavations. Exercising caution, using safe ladder practices, and using the buddy system around stacks is important.

### E. Heat and Cold Stress Hazards:

Heat stress is a hazard of concern during summer months. Heat stress at hazardous waste sites usually occurs because impermeable protective clothing decreases natural body ventilation. Attachment B addresses heat stress hazards specifically.

F. Biological Hazards:

### G. Unusual Hazards:

(Note: List unique hazards of site, if any.) (Insects, snakes, microbes, etc.)

H. Hazards Posed by Chemical Substances Provided by CH2M HILL:

In accordance with 20 CFR 1910.1200, Hazard Communication, Material Safety Data Sheets are provided for the following chemicals: (list) (Examples, sample preservatives, calibration gases, etc.)

### V. **PROCEDURES**

#### A. SITE ORGANIZATION:

Map/Sketch Attached Yes Site Secured Yes

Perimeter Identified Yes

Zone(s) of Contamination Identified No

#### B. SITE PERSONNEL:

Team Organization

Team Member/Office Responsibility

Starr Dehn/SAC Project Administrator/Observer John Castleberry/SAC Project Scientist/Level C Project Scientist/Level C Susanne Davis/SAC Bill Morgan/MGM Project Scientist/Level C Project Scientist/Observer John Spitsley/RDD<sup>a</sup> Allison Gammel/SFO<sup>a</sup> Project Scientist/Observer Project Scientist/Observer Pamela Beekley/SAC<sup>a</sup> Project Scientist/Level C SSC Sue Keydel/SFO Project Scientist/Level C Robert Koster/SAC Project Scientist/Level C SSC Karla Ebert/SAC Chuck Ouellette/SAC Project Scientist/Level C

<sup>a</sup>Observers must remain in clean areas and upwind of the exclusion zone. Observers will not conduct sampling activities.

Each of the team members named above has been certified as fit for the anticipated work by the CH2M HILL medical surveillance program, and has completed the training requirements of 29 CFR 1910.120. In addition, each is currently certified by the American Red Cross, or equivalent, in both first aid and CPR.

### C. ONSITE ENGINEERING CONTROLS:

Onsite engineering controls include covers for waste piles and cuttings and barricades to keep unauthorized people from entering contaminated areas.

### D. WORK PRACTICES:

Site personnel will avoid any visibly contaminated areas onsite. In general, work practices shall be designed to decrease time of exposure, increase distance to the source, or shield the exposed individual.

### E. PERSONAL PROTECTIVE EQUIPMENT:

**Basic Site Level of Protection:** 

A \_\_\_\_ B \_\_\_ C <u>X</u> D <u>X</u>

Polycoated Tyvek coveralls with nitrile outer gloves and latex inner gloves will be worn when splash protection is needed. Nitrile outer gloves and latex inner gloves will be worn during sampling and when handling samples. Safety glasses, hard hat, and neoprene steel toe/shank boots will be worn while onsite. A TLD or equivalent badge must be worn by all team members.

Level C will include the equipment listed above plus a full-face air purifying respirator (APR) with organic vapor cartridges (GMC-H).

| Task                            | Initial Level of Protection                                                                 |
|---------------------------------|---------------------------------------------------------------------------------------------|
| Site inspection and walkthrough | Level D                                                                                     |
| Source testing                  | Level C (may be downgraded to<br>Level D by SSC if HNu readings<br>are less than 1 ppm.)    |
| Treatability studies            | Must prepare an amendment<br>with further descriptions of each<br>activity to be conducted. |
| Other tasks                     | Must prepare an amendment with further descriptions of task                                 |

SAC/T192/044.51

### F. <u>GENERAL HAZARDOUS WASTE SITE MONITORING EQUIP-</u> MENT AND PROCEDURES:

Periodic monitoring of the site is required to determine the effectiveness of engineering controls, to re-evaluate levels of protection, and determine if site conditions have changed. At a minimum, monitor at the beginning of each shift, periodically (e.g., every 15 minutes) throughout the work, whenever work begins at a new area onsite or when different contaminants are encountered or a different work activity begins. Specific monitoring locations and frequencies are given below.

Carefully inspect each piece of monitoring equipment prior to work startup. Failure of any of the equipment listed below to work properly must be reported to the Project Manager immediately.

 Explosimeter/0<sub>2</sub> meter: Calibrate prior to each day's activities according to manufacturer's instructions. Recharge at the end of each day. Monitor (Note to Preparer: Specify frequency, location) and record measured levels in the log book (Note to Preparer: Specify frequency). Action levels:

Explosive Atmosphere (measured at source, i.e., borehole, test pit, etc.)

Action Levels (measured at the borehole):

- Less than 5 percent LEL--Continue drilling.
- Greater than 5 to 20 percent LEL--Continue drilling with caution.
- Greater than 20 percent LEL-Shutdown drilling operations and allow area to ventilate until LEL falls below 10 percent before resuming work. Mechanical ventilation (i.e., blower) may be required to reduce flammable vapors to below 20 percent. Do not place blower in atmospheres greater than 20 percent of the LEL.

Oxygen (measured in breathing zone)

≤19.5% Shut down drilling operations and ventilate until O<sub>2</sub> increases to above 19.5%
 19.5% to 25% Monitor
 ≥25% Evacuate

2. Rad-mini (used at sites where exposure to ionizing radiation is not expected): Check background and check response using a Coleman lantern mantle. Monitor continuously and record location and time of alerts in the log book.

Action levels: The Rad-Mini is used on initial entry to sites or where exposure to radiation is <u>not</u> expected but may occur (trenching operations, opening containers, etc.). The Rad-mini sounds an alarm at 10 mRem/hr. Site personnel will mark the spot where the alarm occurred, leave the site following as nearly as possible the path taken into the site, and call the Project Manager to arrange for health physics support. The following action levels apply during routine use of radiation survey meters at sites where exposure to radiation is <u>not</u> expected but may be possible.

- Background to 1 mR/hr above background--continue operations; identify zone of radiation contamination and minimize work time in this area.
- 1 mR/hr to 2 mR/hr above background--notify SSP approver of measurements and any unusual conditions or specific control measures.
- Greater than 2 mR/hr above background--stop operations; evacuate work area; and notify SSP approver. Field work will require health physics evaluation and protection measures to be implemented before proceeding with field activities.
- 3. HNU (with 10.2 eV Lamp): Calibrate prior to each day's activities, according to manufacturer's instructions. Record calibration in the SSC log book. Recalibrate after cleaning the lamp or when background levels drift. This instrument is sensitive to humidity and may require periodic lamp cleaning if it is humid. Monitor for background concentrations (specify frequency, location) and then upon initial entry record measured levels in the log books (specify frequency). Monitor continuously while drilling or performing intrusive activities. Readings should be recorded every 1/2 hours.

Action levels: Note to preparer: Action levels for the 10.2 eV HNU are specified based on knowledge of the contaminants present, the response of the instrument to those contaminants or mixtures of contaminants, weather conditions, engineering controls. and level of personal protection being worn. In situations wher information does not exist for a more informed decision, monitor continuously, record readings at a minimum of 15-minute intervals and use the following action levels:

| Reading                                    | Action/PPE<br>Level D; continue monitoring                                     |  |
|--------------------------------------------|--------------------------------------------------------------------------------|--|
| 0-1 ppm above<br>background <sup>a,b</sup> |                                                                                |  |
| >1-5 ppm above<br>background <sup>b</sup>  | Level C; full facepiece respirator with GMC-H cartridges. Continue monitoring. |  |
| >5 ppm                                     | Call safety plan approver                                                      |  |

<sup>a</sup>Background is established offsite and upwind before the start of daily activities.

<sup>b</sup>Readings are taken in the breathing zone over a 5-minute period.

### G. SITE ENTRY PROCEDURES:

- Conduct Site Safety briefing before starting field activities
- Determine wind direction, install wind flags, and establish work zones onsite (e.g., exclusion zone; contamination reduction zone; and support zone)
- Set up decontamination facilities.
- If toilet facilities are not located within a 3-minute walk from the decontamination facilities, either provide a chemical toilet and hand washing facilities or have a vehicle available (not the emergency vehicle) for transport to nearby facilities.
- Conduct site entry monitoring using the HNu, explosimeter/ $O_2$  detector and Rad mini.
- H. WORK LIMITATIONS: (Time of day, etc.)
  - No eating, drinking, or smoking onsite.
  - No contact lenses onsite.
  - No facial hair that would interfere with respirator fit.

SAC/T192/044.51

.

- Buddy system at all times in exclusion zone.
- CH2M HILL employees to wear TLD badges or equivalent at all times when on or near the site.
- Site work will be performed during daylight hours whenever possible. Any work conducted during hours of darkness will require the following minimum illumination intensity:

| General Site Areas                              | 5 foot-candles  |
|-------------------------------------------------|-----------------|
| First Aid Station/Office/Lab                    | 30 foot-candles |
| Storerooms, Changehouse, Toilets, Rest<br>Areas | 10 foot-candles |

- Motors used in the exclusion zone will be non-sparking electrical motors or equipped with spark arrestors.
- Fuel supplies will be properly stored and grounded.

### I. DECONTAMINATION PROCEDURES:

Set up decontamination area upwind of the exclusion zone. Water and TSP detergent should be placed in buckets prior to beginning work. The decontamination area should be a sufficient distance from the work in the exclusion zone so that the decon area will not become contaminated by splashing water or flying dirt.

#### Personnel Decontamination Procedures:

Wash boots and outer gloves in detergent and water, rinse, and remove outer gloves; remove and bag coveralls; if cotton coveralls are used, bag in plastic bags and wash prior to rewearing; remove respirator, if worn; remove surgical gloves and dispose in a plastic trash bag; wash hands and face; sanitize respirator nightly, if used; take a shower and wash hair as soon as possible after leaving the site.

#### **Equipment Needed:**

Buckets, detergent, cleaner-sanitizer, brushed, garbage bags, hand soap, and paper towels.

#### For Sampling Equipment:

Follow procedures outlined in sampling plan.

#### For Heavy Equipment:

Wash off the bucket of the backhoe or the drilling equipment with detergent and water; rinse in water. Use the hNu to monitor the backhoe or drilling equipment. If hNu readings are detected from the equipment, steam clean it prior to removing it from the site.

#### Documentation:

It is the responsibility of the SSC to make sure that all equipment coming offsite is properly decontaminated according to the procedures outlined above. At a minimum, visual indication of contamination will be removed, and no organic vapors detectable above background should remain. The equipment and samples will be clean, dry, and free from stains, deposits, encrustations, or discoloration. Documentation of decontamination must be made in the field log notebook, which will bec ome part of the permanent project file. A suitable tag is to be placed on each piece of decontaminated CH2M HILL equipment (or group of equipment, such as a bag of hand tools) stating the date of decontamination and initialed by the SSC.

### J. MATERIAL HANDLING PROCEDURES:

The following general material handling procedures apply:

- Drums and containers meeting the appropriate DOT, OSHA, and EPA regulations for the waste contents (e.g., decon water) will be used.
- Site operations will be organized to minimize the amount of drum or container movement.
- DOT salvage drums and suitable quantities of absorbent will be available and used on sites where hazardous waste spills could occur.
- Electrically powered material handling equipment used to transfer decon solutions will meet the requirements of 29 CFR 1910.307 for the classification of materials being handled.

### Disposal of Materials Generated During Field Work:

- Material generated during field work (decontamination fluids, disposable protective gear or sampling devices, drilling cuttings, well development fluids, etc.) will be considered as contaminated and handled accordingly unless adequate monitoring or analytical data exists to properly classify the materials as non-hazardous.
- Material generated offsite (well drilling fluids, etc.) will be returned to the site unless otherwise specified by the site owner or responsible party.
- Ultimate responsibility for disposal of the material rests with the site owner or responsible party. CH2M HILL may coordinate analysis, packaging, storage, transport and disposal of waste material, but will not assume responsibility for the waste (i.e., sign manifests as generator, etc.). Prior to beginning field work, the waste handling procedures will be agreed to with the client, site owner, and / or responsible party.
- Laboratory samples will be returned to the site, client, site owner, or responsible party for disposal following analysis unless otherwise specified.

### VI. EMERGENCY RESPONSE PLAN

A. Pre-Emergency Planning:

The SSC is to perform the following pre-emergency planning tasks before starting field activities and will coordinate emergency response with the operating facility when appropriate:

- Locate nearest telephone to the site and inspect onsite communications (air horns, two-way radios).
- Confirm and post emergency telephone numbers (Form 311) and route to hospital.
- Post site map marked with locations of emergency equipment and supplies.
- Review emergency response plan for applicability to any changed site conditions, alterations in onsite operations, or personnel availability.

- Drive route to hospital.
- Evaluate capabilities of local response teams.
- Where appropriate and acceptable to the client, inform emergen cy room / ambulance service and emergency response teams of anticipated types of site emergencies.
- Designate one vehicle as the emergency vehicle; place hospital directions and map inside; keep keys in ignition during field activities.
- Inventory and check-out site emergency equipment and supplies.
- Setup emergency personnel decontamination station(s).

### B. Personnel Roles and Lines of Authority:

The SSC takes the lead in emergencies. The SSC has the authority to stop any site activities posing an immediate health and safety hazard to site personnel and must notify the Project Manager or designee as soon as practical of this action. The Project Manager is ultimately responsibl e for health and safety of the CH2M HILL workers.

### C. Training:

At least two personnel currently certified in both first-aid and CPR will be present during field activities within the exclusion zone. The site's Emergency Response plan will be reviewed in the initial site safety briefing and will include:

- Emergency procedures for personnel injury, or suspected overexp osures, fires, explosions, chemical, and vapor releases.
- Location of onsite emergency equipment and supplies of clean water.
- Local emergency contacts, hospital routes, evacuation routes, and assembly points.
- Site communication and location of nearest phone to the site.
- Names of onsite personnel trained in first aid and CPR.
- Notification procedures for contacting CH2M HILL's medical consultant and team member's occupational physician.

SAC/T192/044.51

- The emergency response plan will be rehearsed at least once before site activities begin, and periodically afterwards.
- New workers on the site will be briefed on the emergency response plan before entering the exclusion zone.

### D. Communications:

The "buddy system" will be enforced for field activities involving potential exposure to hazardous, toxic or radioactive materials, and during any work within the exclusion zone. Each person will observe his/her partner for symptoms of chemical overexposures or heat stress and provide emergency assistance when warranted. Personnel working in the exclusion zone will maintain line of sight contact or maintain communications (e.g., two-way radios) with the site support facilities. Offsite communications will consist of either onsite telephone service or using the nearest telephone to the site.

### E. Emergency Signals:

The following emergency signals shall be used:

Grasping throat with handEmergency--help meThumbs upOK; understoodGrasping buddy's wristLeave site now2 short blasts or sounds, repeatedAll clearContinual sounding of hornEmergency--leave site

### F. PPE and Emergency Equipment and Supplies:

The following emergency equipment and supplies will be available onsite with the locations marked on the site map and posted in the support zone:

- 20-lb ABC fire extinguisher(s)
- First-aid kit
- Stretcher or blanket
- Supplies of clean water
- Eye wash
- Deluge shower (when required for emergency decon)
- **PPE** (protective clothing, boots, and gloves)
- Air monitoring equipment

SAC/T192/044.51

#### G. Emergency Recognition and Prevention:

Prevention of emergencies will be aided by the effective implementation of the health and safety procedures specified in this SSP. The initial site safety briefing will emphasize recognition of the types of emergencies anticipated onsite. Periodic safety briefings will be conducted by the SSC as field activities proceed. Hazards that warrant specific emergency recognition and prevention techniques will be discussed.

### H. Site Security and Control:

(Note to preparer: Identify, locate, and describe road and approaches to site, security measures such as fencing and guards, flagging or othe means of marking zones, and access control procedures, such as sign-in logs, access control points, etc.)

### I. Emergency Medical Treatment and First-Aid:

- Prevent further injury, perform appropriate decontamination, and notify the SSC and the Project Manager.
- Initiate first aid and get medical attention for the injured immediately.
- Depending upon the type and severity of the injury, call the medical consultant and/or occupational physician.
- Notify the Health and Safety Manager.
- Notify the injured person's personnel office.
- Notify the client representative.
- Prepare an incident report. The SSC is responsible for preparing and submitting the report to the Director of Health and Safety and to the CH2M HILL corporate personnel office within 48 hours.
- The SSC will assume charge during a medical emergency.

### J. Emergency Routes and Telephone Numbers (Map to be Posted)

#### Duty Officer 32751 (on base) 916/643-2751 (of base) Police 112 (on base) 916/643-6168 (off base) Fire 117 (on base) 916/643-5622 (off base) **Emergency** Assistance 116 (on base) Ambulance 116 (on base) Site Contact 916/643-3675--Charles Miles Utilities 34875 (on base) 916/643-4875 (off base) McClellan Clinic 35420 (on base) 916/646-8420 Urgent Care Hours: 0730 to 1900 General Hospital American River Hospital 4747 Engle Road. Carmichael, CA 95608 916/848-2100 Directions to Hospital Exist McClellan Air Force Base through the main gate to Watt Avenue. Turn right onto Watt Avenue and travel south to Whitney Avenue. Turn left onto Whitney Avenue and travel east t Mission Avenue. Turn left onto Mission Avenue and travel north to Engle Road. Turn right (east)onto Engle Road. Hospital is at 4747 Engle Road. (See attached map.) CHEMTREC 800/424-9300

Building 123

 CHEMITREC
 800/424-9300

 TOSCA Hotline
 202/554-1404

 CDC
 404/452-4100

 National Response Center
 800/424-8802

 EPA ERT Emergency
 201/321-6660

 RCRA Hotline
 800/424-9346

- K. <u>Emergency Decontamination</u>: Personnel will be decontaminated to the extent feasible (usually a "gross decon" or deluge) but life saving and first-aid procedures take priority over personnel decontamination efforts. The personnel decontamination procedures specified in Section V.J of this SSP will apply for injuries deemed non-life threatening by the SSC.
- L. <u>Evacuation Routes and Procedures</u>: Onsite evacuation routes will be designated. Personnel will exit the site exclusion zone / contamination reduction zone and assemble at the onsite assembly point in the support zone. The SSC wi

SAC/T192/044.51

account for personnel at the onsite assembly point and notify local emergency responders. The SSC will assess the need for site evacuation based on the degree of hazard posed to site personnel remaining in the support zone. Offsite evacuation routes and assembly points will also be designated. A person designated by the SSC will account for personnel at the offsite assembly point. The SSC and an assistant will remain onsite in the event of site evacuation (if feasible) to assist local responders and advise them on the nature and location of the incident.

Onsite and offsite evacuation routes / assembly points will be designated on the site map and posted. They will be based on site topography and layout; anticipated safe distances for places of refuge; prevailing weather conditions; and anticipated location magnitude of site emergencies. Wind flags will be installed in the exclusion and support zones to assist personnel in determining upwind evacuation routes.

Evacuation Routes (Onsite and Offsite): Evacuation routes will be dependent on the type of accident and wind direction. MAFB has first and second responders to handle evacuations (see Section II, A).

<u>Assembly Points (Onsite and Offsite)</u>: Assembly points vary by building and areas. Therefore, it will be the responsibility of the SSC to determine the assembly point for each location from the appropriate base representative.

M. <u>Critique of Response and Follow-up</u>: The SSC will evaluate the effectiveness of the emergency response and recommend procedures for improving emergency response to the SSP approver. Follow-up activities include notification of the injured person's personnel office within 24 hours of the injury. Incidents of suspected overexposures will require the notification of CH2M HILL's medical consultant and the injured's occupational physician so that they may provide assistance and relevant information to the local hospital's emergency room physician.

### VI. EMERGENCY CONTACTS

<u>CH2M HILL Medical Consultant</u>

 Name: Dr. Kenneth Chase, Washington Occupational Health Associates, Inc.
 Phone: 202/463-6698 (8-5 EST) 202/463-6440 (after hours answering service; physician will return call within 30 minutes)

### • CH2M HILL Health and Safety Manager

Name: David Lincoln/SEA Phone: 206/453-5005

### • District Health and Safety Officer (HSO)

Name: Lynn Laszewski/SEA Phone: 206/453-5005

Occupational Physician

| Name:    | Dr. Allen Krohn                               |
|----------|-----------------------------------------------|
| Phone:   | 916/246-7464                                  |
| Address: | Redding Industrial Occupational health Center |
|          | 1920 California Street                        |
|          | Redding, California 96001                     |

### Occupational Physician

| Name:    | Health Check                    |  |
|----------|---------------------------------|--|
|          | Ralph K. Davis Medical Center   |  |
| Phone:   | 415/565-6000                    |  |
| Address: | : Castro and Duboce Street      |  |
|          | San Francisco, California 94114 |  |

### • Occupational Physician

| Name:    | Drs. Robinson, Webb, Strong, Yates |  |  |
|----------|------------------------------------|--|--|
| Phone:   | 205/262-0342; 205/262-0390         |  |  |
| Address: | 1722 Pine Street, Suite 309        |  |  |
|          | Montgomery, Alabama 36194-2701     |  |  |

CH2M HILL Project Manager

| Name:  | Starr Dehn/SAC |
|--------|----------------|
| Phone: | 916/920-0300   |

## Client Contact

Name: Larry Button/Charlie Thorpe Phone: 916/643-1250

)

• CH2M HILL Regional Manager

Name:Steve DeCouPhone:916/920-0300

Personnel Office

. .....

t

Name: Scott Olsen Phone: 916/920-0300

If an injury occurs, notify the injured person's personnel office as soon as possible after obtaining medical attention for the injured. Notification <u>MUST</u> be made within 24 hours of the injury.

• <u>CH2M HILL Director of Health and Safety for Waste Management and</u> Industrial Processes

Name: David Lincoln Phone: 206/453-5005 Address:

CH2M HILL Corporate Personnel Office

Name: Marie Haezenbrouck/DEN Phone: 303/771-0900 (O) Address: CH2M HILL 6060 South Willow Englewood, CO 80111

#### VIII. PLAN APPROVAL

This site safety plan has been written for the use of CH2M HILL's employees and subcontractors. CH2M HILL claims no responsibility for its use by others. The plan is written for the specific site conditions, purposes, dates, and personnel specified and must be amended if these conditions change.

| PLAN PREPARED BY: | Robert Evangelista       | Date:     | 4/24/90 |
|-------------------|--------------------------|-----------|---------|
|                   | (name/office/home phone) |           |         |
| APPROVED BY:      | Jane Stansfield          | Date:     | 4/27/90 |
|                   | (name/office/home phone) |           |         |
| APPROVED BY:      |                          | _ Date: _ |         |
|                   | (name/office/home phone) |           |         |

(Note to Preparer: SSPs for sites where the potential exists for exposure to ionizing radiation require the approval of the Radiation Health Officer.)

SAC/T192/044.51

| MODIFIED BY:  | Karla Ebert/SAC      | Date:      | 10/24/91 |
|---------------|----------------------|------------|----------|
| MODIFICATIONS |                      | <b>D</b> . | 10/04/01 |
| APPROVED BY:  | Jayne Stansfield/DEN | Date:      | 10/24/91 |

#### Attachments:

-----

- Site Map
- Form 311, Emergency Phone Numbers
- Form 533, Record of Hazardous Waste Field Activity
- MSDS where applicable
- Attachment A--Descriptions of Planned Activities
- Attachment B--Heat Stress/Cold Stress Hazards
- Attachment C--Health and Safety Site Meeting
- Site Safety Plan Addendum

Distribution of approved plan:

Project Manager (responsible for distribution to team members and client) Health and Safety Manager



......

- ---


# FORM 311 EMERGENCY TELEPHONE NUMBERS

| Police<br>Department | Address: | Phone:<br>Contact: |
|----------------------|----------|--------------------|
| Fire<br>Department   | Address: | Phone:<br>Contact: |
| Paramedic            | Address: | Phone:<br>Contact: |
| Fire<br>Report       | Address: | Phone:<br>Contact: |
| Ambulance<br>Service | Address: | Phone:<br>Contact: |
| Water<br>Department  | Address: | Phone:<br>Contact: |
| Gas<br>Utility       | Address: | Phone:<br>Contact: |
| Electric<br>Utility  | Address: | Phone:<br>Contact: |
| Telephone<br>Utility | Address: | Phone:<br>Contact: |
| Hospital             | Address: | Phone:<br>Contact: |
| Owner                | Address: | Phone:<br>Contact: |

This notice is located at :\_\_\_\_\_

· · · · · · · · ·

SAC/T192/044.51

ł

1

;

1

÷

 ļ

**(** 3)

WDCHS2/Ali2.51

\.....

# FORM 533 RECORD OF HAZARDOUS WASTE FIELD ACTIVITY

SITE NAME: SITE SAFETY COORDINATOR: PROJECT NUMBER: RECORD OF ACTIVITIES FOR (DATES):

|                           | <br> | <br> | <br> | <br> |  |
|---------------------------|------|------|------|------|--|
| ACTIVITIES<br>PERFORMED   |      |      |      |      |  |
| DAYS AS SSC<br>LEVEL D    |      |      |      |      |  |
| DAYS AS SSC<br>LEVEL C    |      |      |      |      |  |
| DAYS AS SSC<br>LEVEL B    |      |      |      |      |  |
| DAYS IN<br>DAYS IN        |      |      |      |      |  |
| DAYS IN<br>LEVEL C        |      |      |      |      |  |
| DAYS IN<br>LEVEL B        |      |      |      |      |  |
| TOTAL DAYS<br>ONSITE      |      |      |      |      |  |
| EMPLOYEE<br>NAME / NUMBER |      |      |      |      |  |

Revised ? ' 91

ł

# Attachment A DESCRIPTION OF PLANNED ACTIVITIES

This Description of Planned Activities encompasses a broad range of possible tasks to be issued as task orders against contract No. F04699-90-D-0035. This section defines the range of tasks CH2M HILL shall be responsible to perform as per Section 4.0 (Technical Requirements) of the above contract.

•Conduct field sampling of drums, spill sites, tanks (above and underground), monitoring wells, past waste disposal sites, etc., and perform sample characterization studies to include analysis of a wide variety of contaminants in complex matrices, including up to 297 compounds listed as hazardous by EPA.

•Perform laboratory and field tests of environmental monitoring and testing equipment, to include validation of manual/instrumental methods, continuous monitors, analytical support and Mathematical models using EPA, ASTM, NR, and/or equivalent procedures specified by the Air Force.

•Perform photogrammetric analyses of environmental and infrared photographs.

•Perform geophysical studies to include, but not be limited to, studies involving magnetometer, metal detection, earth resistivity, terrain conductivity, seismic, gravity, ground penetrating radar and shallow (less than 400 feet, in most cases) borehole logging.

•Perform hydrogeological investigations to determine the magnitude and extent of groundwater contamination.

•Determine the direction and rate of movement of contaminants and estimate the degree of risk associated with contaminant migration.

•Develop methods to mitigate the adverse environmental effects of pollutant migration.

•Develop leachate monitoring and analysis programs to comply with state or EPA regulations required for landfills and other hazardous waste treatment and disposal sites which are currently operated or have been operated in the past by the U.S. Air Force.

•Perform onsite geological/hydrological investigations required to assist the Air Force in selecting proper locations for new solid/hazardous waste treatment, storage, or disposal sites or other facilities.

SAC/T192/045.51

É

•Perform sampling of soil and water in the unsaturated (vadose) zone above the water table using techniques recommended by the National Water Well Association (NWWA).

•Perform aquifer tests to determine the porosity, permeability, specific yield, drawdown and extent of cones of depression developed in aquifers in which contamination has been found or is suspected.

•Conduct comprehensive water supply and water distribution studies.

•Perform evaluations of domestic water, industrial wastewater, domestic wastewater, and groundwater treatment plants.

•Perform water and wastewater characterization, to include ambient short-term and continues water monitoring.

•Conduct inflow/infiltration studies into industrial, reclamation and groundwater extract/treatment systems at McClellan AFB and its Satellite Locations.

•Perform treatability studies, pilot plant investigations, and toxicity and bioassay determinations.

•Prepare evaluations and analyses providing sufficient detail to allow development of National Pollutant Discharge Elimination Systems (NPDES) permit applications, certifications and discharge monitoring reports.

•Conduct instream biological monitoring and fish-kill investigations.

•Perform laboratory analyses of potable water, groundwater, wastewater, soil, sludges, biologicals, fuels or commercial products and other environmental samples.

•Perform studies to ensure personnel safety, including the use of explosimeters, gas detectors, and survey meters and other equipment necessary to monitor air quality during site operations.

•Prepare evaluations and analyses, providing sufficient details to aid development of state or EPA-mandated permit applications, certifications, discharge monitoring reports and groundwater monitoring reports.

•Perform necessary analyses and reduction of any physical/chemical samples or data acquired under activities outlined herein.

•Provide analytical results in both hard copy and other formats suitable for archiving, including computer format.

SAC/T192/045.51

•When required and specified in the delivery order, prepare sites for sampling/ monitoring and restore sites upon completion of work.

•Identify, evaluate, design and prototype processes, equipment, and facilities which minimize the generation of hazardous wastes or improve environmental quality.

•Develop permits and various applications as required by the guidance documents.

•Conduct Community Relations Program requirements in accordance with SARA.

•Prepare Site-Specific Spill Plans, maintain and reviewed annually in accordance with Air Force policy, guidance and directives.

•Develop Base Spill Prevention and Response Plans.

•Conduct quarterly review of regulatory requirements regarding the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the Superfund amendments and on-going RCRA and CERCLA/SARA Programs and other background documents as required.

•Prepare Statements of Work.

ť

•Perform waste minimization assessments and recommend process modifications that eliminate or reduce the use, generation, and disposal of hazardous materials within production process. The assessments shall include:

- Analyze the results of waste audits to identify the most promising areas for waste minimization.
- Identify, devise, and prototype new approaches to reduce and minimize hazardous wastes through process modification of emission/effluent control.
- Investigate process technology and develop conceptual system designs to prevent and reduce industrial pollution and hazardous waste generation.
- Determine the environmental consequences of present and proposed environmental regulations of any recommended process or equipment changes.
- Recommend control technology for toxics and pollutants to address recovery/recycle and reduction, optimization treatment (chemical and biological), onsite treatment, and substitution with less toxic/hazardous materials.

- Prepare detailed drawing packages, plans, and designs for waste minimization pilot projects relative to equipment design and modifications including charts, graphs, return on investments, and cost estimates.
- Document, evaluate, and integrate the results of pilot projects in ongoing industrial processes operations through process modifications or prototype development.

•Conduct and administer the Hazardous Waste Training Program to Base employees including requirements under 29 CFR 1910.120.

•Conduct Underground Storage Tank Annual Precision Leak Testing.

•Conduct Environmental Audit Assessment of base facilities and operation in accordance with Air Force and SM-ALC/EM policy, guidance, and directives.

•Perform Inspection Services and Construction Management for Environmental Investigations, construction Project or Remedial Action Implementation.

•Develop and maintain a computer data base for tracking hazardous waste generator/management data and all delivery order project information.

•Maintain an inventory of McClellan Air permits. Develop tracking system to monitor environmental compliance. This inventory and tracking system will be maintained in a microcomputer within the Directorate of Environmental Management.

•Provide engineering and services to operate and maintain interim Remedial Measures and Remedial Actions implemented by McClellan AFB in accordance with CERCLA/SARA. This includes the McClellan Groundwater and Treatment Plant and existing and future groundwater extractor systems. Operation and maintenance shall be conducted in accordance with existing procedures.

•Prepare Environmental Assessments for proposed Air Force activities in water usage, wastewater discharge, solid waste disposal, hazardous waste cleanup, and contaminated groundwater cleanup.

•Document performance of existing and future McClellan water, wastewater, solid waste, and groundwater treatment facilities (including groundwater extraction systems) to include performance evaluations of individual unit processes within a treatment facility.

•Prepare comprehensive studies to determine potable water supply, storage and distribution requirements for McClellan AFB and its Satellite Locations.

SAC/T192/045.51



-- --

Appendix B Well Logs

SAC/T207/030.51-7

an a sure and an an an an an a

• .

•

.

1

(

1

# Attachment B HEAT STRESS/COLD STRESS HAZARDS

# **Heat Stress**

Wearing PPE puts a hazardous waste worker at considerable risk of developing heat stress. This can result in health effects ranging from transient heat fatigue to serious illness or death. Heat stress is caused by a number of interacting factors, including environmental conditions, clothing, workload, and the individual characteristics of the worker. Because heat stress is probably one of the most common (and potentially serious) illnesses at hazardous waste sites, regular monitoring and other preventive precautions are vital.

Monitoring Heat Stress. Because the incidence of heat stress depends on a variety of factors, all workers, even those not wearing protective equipment, should be monitored.

Workers wearing semipermeable or impermeable protective clothing should be monitored when the temperature in the work area is above 70°F (21°C).

To monitor the worker, measure:

- Heart Rate--Count the radial pulse during a 30-second period as early as possible in the rest period.
  - If the heart rate exceeds 110 beats per minute at the beginning of the rest period, shorten the next work cycle by one-third and keep the rest period the same.
  - If the heart rate still exceeds 110 beats per minute at the next rest period, shorten the following work cycle by one-third.
  - Oral temperature--Use a clinical thermometer (3 minutes under the tongue) or similar device to measure the oral temperature at the end of the work period (before drinking).
    - If oral temperature exceeds 99.6°F (37°C), shorten the next work cycle by one-third without changing the rest period.
    - If oral temperature still exceeds 99.6°F (37.6°C) at the beginning of the next rest period, shorten the following work cycle by one-third.
    - Do not permit a worker to wear a semipermeable or impermeable garment when his/her oral temperature exceeds 100.6°F (38.1°C).

SAC/T192/046.51

Body water loss, if possible. Measure weight on a scale accurate to  $\pm 0.25$  lb at the beginning and end of each work day to see if enough fluids are being taken to prevent dehydration. Weights should be taken while the employee wears similar clothing or, ideally, is nude. The body water loss should not exceed 1.5 percent total body weight loss in a work day.

Initially, the frequency of physiological monitoring depends on the air temperature adjusted for solar radiation and the level of physical work (see Table 1). The length of the work cycle will be governed by the frequency of the required physiological monitoring.

| SUGGESTED<br>FC                                                                                                      | Table 1<br>FREQUENCY OF PHYSIOLOGIC/<br>OR FIT AND ACCLIMATIZED WOF | AL MONITORING<br>RKERS <sup>a</sup> |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|
| Adjusted Temperature <sup>b</sup>                                                                                    | Normal Work Ensemble <sup>c</sup>                                   | Impermeable Ensemble                |
| 90°F (32.2°C) or above                                                                                               | After each 45 minutes of work                                       | After each 15 minutes of work       |
| 87.5°-90°F (30.8°C-32.2°C)                                                                                           | After each 60 minutes of work                                       | After each 30 minutes of work       |
| 77.5°-82.5°F (25.3°-28.1°C)                                                                                          | After each 120 minutes of work                                      | After each 90 minutes of work       |
| 72.5°-77.5°F (22.5°-25.3°C)                                                                                          | After each 150 minutes of work                                      | After each 120 minutes of work      |
| <sup>a</sup> For work levels of 250 kiloc<br><sup>b</sup> Calculate the adjusted air te<br>(13 x % supplies) Measure | alories/hour.<br>emperature (ta adj) by using this equ              | ation: ta adj °F = ta °F +          |

(13 x % sunshine). Measure air temperature (ta) with a standard mercury-in-glass thermometer, with the bulb shielded from radiant heat. Estimate percent sunshine by judging what percent time the sun is not covered by clouds that are thick enough to produce a shadow. (100 percent sunshine = no cloud cover and a sharp, distinct shadow; 0 percent sunshine = no shadows.) <sup>c</sup>A normal working ensemble consists of cotton coveralls or other cotton clothing with long sleeves and pants.

**Prevention of Heat Stress.** Proper training and preventive measures will help avert serious illness and loss of work productivity. Preventing heat stress is particularly important because once someone suffers from heat stroke or heat exhaustion, that person may be predisposed to additional heat injuries. To avoid heat stress, management should take the following steps:

- Adjust work schedules:
  - Modify work/rest schedules according to monitoring requirements
  - Mandate work slowdowns as needed
  - Rotate personnel: alternate job functions to minimize overstress or overexertion at one task

SAC/T192/046.51

- Add additional personnel to work teams.
- Perform work during coolers hours of the day if possible or at night if adequate lighting can be provided.
- Provide shelter (air-conditioned, if possible) or shaded areas to protect personnel during rest periods.
- Maintain workers' body fluids at normal levels. This is necessary to ensure that the cardiovascular system functions adequately. Daily fluid intake must approximately equal the amount of water lost in sweat, i.e., 8 fluid ounces (0.23 liters) of water must be ingested for approximately every 8 ounces (0.32 kg) of weight lost. The normal third mechanism is not sensitive enough to ensure that enough water will be drunk to replace lost sweat. When heavy sweating occurs, encourage the worker to drink more. The following strategies may be useful:
  - Maintain water temperature at 50° to 60°F (10° to 15.6°C).
  - Provide small disposable cups that hold about 4 ounces (0.1 liter).
  - Have workers drink 16 ounces (0.5 liters) of fluid (preferably water or dilute drinks) before beginning work.
  - Urge workers to drink a cup or two every 15 to 20 minutes, or at each monitoring break. A total of 1 to 1.6 gallons (4 to 6 liters) of fluid per day are recommended, but more may be necessary to maintain body weight.
  - Weigh workers before and after work to determine if fluid replacement is adequate.
- Encourage workers to maintain an optimal level of physical fitness:
  - Where indicated, acclimatize workers to site work conditions: temperatures, protective clothing, and workload.
  - Urge workers to maintain normal weight levels.
- Provide cooling devices to aid natural body heat exchange during prolonged work or severe heat exposure. Cooling devices include:
  - Field showers or hose-down areas to reduce body temperature and/or to cool off protective clothing.
  - Cooling jackets, vests, or suits.

SAC/T192/046.51

Train workers to recognize and treat heat stress. As part of training identify the signs and symptoms of heat stress (see Table 2).

|   | Table 2           SIGNS AND SYMPTOMS OF HEAT STRESS                                                                                                                                                                                                                                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Heat rash may result from continuous exposure to heat or humid air                                                                                                                                                                                                                                    |
| • | Heat cramps are caused by heavy sweating with inadequate electrolyte replace-<br>ment. Signs and symptoms include:                                                                                                                                                                                    |
|   | <ul> <li>Muscle spasms</li> <li>Pain in the hands, feet, and abdomen</li> </ul>                                                                                                                                                                                                                       |
| • | Heat exhaustion occurs from increased stress on various body organs including inadequate blood circulation due to cardiovascular insufficiency or dehydration. Signs and symptoms include:                                                                                                            |
|   | <ul> <li>Pale, cool, moist skin</li> <li>Heavy sweating</li> <li>Dizziness</li> <li>Nausea</li> <li>Fainting</li> </ul>                                                                                                                                                                               |
| • | Heat stroke is the most serious form of heat stress. Temperature regulation fails<br>and the body temperature rises to critical levels. Immediate action must be taken<br>to cool the body before serious injury and death occur. Competent medical help<br>must be obtained. Signs and symptoms are: |
|   | <ul> <li>Red, hot, usually dry skin</li> <li>Lack of or reduced perspiration</li> <li>Nausea</li> <li>Dizziness and confusion</li> <li>Strong, rapid pulse</li> <li>Coma</li> </ul>                                                                                                                   |

# **Cold Stress**

Although northern California is not prone to bitter-cold temperatures, cold stress may still be a potential problem. Cold stress is possible when work performed over water is at temperatures of 50°F or less. The ultimate effects of cold stress is hypothermia, which is a decrease in the deep core body temperature. At temperatures of 35°F, workers in water, or whose clothing becomes wet, should be provided with an immediate change of clothing. They may need to be treated for hypothermia. Workers who wear impermeable protective clothing are susceptible to chilling because their cotton underclothing may become wet with perspiration. Windchill index. The windchill factor is the cooling effect of any combination of temperature and wind velocity of air movement. The windchill index is shown in Table 3. The windchill index does not take into account that part of the body which is exposed to cold, the level of activity and its effect on body heat production, and the amount of clothing being worn.

|                                                                            |                                                                   |                                                                        | w                                                                      | Ta<br>INDCH                                           | bie 3<br>ILL INI                                          | DEX                                                                 |                                                         |                                                               |                                                                   |                                             |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
|                                                                            |                                                                   | ACTU                                                                   | AL TH                                                                  | ERMON                                                 | METER                                                     | READ                                                                | ING (F)                                                 | )                                                             |                                                                   |                                             |
| Wind speed<br>in mph                                                       | 50                                                                | 40                                                                     | 30                                                                     | 20                                                    | 10                                                        | 0                                                                   | -10                                                     | -20                                                           | -30                                                               | -40                                         |
|                                                                            |                                                                   | EQ                                                                     | UIVAL                                                                  | ENT T                                                 | EMPER                                                     | ATURE                                                               | E (F)                                                   |                                                               |                                                                   |                                             |
| calm                                                                       | 50                                                                | 40                                                                     | 30                                                                     | 20                                                    | 10                                                        | 0                                                                   | -10                                                     | -20                                                           | -30                                                               | -40                                         |
| 5                                                                          | 48                                                                | 37                                                                     | 27                                                                     | 16                                                    | 6                                                         | -5                                                                  | -15                                                     | -26                                                           | -36                                                               | -47                                         |
| 10                                                                         | 40                                                                | 28                                                                     | 16                                                                     | 4                                                     | -9                                                        | -21                                                                 | -33                                                     | -46                                                           | -58                                                               | -70                                         |
| 15                                                                         | 36                                                                | 22                                                                     | 9                                                                      | -5                                                    | -18                                                       | -36                                                                 | -45                                                     | -58                                                           | -72                                                               | -85                                         |
| 20                                                                         | 32                                                                | 18                                                                     | 4                                                                      | -10                                                   | -25                                                       | -39                                                                 | -53                                                     | -67                                                           | -82                                                               | -96                                         |
| 25                                                                         | 30                                                                | 16                                                                     | 0                                                                      | -15                                                   | -29                                                       | -44                                                                 | -59                                                     | -74                                                           | -88                                                               | -104                                        |
| 30                                                                         | 28                                                                | 13                                                                     | -2                                                                     | -18                                                   | -33                                                       | -48                                                                 | -63                                                     | -79                                                           | -94                                                               | -109                                        |
| 35                                                                         | 27                                                                | 11                                                                     | -4                                                                     | -20                                                   | -35                                                       | -49                                                                 | -67                                                     | -82                                                           | -98                                                               | -113                                        |
| 40                                                                         | 26                                                                | 10                                                                     | -6                                                                     | -21                                                   | -37                                                       | -53                                                                 | -69                                                     | -85                                                           | -100                                                              | -116                                        |
| Over 40 mph<br>(little added<br>effect)                                    | LITTI<br>proper                                                   | E DAN                                                                  | GER (f                                                                 | or<br>on)                                             | INCR<br>DANC<br>from f<br>expose                          | EASING<br>GER (da<br>reezing<br>ed flesh)                           | )<br>inger<br>of                                        | GREAT<br>(Danger<br>of expos                                  | T DANGE<br>from fre<br>sed flesh)                                 | ER<br>ezing                                 |
| Note: The hum<br>velocity.<br>bite can<br>For exan<br>is 30 mp<br>air temp | tan body<br>Coolin<br>occur at<br>nple, wh<br>h (48 kr<br>erature | y senses<br>g of exp<br>t relative<br>en the a<br>m/h), the<br>of 13°F | "cold" a<br>losed fle<br>ely mind<br>actual ai<br>e expose<br>(-11°C). | s a resu<br>sh incre<br>temper<br>r tempe<br>d skin v | It of bot<br>ases rap<br>atures i<br>rature o<br>vould pe | th the ai<br>hidly as the<br>f wind p<br>of the with<br>erceive the | r tempe<br>he wind<br>enetrate<br>nd is 40<br>his situa | rature an<br>velocity<br>s the bod<br>°F (4.4°C<br>ation as a | d the win<br>goes up.<br>ly insulati<br>) and its y<br>n equivale | d<br>Frost-<br>on.<br>velocity<br>ent still |

# Attachment C HEALTH AND SAFETY SITE MEETING

We the undersigned have read this Site Safety Plan and fully understand its contents and will adhere to procedures set forth in this document.

| Name | Affiliation | Title | Date |
|------|-------------|-------|------|
|      |             |       |      |

1

# CH2M HILL Site Safety Plan Addendum for Well Abandonment-Phase II

Addendum for field activities and site personnel

Addendum should be accompanied by the MAFB Master Site Safety Plan

# McClellan Air Force Base Sacramento, California

Client: McClellan Air Force Base Project No.: SAC28722.31 Project Manager: Chuck Elliott Site Name: McClellan Air Force Base Dates of Field Visit: January through December, 1992

**Purpose of Field Visit:** During this phase of the project, CH2M HILL personnel will supervise subcontractors in the decommissioning of five base wells (BW-7, BW-13, BW-17, BW-20, and BW-28), two laundry wells (LW-1 and LW-2), and two seismic wells. CH2M HILL personnel will also supervise subcontractors in the modification to BW-8. Decommissioning involves the following tasks: pull existing pumps from the wells, bail waste oil from the wells, perform downhole television surveys, perforate the casing, and inject cement grout under pressure to fill the well from bottom to top.

**Hazard Evaluation:** Onsite activities involve potential hazards of heat stress; vehicular traffic on roadways; and a slight possibility of exposure to the bacteria that causes Lyme disease through contact with the rabbit population in the area.

Well abandonment activities pose safety hazards to personnel in the immediate vicinity of heavy equipment such as the drill rig and cement mixers. To protect personnel from overhead falling objects (i.e., bolts, wrenches, pieces of pipe), hard hats must be worn in the immediate vicinity of the drill rig. Safety glasses are also required to protect against flying projectiles that could be caused by hammering fittings/connections and driving casing. Drilling activities near overhead electrical lines will be avoided. The drill rig mast shall remain as far as practical from all overhead utility lines. Continuous monitoring with an HNu will be performed to identify potential inhalation hazards.

A summary of hazards from chemical constituents found at one or more of the well sites is presented below.

Chlorinated Solvents: Possible low levels of chlorinated compounds may be encountered in groundwater from the well. The primary avenue of exposure is inhalation and dermal contact. Some of these compounds act as central nervous system depressants that produce visual disturbances, mental confusion, fatigue, and nausea. The OSHA PELs for chlorinated solvents can be as low as 1 ppm, depending on the solvent. Metals: Heavy metals typically have a high affinity for soil particles, creating potential for both inhalation and dermal contact from dust created during drilling operations. Metals are absorbed in the bloodstream and produce fever, dizziness, mental confusion, and nausea. The OSHA PELs for several heavy metals are: arsenic 0.5 mg/m<sup>3</sup>, cadmium 0.2 mg/m<sup>3</sup>, lead 50 micrograms per cubic meter (ug/m<sup>3</sup>), antimony 0.5 mg/m<sup>3</sup>, and barium 0.5 mg/m<sup>3</sup>.

Solvents and Paints: Organic chemicals in general act as anesthetics and irritants to the eyes, respiratory system, and skin. Eye contact may cause irritation, dermatitis, cell damage, and necrosis. Chronic toxicities include kidney, liver, heart, and lung damage. The OSHA PELs for common solvents and paint constituents are: toluene 100 ppm, xylene 100 ppm, acetone 750 ppm, and benzene 1 ppm.

During Phase I of this project, the Explosimeter, the Rad-mini and the HNU were used for monitoring purposes. The only "hits" were observed on the HNU when monitoring inside the well.

# Site Personnel:

| Team Member                                                                    | Responsibility                                                                        |   |          |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|----------|
| Chuck Elliott<br>Rob Pexton<br>Chuck Ouellette<br>Suzanne Davis<br>Karla Ebert | SSC Level C<br>Field Scientist<br>Field Engineer<br>Field Engineer<br>Field Scientist |   |          |
| Level of Protection:                                                           |                                                                                       |   | <u>,</u> |
| Α                                                                              | B                                                                                     | C | D        |

Poly coated Tyvek coveralls with nitrile outer gloves and latex inner gloves will be worn when splash protection is needed. Nitrile outer gloves and latex inner gloves will be worn during sampling and when handling samples. Safety glasses, hard hat, and neoprene steel toe/shank boots will be worn while onsite. A TLD or equivalent badge must be worn by all team members. **Monitoring Equipment:** The HNU with the 11.7 eV lamp will be used at the site for monitoring purposes. The 11.7 eV lamp will be used because many of the chlorinated solvents have ionization potentials above 10.2 and are therefore not detected by the 10.2 eV bulb. Readings will be recorded every half hour. Continuous monitoring will occur while drilling or performing intrusive activities. The following action levels will be used:

| Reading | Action                                                                         |
|---------|--------------------------------------------------------------------------------|
| 0-1 ppm | Level D; Continue Monitoring                                                   |
| 1-5 ppm | Level C; Full facepiece respirator with GMC-H Cartridges. Continue Monitoring. |
| >5 ppm  | Call Safety Plan Approver                                                      |

Equipment will be calibrated offsite and upwind before the start of daily activities. Reading will be taken in the breathing zone over a 5-minute period.

**Personal Restrictions:** The cementers are not 40-hour health and safety trained for hazardous waste work. Because they do not have the appropriate training, they will not be allowed to work within the exclusion zone. The cementers will set up their operations at least 25 feet upwind from the well head and will not enter the exclusion zone at any time. A 25-foot radius circle will be established as the exclusion zone around each well. It will be delineated with flagging tape, cones, and barricades. It is the responsibility of the SSC to enforce the policy that nontrained personnel will remain outside this zone.

Any equipment that is used in the exclusion zone must be decontaminated prior to the cementers handling the equipment.

Addendum Written By: Karla Ebert/SAC

**Date:** 12/3/91

Addendum Approved By: Allen Macenski/LAO

**Date:** 12/3/91

Appendix C Cement Bond Logs

SAC/T207/030.51-8

(

| USGS-CAL-T1<br>May 1948                 | DEPA                               | UNITED STATES<br>RTMENT OF THE INTI<br>GEOLOGICAL SURVEY | ERIOR No              | 9/5B-1M1                 |
|-----------------------------------------|------------------------------------|----------------------------------------------------------|-----------------------|--------------------------|
| State Cali                              | County                             | WELL LOG                                                 | Subarea <u>Arcede</u> | 109 •                    |
| Owner <u>MoCl</u><br>Location <u>15</u> | ollan Field<br>50 feet north, 4650 | Well 1<br>) feet west of SE o                            | orner of section 1    | (USGS_FX)                |
| Drilled by                              | Eaton                              | Address                                                  | Woodland              |                          |
| Date April                              | 1937 Casing di                     | iam. 24"                                                 | Land-surf.            | alt. 74                  |
| Source of da                            | ta U.S.Army - Lir.                 | Enepton                                                  |                       | <u></u> .                |
| (Enter t                                | vne of well, perfor                | rations, yield, and                                      | l drawdown at end of  | log)                     |
| Correlation                             |                                    | Naterial                                                 |                       | Thick-<br>ness<br>(feet) |
| <u></u>                                 | clay and hardpan                   |                                                          |                       |                          |
| ······                                  | hardpan<br>sand (water)            |                                                          |                       |                          |
| <u></u>                                 | clay, gray                         | ······································                   |                       |                          |
|                                         | hardpan and sands                  | tone                                                     | · ·····               |                          |
|                                         | sand (water)<br>hardpan            |                                                          |                       |                          |
| ·                                       | sand (water)                       |                                                          |                       |                          |
|                                         | clay<br>sand and graval            | <u> </u>                                                 | <u> </u>              |                          |
|                                         | hardpen                            |                                                          |                       |                          |
|                                         | hardpen (broken b                  | y sand and gravel)                                       | •                     |                          |
|                                         | sand and gravel<br>hardpen         |                                                          |                       |                          |
|                                         |                                    |                                                          |                       |                          |
|                                         |                                    |                                                          |                       |                          |
|                                         |                                    | <u></u>                                                  | <u></u>               |                          |
|                                         |                                    |                                                          |                       |                          |
| <del></del>                             |                                    |                                                          | <u> </u>              |                          |
| <u></u>                                 |                                    | ·                                                        |                       |                          |
|                                         |                                    |                                                          |                       |                          |
|                                         |                                    |                                                          |                       |                          |
|                                         |                                    |                                                          |                       |                          |
|                                         |                                    |                                                          |                       |                          |

1

• 1

;

- -\_

-----

| UCOS-CAL-TI<br>May 1948 | DEP                        | UNITED STATES<br>ARTMENT OF THE INTERIOR<br>GEOLOGICAL SURVEY<br>WATER REPOURCES BRANCH | No. <u>9/52-142</u><br>Other Nos.     |          |
|-------------------------|----------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|----------|
|                         |                            | WELL LOG                                                                                |                                       |          |
| State_Calie             | County                     | Sagramento Subare                                                                       | aArcade                               |          |
| Owner McCle             | llan Field                 | Tell 2                                                                                  |                                       |          |
| Location 2              | 100 feet north, 40         | 350 feet west of SE corner                                                              | of section 1 (USGS)                   | FK       |
| Drilled by              | Eaton                      | Address                                                                                 |                                       |          |
| Date April 19           | 937 Casing                 | diam. 24"                                                                               | Land-surf. alt. 75                    |          |
| Source of da            | +                          | ······································                                                  |                                       |          |
| Source of da            |                            | шу                                                                                      |                                       |          |
| <u>(Enter t</u>         | ype of well, perfo         | orations, vield, and drawd                                                              | own at end of log)                    |          |
| Correlation             |                            | Naterial                                                                                | ness                                  | Ŭ D      |
|                         |                            |                                                                                         | (feet)                                |          |
|                         | olay and hardpar           | , red sandy                                                                             |                                       | +        |
|                         | sand                       |                                                                                         |                                       | 4-       |
|                         | hardpan<br>hardpan, broken |                                                                                         |                                       |          |
|                         | hardpan                    |                                                                                         |                                       |          |
| <u></u>                 | sana<br>hardoan            |                                                                                         | · · · · · · · · · · · · · · · · · · · | +        |
|                         | send                       |                                                                                         |                                       |          |
|                         | olay<br>sand               |                                                                                         |                                       |          |
|                         | hardpen                    | <u></u>                                                                                 |                                       |          |
|                         | clay                       | <u> </u>                                                                                |                                       | +        |
|                         | hardpan                    |                                                                                         |                                       |          |
|                         | sand                       |                                                                                         |                                       |          |
| <u></u>                 | clay                       |                                                                                         |                                       |          |
|                         | alay and hardper           | L                                                                                       |                                       | 4        |
|                         | hardpan                    |                                                                                         |                                       |          |
|                         | sand                       |                                                                                         |                                       |          |
|                         | sand                       |                                                                                         |                                       | +        |
|                         | hardpen                    |                                                                                         |                                       |          |
|                         | sand                       |                                                                                         | -                                     |          |
|                         |                            |                                                                                         | 4                                     | -\$<br>- |
|                         | ·                          |                                                                                         | *                                     | *        |
|                         |                            |                                                                                         | ŧ                                     | <u>a</u> |
|                         |                            |                                                                                         | Ň I                                   | 1 .      |
|                         |                            |                                                                                         | A                                     |          |
|                         |                            |                                                                                         |                                       | +        |
|                         |                            |                                                                                         |                                       |          |

. ...

1

| USOS-CAL-TI<br>May 1948 | 1               | UNITEI<br>DEPARTMENT<br>GEOLOGI        | D STATES<br>OF THE INTE<br>CAL SURVEY | RIOR     | No •                                         | 9/5 <b>8-11.1</b> |              |
|-------------------------|-----------------|----------------------------------------|---------------------------------------|----------|----------------------------------------------|-------------------|--------------|
| 10-20<br>10-20          |                 | WATER REPO                             | URCES BRANC                           | н        | Other                                        | Nos               |              |
|                         |                 | WEL                                    | L LOG                                 |          |                                              |                   |              |
| State <u>Celij</u>      | Count           | Secrement                              | <u>rto</u>                            | Subarea  | Aroade                                       | ·                 |              |
| Owner <u>McCle</u>      | llan Field      | 1                                      | 611 8                                 |          |                                              |                   |              |
| Location <u>15</u>      | 50 feet north.  | 2750 feet we                           | et of SB co                           | mer of   | section 1                                    | (USGS) FX         |              |
| Drilled by              | not stated      | ······································ | Address                               |          | •<br>•                                       |                   |              |
| Date July 1             | 942 Casi        | ng diam.                               | 24"                                   |          | Land-surf                                    | alt. 80           |              |
| Source of de            | +               | w - Wr. Knar                           | nton                                  |          | •                                            |                   | . <u> </u>   |
| Source of da            |                 |                                        |                                       |          |                                              |                   |              |
| <u>(Enter t</u>         | ype of well, or | erforations,                           | vield, and                            | drawdow  | n at end o                                   | <u>f log)</u>     | <del>.</del> |
| Correlation             | 7               | later:                                 | ial                                   |          |                                              | ness              | D            |
|                         |                 |                                        | <u>.</u>                              |          |                                              | (feet)            |              |
|                         | fill            |                                        |                                       |          |                                              |                   |              |
|                         | sand            |                                        |                                       |          |                                              |                   | ┼─           |
|                         | olay, hard      | lev                                    |                                       |          |                                              |                   | _            |
|                         | clay, sandy g   | 78y                                    |                                       |          |                                              |                   | 1            |
|                         | sand and grav   | el, fins                               |                                       |          |                                              |                   |              |
|                         | lava and hard   | Den                                    |                                       |          |                                              |                   | ┼╴┓          |
|                         | sand and grav   | <u></u>                                |                                       |          |                                              |                   | 1            |
|                         | hard comented   | formation                              |                                       |          |                                              |                   |              |
|                         | hard lave ser   | d                                      |                                       |          | <u>.                                    </u> |                   |              |
|                         | gravel, fine    |                                        |                                       |          |                                              |                   | 2            |
|                         | comented form   | ation, hard                            |                                       |          |                                              |                   |              |
|                         | gravel and sa   | nd. fine                               |                                       |          |                                              |                   |              |
|                         | cobbles and g   | ravel                                  |                                       |          |                                              |                   |              |
|                         | sand and grav   | <b>91</b>                              |                                       |          |                                              |                   | 1            |
|                         |                 | perf: 170                              | -598                                  |          |                                              |                   | +-           |
| - <u></u>               |                 |                                        |                                       | <u> </u> |                                              |                   |              |
|                         |                 |                                        |                                       |          |                                              |                   |              |
|                         |                 |                                        |                                       |          | <u> </u>                                     |                   | ┢            |
|                         |                 |                                        |                                       |          |                                              |                   |              |
|                         |                 |                                        |                                       |          |                                              |                   |              |
|                         |                 | <u> </u>                               |                                       |          |                                              |                   | +            |
|                         |                 |                                        |                                       |          |                                              | [                 |              |
|                         |                 |                                        |                                       |          |                                              |                   | Τ            |
|                         |                 |                                        |                                       |          |                                              |                   | +            |
|                         | !               |                                        |                                       |          |                                              |                   |              |
|                         |                 |                                        |                                       |          |                                              | ſ                 |              |

| USGS-CAL-T1<br>Nay 1948                | UNITED STATES<br>DEPARTMENT OF THE INTERIOR<br>GEOLOGICAL SURVEY<br>WATER RESOURCES BRANCH     | No. $\frac{9}{5E}$ .<br>Other Nos.                   | <u>// /</u>   |
|----------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|
| State <u>Calif</u><br>Owner <u>War</u> | WELL LOG<br>County <u>lociamento</u> Subar<br>Department, <u>uartermester Corp.</u> , McClella | rea <u>Arcade Well #</u><br>In Field, Contract 787 g | <u>7</u>      |
| Drilled by                             | Aulmaniddress                                                                                  |                                                      |               |
| Datehly 19                             | 41 Casing diam                                                                                 | Iand-surf. alt                                       | 70            |
| Source of dat                          | aDriller                                                                                       |                                                      |               |
| (Enter ty                              | The of well, perforations, vield, and draw                                                     | down at end of log)                                  |               |
| Correlation                            | Naterial                                                                                       | Thick<br>ness<br>(feet                               | - >           |
|                                        | Red soil                                                                                       |                                                      |               |
|                                        | Hard pan<br>Hard brittle laws sand                                                             |                                                      |               |
|                                        | Hard pan                                                                                       |                                                      |               |
|                                        | Clay, yellow                                                                                   |                                                      |               |
|                                        | Hard sand                                                                                      |                                                      |               |
|                                        | Fine gravel                                                                                    |                                                      | -+            |
|                                        | Fine gravel                                                                                    |                                                      | $\rightarrow$ |
|                                        | Hard ran                                                                                       |                                                      |               |
|                                        | Hard ran                                                                                       |                                                      |               |
|                                        | Bard pan                                                                                       |                                                      |               |
|                                        |                                                                                                | ·····                                                | $\rightarrow$ |
|                                        |                                                                                                |                                                      |               |
|                                        | ·                                                                                              |                                                      |               |
|                                        |                                                                                                |                                                      | T             |
|                                        |                                                                                                |                                                      |               |
|                                        |                                                                                                |                                                      | -             |
|                                        |                                                                                                |                                                      |               |
|                                        |                                                                                                |                                                      | Ŧ             |
|                                        |                                                                                                |                                                      | -+            |
|                                        | C-5                                                                                            |                                                      |               |

ī

.....

| State_ Cali                            |                                                                                                                                                                                                                                           |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | WELL LOG                                                                                                                                                                                                                                  |
|                                        | romia county Secremento Subarea Arcade                                                                                                                                                                                                    |
| mer U.S.                               | Engineer Office McClellan Field - Rubber Conservation Bldg.                                                                                                                                                                               |
| Location                               | 500 feet north, 900 feet west of SE corner of section 11 (USGS) FR                                                                                                                                                                        |
|                                        | <b>Firchester</b>                                                                                                                                                                                                                         |
| Filled by                              |                                                                                                                                                                                                                                           |
| nte 1945                               | Casing diam l2" Iand-surf. alt. 70"                                                                                                                                                                                                       |
| Source of de                           | <b>11</b>                                                                                                                                                                                                                                 |
| pomice of de                           | 1 (cl.                                                                                                                                                                                                                                    |
| (Enter t                               | type of well, perforations, vield, and drawdown at end of log)                                                                                                                                                                            |
|                                        | Thick-                                                                                                                                                                                                                                    |
| orrelation                             | NE CETIEL NESS                                                                                                                                                                                                                            |
| •                                      | (feet)                                                                                                                                                                                                                                    |
|                                        | soil                                                                                                                                                                                                                                      |
|                                        |                                                                                                                                                                                                                                           |
|                                        | sand, brown                                                                                                                                                                                                                               |
|                                        | OLAY                                                                                                                                                                                                                                      |
|                                        | sand, fine                                                                                                                                                                                                                                |
|                                        | cley, white                                                                                                                                                                                                                               |
|                                        | olay and sand mixed                                                                                                                                                                                                                       |
|                                        | sand, (Mater Temp. 65")                                                                                                                                                                                                                   |
|                                        | clay, brick                                                                                                                                                                                                                               |
|                                        | sand, muck                                                                                                                                                                                                                                |
|                                        | clay, white                                                                                                                                                                                                                               |
|                                        |                                                                                                                                                                                                                                           |
| <u> </u>                               | 842185029                                                                                                                                                                                                                                 |
|                                        | clay, brown                                                                                                                                                                                                                               |
|                                        | sendstone<br>clay, brown<br>send, brown heavy with mice<br>send, coarse and gravel fine                                                                                                                                                   |
|                                        | sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed                                                                                                               |
|                                        | sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky                                                                                         |
|                                        | sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky                                                                                         |
| ······································ | sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>elay, soft and sand, fine, mixed<br>clay, white sticky<br>N. L. 31'<br>Barf: 248-270                                                           |
| · · · · · · · · · · · · · · · · · · ·  | Sendstone<br>olay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>olay, soft and sand, fine, mixed<br>olay, white sticky<br>No Lo 31'<br>Perf: 245-270<br>1000 GPH G 71'                                         |
|                                        | Sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky<br>N. L. 31'<br>Ferf: 245-270<br>1000 GPH 3 71'                                         |
|                                        | Sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky<br>N. L. 31'<br>Perf: 245-270<br>1000 GPH 3 71'                                         |
|                                        | Sendstone<br>olay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>olay, soft and sand, fine, mixed<br>olay, white sticky<br>No Lo 31'<br>Perf: 245-270<br>1000 GPH 3 71'                                         |
|                                        | Sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky<br>N. L. 31'<br>Perf: 245-270<br>1000 GPH 3 71'                                         |
|                                        | Sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky<br>N. L. 31'<br>Perf: 245-270<br>1000 GPH 3 71'                                         |
|                                        | Sendstone<br>clay, brown heavy with mice<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>elay, soft and sand, fine, mixed<br>olay, white sticky<br>N. L. 31'<br>Perf: 245-270<br>1000 GPH 3 71'                         |
|                                        | sendstone<br>clay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>clay, soft and sand, fine, mixed<br>clay, white sticky<br>W. L. 31'<br>Ferf: 248-270<br>1000 GPH G 71'                                         |
|                                        | semistors         olay, brown         sand, brown heavy with mice         sand, coarse and gravel fine         olay, soft and sand, fine, mixed         olay, white sticky         N. L. 31'         Perf: 245-270         1000 GPH 3 71' |
|                                        | sectors<br>olay, brown<br>sand, brown heavy with mice<br>sand, coarse and gravel fine<br>elay, soft and sand, fine, mixed<br>olay, white sticky<br>No Lo 31'<br>Perf: 248-270<br>1000 GPH 3 71'                                           |

-----

-----

. . . .

1

• •

1 🖂

|                         | UNITED STATES                                                | No. 9/5E-11E1<br>Other Nos. |  |  |
|-------------------------|--------------------------------------------------------------|-----------------------------|--|--|
| U335-CAL-T1<br>May 1948 | GEOLOGICAL SURVEY No9/51<br>WATER RESOURCES BRANCH Other Nos |                             |  |  |
|                         | WELLLOG                                                      |                             |  |  |
| State Cell              | WELL LUU                                                     |                             |  |  |
|                         | II County Coorenants Subarea Arcane                          |                             |  |  |
| Owner <u>HeC</u>        | lellan Field, Well 17                                        | . <u>.</u>                  |  |  |
| Location <u>34</u>      | 50 fest north, 5100 fest west of 55 corner of section 11 (1  | usgs) Fl                    |  |  |
|                         | ·                                                            | <u></u>                     |  |  |
| Drilled by              | Address                                                      |                             |  |  |
| Date                    | Casing diam. 14" Iand-surf. al                               | Lt. <u>60</u> *             |  |  |
| Source of da            | ta Mr. Knapton - McClellan Field                             |                             |  |  |
| /¬                      |                                                              |                             |  |  |
| <u> </u>                | The of Mell' Service of Old' Alerd' and CLANDENU ar and OL T | Thick-                      |  |  |
| Correlation             | laterial                                                     | ness                        |  |  |
|                         |                                                              | (leet)                      |  |  |
|                         | clay, red<br>hardner                                         |                             |  |  |
|                         | send                                                         |                             |  |  |
|                         | bandnen (                                                    |                             |  |  |
|                         | send, lava sand                                              |                             |  |  |
|                         | osmented hard                                                |                             |  |  |
|                         | sand and fine rock                                           |                             |  |  |
|                         | coment hard                                                  |                             |  |  |
|                         | sand, 1678 Sand<br>hardshell                                 |                             |  |  |
|                         | hardpan                                                      |                             |  |  |
|                         | Find gravel                                                  |                             |  |  |
|                         | fine gravel                                                  |                             |  |  |
|                         | hardpan, red                                                 |                             |  |  |
|                         | hardpen, red (This will have high from a start h             | <u></u>                     |  |  |
|                         | sand, lava                                                   |                             |  |  |
|                         | send, lave. low that depth.)                                 |                             |  |  |
|                         | hard cement                                                  | ·                           |  |  |
|                         | File rooks                                                   |                             |  |  |
|                         | sand, lava                                                   |                             |  |  |
|                         | comment                                                      |                             |  |  |
|                         | Lava                                                         |                             |  |  |
|                         | oley. vellow                                                 | <u></u>                     |  |  |
|                         | hand comment                                                 |                             |  |  |
|                         |                                                              |                             |  |  |
|                         | hard gravel                                                  | •                           |  |  |

| STATE OF C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | CALIFORNIA                                                                                                                                                        | Do Not Fill In                                                       |                                                         |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|---------------------------|
| ORIGINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TH<br>F <b>PARTME</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NT OF                               | RCES AGENCY<br>WATER RESOURCES                                                                                                                                    |                                                                      | Nº                                                      | 58851                     |
| Elle with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INFIDE                                                                                                                                               | MIAL                                                                                 | LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                   | <b>r</b>                                                             | State Wall No.                                          | 9N/SE - 111               |
| <b>}</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er Coo                                                                                                                                               | 10 200                                                                               | . 13 NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AIEK V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VELL L                              | KILLERS REPORT                                                                                                                                                    | L                                                                    | Online Walt No.                                         |                           |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                   |                                                                      | Other well No                                           |                           |
| (1) <b>OW</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | (11) WELL LOG:                                                                                                                                                    |                                                                      |                                                         |                           |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lella                                                                                                                                                | m AF                                                                                 | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                   | Total depth                                                                                                                                                       | ft. Depch e                                                          | f completed well                                        |                           |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Range                                                                                                                                                | mo                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formation: Describe by color, chara | cter, size of mall                                                                                                                                                | real, and structure                                                  |                                                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                   | fe. co                                                               |                                                         |                           |
| (2) LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOF                                                                                                                                                  | WELL:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-7                                 | Here                                                                                                                                                              | Pan                                                                  |                                                         |                           |
| County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | are and Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                      | ALACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er. if say VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-11                                | Sugar                                                                                                                                                             | SUT-                                                                 |                                                         |                           |
| Distance from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cities, road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is, railroads.                                                                                                                                       | euc.                                                                                 | 14 436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 14-7.2                                                                                                                                                            | Eine                                                                 | Fard G                                                  | Arre                      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | ······                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 20-30                                                                                                                                                             | Hard                                                                 | Sandy C                                                 | Co.                       |
| (3) TYPE OF WORK (check):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 30-36                                                                                                                                                             | Fine                                                                 | Clared in                                               |                           |
| New Well 🕅 Deepening 🗆 Reconditioning 🗋 Destroying 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 36-49                                                                                                                                                             | Saray                                                                | Clar,                                                   |                           |
| f destruction, describe material and procedure in Item 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41-52                               | And.                                                                                                                                                              | : Clan 14                                                            | Lick                                                    |                           |
| (4) PR(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | (cbeck)                                                                              | :<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (5) EQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PMENT:                              | 52-65                                                                                                                                                             | Fine                                                                 | Silly                                                   | chan                      |
| Jomestic 📋 Industrial 📉 Municipal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | ipal 📋                                                                               | Rotary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61-80                               | Fine                                                                                                                                                              | sar Cl                                                               |                                                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ∙ لہا -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                   | 9. 42                                                                                                                                                             | - In                                                                 | 6 41.1                                                  |                           |
| 6) CASING INSTALLED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 92-98                                                                                                                                                             | 1 der                                                                | t "                                                     | <u> </u>                  |
| STEEL OTHER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | If gravel packed                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98-136                              | Gran                                                                                                                                                              | 1 4                                                                  |                                                         |                           |
| INGLE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INGLE P DOUBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 136-165                                                                                                                                                           | Hart                                                                 | Sinda                                                   | Ro C                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                    | Gage                                                                                 | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t                                   | 165-192                                                                                                                                                           | 1tan                                                                 | L Still                                                 | fire 6                    |
| From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ľu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diam                                                                                                                                                 | or                                                                                   | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To                                  | 192-207                                                                                                                                                           | 1tand                                                                | - Red                                                   | and CP.                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                                                                                                                                                  |                                                                                      | 20"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.                                 | 207-249                                                                                                                                                           | ( valor                                                              | ~ Clay                                                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                   | +                                                                                    | - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                 | 224-240                                                                                                                                                           | - Cee                                                                | Rador                                                   | g sma_                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | -{                                                                                   | í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 240-246                                                                                                                                                           | Labble                                                               | Arrived                                                 | (hermal 2"                |
| ize ut shoe ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | weit eing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                      | Size of grav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 246-261                                                                                                                                                           | Sand                                                                 |                                                         |                           |
| Ascesbe juint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 261-280                                                                                                                                                           | Cobile                                                               | Store (                                                 | Grand 2" Mar              |
| 7) <b>PER</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rions                                                                                                                                                | OR SCI                                                                               | REEN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 280-318                                                                                                                                                           | yello                                                                | - Iont (                                                | lay                       |
| ype of perto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation of na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | me of screen                                                                                                                                         |                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 3/8-340                                                                                                                                                           | Ret                                                                  | Jandy C                                                 | ld.y                      |
| <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .                                                                                                                                                    | Perf.                                                                                | Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 340-354                                                                                                                                                           | <u> </u>                                                             | <u>r (</u>                                              | the sta                   |
| ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ιο<br>τ.                                                                                                                                             | per<br>row                                                                           | ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x in.                               | 274-310                                                                                                                                                           | - Fine                                                               | Hank                                                    | Jacque and                |
| 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                      | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·····                               | 381 - 404                                                                                                                                                         | e la                                                                 | 1.                                                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                    |                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 404 - 408                                                                                                                                                         | And                                                                  | R.                                                      | ······                    |
| 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                   |                                                                      |                                                         |                           |
| 210<br>304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                    |                                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                   |                                                                      |                                                         |                           |
| 210<br>304<br>378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | <u></u>                                                                                                                                                           |                                                                      |                                                         |                           |
| 2/0<br>304<br>378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 1                                                                                                                                                                 |                                                                      |                                                         |                           |
| 2/0<br>304<br>378<br>8) CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 134<br>33<br>NSTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTION                                                                                                                                                | :<br>Y= 11 × X                                                                       | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To other death                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 "                                |                                                                                                                                                                   |                                                                      |                                                         |                           |
| 2/0<br>304<br>378<br>8) CON<br>4.5 A SUPERCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34<br>35<br>NSTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTION<br>provided?                                                                                                                                   | :<br>Yn () N                                                                         | No 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To what depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>55 fr.</u>                       |                                                                                                                                                                   |                                                                      |                                                         |                           |
| 2/0<br>304<br>378<br>8) CON<br>400 4 Jurisee<br>Vere ally strat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J4<br>J4<br>NSTRU<br>salitary sea<br>s waled aga<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTION<br>( provided?<br>hast pollution                                                                                                               | :<br>Yei () N<br>h? Yei ()<br>ft.                                                    | ie []<br>No []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To what depth<br>If ves, note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 fr.<br>depth of strata           |                                                                                                                                                                   |                                                                      |                                                         |                           |
| 2/0<br>304<br>378<br>8) COR<br>(as a surface<br>(are any strat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34<br>36<br>NSTRU<br>sanitary sea<br>a waled aga<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTION<br>provided?<br>hast pollution<br>to                                                                                                           | :<br>Ym () N<br>h) Ym ()<br>ft.<br>ft.                                               | ie []<br>No [7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To what depth<br>If ves, note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 fr.<br>depth of strata           | Work started 10/18 1954                                                                                                                                           | V . Completed                                                        | 2/12 ,,                                                 | 53                        |
| 2/0<br>304<br>378<br>8) CON<br>400 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J4<br>J4<br>STRU<br>SARITARY SEA<br>A vealed ages<br>ft.<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTION<br>provided?<br>hast pollution<br>to<br>Come                                                                                                   | :<br>Yn () N<br>1? Yn ()<br>ft.<br>ft.<br>ft.<br>ft.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | To what depth<br>If ves, note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 fr.<br>depth of strata           | Work started 10/18 195"<br>WELL DRILLER'S STATEM                                                                                                                  | ∠ . Complexed<br>IENT:                                               | 2/12 "                                                  | 53                        |
| 240<br>304<br>378<br>8) CON<br>400 A VACING<br>For ANY STEAD<br>For A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STRU<br>SABILLERY SEE<br>A vested ages<br>ft.<br>ft.<br>TER L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CTION<br>(provided?<br>inast pollution<br>to<br>Come<br>EVELS:                                                                                       | :<br>Ym () N<br>a? Yn ()<br>ft.<br>ft.<br>e.t Gf                                     | No D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To what depth<br>If ves, note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 fr.<br>depth of strata           | Work started /0/18 195<br>WELL DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.                                                     | ∑ . Completed<br>IENT:<br>my jurisdicti                              | $\frac{2}{2}$ 19                                        | 53<br>rt is true to the b |
| 2/0<br>304<br>378<br>8) COP<br>735 4 SUPESCE<br>7000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stru<br>statitary ess<br>ft.<br>ft.<br>ft.<br>TER L<br>th water we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTION<br>( provided?<br>inst pollution<br>to<br>Competition<br>EVELS:<br>is first formed                                                             | :<br>Ym () N<br>h? Ym ()<br>ft.<br>ft.<br>ft.<br>e.t Gr                              | no of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To what depth<br>If ves, note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53 fr.<br>depth of strata           | Work started /0/18 195<br>WELL DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.                                                     | Completed<br>IENT:<br>my jurisdicti                                  | 2/12 19<br>ion and this repo                            | 53                        |
| 2/0<br>304<br>378<br>8) COP<br>4. 3 78<br>8) COP<br>4. 4 surface<br>form<br>form<br>form<br>form<br>form<br>form<br>form<br>form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Statisty and<br>statisty and<br>fr.<br>fr.<br>fr.<br>TER L<br>th water we<br>before yet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTION<br>(provided)<br>inst pollution<br>to<br>Comp<br>EVELS:<br>a first found<br>forsting, if                                                       | :<br>Yes () N<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.  | No gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To what depth<br>If ves, note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 ft.                              | Work started 10/18 1954<br>WELL DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.<br>NAME 3, 8, He<br>(Person.                       | 2 . Completed<br>IENT:<br>my jurisdicti<br>farm, or corporat         | 2/12 19<br>on and this repo                             | 53<br>rt is true to the b |
| 2/0<br>304<br>378<br>8) CON<br>420 J 78<br>8) CON<br>420 J 78<br>8) CON<br>420 J 78<br>40 | JAANTRU<br>JAANTRU<br>JAANTRU<br>JAANTRU<br>JAANTRU<br>JAANTRU<br>JIIII<br>TER L<br>After performer<br>After performer<br>LIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTION<br>(provided)<br>aast pollution<br>to<br>Caronac<br>EVELS:<br>u first found<br>forsting, if<br>writing and                                     | :<br>Yes () No.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft | no I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To what depth<br>If ves, note<br>ft.<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 ft.                              | Work started /0/18 195<br>Well DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.<br>NAME J. B. He<br>(Person,<br>Address             | 2 . Completed<br>IENT:<br>my jurisdicti<br>form, or corporat         | 2/12 19<br>on and this repo<br>3<br>tuan) (Typed or pr  | SZ<br>rt is true to the b |
| 2/0<br>304<br>378<br>8) CON<br>(as a surface<br>(are any strat<br>(are any strat))))                                                                                                                                                                                                                                                                                                                                                                      | Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru<br>Stru | CTION<br>( provided?<br>to<br>to<br>to<br>EVELS:<br>a first found<br>forsting, if<br>writing and<br>STS:<br>n B No                                   | :<br>Yen Car N<br>() Yen C<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.   | io D<br>No D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | To what depth<br>If ves, note<br>ft,<br>ft,<br>ft,<br>ft,<br>ft,<br>ft,<br>ft,<br>ft,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 ft.                              | Work started /0/18 195<br>WELL DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.<br>NAME J. B. He<br>(Person,<br>Address             | Complexed<br>IENT:<br>my jurisdicti<br>Cart C.<br>firm, or corporat  | 2/12 19<br>ion and this repo                            | 53<br>rt is true to the b |
| 240<br>304<br>378<br>8) CON<br>400 4 40<br>400 4 40<br>400 4 40<br>400 4 40<br>400 4 40<br>400 4 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>40 40<br>400<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | After performander y foo<br>ander y foo<br>a versied area<br>fr.<br>fr.<br>fr.<br>fr.<br>fr.<br>fr.<br>fr.<br>fr.<br>fr.<br>fr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTION<br>i provided?<br>inast pollution<br>to<br>Come<br>EVELS:<br>in firsting, if<br>preting and<br>STS:<br>In GP No<br>I./man. with                | :<br>Yen ()<br>Yen ()<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.        | io []<br>No [] | To what depth<br>If ves, note<br>ft.<br>ft.<br>ft.<br>ft.<br>h)<br>we after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 ft.                              | Work sisted /0/18 195<br>WELL DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.<br>NAME J. B. He<br>(Person.<br>Address<br>(SECNED)  | 2 . Completed<br>IENT:<br>my jurisdicti<br>Arm, or corporat          | 2/12 19<br>on and this repo<br>3<br>Suion) (Typed or pe | 53<br>rt is true to the b |
| 2/0<br>304<br>378<br>8) COP<br>700 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JA<br>STRU<br>SARIER<br>A sended are<br>ft.<br>ft.<br>ft.<br>inc<br>TER L<br>ch water w<br>before perfect<br>ELL TE<br>made? Y.<br>O are<br>f water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTION<br>(provided)<br>inst pollution<br>to<br>Come<br>EVELS:<br>in first found<br>forsting, if<br>preting and<br>STS:<br>in fill No<br>1./min. with | :<br>Yes () N<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.<br>ft.  | lo []<br>No [] | To what depth<br>If ves, note<br>ft.<br>ft.<br>ft.<br>ft.<br>st<br>was after<br>later Net Star<br>later Net Star | 50 fr.<br>depth of strata           | Work started 10/18 195<br>WELL DRILLER'S STATEM<br>This well was drilled under<br>of my knowledge and belief.<br>NAME J. B. He<br>(Perion,<br>Address<br>(SIGNED) | 2 . Completed<br>IENT:<br>my jurisdicti<br>frm, or corporat<br>(Tell | 2/12 19<br>on and this repo                             | 53<br>rt is true to the b |

•~ •

-----

٠

1

C-8

<sup>29179-990 9-68</sup> SOM TRIP AD OSP

- - ATE OF CALIFUR IL NRD No. -1++) ( ) MONES ALL WILL LO . ----6. top soil -----4\_\_\_\_ 4D hard shaley cla 1. LONAFICS OF WELLS . 40 . 130 shaley clab -130 2148 135 coarse said . . . . . . . . 135 175 shaley clay . . 175 185 185 shaley clay coarse sand ZOH 204 208 shaley clay sand & gravel 208-254 254 260 1. TYPE OF WORK 1. Nowell & 11 1 • • • (2) A set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se OF PERCENSION L & CONTRA , C., CURNENE Alexandre de la companya de la companya de la companya de la companya de la companya de la companya de la compa Rotary X the top I have all the X ------1 reactions (6 CASING INSTALLED starr Tell t . . 0 - 10 - 261 ft 60am - 13 - 13 - 71 ---- 0 71 12" 8 261 ·---Descript Joint Nelded (7) PERFORATIONS: Type of perforation : mull 1-1/2---the frength to -125-185 \_\_\_\_\_ -----\_\_\_\_ ZO.Q . ZLO\_\_\_\_\_ ----- 240 ---- 260 ----(8) CONSTRUCTION: Barlis vieltung vanzieren en innen Baus 💋 Barlis 👔 ten 👔 ten Tarmena ure Weie and others made against pollation of a Yes . Die of see in a ceptor fact From Metruri of Sealing Cement growt 6/19 \_62 6. WELL DRILLER'S STOFFMENTE (9) WATER LEVELS: This well was and of whiter my jurisdiction and the speece is true on the cast trent ar which we comes near fouged ---my brindledge and bearing Sur ins in Getate pert fat un Willig full NAME Baton Drelling Stanaina erti atter pieterater # P. O. Box 975 U Addres (10) WELL TESTS: -- -- Woodland, California Was a rame too moder at Yes. No. Myg. by shem! (SIGNED) Con of Colors Y -13 ---fr. draw das i ar in 715 Test Deniemiterstore at the Pr a as a chemical analysis mayor \_/ Yes \_ No License No. 13378-3057 11.51 Dated 1 5. 17521 4-37 10H CUIR A 100 DWR 183 (PEV. 3-84)

·

Appendix D Response to Comments

ال د بیم الحمد د د در د

SAC/T207/030.51-9

1

(

: 1

•

# **RESPONSE TO COMMENTS**

SUBJECT: Draft Well Closure Methods Report Water Well Abandonment Phase II McClellan AFB

**REVIEWER:** Alexander MacDonald, Regional Water Quality Control Board

**DATE:** June 30, 1992

Comment: Base Well BW-17 was drilled using the cable tool method. Thus, there is no gravel pack associated with the well. There are no special procedures provided in the report for dealing with this type of well. The current proposed procedures only deal with wells with an annulus and call for perforating the casing, along with pressure grouting. Staff does not recommend this procedure on a well without a gravel packed annulus. The well should be pressure grouted to the surface with no perforation of the casing.

**Response:** The main difference between a well drilled by the cable tool method and one drilled by the rotary method from a well abandonment perspective is that there is no gravel pack associated with the cable tool well. Base Well (BW-) 28 is also constructed by the cable tool method. Since there is no gravel pack, the calculation for cement volume must be adjusted. It is recommended that cement volumes be calculated based on the inside volume of the casing, plus an additional 10 percent to fill the micro-annulus outside the casing. This additional 10 percent is felt to be conservative since subsurface clays may be expected to have swelled up tightly against the well casing. The Well Closure Methods and Procedures Report (the Procedures) will be modified to reflect this approach. Otherwise the decommissioning approach should be the same as other wells, with grout applied under pressure in a series of lifts. This approach is felt to be necessary because of the heterogeneity of the subsurface geology in the vicinity of McClellan AFB. In this way, all zones outside the casing will be sealed for maximum protection against the possibility of contaminants migrating along the casing.

{

# **RESPONSE TO COMMENTS**

- SUBJECT: Draft Well Closure Methods Report Water Well Abandonment Phase II McClellan AFB
- **REVIEWER:** Richard McJunkin and Will Rowe, Department of Toxic Substance Control, Technical and Support Services Branch
- **DATE:** June 30, 1992

# **Comment: General**

1) **Procedures** 

ţ

(

The decommissioning methods outlined in the Procedures lack sufficient detail.

Recommendations

Each well addressed in the Procedures should have a detailed decommissioning plan tailored to local or well-specific lithology, yield, and construction features.

**Response:** It is not possible in this report to provide more details on the decommissioning approach with regard to well construction details because of the contradictory and often conflicting information that exists for the wells. Preliminary work on the wells will involve pulling pumps, cleaning the casing, jackhammering the pad to expose the gravel pack, and downhole television surveying. Following this work, it will be possible to describe in greater detail the decommissioning approach at individual wells (such as intervals that will be perforated, cement volume calculations, etc.) that are based on well construction details. This description will be written in a Technical Memorandum that will be prepared following the preliminary work. Regulatory agencies will have an opportunity to review this Technical Memorandum.

It is also not possible to account for well-specific lithology or yield in advance because of the complexity of the subsurface hydrogeology. The approach described in this report attempts to deal with these factors by field testing the approximate permeability of a given interval prior to cementing; varying the height of individual cemented intervals; and varying the composition of the cement and additives. These adjustments will be documented in the field notes and described in the Informational Field Report that will be prepared following the field work.

SAC/T216/022.51-2

### **Comment: General**

2) Sample Wells Before Decommissioning

**Recommendation:** 

# Before decommissioning, water levels should be measured and samples collected and analyzed. The water surface should be tested for floating product and, if present, a sample should be taken and analyzed.

**Response:** Water levels will be measured during the decommissioning of the wells. Floating products will be removed during preliminary work following removal of pumps from the wells. This product is expected to consist primarily of petroleum-based pump lubricating oil, and will be stored in 55-gallon drums. It will be tested as part of disposal, according to normal State of California procedures. Water in the wells will not be tested, because: (1) water will not be generated at the surface during normal abandonment procedures, and therefore will not have to be disposed; (2) appropriate sampling procedures would require that a large volume of water be pumped, and this water would require expensive disposal procedures; and (3) groundwater characterization samples to support the ongoing remedial investigation at McClellan AFB are best collected from monitoring wells, rather than these production wells with their lengthy perforated intervals.

# **Comment: General**

3) Decommission Uncomplicated Wells First

### **Recommendation:**

Before decommissioning complex wells, such as Base Well 7, decommission wells which are less likely to present technical problems. The experience gained from these wells will help with potentially troublesome wells like Base Well 7.

**Response:** The Procedures will be modified to reflect this approach. It is also hoped that experience gained during Phase I will prove valuable during the present work.

# **Comment: Well Decommissioning**

These issues should be addressed in a work plan on a well-by-well basis. The following considerations should be applied to each well:

1) Identification of Low Permeability Zones

The Procedures do not discuss the locations of low permeability zones in the lithology of each well. Low permeability zones should be sealed to reestablish preexisting aquitards.

**Recommendation:** 

Identification and sealing of low permeability zones in each well should be addressed in the Procedures. Well logs and geophysical logs should be presented with the description of decommissioning of each well. This information will dictate the location of perforating intervals.

**Response:** The Drillers Logs are often contradictory for base wells at McClellan AFB or are so inaccurate that they are almost unusable. Geologic and geophysical logs prepared in nearby monitoring wells are not usable because of the heterogeneity of the geology. This uncertainty is dealt with by pressure-grouting the entire well in a series of short lifts, and by varying the length of the lifts and the cement composition in response to observed conditions at a given well.

### **Comment: Well Decommissioning**

# 2) Perforating the Casing

The Procedures do not discuss how casings will be perforated to assure sealing of the low permeability intervals and the filter pack.

### **Recommendation:**

The Procedures should be amended to specify the methods for perforating blank casing in each well including perforation size, density, and depths, and interval lengths.

### **Response:**

The Technical Memorandum will specify intervals of perforation in each well following the downhole television surveys that will indicate where the existing intervals of perforation lie. The entire casing will be perforated, with perforation of a given interval occurring immediately prior to cementing that interval. The Procedures specify that perforation will be with a mills knife perforator. Language will be added to show that perorations will be four per row, with one row per foot. Each perforation will be about one-third inch in thickness, and about 3 inches in length. The Technical Memorandum may also recommend that certain wells be perforated by explosive shot perforation, based on the conclusions drawn during the preliminary work. Comment: Well Decommissioning

3) Grout Lifts

The Procedures insufficiently discuss how many lifts will be used. Insufficient criteria or rationale are provided for determining how many lifts will be used in well decommissioning. The section titled "Abandonment With a Packer" does not define how existing perforations, expected lithology, and the outcome of the previous lift will determine packer placement.

### **Recommendation:**

The Procedures should include rationale and criteria for determining the number and placement of grout lifts in each well.

**Response:** The Procedures will be modified to provide more detail on this subject. It is expected that decommissioning at a given well will begin with a short lift of about 15 feet and that the lift size will increase if all goes well to a maximum of no more than 50 feet. As described in the comment above, the size of a lift will be influenced by the existing perforations, expected lithology, and outcome of the previous lift. More rationale and criteria will be included.

**Comment: Well Decommissioning** 

4) Hydrofracting

The Procedures do not discuss how hydrofracting will be avoided during grouting. There is some discussion on page 48 of "rule of thumb" estimates of grout pressure; however, the Procedures do not describe how pressure will be monitored and controlled.

**Recommendation:** 

The Procedures should be amended to include methods for determining appropriate pressure and pressure-control.

**Response:** Hydrofracting was discussed in the Procedures on page 47 under measures taken to avoid exceeding the fracture pressure of the formation. Pressure at the surface (downstream from the pump) will be monitored with a gauge. During Phase I, this pressure never exceeded 50 psi. Since this pressure is propagated evenly throughout the fluid, the pressure downhole should be equal to the pressure at the pump plus the pressure exerted by the column of fluid (0.458 psi/ft for water above the water table). The Halliburton "rule of thumb" says that hydrofracting will not occur if pressure does not exceed about 1 psi/ft beneath the ground surface. This pressure shculd not be exceeded at McClellan AFB, as long as gauge pressures at the surface do not

SAC/T216/022.51-5

exceed about 100 psi. The Procedures will be expanded to provide more discussion on these points.

### Comment: Well Specific

1) Base Well 7

According to the Procedures, no information exists about the type of cement used, nor grout takes, during the original decommissioning of this well in the 1960s. Without this information, there is no way to gauge how effectively the filter pack was invaded by the original decommissioning.

### **Recommendation:**

To assure and document that this well is properly decommissioned, it should be decommissioned after experience is gained by decommissioning a similar well in a non-contaminated area. Well LW-1 at Camp Kohler provides an opportunity to drill-out a grouted well and decommission by perforated casing and reinjecting. This experience will help in tackling the likely enormous technical problems presented by Base Well 7.

**Response:** The Technical Memorandum will propose an approach to decommissioning these wells after the television survey has been done. As suggested, BW-7 will be decommissioned after the Camp Kohler Laundry wells have been decommissioned.

### Comment: Well Specific

2) Base Well 8

The Procedures explain that the upper zone of the well will be grouted, then rebored to allow continued use of the lower, uncontaminated interval. This approach may not completely seal the upper interval, especially when the emplaced grout is being drilled-out. During drilling, there is potential for the seal to be fractured, thereby introducing unseen contaminant pathways. This approach leaves too many potential problems unaddressed.

### **Recommendation:**

The entire well should be completely decommissioned. Replacing it with a new well in a non-contaminated area assures the integrity of the seal which isolates the contaminated upper interval.

**Response:** McClellan AFB has decided to delay decommissioning BW-8 for about 6 to 12 months until water hook-ups with City of Sacramento have been accomplished. Until that time, BW-8 will remain inactive as a fire emergency well. After the water

(

hook-up, BW-8 will be completely decommissioned as recommended. The Technical Memorandum will provide details on the approach to decommissioning.

SAC/T216/022.51-7

# **RESPONSE TO COMMENTS**

SUBJECT: Draft Well Closure Methods Report Water Well Abandonment Phase II McClellan AFB

**REVIEWER:** David Wang, Department of Toxic Substance Control

**DATE:** June 30, 1992

Comment: The workplan provides only general guidelines that may be followed for decommissioning base wells. A major element missing from the draft Well Closure Workplan is a description of the well perforation process. The Department believes the perforation technique applied to Base Well-1 (Well Closure - Phase I) may have caused the decommissioning problems encountered at Base Well-1. The Department recommends adding specific and detailed descriptions on the decommissioning procedures for each well.

**Response:** More detailed procedures will be provided in the Technical Memorandum that will be produced after the pumps are removed and the wells are television surveyed. Perforation procedures will depend on existing perforation intervals and an evaluation of the condition of the well casing based on the television survey. Perforations will be made only immediately prior to cementing a given lift of a well, and will typically be cut with a mills knife at four perforations per row and one row per foot of casing.

Comment: The Department does not support trying to keep Base Well-8 in operation for fire fighting. Nearby monitoring wells have found contaminated groundwater at 175-200 feet below ground surface. Partial decommissioning of the base well may not adequately prevent cross contamination of aquifers, and will impact the effectiveness of the lower section. The Department recommends using other base wells located further north for fire fighting reserves.

**Response:** McClellan AFB has decided to delay decommissioning BW-8 for about 6 to 12 months until water hook-ups with City of Sacramento have been accomplished. Until that time, BW-8 will remain inactive as a fire emergency well. After the water hook-up, BW-8 will be completely decommissioned as recommended. The Technical Memorandum will provide details on the approach to decommissioning.

t

# **RESPONSE TO COMMENTS**

SUBJECT: Draft Well Closure Methods Report Water Well Abandonment Phase II McClellan AFB

**REVIEWER:** Mark Malinowski, Department of Toxic Waste Substances

**DATE:** June 30, 1992

### **Comment: General**

ŧ

The draft workplan should describe the well decommissioning process to be followed for each well. Previous perforation techniques applied to Base Well-1 (Well Closure -Phase I) may have caused the decommissioning problems encountered at Base Well-1. The perforation process, perforation intervals and number of lifts to be used should be described for each individual well.

If specific decommissioning information is not available or cannot be determined until after the well cleaning and video survey, the Department recommends a Technical Memo, describing the proposed decommissioning procedures for each well, be prepared and submitted to the agencies for review and comments.

The emphasis of well decommissioning should be placed on perforating and sealing the aquitard zones. Very little geologic information has been provided to ensure that the zones of interest are adequately determined prior to initiating decommissioning procedures. The Department recommends that nearby pilot boring and monitor well logs (lithologic and geophysical) be include during the discussion on zones considered for perforation.

The Department questions the necessity of running video surveys prior to cleaning the wells since the wells should be cleaned regardless of the video results. The video survey after the cleaning would serve to determine which well construction diagram is accurate.

Permits and regulatory requirements (State and local) should be included or referenced from Phase I workplan.

The Base Wells should be tested for water level, presence of floating product and sampled for contaminants prior to abandonment.

Decommissioning of BW-7 should be attempted after drilling-out the Camp Kohler well LW-1. The experience gained from the LW-1 well should help in the BW-7 effort.
The Department does not support trying to keep Base Well 8 in operation for fire fighting. Nearby monitoring wells have found contaminated groundwater at 175-200 feet below ground surface. Deeper aquifer zones have not been tested; however, con tamination is expected. The Department recommends using base wells located further north, if possible, for fire fighting reserves.

The Department requires that McAFB provide information on future efforts for Base Wells 4, 5, 9, 11, 14, 16, 22, 23, 24, Old BW-29 and the "Boy Scout Well".

Well construction diagrams should be included for each well and where possible lithologic logs from nearby pilot holes or monitor wells should be included for comparison to driller logs.

**Response:** It is not possible in this report to provide more details on the decommissioning approach with regard to well construction details because of the contradictory and often conflicting information that exists for the wells. Preliminary work on the wells will involve pulling pumps, cleaning the casing, jackhammering the pad to expose the gravel pack, and downhole television surveying. Following this work, it will be possible to describe in greater detail the decommissioning approach at individual wells (such as intervals that will be perforated, cement volume calculations, etc.) that are based on well construction details. This description will be written in a Technical Memorandum that will be prepared following the preliminary work. Regulatory agencies will have an opportunity to review this Technical Memorandum.

It is also not possible to account for well-specific lithology or yield in advance because of the complexity of the subsurface hydrogeology. The approach described in this report attempts to deal with these factors by field testing the approximate permeability of a given interval prior to cementing; varying the height of individual cemented intervals; and varying the composition of the cement and additives. These adjustments will be documented in the field notes and described in the Informational Field Report that will be prepared following the field work. Because of the continual variation characteristic of alluvial materials, it is best to pressure-grout the well casing throughout the entire saturated interval, rather than attempting to isolate aquitards and only sealing them.

It is recommended that television surveys be run both before and after cleaning the casing. For one thing, television surveys are relatively inexpensive to run. In addition, the first video may indicate that the casing is in poor enough condition that conventional wire brush cleaning would risk casing collapse and a more gentle cleaning or no cleaning may be warranted. Finally, in some cases the well casing may be found to be clean enough to allow adequate evaluation of the condition of the casing, and a second video may not need to be run.

It was found during the first phase that State and County permits were not necessary for well decommissioning at McClellan AFB, because the work is governed by the terms of the Inter Agency Agreement, which provides for supervision by representatives of the various agencies of the County and State. Water levels will be measured during the decommissioning of the wells. Floating product will be removed during preliminary work following removal of pumps from the wells. This product is expected to consist primarily of petroleum-based pump lubricating oil, and will be stored in 55-gallon drums. It will be tested as part of disposal, according to normal State of California procedures. Water in the wells will not be tested, because: (1) water will not be generated at the surface during normal abandonment procedures, and therefore will not have to be disposed; (2) appropriate sampling procedures would require that a large volume of water be pumped, and this water would require expensive disposal procedures; and (3) groundwater characterization samples to support the ongoing remedial investigation at McClellan AFB are best collected from monitoring wells, rather than these production wells with their lengthy perforated intervals.

The Procedures will be modified to specify that LW-1 and LW-2 at Camp Kohler will be abandoned before BW-7. It is also hoped that experience gained during Phase I will prove valuable during the present work.

McClellan AFB has decided to delay decommissioning BW-8 for about six to twelve months until water hook-ups with City of Sacramento have been accomplished. Until that time, BW-8 will remain inactive as a fire emergency well. After the water hookup, BW-8 will be completely decommissioned as recommended. The Technical Memorandum will provide details on the approach to decommissioning.

McClellan AFB will continue to evaluate other wells for decommissioning in the future. The Procedures attempted to facilitate this process by gathering information on well locations and construction details. It is expected that there will be a Phase III following completion of the present work.

Contradictory well logs and diagrams were obtained for various wells when gathering data for the preparation of the procedures, and therefore only the original Well Drillers Report was included for a given well when available. The Technical Memorandum that will be prepared following completion of the preliminary work will include actual information on well construction, as well as the appropriate geologic log, if available.

Comment: Page 4, paragraph 3, Permits and regulatory requirements should be included or referenced from Phase I workplan.

**Response:** It was found during Phase I that state and county permits were not necessary for well decommissioning at McClellan AFB, because the work is governed by the terms of the InterAgency Agreement, which provides for supervision by representatives of the various agencies of the county and state. However, because the regulatory requirements set standards that are met or exceeded in all phases of well decommissioning at McClellan AFB, Phase I work plan will be referenced in this context. Comment: Page 18, Table 4 indicates a casing diameter of 16" while the drillers log indicates a 14". Correct or explain the discrepancy.

**Response:** The actual diameter is 16 inches, so the table is correct and the drillers log is incorrect.

Comment: Page 19, paragraph 3, The drillers log indicates a TD of 881 feet and the text indicates 930 feet. Correct or explain the discrepancy.

**Response:** The 930-foot depth was taken from McClellan AFB files. It is unknown which depth is correct. However, the actual original borehole depth will not affect the well decommissioning.

Comment: Page 20, The drillers log for a BW-20 should be included in the appendix. Logs form monitor wells 210 and 211 should also be presented.

**Response:** A drillers log was not located for BW-20. Available information was taken from McClellan AFB files. Geologic logs from wells 210 and 211 would serve no purpose since they are 500 feet away from BW-20.

## Comment: Page 31, paragraph 4, BW-9. BW-9 should be further investigated and properly decommissioned in future efforts.

**Response:** Agreed. This well will be the object of future decommissioning efforts.

Comment: Page 35, paragraph 1, BW-15. BW-15 should be further investigated and properly decommissioned in future efforts.

Response: Agreed. This well will be the object of future decommissioning efforts.

Comment: Page 40, paragraph 5, Remedial efforts at the Davis site include implementation of a Remedial Investigation for groundwater contamination.

**Response:** The text will be modified to reflect this fact. The decommissioning of BW-26, however, is not a part of the Remedial Investigation.

#### Comment: Page 42, paragraph 2, What type of "licensed professional"?

**Response:** The text will be modified to read a "California Registered Geologist or Professional Engineer."

)

Comment: Page 42, paragraph 4, All equipment that comes into contact with groundwater should be decontaminated prior to arrival at each well.

**Response:** The text will be modified to reflect this statement.

Comment: Page 43, paragraph 1, Since the equipment used in cementing will be decontaminated, how will the equipment taken from base wells (pumps, bowls, strainers, etc.) be treated prior to sending to DRMO.

**Response:** All pump equipment will be steam-cleaned as it is pulled out of the well. Steam cleaning water will be allowed to run back down the well to avoid disposal problems. The text will be modified to reflect this statement.

Comment: Page 43, paragraph 4, The Department questions the necessity of running video surveys prior to cleaning the wells since the wells should be cleaned regardless of the video results. The video survey after the cleaning would serve to better determine which well construction diagram is accurate.

**Response:** It is recommended that television surveys be run both before and after cleaning the casing. First, television surveys are relatively inexpensive to run. In addition, the first video may indicate that the casing is in poor enough condition that conventional wire brush cleaning would risk casing collapse and a more gentle cleaning or no cleaning may be warranted. Finally, in some cases the well casing may be found to be clean enough to allow adequate evaluation of the condition of the casing, and a second video may not need to be run.

Comment: Page 44, paragraph 4, The technical memo should also include specific decommissioning information for each well (e.g. perforation interval, type of perforation tool-knife, bullet, explosive-, number of lifts needed and interval of lifts, etc.

**Response:** The Technical Memorandum will attempt to supply this information.

Comment: Page 47, paragraph 1, Perforation of the entire well and then cementing is probably the cause of the decommissioning problems encountered at BW-1 during Phase I. The Department does not support use of "perforation and cementing the entire casing in one lift" technique.

**Response:** This approach is only mentioned because it is the conventional method of decommissioning wells. The text goes on to say that the casing will be perforated just prior to cementing each lift (pages 48-49).

ł

## Comment: Page 48, Bullet 1. Describe the criteria to be used in determining if/when perforation of the casing is necessary.

**Response:** Blank sections of casing will be perforated prior to cementing unless the television survey reveals that the casing is too weak to sustain perforation.

## Comment: Page 49, Bullet 4. The perforated interval(s) should be identified for each well.

**Response:** The Technical Memorandum will describe intervals to be perforated based on the results of the television survey, which will identify intervals of existing perforations. However, final decisions on perforation will be made in the field and be based on results of prior episodes of perforation for that well.

## Comment: Page 49, paragraph 2. Specify if wells located within buildings will not be excavated 3 feet below grade.

**Response:** Wells located within buildings will not be excavated 3 feet below grade. Instead, the cement will be brought up flush with the floor surface. The Procedures will be modified to clarify this.

## Comment: Page 50, BW-7. The Department recommends attempting to seal the lowe section of BW-7 and overwashing and removing the upper 170-200 feet.

**Response:** The Technical Memorandum will propose an approach to decommissioning BW-7. This approach will most likely be similar to the approach used in LW-1 and LW-2 at Camp Kohler. Decommissioning of BW-7 will also most likely follow the decommissioning of the Camp Kohler wells in order to benefit from the experience gained at Camp Kohler.

# Comment: Page 51, paragraph 2, BW-8. Contamination has been found at 175' BGS. The Department recommends that BW-8 be completely decommissioned and not used as a fire fighting reserve well.

**Response:** McClellan AFB has decided to delay decommissioning BW-8 for about 6 to 12 months until water hook-ups with City of Sacramento have been accomplished. Until that time, BW-8 will remain inactive as a fire emergency well. After the water hook-up, BW-8 will be completely decommissioned as recommended. The Technical Memorandum will provide details on the approach to decommissioning.

**Comment:** Page 51, Camp Kohler Wells. Provide any of the driller or lithologic logs for the Seismic and Triax Holes. The Departments evaluation of the cement bond logs indicate that a poor seal (if any) exists. The Department recommends perforating the casing and squeezing the hole with cement.

**Response:** No driller or lithologic logs are available for the Seismic Well and Triax Holes. McClellan AFB agrees that the acoustic bond log for the Triax Hole contains contradictory signals and may indicate that the cement seal is poor or nonexistent. This well will be decommissioned through pressure-grouting. A detailed approach will be provided in the Technical Memorandum. The data from the acoustic bond log for the Seismic Well, however, are relatively unambiguous. Therefore it is recommended that this well be decommissioned as proposed in the Procedures.

# Comment: Page 53, paragraph 3, All water generated during the decommissioning effort (not just decontamination water) should be pumped into a Baker tank and sent to the GWTP for disposal. Use of berms and evaporation is not acceptable.

**Response:** The decommissioning process has been designed so that no water will be generated and will therefore require no disposal. Decontamination will take place with a steam cleaner fitted with a circular sprayer mounted to the well head, with steam jets directed downward into the well. In this way decontamination water will flow back down the hole. If it should become necessary to generate wastewater for disposal through some unanticipated event during the field work, this water will be collected in a Baker Tank and disposed at the Groundwater Treatment Plant, as recommended here. The Procedures will be modified to reflect this language.

#### Comment: Page 9, paragraph 2, Edit. Should reference to BW-16 be BW-15?

**Response:** During the record search for this project, it was found that the well that was previously thought to be BW-16 was actually BW-15. BW-16 was located along Patrol Road in the western portion of McClellan AFB.

#### Comment: Page 31, paragraph 3, Base Well 6 is not identified on Figure 2.

**Response:** The presumed location of BW-6 will be plotted on Figure 2.

**TECHNICAL MEMORANDUM** 

Í

1

| PREPARED FOR: | Marc Garcia/SM-ALC/EMR<br>Greg Churchill/SM-ALC/EMR<br>Norman Orrick/SM-ALC/EMR |
|---------------|---------------------------------------------------------------------------------|
| PREPARED BY:  | Chuck Elliott/SAC                                                               |
| COPIES:       | Starr Dehn/SAC                                                                  |
| DATE:         | October 1, 1993                                                                 |
| SUBJECT:      | McClellan AFB Well Abandonment Phase<br>Preliminary Field Activities            |
| PROJECT:      | SAC28722.31.A4                                                                  |

#### Introduction

Task 2 of the Phase II Well Abandonment Program at McClellan AFB involved the preparation of wells for decommissioning. This preliminary work included the removal of existing turbine pumps from five inactive wells, a downhole television survey in those wells, removal of lubricating oil from four wells, cleaning of the casings in four wells, coring into the gravel packs in five wells, and a second television survey in the four wells that were cleaned. In addition, formerly abandoned wells at Camp Kohler were located by digging with a backhoe, and two seismic wells at Camp Kohler were given acoustic bond log surveys. This Technical Memorandum describes the preliminary work accomplished at McClellan AFB and summarizes the findings of the television surveys and coring into the gravel pack. Recommendations for completing the decommissioning are also included.

#### **Preliminary Work**

#### **Pump Removal**

Pumps were removed from base wells BW-8, BW-13, BW-17, BW-20, and BW-28 between April 20 and May 3, 1992. The work was performed by Layne-Western Company under the supervision of CH2M HILL. Safety and ambient air conditions during this and all field work were monitored by CH2M HILL using a photoionization detector, an explosimeter, and a radiation meter. No elevated readings above background were observed during pump removal. All pump equipment and parts were steam-cleaned for decontamination as they were pulled from the wells, and water was allowed to run back down the holes. Pumps and piping were temporarily stored at

Π

CHANHILL

BW-13 and then moved to the McClellan AFB Defense Reutilization and Marketing Office (DRMO) at Building 700. Pumps and piping from BW-8 have been temporarily stored at the Contractor's Staging Area pending reinstallation in the well.

#### Base Well No. 8

ساريد ال

Pump removal at BW-8 took place between April 21 and 24, 1992. Removed were a U.S. Motors 100-horsepower (hp) electric motor with a U.S. Hollowshaft gear drive connected to a diesel auxiliary motor and a Peerless 10-stage bowl assembly set at a depth of 160 feet below the ground surface. It was necessary to jackhammer the concrete pedestal on which the head assembly rested because this assembly was cemented in place. It was also necessary to cut the head tube that distributes lubricating oil through the discharge head assembly to the main oil tube that enclosed the line shaft and bearings. This tube is set under tension with a tension nut, which was frozen and had to be cut to release the tension.

During work at BW-8, a 10-inch-diameter casing liner was found inside the regular 12-inch-diameter casing. Because the pump column was 8 inches in diameter and the pump bowls were 9-5/8 inches in diameter, the pump bowls were tightly wedged against the side of the liner and were difficult to pull.

#### Base Well No. 13

The pump was removed from BW-13 between April 20 and 22, 1992. The motor was a U.S. Motors 100-hp electric motor, with a Randolph right-angle gear drive attached to a diesel auxiliary motor and a Peerless eight-stage bowl assembly set at a depth of 150 feet below the ground surface. The diameter of the pipe column decreased from 10 inches to 8 inches at a depth of 60 feet.

#### Base Well No. 17

Pump removal at BW-17 took place on May 2 and 3, 1992. Because power lines run directly above Building 699, in which BW-17 is located, it was necessary for McClellan AFB to turn off the power and take down the lines, so work took place on a weekend. Pump parts consisted of a U.S. Hollowshaft 75-hp electric motor with a Floway gear drive and a Floway three-stage bowl assembly set at a depth of about 140 feet. The former auxiliary motor had been removed previously. The pump column consisted of 8-inch diameter pipe in 10-foot sections, with the exception of the first section, which was 8 feet long. As with BW-8, it was necessary to cut the head tube to release the tension on the main oil tube before pulling out the pump column materials.

#### Base Well No. 20

The pump in BW-20 was removed on April 27, 1992. The motor was a General Electric 7.5-hp induction motor, with no auxiliary motor, and a Johnston eight-stage bowl assembly set a depth of 100 feet below the ground surface. Apparently, the original pump was removed from this well in 1968 and replaced with this smaller pump, and BW-20 changed from a base supply well to a backup supply well serving Building 200 only. The pump column in BW-20 was 4 inches in diameter. Pump removal went smoothly except that the air line fell to the bottom of the well (it was not banded to the column pipe) when cut.

#### Base Well No. 28

Pump removal at BW-28 took place on April 20, 1992. The pump was a Franklin Electric 2-hp submersible pump set at a depth of 105 feet below the ground surface on five sections of 21-foot-long, 2-inch-diameter discharge pipe. This well was not part of the base water supply system but served Building 1082 only. In 1991 the groundwater level fell below the pump intake. Pump removal was simple and uneventful.

#### **Initial Television Surveys**

Following removal of the pumps, downhole television surveys were performed in each well to be decommissioned or modified during Phase II. The television surveys were conducted by Layne-Western Company under CH2M HILL's supervision. BW-8, BW-13, and BW-28 were surveyed on April 29, 1992, and BW-7, BW-17, and BW-20 on May 6, 1992. The purpose of the surveys was to obtain initial evaluations of the conditions of the casings prior to any further work. The survey also identified wells that contained lubricating oil and that required cleaning, and provided basic confirmation of well construction details. As the camera and cable were withdrawn from each well they were steam-cleaned and the water allowed to flow down the well. Main findings of the surveys follow.

#### Base Well No. 7

BW-7 was first located in 1982 during the Phase II Installation Restoration Program at McClellan AFB. The well lay below grade in a buried vault and was located with a magnetic flux indicator, then excavated. An extension was welded onto the casing to bring it above grade, and the excavation was filled in. Sounding of the well revealed the presence of an obstruction at a depth of approximately 80 feet. McClellan AFB staff attempted to drill out the obstruction using a "rotary wash" method, but was unsuccessful.

It was hoped that a television survey in BW-7 would reveal the nature of the obstruction. However, the camera contacted silty fill material at a depth of 73 feet below the top of the casing (70.5 feet below grade) and was unable to reveal the nature of the obstruction. The casing above that point was dry and appeared to be in good condition. The casing was in 4-foot sections, normally suggestive of cable-tool construction. However, base records and the report from the 1982 investigation both state that the well was constructed by rotary drilling and contains a gravel pack annulus.

í

#### Base Well No. 8

The television survey revealed that BW-8 was 779 feet deep below the top of the casing (the well lies within a vault about 10 feet below grade). A 1966 television survey had previously noted that the well was 785 feet deep. A 10-inch-diameter liner was found to run from the well head to a depth of 666 feet. At various depths, the liner was heavily encrusted with iron bacteria that obscured views of its condition. Below the liner was open hole, corresponding to the "large cavity" noted on Base records. Pump lubricating oil to a depth of 7 feet (about 29 gallons) was found floating on the water in the well.

A 12-inch-diameter casing is present at the surface and may be the original well casing for the 400-foot well noted in Base well records. Gravel feed pipes are also present suggesting a rotary drilled well. However, the television video revealed joints in the casing liner every 5 feet, suggestive of a cable-tool well. Presumably, the original well was drilled by rotary methods to a depth of about 389 feet, and 12-inch-diameter casing was installed. Perforations extended from a depth of 170 feet to 389 feet, according to records. At some later time, the well was deepened by driving 10-inch-diameter casing through the existing well by the cable-tool method. This casing was drilled to a depth of 779 feet, then withdrawn to a depth of 666 feet, leaving a large cavity in the semiconsolidated rock. There are no perforations in the casing liner, and water is drawn into the well from the open cavity below. The current water level is 90 feet below the top of the casing (about 100 feet below the ground surface).

#### Base Well No. 13

The television survey found the total depth of BW-13 to be 374 feet rather than the originally reported 391 feet, suggesting that the lower 17 feet of the casing was filled with sediment. The 14-inch-diameter casing reduces to 12 inches between 141 and 143 feet in depth. The water level was found to be about 97 feet below the top of the casing (about 107 feet below grade, as the well lies inside a subsurface vault). About 1-1/2 feet of pump lubricating oil floated on the water (about 8 gallons of oil).

The main conclusion drawn from the television survey was that the casing is in very poor condition. Fortunately, relatively little iron bacteria obscured the view of the casing. Numerous breaks were visible in the casing, primarily open vertical seams, but also polygonal crack patterns, breaks along joints, and holes. Because of the fragile condition of the casing, no attempt was made to clean it or bail the sediment from the bottom of the well.

#### Base Well No. 17

The television survey contacted sediment on the bottom of BW-17 at a depth of 317 feet. According to Base records, this well was originally drilled to a depth of 930 feet but then sealed in 1947 at a depth of 390 feet. However, perforations extended only to a depth of 307 feet (312 feet was the depth given in the records), and a

1971 photographic survey found the well to be 344 feet deep. It contained a 16-inchdiameter casing, as expected. Joints were visible in the casing every 4 feet, indicating that the well was drilled by the cable-tool method. This also conformed to Base records. In places, unusually large perforations were visible that may have allowed the entry of sediment. Encrustation of iron bacteria obscured the casing through much of the well. The water level was about 105 feet below the top of the casing and about 2 feet (11 gallons) of oil floated on the water.

#### Base Well No. 20

The bottom of BW-20 was contacted at a depth of 561 feet below the top of the casing. The well lay in a subsurface vault about 7.5 feet below the ground surface. According to Base records, the reported original depth of BW-20 was 600 feet. If these records are correct, a little more than 30 feet of sediment lies in the bottom of the well. BW-20 contains 14-inch-diameter steel casing that is set inside a 32-inch-diameter conductor casing at the well head. The water level lay at a depth of about 110 feet below grade. About 3 feet (24 gallons) of pump lubricating oil was floating on the water. BW-20 was found to contain heavy encrustations of iron bacteria obscuring the view of the casing throughout much of the well. The air line that fell into the well during pump removal was visible from a depth of 479 feet to a depth of 561 feet.

#### Base Well No. 28

Í

ł

The television survey contacted bottom in BW-28 at a depth of 240 feet although the depth indicated on Base records is 248 feet. The well casing diameter is 8 inches (set inside a 14-inch-diameter, cement-filled conductor casing). Groundwater was contacted at a depth of 106 feet. No lubricating oil was present, which was as expected because BW-28 contained a submersible pump rather than a turbine pump. Because of iron bacteria fouling the well casing and near opacity of the water due to apparent lack of groundwater movement through the well, it was very difficult to evaluate the condition of the casing.

#### **Removal of Pump Lubrication Oil**

Oil was found during initial television surveys in wells BW-8, BW-13, BW-17 and BW-20, the four wells that contained turbine pumps. This oil was bailed out between May 11 and 16, 1992, and stored in 55-gallon drums at the wellhead. Fifty to 100 gallons of oil/water mixture was dipped from each of the four wells.

RAMOS Environmental Services was contracted to recycle the oil being stored in the drums. Removal was accomplished on May 20, 1992, after chloro-detect and flammability tests were performed to confirm that the oil was nonhazardous according to California regulations. A total of 239 gallons of oil/water mixture was removed. The empty 55-gallon drums were then disposed to a drum recycler.

#### Well Rehabilitation

After the pump lubricating oil had been removed, some rehabilitation of the wells was necessary. With the exception of BW-7, which contained no water, all the McClellan AFB wells were fouled with gelatinous masses of iron bacteria and encrusted with iron oxide deposits. Rehabilitation consisted of cleaning with a steel brush fabricated for each well diameter, in order to allow improved evaluation of the condition of the well casing. BW-13 was excluded from this brushing because of the fragile condition of the well casing detected during the initial television survey and the fear of casing collapse. For wells BW-8, BW-17, BW-20, and BW-28, cleaning consisted of slowly lowering and raising the brush through the entire length of the casing until it was judged to be clean. The cable and brush were steam-cleaned as they were pulled from the well. Cleaning took place between May 12 and 16, 1992, with about 1 day devoted to cleaning at each well. It was necessary to work on BW-17 on the weekend because of the need to remove power lines.

Each well was sounded after the cleaning of the casing, and an additional 7 feet of sediment was found to have settled to the bottom of BW-17. Apparently, the movement of the bailer past the zones of large perforations in this well caused additional material to enter the well. After some consideration, it was decided to bail the sediment from BW-17. BW-13 and BW-20 may also be candidates for sediment removal. However, BW-13 was considered too fragile to risk bailing. BW-20 contained about 30 feet of sediment, but the bottom of this well lay at a depth of 600 feet below the ground surface. At this great depth, groundwater flow gradients are reported to be vertically upward, and so removal of the relatively small amount of material was considered unnecessary. Cement volumes will be observed during decommissioning to evaluate whether this portion of the well is successfully sealed.

Sediment was bailed from BW-17 over the weekend of June 13 and 14, 1992. Sediment was placed in a metal bin adjacent to the wellhead. Progress was fairly rapid to a depth of 356 feet below grade. From that point, additional bailing proved impossible. This depth was below the bottom of the well noted in the 1971 photographic survey but above the depth noted in the Base records. Bailing past this depth was attempted for about 2 hours. Presumably, the base of the well lies at 356 feet. The lower portion of the casing in BW-17 exposed after bailing the sediment was then cleaned by brushing, as in other wells. During this operation, 5 additional feet of sediment entered the well and was subsequently removed by bailing. Sediment was later disposed to the McClellan AFB soils-holding area at the direction of Base disposal personnel.

#### **Exposure of the Gravel Pack**

Portio s of the concrete pads at the wellheads were removed by jackhammering to expose the underlying gravel pack. The objective of this work was to allow an evaluation of the diameter of the annular space surrounding the casing and the composition of the gravel pack. This information is needed to reduce uncertainty during cement volume calculations when the wells are being decommissioned. BW-17 and BW-28 were drilled by the cable-tool method so removal of the pads confirmed that no gravel pack was present in these wells.

As previously described, BW-8 has a 10-inch-diameter liner inside the 12-inch-diameter well casing. During removal of a portion of the concrete pad, a 2-inch-diameter submerged pipe was discovered that was apparently used to feed sand into the annular space between the casing and liner. When exposed, the annular space appeared to be filled with sand; the annular space between the well casing and the conductor casing was filled with pea gravel.

At BW-20 a steel plate welded onto the 32-inch-diameter conductor casing covered the space between the conductor and the 14-inch-diameter well casing, covering the gravel pack. However, the composition of the gravel could be seen in the two feeding pipes, which were filled with 1/2-inch pea gravel to the top.

#### **Final Television Survey**

1

A second television survey was performed in the wells that had been cleaned. BW-8, BW-17, and BW-20 were videotaped on May 21, 1992 and BW-28 on May 26, 1992. It was necessary to reclean BW-28 on June 8, 1992, after the television survey revealed that the casing was still obscured by iron bacteria. As described above, BW-17 was recleaned on June 14, 1992, after sediment was bailed from the bottom of the hole on June 13 and 14, 1992. Downhole television surveys were then taken in BW-17, BW-20, and BW-28 on June 20, 1992, and in the Triax Hole at Camp Kohler on June 25, 1992.

The surveys revealed that the casings in BW-8, BW-17, BW-20, BW-28, and the Triax Hole were sound enough to withstand pressure grouting. Void spaces of unknown diameter were observed for 2 feet in the open borehole beneath the casing liner in BW-8 and at depths of 679 and 680 feet, and 722 and 723 feet. Large perforations were observed in BW-17 at depths of 281 to 288 feet and 297 to 306 feet. These perforations were presumably the source of the sediment that migrated into the well.

#### Camp Kohler Laundry Wells No. 1 and 2

In December 1991 an effort had been made to locate Laundry Wells No. (LW-) 1 and 2 by surveying the locations from old maps and then digging down with a backhoe. The southernmost of these wells, LW-1, was located at that time with a mushroom-shaped plug of concrete extending above casing that had been cut about 4 feet below grade. However, field personnel were unsuccessful at locating LW-2. Since that time, old aerial photographs found in Base files have offered an improved opportunity to locate LW-2. On June 16 through 18, 1992, a second attempt was made to locate LW-2, and LW-1 was dug up again.

When LW-1 was exposed, the concrete plug was removed, and a 12-inch-diameter steel casing was revealed. Further excavation to a depth of about 9 feet failed to expose any conductor casing or gravel pack. In the opinion of field personnel, this well was constructed by cable-tool methods and therefore did not contain a gravel pack. An

(

extension was then welded onto the casing to bring it above grade, and the hole was backfilled with dirt.

It took about 4 hours to locate LW-2, even with the assistance of aerial photographs. Finally, the well was found about 4 feet below grade, filled with cement. Further excavation revealed a 32-inch-diameter conductor casing. After the cement was jack-hammered, a 14-inch-diameter well casing was exposed. Between the well casing and the conductor casing was a loose pea gravel filter pack. An extension was then welded to this well to bring it above grade, and the hole was backfilled with dirt.

#### **Conclusions and Recommendations**

Table 1 summarizes well construction details pertinent to the well decommissioning that were obtained during preliminary work on McClellan AFB wells. The preliminary work revealed some previously unknown information regarding certain wells that will affect the decommissioning approach. In addition, regulatory agencies have expressed some concerns that will also affect the approach. This section summarizes the main conclusions drawn during the preliminary work and describes necessary changes to the approach outlined in the Well Closure Methods and Procedures Report (the Report).

| Table 1   Summary of Well Construction Data   Pertinent to Decommissioning |                                  |                                       |                                    |                                             |                                                        |                                                |                       |  |  |
|----------------------------------------------------------------------------|----------------------------------|---------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------------------|------------------------------------------------|-----------------------|--|--|
| Well                                                                       | Well Casing<br>Diameter (in.)    | Conductor<br>Casing<br>Diameter (in.) | Filter Pack<br>Composition         | Existing<br>Perforated<br>Intervals (ft)    | Proposed<br>Perforated<br>Intervals (ft)               | Grout Volume<br>Required (f1 <sup>3</sup> /ft) | Depth of<br>Well (ft) |  |  |
| BW-7                                                                       | 12                               | 24                                    | Pea gravel                         | N/A                                         | Will be<br>determined                                  | 1.73                                           | 398                   |  |  |
| BW-8                                                                       | 10 (inner)<br>12 (outer)         | 26                                    | Pea gravel                         | Uncertain                                   | Will be<br>determined                                  | 1.81 (liner)<br>1.95 (casing                   | 779                   |  |  |
| BW-13                                                                      | 14 (0-142 ft)<br>12 (142-374 ft) | 24                                    | <sup>1</sup> /«-pea gravel         | 178-391                                     | 80-170                                                 | 1.90 (0-142 (ft)<br>1.73 (142-374 ft)          | 391                   |  |  |
| BW-17                                                                      | 16                               | 24                                    | N/A                                | 212-214;<br>281-288;<br>297-306             | 85-200;<br>225-270;<br>315-356                         | 1.54                                           | 356                   |  |  |
| BW-20                                                                      | 14                               | 32                                    | <sup>1</sup> /2-inch pea<br>gravel | 168-178;<br>219-258;<br>338-374;<br>494-506 | 90-155;<br>190-210;<br>270-325;<br>385-485;<br>515-569 | 2.88                                           | 569                   |  |  |
| BW-28                                                                      | 8                                | 14                                    | N/A                                | 143-147;<br>202-204;<br>233-236             | 90-130;<br>160-190;<br>215-225                         | 0.38                                           | 248                   |  |  |
| LW-1                                                                       | 12                               | N/A                                   | N/A                                | NA                                          | Will be<br>determined                                  | Uncertain                                      | 420                   |  |  |
| LW-2                                                                       | 14                               | 32                                    | Pea gravel                         | N/A                                         | Will be<br>determined                                  | Uncertain                                      | 514                   |  |  |
| Triax Hole                                                                 | 11%                              | 13¾                                   | N/A                                | N/A                                         | 0-190                                                  | 1.03                                           | 190                   |  |  |
| Seinmic                                                                    | 7                                | N/A                                   | N/A                                | N/A                                         | N/A                                                    | 0.27                                           | 500                   |  |  |

#### Base Well No. 7

There is an obstruction in BW-7 at a depth of about 71 feet below grade that reportedly resisted drilling in 1982. A television survey performed as part of the preliminary work for this project did not reveal what the obstruction may be. However, it is possibly the top of the well's original pump column. When the well was abandoned, the workers may have removed the motor and cut the column, allowing it to fall to the bottom of the well. However, if the well is really 398 feet deep, then the original pump bowls must have been set at a depth of 327 feet. This seems unreasonably deep. On the other hand, if the casing had been filled with cement, rotary drilling should have penetrated beyond a depth of 71 feet.

Because of the uncertainty surrounding this well, the proposed first step is an attempt to further evaluate the well by core-drilling a 6-inch-diameter hole through air-rotary methods. If no resistance is met, the hole should be continued to the bottom of the well. The well can then be perforated by shot perforation and grout injected under pressure in stages as described in the Report. If no cement is encountered but the top of the pump column is found, an effort should be made to fish out the column. The casing can then be evaluated by means of a television survey and the well decommissioned as specified in the Report. If no cement is found but the well is filled with gravel or sand, it should be drilled out by mud or air techniques and decommissioned as specified in the Report. Finally, if the pump column is found encased in cement, it will be necessary to develop a new approach. This may involve drilling out the column with a mill bit or constructing an "overwash" bit and drilling outside the casing to remove the gravel pack. In the former approach, the well would be perforated and pressure-grouted. In the latter approach, cement would be tremmied down to replace the gravel pack. The regulatory agencies (DTSC and RWQCB) should be consulted as decisions are made in this process. Because of the similarities between this well and LW-2 at Camp Kohler, it is proposed that LW-2 be decommissioned first to refine the approach before attempting to decommission BW-7.

#### Base Well No. 8

Based on additional information collected during Phase II in 1992, BW-8 was found to have two well casings; a 12-inch well casing (assumed to be the original well which extended down to 389 feet) and a solid 10-inch casing or liner that extended to 662 feet. The total depth of the well was 779 feet. Three voids were noted during a 1992 television survey between 662 and 779 feet.

The lower portion of BW-8 extending from approximately 779 feet to 662 feet will be filled with a sand slurry cement to seal the three large voids. The 10-inch inner casing will then be perforated from 662 fee 110 feet and sealed with another lift of sand slurry cement. From 380 to 410 feet aner casing will be perforated to induce sand which might be in the annular space between the 10 and 12-inch casing to flow into the well. The inner casing will then be cut at the bottom of the original well (around 389 feet) with a Mills knife. An attempt will be made to pull the 10 inch casing from the well. If the 10-inch casing is successfully removed, then the well will be bailed out and another downhole television survey will be performed. Depending on the conditions of the 12-inch casing, it may be necessary to clean the casing and perform a second television survey. The well would then be pressure grouted from 170 to 389 feet and then perforated and pressure grouted from 170 to 85 feet.

If the attempt to pull the liner is unsuccessful, it may be possible to cut shorter lengths of the casing and to pull these segments out using borehole "fishing" tools. If this method is unsuccessful, it may be necessary to shot-perforate through the liner and casing. BW-8 will then be decommissioned by pressure-grouting according to the procedures described in the Well Closure Methods and Procedures for Phase II.

#### Base Well No. 13

Because the well casing in BW-13 was found to be in very weak condition, it would be too risky to attempt pressure-grouting the well. Instead, BW-13 should be decommissioned in stages, using a low-viscosity cement according to procedures specified in the Report. Fortunately, existing perforations in the well extend from a depth of 178 feet to the total depth of the well, so it would be unnecessary to perforate in that interval. Above that interval, the casing appears to be sound, according to the television survey. Therefore the casing would be perforated from about 80 feet to 170 feet and grout injected under pressure in a minimum of two lifts. The remaining procedures would be as described in the Report.

#### **Base Wells** No 17, 20, and 28

Preliminary evaluations of BW-17, BW-20, and BW-28 indicate that the casing in these wells are in relatively good condition. Therefore, decommissioning can proceed as specified in the Report. Intervals proposed for perforation are listed in Table 1. If intervals exceed 50 feet, they will be grouted in more than one lift. As described in the Report, grouting will begin with short intervals and gradually move to longer intervals.

#### Laundry Well No. 1

LW-1 at Camp Kohler is believed to have been drilled by the cable-tool method, in which well casing is driven into the ground and no gravel pack is installed. Excavation to a depth of 9 feet at this well failed to reveal gravel pack. The well does appear to have been filled with cement. However, it is possible that a plug was set at a relatively shallow depth and cement emplaced above the plug, as sometimes practiced in the past. Therefore, it is proposed that a 6-inch-diameter core be drilled into the cement to a depth of about 50 feet to determine whether the cement extends throughout the casing. If so, the core hole should be backfilled with cement, and the well cut below grade and buried to return it to its previous condition. If for some reason the cement does not entirely fill the well, it should be filled with a sand/cement slurry placed in the well through a tremmie pipe. Because LW-1 does not contain a gravel pack, extraordinary measures, such as shot-perforation and pressure-grouting, are not needed to decommission this well.

#### Laundry Well No. 2

During preliminary work at Camp Kohler LW-2 was excavated and determined to contain a pea gravel filter pack surrounding the original casing that is presently filled with cement. Therefore, this well should be decommissioned by filling the void spaces in the gravel pack with grout. However, a previous investigation suggested that the pump column may have been cut and allowed to fall into the well prior to cementing (Radian Corporation, 1985. Camp Kohler Investigation). LW-2 is therefore similar in circumstance to BW-7 at McClellan AFB.

Because of the uncertainty surrounding this well, it is proposed that a similar approach be followed as at BW-7. The first step should be to attempt to further evaluate the well by core-drilling a six-inch-diameter hole through air-rotary methods. If no resistance is met, then the hole will be continued to the bottom of the well. The well will then be perforated by shot perforation, and grout injected under pressure in stages as described in the Report. If the cement is restricted to a small interval above a plug, but the top of the pump column is found, then an effort will be made to fish out the column. The well will then be given a television survey to evaluate the casing, and decommissioned as specified in the Report. Finally, if the pump column is found encased in cement, then it will be necessary to develop a new approach. This may involve drilling out the column with a mill bit, or constructing a an "overwash" bit and drilling away outside of the casing to remove the gravel pack. In the former approach, the well would be perforated and pressure-grouted. In the latter approach, cement would be tremmied down to replace the gravel pack. The regulatory agencies will be consulted as decisions are made in this process. LW-1 will be decommissioned before BW-7 to refine the approach before moving to a setting that may be more difficult, both from a contamination and from an access standpoint.

#### **Triax Hole**

As a preliminary activity, the Triax Hole was given an acoustic bond survey to evaluate the condition of the cement seal surrounding the casing. A discussion of the survey and its conclusions and a copy of the original log for the survey were provided in the Report. Because the survey revealed that the seal may be inadequate and because of agency concern that no surface seal is in place, McClellan AFB staff have decided to perforate and seal the Triax Hole throughout its entire depth. The approach will be as described in the Report, with grout applied in stages under pressure from the bottom to within about 5 feet of the ground surface. The casing will then be cut, the cement allowed to overflow the casing and form a plug, and the hole backfilled with dirt.

#### Seismic Well

The seismic well was also given an acoustic bond survey as a preliminary activity. However, results for this well indicated that the cement seal was in good condition. Therefore, decommissioning will be as described in the Report, that is, a sand/cement slurry will be tremmied into the well in one lift from bottom to top. The casing will be cut about 5 feet below grade, cement allowed to overflow the casing and form a plug, and the hole backfilled with dirt.

Appendix A Response to Comments

SAC/T228/071.51

1

(

,

#### CHEMIHILL

#### **RESPONSE TO COMMENTS**

SUBJECT: Technical Memorandum McClellan AFB Well Abandonment Phase II Preliminary Field Activities

**REVIEWER:** Mark Malinowski, Department of Toxic Substances Control

**DATE:** October 1, 1993

Comment: Base Well 13. Given the fragile nature of the lower section of BW-13, the Department agrees with the proposal to use a low viscosity cement. However, the proposal to perforate from 80 feet to 170 feet below ground surface (BGS) goes counter to previous verbal agreements and the approved grouting procedures specified in the "Well Closure Methods and Procedures" workplan. The workplan specifies that grouting intervals will be done in lifts "to a minimum of no more than 50 feet" (page 50, paragraph 4). Perforating nearly 100 feet and then grouting the section may cause a recurrence of what happened when Base Well 1 was decommissioned. The section of casing from 80 to 170 feet should be perforated and grouted with a minimum of two lifts.

**Response:** It was feared that subjecting the casing to two episodes of perforation and pressure-grouting could increase the risk of casing damage or collapse. Although the television survey did not show any obvious signs of deterioration in the casing in the upper depth interval, the poor condition of the casing at greater depth increases the risk that hidden problems may exist in the upper interval as well. However, the text has been modified to specify that the casing from 80 to 170 feet BGS will be perforated and grouted with a minimum of two lifts.

Comment: Base Wells 17, 20, and 28. Line four says that the "lengthy intervals will not necessarily be grouted in one lift." Again, the Department and McAFB have agreed that lifts will not exceed 50 feet. The 85-200 foot BGS proposed perforated interval for BW-17 and the 385-485 foot BGS interval for BW-20 should be completed with a minimum of two lifts.

**Response:** It was never intended that lifts should exceed 50 feet in these wells. The text has been modified to remove the confusing language and clearly state that lifts will not intentionally exceed 50 feet.

1

Í

### BUDGET ESTIMATE/TECHNICAL PROPOSAL

#### FOR

### HORIZONTAL EXTRACTION WELLS

AT

## MCCLELLAN AIR FORCE BASE - SACRAMENTO, CA

SUBMITTED TO:

1

l

CH2M HILL

BY:

DRILEX SYSTEMS, INC.

**NOVEMBER 4, 1993** 

DRILEX SYSTEMS, INC.



15151 Sommermeyer Houston, Texas 77041 P.O. Box 801114, 77280-1114 Tel: (713) 937-8888 Fax: (713) 849-2390

November 2, 1993

Mr. Umesh Lalwani CH2M Hill 2525 Airpark Drive Redding, California 96049-2478

RE: Horizontal Extraction Well McClellan Air Force Base - Sacramento, CA

Dear Mr. Lalwani:

Drilex Systems, Inc. respectfully submits the following Budget Estimate/Technical Proposal for the above referenced site.

The estimate is based on the installation of one well and the mobilization of the drilling equipment from Houston, Texas. The mobilization/demobilization cost will change based on the final number of wells and the travel distance. If additional wells are added to the project, the mobilization costs will have a smaller impact on the overall project cost.

This estimate should be used as a "ballpark" cost only. A more detailed proposal will be submitted after the final project parameters are determined.

Thank you for the opportunity to submit an estimate for this project. If you have any questions or require additional information, please call.

Sincerely,

4

David S. Bardely

David S. Bardsley Geologist/Project Manager

DSB/CCC Quotation Number 10096-ENV

#### TABLE OF CONTENTS

- I Rig Description/Drilling Methodology
- II Budget Estimate
- III Well Plot

ł

(

. . . .

- IV Vertical and Horizontal Precision
- V Drill Fluids Program
- VI Equipment Specifications

## **SECTION I**

#### DRILEX ENVIRONMENTAL SERVICES RIG

The DSI 140 horizontal drill rig was designed with several key factors in mind. Paramount in its conception is the ability to provide a mud rotary drilling system while keeping the rig site protected from the inherent spilling of mud during normal operations. Secondly, the rig is designed to be totally self-sufficient with the exception of water for mixing drilling fluid. Finally, the rig is engineered with enough power and versatility to complete wells from a true vertical depth of 10' to 250'.

The rig is constructed on four truck trailers that are non-permit loads. It is designed to pull up on location and be rigged up for drilling in a matter of hours. A normal location pad would require only an area of approximately 50 x 100 ft. A functional description of the operating components of the rig follows:

#### DRILLING RIG TRAILER

The actual drilling operations are accomplished with the diesel/hydraulic power unit. All push, pull, pipe makeup/breakout and entry angle functions are on the trailer and controlled at the driller's console (on the pipe handling trailer). Additionally, the rig has pollution pans installed to capture any drilling fluids that may escape during pipe connections. Other features of this trailer are the wireline steering tool connections for directional drilling monitoring, air purge system, water washdown system and a high pressure, hot water washer with 100' hose.

#### PIPE HANDLING/DRILLER CONTROL TRAILER

This trailer has an air conditioned driller control enclosure, hydraulic crane, and drill pipe transport trays. The driller's control cabin has all controls necessary for the monitoring and control of drilling operations. Hydraulic functions on the drilling rig trailer are controlled by the driller through 12 volt electrical sensors in the control panel. The steering tool connection from the downhole instrument is located next to the driller's console for close communication with the directional driller. All communications with the crew are carried out with individual wireless headsets to minimize miscommunications. The hydraulic crane is mounted directly aft of the control cabin and can be operated manually or with a remote control umbilical cord. The pipe racks are designed such that any drilling fluid that may drain is captured and controlled with pollution pans. The driller can also control the mud circulation pump at his console.

#### DRILLING FLUIDS RECIRCULATION TRAILER

The major components of this trailer are a 5000 gallon capacity mud system separated into 5 tanks, two solids separation cycles to ensure clean fluids are pumped downhole, a diesel-powered triplex mud pump capable of over 400 gallons per minute and a mud mixing hopper. The solids removal system includes both a shale shaker and a desander/desilter. Centrifugal pumps circulate drilling fluid returns through the mud cleaners three times before being pumped back downhole. Solids removed from the drilling fluid are diverted into a container or roll off on the ground next to the trailer. Drilling fluids returning to the surface are diverted through a conductor pipe to a mud pan on the surface. This mud is then lifted to the shale shaker by a hydraulically powered centrifugal pump. The ability to clean and recirculate drilling fluids keeps the

volume of drilling fluids needed to minimum.

#### AUXILIARY TRAILER

This unit houses a diesel-powered 175KW generator, a large 20 hp air, 75 cfm at 120 psi compressor and the rig workshop with spare parts. A 150' umbilical cord enables this trailer to be placed remote from the drilling units allowing a compact rig site. Electricity and air are distributed to all other trailers from this unit.

#### **CREW TRUCK**

The six man crew travels to location daily in a support vehicle. This truck has additional tool boxes and a 100 gallon diesel tank for fueling the rig. Utilizing our pickup to transport fuel keeps the amount of fuel on location to a minimum.

Actual rig specifications are outlined on the following pages of this section.

#### PROPOSED RIG SITE SETUP

Drilex proposes entering the ground at an angle 14° above horizontal. This angle will provide for safe working conditions, higher success rate in our objectives and a convenient borehole accessibility for future use.

The exact layout of the site and rig pad will have to be determined once an actual survey is conducted.

The location of the bore entry point will be approximately 474 ft. from the horizontal section.

#### <u>Overview</u>

Drilex Environmental Services intends to perform all work on this project within the limitations set by CH2M Hill. All well construction, location preparation and rig and equipment decontamination will conform to the final specifications as agreed. All safety requirements will be followed. To insure complete compliance with site regulations, we request a safety inspection of our rig site prior to commencing work.

The following detailed drilling plan is based on these criteria:

- We will use a 2-7/8" pilot string with 5" drill pipe for washover technique to enable more accurate placement of the borehole.
- We will be drilling with a D237 (2-3/8" O.D.) DRILEX Positive Displacement (Mud) Motor with a 3-1/2" O.D. drag bit, if motors are required.

#### Surface Conductor Hole

The initial entry into the ground will be drilled with 20" O.D. auger. We will install a 20' section of 16" HDPE conductor casing to 5 - 7 ft. true vertical depth (TVD) and cement in place. A mud diverter will be placed at the open end of the surface casing to control and direct mud returns to the mud pan. The mud returns are pumped to circulation system trailer by means of a hydraulically powered centrifugal pump.

#### Intermediate Casing through the Build Section

After surface casing is installed and grouted, a bit will be run in the surface casing to drill out any cement in the bottom of the hole. The intermediate section will then be drilled with a 2-7/8" drillstring with a motor assembly. The motor assembly will allow accurate placement of the borehole while minimizing mud flow rates. The pilot string will be directionally controlled with a three axis magnetic steering tool that gives constant directional information to the driller's console. A True Tracker system will be used as a second means of verifying the wellbore placement.

The hole will be drilled according to plan with true vertical depth of 100'.

Once the pilot hole is drilled up to 3-1/2" O.D., the wash pipe will be concentrically rotated in the build section to open the hole to a diameter of 14-3/4". After opening, the hole, the 5" drill pipe will be laid down, leaving the 2-7/8" drill pipe as a guide to run 10.75" HDPE. The

casing will be cemented in place throughout the build section.

#### Horizontal Section

After the cement has set up we will then pickup the 5" drill pipe and a 6-3/4" O.D. DRILEX Mud Motor fully stabilized with a 9-3/4" O.D. bit to drill out the cement. This configuration will allow for a smooth transition from the casing in the build section to the slotted liner in the horizontal section. We will pull out of the hole to lay down the 6-3/4" motor. We will continue with pilot string/washover technique through the 500' horizontal section. Particular attention will be paid to the mud properties to ensure good hole stability and cuttings removal. We will have onsite a Bariod miniature mud lab, methylene blue test kit, mud balance kit, Marsh funnel kit, sand content percent by volume kit and retort kit with competent personnel to maintain specific chemical and mechanical properties of the drilling fluids. With the pilot string in place, the 5" drill pipe with a 9-3/4" washover bit will be concentrically rotated in the horizontal section to open the hole for running the screen then both strings of pipe will be removed. With the hole opened to 9-3/4" diameter, 500' section of prepacked HDPE pipe will be pushed to bottom using the 2-7/8" drill pipe to provide the pushing force.

The 2-7/8" drill pipe will then be used to clean out any wall cake and circulated the HDPE screen clean.

#### **Einal Decontamination**

Final decontamination will be performed prior to demobilizing from the base. Final decontamination of equipment shall include, but not be limited to, the drill rig, drill rods, drill bits, threads, casing, sampling equipment and all other tools that might have been contaminated during the work.



. ...

١

t

. ......................

ŧ

**SECTION II** 

. ..

ŀ

(

- . .

#### CH2M HILL MCCLELLAN A.F.B. - HORIZONTAL EXTRACTION WELL

#### I. Mobilization/Demobilization

A. Drill Rig

-

----

1

(

- B. Pipe Trailer
- C. Mud System
- D. Generator Trailer
- E. Support Truck
- F. Steam Cleaner
- G. Well Materials
- H. Initial and Final Decon

|      |                                       | Lur                                            | np Sum      | \$                  | 56,672.00 |  |  |  |  |
|------|---------------------------------------|------------------------------------------------|-------------|---------------------|-----------|--|--|--|--|
| н.   | Drilli<br>974'                        | ng and Well Construction<br>@\$61.00/ft.       | <b>\$</b> 5 | <b>\$</b> 59.414.00 |           |  |  |  |  |
|      |                                       | Tot                                            | al Drilling | \$                  | 59,414.00 |  |  |  |  |
| 111. | Materials                             |                                                |             |                     |           |  |  |  |  |
|      | Α.                                    | 20' - 16" Steel Conductor Casi<br>@ \$32.00/ft | ng          | ¢                   | 640.00    |  |  |  |  |
|      | В.                                    | 476' - 10 HDPE Intermediate (<br>@\$27.00/fr   | asing       | Ψ<br>\$12           | 952.00    |  |  |  |  |
|      | C.                                    | 9 - 10-3/4" x 14-3/4" Centrali                 | zers        | \$1Z                | ,052.00   |  |  |  |  |
|      | n                                     | 200 - bags Compant @ \$10.00                   | ~~          | 3<br>• • •          | 495.00    |  |  |  |  |
|      | F                                     | 10 - bags Centerit & \$10.00                   |             | 3) Z<br>e           | ,000.00   |  |  |  |  |
|      | F.                                    | 505' - 3 97" ID v 6 625" OD                    | HODE        | JÞ.                 | 120.00    |  |  |  |  |
|      |                                       | Prenacked Screen @ \$50                        | \$20        | 795.00              |           |  |  |  |  |
|      | G.                                    | 10 - 6.625" x 9-3/4" Centraliz                 | 423         | ,7 93.00            |           |  |  |  |  |
|      |                                       | @ \$45.00 ea.                                  |             | ¢                   | 450.00    |  |  |  |  |
|      | H. 1 - 4" Locking Cap @ \$50.00       |                                                |             |                     | 50.00     |  |  |  |  |
|      | 1.                                    | 2 - HDPE Heads @ \$300.00 ea                   | Š           | 600.00              |           |  |  |  |  |
|      | J. 1-Packer @ \$250.00 ea.            |                                                |             |                     | 250.00    |  |  |  |  |
|      |                                       | Total Ma                                       | terials     | \$                  | 47,252.00 |  |  |  |  |
| IV.  | Development<br>12 hrs. @ \$350.00/hr. |                                                |             | \$ 4,200.00         |           |  |  |  |  |
|      |                                       | Total Dev                                      | velonment   | ¢                   | 4 200 00  |  |  |  |  |
|      |                                       |                                                |             | •                   | 4,200.00  |  |  |  |  |
| ۷.   | Cuttings & Fluids Handling            |                                                |             |                     | By Others |  |  |  |  |
| VI.  | Stand                                 | lby 0 hrs. 🛛 \$350.00/hr.                      |             | \$                  | 0.00      |  |  |  |  |
|      |                                       | Total Est                                      | imate       | <b>\$</b> 16        | 7.538.00  |  |  |  |  |

The above cost is based on the following assumptions:

- Permits and utility clearances will be obtained by others.
- The work will be performed in level "D" PPE.
- Rig standby will be charged at \$350.00/hr.
- The containment, transport and disposal of all cuttings and fluids, including decon and development water, will be performed by others. All disposal of potentially contaminated PPE and visquene will be provided by others.
- Estimated cutting and fluids volume:

Drill Cuttings Fluids 38 yds 22,000 gallons

## **SECTION III**

<u>(</u>)

;

•



## **SECTION IV**

.

110 - Lagondon -

ŝ,

Ĕ

C

!

ī

#### VERTICAL AND HORIZONTAL PRECISION

The vertical accuracy of the specified well will be +/- 2' from the target depth. The horizontal accuracy will be +/- 2° from the target. The horizontal and vertical precision will be verified through subsurface and surface measurements obtained utilizing a steering tool system.

Two tracking systems will be utilized. One system will consist of a downhole steering tool system. The secondary system will utilize the existing downhole tools as well as a surface system.

The downhole steering tool system consists of four components:

#### Probe:

The probe consists of magnetic and gravitational sensors, digitizing circuitry, modulating circuitry and control circuitry. The probe is placed above the bit or motor, in a non-magnetic drill collar. Once the probe is screwed into the collar, it cannot be removed without the tools being brought to the surface. When the probe unit is powered up, continuous transmission of raw date is sent through the 12 volt wire leading to the interface unit.

#### Interface Unit:

The interface unit contains the power control, demodulating and interface circuitry. The unit sends power to the probe. Signals sent from the probe are demodulated by the interface unit and sent to the computer. The computer interprets the data and sends the information to the drillers console via the interface unit.

#### Computer:

The unit is an IBM compatible 386 computer with a minimum of 640K of memory, serial and parallel port. The computer receives data from the interface unit, interprets the data and sends the information to the drillers console via the interface unit.

#### Printer:

The printer is a parallel unit which prints a "hard copy" of the directional data.

The surface tracking system will utilize the components described above as well as the following:

#### Wire:

No. 8 or 6 wire is used to create a box or coil of wire at the surface.

#### DC Power Unit:

A DC power unit is connected to coil and a current is induced into the ground. The steering tool probe will "read" the current and send the information to the computer and interface unit for interpretation. Accurate survey information is required (elevation and distance) for the surface system to be accurate.
# SECTION V

(

#### Mud Program

Drilex Systems, Inc. plans to use the following products on an as needed basis to maintain drilling fluids with these properties:

| Marsh Funnel       | 45 - 60                          |
|--------------------|----------------------------------|
| Weight             | 8.6 <sup>#</sup> /gal.           |
| Water Loss         | $\leq$ 7 ML/30 min.              |
| PV                 | 25 - 45 ср                       |
| Ϋ́Ρ                | 5 - 10 cp                        |
| Solids % by Volume | < 2 %                            |
| PH                 | 9.0 - 8.5                        |
| Gels               | 20 int. 10 min 20 $\#/100$ ft. 2 |
| Sand               | <b>≤</b> 1%                      |

Proposed additives to maintain wellbore stability and minimum fluid loss:

| Beta Plus  | Inorganic                             |
|------------|---------------------------------------|
| Alpha Plus | Inorganic                             |
| CMS        | Organic (Sodium Carboxymethyl Starch) |
|            | (NaH12C8O7)                           |

Gel Gold Seal

.

No Residuals

Drilex Systems, Inc. understands the successful completion of this well will be directly related to drilling fluid control. We have designed a fluid handling system specifically for horizontal drilling applications.

The volume of the system is 5000 gallons. The solids removal equipment consists of both a shale shaker and desanding/desilting cones. Drilling mud is circulated through the solids removal equipment three times before being pumped downhole. All removed solids are diverted into roll off containers or bins.

In addition to the mechanical mud system, one crew members only responsibility is to insure the mud properties are correct and that the system is functioning properly.

# **SECTION VI**

ī



# DD-100 / DD-140 Directional drills that you can keep busy year-round

l



Operator's console featuring optional digital readout displays.

#### **Feature List**

- Trailer mounted rig arranged for backing into site; eliminates lifting and hookup beside entrance pit.
- □ Self-erecting. Hydraulic cylinders raise rig to exact entry angle.
- Rack and pinion design for rugged, dependable, and positive carriage drive.
- □ Fully hydraulic wrench and fixed clamp for pipe makeup and breakout.
- Adjustable quartz floodlights on wrench and carriage.
- Wire gland and commutator for use with stateof-the-art downhole instrumentation.
- □ Rig fitted with full length, non-skid walkways with handrail.
- □ Carriage travel length to handle 30 foot (9.1 m) pipe lengths.
- Heavy-duty roller bearings to withstand thrust and pullback forces incorporated into rotary drive gearbox.
- All hydraulic hoses and cable to the moving drill carriage enclosed in rolling type carrier.
- 🗇 Made in the U.S.A.



DD-140 with optional drillers cabin.

# DD-100 / DD-140 The smallest of the big rigs



. . . . . . . . .

Only American Directional Drill offers a fully hydraulic wrench/clamp assembly featuring operator adjustable pressure settings.



Operator's console with pressure gauges as standard equipment.





The American Directional Drill DD-100 and DD-140 are the smallest of the big rigs and are designed to do the majority of the crossings being designed and bid in todays growing market. The rigs are particularly equipped to handle crossings of less than 3,000 feet in length and with less than 24-inch diameter product lines.

The DD-100 and DD-140 are directional drills you can keep busy year-round — no more waiting on the "big jobs" to bid. Both rigs are capable of larger diameters for short runs, however. In fact, a DD-140 drilled and reamed a 48-inch hole and pulled a 36-inch gas line 600 feet under the Trans-Canada Highway.

The rack and pinion design of the drill carriage eliminates the need for chains, cables or cylinders. Theres power to spare without sacrificing precision for high-speed rotary drilling in hard rock formations. Sensitive turntable controls allow the precise rotation needed to set the direction of the down hole navigation instruments.

Pipe make up and breakout is easy work with the fully hydraulic wrench and fixed clamp assembly. The wrench and fixed clamp separate 8" to allow easy lineup of the tool joint in the clamps. The optional mud pump system gives you a compact drilling package on a single trailer for mobility and fast set-up.

Visit our Wooster, Ohio plant anytime. You'll see rigs under construction, talk to our engineering staff and see blueprints, components and parts, operators manuals and our technical support department. With rigs in service around the world, we have the knowledge and experience to keep you drilling.

American Directional Drill: "The World's Foremost Manufacturer of Directional Drills."



| AMERICAN DIRECTIONAL DRILL                                                            |                                                                                    |                                |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--|
| SPECIFICATIONS                                                                        | DD-100                                                                             | DD-140                         |  |
| Drilling Torque - 4 Speed/Torque Ranges<br>Lo Range - Maximum Torque                  | 20,000 Ft-Lbs (27,120 N-m)                                                         | 25,000 Ft-Lbs (33,900 N-m)     |  |
| Lo Range - Maximum speed                                                              | 25 RPM                                                                             | 21 RPM                         |  |
| Mid-Lo Range - Maximum Torque                                                         | 11,500 Ft-Lbs (15,600 N-m)                                                         | 12,000 Ft-Lbs (16,270 N-m)     |  |
| Mid-Lo Range - Maximum Speed                                                          | 40 RPM                                                                             | 44 RPM                         |  |
| Mid-Hi Range · Maximum Torque                                                         | 5,900 Ft-Lbs (8,000 N-m)                                                           | 7,500 Ft-Lbs (10,170 N-m)      |  |
| Mid-Hi Range - Maximum Speed                                                          | 85 RPM                                                                             | 70 RPM                         |  |
| Hi Range - Maximum Torque                                                             | 3,300 Ft-Lbs (4,475 N-m)                                                           | 3,600 Ft-Lbs (4.880 N-m)       |  |
| Hi Range - Maximum Speed                                                              | 135 RPM                                                                            | 140 RPM                        |  |
| Drilling Carriage Drive - Force/Speed Ranges<br>Lo Range - Maximum Thrust or Pullback | 100,000 Lb (445 kN)                                                                | 140,000 Lb (623 kN)            |  |
| Lo Range - Maximum Speed                                                              | 30 Ft Per Min (9.1 m)                                                              | 25 Ft per Min (7.6 m)          |  |
| Hi Range - Maximum Thrust or Pullback                                                 | 30,000 Lb (133 kN)                                                                 | 28,000 Lb (124 KNI             |  |
| Hi Range - Maximum Speed                                                              | 100 Ft per Min (30.5 m)                                                            | 125 Ft per Min (38.1 m)        |  |
| Drill Angle:<br>Includes Hydraulic Lifting and Pinned Outriggers                      | 10 to 18 Degrees                                                                   | 10 to 25 Degrees               |  |
| Wrench/Fixed Clamp Assembly<br>Maximum Breakout Torque                                | 49,000 Ft-Lbs (66,400 N-m)                                                         | 70,000 Ft-Lbs (95,000 N-m)     |  |
| Maximum Makeup Torque                                                                 | 35,000 Ft-Lbs (47,500 N-m)                                                         | 40,000 Ft-Lbs (54,200 N-m)     |  |
| Clamps Grip Range                                                                     | 23/4" to 71/8" 0.D. (70 - 180 mm)                                                  | 2¾" to 12¾" 0.D. (70 - 315 mm) |  |
| Power Source<br>Engines                                                               | 175 HP <i>n31 kW</i> Diesel<br>250 HP <i>n87 kW</i> Diesel<br>Optional             | 250 HP (187 kW) Diesel         |  |
| Pumps                                                                                 | 2 Hydrostatic Drive Pumps<br>1 Each for Drill Torque and                           | for Thrust/Pullback            |  |
|                                                                                       | 1 Pressure Compensated Piston Pump for<br>Pipe Joint Clamping and Wrench Functions |                                |  |
|                                                                                       | Gear Pumps as required for Auxiliary Functions                                     |                                |  |
| Hydraulic Oil Cooler in Front of Engine Radiator                                      |                                                                                    |                                |  |
| Note: While accurate at publication, all specifications are sut                       | Dject to change without notice or                                                  | obligation to retrofit units.  |  |



The Leader in Trenchless Technology







CORPORATE HEADQUARTERS: 3310 Columbus Road • P. O. Box 460 • Wooster, Ohio 44691 U.S.A. • Phone: 216-264-5666 • 800-321-4930 • Fax: 216-264-5514

CALIFORNIA PLANT: 23591 Robertson Blvd. • Chowchilla, CA 93610 U.S.A. • Phone: 209-665-1345 • 800-345-3023 • Fax: 209-665-2388

#### TECHNICAL MEMORANDUM Q

CHEMHILL

PREPARED FOR: McClellan Air Force Base
DATE: June 9, 1994
SUBJECT: Evaluation of End-Use Options Groundwater OU RI/FS Report Delivery Order No. 5066
PROJECT: SAC28722.66.FS

# **Purpose and Scope**

This technical memorandum develops and evaluates several potential end-use options and recommends two end-use systems that would provide a beneficial use for treated groundwater from McClellan Air Force Base (McClellan AFB). One of these enduse systems will be included as part of the remedial actions that will be implemented to reduce the cost and duration of clean up of the contaminated groundwater. The remedial action will consist of a groundwater extraction system, a treatment system, and an end-use system.

This technical memorandum covers background information on the existing end-use system, treated groundwater characteristics, end-use screening, development of four end-use options, and implementation of two recommended end-use systems. The end-use options, consisting of the existing greywater system, selling to neighboring water utilities, onsite groundwater recharge, and discharging to Magpie Creek, are developed in detail and include site descriptions, water usage, facilities required, and institutional issues. The four end-use options become components of the recommended end-use systems. The development of the two recommended end-use systems includes order-of-magnitude capital and annual cost estimates without contingencies or allowances.

#### Background

McClellan AFB has been operating a groundwater extraction system and treatment plant on the west side of McClellan AFB since 1985. The treatment process includes air stripping, heat exchangers, and granular activated carbon to remediate approximately 200 gallons per minute (gpm) of contaminated groundwater. The primary groundwater contaminants are volatile organic compounds (VOCs) with the main contaminant being trichloroethene (TCE). The effluent from the treatment plant is currently discharged into Magpie Creek. The discharge is regulated by National Pollutant Discharge Eliminating System (NPDES) Permit No. CA0081850 issued by the California Regional Water Quality Control Board (RWQCB), Central Valley Region Order No. 91-171. The permit requires that the treated water quality meet nondetectible levels for pesticides and VOCs, except that acetone should not exceed 1 mg/l, methylethyl ketone should not exceed 1 mg/l, and methylisobutyl ketone should not exceed 1 mg/l.

#### **Treated Groundwater Characteristics**

In this technical memorandum it has been assumed that the water quality standards applied to the discharge of the existing groundwater treatment plant will be applied to the water treated in this remedial investigation/feasibility study (RI/FS).

The flow rates of the treated groundwater will vary, depending on the extent of groundwater contaminant removal and the treatment plant locations. For this evaluation, the following four flow rate scenarios were developed to account for the range of flows associated with the background target volume, risk target volume, and MCL target volume developed in Appendix J.

- Scenario No. 1-Low flow at the east treatment unit of 400 gpm or 640 acre-feet (ac-ft) per year.
- Scenario No. 2-High flow at the east treatment unit of 720 gpm or 1,160 ac-ft per year.
- Scenario No. 3-Low flow at the west treatment unit of 600 gpm or 960 ac-ft per year.
- Scenario No. 4-High flow at the west treatment unit of 1,600 gpm or 2,560 ac-ft per year.

These flow rate scenarios provide the basis for developing facility requirements and estimating capital and annual costs.

### **End-Use Screening**

The end-use options that were suggested by McClellan AFB, the regulatory agencies, CH2M HILL, or outside groups were screened to limit the number of possible end uses for detailed evaluation. This section presents the end-use screening criteria, the initial screening of end-use options, and the final screening of end-use options.

#### **Screening** Criteria

Table Q-1 presents the screening criteria and their measurable factors.

RDD10012BB6.WP5 (GW RI/FS)

6/23/94

| Table Q-1           End-Use Option Screening Criteria |                                                                                                                                             |                  |                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Thr                                                   | Threshold Screening<br>(Step 1)                                                                                                             |                  | itional Screening<br>(Step 2)                                                                                                                                                                                                                                                                              |  |
| Criteria                                              | Measurable Factor                                                                                                                           | Criteria         | Measurable Factor                                                                                                                                                                                                                                                                                          |  |
| Applicability                                         | <ol> <li>Meets the RWQCB<br/>definition of Benefi-<br/>cial Use</li> <li>Located within a<br/>5-mile radius of<br/>McClellan AFB</li> </ol> | Effectiveness    | <ol> <li>Ability to handle 1,000 to<br/>3,000 gpm flow variation</li> <li>Ability to have minimum<br/>storage (i.e., 1,600 gpm<br/>for 1 day is 2.5 MG) or<br/>no storage</li> </ol>                                                                                                                       |  |
|                                                       |                                                                                                                                             | Robustness       | <ol> <li>Ability to take treated<br/>water year round</li> <li>Ability to have a backup<br/>system or hook into a<br/>backup system</li> </ol>                                                                                                                                                             |  |
|                                                       |                                                                                                                                             | Implementability | <ol> <li>Cost-effective in terms of<br/>capital and annual costs</li> <li>Permitting issues are not<br/>limiting</li> <li>Water quality desired is<br/>achievable by treatment<br/>systems being investigated</li> <li>Ability to be constructed<br/>given physical and utility<br/>constraints</li> </ol> |  |

# **Screening Process**

1

(

The screening process, which included the presentation of the screening criteria, discussion of possible end uses, and the implication of these end uses involved two workshops. Initial screening took place at the August 10, 1993, Contaminated Groundwater Cleanup Workshop. Final screening took place at the August 25, 1993 Alternatives Development Workshop.

#### Initial Screening

Initial screening of the end-use options occurred at the August 10, 1993 Contaminated Groundwater Cleanup Workshop. Participants included McClellan AFB, CH2M HILL, Radian Corporation, Mitre, and neighboring water utilities including Sacramento County, Caltrans, Rio Linda Water District, Sacramento Metropolitan Water Authority, Arcade Water District, Citizens Utilities, City of Sacramento, Northridge Water District, and Natomas Central Mutual Water District. The following end-use options were discussed with the results in parenthesis:

- 1. Onsite Groundwater Injection-Has potential; however, it may push contamination offsite into production wells, and it may split a contaminated plume. (Carried forward.)
- 2. Offsite Groundwater Injection-Would be hard for McClellan AFB to manage, and conveyance costs would be high. (Dropped.)
- 3. Discharge to Magpie Creek-Has potential; however, it may create a riparian habitat that McClellan AFB would have to maintain after groundwater cleanup had ended. (Carried forward.)
- 4. Recharge Basins-Probably not feasible due to a hardpan under most of McClellan AFB. (Dropped.)
- 5. Discharge to Sacramento Regional Public Owned Treatment Works (POTW) In the area around McClellan AFB, the existing sanitary sewerlines are near capacity and this option would not present a beneficial use in the opinions of the attendees. (Dropped.)
- 6. Discharge to Local Golf Courses-Perhaps feasible; however, it would be a seasonal usage with high summer demand and no winter demand. (Dropped.)
- 7. Discharge to McClellan AFB Existing Greywater System System has a limited capacity; however, McClellan AFB is interested in reusing as much as possible. (Carried forward.)
- 8. Sell to Neighboring Water Utilities-Arcade, Rio Linda, Northridge, and Citizens Utilities are highly interested in purchasing the treated groundwater for domestic water supply provided that it meets safe drinking water quality standards. (Carried forward.)

# **Final Screening**

. .....

Final screening took place at the August 25, 1993 Alternatives Development Workshop. Participants included McClellan AFB, U.S. Environmental Protection Agency (EPA), California Department of Toxic Substance Control (DTSC), RWQCB, Clean Sites, CH2M HILL, Radian Corporation, Mitre, City of Sacramento, and neighboring water utilities including Sacramento County, Caltrans, Rio Linda Water Agency, Sacramento Metropolitan Water Authority, and Northridge Water District. The discussions resulted in the following two end-use systems being put forward as the two systems of choice:

1. System 1 would convey the first 200 gpm of treated groundwater to McClellan AFB existing greywater system. The remaining flow would be sold to the

neighboring water districts. In the event of maintenance requirements, the backup system would discharge the treated groundwater to Magpie Creek.

2. System 2 would convey the first 200 gpm of treated groundwater to McClellan AFB existing greywater system. The remaining flow would be injected into the groundwater at the northeast end of McClellan AFB. In the event of maintenance requirements, the backup system would discharge the treated groundwater to Magpie Creek.

The components of these two systems are discussed separately and then as systems in the following sections.

# **Further Development of End-Use Options**

As a result of the screening effort, the end-use options that were more completely developed include: (1) existing greywater system; (2) sell to neighboring water utilities; (3) onsite groundwater injection; and (4) discharge to Magpie Creek. Further development of the end-use options include a site description, water usage, facilities required, and institutional issues.

Water usage is the estimated amount of water expected to be reused by implementing the option. Facilities required for each option were developed using the following four groundwater pumping scenarios: (1) East Treatment Unit low flow at 400 gpm; (2) East Treatment Unit high flow at 720 gpm; (3) West Treatment Unit low flow at 600 gpm; and (4) West Treatment Unit high flow at 1,600 gpm. Institutional issues were identified through the screening workshops.

Pipeline alignments were developed for each end-use option. These alignments have been field checked solely for general constructability, but not for utility interferences or right-of-way width. It should be expected that these alignments may change during preliminary design as more detailed engineering data becomes available.

#### **Option 1–Existing Greywater System**

McClellan AFB presently uses some water from the existing groundwater treatment plant in a greywater system. The greywater system consists of an extensive network of piping to cooling towers. The cooling towers are located on building roofs and are part of the heating, ventilation, and air conditioning units.

#### Site Description

ł

l

The existing greywater system was originally completed in 1978 with pipes ranging from 14-inch to 1/2-inch diameter. Modifications completed in the spring of 1993, including a 250,000-gallon storage tank near the existing groundwater treatment plant, have been made that should allow the system to be operable. However, a pressure leak test still has to be made by McClellan AFB to ensure the viability of the older pipes and appurtenances. The system covers much of McClellan AFB with the exception of the Northeast corner. The system is connected primarily to cooling towers (approximately 22) and jet engine test cells. No irrigation use is planned with this system. The system also includes a discharge point to Don Julio Creek riparian area near Building 1205 off of Patrol Road.

#### Water Usage

The system has not been used to date, since the pressure leak test is still needed, so actual flow demand with this system is unknown. Personnel at McClellan AFB believe the system can handle at least 200 gpm. A flowmeter located at the storage tank near the groundwater treatment plant will be used to obtain flowrates and cumulative flow quantities.

#### Facilities Required

The reliability of the existing greywater system is unknown. Additional facilities to be required will depend on the status of the existing system. An extensive pipe network could potentially be required.

Since developing a new greywater system plan is beyond the scope of this study, the assumption is made that existing known operable parts of the system will be used. This assumption limits the water usage to approximately 200 gpm. Only water from the west treatment unit site will be used for the greywater system, since connections are located at that site.

Facilities required for this option are listed in Table Q-2 and include pipeline and pumps. The assumption was made that approximately 400 feet of pipe will be required to connect the west groundwater treatment unit to the 250,000-gallon greywater storage tank.

| Table Q-2<br>Facilities Required for Greywater System                                   |                                         |                   |                     |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------|-------------------|---------------------|--|
| Groundwater Pumping Scenario                                                            |                                         |                   |                     |  |
|                                                                                         | East Treatment Unit West Treatment Unit |                   |                     |  |
| Facilities                                                                              | Low Flow<br>(400 gpm)                   | Flow<br>(200 gpm) |                     |  |
| 1. Pipeline<br>Diameter (in)<br>Length (ft)                                             |                                         |                   | 6<br>400            |  |
| 2. Pump Station<br>Design flow<br>Total dynamic head<br>Delivery pressure<br>Motor size |                                         |                   | 200<br>60<br>5<br>5 |  |

### Institutional Issues

There are two main issues that limit the desirability of this end-use option. It is unknown when the existing greywater system will be operational, and the existing greywater system is unable to take a large volume of treated groundwater on a continuous basis.

# **Option 2–Sell to Neighboring Water Utilities**

This end use option involve selling treated groundwater to neighboring water utilities. Four water purveyors that have shown an interest in obtaining this water, if the cost is comparable to that of their present water supply. These purveyors include Arcade Water District, Northridge Water District, Rio Linda Water District, and Citizens Utilities.

#### Site Description

A connection to Northridge Water District was selected for the east treatment unit site since the District has an 8-inch and a 20-inch service connection that are already established for McClellan AFB, in the vicinity of the proposed east treatment unit site. The 20-inch service connection was selected for the east treatment unit site. A connection to Rio Linda Water District's 8-inch water mains appeared to be the most economical connection for the west treatment unit site.

The conveyance pipeline alignments from the treatment unit sites to the proposed connections are shown in Figure Q-1.

### Water Usage

This analysis assumes that up to 650 gpm will be supplied to Northridge Water District, and up to 1,600 gpm to Rio Linda Water District. No storage is required since the demand from both Districts is much greater than the proposed supply. It is assumed that all available water could be used by the Districts on an as-generated basis. From discussions with the Districts, no flow equalization will be required. Rio Linda Water District has a nearby storage tank that could serve for flow equalization. Northridge Water District believes that it could install a small tank for flow equalization, if necessary.

### Facilities Required

The facilities required for Northridge Water District and Rio Linda Water District connections are presented in Table Q-3 and are shown in Figure Q-1. The Northridge Water District has a 20-inch service connection that will require slight modifications. Additional facilities required for the Northridge Water District connection will include approximately 1,600 feet of 8-inch-diameter pipe for low flow scenario and approximately 1,600 feet of 10-inch pipe for the high flow scenario. Pumping systems will be required to supply pressurized water to the Districts. Water

RDD10012BB6.WP5 (GW RI/FS)

6/23/94

will be delivered to Northridge Water District at 65 psi and 52 psi to Rio Linda Water District, since that is the pressure of their systems at the connection points.

| Table Q-3           Facilities Required to Sell to Neighboring Water Utilities                                                                                 |                                         |                        |                        |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|------------------------|--------------------------|
| Groundwater Pumping Scenario                                                                                                                                   |                                         |                        |                        | io                       |
|                                                                                                                                                                | East Treatment Unit West Treatment Unit |                        |                        |                          |
| Facilities                                                                                                                                                     | Low Flow<br>(400 gpm)                   | High Flow<br>(720 gpm) | Low Flow<br>(600 gpm)  | High Flow<br>(1,600 gpm) |
| 1. Pipeline<br>Diameter (in)<br>Length (ft)                                                                                                                    | 8<br>1,600                              | 10<br>1,600            | 10<br>7,100            | 12<br>7,100              |
| <ul> <li>2. Pump Stations</li> <li> Design flow (gpm)</li> <li> Total dynamic head (ft)</li> <li> Delivery pressure (psi)</li> <li> Motor size (hp)</li> </ul> | 400<br>170<br>65<br>25                  | 650<br>170<br>65<br>40 | 750<br>185<br>52<br>50 | 1,600<br>85<br>52<br>110 |

Major features of the pipeline alignment for the connection to Northridge Water District are described as follows:

- Pipeline routing for the connection to Northridge Water District begins at the east treatment unit site and extends about 300 feet across the lot to Dudley Boulevard. The only apparent utility interference identified in the field was one sanitary sewer line.
- The alignment then turns northeast onto Dudley Boulevard. This section of pipe is about 1,100 feet long. Dudley Boulevard is a four-lane street with heavy traffic. Overhead power lines are several feet from both sides of the pavement. Sewer and water pipe-lines appear to be on the north side of the road.
- A 90 degree turn south is taken across the parking lot adjacent to Magpie Creek. This section of pipe is approximately 200 feet long.

The Rio Linda Water District service connection will require approximately 7,100 feet of 10-inch-diameter pipe for low flow and approximately 7,100 feet of 12-inchdiameter pipe for high flows. The connection will be made to the existing 8-inch water main on the corner of Ascot and 20th Streets.

Major features of the pipeline alignment for the Rio Linda Water District connection are described in the following paragraphs:



 $\bigcirc$ 



. . .

()

- The pipeline alignment is routed for approximately 1,300 feet from the west treatment unit site west to Patrol Road through the treatment unit access road. The pipe then follows Patrol Road north for approximately 4,400 feet. Patrol Road consists of two lanes, with water lines on the west edge for much of this alignment. Overhead power lines are on the west edge. This route has two creek crossings, one for Magpie Creek and one for Don Julio Creek.
- The pipe takes a 90 degree turn west onto Ascot Avenue and follows Ascot Avenue for approximately 1,400 feet until 20th Street. Ascot Avenue and 20th Street both have wide shoulders in an almost rural setting and are lightly traveled. A connection will be made here to the 8-inch-diameter mainline for Rio Linda.

# Institutional Issues

Interest in obtaining the treated water for a supplemental source of potable water is high. Northridge Water District is strongly interested in obtaining the treated groundwater for a drinking water source, provided the water quality meets the required potable water standards. The District would have to provide public information to sell the idea to its customers; however, the District does not see this as a problem (personal communication, Jerry Ness, August 10, 1993). Rio Linda Water District has also shown a strong interest in the water.

One limitation to this option may be the current regulations of the State Department of Health Services (DHS) concerning contaminated water. Currently, the DHS regulations state that if a contaminated groundwater source is extracted and treated from an area that has not traditionally been a source of potable water supply, the treated groundwater cannot be used for a potable water supply. If the contaminated groundwater is extracted and treated from an area that has traditionally been a source of potable water supply, the treated groundwater can be used as a potable water supply. The water utilities expressed an interest in pursuing this issue with DHS so that they could use McClellan AFB water as a source for domestic water supply.

In a letter dated December 6, 1993, to Doris Varnadore/SM-ALC-EMR from A. L. Ellsworth/DHS, the DHS requested that this alternative be deleted from further consideration (see Attachment D-1 to Appendix D).

The cost of the water should not be a limitation because the Water Districts are amenable to paying up to their existing pumping costs.

The Water Districts are also interested in a reasonable assurance of a continuous source of treated groundwater prior to putting their production wells on standby. McClellan AFB has not guaranteed a steady supply of treated groundwater.

Í

# **Option 3–Onsite Groundwater Injection**

Groundwater injection would involve pumping treated groundwater from both treatment units to injection wells at the north side of McClellan AFB. The wells would be perforated into the regional aquifer to an approximate depth of 600 feet below ground surface.

#### Site Description

The preferred area for the groundwater injection site is at the north end of McClellan AFB. This site may be accessible by Gate 1010. Presently this area is undeveloped and appears to be unused.

The conveyance pipeline alignment from the treatment unit sites to the groundwater injection site is shown in Figure Q-2 (Option 3-Onsite Groundwater Injection).

# Water Usage

All water generated by both the west and the east treatment units would be injected into the wells. It has been assumed for this analysis that a minimum of two and a maximum of three injection wells would be required to accommodate the flow ranges. One of these wells would be required as a standby well for maintenance purposes.

# Facilities Required

Facilities required for this option are listed in Table Q-4 and include approximately 30,900 feet of pipe, a 1,400-foot access road from Gate 1010 to the well field, injection wells, and booster pumps at each treatment unit site. For facility development, it has been assumed that both treatment units would discharge into a common conveyance pipeline north of the west treatment unit.

Major features of the pipeline alignment are described in the following paragraphs. All pipe will be in paved roads with the exception of the section east from 26th Street to the groundwater injection site.

- Beginning at the east treatment unit site, the pipeline is routed for about 6,600 feet along Dudley Blvd. This four-lane street is fairly busy, since it is a main access road on the Base. The sewer and water lines appear to be to the north edge of the road. The shoulders are wide and there are no overhead electrical lines along much of the route. This route has at least one railroad crossing.
- The alignment follows Kilzer Avenue north for about 1,400 feet to the intersection with Dean Street. Kilzer has two lanes, with overhead lines along the west shoulder. Water appears to be on the west side of the street. One bore and jack will be required to go underneath four sets of railroad tracks just prior to the intersection with Dean Street.

)





| Table Q-4           Facilities Required for Onsite Groundwater Injection                                                                                                                      |                                    |                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|--|--|
| Low Flow High Flow                                                                                                                                                                            |                                    |                                   |  |  |
| Facilities                                                                                                                                                                                    | (400 gpm + 600 gpm =<br>1,000 gpm) | (720 gpm + 1,600 gpm = 2,320 gpm) |  |  |
| 1. Pipeline Length (ft)<br>8-inch<br>10-inch<br>12-inch<br>14-inch                                                                                                                            | 11,600<br>1,300<br>18,000<br>      | <br>11,600<br>1,300<br>18,000     |  |  |
| <ul> <li>2. Combined Pump Station<br/>Capacities <ul> <li>Design flow (gpm)</li> <li>Total dynamic head (ft)</li> <li>Delivery pressure (psi)</li> <li>Motor size (hp)</li> </ul> </li> </ul> | 1,150<br>170<br>10<br>75           | 2,250<br>210<br>10<br>170         |  |  |
| 3. Injection Wells<br>Number of wells<br>Casing size (in.)<br>Depth (ft)                                                                                                                      | 2<br>12<br>600                     | 3<br>12<br>600                    |  |  |
| 4. Access Road (ft)                                                                                                                                                                           | 1,400                              | 1,400                             |  |  |

- The alignment turns west onto Dean Street for about 1,400 feet. Dean Street has two lanes, with overhead lines on the south shoulder. The sewer appears to be located along the north edge of the street.
- Continuing north on Patrol Road, the route covers about 2,200 feet prior to the intersection of Patrol Road and the west treatment unit access road. Patrol Road has two lanes with water and overhead powerlines located on the west edge.
- Beginning at the west treatment plant, the pipeline is routed for about 1,300 feet along the treatment unit access road across to Patrol Road.
- The alignment then follows Patrol Road to the north for about 4,400 feet. Patrol Road is still two lanes. This route has two creek crossings, one for Magpie Creek and one for Don Julio Creek. The alignment will also cross one sewer pipe and one natural gas pipe (RCRA Part B).
- The alignment turns west onto Ascot Avenue and follows that road for about 1,400 feet until it reaches 20th Street. Ascot and 20th both have wide shoulders in an almost rural setting and are lightly traveled. The alignment continues north on 20th Street to E Street for about 2,600 feet. 20th Street has overhead powerlines on the west shoulder, and water valves located on the west edge.

1

- At the intersection of E Street, the alignment is routed east on E Street for about 4,000 feet to the intersection with 26th Street. Water is on the south edge of E Street. This street is lightly traveled and runs through a residential area.
- The alignment follows 26th Street north for about 5,200 feet, then turns due east for 400 feet to end at the proposed groundwater injection site location. This section of the alignment crosses Robla Creek. One section of pipe will have to cross under the security fence at McClellan AFB, and due to security reasons will probably have to be constructed within 1 day's time.

# Institutional Issues

Neighboring water utilities are concerned about the uncertainties involved in groundwater injection. Some of the concern centers around the lack of knowledge of the effect of the injected water on the contaminated plume. Such effects could include breaking the plume up, thus making the cleanup more difficult and possibly contaminating the existing uncontaminated supplies. This issue is being evaluated as part of the RI/FS.

A Report of Waste Discharge will be required by RWQCB for developing injection installations and requirements. The EPA does not require a permit for injection of a non-hazardous waste (i.e., treated groundwater) into a usable aquifer.

# **Option 4–Discharge to Magpie Creek**

Currently, the groundwater treatment plant discharges its water (approximately 200 gpm) into Magpie Creek. Although a pipe and discharge structure are presently installed for the existing treatment unit, the assumption was made that new facilities would be required. Magpie Creek is a concrete-lined canal through much of the McClellan AFB. Its existing design capacity is 700 cubic feet per second (cfs) or 314,160 gpm (Jerry Reitz, personal communication, July 22, 1993).

#### Site Description

Discharge to Magpie Creek from the west treatment unit will use a pipeline paralleling the existing discharge pipe along the treatment unit access road. Discharge to Magpie Creek from the east treatment unit will use a pipeline through a congested area of McClellan AFB to the closest available point of discharge.

The relative locations of the treatment unit sites and the associated pipeline routing for this option are shown in Figure Q-3 (Option 4-Discharge to Magpie Creek).



GWOU/Q-3.DQN

 $\zeta^n$ 



#### Water Usage

For this study, it is assumed that all generated flow can be discharged to Magpie Creek regardless of the season. However, the creek capacity should be evaluated in detail during the preliminary design because the creek does overflow at some locations during storm events.

# Facilities Required

New facilities required for this option are listed in Table Q-5 and include the discharge pipeline from each treatment unit site to the creek, a discharge structure, and a pumping system. The discharge structure is assumed to be corrugated metal pipe with a flap gate at the end to dissipate the energy. The discharge structure would be similar to the one currently used by the groundwater treatment plant.

|    | Table Q-5<br>Facilities Required for Discharge to Magpie Creek                                             |                     |                       |                          |                        |
|----|------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------------|------------------------|
|    | Groundwater Pumping Scenario                                                                               |                     |                       |                          | 0                      |
|    |                                                                                                            | East Trea           | tment Unit            | West Trea                | tment Unit             |
|    | Low FlowHigh FlowLow FlowHighFacilities(400 gpm)(720 gpm)(600 gpm)(1,60                                    |                     |                       | High Flow<br>(1,600 gpm) |                        |
| 1. | Pipeline<br>Diameter (in)<br>Length (ft)                                                                   | 8<br>200            | 10<br>200             | 10<br>1,400              | 12<br>1,400            |
| 2. | Pump Station<br>Design flow (gpm)<br>Total dynamic head (ft)<br>Delivery pressure (psi)<br>Motor size (hp) | 400<br>25<br>5<br>5 | 650<br>25<br>5<br>7.5 | 750<br>25<br>5<br>7.5    | 1,600<br>30<br>5<br>20 |
| 3. | Discharge Structure                                                                                        | 1                   | 1                     | 1                        | 1                      |

# Institutional Issues

Discharge to Magpie Creek may create additional riparian habitat that McClellan AFB may be responsible for after cleanup is completed. For this reason McClellan AFB does not look at discharge to Magpie Creek as a primary end use. However, if other alternatives do not prove to be feasible, Magpie Creek could become a primary end use.

An NPDES permit will be required and may be similar to the existing NPDES permit requirements for the existing groundwater treatment unit (NPDES No. CA0081850, Order No. 91-171). Each new treatment will not be required to monitor its own discharge. Additional testing and monitoring of Magpie Creek will not be required prior to discharge of any new treated groundwater. However, initial sampling at the groundwater treatment units will be intensive until the system is proven viable (personal communication, Alex McDonald, RWQCB, July 22, 1993).

ĺ.

# **Implementation of End-Use Options**

The end-use options as described above will not be sufficient on an individual basis in terms of operational flexibility. Therefore, the options were combined into two complete systems, with primary and secondary end uses. These two systems were evaluated for each of the four groundwater pumping scenarios, assuming that the entire remedial action program will be designed around one or a combination of these scenarios.

# System 1–Description

System 1 would convey the first 200 gpm of treated groundwater to McClellan AFB existing greywater system. The remaining flow would be sold to the neighboring water districts. In the event of maintenance requirements, the backup system would discharge the treated groundwater to Magpie Creek. Facilities required for this system are listed in Table Q-6. The pump motor size is based on the maximum size required for a given groundwater pumping scenario. System 1 is shown in Figure Q-4.

| Table Q-6           Facilities Required for System 1                                                                                                           |                                                                    |                        |                        |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|---------------------------|
|                                                                                                                                                                | Groundwater Pumping Scenario                                       |                        |                        |                           |
|                                                                                                                                                                | East Trea                                                          | tment Unit             | West Trea              | tment Unit                |
| Facilities                                                                                                                                                     | Low FlowHigh FlowLow FlowHigh F(400 gpm)(720 gpm)(600 gpm)(1,600 g |                        |                        | High Flow<br>(1,600 gpm)  |
| 1. Pipe Lengths (ft)<br>6 in<br>8 in<br>10 in<br>12 in                                                                                                         | 1,800<br>                                                          | <br>1,800<br>          | 400<br><br>8,500<br>   | 400<br><br>8,500          |
| <ul> <li>2. Pump Stations</li> <li> Design flow (gpm)</li> <li> Total dynamic head (ft)</li> <li> Delivery pressure (psi)</li> <li> Motor size (hp)</li> </ul> | 400<br>170<br>65<br>25                                             | 650<br>170<br>65<br>40 | 750<br>185<br>52<br>50 | 1,600<br>185<br>52<br>110 |
| 3. Discharge Structure at<br>Magpie Creek                                                                                                                      | 1                                                                  | 1                      | 1                      | 1                         |

# System 2–Description

System 2 would convey the first 200 gpm of treated groundwater to McClellan AFB existing greywater system. The remaining flow would be injected into the ground-water at the northeast end of McClellan AFB. In the event of maintenance requirements, the backup system would discharge the treated groundwater to Magpie Creek.

)



GWOU/Q-4.DGN

-

. . .

ιĥ,



Facilities required for this system are listed in Table Q-7. The pump motor size is based on the maximum size required for a given groundwater pumping scenario. System 2 is shown in Figure Q-5.

| Table Q-7         Facilities Required for System 2                                                                                   |                                    |                                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|--|--|
|                                                                                                                                      | Groundwater P                      | umping Scenario                      |  |  |
|                                                                                                                                      | Low Flow                           | High Flow                            |  |  |
| Facilities                                                                                                                           | (400 gpm + 600 gpm =<br>1,000 gpm) | (720 gpm + 1,600 gpm = 2,320 gpm)    |  |  |
| 1. Pipe Lengths (ft)<br>6 in<br>8 in<br>10 in<br>12 in<br>14 in                                                                      | 400<br>11,800<br>2,700<br>18,000   | 400<br><br>11,800<br>2,700<br>18,000 |  |  |
| 2. Combined Pump Station<br>Capacities<br>Design flow (gpm)<br>Total dynamic head (ft)<br>Delivery pressure (psi)<br>Motor size (hp) | 1,150<br>170<br>10<br>75           | 2,250<br>210<br>10<br>170            |  |  |
| 3. Discharge Structure at<br>Magpie Creek                                                                                            | 2                                  | 2                                    |  |  |
| 4. Injection Wells<br>Number of wells<br>Casing size (in.)<br>Depth (ft)                                                             | 3<br>12<br>600                     | 4<br>12<br>600                       |  |  |
| 5. Access Road (ft)                                                                                                                  | 1,400                              | 1,400                                |  |  |

### **Order-of-Magnitude Costs**

Order-of-magnitude cost opinions were prepared for each system in accordance with the guidelines of the American Association of Cost Engineers. These are approximate estimates made without detailed engineering data. The estimates were founded on cost curves, bid tabs from similar water conveyance projects, and preliminary estimated quantities of major facility components. It is normally expected that an estimate of this type would be accurate within +50 percent to -30 percent.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, and other variable factors. As a result, the final project costs will vary from the estimates presented here. Because of these factors, project feasibility,

RDD10012BB6.WP5 (GW RI/FS)

6/23/94

benefit cost ratios, risks, and funding needs must be carefully reviewed prior to making specific financial decisions or establishing project budgets to help ensure proper evaluation and adequate funding. Both capital and annual costs have been developed for each system evaluated.

# **Estimated Capital Costs for Systems 1 and 2**

#### Assumptions

Estimated capital costs for Systems 1 and 2 are based on the following assumptions:

- Facilities are independent for each groundwater pumping scenario.
- Pipe diameters are based on a maximum velocity of 5 feet per second (fps) and an allowable friction loss of 7 feet per 1,000 feet of pipe.
- Pipe capital cost is based on \$5 per diameter inch per linear foot (materials and installation included).
- Pump capital cost is based on \$1,500 per hp.
- Discharge structure to Magpie Creek capital cost is based on the existing structure and an approximate cost of \$2,000 each.
- Groundwater injection wells are \$90,000 each, assuming a depth of 600 feet.
- One standby groundwater injection well is required for each scenario.
- Access Road is 6-inch gravel base, 12 feet wide.

#### Table of Costs

Capital costs are presented in Table Q-8 for both groundwater pumping systems of low flow and high flow at each treatment unit. As shown in the table, estimated capital costs range from \$626,000 (low flows) to \$856,000 (high flows) for System 1, and \$2,270,000 (low flows) to \$2,669,000 (high flows) for System 2. The cost treatment unit portion of System 2 would not be built without the west treatment unit portion of System 2.

# Estimated Annual Costs for Systems 1 and 2

#### Assumptions

Annual costs include operation and maintenance and pumping requirements. Labor is not included. Annual costs were estimated for both systems using the following assumptions:

RDD10012BB6.WP5 (GW RI/FS)

6/23/94



GWOU/Q-5.DQN

3

( D



| Table Q-8<br>System Capital Costs                  |                                                                           |                                                |                                                |                                                    |                                                    |
|----------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Capital Cost Per Groundwater Pumping Scenario (\$) |                                                                           |                                                |                                                |                                                    | cenario (\$)                                       |
|                                                    |                                                                           | East Trea                                      | tment Unit                                     | West Trea                                          | tment Unit                                         |
| System                                             | Facilities                                                                | Low Flow<br>(400 gpm)                          | High Flow<br>(720 gpm)                         | Low Flow<br>(600 gpm)                              | High Flow<br>(1,600 gpm)                           |
| 1                                                  | Pipeline<br>Pumps<br>Discharge Structure<br>TOTAL                         | 72,000<br>38,000<br>2,000<br>112,000           | 90,000<br>75,000<br>2,000<br>167,000           | 437,000<br>75,000<br>2,000<br>514,000              | 522,000<br>165,000<br>2,000<br>689,000             |
| 2                                                  | Pipeline<br>Pumps<br>Discharge Structure<br>Injection Well<br>Access Road | 464,000<br>113,000<br>4,000<br><br><br>581,000 | 580,000<br>113,000<br>4,000<br><br><br>697,000 | 1,145,000<br>255,000<br>4,000<br>270,000<br>15,000 | 1,338,000<br>255,000<br>4,000<br>360,000<br>15,000 |

- Facilities are independent for each groundwater pumping scenario.
- Pipe friction head losses were based on a Hazen Williams coefficient of friction of 120, which is representative of a rough pipe (conservative).
- Pump elevations are at ground surface in general vicinity of treatment unit site as based on United States Geological Survey (USGS) map.
- Discharge elevations are at ground surface in general vicinity of discharge point as based on USGS map.
- Pump discharge assembly losses (losses through fittings and valves) are approximately 10 feet.
- A discharge head of approximately 5 psi is required for the existing greywater system, approximately 65 psi for Northridge Water District, approximately 52 psi for Rio Linda Water District, approximately 10 psi for groundwater injection, and approximately 5 psi for Magpie Creek.
- The combined pump and motor efficiency will be 70 percent.
- Pumps will operate 24 hours a day, 365 days a year.
- Power cost will be @ \$0.06/kilowatt hour (kWh).
- Operation and maintenance costs are based on a percent of capital cost as follows:

ł

| - | Pipes                       | 0.5  |
|---|-----------------------------|------|
| - | Pumps                       | 5.0  |
| - | Discharge Structures        | 10.0 |
| - | Groundwater Injection Wells | 20.0 |
| - | Access Road                 | 10.0 |
|   |                             |      |

# Annual Costs

Annual costs for both systems are identified in Table Q-9 for each groundwater pumping scenario. As shown in the table, total annual costs range from approximately \$36,000 (low flows) to \$82,000 (high flows) for System 1, and from approximately \$98,000 (low flows) to \$156,000 (high flows) for System 2.

| Table Q-9<br>System Annual Costs |                                                                           |                                              |                                          |                                                     |                                           |
|----------------------------------|---------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------|
|                                  |                                                                           | Annual Cost Per Groundwater Pumping Scenario |                                          |                                                     |                                           |
|                                  |                                                                           | East Treat                                   | tment Unit                               | West Treatment Unit                                 |                                           |
| System                           | Facilities                                                                | Low Flow<br>(400 gpm)                        | High Flow<br>(720 gpm)                   | Low Flow<br>(600 gpm)                               | High Flow<br>(1,600 gpm)                  |
| 1                                | Pipeline<br>Pumps<br>Discharge Structure<br>TOTAL                         | 360<br>11,500<br>200<br>12,060               | 450<br>23,000<br>200<br>23,650           | 2,200<br>22,000<br>200<br>24,400                    | 2,600<br>56,000<br>200<br>58,800          |
| 2                                | Pipeline<br>Pumps<br>Discharge Structure<br>Injection Well<br>Access Road | 2,400<br>11,500<br>400<br><br><br>14,300     | 2,900<br>22,000<br>400<br><br><br>25,300 | 5,700<br>22,000<br>400<br>54,000<br>1,500<br>83,600 | 6,700<br>50,000<br>400<br>72,000<br>1,500 |

# Works Cited

McDonald, Alex. 1993. Personal communication. July 22.

Ness, Jerry. 1993. Personal communication. August 10.

Reitz, Jerry. 1993. Personal communication. July 22.

. . . . . . . . . . .

#### TECHNICAL MEMORANDUM R

# **CHEM** HILL

PREPARED FOR:McClellan Air Force BaseDATE:March 27, 1994SUBJECT:Methodology for Budget-Level Cost Estimates<br/>Groundwater OU RI/FS Report<br/>Delivery Order No. 5066PROJECT:SAC28722.66.FS

#### Introduction

This technical memorandum describes the assumptions and methodology used to develop budget-level cost estimates for the each of the six remedial action alternatives in the Groundwater OU RI/FS. Capital costs and O&M costs are provided for the proposed extraction, treatment, and end-use systems that comprise each remedial action alternative. Capital costs are expenditures required to initiate and install a remedial action. They are exclusive of costs required to maintain the action throughout its lifetime. Annual operating and maintenance costs are the postconstruction costs necessary to ensure continued effectiveness of a remedial action and achievement of its objective.

Capital and O&M costs were developed based on the anticipated tasks and activities required to implement and operate the remedial action. Complete listings of the tasks and activities are presented in Appendix S. The engineer responsible for a specific activity estimated the necessary level of effort and materials required to complete that activity. Costs were then calculated based on quotes from equipment vendors, bid tabs, estimates from similar projects at McClellan AFB or elsewhere, standard costing guidance references, and standard labor rates. The cost for each task was computed by totaling the activities necessary to complete that task. Cost summary tables located at the end of this technical memorandum provide a listing of each task and its estimated budget-level cost. Budget-level costs are considered to be accurate within plus 30 percent or minus 15 percent.

Annual O&M costs were developed for two time periods. Since construction of the remedial action will occur in phases, an initial cost was calculated that included operation of the existing treatment plant and the offbase monitoring wells with wellhead treatment. This initial phase was conservatively estimated at 5 years. When the remedial action is completely installed, the wellhead treatment units will be taken offline, and the O&M costs then reflect the operation of the entire facility.

3/27/94
#### **Extraction System**

Capital costs were generated based on all activities related to the completion of the monitoring wells, extraction wells, wellhead treatment units, instrumentation and control (I&C), and collection piping. Major tasks related to the wells include planning, obtaining permits, subcontracting, drilling and logging, sampling, lab analysis, and data interpretation. Activities related to the collection piping include design, utility mapping, obtaining permits, and construction. Annual O&M costs consist of power for the extraction wells and instrumentation, pump and piping maintenance, and sampling and analytical testing.

#### **Capital Cost Estimates**

#### **Extraction Wells and Monitoring Wells**

Installation of the monitoring wells and extraction wells was estimated to be completed in three phases, each resulting in a separate task order. Table R-1 summarizes the number of proposed wells to be installed offbase, in hot spot locations, and within the remainder of the onbase areas.

Costs for both the extraction wells and monitoring wells were estimated on the basis of cost per foot of depth. Drilling methods will depend on the depth of well, for example:

- A-zone wells (average depth of 140 feet)-Dual tube percussion with cyclone
- B-zone wells (average depth of 200 feet)-Mud-rotary rig with mud pit, pump, flow ditch, and shaker
- C-zone wells (average depth of 300 feet)-Mud-rotary rig with mud pit, pump, flow ditch, and shaker

For A- and B-zone wells, 4 days will be required to mobilize equipment to the boring location, drill the hole, install the well materials including a 2-hp submersible pump, monument at the surface, and decontaminate materials and equipment. For C-zone wells, 5 days will be required for this work. Well screens will consist of 50-foot lengths of flush-jointed, 6-inch-diameter, Type 304 stainless steel, with 0.040-inch slots.

Three-person drilling crews will be used with Level D protective gear required. Derived drilling wastes will require containerization. Drilling mud will be contained in 6,500-gallon Baker tanks. Drill cuttings will be contained in 10-cubic-yard rolloff boxes. Waste materials will be disposed at an onbase facility within 60 days, and the containers will be reused at another boring or returned to the vendor. Costs for chemically characterizing drilling mud and soil cuttings are not included. Decontamination wastewater will be disposed at an onbase treatment facility.

|                         |             |            |            | -        |          |         | Table I   | R-1         |           |         |     |    |     |     |        |       |
|-------------------------|-------------|------------|------------|----------|----------|---------|-----------|-------------|-----------|---------|-----|----|-----|-----|--------|-------|
|                         |             |            |            | Su       | mmary of | Groundy | rater Mon | itoring and | Extractio | a Wells |     |    |     |     |        |       |
|                         |             |            | <          |          |          |         |           | ~           | -         |         |     |    |     |     |        |       |
|                         | Bo          | Me         | Het Spot   | <b>G</b> | ale      | B       | base      | quo         | ale       | B       | 200 | 8  | 216 |     | Totals |       |
|                         | EW          | MW         | EW         | MM       | EW       | MM      | EW        | MM          | EW        | MM      | EW  | MM | EW  | EW  | MM     | Wells |
| MCL Target Volume       |             |            |            |          |          |         |           |             |           |         |     |    |     |     |        |       |
| Task Order              |             |            |            |          |          |         |           |             |           |         |     |    |     |     |        |       |
| 1                       | 4           | 0          | 3 15       | 0        | 0        | 5       | 1         | 0           | 0         | 2       | -   | 0  | 0   | 21  | 10     | 31    |
| 2                       | 11          | ~          | 2 14       | 0        | 0        | 2       | 3         | 0           | 0         | -       | -   | 0  | 0   | 29  | 5      | 34    |
| 3                       | 0           |            | 0 0        | 32       | 42       | 0       | 0         | 20          | 19        | 0       | 0   | 6  | 12  | 73  | 61     | 134   |
| Tetals                  | 15          | -          | 5 29       | 32       | 42       | 7       | 4         | 20          | 19        | e       | 2   | 6  | 12  | 123 | 76     | 199   |
| Risk Target Volume      |             |            |            |          |          |         |           |             |           |         |     |    |     |     |        |       |
| Task Order              |             |            |            |          |          |         |           |             |           |         |     |    |     |     |        |       |
| 1                       | 9           | 10         | 0 15       | 0        | 0        | 7       | 2         | 0           | 0         | 2       | 0   | 0  | 0   | 23  | 19     | 42    |
| 2                       | 16          | C          | 7 14       | 0        | 0        | 2       | 5         | 0           | 0         |         | 1   | 0  | 0   | 36  | 10     | 46    |
| 3                       | 0           | 0          | 0 0        | 34       | 53       | 0       | 0         | 21          | 25        | 0       | 0   | 13 | 16  | 94  | 68     | 162   |
| Tetals                  | 22          | 1          | 7 29       | 34       | 53       | 6       | 7         | 21          | 25        | 3       | 1   | 13 | 16  | 153 | 97     | 250   |
| Background Target Vol   | ume         |            |            |          |          |         |           |             |           |         |     |    |     |     |        |       |
| Task Order              |             |            |            |          |          |         |           |             |           |         |     |    |     |     |        |       |
| -                       | 17          | 15         | 5 15       | 0        | 0        | 10      | 5         | 0           | 0         | 3       | 0   | 0  | 0   | 37  | 28     | 65    |
| 2                       | 35          | 5          | 9 14       | 0        | 0        | 3       | L         | 0           | 0         | 2       | 1   | 0  | 0   | 57  | 14     | 71    |
| 3                       | 0           | 0          | 0          | 36       | 19       | 0       | 0         | 26          | 38        | 0       | 0   | 10 | 12  | 111 | 72     | 183   |
| Tetals                  | 52          | 7          | 4 29       | 36       | 61       | 15      | 12        | 26          | 38        | 5       | 1   | 10 | 12  | 205 | 116    | 319   |
| Note: EW = extraction w | rells; MW : | = monitori | ing wells. |          |          |         |           |             |           |         |     |    |     |     |        |       |
|                         |             |            |            |          |          |         |           |             |           |         |     |    |     | 1   |        |       |

-----

ŧ

ب ....

G:\users\daV\_under\5066\upendixr\WELL.XLS

----

Wellhead treatment is proposed for temporary use (about 3 to 5 years) at the offbase extraction wells until the remedial action is fully implemented. Costs include the treatment unit only; no costs were estimated for piping required to convey the discharge water.

#### Instrumentation and Control

I&C costs were computed for each alternative based on the need for flow measurements and water level measurements for the extraction wells and monitoring wells, respectively. Data will be collected from all of the proposed monitoring wells plus all of the existing monitoring wells that have been designated to be on the monitoring system. Table R-2 summarizes the I&C requirements.

|            |          | S         | Table<br>summary of I& | R-2<br>C Requirements |       |           |      |       |
|------------|----------|-----------|------------------------|-----------------------|-------|-----------|------|-------|
|            | Monitor  | ing Wells | Extracti               | on Wells              | Total | VO        |      | VO    |
| Case       | Existing | Proposed  | Existing               | Proposed              | Weils | Locations | PLCs | Drops |
| MCL        | 40       | 76        | 9                      | 123                   | 248   | 83        | 11   | 70    |
| Risk       | 50       | 97        | 9                      | 153                   | 309   | 103       | 13   | 87    |
| Background | 65       | 116       | 9                      | 205                   | 395   | 132       | 17   | 112   |

Water level data will be collected from the monitoring wells at a maximum frequency of 1 sample per hour per well. The system will be capable of sampling all wells within a one-hour period. Monitoring of the output flow from the extraction wells will enable the operator to determine the well performance and operating status. Cost estimates are based on power being available at the extraction wells for the I&C units and no flow controls being required for the pumps.

The well data will be hardwired to an input/output (I/O) location consisting of a programmable logic controller (PLC) I/O module that can accommodate analog inputs. Well data will be collected from the monitoring wells and extraction wells with level probes or flow meters, respectively. It is assumed that one I/O location (probably at an extraction well having a power source) will service three wells within a radius of 400 feet. The I/O units, in turn, are hardwired to a PLC from where the data are transmitted via modem to a computer control station (PC) located at each of the treatment plants. One PLC should be able to accommodate eight I/O units; thus, the monitoring system needs one PLC for every 24 wells.

The network consists of the following:

- DH-485 network between the PLCs and modems with 16,000 feet of cable
- Six modems and convertors

- RS-232 network between the modems and the PCs with 15,000 feet of conduit
- Two personal computers
- Process monitoring software

#### Collection Piping

Costs for the collection piping depend upon the length and diameter of pipes as well as the type of pipe. The diameter and length of pipes were developed using a computerized piping network model. The collection piping network varies depending on the target volumes for the alternative.

Design of the collection system was performed using available Microstation base mapping. A software package developed by CH2M HILL, named LYNX, was used as the interface between the Microstation base mapping, a database, and NETWK, the hydraulic analysis software used for piping networks. The collection system piping network was laid out in Microstation over the base mapping to ensure that pipes were located appropriately. LYNX was used to translate the graphical information from Microstation to a database, and then to write input files from the database for use by NETWK After the hydraulic analysis was completed, LYNX was used to generate output reports summarizing the pipe sizes and quantities necessary for this system. LYNX was also used to graphically display the results from NETWK for a visual check of the results. Table R-3 summarizes the pipe quantities for each collection system.

The collection system will consist of both dual-wall containment pipelines and singlewall pipelines. Dual-wall containment pipe will only be used to convey the extracted water from wells located in hot spots to the mainline. Otherwise, costs were based on single-wall pipes. Costs were calculated using C-900 polyvinyl chloride pipe (PVC) suitable for conveying potable water.

Land use in the area surrounding the pipeline construction corridor has a significant impact on the cost of the installation. Pipeline construction in open country typically has little or no utility interference or traffic control requirements, while construction in urban areas can be significantly complicated by these types of additional work. The EPA published a technical report in 1978 entitled *Construction Costs for Municipal Wastewater Conveyance System: 1973-1977* that adjusts sanitary sewer construction costs for various land use categories by a multiplier.

|           |        | Pipe Quantitie | Table R-3<br>is for Collection | n Systems |        |        |
|-----------|--------|----------------|--------------------------------|-----------|--------|--------|
|           |        |                | Pipe Length                    | n (feet)  |        |        |
| Bine Diam | MC     | L              | Ris                            | k         | Back   | ground |
| (inches)  | East   | West           | East                           | West      | East   | West   |
| 2         | 15,312 | 19,979         | 20,821                         | 20,016    | 18,998 | 29,972 |
| 3         | 22,329 | 6,538          | 11,126                         | 21,251    | 18,619 | 25,298 |
| 4         | 3,835  | 3,397          | 5,115                          | 9,433     | 2,071  | 13,986 |
| 6         | 4,315  | 6,505          | 4,114                          | 3,292     | 5,229  | 11,451 |
| 8         | 1,902  | 5,945          | 846                            | 1,127     | 10,045 | 3,632  |
| 10        |        |                |                                | 2,945     | 1,952  | 5,805  |
| 12        |        |                |                                | 2,308     | 143    | 3,101  |
| 14        |        |                |                                |           |        | 1,178  |
| 16        |        |                |                                |           |        | 920    |
| Total     | 47,693 | 42,364         | 42,022                         | 60,372    | 57,057 | 95,343 |

Quantities of pipe generated by the network model were divided into two categories – dense residential and commercial/industrial. For all piping, the estimate includes provision for moderate utility interference (dense residential) or heavy utility interference (commercial/industrial). Excavation and backfill costs were developed for piping in a light residential street and adjusted for the above factors. The adjustments are dense residential times 1.19 and commercial/industrial times 1.32. Earthwork costs include sawcutting and removing the asphalt concrete pavement, excavating, backfilling with pipe zone material and general backfill material, locator tape, and paving. Estimated costs include the installation of pipeline crossings under railroads and taxiways with directional drilling.

#### **O&M** Cost Estimates

O&M costs were developed for labor, power, data sampling and analysis, wellhead treatment, as well as maintenance.

#### Power

Costs for power were calculated using the total horsepower of the extraction well pumps, with the 2-hp pumps operating 24 hours per day, 365 days per year. The cost of power was calculated at 0.06/kWh, the rate provided by McClellan AFB.

#### Sampling and Analyses

Well sampling is expected to occur twice per year with a total of 40 percent of the wells being sampled yearly. The total number of wells monitored per year at each target volume is:

- MCL-47
- $10^{-6}$  Cancer Risk 59
- Background-73

The cost per sample is based on a two-person crew sampling 5 wells per day and standard labor rates.

Laboratory analysis costs were included to analyze each sample for VOCs, minerals, and inductively coupled plasma (ICP) metals. Data interpretation and reports will also be generated twice yearly.

#### Wellhead Treatment and General Maintenance

Costs were also added for replacing the carbon in the wellhead treatment unit during the year by a vendor. Maintenance of the system was assumed to be 5 percent of construction cost per year and includes service, painting, and repairs.

#### **Treatment System**

Capital costs were developed for all tasks and activities required to complete the modification of the existing west treatment plant and the construction of the proposed east treatment plant. Major tasks include planning, acquiring necessary permits, design and construction. Annual O&M costs consist of operating and administrative labor, pumping, and processing power, natural gas usage, maintenance, and analytical testing.

#### **Proposed East Treatment Plant**

#### Capital Cost Estimates

Table R-4 lists the east plant flows and concentrations for the six alternatives being evaluated in the Groundwater OU FS.

The estimated influent concentrations of groundwater are summarized in Appendix M. The concentrations were determined using database queries to search and average the monitoring well analytical data over the target areas for each alternative. Significant contaminants were those which had average calculated concentrations above MCL concentrations. Nondetects were averaged into the series of data as zero

| Eas                       | Table R-4<br>t Treatment Plant I | Requirements                    |
|---------------------------|----------------------------------|---------------------------------|
| Alternative<br>No.        | Groundwater<br>Flow (gpm)        | Treatment<br>Requirement (μg/l) |
| 1                         | 460                              | <0.5ª                           |
| 2                         | 590                              | <0.5 <sup>a</sup>               |
| 3                         | 710                              | <0.5ª                           |
| 4                         | 460                              | <0.5ª                           |
| 5                         | 460                              | <0.5                            |
| 6                         | 460                              | <0.5ª                           |
| <sup>a</sup> With granula | r activated carbon.              |                                 |

concentration values. While some average metals concentrations were higher than MCLs, they were not included as significant contaminants in this evaluation. The historical sampling of filtered and nonfiltered samples and the relationship of these data to the actual extracted groundwater concentrations indicate that extracted concentrations will be less than MCL values. This data analysis and the metals treatment requirements are discussed in Chapter 4 of the Groundwater OU FS.

Air Stripper. As in the order-of-magnitude cost estimations, preliminary air stripper sizing for the three target volumes was performed using STRIPR, an in-house CH2M HILL program. In all three cases, MCL, risk, and background, air stripping towers were sized to remove TCE to required levels. This, in turn, provided adequate removal for all other contaminants. Each STRIPR capital cost is based on fiberglassreinforced plastic external construction and includes all packing and internals. Tower height was limited to 40 feet for aesthetic and air traffic reasons with air flow adjusted to provide required removals. All air strippers were combined with either CatOx or VGAC for offgas control.

Liquid Phase Carbon. Liquid phase carbon equipment sizing and costs are based on vendor-supplied quotes. Equipment capital costs are based on flow rates only, and therefore the cost outlay is the same for all 500-gpm flow alternatives. Alternative 3, however, requires treatment of 700 gpm of groundwater, and therefore two vendors estimated costs for two units, each operating at 350 gpm. These two vendors require two units for the 700-gpm flow rate case because the maximum flow rate through their largest carbon unit is 500 gpm.

Vapor Phase Carbon. The vapor phase carbon capital cost for Alternative 4 has been deferred to O&M costs because the most reasonable vendor price is that of a rental unit.

**Catalytic Oxidation.** Capital cost estimates for a catalytic oxidizer and auxiliary equipment were prepared from vendor budget-level quotations. Sizing criteria were

prepared from STRIPR outputs for the three different target volumes (MCL, risk, background). Three vendors were contacted to request budget-level estimates.

#### **O&M** Cost Estimates (General)

Labor. Labor requirements for each alternative were determined through a comparison of labor usage at the existing GWTP. Three full-time equivalents (FTEs) are estimated for the GWTP to operate; therefore, it was determined that three FTEs would be required to operate alternatives involving air stripping with offgas control and LGAC polishing. It then follows that for Alternative 5, which involves two technologies, only two FTEs will be required for operation, and so on for remaining alternatives. General labor represents 80 percent of the total labor hours, and supervisory labor accounts for 20 percent of the total. Hourly labor rates are supplied by the Hazardous Waste Remediation Operations and Maintenance Cost Estimating Guidance Manual developed by CH2M HILL for the State of California (CAL O&M).

Administrative costs will be approximately twice that of the existing GWTP including McClellan AFB personal labor for meetings, oversight, tours, and optimization.

**Power.** Pump sizes and power requirements were determined using standard engineering methods, accounting for given flow rates and expected head losses through the piping and equipment. Blower sizes and power requirements were determined by vendor suggestions and standard engineering methods.

Power cost was calculated on an energy cost of \$0.06/kWh, the rate provided by McClellan AFB. It was assumed that the treatment plant would operate 24 hours per day, 365 days per year.

**Natural Gas.** Estimates of natural gas usage were calculated from vendor-provided heat requirements. Vendors provided heat input required in British thermal units (Btus) per hour. Natural gas usage and cost are calculated assuming 8,760 operating hours per year, 1,050 Btus per cubic foot of natural gas, and \$0.003 per cubic foot of natural gas.

**Maintenance Materials.** Maintenance costs include piping modifications, painting, and other maintenance materials. Maintenance material costs were estimated as 5 percent of the total capital cost, with installation costs not included. This percentage is an average factor for maintenance provided by vendors.

Analytical Testing. Sampling costs for monitoring treated water are included. The assumptions used to calculate the cost of analytical requirements include twice-weekly testing for organics, and weekly analytical testing for sodium, chlorine, total suspended solids, dissolved oxygen, and turbidity.

#### **O&M** Cost Estimates (Technology-Specific)

**Vapor Phase Carbon.** The most financially feasible vapor phase carbon unit was available only as a rental unit and therefore had only operating costs associated with it. The rental cost includes general maintenance and carbon recharging costs incurred during operation. One vapor phase carbon unit, 12,500 pounds of carbon, is estimated to be required. This system would have an estimated capacity to adsorb the offgas contaminants for one 5-month period. Fuel costs incurred during vapor preheat were determined using guidelines described in the CAL O&M. Natural gas usage and cost were calculated assuming 8,760 operating hours per year; 1,050 Btus per cubic foot of natural gas, and \$0.003 per cubic foot of natural gas.

Liquid Phase Carbon. Carbon regeneration costs were determined using in-house carbon usage estimation programs and several vendor quotes. Air stripper performance and influent carbon concentrations for the three flow and concentration scenarios are included in Tables R-5 through R-7. Carbon cost is calculated based on \$1.10 per pound of carbon.

| B                    | Table R<br>Proposed East Tre<br>ackground Target Volu<br>Flow 710 | atment Plant<br>me (Alternative 3<br>gpm | 3)                                       |
|----------------------|-------------------------------------------------------------------|------------------------------------------|------------------------------------------|
| Contaminant          | Influent<br>Concentration<br>(ppb)                                | Removal<br>(%)                           | Exiting Stream<br>Concentration<br>(ppb) |
| TCE                  | 935                                                               | 99.95                                    | 0.468                                    |
| Carbon Tetrachloride | 2.06.13                                                           | 99.86                                    | 0.003                                    |
| 1,2-DCA              | 0.11.08                                                           | 95.92                                    | 0.005                                    |
| Benzene              | 34                                                                | 99.86                                    | 0.048                                    |
| cis-1,2-DCE          | 9                                                                 | 99.31                                    | 0.062                                    |
| Methylene Chloride   | 1.89                                                              | 99.42                                    | 0.011                                    |

| 10                   | Table R-<br>Proposed East Trea<br><sup>-6</sup> Cancer Risk Target Vol<br>Flow 609 g | 6<br>tment Plant<br>lume (Alternative<br>pm | 2)                                       |
|----------------------|--------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|
| Contaminant          | Influent Concentra-<br>tion<br>(ppb)                                                 | Removal<br>(%)                              | Exiting Stream<br>Concentration<br>(ppb) |
| TCE                  | 1,122                                                                                | 99.96                                       | 0.449                                    |
| Carbon Tetrachloride | 2.5                                                                                  | 99.95                                       | 0.001                                    |
| 1,2-DCA              | 1.32                                                                                 | 96.26                                       | 0.049                                    |
| Benzene              | 41                                                                                   | 99.89                                       | 0.045                                    |
| 1,1-DCE              | 0.52                                                                                 | 99.98                                       | 0.000                                    |
| Methylene Chloride   | 2.1                                                                                  | 99.74                                       | 0.006                                    |
| cis-1,2-DCE          | 11                                                                                   | 99.41                                       | 0.065                                    |

| МС                   | Table F<br>Proposed East Tro<br>L Target Volume (Alt<br>Flow 500 | k-7<br>catment Plant<br>ernatives 1, 4, and<br>gpm | 5)                                       |
|----------------------|------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| Contaminant          | Influent<br>Concentration<br>(ppb)                               | Removal<br>(%)                                     | Exiting Stream<br>Concentration<br>(ppb) |
| TCE                  | 1,870                                                            | 99.97                                              | 0.500                                    |
| Carbon Tetrachloride | 4                                                                | 99.97                                              | 0.001                                    |
| 1,2-DCA              | 2.2                                                              | 96.82                                              | 0.070                                    |
| Benzene              | 63                                                               | 99.92                                              | 0.005                                    |
| 1,1-DCE              | 0.64.1                                                           | 99.98                                              | 0.000                                    |
| Methylene Chloride   | 3.0                                                              | 99.81                                              | 0.006                                    |
| cis-1,2-DCE          | 21                                                               | 99.55                                              | 0.095                                    |

#### **Existing West Treatment Plant**

#### Capital Cost Estimates

. . . .

The purpose of this section is to provide cost backup for the capital and O&M cost estimates for the existing GWTP at McClellan AFB under future flow scenarios, as described in the six alternatives developed in the GW OU RI/FS. The GWTP flows and concentrations described in the alternatives are listed in Table R-8.

ŧ

| ]<br>Flo                     | Table R-8           Existing West Treatment           ws and Treatment R | ent Plant<br>equirements        |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Alternative<br>No.           | Groundwater<br>Flow (gpm)                                                | Treatment<br>Requirement (μg/l) |  |  |  |  |
| 1                            | 630                                                                      | <0.5ª                           |  |  |  |  |
| 2                            | 820                                                                      | <0.5ª                           |  |  |  |  |
| 3                            | 3 1,300 <0.5 <sup>a</sup>                                                |                                 |  |  |  |  |
| 4                            | 630                                                                      | <0.5ª                           |  |  |  |  |
| 5                            | 630                                                                      | <0.5                            |  |  |  |  |
| 6                            | 630                                                                      | <0.5ª                           |  |  |  |  |
| <sup>a</sup> With granular a | ctivated carbon.                                                         |                                 |  |  |  |  |

The concentration of groundwater to be treated in the six alternatives was also estimated. The significant concentrations of all compounds are given in Appendix M. The methods used to determine concentrations and criteria used to define significant contaminants are the same as those listed for the east treatment plant.

As discussed in Appendix A, stripping compounds typically found in McClellan AFB groundwater (specifically 1,2-DCA) is dependant on temperature. Calculations performed as part of the groundwater treatment plant evaluation showed that there is an economic breakpoint which centers on stripper temperature of about 100°F. At water temperatures below 100°F, 1,2-DCA tends to stay in the water and require removal in the carbon beds. This causes a dramatic rise in carbon consumption and therefore total O&M cost. At temperatures above 100°F, the 1,2-DCA is stripped and destroyed in the offgas control incinerator, with negligible impact on O&M cost over typical operating expenses. While economic optimization of the design is a detailed, involved task that should best take place at the predesign stage, we have attempted to find an approximate optimum as part of this cost-estimating task. To determine the capital cost required to expand the existing GWTP for future flows, the following assumptions were made:

- The optimum stripper water temperature is approximately 99° to 101°F.
- The scrubber inlet gas temperature shall be 490° to 515°F to avoid problems with internals being damaged by high temperature.
- The air/water heat exchanger will be replaced or supplemented with larger units to allow the first two conditions to be met at higher flow rates.

To determine the required air/water heat exchanger area and related cost, the GWTP was evaluated using a heat balance model developed by CH2M HILL. This model is described in Appendix A. In addition to air/water heat exchanges, additional capital items are required to allow the GWTP to accommodate the hydraulic flow of Alternatives 1 through 6. The additional major equipment items with each alternative are summarized in Table R-9.

|                                | Capital Items R                       | Table R-9<br>equired for GWTP Expansion                                                      |                                                                                                                 |
|--------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| liem                           | Alternatives<br>1, 4, 5, and 6        | Alternative<br>2                                                                             | Alternative<br>3                                                                                                |
| Air/water heat exchanger       | Add 361 ft <sup>2</sup> Exchanger     | Add 1,000 ft <sup>2</sup> Exchanger                                                          | Add 1,500 ft <sup>2</sup> Exchanger                                                                             |
| Water/water heat<br>exchangers | No change                             | Add one 3,500 ft <sup>1</sup><br>Exchanger                                                   | Add two 3,500 ft <sup>2</sup> Exchangers                                                                        |
| LGAC units                     | No change                             | Add one pair of 20,000-lb<br>vessels (in series)                                             | Add three pairs of 20,000-lb<br>vessels (in series)                                                             |
| Stripper pumps                 | No change                             | No change                                                                                    | Replace pumps with 1,600-gpm capacity models                                                                    |
| LGAC pumps                     | No change                             | No change                                                                                    | Replace pumps with 1,600-gpm capacity models                                                                    |
| Liquid distributor             | No change                             | No change                                                                                    | Replace with trough-type distributor                                                                            |
| Piping                         | Minor changes<br>(\$62,000 installed) | Minor changes – scrubber<br>may require repositioning<br>to allow new air/water<br>exchanger | Major changes – diameters<br>increase for hydraulic capacity<br>increase, scrubber may require<br>repositioning |

#### **O&M** Cost Estimates

LGAC. One principal variable factor in O&M costs for the west treatment plant is carbon usage. As discussed above, an optimum stripper feedwater temperature has been estimated. Capital items have been included in the cost estimates of the various alternatives to allow operation at this temperature. Stripper performance and resulting carbon influent concentrations that result from stripper operation estimates at approximately 100°F are given in Tables R-10 through R-12.

|                          | Table R-1<br>West Treatmen<br>Stripper Performance – Alter<br>Conditions: Flow = 766 gpm, A<br>Water Temperature = 99°F, Air Te | 0<br>t Plant<br>matives 1, 4, 5, an<br>Air Flow = 2,000<br>emperature = 90 | d 6<br>scfm,<br>° to 98°F                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|
| Compound                 | Extracted Groundwater<br>Feed Concentration (Ag/I)                                                                              | Removal<br>(%)                                                             | Stripped Effluent (Carbon<br>Feed) Concentration (µg/l) |
| TCE                      | 1,220                                                                                                                           | 99.99                                                                      | 0.012                                                   |
| 1,1-DCE                  | 415                                                                                                                             | 99.99                                                                      | 0.05                                                    |
| 1,1-DCA                  | 7                                                                                                                               | 99.99                                                                      | 0.00                                                    |
| 1,2-DCA                  | 4                                                                                                                               | 93.34                                                                      | 1.27                                                    |
| PCE                      | 51                                                                                                                              | 99.9                                                                       | 0.01                                                    |
| 1,1,1-TCA                | 39                                                                                                                              | 99.99                                                                      | 0.00                                                    |
| Methylene Chloride       | 24                                                                                                                              | 99.89                                                                      | 0.02                                                    |
| Vinyl Chloride           | 6                                                                                                                               | 99.99                                                                      | 0.00                                                    |
| cia-1,2-DCE              | 7.4                                                                                                                             | 99.80                                                                      | 0.01                                                    |
| Benzene                  | 0.04                                                                                                                            | <b>99.99</b>                                                               | 0.00                                                    |
| Note: In accordance with | the estimated effluent concentration                                                                                            | ons, carbon usage                                                          | for Alternatives 1, 4, 5, and 6 is                      |

Note: In accordance with the estimated effluent concentrations, carbon usage for Alternatives 1, 4, 5, and 6 is estimated at 300,000 pounds per year.

| W                  | Table R-11<br>West Treatment :<br>Stripper Performance -,<br>Conditions: Flow = 1,095 gpm, A<br>/ater Temperature = 101°F, Air Tes | Plant<br>Alternative 2<br>Jr Flow = 2,500 1<br>nperature = 90° | icfm,<br>to 100°F                                       |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| Compound           | Extracted Groundwater<br>Feed Concentration (Ag/1)                                                                                 | Removal<br>(%)                                                 | Stripped Effluent (Carbon<br>Feed) Concentration (ag/l) |
| TCE                | 1,052                                                                                                                              | 99.99                                                          | 0.10                                                    |
| 1,1-DCE            | 355                                                                                                                                | 99.99                                                          | 0.04                                                    |
| 1,1-DCA            | 6.1                                                                                                                                | 99.99                                                          | 0.00                                                    |
| 1,2-DCA            | 3.3                                                                                                                                | 91.32                                                          | 0.29                                                    |
| PCE                | . 44                                                                                                                               | 99.99                                                          | 0.01                                                    |
| 1,1,1-TCA          | 33                                                                                                                                 | 99.99                                                          | 0.00                                                    |
| Methylene Chloride | 21                                                                                                                                 | 99.81                                                          | 0.02                                                    |
| Vinyl Chloride     | 5.5                                                                                                                                | 99.99                                                          | 0.00                                                    |
| cis-1,2-DCE        | 6                                                                                                                                  | 99.69                                                          | 0.03                                                    |
| Benzene            | 0.04                                                                                                                               | 99.99                                                          | 0.00                                                    |

Note: In accordance with the estimated effluent concentrations, carbon usage for Alternative 2 is estimated at 460,000 pounds per year.

• ~ •

.....

~

| ,                  | Table R-1<br>West Treatmen<br>Stripper Performance<br>Conditions: Flow = 1,599 gpm,<br>Water Temperature = 100°F, Air 1 | 2<br>it Plani<br>- Alternative 3<br>, Air Flow = 3,000<br>Femperature = 9 | 0 scim,<br>0° to 99°F                                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|
| Compound           | Extracted Groundwater<br>Food Concentration (ng/l)                                                                      | Removal<br>(%)                                                            | Stripped Effluent (Carbon<br>Feed) Concentration (#g/l) |
| ТСЕ                | 825                                                                                                                     | 99.99                                                                     | 0.06                                                    |
| 1,1-DCE            | 281                                                                                                                     | 99.99                                                                     | 0.03                                                    |
| 1,1-DCA            | 4.8                                                                                                                     | 99.97                                                                     | 0.001                                                   |
| 1,2-DCA            | 2.6                                                                                                                     | 4.08                                                                      | 0.42                                                    |
| PCE                | 34                                                                                                                      | 99.99                                                                     | 0.003                                                   |
| 1,1,1-TCA          | 26                                                                                                                      | 99.99                                                                     | 0.003                                                   |
| Methylene Chloride | 16                                                                                                                      | 99.35                                                                     | 0.10                                                    |
| Vinyl Chloride     | 4                                                                                                                       | 99.99                                                                     | 0.00                                                    |
| cia-1,2-DCE        | 5                                                                                                                       | 99.01                                                                     | 0.05                                                    |
| Benzene            | 0.03                                                                                                                    | 99.95                                                                     | 0.00                                                    |

Labor/Administration. Annual operations labor has been estimated assuming three to four FTEs are required for operation of the GWTP. This basis is substantiated through estimates made by OMI, a subsidiary of CH2M HILL, during a site visit to the existing plant in 1993. Twenty-four hours per day operations staffing is not provided. It is assumed that McClellan AFB will modify the operations contract in the future to only require three to four FTEs. Operations labor is therefore equivalent to the assumptions made in developing O&M costs for the east treatment plant. Administration costs are assumed to remain constant.

**Power.** Electrical costs have been estimated from power consumption of the pumps and fans at the increased flow rates for the alternatives, as described in the air stripper performance Tables R-10, R-11, and R-12. A base electrical cost per year has been estimated from historical data for the GWTP. This cost represents power requirements for equipment other than the pumps or the air stripper fan, such as lights, compressors, and instrumentation.

Natural Gas. Natural gas costs were developed by comparing estimated heat loads in the heat balance calculations performed in the capital cost section against the existing case and future alternatives. The 1992 natural gas costs were then adjusted to the costs for each alternative using a ratio of heat required in the incinerator.

**Maintenance Materials.** A cost was incurred in 1992 for material other than carbon at the existing GWTP. The cost included piping modifications, painting, and other maintenance materials. This cost was held constant and applied to the future alternatives.

Analytical Testing. The cost for analytical testing cost was held constant and applied to the proposed alternatives.

#### End-Use System

Components include the end-use piping, pump stations, discharge structures, reinjection wells, chlorine injection system, and miscellaneous appurtances such as equalization tanks, air valves, drains, and connections with the utilities. Capital costs include all costs required to plan, design, obtain the necessary permits and agreements, and construct the facilities. Annual O&M costs were developed for the labor, power, and materials required to operate and maintain the end-use system.

#### **Capital Cost Estimates**

As with the collection piping, the end-use piping costs depend upon the length and diameter of pipes, as well as the type of pipe. Costs were calculated using C-900 PVC pipe which is suitable for potable water conveyance. Pipe sizing was accomplished using the same methodology as described in the collection piping discussion. Table R-13 summarizes the end-use piping components.

|          |            | Summ          | Ta<br>ary of E                  | ble R-13<br>nd-Use Sy   | stem Pipi       | ng               |                            |
|----------|------------|---------------|---------------------------------|-------------------------|-----------------|------------------|----------------------------|
|          | Ī          |               | Uti                             | lities                  |                 |                  |                            |
| Diameter | MCL<br>Vol | Target<br>ume | 10 <sup>-6</sup><br>Risk<br>Vol | Cancer<br>Target<br>ume | Backş<br>Target | ground<br>Volume | Reinjection<br>(MCL Target |
| (inches) | East       | West          | East                            | West                    | East            | West             | Volume Only)               |
| 6        | 0          | 400           | 0                               | 400                     | 0               | 400              | 400                        |
| 8        | 1,800      |               |                                 |                         | 1,800           |                  | 11,800                     |
| 10       |            | 8,500         | 1,800                           |                         |                 |                  | 2,700                      |
| 12       |            |               |                                 | 8,500                   |                 | 8,500            | 18,000                     |
| Total    | 1,800      | 8,900         | 1,800                           | 8,900                   | 1,800           | 8,900            | 32,900                     |

The emergency discharge structures to Magpie Creek were assumed to be similar to the existing discharge structure located at the treatment plant, complete with 24-inch corrugated metal pipe and flap gate.

A chlorine injection system is also required at each treatment plant. Disinfection is required for protection of public health for those alternatives that provide water to the utilities. Disinfection is also required to prevent algae growth and subsequent plugging of the well. Because of this distinction, costs for the chlorination system are included in the end-use calculations. The chlorination system is assumed to be use liquid hypochlorite to disinfect TCE-laden groundwater, at a dose of between 0.5 and 2.5 ppm of chlorine, enabling a residual of 0.5 to 1.0 ppm.

Downstream of each chlorine injection system is a pump station sized to convey the treated water to either the reinjection well or the utilities. A large clearwell will be required to allow 1 hour of contact time for disinfection. A discharge head of approximately 20 psi is required for the existing greywater system, 65 psi for the Northridge Water District, 52 psi for Rio Linda Water District, 10 psi for ground-water reinjection, and 5 psi for Magpie Creek. Combined motor and pump efficiency will be 70 percent. Total power requirements vary from 75 hp to 160 hp depending upon the alternative.

Also included at each treatment plant is a flow equalization tank that is sized for 1 hour of storage. Size of the storage tank varies between 25,000 and 100,000 gallons, depending on the alternative. The tanks are assumed to be bolted steel with normal coatings and linings.

A reinjection well is basically a production well in reverse. It was assumed that three wells would be required to accommodate any of the projected flows. A new 12-foot-wide gravel (6-inch-thick) access road is required adjacent to a portion (700 linear feet) of the reinjection pipeline.

#### **O&M** Cost Estimates

O&M costs for the end-use systems were developed based on the same methodology and data previously described in the collection piping section. Added costs include replenishing the hypochlorite in the chlorine injection system.

#### Summary

Tables R-14 through R-19 present the capital cost summaries for Alternatives 1 through 6. Tables R-20 through R-25 summarize the O&M costs anticipated during the implementation of each remedial action alternative (conservatively estimated at 5 years) and after implementation is complete. Costs are in 1994 dollars. Construction costs include a 5 percent field detail allowance to account for any unquantified items. A 20 percent contingency has also been added to account for unforeseeable elements of cost within the defined scope of this project. This contingency is used as a means to reduce the risk of possible cost overruns, but does not change the confidence limits of the estimate.

The cost estimates presented have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of this project will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final project scope, final project schedule, the firm selected for final engineering design, and other variable factors.

RDD10012DD2.WP5 (GW RI/FS)

1

As a result, the final project costs will vary from the estimates presented herein. Because of these factors, funding needs must be carefully reviewed prior to making specific financial decisions or establishing final budgets.

RDD10012DD2.WP5 (GW RI/FS)

|          |                                                     |           |       | Man-Days  |     |     |             |               |                  |                                                   |              |
|----------|-----------------------------------------------------|-----------|-------|-----------|-----|-----|-------------|---------------|------------------|---------------------------------------------------|--------------|
| 8        |                                                     | Rr. Lovel |       | Jr. Level |     |     | l           | Contraction   | A second         | ź                                                 | !            |
| -        | Distant Plan Plan of Resudit Artics                 |           |       |           |     |     | 6114        | Contracto (3) | Subsciel (S)     | Common (S)                                        | 611          |
| -        | Durchey Resuddet Action Media: Plan                 |           |       |           |     |     |             |               |                  |                                                   |              |
| -        | Resta hea                                           | •         | X     | 52        | •   |     | C1 376 0    |               |                  |                                                   |              |
| •        |                                                     |           | 1     | •         | 3   |     | 07 125 1    |               | 7/ N/ V/44       | PI Maria                                          | M HA 65      |
|          |                                                     |           | 15    | 2         | R   |     | 139065.8    |               | 61.046.05        | In and a                                          |              |
|          |                                                     |           | 8     | 8         | \$  | •   | 10,996.35   |               | 11.879.25        | 13,195.62                                         | 2121.62      |
|          |                                                     |           |       | 5         | •   | -   | 5,446.34    |               | 32,678,62        | 6,335.60                                          | 19.215.62    |
| •        |                                                     |           |       |           | •   | 7   | 1,378.53    |               | 11.17            | 1,454.23                                          | 49.226.6     |
| ·[=      |                                                     |           |       | •         | •   | •   | 158.53      |               | 51.17            | 19.23                                             | 1.141.40     |
| Ē        |                                                     |           | R     | 8 2       |     |     | 28.626.2    |               | 35,765.69        | 7,141.62                                          | 42,046.11    |
| 5        | Dartie Brandie Anie Wed Pie                         |           | 8 5   |           |     | •   | 08'H8Y'9    |               | 16,900,81        | 7,781.76                                          | 45.M2.44     |
| ≏        | True and Case                                       |           |       | 3         |     |     | 21/304.16   |               | 145,004.94       | 33,000,99                                         | 199,000,001  |
| z        | True Dud Thei                                       |           | 1     |           |     |     | 10.070      |               | 52,045.44        | 10,400.00                                         | 12,454,53    |
| 5        | Press Red Rended Asim Maar Pin and Weit Pin         |           |       |           |     |     | 1//0/07     |               |                  | 2005                                              | 11,00,11     |
|          |                                                     | 8         |       | I         | 116 | 5   |             |               | N7 84 75         | A MOL                                             | 15,200.00    |
| 2        |                                                     | 69        | MI    | •         | 2   | 3   |             |               |                  | 1. AND 10                                         |              |
|          |                                                     | 67        | 136   |           | 192 | 3   |             |               |                  |                                                   | EF 147 169   |
| ล        | Character Provins With                              |           |       |           |     |     |             |               |                  |                                                   | THE IS       |
| R 1      | Proceeding that the Academic Program                | 2         | 12    | 20        | 5   | -   | 5,803.47    |               | 24.020.02        | 11111                                             | AL 765 AL    |
| 2        |                                                     | 3         | •     | ~         | 10  | 2   | 2,045,44    |               | 1277.61          | 2484.51                                           | 71 757 11    |
| 1        |                                                     | •         | 13    | 2         | 15  | •1  | 10.004.7    | 3             | 19494U           |                                                   | 11 CO 11 CO  |
|          |                                                     |           |       |           |     |     |             |               |                  |                                                   |              |
| a a      |                                                     |           |       |           |     |     |             |               |                  |                                                   |              |
| 1        |                                                     |           |       | 8         | •   | \$  | 10.046.96   |               | 38'12C'09        | 12,056.37                                         | 12.341.27    |
| 1        |                                                     |           |       | ~         |     | ~   | 2,168.37    |               | 13,010,21        | 140.04                                            | 15,612.25    |
|          |                                                     |           |       |           | ~   | 2   | 4,480.9     |               | 26,405.64        | 51.184.2                                          | 11,464.00    |
| 8        | Purs 1- Wei heightingthe discrimination             |           | 8     | -         |     | 3   | 16,616,29   | 4             | 51.799,89        | 1920026                                           | 12/28/011    |
| 3        | Officer Monthanks Weth Approx Parch (16)            |           |       |           |     |     |             |               |                  |                                                   |              |
| R        | Offices Schuding Web (4) wWed Havd Truckmet         |           |       |           |     |     |             |               |                  |                                                   |              |
| 2        | The Spect Statement Well (19)                       |           |       | T         |     |     |             |               |                  |                                                   |              |
| 2        | Proper Plant Layout of Wedle                        | ſ         | 2     | 8         | •   | 8   | 1 570 24    |               | 1 491 44         |                                                   |              |
| X        | Properties for Statistics                           | -         | 8     | 8         | 5   | 1   | 11 544 10   |               | 1010200          | 17. MOT 01                                        | 11. 201, 10  |
| 2        | Land Webbarget Due                                  | 10        | 954   | 250       | 8   | 8   | N2 14 24    | 1.141 000 00  | 11.000,00        | Chicology and and and and and and and and and and | 1911.0       |
| ×        | Plant   Republican 2 Plan                           | 8         | 346   | 200       | 87  | \$  | N0.192.011  |               | 705.484.24       | 141.040.25                                        |              |
| -        |                                                     |           | ~     | 15        | 21  | 'n  | 3,938.37    | 25,000.00     | 48,630.21        | 9,726.04                                          | 50.354.25    |
| 2        |                                                     | \$        | 5     | 2         | ¥   | 81  | 238,568     | 1,166,000     | 2,614,948        | 946 198                                           | 3.017.930    |
| 1        |                                                     |           |       |           |     |     |             |               |                  |                                                   |              |
| \$       | Others Mathematica West (1) a "Neil Hand Tradematic |           |       |           |     |     |             |               |                  |                                                   |              |
| ŧ        | Het Spel Entrottes Well (14)                        |           |       | ł         |     |     |             |               |                  |                                                   |              |
| 4        | Pryces Plue Lapon of Wels                           | 8         | 51    | 2         | •   | 8   | 1570.24     |               | 14 167 15        | 10 144 16                                         | 11 AAP 13    |
| <b>?</b> | From the land time                                  | 1         | 36    | 90        | 15  | 51  | 61 44 10    |               | 60.262.15        | 11.051.01                                         | al 01 10     |
| ŧ        | Brief Webfinger, Das                                | 10        | 250   | 250       | 8   | 8   | P0.530.24   | 1,745,000.00  | 2245,741,44      | A46 148 29                                        | 12 000 10V C |
| e        |                                                     | 8         | 101   | 8         | 404 | 45  | 117,581.04  |               | 705,404.2M       | 141,007.25                                        | 94 (36) AN   |
| 1        |                                                     | *         | *     | 210       | 699 | 81  | 17,252,342  | 1,745,000.00  | 1211011012       | 614,302,85                                        | 51-192,MB.E  |
|          |                                                     |           |       |           |     |     |             |               |                  |                                                   |              |
| \$       | Others Extrustion Web (73)                          |           |       |           |     |     |             |               |                  |                                                   |              |
| \$       | Proper Plant Lapour of Wells                        | 6         | 2     | 5         | 12  | 5   | 11 212 21   |               |                  |                                                   |              |
| 8        | Pryses for Intellinia                               | 0         | 6     | 5         | =   | * * | A1 20 10.71 |               | 14/,070.02       | 00.480.42                                         | 11.25.62     |
| 3        | Lotal With American                                 | 62        | 574   | 22        | 125 | 91  | 302.520.96  | 3,825,000 00  | AN I STATE STORY | 1 044 407 17                                      |              |
| ¤        | Phone 5 Report                                      | 30        | 87    | 200       | 00+ | \$  | 117,581.04  |               | 705.486.24       | 141.097.25                                        | ALL SET 40   |
|          | Bubbalai                                            | 3         | 1,156 | 660'1     | 5   | Ħ   | ET.944.53   | 1,000,255,5   | 11.122.342,3     | 1,267,245,45                                      | 7.643.677.64 |
| 2        | 1) teamer date One Cale date Systems                |           |       |           |     |     |             |               |                  |                                                   |              |
| r  🛪     |                                                     | -         | 8     | 8         | ~   | 8   | B,064.53    |               | 11/05/04         | 9,677.43                                          | 38, BEA 60   |
| *        | Califacture Print                                   |           |       |           |     | +   |             |               |                  |                                                   |              |
|          |                                                     |           | -     | -         | -   |     | -           |               | -                | -                                                 | -            |

....

()

-

î Î

-----

ALTICOST 314 

Page 1 of 2

3/27/94 10 45 PM

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       | Table L. |       |          |              |               |               |              |               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------|-------|----------|--------------|---------------|---------------|--------------|---------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       | Man Days |       |          |              |               |               |              | ſ             |
| 8  | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       | 1        | 1     |          |              | Contractor    | AMEN          | 2            |               |
| 5  | Press Presson Dags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8   | 55    | 63       | 35    | \$       | 26316.27     |               | 157,007,63    | 31.579.53    | 100.477 14    |
| *  | Press Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2   | 3     | 25       | 8     | 14       | 24,864.03    |               | 161.184.19    | 32.236.84    | 191.421.01    |
| 3  | Prepara for Comparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8   | \$    |          |       | •        | 10.562.69    |               | 61.376.13     | 12.675.23    | 74.051.35     |
| 3  | Compared Continues Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2   | 81    |          |       | ล        | 23,541,36    | 1,150,100.00  | 1,303,348,16  | 240,469,63   | 64.710.002.1  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   | 562   | 101      |       | 961      | State Cite   | 1,154,100.00  | 82.691,ACT,1  | NALECE AN    | 2.001.031.96  |
| 61 | There are the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |     |       |          |       |          |              |               |               |              |               |
| 8  | Rear Mining Daip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •   | 8     | •        | •     | 1        | 6,478.74     |               | 38,672.42     | 37.274.48    | 46,646,94     |
| 3  | Proper Pred Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2   | 8     | ~        | 1     | 5        | 6,36333      |               | 14.191.91     | 7,638.39     | 45,003,65     |
| 2  | Property for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | \$    |          |       | 1        | 6,306.39     |               | 39,029,55     | 16.106.1     | 44,047,46     |
| 3  | Construct Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   | 8     |          |       | 20       | 5,715.20     | 182,000 (10   | 216,291,20    | 43,258.24    | M. 692.652    |
| 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |       |          |              |               |               |              |               |
| 5  | Contra Namy Stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | 3     |          |       | 1        | 755.76       |               | 4,534.56      | 16.906       | 5.441.47      |
| 8  | Instant Proces Caringary Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |          |       |          | 0.0          |               | 90.0          | 80           | 80            |
|    | Instance Concine Continuery Pine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |          |       |          | 80           |               | 000           | 980          |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17  | 162   | 2        | 2     | R        | 25,122,22    | 182,000,00    | 336,929,76    | 67,205,04    | 44131544      |
| R  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |       |          |              |               |               |              |               |
| =  | Report Medication During                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11  | ส     | 17       | ຸຂ    | <b>~</b> | 11,402,11    |               | 68.412.67     | 13,602.53    | 82,095,21     |
| 2  | Proce Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5   | 57    | 8        | 8     | ~        | 12,523,15    |               | 19,138,121    | 15.627.78    | 90.146.69     |
| £  | Prepara for Combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2   | \$    |          | 7     | 12       | 11,077.22    |               | 66,443,30     | 13,292.66    | 79.735.96     |
| z  | Combined Brief Cher Proving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0]  | 45    |          |       | 8        | 10,568.32    | 585,000.00    | 64E,409.92    | 129,481,96   | 778.091.96    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *   | 135   | 8        | 4     | 3        | 00°CL5'51    | 505,000,00    | MET CD 188    | 171,444.04   | 1,030,109.76  |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |       |          |              |               |               |              |               |
| 2  | Collection Pythe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |          |       |          |              |               |               |              |               |
| 4  | Prepar Preliminary Dunin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8   | 3     | £9       | \$    | \$       | 28,173.95    |               | 169,043.71    | 33,000.74    | 202,852.45    |
| R  | Press First Dauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8   | 3     | 32       | 70    | 42       | 28,630.46    |               | 171,782,78    | 34,356,36    | 206,139.14    |
| *  | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8   | \$    |          |       |          | 10,562.69    |               | 61,376,13     | 12,675,23    | 74,051.55     |
| 8  | Combred Collection Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8   | 125   |          |       | 25       | 26,334.00    | 1,267,300.00  | 1,445,304.00  | 280,960,862  | 08.000,067.5  |
|    | Performance of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco | ×   | 597   | 3        | •     | 115      | 93,701.10    | 1,207,300.00  | 1,849,996,62  | 26,901,32    | 2219,007.95   |
| =  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |          |       |          |              |               |               |              |               |
| 8  | Press Printery Dauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2   | 30    | ព        | 1     | 10       | 15,362.94    |               | 92,177,66     | 10,435.53    | 110,613.20    |
| 2  | Press Fired Dange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51  | 30    | 52       | \$    | 10       | 16,167.20    |               | 97,003.20     | 19,400.64    | 116,403.84    |
| ×  | Prepara for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2   | \$    |          |       | 8        | 11,555.52    |               | 69,333.12     | 13,066.62    | \$1,199 74    |
| 8  | Combost Trainers Plas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~   | 30    |          |       | ~        | 6,059.44     | 783,600.00    | 19.956'618    | 163,991.33   | C0.040,690    |
| *  | Restandedorma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |          |       |          |              |               |               |              |               |
|    | Cumbet Rething Matedown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~   | ~     |          |       | -        | 1,765.30     |               | 10,591.78     | 2,118.36     | 12,71013      |
|    | Implement Proces Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       |          |       |          | 00.0         |               | 0.0           | 08.0         | 0.00          |
| 8  | Implement Copacity Contingunsy Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |       |          |       |          | 00.0         |               | 0.0           | 80.0         | 90 0          |
|    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52  | 135   | 8        | 8     | *        | 07'016'05    | 783,666.66    | 1,000,002.40  | 217,912.46   | 1,346,874,86  |
| 8  | Lat Un Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |       |          |       |          |              |               |               |              |               |
| 16 | Properte Professionary Davige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5   | 10    | 10       | 5     | •        | 4,477.26     |               | 26,863.58     | unes         | 32,236 30     |
| s  | Press Plan Dange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 15    | 10       | 5     | *        | 4,913.94     |               | 29,483.62     | 5,896.72     | 35,340.34     |
| 5  | Proper for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10  | 20    |          |       | 2        | 5,364.08     |               | 32,184.48     | 6,436.90     | 38,621.38     |
|    | Construct Bark-Use Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ][  | 151   |          |       | \$       | 3,325.55     | 251,800.00    | 16.627,175    | 34,350.66    | 126,103.97    |
|    | Excitored 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31  | 3     | 8        | 2     | 1        | 18,000.83    | 251,900.00    | 149,204,99    | 72,467,260   | 632,341,99    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |       |          |       |          |              |               |               |              |               |
|    | Alternative 1 Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 630 | 3,732 | 2,844    | 54272 | 1,132    | 1,497,013.26 | 10,975,000,00 | 19,244,005.18 | 3,946,901,04 | 23,092,006,22 |

٩.

Conto are in 1994 defiers and include a 5 percent field detail allowence for unquestified items.

M4 10 42 PM

----

ç

0: were Second and ALTI COST.30.5

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       | 2        | Kernetive 2 a |     |             |                               |                         |              |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|---------------|-----|-------------|-------------------------------|-------------------------|--------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       | Man Days |               |     |             |                               | +                       | 1            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |          | Territor      | Į   | Express (5) | Construction<br>Contracts (3) | Activity<br>Seduced (5) |              | Admit i       |
| 1 Distant Press Name of Description Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |          |               |     |             |                               |                         |              |               |
| 2 🕴 Dondey Remaind Action Manter Phan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |          |               |     |             |                               |                         |              |               |
| 3 Bisterien System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •     | X     | 2        | •             | •   | 8,245.12    |                               | 49,470,72               | 9,000,0      | 39,364,86     |
| 4 Theready in a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1     | 2     | 9        | ~             | 7   | 1,571.39    |                               | 9,428.35                | 1,005.67     | 11,314.02     |
| 5 The Cost Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     | 15    | 25       | 2             | *   | 8,390.03    |                               | 50,340.19               | 10,068.04    | 66,468.23     |
| 6 Cuttories Seime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •     | ×     | 8        | \$            | -   | 10,996.35   |                               | 11.079,26               | 11,195.62    | 11.171.01     |
| 7 Press DQD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 21    | 5        | •             | 7   | 5,446.34    |                               | 32,678,02               | 6,535.60     | 29.512,00     |
| 8 Press Relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -     | ~     | 7        | •             | 7   | 1,278.53    |                               | 8,271.17                | 12.424       | 9,219,40      |
| 9 Press Heath and Subsy Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •     | -     | 0        | •             | •   | 158.53      |                               | 11.126                  | 190.23       | 1,141.40      |
| 10 Press Quit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7     | 8     | 8        | •             | •   | 5,950.05    |                               | 35,705.09               | 7,141.02     | 42,846,11     |
| 11 Press 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~     | 8     | 8        | •             | •   | 6,484.80    |                               | 38,908.80               | 7,781.76     | 45,003,34     |
| 12 Douting Remoted Action West Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5     | \$    | 125      | ກ             | 51  | 27,504.16   |                               | 165,024.96              | 33,004.99    | 190,020,095   |
| 13 Properti Dauß Cany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     | 12    | \$       | 2             | 9   | R.674.24    |                               | 52,045.44               | 10,469.69    | 62,454.55     |
| 14 Proper Druk Pinel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 2     | •        | 2             | 10  | 2,475.71    |                               | 14,854.27               | 2,970.05     | 17,005,13     |
| 15 Prepar Plant Remodel Action Manac Plan and Work Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     | ~     | ~        | 7             | 10  | 2,112.06    |                               | 12,672.38               | 234.40       | 15,206.86     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2     | 181   | 341      | 116           | \$7 | 11,000,00   | 6.00                          | 5345245                 | 107,246.73   | 643,594.41    |
| 16 United Manual 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75    | 131   | 0        | 280           | 3   | 107,090.00  |                               | 450,134.32              | 96,826,86    | 546,161.18    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 75 | 181   | •        | 8             | 3   | 04.042,751  | 3                             | 666,134,32              | MARAN        | 540,262.18    |
| 21 Others Protection Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |          |               |     |             |                               |                         |              |               |
| 22 Program Base Well 10 Abardwament Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2     | 12    | 8        | 2             | 9   | 5,528.10    |                               | 33,168.58               | 6,633.72     | 39,002.29     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | •     | ~        | 2             | 2   | 01.116,1    |                               | 7,066.62                | 1,573.32     | 9,439.95      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | 3     | 22       | •             | •   | 02.003,3    | 8                             | 92'500'12               | MUNCS        | 42.024        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |          |               |     |             |                               |                         |              |               |
| 25 Subsubactor Programmed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |          |               |     |             |                               |                         |              |               |
| 24 Bault Remining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     | 13    | 2        | •             | \$  | 10,046.98   |                               | 60,281.86               | 12,056.37    | 12.342.27     |
| 27 Martie Performence Otherin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 5     | \$       |               | ~   | 2,168.37    |                               | 13,010.21               | 2,602.0M     | 15,612,25     |
| 26 Preame BOAs will Sales for Bacandar BWACW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3     | 51    | 3        | 2             | 51  | 4,400.94    |                               | 26,405.66               | 51,184,8     | 31,666,80     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | 36    | 5        | *             | 3   | 16,616,31   |                               | EL. 199, 64             | 35.966,01    | 12122,021     |
| 29 Passi-Wei Intelligenterstigten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |          |               |     |             |                               |                         |              |               |
| X Class Munited Web (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |          |               |     |             |                               | ]                       |              |               |
| )  Others Detertion Web (5) w/Hed Head Thereined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |          |               |     |             |                               |                         |              |               |
| 32 Ried Spect Destruction Wedle (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |          |               |     |             |                               |                         |              |               |
| 33 Prepare Plani Lapout of Theils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •     | 20    | 40       | ~             | 8   | 11,672.18   |                               | 70.013.06               | 14,006.61    | F3.010.M      |
| X Prepare for Landitains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •     | 04    | 40       | 80            | 8   | 15,392,266  |                               | 12.12.12                | 18,470.71    | 110,024,24    |
| 35 Enniel Weithfreegent Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13    | 340   | 340      | 65            | 65  | 131,115.07  | 1,438,000.00                  | 2,112,970.43            | 427,594.09   | 2,335,946.52  |
| Plane   Republicate 2 Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8     | 300   | 200      | 400           | 45  | 117,581.04  |                               | 705,486.24              | 141,097.25   | BH4,583.49    |
| 37 Abredia Dise Well 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     | 2     | 15       | 15            | -   | 3,938.37    | 25,000.00                     | 48,630.21               | H0 Y7.6      | 98,156.25     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a)   | 202   | 635      | <b>30</b> 5   | 163 | 10.069,672  | 1,463,000,00                  | TA.ETA.959.E            | 69794769     | 1.946.348.17  |
| 18 Press 2-Well holds and Americanian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |          |               |     |             |                               |                         |              |               |
| 39 Officer Mindburks, Wells (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |          |               |     |             |                               |                         |              |               |
| 40 Officers Extraction Wells (22) w/Well House Pressnert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |          |               |     |             |                               |                         |              |               |
| 41 Net Spet Reineden Web (14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |          |               |     |             |                               |                         |              |               |
| 42 Pryces Pinel Lapont of Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •     | 8     | \$       | -             | 8   | 11,672.18   |                               | 70.013.06               | 14,006.61    | 04,039 67     |
| 45 Process for hereforded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | \$    | \$       | 8             | 2   | 07.29E.CI   |                               | N. R.C. XV              | 12,470.71    | 1 412 514 24  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 2     | 3        |               |     | 10.000 CT1  | AN-MAN/ANT'S                  | AC 240, 10,4            | 141 007 25   | ALC 201.49    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |          |               | 3   | 100000      | 2200.000.00                   | AC 179.461              | 741.094.25   | 4.03.965.02   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5     |       | 3        |               |     |             |                               |                         |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |          |               |     |             |                               |                         |              |               |
| 46 Others Extraction Well 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |          |               |     |             |                               |                         |              |               |
| 49 Press Find Lance of Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     | 75    | 150      | 18            | 110 | 43,494.96   |                               | 760,949,062             | 22,193,97    | 313,163.63    |
| S Restriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51    | 150   | 95]      | 27            | 75  | 57,720.96   |                               | 346,325.76              | 69,245.15    | 415,390.91    |
| 51 Intell Well-Mungret Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50    | 1,275 | 1,275    | 240           | 240 | 493,643.52  | 4,822,000.00                  | 7,352,941.12            | 1,470,588.22 | N. 625,113,9  |
| 52 Press Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30    | 300   | 200      | 907           | 45  | 117,581.04  |                               | 705,486.24              | 141,097.23   | 94 CBC 348    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110   | 1,000 | 1,775    | 22            | Ę   | 712,440     | 407 W                         | 8,6457,234,8            | 1,733,144.66 | 12.730,040,01 |
| 53 Treetmant/East-Use/Collection Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |          |               |     |             |                               |                         |              |               |
| 54 Presses Theriby Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~     | 8     | 20       | ~             | 8   | 8,064.53    |                               | 11.00.04                | 9,677 45     | 20 M 60       |
| 55 Western Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |          |               |     |             |                               |                         |              |               |
| S Calledian Plaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |          |               |     |             |                               |                         |              |               |
| 57 Prepare Preliminary Dougs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2     | \$    | 22       | \$            |     | 51,073.14   |                               | 100,434.02              | 0/ 187.15    | AC 07/ 577    |
| 26 Preper Finel Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       | 20       | 2             | -   | 34,/17.01   |                               | 27 LUT 10               | 17 407'42    | 0 101 0       |
| 59 Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2     | •     |          |               | •   | Ter (15/7)  |                               | 100 77 8'NI             | Ter Man's I  |               |

. . . ......

·····

NAM \_ under \ 5066 when mixed T2 COST XLS

Page 1 of 2

3/27/94 10:47 PM

. . . . . . .

Table R-15 Alimneting

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | Max Dam |           |        |               | -               |                         |                  |                |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|---------|-----------|--------|---------------|-----------------|-------------------------|------------------|----------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               | Construction    | Adhitz                  | r.               | VIEWER         |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         | Technical |        | Comment (f)   | Centrada (5)    | Sector (S)              | Comments (B)     | Total (5)      |
| 8 | Amby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |         |           |        | 10 011 01     | 1 507 800 80    | 1 776478.04             | 115 205 201      | 2131,774,73    |
| 3 | Communication Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 041     |         |           |        |               |                 | ST IN CHE C             | 11 041 327       | 2 710 AM W     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 | ×       | 521     | 2         | 3      | 17 mart 11    | ********        |                         |                  |                |
| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               |                 |                         |                  | 14 11 14       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  | 30      | 2       | •         | 5      | 10,571.92     |                 | 20.169/89               | N 1071           | 10,11,01       |
| • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 2       | 10      | 31        |        | 9,803.41      |                 | 58,820.45               | 11.764.09        |                |
| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           | 1      | 659923        |                 | 79.222.01               | 61.190.1         | 47,445.16      |
| 3 | Proper Str. Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |         |         |           | 91     | 18 18F 8      | 581,400,00      | 632,302,85              | 126,469.57       | 758,763.42     |
| 3 | Constant Property Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | R       |         |           |        |               |                 |                         |                  |                |
| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           | +      |               |                 | at 101 61               | 2116 K           | 11017 11       |
| 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  | 5       |         |           |        | 96.001,1      |                 |                         |                  |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        | 0.0           |                 | 0.0                     | 00.00            |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        | 0.00          |                 | 0.0                     | 8                | 80.0           |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | A1      | 57      | 4         | 5      | 37.213.76     | 99'999'185      | 96-559-148              | 15966'991        | P64,913,836    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               | -               |                         |                  |                |
| 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | 121     | 34        |        | 11.402.11     |                 | 66,412.67               | 13,602.53        | 12,000,21      |
| z | Pryce Pulining Dauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         | 1       |           |        | 21 262 61     |                 | 19.1136.91              | 15,027.78        | 99,346,69      |
| F | Preser Freed During                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |         | 1       |           |        |               |                 | N 177 77                | 11.292.66        | 79.252.06      |
| 1 | Parent for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4  | 8       |         | ~         |        | 11/0/11       |                 | La del 11-              | 40 17L 73 1      | 676.451 600    |
| 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =  | 45      |         |           | 8      | 10,306.32     | 00.000-01/      | TA'ANI'ELL              |                  |                |
| ł |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 1351    | *       | 11        | 4      | 45,579.86     | 719,940,00      | 807Y21'016              | 1967,441         | 1,100/001/0    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               |                 |                         |                  |                |
| e |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               |                 |                         |                  |                |
| * | Children Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | *       |         | ×         | 9      | 25.478.72     |                 | 152,072,32              | 34,574,46        | 123,446.78     |
| 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           | 2      | 14 040 15     |                 | 149.762.59              | 29.952.92        | 11.817,071     |
| R | Proper First Dudge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         | 9       | 3         | 2      | 71 1110       |                 | 55,998,06               | 19/47/11         | 67,185.66      |
| F | Prese for Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =  |         |         |           |        |               | AA AAA 211 1    | 1 27 121 176 1          | 254 633 66       | 1 527 801.96   |
|   | Compart Collection Pipips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  | 110     |         |           | 2      | 7/ 14 (77     | M)/M/(//11/1    | AN 144 147 1            | 34.444.344       |                |
|   | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |    | 256     | 8       | 8         | SI     | 2231623       | 00'000'LET'I    | 1'011'/21'24            |                  |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               |                 |                         |                  |                |
| = |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 00      | 167     |           | 10     | 15,362.94     |                 | 92,177.66               | 18,685,01        | 110,413.20     |
| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 8       | 35      | \$        | 10     | 16,167.20     |                 | 97,803.20               | 19,000,01        | 116,403.94     |
| 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           | 8      | 11,555.52     |                 | 69,333.12               | 13,066,62        | 12.001,23      |
| × | Preper Arr Contractes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         |         |           | ~      | 6.039.44      | 783,600.00      | 19.956,018              | 163,991.35       | 960,947.97     |
| 2 | Contract Theorem 1 have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |         |           |        |               |                 |                         |                  |                |
| * | Surv Statem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |         |           |        | 1 745 10      |                 | 87.192.01               | 211836           | 12710.13       |
|   | Complex Rentup/Rinduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |         |         |           | -      | 80            |                 | 000                     | 80               |                |
| 2 | Implement Process Continguncy Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         |         |           |        |               |                 | 80.0                    | 80               |                |
| 1 | The second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        | 3             |                 |                         |                  | Market and a   |
|   | Sublexed in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |    | 501 135 | 8       | 8         | *      | 20'310'95     | Ad Theory C.R.L | 1'mailenter             |                  |                |
| 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        | _             |                 |                         |                  | AL 114 AC      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 6       | 12      | 4         | ~      | 5,481.06      |                 | SC MARTIN               | IL HO            | 10. Can, etc.  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | 12      | 6         | 5      | 5,917.75      |                 | 35,506.37               | 7.101.27         | 42,000,04      |
| 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           | 5      | 6,037.10      |                 | 36,222.62               | 7,244.52         | 43,467.15      |
| = | Proper Sir Controlion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         |         |           | 5      | 3,820.59      | 349,900.00      | 372,828,555             | 14,564.71        | 447,388,24     |
| I | Combrat Bad Une Pring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         |         |           |        | W MAC IC      | an and all      | alat.m                  | 84.176.24        | ST2, DALAN     |
|   | Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 3       | 7       | 2         | 3      | 100000010     |                 |                         |                  |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               | AL 448 444 44   | AC AND AND A CONTRACTOR | A 767.221 M      | 10,200,002,002 |
|   | Alternative 2 Tetal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1  | 1 4603  | 3,762   | 2,503     | 3%(2'1 | 1,242,000,254 | an 'nac'ma'c'   | APPEAT CALEY            | Taxa and I al fa |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |         |           |        |               |                 |                         |                  |                |

B Costs are in 1994 delines and include a 5 percent field detail ablowance for unquentified item

۵.

M3 (0:4) M4

Table R-16 Alternative 1

ţ

L

,

|     |                                                       |           |           | Mae-Dan    |                |               |              |                |              |                                           |              |
|-----|-------------------------------------------------------|-----------|-----------|------------|----------------|---------------|--------------|----------------|--------------|-------------------------------------------|--------------|
|     | <u>م</u>                                              | Se. Loved | Mild Land | Jr. Level  |                | Aministrative |              | Contractor     | Activity     | ž                                         | Ardinky      |
| e   | Additor A                                             |           | Prefrank  | Present of | Technician     | Antime        | Expenses (5) | Centracts (\$) | Subschol (S) | Continues (5)                             | Tetal (\$)   |
| -   | Name Pro-West Pro-of Resolution Action                |           |           |            |                |               |              |                |              |                                           |              |
| ~   | Develop Romadial Action Meeter Plan                   |           |           |            |                |               |              |                |              |                                           |              |
| ~   | Extension System                                      | -         | 24        | 1 25       | 4              | ¥             | 8,245.12     |                | 49,A70.72    | P Mag 6                                   | 98' MAC 65   |
| •   | Tremest System                                        | -         |           | 1 6        | 2              | 2             | 1,571.39     |                | SE.82A.9     | 1,005,67                                  | 11,314.02    |
| ~   | East-Use System                                       | 2         | 1         | 5 25       | 25             | •             | 8,390.03     |                | 90,040,09    | 10,068.0M                                 | 60,408.23    |
| •   | Collection System                                     | 9         | X         | 8          | \$             | •             | 10,996.35    |                | 65.978.11    | 13,195.62                                 | 79,173.73    |
| -   | <b>1</b>                                              | n         |           | 2          | 6              | 2             | 5,446.34     |                | 32,678.02    | 6,535,60                                  | 39,213.62    |
| -   |                                                       | -         |           | 2          | 0              | 2             | 1,378.53     |                | 8,271.17     | 1,654.23                                  | 04,259,9     |
| •   | Proper Hardia and Subsy Plan                          | 0         |           | 0          | 0              | 0             | 158.53       |                | 651.17       | 150.23                                    | 1,141.40     |
| 2   | Press QUP                                             | 2         | R         | 20         | 0              | 0             | 5,950.85     |                | 35,705.09    | 7,141.02                                  | 42,846.11    |
| Ħ   | Propest SAP                                           | 5         | *         | 97         | 0              | 0             | 6,484.80     |                | 38,906.80    | 7,781.76                                  | 46,690.56    |
| 12  | Develop Remedial Action Work Plan                     | ~         | ×         | 125        | 25             | 15            | 27.504.16    |                | 165,024,96   | 33,004,99                                 | 198.029.95   |
| =   | Prese Dark Ours                                       |           | 1         | 0*         | 10             | 0             | A.674.24     |                | 52.045.44    | 10,406,01                                 | 52 424 53    |
| 2   | Three Duck Plant                                      |           |           | 20         | 2              | 9             | 2475.71      |                | 14.854.27    | 2.970.05                                  | 11.22.2.1    |
| 2   | Proper Real Remodial Action Master Plan and Work Plan |           |           | 5          | 2              | 01            | 2,112,06     |                | 12 672 38    | 2534.48                                   | 15 206 26    |
|     |                                                       | 33        |           | 110        | 116            | 6             |              | 3              | CALVA C      | 1. T. T. L.                               |              |
| 2   |                                                       | 5         |           | •          | 24             | 9             |              |                | A101 101     |                                           | CT CLC 107   |
|     |                                                       | 5         |           |            |                | 3             |              |                |              | 2/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ | 7C7/71/4     |
| 5   |                                                       |           |           |            | 5              | B             |              |                |              | 01,01,01,0                                | 10117114     |
| : 2 | Purse has Via 12 Abudutant Prints                     |           |           |            |                |               | 17 WE 3      |                | 24 010 02    | 11 1707                                   | A1 795 00    |
| 8   | Press Prefection Vol Continuery Press                 | 2         |           |            | Ģ              |               | TA PAG       |                | 13 CTC C1    | 11.000                                    | E1 565 A1    |
|     |                                                       |           |           |            |                |               |              |                |              |                                           | 1.121.91     |
| 2   |                                                       | •         |           | 4          | 2              |               | ICTION 1     |                | di fancei    | 27ILA                                     | 112124       |
| s × |                                                       |           |           |            |                |               |              |                |              |                                           |              |
| *   |                                                       | ſ         | 51        | 5          |                |               | 90,200       |                |              | 11.044.25                                 |              |
| 3 2 |                                                       |           |           |            |                | 3.            | 10,040.76    |                | 00.152.00    | 15.00121                                  | 12.94.6.21   |
| -   |                                                       |           |           |            |                |               | 75.801.2     |                | 13,010,21    | 1077007                                   | C77210°C1    |
| •   |                                                       |           |           |            | 7              |               | 4,400.94     |                | 99'00/92     | 51.1182,C                                 | 31,646.80    |
| 2   |                                                       | •         | 1         |            | •              | 8             | 10,010,27    |                | £1.1 100 64  | 19760761                                  | 11.114,811   |
| 8   |                                                       |           |           |            |                |               |              |                |              |                                           |              |
| 2   | Collect Results Web (0) - Mich Rauf Tradent           |           |           |            |                |               |              |                |              |                                           |              |
| : 2 |                                                       |           |           |            |                |               |              |                |              |                                           |              |
| 8   | Paras Pari Levent of Wells                            |           | 1         | 30         |                | R             | 8 570.24     |                | 10112        | 0.14.01                                   | ET ANT 1A    |
| *   | Present for Installation                              | 6         |           | 8          | 51             | 51            | 11 544 19    |                | \$1 590 09   | 13.651.01                                 | 83.18.18     |
| ž   | land Withfunger Den                                   | 0         | 254       | 250        | 8              | 8             | 96.934.24    | 1.641.150.00   | 2.140.295.44 | 428.059.09                                | 2,568,354,53 |
| 8   | Press 1 Report Press 2 Plan                           | 8         | 300       | 200        | 904            | \$\$          | 117,561.04   |                | 705,486.24   | 141,097.25                                | 846,583.49   |
| 37  | Abendon Base Well 16                                  | -         | -4        | 15         | 15             | 9             | 3,938.37     | 25,000.00      | 48,630.21    | 9.726.04                                  | 54,356.25    |
|     | Subtotal                                              | 4         | 28        | 525        | ŧ              | 133           | 238,568      | 1,666,150      | 3,915,696    | 663,630                                   | 3,616,118    |
| X   | Phase 2-Well Ratellisten                              |           |           |            |                |               |              |                |              |                                           |              |
| ۶   | Offices Mechaning Wells (5)                           |           |           |            |                |               |              |                |              |                                           |              |
| ę   | Offices Extraction Wells (16) w/Well Hand Trustment   |           |           |            |                |               |              |                |              |                                           |              |
| ŧ   | Bet Spect Extraction Wells (14)                       |           |           |            |                |               |              |                |              |                                           |              |
| ş   | Prepers Paral Layout of Welfs                         | ſ         | 2         | 8          | 4              | 20            | 8,570.24     |                | 51,421.44    | 10,284.29                                 | 61.705.73    |
| Ŧ   | Prese for Installation                                |           | ×         | 8          | 15             | 51            | 11,544.19    |                | 69,265.15    | 13,453.03                                 | 83,118.18    |
| Ŧ   | Include Wellsoftware Data                             | 01        | รั        | 250        | 8              | 8             | 98,530.24    | 1,969,380.00   | 2,470,121,44 | 494,024.29                                | 2,964,145.73 |
| ş   | Please 2 Repeat/Please 3 Fiam                         | 8         | ŝ         | 200        | 400            | 45            | 117,581.04   |                | 705,486.24   | 141,097.25                                | 64 585 949   |
|     | Subtestal                                             | <b>46</b> | 165       | § 510      | <del>(3)</del> | 136           | 236,226.71   | 1,969,696,1    | TE MELALINE  | 88.82C, 193                               | 3,966,653.13 |
| \$  | Pass 3-Well Installation/Loweringtoins                |           |           |            |                |               |              |                |              |                                           |              |
| Ş   | Outure Matheming Wells (61)                           |           |           |            |                |               |              |                |              |                                           |              |
| 4   | Onhus Extraction Wells (7)                            |           |           | -          |                |               |              |                |              |                                           |              |
| \$  | Propers Plani Layout of Wells                         | •         | 4         | 6          | 12             | \$            | 24,616.34    |                | 147,696.02   | 29,539.60                                 | 177.237.62   |
| 8   | Propare for lastaliation                              | 6         | 80        | 69         | 41             | \$            | 33,426.18    |                | 200,557.06   | 40,111.41                                 | 240,668.47   |
| 5   | lastedii Weitla/instryret Data                        | 8         | 2         | 725        | 125            | 9             | 302,320.96   | 2,954,070.00   | 4,411,555.86 | 662,311.17                                | 5,293,867.03 |
| 8   | Phase 3 Report                                        | R         | Ř         | 200        | 84             | Ŷ             | 117,581.04   |                | 705,486.24   | 141,097.25                                | 849°283.49   |
|     | Serbiate                                              | 4         | 1,155     | 2          | 22             |               | 557HC/LL+    | 2.954,070.00   | 5,445,207.17 | CP.650'560'1                              | 6,550,356.40 |

Page 1 of 2

-

.....

6/23/94 3:32 PM

G:\userr\de\l\_umder\5066\alkernar\GWF8CST2.XLS

|                  |                                                 |     |          | įį       | R-16<br>Min 1 |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|-------------------------------------------------|-----|----------|----------|---------------|-------|--------------|----------------|---------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                 |     |          | Man-Days |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e                | Activity                                        |     | Mak Lond | Jr. Love |               |       |              | Contractor     | Activity      | ž                                         | - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And - And |
| 8                | Trummer Rad UniCollimation Systems              |     |          |          |               |       |              |                | (1)           |                                           | Total (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| x =              |                                                 | 3   | 8        | 8        | 5             | 8     | 8,064.53     |                | 48,307.17     | 9,677.43                                  | . 54,064.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                | Constant Prints                                 |     |          |          |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 53               | Preper Preliming Distan                         | 8   | 52       | 8        |               | 4     |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R                | Proce Red Divise                                | 8   | 09       | 8 2      | 2 5           |       | 17.010,000   |                | 10'/AP'/CI    | 55.676,16                                 | 189,477.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| \$               | Prepers for Commendian                          | 8   | 40       |          | 8             | *     | 207 C22 C2   |                | 1.01,101      | M-0775                                    | 159/12V/661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8                | Construct Collection Plates                     | ิส  | 021      |          |               | •     | 40-70C'NI    | AA A14 140 1   | CI 9/5'59     | 12,675,23                                 | 76,051.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                 | 5   | 201      | 1        |               | 3     |              | 00'00C'7CN'I   | 01.800,CB1.1  | 29/121/12                                 | 1,422,729.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                |                                                 |     |          |          |               | 3     |              | Thursday and a |               |                                           | NC(NL/000'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3                | Proper Perferencey Design                       | 6   | 8        | •        |               | -     | AC 878.74    |                | 07 002 80     | 1 7714 40                                 | 10 777 7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                | Press Plant Dauga                               | S   | 20       | 5        |               |       | 11 197 3     |                | 10 101 01     | 84-16-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ACCESSION AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                | Prepete for Construction                        |     | \$       |          |               |       | 65 YOK 9     |                | 10 mp ct      | 10.001                                    | 00''NCH'C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 65               | Construct Theorems Plane                        | 5   | 2        |          |               | • 2   | MC \$12 \$   | ND NND C41     | CC.4CM.4C     | 14.100,1                                  | 04-148'04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 66               | Service and and and and and and and and and and |     |          |          |               | 3     |              | 107,000,0      | N7-162-017    | 47.907'59                                 | HY MAC'867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 67               | Conduct Starting Shickadown                     | 2   | R        |          |               |       | 75576        |                | 7 10 1        | 10,000                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | Implement Process Contingency Plan              |     |          |          |               |       | 2.00         |                |               | IA DA                                     | IN INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| \$               | Implement Capacity Contigency Plan              |     |          |          |               |       | 88           |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |                                                 | 21  | 102      | 2        |               | 18    | 5 IG 16      |                |               |                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                | Taul-Une Paring                                 |     |          |          |               | 5     | 70-1996-07   |                | 1.0/01        | N'MAC'LO                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                | Proper Preliminary Divige                       | 15  | 8        | 1        | 2             |       | 11 402 11    |                | CA CI A 40    | 13 643 11                                 | 01 Add Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2                | Proper Real Design                              | 5   | 25       | 22       | 8             |       | 12.523.15    |                | 75 128 01     | at LUD XI                                 | 07 171 UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5                | Propess for Omethnotice                         | 8   | 9        |          | ~             | 2     | 11.077.22    |                | UL 197 99     | 11.707.11                                 | 70.100.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                | Compress Bart-Use Pipping                       | 0]  | \$       |          |               | 2     | 10.568.32    | 714.435.00     | 10 MM 111     | 165 Sec. 20                               | 01141100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T                | Settered                                        | 8   | 136      | *        | 4             | 4     | 46,570.00    | 714,436,00     | CONCLUS       | 1051051                                   | 1.165.201.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                | Linter Are                                      |     |          |          |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ا<br>ع           |                                                 |     |          |          |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F                | Propers Protinging Design                       | 8   | 8        | 67       | 9             | 4     | 28,173.95    |                | 169,043.71    | 33,808,74                                 | 202.652.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Prepare Pland Donign                            | 8   | 8        | 32       | 02            | 42    | 28,630.46    |                | 171,782.78    | 34,356,56                                 | 206.139.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>r</b>         | Propose for Construction                        | 8   | \$       |          |               |       | 10,562.69    |                | 63,376,13     | 12,675.23                                 | 76,051.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                | Construct Collection Paing                      | 2   | 125      |          |               | 25    | 26,334.00    | 1,406,475.00   | 1,564,479.00  | 312,095.00                                | 1,877,374.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ţ                |                                                 | *   | 2        | 2        | 110           | 215   | 93,701.10    | 1,486,475.40   | 1,968,681,62  | 393,736.32                                | 2362.417.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | Trutteret Pert                                  |     |          |          |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                | Proper Preliminery Unsign                       | 8   | 8        | 8        | 9             | 10    | 15,362.94    |                | 92,177.66     | 18,435.53                                 | 110,613.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                |                                                 | 2   | e.       | 35       | Ş             | 10    | 16,167.20    |                | 97,003.20     | 19,400.64                                 | 116,403.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                 | 8   | 9        |          |               | 8     | 11,555.52    |                | 69,333.12     | 13,866.62                                 | 83,199.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2                |                                                 |     | 8        |          |               | 5     | 44.050,0     | 475,000.00     | 511,356,64    | 102,271.33                                | 613,627.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                |                                                 |     |          |          |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |                                                 | c   |          |          |               | -     | 1,765.30     |                | 10,591.78     | 2,118.36                                  | 12,710.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | Turburnet Crandity Contractory Plan             |     |          |          |               |       | B            |                | 8             | 8                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\left[ \right]$ |                                                 |     |          |          |               |       | 8            |                | 0.0           | 8                                         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                | Each Use Plattae                                |     | 871<br>1 | 8        | 8             | *     | 54,910.48    | 415,000,00     | WTW/ML        | W740'Y51                                  | 99,552,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16               | Propers Preliminery Douign                      | 'n  | 9        | 01       |               |       | 4477.26      |                | an rad at     | (111)                                     | AN ALC CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                | Propers Final Design                            | 9   | 15       | 2        | 5             |       | 4913.94      |                | C9 200 04     | 11 mich                                   | ACTOCALAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                | Prepare for Construction                        | 2   | 8        |          |               | -     | 5 744 00     |                | 10.000/24     | ALL DO ALL DO                             | at ity at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                | Construct East-Use Piping                       | 3   | 5        |          |               | -     | 11 101 1     | 102315 (2)1    | IL WE LEE     | 27 CV 72                                  | 100 104 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | Subtatul                                        | 12  | 3        | *        | 2             |       |              | A115.00        |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ĩ                |                                                 |     |          |          |               |       |              | 345,875.00     | 345,475.00    | 71.175.00                                 | 463.050.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Alternative 1 Total                             | 638 | 3,732    | 2,844    | 3.295         | 1,132 | 1,497,013.36 | 11,143,068.00  | 19,411,266.18 | MALESC. COM.C                             | 22,312,02,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                 |     |          |          |               |       |              |                |               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

tified (ten B Costs are in 1994 dollars and include a 5 percent field detail allowance for unp

5060ahenanGWFSCST2.XLS Otherste

Ì.

M 3:32 PM

3,802,353.64

Table R-17 Alternative 2

ŧ

x

| Г  |                                                   |           |    | Maa-Deys  |     |    |            |              |                           |             |          |
|----|---------------------------------------------------|-----------|----|-----------|-----|----|------------|--------------|---------------------------|-------------|----------|
| -  |                                                   | Br. Lovel |    | Jr. Level |     |    |            | Contractor   | Activity<br>Contract (M)  | -           |          |
|    |                                                   |           |    |           |     |    |            |              |                           | 101/5       |          |
| -  |                                                   |           |    |           |     |    |            |              |                           |             |          |
|    |                                                   |           | 4  |           |     |    | E 745 13   |              | CL (U.) M                 | 1 200 0     | 2 2      |
|    |                                                   |           |    |           | 2   |    | 01.172.1   |              | SE BOYO                   | A SHOT      | NTI I    |
|    |                                                   |           |    | 1         | 8   |    | 8 390.03   |              | 61.045.02                 | 10.060.04   | 60.60    |
|    |                                                   |           |    |           | 9   |    | 10.996.01  |              | 11 W 53                   | 13.195.62   | 1.07     |
|    | Para polo                                         |           | 1  | 1         | 0   |    | 5.446.34   |              | 32,678,02                 | 6.535.60    | 39.21    |
| -  |                                                   |           |    |           | 0   | 2  | 1,378,53   |              | 1,171                     | 1454.23     | 6,92     |
|    | Press Harth and Suffer Pres                       |           |    |           | 0   | 0  | 156.53     |              | 71.126                    | 190.23      | 1.1      |
| 9  | Press OAP                                         |           | 20 | 8         | 0   | 0  | 5,950.65   |              | 90,205,25                 | 7,141.02    | 43       |
|    |                                                   |           | 20 |           | 0   | Ō  | 6.484.80   |              | 00,000,00                 | 92.122.1    | 9.4      |
| :  |                                                   |           | 5  | 121       | 52  | 15 | 27.504.16  |              | 165,004.96                | 66'900'12   | 1969     |
|    |                                                   |           |    |           | 9   |    | 16/4.24    |              | 52.045.44                 | 10,409,09   | 62.45    |
| 2  |                                                   |           |    |           | 2   | 9  | 2,675.71   |              | 14.854.27                 | 2.970.65    | (7.82    |
|    | Prove Rad Andrew Maner Har and Wards Pare         |           |    |           |     | 0  | 2.112.06   |              | 12.672.38                 | 2534.48     | 15.20    |
| ,[ |                                                   |           |    | 31        | 211 |    |            | 3            | Contraction of the second | 122220101   | 101      |
|    |                                                   |           |    |           |     |    | 00,000,001 |              | CL 71.1 USY               |             | 105      |
| •  |                                                   |           |    |           |     | 8  |            |              |                           |             |          |
|    |                                                   |           |    |           |     | 8  | Tar Land   |              |                           |             |          |
| -  |                                                   |           | 5  |           |     |    | 1 m 1      |              | 14 670 61                 | 11 770 7    | 14 IV    |
|    | Proper Sace Well 18 Administ Propins              |           |    |           |     |    | 14'entre   |              |                           | 11.000      |          |
| ล  | Proper Protocies Vel Company Past                 |           |    |           | 2   |    | #/cm/7     |              | M07/771                   | (C)(C)7     |          |
|    | 7                                                 |           |    | 4         | 2   | 9  |            | 3            | 41 may 14                 | ormv's      | 3        |
| 24 | Catractian System                                 |           |    |           |     |    |            |              |                           |             |          |
| 22 | Seboostracter Procurement                         |           |    |           |     |    |            |              |                           |             |          |
| 8  | Specify System Requirements                       |           | 2  | 34        | •   | 9  | 10,046.96  |              | 60,281.86                 | 12,056.37   | 23       |
| R  | Identify Performance Crimeta                      |           | 5  |           | 5   | 5  | 2,168.37   |              | 13,010,01                 | 2,602.04    | 15,51    |
| 8  | Precess BOAs w/3 Stein for Basewide EW/MW         |           | 2  |           | 2   | 15 | 4,400.94   |              | 26,405.66                 | 5,281.13    | 31,66    |
| Γ  |                                                   |           | 3  | ň         | -   | 3  | 16,616.20  | 0.0          | CL:140/66                 | 95.000,01   | 19/611   |
|    | Press - Well Parts Manufacture                    |           |    |           |     |    |            |              |                           |             |          |
| 8  | Albert Market Well (19)                           |           |    |           |     |    |            |              |                           |             |          |
|    | Office Reinstein Will (2) - 772 Read Thereine     |           |    |           |     |    |            |              |                           |             |          |
| 8  | Ref Ref Version (15)                              |           |    |           |     |    |            |              |                           |             |          |
|    | Present of Wells                                  |           | 12 |           |     | 8  | 6,570.24   |              | 51,421.44                 | 10,284.29   | 2.19     |
| 2  |                                                   |           | ×  | , A       | 5   | 15 | P1,544.19  |              | 69,265.15                 | ED.E28.E1   | 17(6)    |
|    |                                                   |           | 57 | ส         | 8   | 8  | 102,786.24 | 2,057,816.25 | 2,562,813.69              | 512,562.74  | 16,210,6 |
|    | Press Reservent 2 Pres                            |           | 20 | 8         | 007 | \$ | 117,581,04 |              | 705,486,24                | 141,097.25  | 2,858    |
| 5  | And The Vel 18                                    |           |    |           | 5   |    | 3,936,37   | 25,000.00    | 48,630.21                 | 9,726.0M    | 56.32    |
|    |                                                   |           |    | 8         |     | 81 | 244,428,46 | 2,002,016,25 | 3,437,616,73              | N.CO.       | 4,126,14 |
| 2  | Pass 2- Well Saddise Securitation                 |           |    |           |     |    |            |              |                           |             |          |
| 8  | Officers Mandacring Wedle (18)                    |           |    |           |     |    |            |              |                           |             |          |
| ş  | Offices Extendion Wells (22) w/Well Head Treement |           |    |           |     |    |            |              |                           |             |          |
| ŧ  | Ret Spet Katenden Wells (14)                      |           |    |           |     |    |            |              |                           |             |          |
| 3  | Prepare Flord Layout of Weils                     |           | 3  | ľ         | 4   | 30 | 8,570,24   |              | 51,421.44                 | 10,284.29   | 2.19     |
| ¢  | Process for invaliation                           |           |    |           | 1   | 51 | el.848.11  |              | 69,265.15                 | 13,853.03   | 11,63    |
| 3  | land Weinfaugus Das                               |           | 57 | 2         | 3   | 8  | 104,914.24 | 2,469,379.50 | 2,976,504.94              | 66'006'565  | 3,571,00 |
| ¥  | leavel Voltategrat Data                           |           |    | 9         |     |    | 2.PIC.WI   | AC-111-100-7 |                           | AA'MAA'CAF  |          |
| Ş  | Puer 2 Report Puer 3 Plan                         |           | 8  | 8         |     | 2  | 07186/11   |              | N7'991V'00V               |             |          |
|    |                                                   |           | 5  | 8         | *   |    | 1.000      | Mrsir'say 7  | LI.LIGTORY                |             |          |
| ¥  | Puer 2 Well Institution                           |           |    |           |     |    |            |              |                           |             |          |
| ç  | Outons Munttering Wells (45)                      |           |    |           |     |    |            |              |                           |             |          |
| \$ | Ombase Eintrontion Wells (34)                     |           |    |           |     |    |            |              |                           |             |          |
| \$ | Press Red Lynu of Val-                            |           | 4  | •         | 2   | 8  | 24,616.34  |              | 147,694.02                | 29,579.60   |          |
| 8  | Propert for Landleton                             |           |    |           | 4   | 2  | 33,426.18  |              | 200,552,006               | 111.41      |          |
| 5  | lestall Welfsfeergest Duck                        | 2         | 6  | 2         | 5   |    | 317,216.96 | 3,704,069,25 | 2'176,451.11              | 1,035,290,1 | • 117 •  |
| 2  | Parent Dayont                                     | 5         | 8  | 8         | 8   | *  | 117.381.04 |              | 705,486.24                | CT_1001111  | K WA     |
|    |                                                   |           |    |           |     |    |            |              |                           |             |          |

MI SEE MEZA

anti-devi\_mider/50669abreau/OWF%CST2.XQ.S

ŝ

Projet of 2

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       | - 3           | atte B-17<br>kennetter 2 |              |                                         |               |                                              |                |                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------------|--------------------------|--------------|-----------------------------------------|---------------|----------------------------------------------|----------------|---------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       | Man-Deys      |                          |              |                                         |               |                                              |                |                     |
| 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               | Telefor                  |              | 2 mm (3)                                | Continued (3) | Authly<br>Suburbed (3)                       |                | Tabley<br>Total (5) |
|       | Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Se | 4   | 1,156 | <b>669</b> '1 | 5                        | X            | INSTAN                                  | 3,784,869     | 2761,021,0                                   | BARRANC.I      | 7/11/220.90         |
| 2     | Transmitted United and System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |               |                          |              |                                         |               |                                              |                |                     |
| X     | Presses Transhy Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2   | 8     | 8             | 2                        | 8            | 8,064.53                                |               | 11.706.85                                    | EV-119'6       | 58,064.40           |
| 2     | Weeken Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |               |                          |              |                                         |               |                                              |                |                     |
| *     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   |       |               |                          |              | 11 MM 12                                |               | 10 474 474 47                                | 1 22 2         | 111 THE 111         |
| -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   | 8 2   | 2 5           | <b>5</b> 7               | •            | +1.C/ULIC                               |               | Taracular is not the                         | 87.187.1C      | 111 C C C C C C     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2 3   | 2             | 2                        | •            | 10.417.01                               |               | OT ALL LAND                                  | 10790 42       |                     |
| 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 8     |               |                          | • 7          | 14/1003-16                              | W 344 107 1   | 1 200 403 64                                 | CC. MAR. P. I. | 1124 44 72          |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               |                          | 3            | 78-61/-67                               | 1,101,1,100,1 | L'environt i                                 |                | C1-940-19411-7      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 411 | *     | R             | A.                       | 2            | 120001011                               | 1,401,775.00  | THE                                          | 0C1087/100     | 2,743,219.96        |
| ;   c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 5     |               |                          |              | 10 471 67                               |               | O IN D                                       | OF MAN CI      | CE C 11 20          |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2 5   |               | 2                        | - <b> </b> - | 17 200 0                                |               | ST UCH IN                                    | 40 F7L 11      | 2 7 7 7 F           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2 2   | 2             |                          |              | A 400 32                                |               | 10 515 St.                                   | 11 100 L       |                     |
| 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 3 5   |               |                          |              | IT LAN                                  | Can Am Can    | No con cha                                   | CS UNA MCI     | CA NAC APT          |
| 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2     |               |                          | 2            |                                         | Array 12      |                                              | 177000         |                     |
| 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •   |       |               |                          | -            | 01 245 1                                |               | W. 195 01                                    | 2118.26        | 11 710 11           |
| 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               |                          |              | 900                                     |               | 000                                          | 0.00           | 000                 |
| 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               |                          |              | 8                                       |               |                                              | 83             | 000                 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8   | 3     | 1             | 2                        | G            | 37.212.76                               |               | ALCO M                                       | 12300.00X      | 72,012,220          |
| 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               |                          | -            |                                         |               |                                              |                |                     |
| =     | Press Partnery Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15  | 2     | 1             | 22                       | 5            | 11,402.11                               |               | 68,412.67                                    | 13,662.53      | E2,095.21           |
| F     | Proce Red Dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8   | 25    | 8             | 8                        | 5            | 12,523.15                               |               | 16'061'51                                    | 15,027.78      | 90,166,66           |
| a     | Papers for Commutan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8   | 8     |               | 7                        | 12           | 11.077.22                               |               | 06.634/38                                    | 13,292.66      | 79,755.96           |
| 2     | Communication Prints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01  | \$    |               |                          | 8            | 10,568.32                               | 755,235.00    | SI8,644.92                                   | 163,728.98     | 942,373.90          |
|       | Subset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *   | 961   | *             | н                        | 2            | 47X75                                   | 755,235,80    | 1,028,479.30                                 | 208,731.56     | 37.190,002,1        |
| 22    | Letter Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |               |                          |              |                                         |               |                                              |                |                     |
| ×     | Coloritos Pretas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |               |                          |              |                                         |               |                                              |                |                     |
| 7     | Pryse Priining Dauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8   | 3     | 5             | 8                        | 8            | 28.173.95                               |               | 169,043.71                                   | 33,808.74      | 202, 652, 45        |
| 2     | Propers Paral Divige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90  | 60    | 32            | 2                        | 3            | 28,630.46                               |               | 11.20.111                                    | 95'95E'N       | 206,139.34          |
| 2     | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8   | \$    |               |                          | •            | 10,562.69                               |               | 63,376,13                                    | 12,675.23      | 76,051.35           |
| 8     | Computer Collections Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22  | 125   |               |                          | ຊ            | 26,334.00                               | 1,208,025.00  | 1,366,029.00                                 | 273,205.80     | 1,639,234.00        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8   | Ă     | 8             | 10                       | 115          | 07'JAI'10                               | 1,286,025.00  | 1,77.231.42                                  | NAME J         | 2,124277.96         |
| =     | Training and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                             |     |       |               |                          |              |                                         |               | 2 Mil W                                      |                | ~                   |
| 8     | Trues Freinkery Daugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 22    | 1             | 2 9                      | 2 9          | M-105'01                                |               | UC UUU LID                                   |                | AA AA AA            |
| 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       | 8             |                          | 2 8          | 11.555.52                               |               | 21.11.00                                     | 13.66.61       | 12.001.03           |
| 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2     |               |                          |              | 6.059.44                                | 744.400.00    | 824.756.64                                   | 164.951.33     | 16.107.006          |
| 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               |                          |              |                                         |               |                                              |                |                     |
| -     | Contest States States and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |       |               |                          | -            | 1.765.30                                |               | 10.991.71                                    | 2,118.36       | 12,710.13           |
|       | Instant Press Continuery Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |               |                          |              | 000                                     |               | 000                                          | 000            | 80                  |
| 2     | Induced Constants Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |               |                          |              | 000                                     |               | 0.00                                         | 000            | 80                  |
|       | Subset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *   | 2     | 8             | 8                        | *            | 64.010,40                               | 716,465,667   | 1,003,062.40                                 | 214,772.48     |                     |
| 8     | Table Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |               |                          |              |                                         |               |                                              |                |                     |
| 16    | Prepare Preliminary Donigo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9   | 12    | 12            | 1                        | \$           | 5,441.06                                |               | 32,886.34                                    | 6,577.27       | 39,463.60           |
| 8     | Proper Paul Davigs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •   | 41    | 12            | 7                        | 5            | 5,917.73                                |               | 35,506.37                                    | 1.101.7        | 42,607.64           |
| 8     | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12  | 8     |               |                          | 5            | 6,037.10                                |               | 36.222.62                                    | 7,244.52       | 43,447.15           |
| X     | Construct East-Use Pipeing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •   | 1     |               |                          | ~            | 3,820.59                                | 395,115.00    | 418,038.55                                   | 83,607.71      |                     |
|       | Buttonial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8   | 3     | X             | 2                        | 8            | 21,256.46                               | 346,115,000   | 10903                                        | NALSTAL T      | CTT, UMAN           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |               |                          | +            | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | MACHERIC      | THAT AND AND AND AND AND AND AND AND AND AND | VAL 14'14'11   | 17 17 17 10 to      |

. ....

R Costs are in 1994 defines and include a 5 percent field detail allowance for ungmmitfied inter-

MOWPBCST2.XL.S

1000

C.

43.35 PM

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              | ſ             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------|-------------|--------------|--------------|--------------|---------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R. Lond | Intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel intel | 11          |         | Aminterio |             | Current      | Annual V     | ž            | 1             |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I       | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ           | Telefes | Į         | ()<br>()    | Centrada (9) | 6111         | Contrary ()  | 1449          |
| -  | New Profits No. 4 See the Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| ~  | Douby Readed Artics Master Pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| •  | Betretten System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •       | র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2           | •       | •         | 6,245,12    |              | M/N0.72      | 9,000,14     | 9.XLM         |
| •  | Transform Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contraction of the International Contractional          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •           | 2       | 7         | 66.172,1    |              | 9,428.35     | 1,865.67     | 11,314,02     |
| ~  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22          | R       | •         | CO.04C.8    |              | 91.0MC.02    | 10,068.04    | 60,408.23     |
| •  | Criments June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8           | *       | *         | 10,944,01   |              | 11.979,23    | 13,195.42    | er.eri,er     |
| -  | Part DQD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15          | 9       | 3         | 5,446,34    |              | 32,670.02    | 6,535,60     | 39,213,62     |
| -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2           | o       | 2         | 1,378,53    |              | 11.17        | 1,654.20     | 0.126.9       |
| -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0           | 0       | 0         | 65 851      |              | 11.124       | 190.23       | 1.141.40      |
| 9  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8           | •       | ē         | 5.950.85    |              | 15,705,00    | 7.141.00     | IT WE CO      |
| =  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8           | e       |           |             |              | AL CALL DO   | X. 18. (     | K CAN CA      |
| =  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 3         |         |           | 21 TV3 L4   |              | 166 001 04   | 21 MAL       |               |
| 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |         | 2 !       | Al'MAC'/7   |              | AT ATT THE   |              |               |
| =  | Property Carry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>s</b>  • | 2       | 2         | No'N'       |              | No. Charles  |              |               |
| 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 2       | 2         | 1//2/1      |              | 12.102.11    | 2,970.0      | 11/02/11      |
| 15 | Preper Real Resulted Action Matter Pan and Work Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$          | ~       | 2         | 2,112,06    |              | 12,672.36    | 2534.48      | 15,206,86     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100         | 116     | 5         | 11,000,00   | 87           | (SAULAS)     | CL.SEC.IN    | SAL PLAN      |
| 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 370     | 8         | 160.000 001 |              | 607.140.00   | 121,026.00   | 726.566.00    |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              | A 44 121     |               |
| ŧ  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| =  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           |         |           | 14 MB 1     |              | 10 MM 10     | 0.777        | 1. 1. 1.      |
| R  | Process New You Mandated Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3           |         |           | /srenarc    |              |              |              | 11.10.00      |
| ສ  | Prese Probation Well Continuery Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~           | 2       | 2         | 2003.44     |              | W7212721     | 2,403        | 11.121.11     |
|    | Subtend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22          | 15      | 2         | ICMCT       | 3            | 11,000,17    |              | 1121219       |
| 2  | Lucardan Spates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| 2  | Compare Provent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| *  | Berthy System Registered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8           | •       | 8         | 10,046.96   |              | 60,281.46    | 12,056.37    | 72,306,27     |
| 2  | Marth Manaza Circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~           |         | \$        | 2,168.37    |              | 13,010,21    | 2,602.04     | 15,612.25     |
| 2  | Prese DAA of Sale for Dampin RVATY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7           | 7       | 15        | 4,400.94    |              | 26,405,466   | 5,281.13     | 31,466.80     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         | 3         | 16.256.20   |              | CV/UP C      | 27402/61     | CT IL DO IN   |
| 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| Ē  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| æ  | Rei Spit Schreitics Vells (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| 2  | Prepare Rund Layout of Vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8           |         | 2         | 15.500.11   |              | 104.774.21   | MINCIN       | 01/02/1021    |
| X  | Prepare for Londinias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8           | 8       | 8         | 27,000.36   |              | 00.002,001   | 71,704.05    | X 92 91       |
| 2  | Look Well-Surger Das                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8       | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 910         | 5       | 8         | 197,204,66  | 2,057,816.25 | 3,068,064,19 | 613,772.0M   | 3,482,437,02  |
| *  | Face   Report Pace   Pace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 997         | 8       | \$        | 117,561,06  |              | 705,446.24   | 141,007.25   | 47 CB5 WB     |
| 33 | Atendea Date Well 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ព           | 22      | •         | 5,670.69    | 25,000.00    | C1.400/65    | 11,504.53    | 70,428,95     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 386     | 216       | 41.121.13K  | 2,402,016,25 | TUN, CINAR   | 115,226,216  |               |
| ×  | Ran 2-Wei breitigtes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| 8  | Others Macharter Web (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| \$ | Officer Schundens Wells (O) «Well Band Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| ŧ  | Bet Spectration Web (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| \$ | Press Red Lynus of Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8           | 1       | \$\$      | 17,462.37   |              | 104,774.21   | 20,954,84    | 125,729.05    |
| \$ | Press for Landarian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3           | 8       | 8         | 23,000,54   |              | 00.002,001   | 27,706.06    | 166,206,36    |
| 3  | famil With farmer Daw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8       | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 510         | 16      | 56        | 200,516,66  | 2,469,379.50 | 3,403,619,44 | 645,723.89   | 4,100,343.32  |
| 1  | Press Press Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8       | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8           | 8       | \$        | 117.581.04  |              | 705,486,24   | 141,007.25   | 84 (36) 48    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2           | 2       | 212       | 30.64.45    | 2,48,379.50  | CITAIA IS    |              | 62.000,000,20 |
| 3  | From 2. Web Institution Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| G  | Other Matteries Web (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| *  | Online Retroction Wells (111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |           |             |              |              |              |               |
| \$ | Press Red Level of Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11      | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165         | 8       | 120       | 23'60L'U    |              | 206,738,96   | 81.1MC,F2    | C NOT         |
| 8  | Properto for landlesian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16      | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 165         | 28      | 23        | 63,316,80   |              | 379,900.00   | 75,900.16    | 455,000,95    |
| 2  | hand Webfanger Das                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55      | 1,425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,425       | 260     | 260       | 251,157,60  | 3,704,069,25 | 6.534,234.85 | 14'SHE'HOC'I | 7,429,061,62  |
| 5  | Press 3 Dames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200         | 80      | \$        | 117,581,04  |              | 705,486.24   | 141,097,25   | 14-125" H     |

Tuto B-10 Abstraction 3

į <sup>\*</sup> .

. .... ..

American Justice October and OVPSCST2.3LS

MIN'S MADE

Page 1 of 2

|   |                                                                                                                 |     |       | - 3      | Tate 2-10<br>Mercelo |       |              |                |               |                   |               |
|---|-----------------------------------------------------------------------------------------------------------------|-----|-------|----------|----------------------|-------|--------------|----------------|---------------|-------------------|---------------|
|   |                                                                                                                 |     |       | Man-Days |                      |       |              |                |               |                   | ſ             |
| • | Anthread                                                                                                        |     |       |          | -                    |       |              |                | ţ             | ž                 | 1             |
|   |                                                                                                                 | 116 | 1.01  |          |                      |       |              |                |               | Current O         | 1119          |
| 8 | Trutantified But Chester System                                                                                 |     |       |          | 2                    | R     |              | T'MAN          |               | 1.57.17.17        | 9 ARALLO      |
| x | Press Trading Contraine                                                                                         |     | 8     | 8        |                      | 1     |              |                |               |                   |               |
| 3 | Wein An                                                                                                         |     |       |          |                      | 8     |              |                | 11.174.184    | SV/L96            | 0110015       |
| 3 |                                                                                                                 |     |       |          |                      | Ť     |              |                |               |                   |               |
| 6 | These Patiency Davis                                                                                            | 8   | 011   | 120      | 2                    | 1     | 22 141 62    |                |               |                   |               |
| - | Property Paral Davies                                                                                           | 3   | 97    | \$       | 97                   | 8     | CI 100 15    |                |               | 2711670           |               |
| 8 | Trues for Computers                                                                                             | 8   | 8     |          |                      |       | at 101 10    |                | 2/ 786 1896   | MUNIM             | X 89 X        |
| 3 | Contrast Collection Project                                                                                     | 8   | 97    |          |                      | 2 5   | N-01'17      | W THE ILL C    | 92"TCL'921    | 25,2645           | 152,162.71    |
|   |                                                                                                                 | 192 | E     | 1        | 3                    |       | 7/ 700/1C    | 0010461617     | 25-142-19676  |                   | 3,44,180.36   |
| 3 | Trees Ter                                                                                                       |     |       |          |                      |       | TV/ INfeat   | 24734,5994,000 | NT GAT WATE   | 1.41.41           | 27 CL 1919 1  |
| 3 | Pryces Pretering Dauge                                                                                          | 2   | 8     | 8        | 12                   | S     | A 114 11     |                |               |                   |               |
| 3 | Pre-Pulling                                                                                                     | 12  | 8     | 8        |                      | 2 2   | 47'104'11    |                |               |                   | 27.(((2)      |
| 3 | Press for Constants                                                                                             |     | 8     |          |                      |       |              |                | 15'007'44     | 02.018.61         | 118,461.17    |
| 3 | Construct Transmit Paul                                                                                         | 12  | 9     |          |                      |       |              |                | 06.967.06     | 10.101.36         | 80 HH 00      |
| 3 |                                                                                                                 |     |       |          |                      | 2     | 65.00/161    | 1,672,900.000  | 1.755,611.97  | 351,122.39        | 2,106,734.36  |
| 5 | Contras Services                                                                                                | 5   |       |          | Ť                    | •     |              |                |               |                   |               |
| 3 | Letters Provide the                                                                                             |     |       |          |                      |       | N. 30.1      |                | N.1801        | 2,118.36          | 12,710.13     |
| 3 | In the set Continuery Pan                                                                                       |     |       |          |                      |       | 8            |                | 000           | 000               | 000           |
|   |                                                                                                                 |     | 3     |          |                      |       | 8            |                | 80            | 000               | 000           |
| 2 |                                                                                                                 |     |       | R        | 3                    | 2     | 27.007.15    | 1,672,948,48   | 79.362,4545   | 91.794.MM         | 2424.201 MG   |
| 1 |                                                                                                                 |     |       |          |                      |       |              |                |               |                   |               |
| 2 |                                                                                                                 |     |       |          | ิก                   | 5     | 11,402.11    |                | 68,412.67     | 13,442.53         | 02,005,21     |
| 2 |                                                                                                                 |     |       | 2        | 8                    | 5     | 12,523.15    |                | 16.021,27     | 15,000,21         | 90,166,49     |
| 2 | Control Party in State                                                                                          | 3   | 8     |          | 7                    | 2     | 11,007.22    |                | 00.634/33     | 13,292.66         | 78.755 W      |
| ſ |                                                                                                                 | 2   | 2     |          |                      | 8     | 10,548.32    | 836,965.00     | 505 JMI 52    | 100,478,96        | 1.002.073.00  |
| * |                                                                                                                 |     | 2     | *        | 4                    | 3     | ALSTR.BO     | COL, POC. DO   | 1,112,400,20  |                   | AL HALVEL     |
| 2 |                                                                                                                 |     |       |          |                      |       |              |                |               |                   |               |
| - |                                                                                                                 |     |       |          |                      |       |              |                |               |                   |               |
| - |                                                                                                                 |     | 2     | 2        | \$                   | \$    | 32,449.15    |                | 19,040,001    | 34,926,96         | 90.003.002    |
| 2 |                                                                                                                 | 2   | 2     | 8        | 8                    | \$    | 32,501.28    |                | 89'L00'561    | 39,000,54         | 234,009,22    |
|   |                                                                                                                 |     | 7     |          |                      | 2     | 12,352.35    |                | 74,114.11     | 14,822.82         | 00.000.00     |
|   |                                                                                                                 | 12  | 3     |          |                      | 8     | 31,066.85    | 1,529,850.00   | 1,716,251,09  | 343,250,22        | 2.059.501.31  |
|   |                                                                                                                 |     | 7     | 9        | 18                   | 13    | CARCINI      | 1,529,000,00   | 2,100,007.79  | ALCOLDS,          | 2.656.ml 155  |
| : |                                                                                                                 |     |       |          |                      |       |              |                |               |                   |               |
| : |                                                                                                                 | 2   | 8     | 8        | =                    | 2     | 15,362.94    |                | 92.ITI.46     | 18,435.53         | 02.619.011    |
| 1 |                                                                                                                 |     | 8     | 5        | \$                   | 9     | 16,167.20    |                | 02'000'14     | 19,009,01         | 116,403.84    |
|   |                                                                                                                 | R   | 8     |          |                      | 8     | 11,555.52    |                | 69,333.12     | 13,866.62         | AC 441,53     |
|   |                                                                                                                 |     | 8     |          |                      | ~     | 6,009.44     | 1,154,400.00   | 1,190,756,64  | 230,151,33        | 1,428,907.97  |
|   | Contraction of the second second second second second second second second second second second second second s |     |       |          |                      |       |              |                |               |                   |               |
|   | Industry Process Data                                                                                           |     |       |          |                      | -     | 1,765.30     |                | 10,991.78     | 2,118.36          | 12,710.13     |
|   |                                                                                                                 |     |       |          |                      |       | 80           |                | 000           | 80                | 00.0          |
|   |                                                                                                                 |     |       |          |                      |       | 80           |                | 000           | 890               | 000           |
| 8 |                                                                                                                 | 8   | R     |          | 8                    | 8     | 81,910.45    | 1,154,400.00   | 1,499,862,48  | arus uz           | 1,751,834.80  |
|   |                                                                                                                 |     | -     |          |                      |       |              |                |               |                   |               |
| 8 | Press Red Daries                                                                                                |     | 3     |          |                      | ~     | 5,481,06     |                | 32,446.34     | 6.577.27          | 39,463,40     |
| 8 |                                                                                                                 | • • | 2     | 3        |                      | ~     | 5.917.73     |                | 35,906,37     | 7.101.27          | 42,407.64     |
| z | Contract Red Univ Prints                                                                                        |     | 3:    |          |                      | ~     | 6,037.10     |                | M,222.62      | 7,244.52          | 43,467.15     |
| Γ |                                                                                                                 | •   |       |          |                      | 5     | 3,820.59     | 477,015.00     | SS.859,004    | 11.136,64         | 92, 926, 946  |
| ſ |                                                                                                                 | 8   | 3     | *        | 2                    | 8     | 21,216.45    | 677,015.00     | SALES         | 120,010,76        | 725,464.46    |
| Γ | A harment                                                                                                       | Ĩ   |       |          |                      |       |              | 763.875.00     | 763,875.00    | 152,775.00        | 916,450.00    |
|   |                                                                                                                 |     | 10074 |          | 1157                 | 1,722 | 2.243,710.22 | 17,425,286.49  | 10,010,000,05 | The second second | 15.755,063,36 |

B Costs are in 1994 define and include a 5 percent field dowid allowance for unquantified i

**PBCST2.XLS** 

NU SCENE

Table E-19 Abstracts 4

. . .....

.....

- **-** - -

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Man-Days  |             |          |             |                |              |              |              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------|-------------|----------------|--------------|--------------|--------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Lea | Makin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jr. Level |             | Aminimum |             |                |              | 1            | 1            |
|    | Antibely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | ļ         | Title T     | ļ        | (j)         | Comments       |              |              |              |
| -  | Muter ProWork Plan of Decedial Andrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| ~  | Develog Remodici Action Music Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22        | •           |          | 8.245.12    |                | CT OTA MA    | 11110        | 1 11 11      |
| •  | Thereas Spense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         | 2           | 2        | 151.9       |                | 51 827 8     | 1.000        | 11 11400     |
| ~  | Had Lies System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25        | 52          |          | A MO.OF     |                |              | 10 000       | 11 W W       |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8         |             |          | AC AND AL   |                |              | 11 146 43    |              |
| -  | Pum 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M         |             |          |             |                |              | 200'CA1'C1   | 4) 1) 1) 4)  |
| -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                | 2010/0120    |              | 24.413.44    |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              | 12.904.1     | NYCA'S       |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          | C.N.        |                | 11126        | 190.23       | 1,141.40     |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R         | •           | 0        | 50,059,2    |                | 35,705.09    | 7,141.02     | 42,846,11    |
| =  | <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20        | •           | 0        | 6,484.80    |                | 34,909,36    | 7,781.76     | 46,000,04    |
| 9  | Donly Manuful Anian West Pine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125       | 25          | 15       | 27,504.16   |                | 165,024.96   | 99.M00.CE    | 198,629,95   |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0*        | 0           | 10       | AC A72.2    |                | 44 200 C3    |              | K2 464 63    |
| 1  | Pres Part Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | 101      | 123076      |                |              |              |              |
| 1  | Print Real Rates Mana Rea and West Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          | 20110       |                |              | 01W/7        |              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | 211      | 41717       |                | N. 7/9/21    | WYKC7        | 15,206.46    |
| :  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31        |             | 5        |             | -              | Prop. AC     | CL.197" (0]  | CAS, PALA    |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •         | 987         | 8        | 107,490.00  |                | 450,134.32   | 90,020,06    | 540,161.18   |
|    | Shinked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78     | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •         |             | *        | 107,000,001 |                | 400°174 30   | N.M.N        | SM.M.IC      |
| ~  | OrientOffice Protection Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| R  | Press has Vel 13 Abstance Propus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8         | 5           |          | 5.003.47    |                | TABCEN       | 1177.7       | 41 765 60    |
| 8  | Press Preterin Well Continuery Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5         | 9           |          | 2 045 44    |                | 12 04 01     | 12 19 1 0    | C1 C444 V1   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26        |             |          | 10.00       |                |              |              |              |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| ×  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | •           | \$       | 10,046.90   |                | 40.211.06    | 12,056,37    | 12.MC.27     |
| =  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |             | ~        | 2,168.37    |                | 13,010,21    | 2,402.04     | 15,612.25    |
| 8  | Freeds FUAs 473 2444 Set Bearwak EW/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 2           | 15       | 4,400.94    | 1              | 26,405.66    | 5,281.13     | 31,646,00    |
|    | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31        | 6           | 3        | 16,616,29   |                | CL'149/65    | 35.000,01    | 11 m 11      |
| 8  | Pare 1-Well institution designations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 8  | Others Manhard With (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 5  | Others Extendes Web, (\$) w/Web Band Transmit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| R  | Bet first Detection Wells (1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 12 | The state of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of New Contract of N |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5         |             | 2        | AC M72 4    |                |              |              | A1 100 11    |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 5       |             | 3        | N. 12 11    |                | 40-170-1C    | 11. MO.UI    | C/ ON/ 10    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                | C1. CM7'20   | SUISCE'SI    | 63,116.18    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC7       | 8           | 8        | 102,786,24  | 57'011'LS0'Z   | 1362.813.69  | 512,562.74   | 3,075,376.43 |
|    | Place 1 Jugeo 7 Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200       | 904         | \$       | 117,581.04  |                | 705,446.24   | 141,007.25   | B46,583.49   |
| F  | Aburdan Dan Vel 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15        | 15          | 3        | 3,938.37    | 25,000.000     | 48,630.21    | 126.04       | 56,356,25    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 525       | <b>48</b> 4 | 133      | 244,428.46  | 2,982,516,25   | 3,437,616.73 | 8112/12      | 4,126,100.00 |
| *  | Rus 1-Will Insidein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 2  | Others Menthering Weils (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 8  | Offices Extraction Wells (22) w/Well Read Trackment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| ŧ  | Bei Spei Britvetten Wells (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| 42 | Prepries Princi Laguari ed Weitte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8         | *           | 8        | 8.570.24    |                | 51.421.44    | 10.284.20    | 61.705 73    |
| Ş  | Number in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 1           | 51       | 01 775 11   |                | 21 225 62    | 11 151 01    | A1101        |
| 3  | hard Wetherman Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9      | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96        | 5           | 5        | AC A10 MI   | 1) all 014 (   | ALAND AND C  |              | 1 471 014 01 |
| 2  | Pres Presentation 3 Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2           |          | 117 501 04  | Tarres of same |              | 34 Car IV    |              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             | 12 m m r       |              |              |              |
| 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | ß        | TV-SAMPYNY  | Acres classic  | 11.110 meter |              |              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |             |                |              |              |              |
|    | Present Part Layert of Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 12          | 55       | 24,616.34   |                | 147,698.02   | 29,539,60    | 171,237 62   |
| 8  | Prepets for installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5         | Ŧ           | \$       | 33,426.18   |                | 200,557.06   | 11.111.04    | 240,668.47   |
| ₽  | had Victorya Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8      | 729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 227       | 125         | 941      | 317,216.98  | 3,704,069.25   | 5,176,451,11 | 1,035,290.22 | 6.211.741.33 |
| 2  | Pares 3 Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8      | 90<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200       | 94          | \$       | 117,581,04  |                | 705,486.24   | 141,007.25   | 44 CBS 948   |
| ,  | Subtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4      | 951'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000     | 845         |          | C3.044.574  | 3,704,060,25   | 6.230.192.42 | 1.246.016.46 | ALCOLOGY     |

MOWPSCST2.XLS 10

MUNIC MADE

2

Page 1 of 2

Gimmit 260 Manual Colline 100 Miles

|     |                                  |     |      | Mass-Days |          |       |            | -             |              |             |                           |
|-----|----------------------------------|-----|------|-----------|----------|-------|------------|---------------|--------------|-------------|---------------------------|
| 9   | 1                                | 1   |      | Jer Level |          |       | (          | Construction  | Address      | ž           | ſ                         |
| 8   | Treasured in Column States       |     |      |           |          | AMMAN |            | Contracts (3) | Subtated (3) |             |                           |
| 3   | Process Transley Constants       | 1   | 00   | 8         |          | w.    | 10 1701    |               | 71 Tab 14    |             | 40 M 1 40                 |
| 2   | Vieto Are                        |     |      |           |          |       |            |               |              | Cb-110/4    |                           |
| 3   | Candin Paris                     |     |      |           |          |       |            |               |              |             |                           |
| 5   | Press Puttering During           | a   | 8    | 75        | 4        | 45    | 31.073.14  |               | (4.852.28)   | ALCAC OF    | 27 M W                    |
| 3   | Prepara Prant Donigo             | 37  | 75   | 8         | 15       | 28    | 32,719,01  |               | 196 314.04   | IN CAC BE   | 74 514 24                 |
| \$  | Prepare for Construction         | 2   | 46   |           |          |       | 12,409.70  |               | 74 CD 47     | 12 000 11   |                           |
| 3   | Construct Collection Name        | 31  | 140  |           |          | 25    | 29.779.82  | 1.401.775.00  | 1.780.453.94 |             | 11 444 71                 |
|     |                                  | 411 | 346  | 125       | 124      | 143   | 114,040,27 | 1.401.775.40  | 2.206.0005   | IT UNE LINE | 2.742.210.00              |
| 3   | Tretail Part                     |     |      |           |          |       |            |               |              |             |                           |
| 3   | Press Preference Durige          | •   | 10   | 6         | •        | •     | 4,893.46   |               | 29.360.74    | 5177215     | 15 212 M                  |
| 3   | Press Red Dutys                  | 5   | 10   | \$        | *        | \$    | 4,700.05   |               | 28,680.29    | 5.736.06    | 34.416.35                 |
| 3   | Prese for Contraction            |     | 8    |           |          | 2     | 3.336.03   |               | 20.016.10    | A 000 24    | 24 010 43                 |
| 3   | Contrast Prostants Plant         | 2   | 8    |           |          | 8     | 5.715.20   | SE1.400.00    | 00,100,213   | AC 251 FC1  | ALL POLINE                |
| 3   | Survivera                        |     |      |           |          |       |            |               |              |             |                           |
| 5   | Cashes States States States      | 2   | 2    |           |          |       | 755.76     |               | 22.14.5.1    |             | C7 177 5                  |
| 3   | Instanta Proces Continuery Pan   |     |      |           |          |       | 8          |               | WU           |             |                           |
| \$  | In the set Canadra Cantanacy Pin |     |      |           |          |       |            |               |              | 8           |                           |
|     |                                  |     | 0    |           |          |       |            |               |              |             |                           |
| 8   |                                  |     |      |           |          | 10    |            | 2'10'IN       |              | 139,666.0   | 15.60.123                 |
| 2   |                                  |     |      |           |          |       |            |               |              |             |                           |
| : = |                                  | 2   | 7    |           | R        | •     | 77.000,4   |               | 57,991,30    | 2,25,11     | 95 <b>88</b> 5 <b>9</b> 5 |
| :   |                                  |     | 77   | 9         | \$       | •     | 10,319.62  |               | 61,917.70    | 12.363.54   | 74,301.24                 |
| :   |                                  | 5   | 32   |           | 2        | 10    | 9,109.57   |               | 54,AS7.41    | 397.156'01  | 65,588,899                |
| 2   | Construct Bark-Use Phring        | •   | 8    |           |          | 16    | 8,454.66   | 755,235.00    | 805,962.94   | 161,192.59  | 967,155.52                |
|     | Setting                          | 3   | 112  | 8         | 62       | H     | 30'005'12  | 00"912"554    | Nr ozy wes   | IN, MALET   | OLUXANI,I                 |
| ۲   | lim /w                           |     |      |           |          |       |            |               |              |             |                           |
| 2   | Cubeter Name                     |     |      |           |          |       |            |               |              |             |                           |
| 7   | Pres Nining Daips                | 8   | 99   | 69        | 0        | 9     | 26,173.95  |               | 169,043.71   | 33,806.74   | 202,052,45                |
| =   | Press Paul Dauge                 | 30  | 80   | 32        | <b>2</b> | 42    | 26,630.46  |               | 171.782.78   | 36.36.46    | 206.139.34                |
| 2   | Prepare for Construction         | 20  | 9    |           |          | •     | 10,562.69  |               | 63,376.13    | 12.675.23   | 76,061,35                 |
| 8   | Construct Collection Preing      | 25  | 125  |           |          | 25    | 26,334.00  | 1,206,025.00  | 1,366,029,00 | 273.205.80  | 1.639.234.80              |
|     | Subtract                         | 8   | 2062 | *         | 110      | 115   | 93,701.10  | 1,260,025,00  | 1.772.01.0   | CLARK T     | 2124277.96                |
| ī   | Treement Plant                   |     |      |           |          |       |            |               |              |             |                           |
| 8   | Program President Design         | 25  | 31   | 2         | 20       | =     | 15,019.09  |               | 90,114.53    | 18.002.91   | 106,137.43                |
| =   | Prysics Real Darign              | 15  | 87   | *         | 32       | =     | 16.252,21  |               | 12.162.19    | 16.306.37   | 22 BCR.001                |
| 3   | Prepara for Constration          | 01  | 10   |           |          | 22    | 5,105.31   |               | 78.111.07    | 6.22.3      | 37,334,25                 |
| 2   | Construct Trustment Plast        | 5   | 31   |           |          | 5     | 6,217.97   | 201,900.00    | 18.705,962   | 107,841,56  | 647,049 37                |
| 8   | Performance                      |     |      |           |          |       |            |               |              |             |                           |
| 6   | Conduct Structure Stationdown    | 2   | 2    |           |          | 1     | 1,765.30   |               | 84.165,01    | 2,118.36    | 12,710.13                 |
| 2   | Incident Process Continuery Plan |     |      |           |          |       | 00.0       |               | 0.0          | 00:0        | 0.0                       |
| 8   | Lettered Carriersy Pan           |     |      |           |          |       | 0.00       |               | 80           | 800         | 0,0                       |
|     |                                  | 3   | 105  | 8         | 52       | 8     | 43,442.96  | 99" 100" 100  | No. THE LAN  | 12,112,231  | CA.996,219                |
| 2   |                                  |     |      |           |          |       |            |               |              |             |                           |
| =   | Pryce Printing Daily             | ۰   | 12   | 12        | 7        | 2     | 5,481.06   |               | 32,866.34    | 12.172,0    | 39,463,60                 |
| 8   | Press Rail Dates                 | 4   | 17   | 12        | 1        | \$    | 5,917.73   |               | 35,506.37    | 12.101.7    | 42,607.64                 |
| 2   | Prepare for Construction         | 12  | 22   |           |          | \$    | 6,037.10   |               | 36,222.62    | 7.2M.52     | 43,467.15                 |
| 3   | Construct East-Une Piping        | •   | 17   |           |          | \$    | 3,820.59   | 395,115.00    | 418,038.55   | 12,607.71   | 501,646.26                |
|     | Bebread                          | 7   | 3    | 7         | 14       | 2     | 21,256.48  | 395,115.00    | 52,633,55    | IN. NO. IN  | 57,194 et                 |
| r   |                                  |     |      |           |          |       | -          | m 5.4 m 5.00  |              | 111 002 00  | An eta mi                 |

Table R.19

......

M1 90'E1

ALL ROLLING

A TT, KA

PANALUS I

1967

3,711

3

matter 4 Total

reacts for unit

8 Costs are in 1994 dollars and include a 5 percent field detail allow

T-H-L-M

( )

÷

. -

| Γ |                                                     |           |           |              | a Simon    |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|---|-----------------------------------------------------|-----------|-----------|--------------|------------|------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
|   |                                                     | Sr. Level | Mail Land |              |            |      |             | Į            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3            |              |
| 9 | Antibely                                            | ]         | ]         |              | Technica   |      |             | ()<br>()     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
| Ĺ | Hurr Purfick fire of Reached Action                 |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Develop Recordini Antion Manter Pro-                |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Constant System                                     |           | 24        | *            |            |      | C1 24C 8    |              | 14 UT 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 10110        |
|   |                                                     |           | 6         |              |            |      |             |              | 7/10/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |
| Γ |                                                     |           | •         |              |            |      | 1011C1      |              | AAA.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lecter 1     | 11,314,00    |
| T |                                                     |           | 2 8       | 28           | 4          | •    |             |              | AT THAT IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 60,408.23    |
| T |                                                     |           | R         | 8            | \$         |      | SE 366'01   | _            | 65,970.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,195.42    | 17:11.11     |
| Ţ |                                                     |           | 2         | 2            | •          | 7    | 5,446.34    |              | 32,678.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,535.60     | 79,213.62    |
| Ţ |                                                     | -         | ~         | 7            | •          | 7    | 1,376.53    |              | 8,271.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,654.23     | 04.259,9     |
| Ī | البعد الدلاعا الذيراك                               | 0         | -         | 0            | 0          | 0    | 158.53      |              | 11156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190.23       | 1.141.40     |
|   | The ort                                             | 2         | 20        | 8            | 0          | 0    | 5,950.85    |              | 35,705.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,141,02     | 11 AME CO    |
|   | Proper 2/2                                          | ~         | 8         | 8            | •          | 0    | 6444 BO     |              | 35,908,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SC 100-2     | N CONST      |
|   | Double Remarked Antice Week Plan                    |           | 8         | 52           | X          | 21   | 27 504 15   |              | IAS DIA W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |
|   | Press Pref Care                                     |           | 51        | 5            | 19         | 3 5  |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
| Γ |                                                     |           | :         | •            | 2          | 2 \$ | 10.010      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | C KOYN       |
| Τ |                                                     |           |           | •            |            | 2    | 11.0172     |              | 12.403.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29/0/12      | 17.425.13    |
| T |                                                     |           | 2         | 5            | 7          | 2    | 2,112.06    |              | 12,672.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,534.48     | NT SDE SI    |
| T |                                                     | 8         | 9         | 311          | 116        | 2    | 11.000,00   | 2            | Rod Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of the Action of th | C1.30C.001   | IT NOT DO    |
|   |                                                     | 75        | 151       | ō            | 8          | 3    | 00'068'101  | 80           | 450,134,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0,000 M    | 540,161.11   |
|   | Between                                             | 84        | 191       | •            |            | 3    | 107,000,001 | 3            | STAL NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ALLAL AND    |
|   | Outwork Officers Production Wells                   |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Payers Den Weil 18 Aburdenner Program               | 2         | 12        | 8            |            |      | 5,003,47    |              | SA CO.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLAND A      | A1 765.00    |
|   | Prepara Production Well Continuery Plane            | 7         | 0         | 5            | 9          | 7    | 2.045.44    |              | 20020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2445         | 11 111 11    |
| Γ |                                                     |           | 1         | *            |            | 9    | Temer       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL DIA C     |              |
| Γ |                                                     |           |           |              | 2          |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
| Г | Submetrator Programment                             |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
| Γ | Specify System Requirements                         | 7         | 12        | 8            | -          | 8    | 10.046.96   |              | AL 180.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.056.17    | 10 101 11    |
|   | Mentify Performance Colordia                        | 2         | ~         | 5            |            | 5    | 2,168.37    |              | 13,010,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 260204       | 15,612,25    |
|   | Presso BOAs with these for Becomids EWARY           | 2         | 15        | 7            | 2          | 15   | 4,400.94    |              | 26,405.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.281.13     | 21 A 24 4    |
|   | Debuend.                                            | •         | *         |              | •          | 8    | 16,616,29   | 3            | 11.19.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.002.01    | 12/12/01     |
|   | Press 1-Well Institution Annual particular          |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Offices Munitering Wells (19)                       |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Offices Retrotion Wells (2) w/Well Head Treatment   |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Rei Spot Estrution Wells (15)                       |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Property Paral Layrest of Wette                     | 3         | 51        | 30           | •          | 20   | 8,570.24    |              | 51,421.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67. MEC.01   | 61,705.73    |
| 1 | Prest for further                                   | 6         | 8         | 90           | 15         | 51   | 91.442.11   |              | 69,245,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,853,61    | 63,116.10    |
|   | Land Weithfunger: Das                               | 01        | 057       | ส            | 8          | 8    | 102,786,24  | 2,067,816.25 | 2,562,813.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 512562.74    | EAME STOLE   |
|   | Para 1 Reput/Para 2 Pas                             | 8         | 8         | 8            | 8          | 34   | 117,581.04  |              | 705,466,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141.097.25   | 64 (35 M)    |
|   | Abundan Date Well 18                                | -         | 2         | 15           | 151        | •    | 75.969.6    | 25,000.00    | 46,630.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.77604      | 27.100.00    |
|   | Subout                                              | 4         | 146       | 2            | ŧ          | 81   | 244.08.R    | 2,402,016,25 | 3,07,616.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 667,423,36   | 4.125,140.00 |
|   | Phase 2-Well Institution                            |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Offices Mechanica Wells (18)                        |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Offices Extraction Wells (22) w/Well Head Truckment |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Ret Spot Extruction Wells (14)                      |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Prepare Plant Layrest of Walls                      | 3         | 15        | 90           | *          | 8    | 1,570.24    |              | W12715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,284,29    | 61,705.73    |
|   | Prepare for Installation                            | 8         | 8         | 8            | 15         | 51   | 61.942,11   |              | 69,265.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,63,01     | 81,81,03     |
|   | from Wildenson Das                                  |           | 260       | 92           | 2 9        | 2 5  | AC AIG MUI  | 02 012 020 0 | TO ANY AND C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 1 (71 (44 0) |
| 1 | Place 2 Repet/Place 3 Plan                          | 8         | 8         | 8            | 8          | 2    | 117.581.04  |              | NC ARK 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141.001.25   | 04 101 A4    |
| Γ |                                                     |           |           |              |            | 2    | IL WAT LIVE | 1 AT 10 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10 110 120 V |
|   | Pare 2-Well institution for stationics              |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Outers Menthering Wells (68)                        |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Onhean Eintraction Wells (34)                       |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|   | Prepare Parel Layoux of Wells                       | •         | 6         | 18           | 12         | 35   | 24,616.34   |              | 147,696.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29,539.60    | 17,237.62    |
|   | Prysec for landleting                               | •         | 5         | 5            | I <b>†</b> | \$   | 33,426,18   |              | 200,557.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40,111.41    | 240,468.47   |
| 1 | Land Welt-fungers Data                              | 82        | 22        | 22           | 125        | 0#1  | 317,216.96  | 3,704,069.25 | 5,176,451.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,035,290,22 | 6,211,741.33 |
| T | Pase 3 Report                                       | 8         | 90        | 8            | 00*        | \$   | 117,581.04  |              | AC 305,207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141,097,25   | 846,583,49   |
| 7 | Behevel                                             | 4         | 1,156     | <b>60</b> -1 | 2          | *    | (J. M.C.7%) | ST. GONTAL'S | 6,230,192.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BARRANC'I    | 1,011,011,0  |
|   |                                                     |           |           |              |            |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |

menteril, meter 5060 elemento WFSCST2. XI.S

MATC: MACO

-

-

Page 1 of 2

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | 44        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | Man Onys  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| f  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | MM LAN | Jr. Level |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A REAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            | Among A                                             |
| 6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 3  | Process Tembery Consistent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2    | 8      | 8         | 5      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,064.53    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.196,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64.TT2,9     | 54,064,60                                           |
| 2  | Wetten Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 3  | Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 5  | Frages Professiony Unign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3      | 2         | 2      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31,073.14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27'95'941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.182.176   | NC 992/122                                          |
| *  | Property Plant During                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5    | 2      | 8         | 22     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32,719.01   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90'91E'%I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39,282,81    | 235,576.86                                          |
| \$ | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2    | \$     |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,403.78   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74,422.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,004.53    | e1.700,60                                           |
| 3  | Construct Collection Paring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31   | 0+1    |           |        | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.779.82   | 1,601,775.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,780,453.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 356,090.79   | 2,136,544.73                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111  | *      | 125       | 124    | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114,040.27  | 1,401,775.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2356,016.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 467,200,333  | 2,743,219.56                                        |
| 3  | Treined Pint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 3  | Proper Preimary Danja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •    | 8      | 6         | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,478.74    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34,872.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,774.48     | 46,646.90                                           |
| 3  | Property Frank Davigs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$   | 8      | 5         | ¥1     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,365.33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.191,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,638.39     | 45,030.36                                           |
| 3  | Properts for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | \$     |           |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,506.59    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39,000,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.004.7     | 46,847.46                                           |
| 3  | Construct Threases Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~    | 8      |           |        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,715,20    | 00'00#'185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 615,691.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NC.NCI,021   | AA.028,867                                          |
| 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 5  | Credent Standard Studiotom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~    | 5      |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 755.76      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,534.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.404       | 5,441.47                                            |
| 3  | Instituted Presso Contegrary Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800          | 80                                                  |
| \$ | Institutes Consistory Continuency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80           | 000                                                 |
|    | and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 21   | 102    | 14        | 3      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2912212     | 00.000,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.022,MT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10394141     | A41,000,000                                         |
| 8  | Ead Die Preise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 7  | Preper Preliming Danies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R    | 35     | 2         | 35     | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,757,28   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89°CPS'H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,908.74    | 113,452,42                                          |
| 2  | Propert Plant Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~    | 37     | 11        | 22     | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18,053.66   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.125,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21,664.40    | 129,986.34                                          |
| £  | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8    | Ş      |           | 2      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11,071.22   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66,463.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,292.66    | 79,755.96                                           |
| 2  | Construct End-Use Paring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51   | 61     |           |        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14,945.86   | 714,915,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B04,590.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.810.091   | 965,508.16                                          |
|    | Beltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3    | 5      | 2         | 112    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sauce, etc. | 114915.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01.010,ETQ,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 214,703.02   | 1,286,782.92                                        |
| r  | Linin Ara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 2  | Collection Phylic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| F  | Prepara Preliminary Douiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8    | 8      | 6         | 8      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26,173,95   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 169,043.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33,808.74    | 202,852.45                                          |
| R  | Propert Final Dougs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8    | 3      | 32        | 8      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28,630.46   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 171,782.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34,356,56    | 206,139.34                                          |
| £  | Propers for Creatmetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8    | ¥      |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,562.69   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63,376,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.675.23    | 76,051.35                                           |
| 8  | Construct Collection Paring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R    | 571    |           |        | ุ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26,334.00   | 1,200,025.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00.020,836,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 007'502'512  | 08.002.000.1                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8    | 292    | 8         | 011    | RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01'10L'05   | 00'S20'00C'I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.74,201.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SEAPLAND SEA | 2,124,277.96                                        |
| =  | Truined Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 8  | Propers Preliminary Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8    | 8      | ส         | =      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,362.94   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92,177.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,435.53    | 110,613.20                                          |
| 3  | Properts Panel Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51   | 8      | SE        | Ŧ      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16,167.20   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97,003.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19,004,61    | 116,403.84                                          |
| 3  | Propues for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8    | 7      |           |        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11,555.52   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69,333.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,866.62    | \$3,199.74                                          |
| 2  | Construct Theorem Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s    | 8      |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,059.44    | 764,400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 824,756.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EC.120,161   | 101,101,499                                         |
| 2  | Perturban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| 5  | Conduct Status/Shakadown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5    | 5      |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,765.30    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,591.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,118.36     | 12,710.13                                           |
| a  | Implement Process Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8            | 8                                                   |
| 2  | Implement Capacity Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000          | 000                                                 |
|    | Setural Setural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75   | 51     | *         |        | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00'016'05   | AL. AND. J. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,000,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218,772.48   | 1212410                                             |
| 8  | East-Lise Prints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| Ŧ  | Propert Preliminary Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ព    | 8      | 2         | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15,135.42   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90,812.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,162.51    | 108,975.05                                          |
| 8  | Prepare Fined Dougs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5    | 35     | 32        | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CP791121    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102,959,591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.782,05    | 123,526.31                                          |
| 8  | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8    | 8      |           | 7      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,760.16   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64,560.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,912.19    | 77,473.15                                           |
| X  | Creatment Bard-Ures Pipelag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13   | 3      |           |        | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14,463.33   | 00'069'128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 424,469,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66'1166'98   | 509/603.96                                          |
|    | Subtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3    | 5      | 2         | 2      | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC 212/12   | N. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84194119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125,06,41    | 87.045 618                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |           | 1.116  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 AN 100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67 CH 114 CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NAME OF A    | A Case and its                                      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1471 | TEAC   | 11/1      | a sala | Party in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | analogy -   | and a start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second | and a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the | Tanan Janaba | Constanting and and and and and and and and and and |

----

5 Constants in 1994 dollars and include a 5 percent field detail allow

60-humaryOWFSCST2.X0.S

Cimero S

**MH** 76:6

-

Table R.21

1

|     |                                                      |                  |       | ManDau   |            |        |                                                |                |                                         |              |           |
|-----|------------------------------------------------------|------------------|-------|----------|------------|--------|------------------------------------------------|----------------|-----------------------------------------|--------------|-----------|
| ſ   |                                                      | 1<br>1<br>1<br>1 | MIM   | Jr. Land |            | ł      |                                                | Construction   | Activity                                | ž            | í,        |
| şĮ. |                                                      |                  | ļ     | ]        | - Internet | Antest | () manufa                                      | Centrada (3)   | Setteral (\$)                           |              |           |
| _   | Mutter Preswork Then of Remodel Arthon               |                  |       |          |            |        |                                                |                |                                         |              |           |
| ~   | Dividio Remidial Action Meeter Plan                  |                  |       |          |            |        |                                                |                |                                         |              |           |
| -   |                                                      |                  | 7     |          | •          | •      | 8,245.12                                       |                | 11.072,01                               | 51.MAC 0     | HT 65     |
| •   | Thetheret System                                     |                  |       | ~        | 2          | 2      | 96.172,1                                       |                | SE BCIV 6                               | 1,245.67     | 111       |
| -   |                                                      |                  | -     | ~        | 22         | •      | 8,390.05                                       |                | 50,340,19                               | 10.068.04    | 04.03     |
| •   | Collection System                                    |                  | •     | ×        | 3          | •      | 10,996.35                                      |                | 65,978.11                               | 13,195.62    | 11.01     |
| -   |                                                      |                  |       | 1        | 9          | 2      | 5,446.34                                       |                | 32,678.00                               | 6.535.60     | 39.213    |
| -   | Press Related                                        |                  |       | 1        | 0          | 2      | 1,378.53                                       |                | 8.271.17                                | 1654.23      |           |
| ╸   | Press Harth and Safety Plan                          | 9                |       | ]        | 0          | 0      | 15821                                          |                | 11.126                                  | 190.23       | 1.14      |
| 2   | The QPP                                              |                  | ~     | A        | •          | o      | 5.950.85                                       |                | 15.705.0F                               | 141.00       | 20 CZ     |
| =   | True LV                                              |                  | C     | 8        | •          | ð      | 6.484.80                                       |                | 10.000                                  | 26.146.2     |           |
| 13  | Dowling Remarked Action West Plan                    |                  |       | 2        | 12         | 121    | 27.504.16                                      |                | 165 MM 241                              | 11 004 00    |           |
| 2   | Prese Dark Cary                                      |                  |       | *        | 9          | Ģ      | AC ATA 2                                       |                |                                         |              |           |
| ±   | Pres Del Pul                                         |                  |       |          |            | 9      | 12 327 6                                       |                |                                         |              |           |
| 2   | Presso Paul Remaind Action Meeter Fran and West Plan |                  |       |          |            | 29     | 200110                                         |                |                                         |              |           |
|     |                                                      |                  |       |          |            | 2 6    | 217 117 12 12 12 12 12 12 12 12 12 12 12 12 12 |                |                                         |              |           |
|     |                                                      |                  |       |          |            |        |                                                |                |                                         |              |           |
|     |                                                      |                  |       |          |            | 8      | 00'06F'/01                                     |                | E.H(105)                                | 90,006.86    | 540,16    |
| =   |                                                      |                  |       |          |            | 3      | 101, 104,000                                   | 3              |                                         | S. Col. I    | 97'WS     |
| : = |                                                      |                  |       |          |            |        |                                                |                |                                         |              |           |
| 1   |                                                      |                  |       |          | 5          | -      | 5,808.67                                       |                | 34,800. N                               | 6,964.17     | 41,78     |
| 3   |                                                      |                  |       |          | 2          | 7      | 2,045.44                                       |                | 1277.61                                 | 1 2,454,53   | 24.11     |
|     |                                                      |                  |       | *        | 21         | 91     | 10.004.7                                       | 3              | 17.001,17                               | P. P.ALLER   | 115.38    |
| 3   | Crimina Sprins                                       |                  |       |          |            |        |                                                |                |                                         |              |           |
| ล   | Submetrator Prosensel                                |                  |       |          |            |        |                                                |                |                                         |              |           |
| ×   | Specify System Requirements                          | 7                |       | 96       | *          | 8      | 10,046.96                                      |                | 60.261.66                               | 12.056.37    | NI 77     |
| -   | Identify Professeers Otheria                         | 2                |       |          |            | 5      | 2,168.37                                       |                | 13,010,21                               | 2.602.04     | 15.612    |
| =   | Precess BOAs w? Sate for Bearvide EWAAW              | 2                | 1     | -        | 2          | 15     | 4,400.94                                       |                | 26.405.66                               | 520113       | 31.65     |
|     | Subset                                               |                  | ~     | 5        |            | 3      | 14.616.20                                      | 83             | 1.100.00                                | 22.000.01    | 110.43    |
| 8   | Press 1-Well Institution/annigation                  |                  |       |          |            |        |                                                |                |                                         |              |           |
| 8   | Officer Manihoring Weile (19)                        |                  |       |          |            |        |                                                |                |                                         |              |           |
| =   | Officers Extraction Wells (2) w/Well Hand Treatment  |                  |       |          |            |        |                                                |                |                                         |              |           |
| 2   | Riet Speit Extraction Wedle (15)                     |                  |       |          |            |        |                                                |                |                                         |              |           |
| 2   | Press Find Layout of Wells                           |                  |       | ×        |            | 8      | R 570.24                                       |                | 7 107 15                                | ac 140 01    | AND 13    |
| *   | Prepar for Intellation                               |                  | -     |          |            | 51     | 11 (14 10                                      |                | 51 57C 87                               | 13 BCI MI    |           |
| 2   | Incell Webbergent Data                               | 2                | 57    | 22       | 9          | : 5    | 102 796 24                                     | 2067.816.75    | 1 4 4 3 1 1 4 4 3 4 4 4 4 4 4 4 4 4 4 4 | AL PAR CIA   | 1 005 134 |
| *   | Place   Report/Place 2 Plan                          |                  | 8     | 20       |            | 2 4    | 117 581 04                                     |                | AL THE MUL                              | 31.200.121   | 745 748   |
|     | Abunden Base Well 18                                 |                  |       |          |            |        | 1 010 1                                        | 34 mm m        |                                         |              |           |
|     |                                                      |                  |       |          |            |        |                                                |                |                                         | 7,1 dauna    |           |
| -   | Pres 2. Weil Institution                             |                  |       |          |            | 3      |                                                |                | er stafinste                            |              |           |
|     | Officers Monthering Weils (18)                       |                  |       |          |            |        |                                                |                |                                         |              |           |
| \$  | Offices Extraction Vells (22) w/Vell Bool Tructment  |                  |       |          |            |        |                                                |                |                                         |              |           |
| ₽   | Bet äpet Extraction Wells (14)                       |                  |       |          |            |        |                                                |                |                                         |              |           |
| ą   | Propers Fined Layrest of Wells                       |                  | -     | ×        |            | 8      | 1570.24                                        |                | M 124 12                                | 10,284,29    | 61.705    |
| Ş   | Prepare for Installation                             | 6                | ~     | ×        | 2          | 2      | 11.544.19                                      |                | ST SWC W9                               | 11 151 01    | 1112      |
| \$  | land Voltingen Des                                   |                  | 24    | 250      | : 5        | 2 5    | AC A 10 MOI                                    | 7 449 179 50   |                                         | 0.00.00.0    | 1 171 100 |
| \$  | There 2 Report Plane 3 Plan                          | 8                |       | 20       |            |        | 117 581 04                                     |                | AC ARE AND                              | AC TON IAI   |           |
|     |                                                      |                  |       |          |            |        |                                                | A 444 444 4    |                                         |              |           |
|     | Press 1-W/2 Intelline Securitation                   |                  |       |          |            | R      | 1/                                             | March crowny   | 11:11 and a                             |              |           |
| 5   |                                                      |                  |       |          |            |        |                                                |                |                                         |              |           |
|     |                                                      |                  |       |          |            |        |                                                |                |                                         |              |           |
|     | Present Lawrent of Wells                             |                  |       |          |            |        | 14 212 10                                      |                | M 841 [1]                               | 10 210 21    | 110 111   |
| 8   | Presenter Insulation                                 |                  |       |          |            | 2 4    | 11 22 10                                       |                |                                         | 12 11 12     | 10/11     |
| =   | Land Validament Data                                 |                  | 3     |          | 7 5        | 2 5    | 91-000-1-C                                     | 1 704 140 16   |                                         | 19 111/08    | 200/002   |
| : 5 | Part I Part                                          | 0                |       |          |            |        | PC 017 /1C                                     | 17-100/ LOU'S  | 11.104,011,0                            | 17.047,CEU,I | 14/ 1170  |
|     |                                                      | 4 F              |       |          |            |        |                                                |                | TAUNTON AND A                           | 1777 111 111 |           |
|     |                                                      |                  | A-242 |          | P.a        |        | CC 2207742                                     | any and had to |                                         |              |           |

Currentell\_under/5066-alternar/GWFSCST2.20.5

# MT TELE MARING

. . . . . . . .

......

Page 1 of 2

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          | - 4      |          |                |              |               |               |             |              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------------|--------------|---------------|---------------|-------------|--------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          | Maa-Days |          |                |              |               |               |             |              |
| æ  | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Br. Lond |          | Jr. Lond | Territor | Administrative | (e)<br>      | Construction  | Activity      | *           | Viend        |
| 8  | Transaction University Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |          |          | Į              |              |               |               |             | (2)          |
| X  | Present Translay Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        | 8        | 20       | 5        | 8              | 8,064.53     |               | 71.786.84     | 9.677.43    | 54.064.60    |
| 2  | Weeters Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |          |          |                |              |               |               |             |              |
| 8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |          |                |              |               |               |             |              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8        | 3        | 22       | 2        | \$             | 31,073.14    |               | 186,438.82    | 37,282,76   | 223,726.58   |
|    | Trajer Poet Deugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 2        | 8        | 2        | \$             | 32,719.01    |               | 196,314.05    | 39,262.81   | 235,576.86   |
| 2  | Prepare for Chapterchica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ກ        | 3        |          |          |                | 12,403.76    |               | 74,422.66     | 14,004.53   | 61.706,68    |
| 8  | Communic Collections Paring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        | <u>•</u> |          |          | 57             | 28.017,02    | 1,601,775.00  | 1,780,453.94  | 356,090.79  | 2,136,544.73 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117      | AK.      |          | 141      | 191            | 114,040.27   | 1,401,775.00  | 2.266.016.63  | 02.002.734  | 2743219.96   |
| 3  | Treetweet Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |          |                |              |               |               |             |              |
| 3  | Pryne Preimiury Davigs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$       | 8        | 9        | •        | 3              | 6,478.74     |               | 38,877.42     | 34.47.1     | 46,446.90    |
| 3  | Properts Planel Donigo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        | 8        | 2        | 1        | 5              | 6,365.33     |               | 34,191,95     | 96.869/L    | 45,830.36    |
| 3  | Prepara for Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | Ş        |          |          | 2              | 6,506.59     |               | 39,000,95     | 16.008.7    | 46,847.46    |
| 3  | Contract Theorem Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5        | 8        |          |          | 02             | 5,715.20     | 261,400.00    | 615,691.20    | AC.801,621  | 736,829.44   |
| 3  | Rightime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |          |          |                |              |               |               |             |              |
| 5  | Combinet Strating/Shalesdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2        | 2        |          |          | 1              | 755.76       |               | 4.534.56      | 16.90       | 5.441.47     |
| 3  | Indumnet Pracese Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |          |          |                | 83           |               | 000           | 88          | 000          |
| \$ | Inglument Capacity Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |          |                | 80           |               | 0.0           | 900         | 000          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11       |          | 14       | 9        | 31             | 2911052      |               | 07.012.MT     | NUMBER OF   | A1 000 11    |
| 8  | Red-Use Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |          |                |              |               |               |             |              |
| 2  | Prepare Prefinetury Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21       | 22       | 17       | ิก       | 5              | 11,402,11    |               | 68.412.67     | 13,622.53   | 2.095.21     |
| 2  | Press Paul Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | ส        | n        | 8        | 5              | 12,523.15    |               | 75.130.91     | 15.027.76   | 90.164.69    |
| 2  | Propert for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8        | ŧ        |          | 7        | 12             | 11,077.22    |               | 66,463.30     | 13.292.66   | 79.755.96    |
| 2  | Countruct Each Use Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01       | 45       |          |          | 8              | 10,568.32    | 755,235.00    | B18,644.92    | 163.778.96  | 962.373.90   |
|    | Sebtetal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8        | 136      | 8        | 7        | 4              | 00"W.5"59    | 155,235.00    | 48.693.803.1  | 96,107,862  | 20100201     |
| ۴  | Lation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |          |          |                |              |               |               |             |              |
| ×  | Collection Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          |          |                |              |               |               |             |              |
| 7  | Proper Preliminary Duriga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8        | 60       | 67       | 8        | 9              | 28,173.95    |               | 169,043.71    | 33,006.74   | 202.852.45   |
| 8  | Propers Plant Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90       | 60       | 32       | 2        | 42             | 28,630.46    |               | 171.782.78    | 32,32E,M    | 206.139.34   |
| 2  | Propert for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8        | \$       |          |          |                | 10,562.69    |               | 63.376.13     | 12.675.23   | 76,051.35    |
| 8  | Countract Collection Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22       | 125      |          |          | 25             | 26,334.00    | 1,208,025.00  | 1,366,029.00  | 273,205,80  | 1.639,234.80 |
|    | Set to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *        | 286      | *        | 110      | 511            | 93,701.10    | 00'SC0'00C'I  | 1,774,231.62  | 364,046.32  | 2,124,277.96 |
| =  | Treetweet Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |          |                |              |               |               |             |              |
| g  | Propere Preliminary Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57       | 25       | 20       | 18       | 9              | 13,316,74    |               | 79,900.42     | 15,960.06   | 95,080.50    |
| 3  | Prepare Fland Durige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15       | 25       | 90       | 8        | 2              | 14,401.31    |               | T2.104,86     | 17,281.57   | 103,699,45   |
| 3  | Propert for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81       | 35       |          |          | 8              | 10,406.91    |               | 62,441.47     | 12,488.29   | 74.929.17    |
| 3  | Countract Treatment Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5        | 25       |          |          | 5              | 5,266,80     | 320,600.00    | 352,200,80    | 70,440.16   | 422,640.96   |
| 3  | Berty Ministern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |          |                |              |               |               |             |              |
| 5  | Combect Startup/Shakedown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~        | \$       |          |          | 1              | 1,765.30     |               | 84.165,01     | 2,118.36    | 12,710.13    |
| 2  | Implement Process Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          |          |                | 0.00         |               | 0.00          | 80          | 00.0         |
| 2  | Implement Capacity Contingency Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |          |                | 000          |               | 00:0          | 800         | 0.0          |
|    | Bibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3        | 115      | 2        | 3        | *              | 39'LS1'99    | 320,600.00    | ACD2,168      | 118,206,611 | OF MEN LOL   |
| 8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |          |                |              |               |               |             |              |
| 5  | Preper Preliminary Dosign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •        | 12       | 12       | 7        | -              | 5,481.06     |               | 32,886.34     | 6.5TT.27    | 39,463.60    |
| 8  | Prepert Find Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *        |          | 12       | 7        | 5              | 5,917.73     |               | 35,506.37     | 7,101.27    | 42,607.64    |
| 8  | Prepare for Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12       | 22       |          |          | 5              | 6,037.10     |               | 36,222.62     | 7,244.52    | 43,467.15    |
| 3  | Countruct East-Une Pipting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •        | 17       |          |          | \$             | 3,820.59     | 395,115.00    | 418,038.55    | 83,607.71   | 501,646,26   |
| 1  | Settional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *        | 68       | X        | 14       | 8              | 31,254.48    | 99,211,240    | 522,663,88    | 10,500 Y    | 827,184,458  |
| 8  | Respective Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | -        |          |                |              | 574,875.00    | 574,875,00    | 114,975.00  | 00'0SB'6499  |
| 1  | AMOTORY 1 ( STAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ŧ        | PET,C    | 2,858    | 37       | 1,16           | 1,547,168,96 | 00.002.603.61 | 27,114,090.46 | 1423,814.82 | 24,444,10    |

-a....

ified iten 8 Costs are in 1994 defines and include a 5 percent field detail allowance for MH 76:

ţ

ADVESCET2.2Q.S G: hereafter L.

Z

| ПЕМ                                 | QUANTITY  | UNIT   | \$/UNIT | TOTAL (\$) |
|-------------------------------------|-----------|--------|---------|------------|
| EXTRACTION SYSTEM                   |           |        |         |            |
| Power                               | 1,607,600 | KW/HRS | 0.06    | 96,456     |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 62,524     |
| Wellhead Treatment (1st 5 years)    | 21        | EA     | 12,000  | 252.000    |
| Maintenance (5% of Construction)    | 1         | LS     |         | 273,400    |
| TREATMENT FACILITY (Eastside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 315.360    |
| Power                               | 1         | LS     |         | 34,985     |
| Natural Gas                         | 1         | LS     |         | 47,587     |
| Materials                           | 1         | LS     |         | 21,370     |
| Carbon                              | 1         | LS     |         | 206,250    |
| Catalyst                            | 1         | LS     |         | 65.015     |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 37,560     |
| TREATMENT FACILITY (Westside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 311.200    |
| Power                               | 1         | LS     |         | 51,000     |
| Natural Gas                         | 1         | LS     |         | 58,000     |
| Materials                           | 1         | LS     |         | 53,000     |
| Carbon                              | 1         | LS     |         | 447.417    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 35,360     |
| CONVEYANCE & END USE                |           |        |         |            |
| Power                               | 500,000   | KW/HRS | 0.06    | 30,000     |
| Piping System Maintenance           | 1         | LS     |         | 13,015     |
| Pumping System Maintenance          | 1         | LS     |         | 11.250     |
| Chlorine System                     | 1         | LS     |         | 27,000     |
| ANNUAL COST (1st 5 years)           |           |        |         | 1,208,000  |
| ANNUAL COST (After 5 years)         |           |        |         | 2,198.000  |

### Table R-22Alternative 1--O&M Costs Summary

Note: O&M costs for the first 5 years include wellhead treatment and the Westside treatment plant operation under revised plan.

O&M costs after 5 years include operation of all facilities but wellhead treatment.

All costs are in 1994 dollars.

| ITEM                                | QUANTITY  | UNIT   | \$/UNIT | TOTAL (\$) |
|-------------------------------------|-----------|--------|---------|------------|
| EXTRACTION SYSTEM                   |           |        |         |            |
| Power                               | 1,999,698 | KW/HRS | 0.06    | 119,982    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 70,828     |
| Wellhead Treatment (1st 5 years)    | 32        | EA     | 12,000  | 384,000    |
| Maintance (5% of Construction)      | 1         | LS     |         | 343,605    |
| TREATMENT FACILITY (Eastside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 315,360    |
| Power                               | 1         | LS     |         | 34,965     |
| Natural Gas                         | 1         | LS     |         | 47,587     |
| Materials                           | 1         | LS     |         | 21,170     |
| Carbon                              | 1         | LS     |         | 206,250    |
| Catalyst                            | 1         | LS     |         | 65,015     |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 37,560     |
| TREATMENT FACILITY (Westside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 311,200    |
| Power                               | 1         | LS     |         | 63,000     |
| Natural Gas                         | 1         | LS     |         | 74,000     |
| Materials                           | 1         | LS     |         | 53,000     |
| Carbon                              | 1         | LS     |         | 688,686    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 36,360     |
| CONVEYANCE & END USE                |           |        |         |            |
| Power                               | 787,000   | KW/HRS | 0.06    | 47,220     |
| Piping System Maintenance           | 1         | LS     |         | 15,054     |
| Pumping System Maintenance          | 1         | LS     |         | 17,700     |
| Chlorine System                     | 1         | LS     |         | 41,000     |
| ANNUAL COST (1st 5 years)           |           |        |         | 1,610,000  |
| ANNUAL COST (After 5 years)         |           |        |         | 2,610,000  |

## Table R-23 Alternative 2--O&M Costs Summary

------

Note: O&M costs for the first 5 years include wellhead treatment and the Westside treatment plant operation under revised plan.

O&M costs after 5 years include operation of all facilities but wellhead treatment.

All costs are in 1994 dollars.

. . . . .....

|                                     | QUANIITY  | UNIT   | S/UNIT | 101AL (5) |
|-------------------------------------|-----------|--------|--------|-----------|
| EXTRACTION SYSTEM                   |           |        |        |           |
| Power                               | 2,679,334 | KW/HRS | 0.06   | 160,760   |
| Sampling, Analyses & Interpretation | 1         | LS     |        | 80,516    |
| Wellhead Treatment (1st 5 years)    | 65        | EA     | 12,000 | 780,000   |
| Maintance (5% of Conctruction)      | 1         | LS     |        | 499,025   |
| TREATMENT FACILITY (Eastside Plant) |           |        |        |           |
| Labor                               | 1         | LS     |        | 315,360   |
| Power                               | 1         | LS     |        | 37,219    |
| Natural Gas                         | 1         | LS     |        | 47,587    |
| Materials                           | 1         | LS     |        | 31,400    |
| Carbon                              | 1         | LS     |        | 45,885    |
| Catalyst                            | 1         | LS     |        | 65,015    |
| Sampling, Analyses & Interpretation | 1         | LS     |        | 37,560    |
| TREATMENT FACILITY (Westside Plant) |           |        |        |           |
| Labor                               | 1         | LS     |        | 384,000   |
| Power                               | 1         | LS     |        | 80,500    |
| Natural Gas                         | 1         | LS     |        | 91,100    |
| Materials                           | 1         | LS     |        | 53,000    |
| Carbon                              | 1         | LS     |        | 911,040   |
| Sampling, Analyses & Interpretation | 1         | LS     |        | 35,360    |
| CONVEYANCE & END USE                |           |        |        |           |
| Power                               | 1,067,000 | KW/HRS | 0.06   | 64,020    |
| Piping Syste Maintenance            | 1         | LS     |        | 22,081    |
| Pumping System Maintenance          | 1         | LS     |        | 24,000    |
| Chlorine System                     | 1         | LS     |        | 63,000    |
| ANNUAL COST (1st 5 years)           |           |        |        | 2,335,000 |
| ANNUAL COST (After 5 years)         |           |        |        | 3,048,000 |

# Table R-24Alternative 3--O&M Costs Summary

- -----

Note: O&M costs for the first 5 years include wellhead treatment and the Westside treatment plant operation under revised plan.

O&M costs after 5 years include operation of all facilities but wellhead treatment.

All costs are in 1994 dollars.

.

a a a a a a transforma a successive and a successive and a successive and a successive and a successive and a s

.

•

;
| ITEM                                | QUANTITY  | UNIT   | \$/UNIT | TOTAL (S) |
|-------------------------------------|-----------|--------|---------|-----------|
| EXTRACTION SYSTEM                   |           |        |         |           |
| Power                               | 1,607,600 | KW/HRS | 0.06    | 96,456    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 62,524    |
| Wellhead Treatment (1st 5 years)    | 21        | EA     | 12,000  | 252,000   |
| Maintance (5% of Construction)      | 1         | LS     |         | 273,400   |
| TREATMENT FACILITY (Eastside Plant) |           |        |         |           |
| Labor                               | 1         | LS     |         | 315,360   |
| Power                               | 1         | LS     |         | 29,669    |
| Natural Gas                         | 1         | LS     |         | 9,443     |
| Materials                           | 1         | LS     |         | 13,770    |
| Carbon                              | 1         | LS     |         | 281,250   |
| VGAC Rental                         | 1         | LS     |         | 72,080    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 37,550    |
| TREATMENT FACILITY (Westside Plant) |           |        |         |           |
| Labor                               | 1         | LS     |         | 311,200   |
| Power                               | 1         | LS     |         | 51,000    |
| Natural Gas                         | 1         | LS     |         | 58,000    |
| Materials                           | 1         | LS     |         | 53,000    |
| Carbon                              | 1         | LS     |         | 447,417   |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 35,360    |
| CONVEYANCE & END USE                |           |        |         |           |
| Power                               | 500,000   | KW/HRS | 0.06    | 30,000    |
| Piping System Maintenance           | 1         | LS     |         | 13,015    |
| Pumping System Maintenance          | 1         | LS     |         | 11,250    |
| Chlorine System                     | 1         | LS     |         | 27,000    |
| ANNUAL COST (1st 5 years)           |           |        |         | 1,208,000 |
| ANNUAL COST (After 5 years)         |           |        |         | 2,229,000 |

## Table R-25Alternative 4--O&M Costs Summary

.

Note: O&M costs for the first 5 years include wellhead treatment and the Westside treatment plant operation under revised plan.

O&M costs after 5 years include operation of all facilities but wellhead treatment.

All costs are in 1994 dollars.

-

| ITEM                                | QUANTITY  | UNIT   | \$/UNIT | TOTAL (\$) |
|-------------------------------------|-----------|--------|---------|------------|
| EXTRACTION SYSTEM                   |           |        |         |            |
| Power                               | 1,607,600 | KW/HRS | 0.06    | 96,456     |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 62,524     |
| Weilhead Treatment (1st 5 years)    | 21        | EA     | 12,000  | 252,000    |
| Maintance (5% of Construction)      | 1         | LS     |         | 273,400    |
| TREATMENT FACILITY (Eastside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 234,240    |
| Power                               | 1         | LS     |         | 31,746     |
| Natural Gas                         | 1         | LS     |         | 47,587     |
| Materials                           | 1         | LS     |         | 12,360     |
| Catalyst                            | 1         | LS     |         | 55,015     |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 37,550     |
| TREATMENT FACILITY (Westside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 311,200    |
| Power                               | 1         | LS     |         | 51,000     |
| Natural Gas                         | 1         | LS     |         | 58,000     |
| Materials                           | 1         | LS     |         | 53.000     |
| Carbon                              | 1         | LS     |         | 447,417    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 35,360     |
| CONVEYANCE & END USE                |           |        |         |            |
| Power                               | 500,000   | KW/HRS | 0.06    | 30,000     |
| Piping System Maintenance           | 1         | LS     |         | 18,721     |
| Pump System Maintenance             | 1         | LS     |         | 11,250     |
| Reinjection Wells Maintenance       | 1         | LS     |         | 12,000     |
| Access Roads (10% of Construction)  | 1         | LS     |         | 1,500      |
| Chlorine System                     | 1         | LS     |         | 27,000     |
| ANNUAL COST (1st 5 years)           |           |        |         | 1,208,000  |
| ANNUAL COST (After 5 years)         |           |        |         | 1,907,000  |

## Table R-26Alternative 5--O&M Costs Summary

يرا - معاد سومت الاردار

Note: O&M costs for the first 5 years include wellhead treatment and the Westside treatment plant operation under revised plan.

O&M costs after 5 years include operation of all facilities but wellhead treatment.

All costs are in 1994 dollars.

-----

RDD/Heath/McAFB/OM-5.XLS

ĺ

| ПЕМ                                 | QUANTITY  | UNIT   | \$/UNIT | TOTAL (\$) |
|-------------------------------------|-----------|--------|---------|------------|
| EXTRACTION SYSTEM                   |           |        |         |            |
| Power                               | 1,607,600 | KW/HRS | 0.06    | 96,456     |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 62,524     |
| Wellhead Treatment (1st 5 years)    | 21        | EA     | 12,000  | 252,000    |
| Maintance (5% of Construction)      | 1         | LS     |         | 273,400    |
| TREATMENT FACILITY (Eastside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 153,120    |
| Power                               | 1         | LS     |         | 3,219      |
| Materials                           | 1         | LS     |         | 9,010      |
| Carbon                              | 1         | LS     |         | 1,285,487  |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 35,360     |
| TREATMENT FACILITY (Westside Plant) |           |        |         |            |
| Labor                               | 1         | LS     |         | 311,200    |
| Power                               | 1         | LS     |         | 51,000     |
| Natural Gas                         | 1         | LS     |         | 58,000     |
| Materials                           | 1         | LS     |         | 53,000     |
| Carbon                              | 1         | LS     |         | 447,417    |
| Sampling, Analyses & Interpretation | 1         | LS     |         | 35,360     |
| CONVEYANCE & END USE                |           |        |         |            |
| Power                               | 500,000   | KW/HRS | 0.06    | 30,000     |
| Piping System Maintenance           | 1         | LS     |         | 13,015     |
| Pumping System Maintenance          | 1         | LS     |         | 11,250     |
| Chlorine System                     | 1         | LS     |         | 27,000     |
| ANNUAL COST (1st 5 years)           |           |        |         | 1,208,000  |
| ANNUAL COST (After 5 years)         |           |        |         | 2,956,000  |

## Table R-27 Alternative 6--O&M Costs Summary

)

Note: O&M costs for the first 5 years include wellhead treatment and the Westside treatment plant operation under revised plan.

O&M after 5 years include operation of all facilities but wellhead treatment.

All costs are in 1994 dollars.

Noncritical McClellan AFB GWOU RI/FS Alternative 1 Summary 0 5,6,7,8,9,10,11,12,13 16 17 81 4 2 6 8 Page 1 Predecessors Sched. Finish 3/12/00 8/94 6/1/94 12/17/94 5/1/94 5/1/94 5/1/94 5/1/94 5/1/94 4/28/94 4/28/94 5/1/94 6/1/94 7/2/94 8/3/94 10/2/94 11/2/94 12/2/94 12/17/94 4/28/94 Millestone 4/1/94 41/94 4/1/94 41/94 4/1/94 4/1/94 4/1/94 4/1/94 4/1/94 4/1/94 7/4/94 10/3/94 11/2/94 12/2/94 Sched. Start 4/1/94 4/1/94 5/2/94 6/1/94 6/2/94 8/3/94 1864 30ed 30ed 30ed 30ed **1551d** 20d 20d 20d 30ed 30ed 30ed 30ed 60ed 30ed 30ed Duration 214 20d 2 15ed Critical Prepare final Remedial Action Master Plan and Work Plan McClellan AFB review working copy McClellan AFB and agencies review draft document Develop Remedial Action Master <u>Pi</u>na Submit RA Master Plan/Work Plan Working Copy Develop remedial action work plan Master Plan/Work Plan of Remedial Action Prepare Health and Safety plan Alternative 1 (MCL, AS/CATOX, UTILITIES) Draft final Agency review draft final **Extraction System** Treatment System **Collection System** End Use System Prepare draft copy Prepare draft final Prepare rationale Prepare DQOs Prepare QAPP Prepare SAP Name Date: 3/26/94 0 2 12 m Ξ <u></u> 4 13 2 1 8 61 20 \_ 2 4 5 ৩ 00 71 ~ \$

l

Ì

Noncritical -McClellan AFB GWOU RI/FS Alternative 1 Summary D 0 36,37,38 34,40 18 18 18 8 32 ŝ 20 8 33 39 27,28,41 Page 2 Predecessors 2/9/95 2/9/95 4/15/99 3/13/95 11/2/94 10/18/94 11/2/94 10/18/94 11/2/94 3/13/95 S/11/96 10/3/94 10/3/94 10/3/94 12/28/94 1/27/95 \$6/11/8 9/2/95 Milestone Sched. Finish Sched. Start 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/18/94 11/2/94 10/3/94 10/3/94 12/29/94 3/14/95 8/18/95 10/3/94 10/3/94 10/3/94 10/4/94 94d 15ed 30ed 15ed ł **1183d** 1164 1 Sed 15ed **420d** ١d ΡI 62d **DEII** Duration 224 94d PI 22d Ø Critical Off base extraction wells( 6 ) w/ well head treatment units Prepare Base Well 18 abandorment program Prepare production well contingency plans Hot Spot extraction wells(15) Off base monitoring wells( 10 Procure BOAs w/ 3 subs for Basewide EW/MW (weliproc) Identify performance criteria Specify system requirements Prepare final layout of wells (wellfides) On-heae/Off-heae production wells Install wells/Interpret data (wellins1) Subcontractor procurement Prepare for installation Abandon Base well 18 Map Utilities (utilmap) (wellprep) Extraction System Utility Mapping Phase 1 Name Date: 3/26/94 <u>a</u>|2 35 2 24 3 36 28 8 4 4 5 33 31 34 36 33 38 39 \$ 32 33

| Latte<br>Ro<br>Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |             |              |               |              | 1994              | 1995                    | 1996                      | 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1996                      | 666                 | ×   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|--------------|---------------|--------------|-------------------|-------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | Duration    | Sched. Start | Sched. Finish | Predecessors | Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 G | 1 1 Qu 2 Qu 3 Qu 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qtr 1 Qtr 2 Qtr 3 Qtr 4 Q | Qu 1 Qu 2 Qu 3 Qu 4 | 010 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | duce uncertainty in extent of<br>Manipation of headhot ends    | ld          | 9/4/95       | 9/4/95        | 4            | ~                 |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | duce uncertainty in<br>theseftor anot flows to                 | PI          | 9/2/95       | 9/2/95        | 4            | [m                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | whice uncertainty of location<br>it number of wells off base   | Id          | 9/9/6        | 9/6/95        | 4            |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | duce uncertainty in aquifer<br>nome                            | PI          | 9/7/95       | 90/1/95       | 4            | 5                 |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | duce uncertainty concerning<br>tential innovative technologies | Id          | 9/8/6        | 9/8/95        | Ŧ            | 1.0               |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | planat coningany plan (i)<br>casary/revice model               | 3           | 56/2/6       | 9/2/95        | •            |                   | •                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| er a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | epare Phase 1 Report/Phase 2<br>10                             | 45ed        | 6/11/6       | 10/26/95      | 4            | 60                |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Sut<br>Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bmit Phase 1 Report/Phase 2<br>a Working Copy                  | PI          | 10/26/95     | 10/26/95      | ¥            |                   | -                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :Clellan AFB review working<br>**                              | 30ed        | 10/27/95     | 11/26/95      | 5            |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | spare draft copy                                               | 30ed        | 11/27/95     | 12/27/95      | \$           | - <u>-</u>        |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clellan AFB and agencies<br>riew draft document                | 60ed        | 12/27/95     | 2/25/96       | .5           | 2                 | -                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                         |                     |     |
| Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | spare draft final                                              | 30ed        | 2/26/96      | 3/27/96       | S            |                   |                         | 0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . (haa                    |                     | '   |
| Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pency review draft final                                       | 30ed        | 3/27/96      | 4/26/96       | Ň            |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | spare final Phase 1<br>bort/Phase 2 Plan                       | 15ed        | 4/26/96      | 2/11/96       | Š            |                   |                         | 0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Phase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | 3864        | 3/27/96      | 9/18/97       |              | J                 |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f base monitoring wells(5)                                     | PI          | 3/27/96      | 3/27/96       | Ň            |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T base extraction wells( 15 )<br>well head treatment units     | pi          | 3/27/96      | 3/27/96       | Ň            |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Hø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # Spot extraction wells( 14 )                                  | Id          | 3/27/96      | 3/27/96       | \$           | 4                 |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Pre<br>We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | spare final layout of wells<br>ellfides)                       | 62d         | 3/28/96      | 6/21/96       | 58,59,6      |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| Press<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Market<br>Mar | cpare for installation<br>eliprep)                             | 22 <b>d</b> | 6/24/96      | 7/23/96       | 9            |                   |                         |                           | <ul> <li>An one of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set o</li></ul> |                           |                     |     |
| ari<br>w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aal) wells/Interpret data<br>ellins2)                          | 1204        | 7/24/96      | 1/1/97        | 9            | 2                 | -                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |
| 26/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Critical                                                       |             |              | Milestone     |              | Summa             | A.                      | Nonc                      | ritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |             |              |               | Page 3       |                   |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                     |     |

ŕ ٩,

ł

|         |                                                   |                            |          |              | McClellan     | AFB GWOU     | RU/FS Alternative i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|---------|---------------------------------------------------|----------------------------|----------|--------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 9       | Name                                              |                            | Duration | Sched. Start | Sched. Finish | Predecessons | 1994         1993         1396         1997         1998         1999           Dre 21Ore 31Ore 41Ore 11Ore 21Ore 31Ore 41Ore 41 | R |
| 3       | Resolve uncertainty in                            | i extent of                | PI       | 1/8/97       | 1/8/97        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 65      | contamation off basis<br>Further reduce uncerta   | e/hot spots<br>uinty in    | PI       | 16/6/1       | 16/6/1        |              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 99      | aquifer response<br>Recolve uncertainty in        | location                   | 14       | 1/10/97      | 1/10/97       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ;       | and number of extract                             | ion wells                  | :        |              |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 67      | Resolve uncertainty in<br>off-base/hot spot flows | 3                          | PI       | 1/13/97      | 1/13/97       |              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · |
| 89      | Resolve uncertainty or potential innovative to    | oncerning<br>chnologies    | ld       | 1/14/97      | 1/14/97       |              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 69      | Implement contingen<br>necessary/revise mo        | ncy plan (if<br>del        | PO       | 14/97        | 1/14/97       |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
| 70      | Prepare Phase 2 Repor<br>Plan                     | rt/Phase 3                 | 45ed     | 1/15/97      | 3/1/97        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 11      | Submit Phase 2 Repor<br>Plan Working Copy         | t/Phase 3                  | PI       | 3/3/97       | 3/3/97        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 2       | McClellan AFB revier<br>copy                      | w working                  | 30ed     | 3/4/97       | 4/3/97        |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 5       | Prepare draft copy                                |                            | 30ed     | 4/3/97       | 5/3/97        |              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 74      | McClellan AFB and a<br>review draft document      | gencies                    | 60ed     | 5/5/97       | 7/4/97        |              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 75      | Prepare draft final                               |                            | 30ed     | 7/4/97       | 8/3/97        |              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 76      | Agency review draft fi                            | Inal                       | 30ed     | 8/4/97       | 9/3/97        |              | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 17      | Prepare final Phase 2<br>Report/Phase 3 Plan      |                            | 15ed     | 9/3/97       | 9/18/97       |              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 78      | Phone 3                                           |                            | 4434     | 8/4/97       | 4/15/99       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 62      | On base monitoring w                              | elis(61)                   | PI       | 8/4/97       | 8/4/97        |              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 80      | On base extraction we                             | ils(73)                    | PI       | 8/4/97       | 8/4/97        | • -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 8       | Prepare final layout of (wellfides)               | fwells                     | 62d      | 8/5/97       | 10/29/97      | 79,8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 82      | Prepare for installation<br>(wellprep)            |                            | 22d      | 10/30/97     | 11/28/97      | ~            | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 83      | Install/Interpret Data                            | (wellins3)                 | P081     | 12/1/97      | 8///8         | ~            | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 84      | Resolve uncertainty in<br>contamination off base  | i extent of<br>e/hot spots | P        | 8/10/98      | 86/01/8       | ~            | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Date: ] | 1/26/94                                           | Critical                   |          |              | Milestone .   | •            | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|         |                                                   |                            |          |              |               | Page 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|         |                                                   |                            |          |              |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |

)

|          |                                                |                        |          |              | McClellan     | AFB GWOU F   | U/FS Alternative 1                                  |                              |                                            |                           |                                                   | <u> </u> |
|----------|------------------------------------------------|------------------------|----------|--------------|---------------|--------------|-----------------------------------------------------|------------------------------|--------------------------------------------|---------------------------|---------------------------------------------------|----------|
| 9        | ,<br>Viene                                     |                        | Duration | Sched. Start | Sched. Finish | Predecessors | 1994 1995<br>Ott 21Ott 31Ott 40tt 11Ott 21Ott 31Ott | Off 1 [Off 2 [Off 3 [Off 4 [ | 1997<br>1997 1997 1997 1997 1997 1997 1997 | 001 1001 2001 31011 41011 | 101-201-40-10-10-10-10-10-10-10-10-10-10-10-10-10 | 1210     |
| 82       | Resolve uncertainty                            | / in aquifer           | P        | 86/11/8      | 8/11/98       | ò            |                                                     |                              |                                            |                           |                                                   | 1        |
| 86       | Resolve uncertainty                            | in location            | PI       | 8/12/98      | 8/12/98       | 8            |                                                     |                              |                                            |                           |                                                   | -        |
| 87       | Resolve uncertainty i<br>flow to treatment nia | in on base             | PI       | 8/13/98      | 8/13/98       | ă            |                                                     |                              |                                            | _                         |                                                   |          |
| 80       | Implement continge                             | ency plan (if<br>wated | 8        | 8/13/98      | 86/E1/8       | 8            |                                                     |                              |                                            | •                         |                                                   |          |
| 8        | Prepare Phase 3 Rep                            | ort                    | 45ed     | 8/14/98      | 9/28/98       | 55           |                                                     |                              |                                            |                           |                                                   |          |
| 8        | Submit Phase 3 Rep<br>Conv                     | ort Working            | P        | 9/28/98      | 9/28/98       | *            |                                                     |                              |                                            |                           |                                                   |          |
| 16       | McClellan AFB revi<br>conv                     | iew working            | 30ed     | 9/29/98      | 10/29/98      | 8            |                                                     |                              |                                            |                           |                                                   |          |
| 92       | Prepare draft copy                             |                        | 30ed     | 10/29/98     | 11/28/98      | 16           |                                                     |                              |                                            |                           |                                                   |          |
| 93       | MoClellan AFB and<br>review draft documen      | agencies<br>at         | 60ed     | 11/30/98     | 1/29/99       | 6            |                                                     |                              |                                            | -                         |                                                   |          |
| 94       | Prepare draft final                            |                        | 30ed     | 1/29/99      | 2/28/99       | 6            |                                                     |                              |                                            |                           |                                                   |          |
| <u>8</u> | Agency review draft.                           | final                  | 30ed     | 3/1/99       | 3/31/99       | 6            |                                                     |                              |                                            |                           |                                                   |          |
| 8        | Prepare final Phase 3                          | 3 Report               | 15ed     | 3/31/99      | 4/15/99       | 6            |                                                     |                              |                                            |                           |                                                   |          |
| 97       |                                                |                        |          |              |               |              |                                                     |                              |                                            |                           |                                                   |          |
| 8        | Treatment/End Use/ Collection                  | on Systems             | 6174     | 10/30/97     | 3/12/00       |              |                                                     |                              | L                                          |                           |                                                   |          |
| 8        | Procure turnkey contractor<br>(contrarco)      |                        | 88d      | 10/30/97     | 3/2/98        | 24,8         |                                                     |                              |                                            |                           | 7 <b>2</b>                                        | _        |
| 901      | Western Area                                   |                        | 5264     | 3/3/98       | 3/8/00        |              |                                                     |                              |                                            |                           |                                                   |          |
| 101      | Collection piping                              |                        | 504d     | 3/3/98       | 2/4/00        |              |                                                     |                              |                                            |                           |                                                   |          |
| 102      | Prepare prelimi<br>(wcolde60)                  | inary design           | 2316     | 3/3/98       | 66/61/1       | 6            |                                                     |                              |                                            |                           |                                                   | _        |
| 103      | Prepare final de<br>(wcolde95)                 | esign                  | P06      | 1/20/99      | 5/25/99       | 10           |                                                     |                              |                                            |                           | · · ·                                             |          |
| 104      | Prepare for con<br>(wcolprep)                  | struction              | 108d     | 1/20/99      | 6/18/99       | 01           |                                                     |                              |                                            |                           |                                                   |          |
| 105      | Construct pipin<br>(wcollcon)                  | 29                     | 165d     | 6/21/99      | 2/4/00        | 88,103,10    |                                                     |                              |                                            |                           |                                                   |          |
| Date     | : 3/26/94                                      | Critical               |          |              | Milestone     | •            | Summary                                             | None                         | critical                                   |                           |                                                   |          |
|          |                                                |                        |          |              |               | Page 5       |                                                     |                              |                                            |                           |                                                   |          |

-----

-----

ł

• •

----

|     |                                  |                       |             |              | McClella      | n AFB GWOU R | <b>I/FS Alternative 1</b>                     |                                     |                          |                                       |                                    |                |
|-----|----------------------------------|-----------------------|-------------|--------------|---------------|--------------|-----------------------------------------------|-------------------------------------|--------------------------|---------------------------------------|------------------------------------|----------------|
|     | Name                             |                       | Duration    | Sched. Start | Sched. Finish | Predecessors | 1994 1995<br>Qu 2 Qu 3 Qu 4 Qu 1 Qu 2 Qu 3 Qu | 1996<br>1 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Q | r 1  Qtt 2  Qtt 3  Qtt 4 | 0tr 1 Otr 2 Otr 3 Otr 4               | Otr 1   Otr 2   Otr 3   Otr 4   Ot | 20<br>11 Ott 2 |
| 9   | 6 Treatment plant                | -                     | 5264        | 3/3/98       | 3/8/00        |              |                                               |                                     |                          |                                       |                                    |                |
| 01  | 7 Prepare prelimi<br>(wtrea60)   | nary design           | 64d         | 3/3/98       | 5/29/98       | 8            |                                               |                                     |                          |                                       |                                    |                |
| Ö   | 8 Prepare final de<br>(wtrea95)  | 10                    | 999         | 6/1/98       | 8/31/98       | 107          |                                               |                                     |                          |                                       |                                    |                |
| 61  | Prepare for Co<br>Autoentel      | wathuction            | Od          | \$729/98     | 5/29/98       | 101          |                                               |                                     |                          | •                                     |                                    |                |
| ×.  | 9 Construct treat<br>futbraction | ment plant            | 3           | 86/16/8      | 8/31/98       | 108,109      |                                               |                                     |                          | •                                     |                                    |                |
| =   | 1 Start-up/Shalu                 | Hown                  | 224         | 2/1/00       | 3/8/00        |              |                                               |                                     |                          |                                       |                                    |                |
| Ē   | 2 Conduct<br>Start-up/Si         | hakedown              | 30ed        | 2/7/00       | 3/8/00        | 105,110      |                                               |                                     |                          |                                       |                                    |                |
| =   | 1 Implement<br>conting an        | u process<br>cy plan  | 8           | 3/8/00       | 3/8/00        | 113          |                                               |                                     |                          | · · · · · · · · · · · · · · · · · · · |                                    | •              |
| Ė   | t Implement<br>contingenc        | t capacity<br>cy plan | 8           | 3/8/00       | 3/8/00        | 112          |                                               |                                     |                          |                                       |                                    |                |
| H   | 5 East Use Piping                |                       | 3114        | 3/3/98       | 5/11/99       |              |                                               |                                     |                          |                                       |                                    |                |
| Ĕ   | Prepare prelimit<br>(wendu60)    | nary design           | 1084        | 3/3/98       | 7/30/98       | 66           |                                               |                                     |                          |                                       |                                    | _              |
| Ĩ   | Prepare final de (wendu95)       | sign                  | 954         | 2/31/98      | 12/10/98      | 116          |                                               |                                     |                          |                                       |                                    |                |
| H   | Repare for cons<br>(wendupre)    | atruction             | 86d         | 7/31/98      | 11/27/98      | 116          |                                               |                                     |                          |                                       |                                    |                |
| Ĩ   | Construct and u     (wendcons)   | se piping             | P801        | 12/11/98     | 5/11/99       | 117,118      |                                               |                                     |                          |                                       |                                    |                |
| 12( | Eastern Area                     |                       | 5294        | 3/3/98       | 3/12/00       |              |                                               |                                     |                          |                                       |                                    | ₽              |
| 121 | Collection pipling               |                       | <b>2084</b> | 3/3/98       | 2/10/00       |              |                                               |                                     |                          |                                       |                                    |                |
| 12  | Prepare prelimit<br>(ecolde60)   | nary design           | 234d        | 3/3/98       | 1/22/99       | 66           |                                               |                                     |                          |                                       | - 1273                             |                |
| 12  | Prepare final de<br>(ecolde95)   | sign                  | P06         | 1/25/99      | 5/28/99       | 122          |                                               | -                                   |                          |                                       |                                    |                |
| 13, | t Prepare for cons<br>(ecolprep) | struction             | P801        | 1/25/99      | 6/23/99       | 122          |                                               |                                     | -                        |                                       |                                    |                |
| 12  | 5 Construct collec<br>(ecollcon) | tion piping           | 166d        | 6/24/99      | 2/10/00       | 88,123,124   |                                               | - ,                                 |                          |                                       |                                    |                |
| 121 | 5 Treatment plant                |                       | 529d        | 3/3/98       | 3/12/00       |              |                                               |                                     |                          |                                       |                                    |                |
| Dat | e: 3/26/94                       | Critical              |             |              | Mllestone     | •            | Summary                                       | Nonci                               | itical                   |                                       |                                    |                |
|     |                                  |                       |             |              |               | Page 6       |                                               |                                     |                          |                                       |                                    |                |

ł

ALC IN IT IS COMPLETED

|         |                                            |                  |          |              | McClellan     | AFB GWOU R      | L/FS Alter              | native 1                                  |                                 |                 |                       |                                     |             |
|---------|--------------------------------------------|------------------|----------|--------------|---------------|-----------------|-------------------------|-------------------------------------------|---------------------------------|-----------------|-----------------------|-------------------------------------|-------------|
| e       | Name                                       |                  | Duration | Sched. Start | Sched. Finish | Predecessors    | 1994<br>Qur 2 Qur 3 Qur | 1995<br>1 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 0 | 1996<br>Der 21 Oer 31 Oer 41 Or | r 10r 210r 310r | 4 Or 1 Or 2 Or 3 Or 4 | 1999<br>10t 1 Ott 2 Ott 3 Ott 4 Ott |             |
| 127     | Prepare prelimina<br>(etrea60)             | ry design        | 72d      | 3/3/98       | 6/10/98       | 66              |                         |                                           |                                 |                 |                       |                                     |             |
| 128     | Prepare final desig<br>(etrea95)           | 5                | 999      | 86/11/9      | 86/01/6       | 127             |                         |                                           |                                 |                 |                       |                                     |             |
| 129     | Prepare for Constr<br>(etreaure)           | ruction          | 128d     | 6/11/98      | 12/7/98       | 127             |                         |                                           | *****                           |                 |                       |                                     |             |
| 130     | Construct treatmen<br>(etreacon)           | nt plant         | 87d      | 12/8/98      | 4/1/99        | 128,129         |                         |                                           |                                 |                 |                       |                                     |             |
| 151     | Start-ap/Shaked                            |                  | 214      | 2/11/00      | 3/12/00       |                 |                         |                                           |                                 |                 |                       | 5                                   | •           |
| 132     | Conduct<br>Start-up/Shal                   | kedown           | 30ed     | 2/11/00      | 3/12/00       | 125,130         | <b>—</b> ——             |                                           |                                 |                 |                       |                                     | <i>0</i> 77 |
| 133     | Implement  <br>conting ency                | process<br>plan  | 8        | 3/12/00      | 3/12/00       | 132             |                         |                                           |                                 |                 |                       |                                     | •           |
| 134     | Implement .<br>conting ency                | cepacity<br>plan | 3        | 3/12/00      | 3/12/00       | 132             |                         |                                           |                                 |                 |                       |                                     | •           |
| 135     | East Use Piping                            |                  | 2784     | 3/3/98       | 3/25/99       |                 |                         |                                           |                                 |                 |                       |                                     |             |
| 136     | Prepare prelimina<br>(eendu60)             | ry design        | P901     | 3/3/98       | 7/28/98       | 66              | •                       |                                           |                                 |                 |                       |                                     |             |
| 137     | Prepare final desig<br>(cendu95)           | 5.               | P04      | 7/29/98      | 11/3/98       | 136             | +                       |                                           |                                 |                 |                       |                                     |             |
| 138     | Prepare for constru<br>(cendupre)          | uction           | 86d      | 7/29/98      | 11/25/98      | 136             | 1                       |                                           |                                 |                 |                       |                                     |             |
| 139     | Construct end use<br>(cendcons)            | piping           | 86d      | 11/26/98     | 3/25/99       | 137,138         |                         |                                           |                                 |                 |                       |                                     |             |
| 140     |                                            |                  |          |              |               |                 |                         |                                           |                                 |                 |                       |                                     |             |
| 141     | <b>Operation of Remedial Action</b>        |                  | 26       | 3/8/00       | 3/12/00       |                 |                         |                                           |                                 |                 |                       |                                     |             |
| 142     | Containment of Contantins<br>Target Volume | ated             | R        | 3/8/00       | 3/12/00       |                 |                         |                                           |                                 |                 |                       |                                     |             |
| 143     | West Base                                  |                  | 04       | 3/8/00       | 3/8/00        | 105,113,114     | T                       |                                           |                                 |                 |                       | -                                   | •           |
| **!     | East Base                                  |                  | pq       | 3/12/00      | 3/12/00       | 125,133,134,139 | <b>.</b>                |                                           |                                 |                 |                       | •                                   |             |
|         |                                            |                  |          |              |               |                 |                         |                                           |                                 |                 |                       |                                     |             |
| Date: 3 | 1/26/94                                    | Critical         |          |              | Milestone     | •               | Summa                   | ſ                                         | Noncr                           | itical          |                       |                                     |             |
|         |                                            |                  |          |              |               | Page 7          |                         |                                           |                                 |                 |                       |                                     |             |

. ....

-----

| Name         Duration         State (State)         Duration         Duration <thduration< th="">         Duration         <t< th=""><th>Name         Dur           Alternative 4 (MCL, 1)         11</th><th></th><th></th><th>_</th><th></th><th>1004</th><th>100K</th><th>1007</th><th></th><th>-</th></t<></thduration<> | Name         Dur           Alternative 4 (MCL, 1)         11 |           |            | _             |                      | 1004                               | 100K                   | 1007                            |                       | -                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|------------|---------------|----------------------|------------------------------------|------------------------|---------------------------------|-----------------------|----------------------|
| Attenuents         1024         2040         30401           Indexer Function         11         11/1/1/1         12/1/1/1           Indexer Function         11         11/1/1         12/1/1           Indexer Function         11         11/1/1         12/1/1           Indexer Function         11         11/1         12/1/1           Indexer Function         11         11/1         12/1/1           Indexer Function         11/1         11/1         11/1           Station         20/1         11/1         11/1           Preserver(station         20/1                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alternative 4 (MCI., 11                                      | tion Sche | d. Start S | Sched. Finish | Predecessors         | 2r 2 Qr 3 Qr 4 Qr 1 Qr 2 Qr 3 Qr 4 | Qu 1 Qu 2 Qu 3 Qu 4 Qu | 1]Qu 2]Qu 3]Qu 4 Qu 1]Qu 2]Qu 3 | Qu 4Qu 1Qu 2Qu 3Qu 4Q | r 1 Qu 2 Qu 3 Qu 4 Q |
| Internet Party Versiting         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113 <td>ASVGAC, UTILITIES)</td> <td>8234</td> <td>4/1/94</td> <td>3/26/01</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                         | ASVGAC, UTILITIES)                                           | 8234      | 4/1/94     | 3/26/01       |                      |                                    |                        |                                 |                       |                      |
| Viscan Planet         List         404         11764           Present Market         214         404         11764           Present Market         214         4054         5104           Present Market         304         4104         3104           Statistic         304         4104         3104           Preser         202         4104         3104           Preser         304         4104         3104           Preser <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |           |            |               |                      |                                    |                        |                                 | -                     |                      |
| Density Remain         214         4104         5104         5104         5104           Example         Jool         4194         5104         104         5104           The Market         Jool         4194         5104         104         5104           The Market         Jool         4194         5104         104         5104           The Market         Jool         4194         5104         104         5104           Station         Jool         4194         2194         104         2104           Station         Jool         4194         2194         104         2104           Proper Elabrand         Jool         4194         2194         104         2194           Proper Elabrand         Jool         4194         2194         104         2194           Proper Elabrand         Jool         4194         2194         111         111           Proper Elabrand         Jool         4194         2194         111         111           Proper Elabrand         Jool         4194         2194         111         111         111           Proper Elabrand         Jool         4194         111         111                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manter Plan/Work Plan of Remedial Action                     | 798       | 4/1/94     | 12/17/94      |                      |                                    | •                      |                                 |                       | •                    |
| Spendion         30d         4104         3104         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034         1034                                                                                                                                                                                                                                                                                                                                                                      | Develop Remedial<br>Action Master                            | 214       | 4/1/94     | 5/1/94        |                      |                                    |                        |                                 |                       |                      |
| Treatment         30d         4/194         5/194         5/194         5/194           Staffue         30d         4/194         5/194         1         1           Staffue         30d         4/194         5/194         1         1           Prepare factorie         20d         4/194         4/28/4         1         1           Prepare factorie         20d         4/194         5.6.7.8.9.10.11.12.13         1         1           Prepare factorie         30d         1/194         5.6.7.8.9.10.11.12.13         1         1           Prepare factorie         30d         1/194         5.6.7.8.9.10.11.12.13         1         1         1           Prepare factorie         30d         1/294                                                                                                                                                                                                                                                                                                                                                                                                                               | Extraction<br>Svatem                                         | 30ed      | 4/1/94     | 5/1/94        |                      |                                    |                        |                                 |                       |                      |
| Figure 1         30el         41/34         51/34         51/34         51/34           Collection         30el         4/134         51/34         51/34         51/34           Prepare Totalistic         200         4/134         4/28/34         51/34         51/34           Prepare Totalistic         200         4/134         4/28/4         51/34         51/34           Prepare Totalistic         200         4/134         4/28/4         50/34         51/34           Prepare Totalistic         200         4/134         5/28/4         51/3         5/75/31         5/75/31           Prepare SAT         30el         4/134         5/57/35/10/11.2.13         5/75/31         5/75/31         5/75/31         5/75/31           Prepare SAT         30el         4/134         7/23/4         1/3         5/75/31         5/75/31           Prepare SAT         30el         6/13/4         7/23/4         1/3         5/75/31         5/75/31           Prepare SAT         30el         6/13/4         7/23/4         1/23/4         1/23/4         1/23/4         1/23/4           Prepare SAT         30el         1/23/4         1/23/4         1/23/4         1/23/4         1/23/4         1/23/4 <td>Treatment</td> <td>30ed</td> <td>4/1/94</td> <td>5/1/94</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                               | Treatment                                                    | 30ed      | 4/1/94     | 5/1/94        |                      |                                    |                        |                                 |                       |                      |
| Collection         30ed         4/194         5/194         10           Prepare EQCA         200         4/194         4/2894         1           Prepare EQCA         30ed         4/194         5/5/3.0.10.11.1.2.13         1           Prepare EQCA         30ed         4/194         5/5.7.8.0.10.11.1.2.13         1           Excension         30ed         6/194         6/194         6/194         1           Excension         30ed         6/194         5/7.8.0.10.11.1.2.13         1         1           Excension         30ed         6/194         1194         1         1         1           Excension         30ed         6/194         1194         1         1         1         1           Excension         30ed         10/94         1/294                                                                                                                                                                                                                                                                                                                                                                                                                                              | End Use<br>System                                            | 30ed      | 4/1/94     | 5/1/94        |                      |                                    |                        |                                 |                       |                      |
| Propuer EXOCos         200         41794         42894         1           Propuer taitonale         200         41794         42894         1           Propuer EALP         3004         41794         547894         1           Propuer SAP         3004         41794         51794         1           Developmendiat         3004         51794         113         1           Developmendiat         3004         61794         51794         1           Propuer EALP         3004         61794         12794         1           Propuer Eartificant         3004         17294         1         1           Propuer Eartificant         3004         172794         1         1           Propuer Eartificant         1504         122794         1         1           Propuer Eartificant         1504         122794         1         1           Propuer Eartificant         1504         122794         20                                                                                                                                                                                                                                                                                                                                                                                                                                    | Collection<br>System                                         | 30ed      | 4/1/94     | 5/1/94        |                      |                                    |                        |                                 |                       |                      |
| Progue rationale         204         41/94         4/28/94         1           Progue rationale         204         4/194         4/28/94         1           Progue (APP         206         4/194         4/28/94         1           Progue (APP         206         4/194         4/28/94         1           Progue (APP         206         4/194         5/5/8/10.11.2.13         1           Progue (APP         3064         5/294         6/194         5/5/8/10.11.2.13         1           Develop remaint         3064         5/294         1/13         1         1         1           McNethan         10         6/194         5/5/8/10.11.2.13         1         1         1         1           Progue (APP and APP and (APP and (                                                                           | Prepare DQOs                                                 | 20d       | 4/1/94     | 4/28/94       |                      |                                    |                        |                                 | ···· _                |                      |
| Prepare It at the ard         200         4/194         4/2894         1           Prepare (AVP)         200         4/194         5/1094         1           Prepare (AVP)         200         4/194         5/1094         1           Prepare (AVP)         200         4/194         5/1094         1           Prevalor verte plan         30cd         5/294         6/194         5/5/39.10.11.12.13           Develop remediati         30cd         5/294         1/13         1           Submit RA.         1         6/194         6/194         1/13           PinorWork Plan         30cd         5/294         1/13         1           Prepare draft copy         30cd         7/294         1/13         1           Prepare draft final         30cd         1/12/294         1/13         1           Prepare final         1/12/94         1/2         1         1         1           Remoidi Action                                                                                                                                                                                                                                                                                                                                                                                                                          | Prepare rationale                                            | 204       | 4/1/94     | 4/28/94       |                      |                                    |                        |                                 |                       |                      |
| Prepare CAUP         20d         4/194         4/28/94         1           Prepare SAP         30ed         4/194         5/194         1           Develop modulal         30ed         5/194         5/194         5/194           Develop modulal         30ed         5/294         6/194         5/6,78,9,10,11,12,13           Develop mod plan         1d         6/194         5/6,78,9,10,11,12,13         1           Post Nock plan         1d         6/194         5/6,78,9,10,11,12,13         1           Submit RA Mater         1d         6/194         5/6,78,9,10,11,12,13         1           Submit RA Mater         1d         6/194         5/6,78,9,10,11,2,13         1           Proper dati Ray         30ed         6/294         7/2,94         15           Proper dati Ray         30ed         10/294         11         16           Proper dati Raal         30ed         10/294         11/294         18           Proper dati Raal         30ed         11/294         12         1           Proper dati Raal         1/2094         12         20         1         1           Proper dati Raal         1/2094         12         20         1         1                                                                                                                                                                                                                                                                                                                                                                                                           | Prepare Health and<br>Safety plan                            | 204       | 4/1/94     | 4/28/94       |                      |                                    |                        |                                 |                       |                      |
| Prepare SAP         30cd         4/194         5/184         1           Develop remedial         30cd         4/194         5/189,10,11,12,13         1           Develop remedial         30cd         5/294         6/194         5,5,78,9,10,11,12,13         1           Submit RA Master         1d         6/194         5,5,78,9,10,11,12,13         1         1         1         1           Nucciellin AFB         30cd         6/294         7/294         1         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prepare QAPP                                                 | 204       | 4/1/94     | 4/28/94       |                      |                                    |                        |                                 |                       |                      |
| Develop remedial         30ed         5/294         6/194         5,6,7,8,9,10,11,12,13           station work Plan         1d         6/194         6/194         5,6,7,8,9,10,11,12,13           PlanwWork R hater         1d         6/194         6/194         6/194         5,6,7,8,9,10,11,12,13           PlanwWork R hater         1d         6/194         6/194         6/194         6/194         6/194           PlanwOrk R hater         30ed         7/494         8/394         1/3         1           Prepare dart copy         30ed         7/4/94         8/3/94         1/6         1           McClellan AFB         and         60ed         8/3/94         1/0/2/94         1         1           McClellan AFB         30ed         1/0/2/94         1         1         1         1           Agency review darth         30ed         1/2/2/94         1         1         1         1           Prepare fant         1/5         1/2/2/94         1         1         1         1         1           Agency review darth         30ed         1/2/2/94         1         1         1         1         1           Remedial Action         1/5         1/2/2/94         20                                                                                                                                                                                                                                                                                                                                                                                                    | Prepare SAP                                                  | 30ed      | 4/1/94     | 5/1/94        |                      |                                    |                        |                                 |                       |                      |
| Submit RA Master         1d         6/194         6/194         14           Plav/Work Plan         30cd         6/294         7/294         13           Preview working         30cd         7/494         8/394         15           Prepare draft copy         30cd         7/494         8/394         17           Prepare draft copy         30cd         10/294         17           Agencie review         30cd         10/294         18           Prepare draft final         30cd         11/294         18           Agency review draft         30cd         11/294         18           Agency review draft         15cd         12/294         19           Agency review draft         15cd         12/194         20           Renedial Action         15cd         12/194         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Develop remedial<br>action work plan                         | 30ed      | 5/2/94     | 6/1/94 5      | ,6,7,8,9,10,11,12,13 |                                    |                        |                                 |                       | · • •                |
| McClellan AFB         30cd         6/294         7/294         15         1           review working         30cd         7/494         8/394         16         1           Prepare draft copy         30cd         8/394         10/294         17         1           McClellan AFB and         60cd         8/394         10/294         17         1           Prepare draft final         30cd         10/394         11/294         18         1           Agency review draft         30cd         11/294         19         1         1           Agency review draft         30cd         11/294         19         1         1           Agency review draft         30cd         11/294         19         1         1           Agency review draft         15/04         12/194         20         1         1         1           Agency review draft         15/04         12/1794         20         1         1         1         1           Agency review draft         15/04         12/1794         20         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>Submit RA Master<br/>Plan/Work Plan</td> <td>PI</td> <td>6/1/94</td> <td>6/1/94</td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                             | Submit RA Master<br>Plan/Work Plan                           | PI        | 6/1/94     | 6/1/94        | 14                   |                                    |                        |                                 |                       |                      |
| Prepare draft copy         30ed         7/4/94         8/3/94         16         1           McClellan AFB and         60ed         8/3/94         10/2/94         17         1           Agencies review         30ed         10/2/94         18         1         1           Prepare draft final         30ed         11/2/94         18         1           Prepare final         30ed         11/2/94         12         19           Prepare final         15ed         12/2/94         19         1           Remedial Action         15ed         12/2/94         20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | McClellan AFB<br>review working                              | 30ed      | 6/2/94     | 7/2/94        | 15                   |                                    |                        |                                 |                       |                      |
| McClellan AFB and         60ed         8/3/94         10/2/94         17         □           Prepare draft final         30ed         10/3/94         11/2/94         18         □           Prepare final         30ed         11/2/94         18         □           Remedial Action         15ed         12/2/94         19         □           Remedial Action         15ed         12/2/94         20         □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepare draft copy                                           | 30ed      | 7/4/94     | 8/3/94        | 16                   | -                                  |                        |                                 | <b></b> .             |                      |
| Prepare draft final         30ed         10/3/94         11/2/94         18         1           Agency review draft         30ed         11/2/94         12/2/94         19         1           Repare final         15ed         12/2/94         12         19         1           Remedial Action         15ed         12/1/94         20         1         1           326/94         Critical         Milestone         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | McClellan AFB and<br>agencies review                         | 60ed      | 8/3/94     | 10/2/94       | 17                   |                                    |                        |                                 | •                     |                      |
| Agency review draft         30ed         11/2/94         12         19         1           Propare final         1 5ed         1 2/2/94         12/1/94         20         1           Remedial Action         1 5ed         1 2/2/94         20         1         1           Remedial Action         Critical         Milestone         Summary         Noncritical         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prepare draft final                                          | 30ed      | 10/3/94    | 11/2/94       | 18                   |                                    |                        |                                 |                       |                      |
| Propare final         15cd         12/2/94         12/17/94         20         1           Remedial Action         Remedial Action         Milestone         Summary         Noncritical         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Agency review draft<br>final                                 | 30ed      | 11/2/94    | 12/2/94       | 61                   |                                    |                        |                                 |                       |                      |
| : 3/26/94 Critical Critical Milestone Summary Noncritical O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prepare final<br>Remedial Action                             | 15ed      | 12/2/94    | 12/17/94      | 20                   |                                    |                        |                                 |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : 3/26/94                                                    | Critical  |            |               | Milestone 🔶          | Summar                             |                        | Noncritical                     |                       |                      |

ţ

Ę

.

١

......

|         |                                        |             |              |               | McClellan Al       | B GWOU RIFS Alternative 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------------------------------|-------------|--------------|---------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Ame                                    | Duration    | Sched. Start | Sched. Finish | Predecessors       | 1994         1995         1996         1997         1998         1999         2000           Ort 2(Ort 3)Ort 4(Ort 1)Ort 2(Ort 3)Ort 4(Ort 1)Ort 2(Ort 3)Ort 4(Ort 1)Ort 2(Ort 3)Ort 4(Ort 1)Ort 2)Ort 3)Ort 4)Ort 1)Ort 3)Ort 4)Ort 
| 2       |                                        |             |              |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23      | Utikty Mapping                         | <b>bt</b> e | 10/3/94      | 2/9/95        |                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24      | Map Utilities<br>(utilmap)             | 94d         | 10/3/94      | 2/9/95        | 18                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25      |                                        |             |              |               | · · ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26      | On-hase/Off-hase<br>production wells   | 224         | 10/3/94      | 11/2/94       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27      | Prepare Base Well<br>18 abandonment    | 1 Sed       | 10/3/94      | 10/18/94      | 18                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28      | Prepare production<br>well contingency | <b>30ed</b> | 10/3/94      | 11/2/94       | 81                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29      |                                        |             |              |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| e<br>R  | Extraction System                      | 1251d       | 10/3/94      | 7/20/99       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 31      | Subcontractor<br>procurement           | 1164        | 10/3/94      | 3/13/95       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32      | Specify system requirements            | i Sed       | 10/3/94      | 10/18/94      | 18                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33      | Identify<br>performance                | 1 Sed       | 10/18/94     | 11/2/94       | 32                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34      | Procure BOAs<br>w/ 3 subs for          | 94d         | +<br>=       | 3/13/95       | 33                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35      | Phase 1                                | 4884        | 10/3/94      | 8/15/96       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36      | Off base<br>monitoring                 | Id          | 10/3/94      | 10/3/94       | 18                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37      | Off base<br>extraction                 | 1d          | 10/3/94      | 10/3/94       | 8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 38      | Hot Spot<br>extraction                 | pl          | 10/3/94      | 10/3/94       | 18                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39      | Final layout of<br>wells               | 62d         | 10/4/94      | 12/28/94      | 36,37,38           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9       | Prepare for<br>installation            | 22d         | 12/29/94     | 1/27/95       | 39                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4       | Installation/Int<br>Data               | 1804        | 3/14/95      | 11/20/95      | 34,40              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 42      | Abandon Base<br>well 18                | 15ed        | 11/21/95     | 12/6/95       | 27,28,41           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date: 3 | 1/26/94                                | 5           | tical        |               | Milestone <b>•</b> | Summary Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                        |             |              |               |                    | Sage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

-----

| New         During         State Train         During         State Train         Macconstrain         During         State Train         Macconstrain         Macconstrate         Macconstrate         Macconstrain<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                              |          |             |              | MCCIelian A  | LE GWOU KUFS                            | Alternative 4                            |                                         |                          |                                         |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------|----------|-------------|--------------|--------------|-----------------------------------------|------------------------------------------|-----------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------|
| Reserves         H         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050         12050 <th1< th=""><th>1</th><th>Name</th><th>huration</th><th>Sched Start</th><th>Sched Finish</th><th>Predecessors</th><th>1994 1994 1995 1995 1995 1995 1995 1995</th><th>5 1996<br/>1996 - 102 - 102 - 302 - 302 -</th><th>1997 1997 1997 1997 1997 1997 1997 1997</th><th>1998</th><th>1999</th><th>2000</th></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | Name                         | huration | Sched Start | Sched Finish | Predecessors | 1994 1994 1995 1995 1995 1995 1995 1995 | 5 1996<br>1996 - 102 - 102 - 302 - 302 - | 1997 1997 1997 1997 1997 1997 1997 1997 | 1998                     | 1999                                    | 2000                                    |
| wiensensystem         i         17-75         44           Readency in the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the const                                                     | 1 | Reduce                       | PI       | 12/6/95     | 12/6/95      | 110000015    | Traditable and a more and a             | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  | A WALL THE THE THE THE                  | The sector sector sector | 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |
| Reventsy:         14         12703         12773         4           Reventsy:         14         12713         12713         12713         12713           Reventsy:         14         121133         127133         127133         127133         127133           Reventsy:         14         121133         127133         127133         127133         127133           Reventsy:         14         121133         127136         127133         127133         127134           Reventsy:         14         121133         127136         127134         1         1           Reventsy:         14         121133         127135         1         1         1           Reventsy:         10         121136         12705         1         1         1           Reventsy:         10         121136         12706         1         1         1           Reventsy:         00         21016         2105         21         1         1         1           Reventsy:         1306         2106         21         2         2         1         1           Reventsy:         1306         2106         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | uncertainty in               | _        |             |              |              |                                         | _                                        |                                         |                          |                                         |                                         |
| Image: constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |   | Reduce                       | PI       | 12/7/95     | 12/7/95      | 43           |                                         |                                          |                                         |                          |                                         |                                         |
| Reason         Id         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         1211153         12111153         1211153         121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | Reduce                       | рı       | 12/8/95     | 12/8/95      | 44           |                                         |                                          |                                         |                          |                                         |                                         |
| means         rat         Lutron         Lutron <thluton< th=""></thluton<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | uncertainty of               |          | 10/11/06    | 30,11,01     | 24           | ·                                       |                                          |                                         |                          | -                                       |                                         |
| Reserve         1d         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/1255         12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | would<br>uncertainty in      | 0        | 66/11/71    | CE/11/71     | 4            |                                         |                                          |                                         |                          |                                         |                                         |
| Image         Column         Cl         21/295         1/2           Prepare These         1/4         1/21/996         1/2         1/2           Prepare These         1/4         1/2996         1/2         1/2           Notest These         1/4         1/2996         1/2         1/2           Notest These         1/4         1/2996         1/2         1/2           Notest These         1/4         1/2         2/2         1/2           Notest These         1/4         1/2         2/2         1/2           Prepare shaft         30-10         3/2         1/2         1/2           Prepare field         30-10         3/2         1/2         1/2           Prepare field         30-10         3/2         1/2         1/2           Prepare field         1/3         1/3         1/3         1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Reduce                       | PI       | 12/12/95    | 12/12/95     | 46           |                                         |                                          |                                         |                          |                                         |                                         |
| Proper Phase         46a         127364         48           Radmar Thate         1a         1/296b         1/295b         10           Radmar Thate         1a         1/296b         1/295b         10           McClellina         30el         1/295b         1/295b         10           McClellina         30el         2/295b         3/10         1/295b           McClellina         30el         2/295b         3/10         1/2           McClellina         30el         2/195b         3/2         1/2           McClellina         30el         7/196         3/2         1/2           Mediani         126         7/196         3/3         1/2         1/2           Mediani         126         7/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | Implement<br>contingency     | Po       | 12/12/95    | 12/12/95     | 41           |                                         |                                          |                                         |                          | =                                       |                                         |
| Submit These         1d         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906         12906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I | Prepare Phase                | 4Sed     | 12/13/95    | 1/27/96      | 48           |                                         | -0                                       |                                         |                          |                                         |                                         |
| M4Cclian         30ed         1.30%         2.29%         30           Prepare fault         30ed         2.29%         31         6           Prepare fault         30ed         2.29%         310%         51           Prepare fault         30ed         2.19%         310%         51           Prepare fault         30ed         2.19%         53         51           Prepare fault         30ed         71         54         71           Prepare fault         30ed         71         54         71           Prepare fault         30ed         71         54         71           Prepare fault         1         30ed         71         56         51           Prepare fault         30ed         71         56         51         56           Prepare fault         1         71         56         51         56           Prepare fault         1         71         56         56         56           Prepare fault         1         71         56         56         56           Prepare fault         1         71         56         56         56           Prepare fault         1         71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I | Submit Phase<br>I            | pl       | 1/29/96     | 1/29/96      | 49           |                                         |                                          |                                         |                          |                                         |                                         |
| Propure date         3ed         22956         3106         5105         5305           Nacclelan         66d         4106         53196         53           Propure dati         30ed         4705         53196         53           Propure dati         30ed         71196         53         53           Propure dati         30ed         71196         53         53           Propue final         13ed         71196         53         53           Propue final         13ed         71196         53         54           Propue final         13ed         71196         54         56           Propue final         13ed         71196         54         56           Propue final         13e         71196         54         56           Propue final         14         71196         54         56           Propue final         14         71196         54         56           Propue final         54         71196         54         56           Propue final         14         71196         54         56           Propue final         54         7196         56           Propue final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 | McClellan<br>AFB review      | 30ed     | 1/30/96     | 2/29/96      | 50           |                                         |                                          |                                         |                          |                                         |                                         |
| McCatlan         60d         41/96         5/31/96         5/3           Prepare draft         30d         5/31/96         6/30         3/3           Prepare fraid         13d         7/196         5/31/96         5/3           Prepare fraid         13d         7/196         5/31/96         5/3           Prepare fraid         13d         7/196         12/3         5/3           Prepare fraid         13d         7/196         12/3         5/3           Prepare fraid         13d         7/196         12/3         5/3           Preser         1d         7/196         12/3         5/4         1           Preser         1d         7/196         5/4         1         1           Preser         1d         7/196         5/4         1         1           Preser         1d         7/196         5/4         1         1         1           Preser         1d         7/196         5/3         5/3         1         1         1           Preser         1d         7/196         5/3         5/3         1         1         1           Preser         1d         7/196         5/3 <t< td=""><td>1</td><td>Prepare draft<br/>conv</td><td>30ed</td><td>2/29/96</td><td>3/30/96</td><td>51</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 | Prepare draft<br>conv        | 30ed     | 2/29/96     | 3/30/96      | 51           |                                         |                                          |                                         |                          |                                         |                                         |
| Fraguer daral         30el         5/31/96         6/30/96         5/3           Ageoryreview         30el         7/196         7/31/96         5/3           Ageoryreview         30el         7/196         7/31/96         5/3           Preser final         1/3el         7/31/96         8/15/96         5/3           Preser final         1/3el         7/196         8/15/96         5/3           Preser final         1/3el         7/196         8/15         1           Ord/base         1/a         7/196         5/4         1         1           Ord/base         1/a         7/196         5/4         1         1           Enallatyonu of         6.33         7/196         9/25/96         6/1         1         1           Enallatyonu of         6.33         7/296         9/25/96         6/1         1         1           Enallatyonu of         6.33         9/26/96         1/1/97         6/2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 | McClellan<br>AFB and         | 60ed     | 4/1/96      | 5/31/96      | 52           | ~~~~                                    | []<br>,                                  |                                         |                          |                                         |                                         |
| Agensy review     30d     71/96     731/96     54       Propuer final     15d     731/96     8/15/96     54       Propuer final     15d     731/96     8/15/96     53       Propuer final     15d     731/96     8/15/96     54       Propuer final     15d     71/96     8/19     54       Off base     1d     7/196     7/196     54       Extraction     1d     7/196     7/196     58,560       Extraction     1d     7/196     7/196     58,560       Extraction     1d     7/196     7/196     58,560       Extraction     1d     7/196     925/96     58,560       Extraction     13d     023/96     61     54       Data     13d     023/96     61     54       Data     13d     023/96     61     54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 | Prepare draft<br>final       | 30ed     | 96/16/5     | 6/30/96      | 53           |                                         |                                          |                                         |                          |                                         |                                         |
| Prepare final         15d         731/96         815/96         53           Phase 1         385a         711/96         12/1007         1           Phase 2         385a         711/96         12/1007         1           Phase 1         385a         711/96         711/96         54           Profibese         1d         711/96         711/96         54           Off base 1/d         711/96         711/96         54           extraction         1d         711/96         54           Extraction         2d         972/96         972/96           Final layout of         52d         972/96         10/25/96           Past         10         10/25/94         61           Installation/In         12/04         10/25/96         10/25/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Agency review<br>draft final | 30ed     | 96/1/L      | 7/31/96      | 54           |                                         |                                          |                                         |                          |                                         |                                         |
| Phase 2         36sd         71196         122097           Immonitoring         1d         71196         71196         54           Offbase         1d         71196         71         54           Immonitoring         1d         71196         74           Immonitoring         1d         71196         54           Offbase         1d         71196         54           Offbase         1d         71196         54           Offbase         1d         71196         54           Extraction         1d         71196         54           Extraction         62d         72596         58,59,60           Final layout of         62d         71296         92,59,60           Pataliation/Im         120d         10,23,96         61           Data         1002896         4/1197         62           Data         002896         4/1197         62           Attendition/Im         120d         10,2896         4/1197           Data         Mitetone         Summary         Non-rited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 | Prepare final<br>Phase 1     | 15ed     | 7/31/96     | 8/12/96      | 55           |                                         | 0                                        |                                         |                          |                                         |                                         |
| Off base<br>monitoring         Id         7/1/96         7/1/96         54           monitoring         1d         7/1/96         54           off base<br>extraction         1d         7/1/96         54           Hot Spot         1d         7/1/96         54           extraction         62d         7/1/96         58,560           relation         22d         9/26/96         10/28/96         61           Installation/Int         120d         10/28/96         4/1/97         62           Data         2346/94         A/1/97         62         Sumary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | Phase 2                      | 3854     | 7/1/96      | 12/20/97     |              |                                         |                                          |                                         | -                        |                                         |                                         |
| Off base     1d     71/36     71/36     54       extraction     1d     71/36     54       extraction     1d     71/36     54       Hot Spot     1d     71/36     54       Final layout of 62d     7/2/36     9/25/36     58,59.60       Wepare for vieils     22d     9/26/36     10/25/36       Installation/Int     120d     10/28/36     4/11/37       Data     Critical     Milestone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | Off base<br>monitoring       | ld       | 96/1/2      | 7/1/96       | 54           |                                         | · ·                                      | · · · · · ·                             |                          |                                         |                                         |
| Hot Spot     1d     7/1/96     3d       extraction     extraction     2d       Final layout of     62d     7/2/96     9/26/96       Final layout of     62d     7/2/96     9/26/96       Prepare for<br>installation/Int     120d     10/28/96     4/11/97       Data     0.28/96     4/11/97     62       Stableter     23d     9/26/96     4/11/97       Stableter     120d     10/28/96     4/11/97       Data     0     10/28/96     4/11/97       Data     0     0/28/96     4/11/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I | Off base<br>extraction       | Pl       | 96/1/L      | 96/1/2       | 54           |                                         |                                          |                                         |                          |                                         |                                         |
| Final layout of big     62d     7/2/96     9/25/96     58,59,60       wells<br>wells     Prepare for<br>installation     22d     9/26/96     10/25/96     61       Installation/Int     120d     10/28/96     4/11/97     62       Data     Critical     Milestone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I | Hot Spot<br>extraction       | PI       | 7/1/96      | 1/1/96       | 54           |                                         |                                          |                                         |                          |                                         |                                         |
| Prepare for<br>installation         22d         9/26/96         10/25/96         61           Installation/Int         120d         10/28/96         4/11/97         62           Data         Data         Milestone         Summary         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | Final layout of<br>wells     | 62d      | 7/2/96      | 9/25/96      | 58,59,60     |                                         |                                          |                                         |                          |                                         |                                         |
| Installation/Int     120d     10/28/96     4/11/97     62       Data     Critical     Milestone     Summary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 | Prepare for<br>installation  | 22d      | 9/26/96     | 10/25/96     | 61           |                                         |                                          |                                         |                          |                                         |                                         |
| : 3/26/94 Critical Milestone ♦ Summary ♦ Noncritical Official Page 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | Installation/Int<br>Data     | 120d     | 10/28/96    | 4/11/97      | 62           | -                                       |                                          |                                         |                          |                                         |                                         |
| Page 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 1/26/94                      | 5        | ltical      |              | Milestone    |                                         | unmary                                   | Nonc                                    | initical                 |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |                              |          |             |              |              | Page 3                                  |                                          |                                         |                          |                                         |                                         |

l

ļ

i



.....





Į

Ì

| D         Name         Statut         Statut |             |                                             |            |            |               |                     | 1994                    | 1995 1996                        | 1997                         | 1998                       | 6661                                  | 2000            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------|------------|------------|---------------|---------------------|-------------------------|----------------------------------|------------------------------|----------------------------|---------------------------------------|-----------------|
| 1         Accurrent, for A.         123         4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 8                                           | Duration S | ched Start | Sched. Finish | Predecessors        | Qtr 2 Qtr 3 Qtr 4 Qtr 1 | Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qt | <u>a 3 Qu 4 Qu 1 Qu 2 Qu</u> | 3Qtr 4Qtr 1Qtr 2Qtr 3Qtr 4 | <u>2011 [Qtt 2] Qtt 3] Qtt 4] Qtt</u> | 1 Qtt 2 Qtt 3 Q |
| 2     Matter Pany Med Pan     14     4194     121794       3     Matter Pany Med Pan     134     4104     121794       4     Demain Allocation     316     4104     5104       5     Extension     306     4104     5104       6     Filter     3064     4104     5104       7     Extension     306     4104     5104       8     Filter     306     4104     5104       9     Filter     306     4104     2394       9     Proper DCO     204     4104     2394       10     Proper DCO     204     4104     2394       11     Proper DCO     204     4104     2394       12     Proper DCO     204     4104     2394       13     Proper SUC     204     4104     2394       14     Proper SUC     204     4104     2104       15     Proper SUC     204     4104     2104       16     Proper SUC     204     4104     2104       17     Proper SUC     204     4104     2104       18     Proper SUC     204     4104     2104       19     Proper SUC     204     4104     2104                                                                                                                                                                                                                                                                                                                       | - ×         | catox,                                      | 18224      | 40/174     | 3/26/01       |                     |                         |                                  |                              |                            | , per k                               |                 |
| 3         Justice Trans.         44         41784         217784           4         Density Remains         214         41784         20184         20184           5         Statics         3064         41794         21794         20184         20184           7         Statics         3064         41794         21794         21794         21794           7         Statics         3064         41794         21794         21994         21994           8         Statics         3064         41794         427844         2194         2194           9         Preprint Robust         204         41994         427894         2194         2194           10         Preprint Robust         204         41994         427894         2194         2194           11         Preprint Robust         204         41994         427894         2194         2194           11         Preprint Robust         204         4194         427894         2194         2194           11         Preprint Robust         2044         4194         42784         4194         4294           11         Preprint Robust         2044         4194         4294                                                                                                                              | 2           |                                             |            |            |               |                     |                         |                                  |                              |                            | -                                     |                 |
| 4         Densities<br>States         214         4074         5074         5074           3         States         304         4074         5074         104           7         States         306         4074         5074         104           7         States         306         4074         5074         104           7         States         306         4074         5074         104           8         States         306         4074         5074         104           9         Physics         306         4074         47284         104           10         Physics         206         4074         47284         104           11         Physics         206         4074         506         4074         506           11         Physics         206         4074         506         4074         506           12         Physics         206         4074         506         4074         506         4074           12         Physics         206         4074         50745.00.11.2.12         1           13         Physics         206         4074         506         4074         <                                                                                                                                                                            | m           | Master Plan/Work Plan<br>of Benedict Action | 3          | 4014       | 12/17/94      |                     |                         | •                                |                              |                            |                                       | •               |
| 3     Spendia     304     4104     5104     1       7     Spendia     304     4104     5104     1       8     Bat Use     304     4104     5104     1       9     Preper attained     204     4104     7104     1       10     Preper attained     204     4104     7264     1       11     Preper attained     204     4104     7264     1       12     Preper attained     204     4104     567.89.10.11.2.13     1       13     Preper attained     204     4104     567.89.10.11.2.13     1       14     Preveored     204     4104     567.89.10.11.2.13     1       15     Preveored     204     4104     567.89.10.11.2.13     1       16     Preveored     204     4104     567.89.10.11.2.13     1       17     Preveored     204     4104     567.89.10.11.2.13     1       18     Preveored     204     4104     567.89.10.11.2.13     1       19     Preveored     204     1024     13     1     1       10     Preveored     204     1024     13     1     1       11     Preveored     204     1024 </td <td>-</td> <td>Develop Remedial<br/>Action Manter</td> <td>214</td> <td>10/17</td> <td>5/1/94</td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td>                                                                                                            | -           | Develop Remedial<br>Action Manter           | 214        | 10/17      | 5/1/94        |                     |                         |                                  |                              | ·                          |                                       |                 |
| 6         Transmin         3ed         41/94         51/94         1           7         Name         3ed         41/94         51/94         1           8         Name         3ed         41/94         51/94         1           9         May the DQA         2ad         41/94         4/28/94         1           10         May the DQA         2ad         41/94         4/28/94         1           11         May the DQA         2ad         41/94         4/28/94         1           12         Mayee Rath and         2ad         41/94         5.57.83.10.11.12.3         1           13         Mayee Role         2ad         41/94         5.57.83.10.11.12.3         1           13         Mayee Role         3ad         41/94         5.57.83.10.11.12.3         1           14         Develop remediat         3ad         5.57.83.10.11.12.3         1         1           15         Mayee Role         3ad         5.57.83.10.11.12.3         1         1           16         Mayee Role         3ad         5.57.83.10.11.12.3         1         1         1           16         Mayee Role         3ad         5.57.83.10.11.12.3                                                                                                                                           | 5           | Extraction<br>Svatem                        | 30ed       | 4/1/94     | 5/1/94        |                     |                         |                                  |                              |                            |                                       |                 |
| 7     Battline     30el     4104     5104     1       8     Calaction     30el     4194     5104     1       9     Prepare ROOR     20el     4194     42844     1       10     Prepare ROOR     20el     4194     42844     1       11     Prepare ROOR     20el     4194     42844     1       12     Prepare Roor     20el     4194     42844     1       13     Prepare Roor     20el     4194     42844     1       14     Densare Roor     20el     4194     5184     1       15     Reserver Roor     30el     4194     5194     1       16     Densare Roor     30el     4194     5194     1       17     Densare Roor     30el     4194     5194     1       18     McCellian AFB     30el     6194     12244     1       19     Prepare Roor     30el     11294     12244     1       20                                                                                                                                                                                                                                                                                                                    | 6           | Treatment<br>System                         | 30ed       | 4/1/94     | 5/1/94        |                     | <br>                    |                                  | <b>-</b>                     |                            |                                       |                 |
| 8         Cultation         30el         4/134         5/154         1           9         Proper DOCs         20         4/134         4/2834         1           10         Proper Health and<br>Suffyyum         206         4/134         4/2834         1           11         Proper DOCs         206         4/134         4/2834         1           12         Proper DOLP         206         4/134         5/5/5.0.01.1.1.2.13         1           12         Proper DOLP         206         4/134         5/5.7.6.0.01.1.1.2.13         1           13         Proper SAP         30ed         5/7.3.6.9         1         1         1           13         Proper SAP         30ed         5/7.3.6.9         1         1         1           14         Derecipe media         30ed         6/134         5/5.7.6.9         1         1           15         Proper SAP         30ed         6/134         1         1         1         1           16         McCrieflan AFB         30el         6/134         1         1         1         1         1           17         Proper echt final         30el         1/2294         18         1                                                                                                                                           | -           | Ead Use<br>System                           | 30ed       | 4/1/94     | 5/1/94        |                     |                         |                                  |                              |                            |                                       |                 |
| 9     Frequer DQCa     204     4/194     4/28/4       10     Frequer DQCa     204     4/194     4/28/4       11     Prequer Henhn and     204     4/194     4/28/4       12     Frequer QUP     204     4/194     4/28/4       13     Frequer QUP     204     4/194     4/28/4       14     Develop remediat     304     4/194     5/194       15     Frequer QUP     3064     5/294     6/194       16     Develop remediat     3064     6/194     1/4       17     Prequer SAP     3064     6/294     1/4       18     McCHMMAR     1/4     0/194     1/2       19     Prepare dudi copy     3064     1/2/294     1/8       19     Prepare dudi final     3064     1/2/294     1/8       19     Prepare dudi final     3064     1/2/294     1/8       19     Prepare dudi final     3064     1/2/294     1/8       10     Prepare dudi final     3064     1/2/294     1/8       10     Prepare dudi final     3064     1/2/294     1/8       10     Prepare dudi final     3064     1/2/294     1/8       11     Prepare dudi final     3064     1/2/                                                                                                                                                                                                                                                     | <b>30</b>   | Collection<br>System                        | 30ed       | 4/1/94     | 5/1/94        |                     |                         |                                  |                              |                            |                                       |                 |
| 10     Prograe rationale     204     41/34     4/28/34       11     Prograe flatth and<br>sufery plan.     204     41/34     4/28/34       12     Prograe (APP     204     41/34     5/1/34       13     Prograe (APP     306     4/1/34     5/1/34       14     Derively mendial     306     5/2/34     1/1/34       15     Prograe (APP     3064     6/1/34     5/1/34       16     Derively working     3064     6/2/34     1/2/34       17     Prograe (APP     3/04     8/2/34     1/3       18     McCellin AFB     3/064     8/2/34     1/2/34       19     Prograe (API     3/054     1/2       20     Agencyl review working     3/054     1/2/34       19     Prograe (API     3/054     1/2       20     Agencyl review of final     3/054     1/2       19     Prograe (API     1/2     1/2       20     Agencyl review of final     3/064     1/2/2/34     1/2                                                                                                                                                                                                                     | 6           | Prepare DQOs                                | 204        | 4/1/94     | 4/28/94       |                     |                         |                                  |                              |                            |                                       |                 |
| 11     Regnere Health and 20d     4/1/34     4/28/94     1       12     Preparee (AzP)     20d     4/1/34     4/28/94     1       13     Prepare SAP     30ed     4/1/34     5/1/34     5/1/34       14     Decineroper mediati     30ed     5/2/34     6/1/94     5/5/35/10/11/21/3       15     Reproversion     30ed     5/2/34     6/1/94     1/4       16     McChalan AFB     30ed     6/2/94     7/2/94     1/3       17     Prepare darfi copy     30ed     6/2/94     7/2/94     1/3       18     McChalan AFB     30ed     10/2/94     1/3     1       20     Agencian review verting     30ed     10/2/94     1/3     1       20     Agencian review verting     30ed     1/2/2/94     1/3     1       20     Agencian review verting     1/2/2/94     1/3     1     1 </td <td>10</td> <td>Prepare rationale</td> <td>204</td> <td>4/1/94</td> <td>4/28/94</td> <td></td> <td><br/>- —</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                               | 10          | Prepare rationale                           | 204        | 4/1/94     | 4/28/94       |                     | <br>- —                 |                                  |                              |                            |                                       |                 |
| 12     Propare GAPP     20d     41/94     428/94     1       13     Prepare SAP     30ed     41/94     51/94     61/94       14     Develop renediat     30ed     41/94     56.78.9.10.11.12.13       15     Submit RA Mater     1d     61/94     6.7/94     56.78.9.10.11.12.13       16     McColline ACP bane     30ed     6/294     7/294     11       16     McColline ACP bane     30ed     6/294     7/294     11       17     Prepare defi copy     30ed     6/294     7/294     16       18     McColline ACP bane     60ed     8/394     10/294     17       19     Prepare defi final     30ed     10/294     11/254     18       20     Agencia review     0fed     8/394     10/294     12/294       21     Prepare final     30ed     11/294     12/294     12/194       21     Prepare final     15ed     12/294     12/194     20                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =           | Prepare Health and<br>Safety plan           | 204        | 4/1/94     | 4/28/94       |                     |                         |                                  |                              |                            |                                       |                 |
| 13     Propere SAP     30cd     4/194     5/194     5/194     5/194       14     Develop remedial     30cd     5/294     6/194     5/194     5/134       15     Submiv RX Materie     1d     6/194     6/194     6/194     7/1213       16     McClellan AFB     30cd     5/294     6/194     7/294     1/14       17     Propare deaft copy     30cd     7/494     8/394     102     1       17     Propare deaft copy     30cd     7/494     8/394     102/394     1/1       18     McClellan AFB     30cd     10/3994     11/2/54     1/8     1       20     Propare deaft final     30cd     11/2/54     1/8     1     1       20     Fragmer deaft final     30cd     11/2/54     1/8     1     1       20     Fragmer deaft final     30cd     11/2/54     1/8     1       20     Fragmer deaft final     1/2/1/394     1/2/1/394     2/0     1       20     Fragmer deaft final     1/2/1/394     1/2/1/394     2/0     1       20     Fragmer deaft final     1/2/1/394     1/2/1/394     2/0     1       20     Fragmer deaft final     1/2/1/394     2/0     1/2/1/394<                                                                                                                                                                                                                           | 12          | Prepare QAPP                                | 204        | 4/1/94     | 4/28/94       |                     |                         |                                  |                              |                            |                                       |                 |
| 14         Develop remodelat         30cd         5/2/94         6/1/94         5.6.7.8.9,10.11.12.13         1           15         PlanWork Plan         1d         6/1/94         6/1/94         5.6.7.8.9,10.11.12.13         1           16         PlanWork Plan         1d         6/1/94         6/1/94         5.6.7.8.9,10.11.12.13         1           17         PlanWork Plan         30ed         6/2/94         7/2/94         1/3           17         Prepare draft copy         30ed         7/4/94         8/3/94         1/2           18         McCrellan AFB and cold         60ed         8/3/94         10/2/94         1/7           18         McCrellan AFB and cold         8/3/94         10/2/94         1/7         1           20         Agency review draft         30ed         11/2/94         1/2         1           20         Agency review draft         30ed         11/2/94         1/2         1         1           20         Agency review draft         30ed         11/2/94         1/2         1         1         1           20         Agency review draft         30ed         11/2/94         1/2         1         1         1           20                                                                                                        | 13          | Prepare SAP                                 | 30ed       | 4/1/94     | 5/1/94        |                     |                         |                                  |                              |                            |                                       |                 |
| 15     Submit RA Mater     1d     6/194     6/194     6/194     14       16     PharWock Plan     30d     6/294     7/294     13       17     Prepare draft copy     30ed     6/294     7/294     13       18     McClellan AFB and     60ed     8/394     10/294     17       19     Prepare draft final     30ed     1/1/294     11/2/24     18       20     Agency review draft     30ed     1/2/294     19     1       21     Prepare final     15d     1/2/194     12/1/194     20       21     Remedial Action     15d     1/2/1794     20     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4           | Develop remedial<br>action work plan        | 30ed       | 5/2/94     | 6/1/94 5      | 6,7,8,9,10,11,12,13 |                         |                                  |                              |                            |                                       |                 |
| I6         McClellan AFB         30cd         6/294         7/294         15         1           17         Prepare draft copy         30cd         7/494         8/394         10/294         15           18         McClellan AFB and<br>agencia review         60cd         8/394         10/294         17           19         Prepare draft final         30cd         11/254         18         1           20         Agency review draft         30cd         11/254         19         1           21         Prepare final         15cd         12/294         19         1           21         Remedial Action         15cd         12/1794         20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5           | Submit RA Master<br>Plan/Work Plan          | PI         | 6/1/94     | 6/1/94        | 14                  |                         |                                  |                              |                            |                                       |                 |
| 17         Prepare draft copy         30cd         7/4/94         8/3/94         16         1           18         McClellan AFB and<br>agencies review         60cd         8/3/94         10/2/94         17         1           19         Prepare draft final         30cd         10/3/94         11/2/54         18         1           20         Agency review draft         30cd         11/2/94         19         1           21         Prepare final         15cd         12/2/94         19         1           21         Prepare final         15cd         12/2/94         12         10           21         Prepare final         15cd         12/2/94         20         1           21         Remedial Action         15cd         12/2/94         20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2           | McClellan AFB<br>review working             | 30ed       | 6/2/94     | 7/2/94        | 15                  |                         |                                  |                              |                            |                                       |                 |
| I8         McClellan AFB and<br>agencies review<br>agency review draft         60ed         8/3/94         10/2/94         17         D           19         Prepare draft final         30ed         10/3/94         11/2/94         18         D           20         Agency review draft         30ed         11/2/94         19         D           21         Prepare final         15ed         12/2/94         19         D           21         Remedial Action         15ed         12/17/94         20         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17          | Prepare draft copy                          | 30ed       | 7/4/94     | 8/3/94        | 16                  |                         |                                  |                              |                            |                                       |                 |
| 19     Prepare draft final     30ed     10/3/94     11/2/54     18       20     Agency review draft     30ed     11/2/94     12/1/94       21     Prepare final     15ed     12/1/94     20       21     Remedial Action     15ed     12/1/94     20       Date: 3/2694     Ammary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18          | McClellan AFB and agencies review           | 60ed       | 8/3/94     | 10/2/94       | 17                  |                         |                                  |                              |                            |                                       |                 |
| 20     Agency review draft     30ed     11/2/94     19       21     Prepare final     15ed     12/17/94     20       21     Remedial Action     15ed     12/17/94     20       Date: 3/26/94     Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61          | Prepare draft final                         | 30ed       | 10/3/94    | 11/2/54       | 18                  |                         |                                  |                              |                            |                                       |                 |
| 21     Prepare final     15cd     12/17/94     20     0       Remedial Action     12/2/94     12/17/94     20     0       Date: 3/26/94     Critical     Millestone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02          | Agency review draft<br>final                | 30ed       | 11/2/94    | 12/2/94       | 61                  |                         | -                                |                              | -                          |                                       |                 |
| Date: 376.94 Critical Critical Milestone  Summary  Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2           | Prepare final<br>Remedial Action            | ISed       | 12/2/94    | 12/17/94      | 20                  | 0                       |                                  |                              |                            |                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ute: 3/26/9 | 2                                           | CHER       | <b>.</b>   |               | Millestone          |                         | Summary                          |                              | Noncritical                |                                       | 1               |

(

|         |                                        | F        |              |               | McClellan AF | LFB GWOU RL/FS Alternative 5            |
|---------|----------------------------------------|----------|--------------|---------------|--------------|-----------------------------------------|
| 9       | Name                                   | Duration | Sched. Start | Sched. Finish | Predecessors | 1774 1774 1774 1774 1774 1774 1774 1774 |
| 22      | ,                                      |          |              |               |              |                                         |
| 2       | Utility Mapping                        | ¥        | 10/3/94      | 2/9/95        |              |                                         |
| 24      | Map Utilities<br>(utilmap)             | 94d      | 10/3/94      | 2/9/95        | 18           |                                         |
| 33      |                                        |          |              |               |              |                                         |
| 36      | On-base/Off-base<br>production wells   | 224      | 10/3/94      | 11/2/94       |              | Þ                                       |
| 27      | Prepare Base Well<br>18 abandonment    | 1 Sed    | 10/3/94      | 10/18/94      | 18           |                                         |
| 28      | Prepare production<br>well contingency | 30ed     | 10/3/94      | 11/2/94       | 18           |                                         |
| 29      |                                        |          |              |               |              |                                         |
| R       | Extraction System                      | 12514    | 10/3/94      | 1/20/99       |              |                                         |
| E       | Salicontractor<br>procurement          | 1164     | 10/3/94      | 3/13/95       |              |                                         |
| 32      | Specify system<br>requirements         | 15ed     | 10/3/94      | 10/18/94      | 18           | -                                       |
| 33      | ldentify<br>performance                | 1 Sed    | 10/18/94     | 11/2/94       | 32           |                                         |
| 34      | Procure BOAs<br>w/ 3 subs for          | 94d      | 11/2/94      | 3/13/95       | 33           |                                         |
| 35      | Phase 1                                | 4884     | 10/3/94      | 8/15/96       |              |                                         |
| 36      | Off base<br>monitoring                 | PI       | 10/3/94      | 10/3/94       | 18           |                                         |
| 37      | Off base<br>extraction                 | P        | 10/3/94      | 10/3/94       | 18           |                                         |
| 38      | Hot Spot<br>extraction                 | PI       | 10/3/94      | 10/3/94       | 18           |                                         |
| 66      | Final layout of<br>wells               | 62d      | 10/4/94      | 12/28/94      | 36,37,38     |                                         |
| 6       | Prepare for<br>installation            | 22d      | 12/29/94     | 1/27/95       | 39           |                                         |
| 41      | Installation/Int<br>Data               | 1804     | 3/14/95      | 11/20/95      | 34,40        |                                         |
| 42      | Abandon Base<br>well 18                | 1 Sed    | 11/21/95     | 12/6/95       | 27,28,41     |                                         |
| Date: 3 | 126/94                                 | Ë        |              |               | Milestone 🔶  | Summary Noncritical                     |
|         |                                        |          |              |               |              | Page 2                                  |

| Mark         Data         Mark         Mark <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>1994</th><th>1995</th><th>1996</th><th>1997</th><th>8661</th><th>6661</th><th>2000</th><th>П</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                              |          |             |              |              | 1994                  | 1995                | 1996                    | 1997                | 8661                | 6661                | 2000                | П |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------|----------|-------------|--------------|--------------|-----------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|---|
| Meaning         Id         44401         01001         000           meaning         Id         41397         41397         00           meaning         Id         41397         41397         01           meaning         Id         41997         01         01         01           meaning         Id         41997         01         01         01         01           meaning         Id         41997         01         01         01         01         01           meaning         Id         41997         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + | Name                         | Duration | Sched Start | Sched. Funsh | Predecessors | Qtt 2   Qtt 3   Qtt 4 | Qr 1 Qr 2 Qr 3 Qr 4 | Qtt 1 Qtt 2 Qtt 3 Qtt 4 | Qu 1 Qu 2 Qu 3 Qu 4 | Qr 1 Qr 2 Qr 3 Qr 4 | Qu 1 Qu 2 Qu 3 Qu 4 | Qr 1 Qr 2 Qr 3 Qr 4 | 4 |
| Remembers         1d         41:557         41:577         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57         41:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Resolve<br>uncertainty in    | PI       | 4/14/97     | 4/14/97      | 03           |                       |                     |                         |                     |                     |                     |                     |   |
| Results         I         4         41037         41057         65           Results         I         4         41337         41657         65           Results         I         4         41337         41537         65           Results         I         4         41337         41537         65           Results         I         4         41397         65         65           Results         I         4         41837         41837         65           Results         I         4         41837         65         65           Results         I         65         42137         65         65         10           Results         I         65         42137         65         10         10           Results         I         65         11357         10         10         10         10           Result         I         105         12557         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - | Further reduce               | PI       | 4/15/97     | 4/15/97      | 64           |                       |                     |                         |                     |                     |                     | _                   |   |
| Review is<br>leave         I         41/37         66           Review is<br>leave         16         41/37         6/37         6/3           Review is<br>leave         16         41/37         6/37         6/3           Review is<br>leave         0         4/1877         6/3         6/37         6/3           Preventions         0         4/1877         6/37         6/3         6/37         6/3           Preventions         366         6/37         7/697         7/3         6/3         6/37         6/3           Accelutan         366         1/377         8/677         7/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3         6/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | uncertanty in<br>Readive     | PI       | 4/16/97     | 4/16/97      | 65           |                       |                     |                         |                     |                     |                     |                     |   |
| Reserved<br>Reserved<br>Reserved<br>Reserved<br>Public<br>Public<br>Public<br>Public<br>Reserved<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Public<br>Publ | _ | uncertainty in               | 2        |             |              | ;            |                       |                     |                         |                     |                     |                     |                     |   |
| Members<br>Internet         1d         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         418-07         70-07         86-07         70-07         86-07         70-07         86-07         70-07         86-07         70-07         86-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07         70-07          70-07         70-07<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Resolve<br>uncertainty in    | PI       | 4/17/97     | 4/17/97      | 99           |                       |                     |                         |                     |                     |                     |                     |   |
| Implement         Old         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697         41.697<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷ | Resolve                      | PI       | 4/18/97     | 4/18/97      | 67           |                       |                     |                         |                     |                     |                     |                     |   |
| Theorem         4:34         4:21.97         6:597         6:597         6:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         5:597         7:597         566         7:597         7:597         7:597         7:597         7:397         7:397         7:397         7:397         7:397         7:397         7:397         7:397         7:397         7:337         3:66/7         7:397         7:337         3:66/7         7:397         7:33         3:66/7         7:397         7:33         3:66/7         7:397         7:33         3:66/7         7:397         7:33         3:66/7         7:337         3:337         3:337         3:337         3:337         3:337         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336         3:336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A | Implement<br>contineency     | 8        | 4/18/97     | 4/18/97      | 68           |                       |                     |                         |                     |                     |                     |                     |   |
| 3 share     1d     6.597     6.597     5.97     7.10       3 share     1d     5.96     6.697     7.697     7.1       Alschellan     30e     6.697     7.697     7.1       Payne statist     30e     7.779     8.697     7.1       McChlan     60e     8.697     10.597     7.1       McChlan     60e     8.697     10.597     7.1       McChlan     90e     11.597     12.597     7.1       Ansier     13     12.597     12.597     7.1       Ansier     13     12.597     12.597     7.1       McChlan     156     12.597     12.509     7.8       Manor     1d     11.597     7.3009     7.8       Manor     1d     11.597     7.3019     7.8       Manor     1d     11.597     7.3     7.8       Manor     1d     11.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Prepare Phase                | 45ed     | 4/21/97     | 6/5/97       | 69           |                       |                     |                         |                     |                     |                     |                     |   |
| Machina         30el         66/37         7/37         8/697         7           Apparedat         30el         6/697         7/397         8/697         7           Papare         641         30el         7/397         8/697         7           Machina         660el         8/670         10.597         7         7           Machina         660el         8/670         10.597         7         7           Apparedat         30el         11/557         12.5097         7         7           Apparetical         154         12.5097         7         7         8           Paparetical         154         12.2097         7         7         8         8           Machina         154         12.5097         7         7         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷ | Submit Phase<br>2            | PI       | 6/3/97      | 6/5/97       | 02           |                       |                     |                         |                     |                     |                     |                     |   |
| Organe det         30ed         7737         8.697         773           Ambre det         30ed         7737         8.697         10.597         73           MacCellan         60ed         8.697         10.597         73         34           Paper det         30ed         10.597         11.597         11.597         12.597         73           Paper final         13ed         11.597         12.5097         76         76         11.597         71           Prepare final         13ed         11.597         11.597         72.0499         76         76         11.597         77         11.597         77         11.597         77         11.597         77         11.597         77         11.597         77         11.597         77         11.597         77         11.597         77         11.597         77         11.597         75         11.597         75         11.597         7.5         11.597         7.5         11.597         7.5         11.597         7.5         11.597         7.5         11.597         7.5         11.597         7.5         11.597         7.5         11.597         7.5         11.5         11.597         7.5         11.5         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | McClellan<br>AFB review      | 30ed     | 6/6/97      | 7/6/97       | <b>17</b>    |                       |                     |                         |                     |                     |                     |                     |   |
| Afficial         60d         8.67         10.591         7.3           Apple and<br>Papers         30d         11/597         12/597         7.3           Amount         30d         11/597         12/597         7.3           Amount         30d         11/597         12/597         7.3           Propers         1.3         4.44         11/597         7.2           Propers         1.44         11/597         7.2         7.2           Propers         1.44         11/597         7.3         7.2           Propers         1.44         11/597         7.3         7.2           On base         1.4         11/597         7.3         7.2           On base         1.4         11/597         7.3         7.2           Mount         6.3         11/597         7.3         7.2           Mount         6.3         11/597         7.3         7.2           Mount         6.3         11/597         7.3         7.3           Mount         6.3         11/597         7.3         7.3           Mount         6.3         11/597         7.3         7.3           Mount         2.3         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Prepare draft<br>coov        | 30ed     | L6/L/L      | 8/6/97       | 72           |                       |                     |                         |                     |                     |                     |                     |   |
| France dark         30ed         10.697         11.597         74           Agency version         30ed         11.597         12.597         73           Agency version         30ed         11.597         12.597         73           Agency version         30ed         11.597         12.597         73           Phase 3         444         11.597         12.597         73           Phase 3         444         11.597         71.5095         73           On base         1d         11.597         73095         73           Monoidering         1d         11.597         73           Monoidering         1d         11.597         73           Monoidering         1d         11.597         73           Phase 3         33.98         81           Monoidering         1d         11.597           Efail layout of         52d         12.998         73           Data         1d         11.1098         11.11098         83           Data         Leadive         1d         11.1198         11.11098         11.1109           Muscritiny in         1d         11.1198         11.11109         83         144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | McCiellan<br>AFB and         | 60ed     | 8/6/97      | 10/5/97      | 73           |                       |                     |                         |                     |                     |                     |                     |   |
| Agency review         30cd         11/597         72           Panes         Isol         12/597         72           Panes         Isol         12/597         72           Panes         Isol         12/597         72           Panes         Isol         12/597         72           Panes         Isol         11/597         73           Panes         Isol         11/597         73           On base         Id         Il/597         73           Contention         6dat         11/1098         81           Data         Isol         3/398         81           Data         Il/11/108         81         Il/11/108           Uncertainty in         Id         Il/11/1098         83           Use of the motion         Amonty         Noncritical         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Prepare draft<br>final       | 30ed     | 10/6/97     | 11/5/97      | 74           |                       |                     |                         | <b>833</b>          |                     |                     |                     |   |
| Prepare final         15d         12597         122097         76           Place 3         4448         11/597         72099         76           Place 3         4448         11/597         72099         76           Monitoring         1d         11/597         73         73           Ob base         1d         11/597         73         73           Ob base         1d         11/597         73         73           Cob base         1d         11/597         73         73           Prepare for         22d         21/30/8         73/80         81           Prepare for         22d         21/30/8         73/80         81           Data         1d         11/10/98         82         73/80           Data         1d         11/11/98         81         9           Data         1d         11/11/98         83         9           Data         1d         11/11/98         81         9           Data         1d         11/11/98         81         9           Data         1d         11/11/98         11/11/98         11/11/98           Data         1d         Notroti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Agency review<br>draft final | 30ed     | 11/5/97     | 12/5/97      | 75           |                       |                     |                         |                     |                     |                     |                     |   |
| Place 3         444         115.97         712.095         712.095           On base<br>monitoring<br>monitoring<br>extraction         1d         115.97         115.97         73.095           On base<br>extraction         1d         115.97         115.97         73.045           On base<br>extraction         1d         115.97         115.97         73.05           Final layout of<br>witch<br>installation         52d         12.098         79.80         81           Physe for<br>witch<br>installation         22d         22.098         33.998         81           Data<br>latation/Int         180d         34.98         11/10.98         82           Data<br>latation/Int         180d         34.98         11/11.98         83           Data<br>latation/Int         180d         34.98         11/11.98         83           Muestoric         1d         11/11.98         11/11.98         11/11.98           Austoric         1d         11/11.98         Miletorie         Sommity         Norritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Prepare final<br>Phase 2     | 15ed     | 12/5/97     | 12/20/97     | 76           |                       |                     |                         |                     |                     |                     |                     |   |
| On base<br>monitoring         Id         11/5/97         75           monitoring         Id         11/5/97         11/5/97         75           monitoring         Id         11/5/97         11/5/97         75           constantion         6.2d         11/6/97         1/30/98         79,80           Final layout of         6.2d         11/6/97         1/30/98         81           Prepare for         2.2d         2.2/98         3/3/98         81           Installation/Int         180d         3/4/98         11/10/98         82           Data         1d         11/11/98         83         11/10/98           Kesolve         1d         11/11/98         83         11/11/98           Value         Antos         Mileatone         Summary         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Phase 3                      | 11       | 11/5/97     | 7/20/99      |              |                       |                     |                         | L                   |                     |                     |                     |   |
| On base         1d         11/5/97         1/5         7           carraction         1d         11/5/97         1/5         7           carraction         62d         11/6/97         1/30/98         79,80           Final layout of<br>wells         62d         11/6/97         1/30/98         79,80           Prepare for<br>installation/Int         180d         3/4/98         11/10/98         81           Data         11/11/98         11/11/98         83         81           Outcat         Intellation/Int         180d         3/4/98         11/11/98         83           Outcat         Critical         Milestone         Summary         Norcritical         Norcritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | On base<br>monitoring        | PI       | 11/5/97     | 11/5/97      | 75           |                       |                     |                         |                     |                     |                     |                     |   |
| Final layout of 62d     11/6/97     1/30/98     79,80       wells     Prepare for     22d     2/2/98     3/3/98     81       Prepare for     22d     2/2/98     3/3/98     81       Installation     180d     3/4/98     11/10/98     82       Data     14     11/11/98     11/11/98     83       Resolve     1d     11/11/98     83       uncertainty in     1d     11/11/98     83       V3694     Critical     Milleatone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | On base<br>extraction        | P1       | 11/5/97     | 11/5/97      | 75           |                       |                     |                         |                     |                     |                     |                     |   |
| Prepare for<br>installation/Int         22d         2/2/98         3/3/98         81           Installation/Int         180d         3/4/98         11/10/98         82           Data         Data         11/11/98         11/11/98         83           Viscolve         1d         11/11/98         83           Accolve         1d         11/11/98         83           Viscolve         1d         Nincertainty in         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Final layout of wells        | 62d      | 11/6/97     | 1/30/98      | 79,80        |                       |                     |                         |                     | <b>1773</b>         |                     |                     |   |
| Installation/Int     180d     3/4/98     11/10/98     82       Data     Data     11/11/98     83       Resolve     1d     11/11/98     83       V36/94     Critical     Mileatone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Prepare for<br>installation  | 22d      | 2/2/98      | 3/3/98       | 8            |                       |                     |                         |                     |                     |                     |                     |   |
| Resolve     Id     II/11/98     83       uncertainty in     Critical     II/11/98     83       V36/94     Critical     Mileatone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Installation/Int<br>Data     | 1804     | 3/4/98      | 11/10/98     | 82           |                       |                     |                         |                     |                     |                     |                     |   |
| V36/94 Critical Critical Milestone   Noncritical Noncritical   Page 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Resolve<br>uncertainty in    | PI       | 11/11/98    | 11/11/98     | 83           |                       |                     | _ • • •                 |                     |                     |                     |                     |   |
| Page 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 126/94                       | 5        | tical       |              | Milestone    |                       | Summar              |                         | Non                 | critical            |                     |                     | ł |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                              | •        |             |              |              | Page                  |                     |                         |                     |                     |                     |                     |   |



ţ



)



{

| max         Duration         State         State <t< th=""><th>mt         Database         <thdatase< th=""> <thdatabase< th=""> <thdataba< th=""><th>ļ</th><th></th><th></th><th></th><th></th><th>McClellan Al</th><th>FB GWOU I</th><th><b>RI/FS Alter</b></th><th>native 6</th><th></th><th></th><th></th><th></th><th></th></thdataba<></thdatabase<></thdatase<></th></t<> | mt         Database         Database <thdatase< th=""> <thdatabase< th=""> <thdataba< th=""><th>ļ</th><th></th><th></th><th></th><th></th><th>McClellan Al</th><th>FB GWOU I</th><th><b>RI/FS Alter</b></th><th>native 6</th><th></th><th></th><th></th><th></th><th></th></thdataba<></thdatabase<></thdatase<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |               | McClellan Al          | FB GWOU I                    | <b>RI/FS Alter</b>        | native 6                    |                        |                                  |                |                           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|---------------|-----------------------|------------------------------|---------------------------|-----------------------------|------------------------|----------------------------------|----------------|---------------------------|---------|
| Officient State         4184         4264         32611           Officer State         121         4194         3261           Marce Panvork film         184         4194         31734           Marce Panvork film         184         4194         31734           Marce Panvork film         184         4194         31734           Marce Panvork film         184         4194         5194           Panvork film         314         5194         1914           Panvork film         3164         3194         1914           Panvork film         3164         3194         1914           Panvork film         3164         3194         1914           Panvork film         3164         4194         42844           Panvork film         204         4194         42844           Panvork film         204         4194         42844           Panvork film         204         4194         4384           Panvork film         204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mutter F, Montal Mark         1034         4.044         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040         2.040 </th <th>ź</th> <th>Je start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start s</th> <th>Duration</th> <th>Sched Start</th> <th>Sched. Finish</th> <th>Predecessors</th> <th>1994<br/>Otr 21Otr 31Otr 41Ot</th> <th>1 1 Ort 2 1 Ort 3 1 Ort 4</th> <th>000 1 (000 2 (000 3 (000 4)</th> <th>04 1 Ott 2 Ott 3 Ott 4</th> <th>1998<br/>One 11 One 21 One 21 One</th> <th>40h 10h 20h 40</th> <th>2000<br/>2010-210-210-210-</th> <th>Ę</th> | ź     | Je start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start start s | Duration | Sched Start | Sched. Finish | Predecessors          | 1994<br>Otr 21Otr 31Otr 41Ot | 1 1 Ort 2 1 Ort 3 1 Ort 4 | 000 1 (000 2 (000 3 (000 4) | 04 1 Ott 2 Ott 3 Ott 4 | 1998<br>One 11 One 21 One 21 One | 40h 10h 20h 40 | 2000<br>2010-210-210-210- | Ę       |
| Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name         Mater Periver, Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matrix         Matrix         Matrix         Matrix         Matrix         Matrix           Reserve having them         214         4.09         9194         11734           Reserve having them         214         4.09         9194         11734           Reserve having them         214         4.09         9194         11734           Reserve having them         306         4.194         9194         11734           Reserve having them         306         4.194         9194         11344           Reserve having the state         308         4.194         4.2894         1144           Reserve having the state         308         4.194         4.2894         114           Reserve having the state         309         10914         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25    | ternative 6 (MCL, LGAC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1822d    | 4/1/94      | 1 3/26/01     |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Unstant March         Use         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean         Use         4194         12134           Develop Research         214         4004         5134           Develop Research         210         4104         5134           Develop Research         210         4104         5134           Status         2004         4104         5104           Textual         2004         4104         5104           Status         2004         4104         5104           Status         2004         4104         5104           Develop research         200         4104         5204           Status         2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |               |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Drive blandin         214         4708         5018         2019         5018         5018           Examine         2001         41794         5179         5179         5179           Station         2001         41794         5179         5179         5179           Station         2004         41794         5179         5179         5179           Station         2014         41794         51794         119         51794           Station         2014         41794         422944         119         51794           Station         2014         41794         422944         114         114           Propare Trichark         2014         41794         51794         114           Propare SAD         2004         41794         51794         111           Propare SAD         2004         41794         51794         111           Propare SAD         2004         41794         51794         111           Propare SAD         2004         112394         113         114           Propare SAD         2004         112394         113         114           Propare SAD         2004         112394         113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Periodic biolity         214         4094         5034         5034           Spansin         Boild         4019         5194         5194           Spansin         Boild         4109         42894         5194           Spansin         204         4109         42894         5194           Priprie Christia         204         4109         42894         5194           Spansin         204         4109         42894         51450,101,112,11           Priprie Christia         204         4109         42894         51450,101,112,11           Priprie Christia         204         4109         5204         1019         5149           Priprie Christia         106         1039         11039         1209         1209           Priprie Christia         106         10394         11299         12199         1           Priprine Christia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Master Plan/Work Plan<br>of Remedial Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1864     | 4/1/4       | 1 12/17/94    |                       |                              |                           |                             |                        |                                  | · .            | •                         |         |
| Standing         Sold         4134         51/34         1           Standing         Sold         41/34         42/34         1           Standing         20d         1/34 </td <td>State         30al         4104         5104         5104         5104           Team         8ai         4104         5104         5104         5104           Team         8ai         4104         5104         5104         5104           Statilize         8ai         4104         5104         5104         5104           Statilize         3ai         4104         5104         5104         5104           Statilize         3ai         4104         5104         5104         5104           Proper Infance         2ai         4104         4284         5104         5104           Proper Rubits         2ai         4104         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         &lt;</td> <td></td> <td>Deve lop Remodial<br/>Action Master</td> <td>21d</td> <td>4/1/94</td> <td>1 5/1/94</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                  | State         30al         4104         5104         5104         5104           Team         8ai         4104         5104         5104         5104           Team         8ai         4104         5104         5104         5104           Statilize         8ai         4104         5104         5104         5104           Statilize         3ai         4104         5104         5104         5104           Statilize         3ai         4104         5104         5104         5104           Proper Infance         2ai         4104         4284         5104         5104           Proper Rubits         2ai         4104         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         567.60.01.11.11.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Deve lop Remodial<br>Action Master                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21d      | 4/1/94      | 1 5/1/94      |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Triating         Rote         41/34         51/34         51/34           Particle         3064         41/36         51/34         1           Factorins         3064         41/36         51/34         1           Coloration         3064         41/36         51/34         1           Proper (Hills and 200         200         41/36         42/364         1           Proper (Hills and 200         201         41/364         42/364         1           Proper (AVT*         204         41/364         5/3241         1           Proper (AVT************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Streamer         3601         41194         5104         5104           Streamer         3601         41194         5104         5104           Streamer         3061         41194         5194         5104           Description         3061         41194         42804         5104           Proper EXAM         206         41194         42804         5104           Proper EXAM         206         41194         42804         565,89,10.1112.13           Proper EXAM         3064         42994         42894         565,89,10.1112.13           Proper EXAM         3064         5299         61.94         56,78,9,10.1112.13           Develop meedial         3064         5293         60.94         56,78,9,10.1112.13           Develop meedial         3064         5294         19         56,78,9,10.1112.13           Develop meedial         3064         5,78,9,10.1112.13         1         1           Mon Collina         3064         61.99         5,67,89,10.1112.13         1           Mon Collina         3064         61.94         13         1         1           Mon Collina         3064         10.94         12.99         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Extraction<br>Svitem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30ed     | 4/1/94      | 1 5/1/94      |                       | <br>                         |                           |                             |                        |                                  | -              |                           |         |
| Ead Use         30cd         41/94         51/34         1           District         30cd         41/94         51/94         1           Prepare Totalic         30cd         41/94         51/94         1           Collection         30cd         41/94         51/94         1           Prepare Dotto         20d         41/94         42/894         1           Prepare Finitualis         20d         41/94         42/894         1           Prepare Finitualis         20d         41/94         42/894         1           Prepare CAPP         30cd         41/94         42/894         1           Prepare CAPP         30cd         41/94         55/82/10.11.12.13         1           Prepare CAPP         30cd         41/94         55/82/10.11.12.13         1           Prepare CAPP         30cd         47/94         63/94         1           Prepare CAPP         30cd         7/294         1         1           McCollan AFD         30cd         7/294         1         1           McCollan AFD         30cd         1/12/94         1         1           McCollan AFD         30cd         1/12/94         1         1 </td <td>Edition         304         4/154         5/154         1           System         304         4/154         5/154         1           Collection         304         4/154         5/154         1           Collection         304         4/154         5/154         1           Prepare Hauth and         204         4/154         4/2594         1           Prepare Kollin         3064         5/78.0.0.11.1.2.1         1           Prepare Kollin         3064         5/78.0.0.11.2.1.2.1         1           Prepare Kollin         3064         5/78.0.0.1.2.1.1.2.1         1           Prepare Kollin         3064         5/794         1         1           McCellun Artificial         3064         5/794         1         1           McCellun Artificial         3064         5/794         1         1           McCellun Artificial         3064         1/294         1         1</td> <td></td> <td>Treatment</td> <td>30ed</td> <td>4/1/94</td> <td>5/1/94</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· .</td> <td></td> <td>• • • •</td>                                                                                                                                                                                                                                                                                                                                                                                                | Edition         304         4/154         5/154         1           System         304         4/154         5/154         1           Collection         304         4/154         5/154         1           Collection         304         4/154         5/154         1           Prepare Hauth and         204         4/154         4/2594         1           Prepare Kollin         3064         5/78.0.0.11.1.2.1         1           Prepare Kollin         3064         5/78.0.0.11.2.1.2.1         1           Prepare Kollin         3064         5/78.0.0.1.2.1.1.2.1         1           Prepare Kollin         3064         5/794         1         1           McCellun Artificial         3064         5/794         1         1           McCellun Artificial         3064         5/794         1         1           McCellun Artificial         3064         1/294         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30ed     | 4/1/94      | 5/1/94        |                       |                              |                           |                             |                        |                                  | · .            |                           | • • • • |
| Collection         30el         41.94         31.94         41.94         31.94         41.94         42.894         1           Prepare EQCo.         204         41.94         4.2894         1         4.2894         1           Prepare EQCo.         204         41.94         4.2894         1         4.2894         1           Prepare EQCo.         204         41.94         4.2894         1         1         4.2894         1           Prepare EQCo.         204         4.194         5.6.7.8,9.10.11.1.2.13         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Collection         20d         4/194         5/194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | End Use<br>System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30ed     | 4/1/94      | 1 5/1/94      |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Propere DQCs         200         41/34         428/34         1           Propere Eloths and<br>Safty plin         204         41/34         428/34         1           Propere Floths and<br>Safty plin         204         41/34         428/34         1           Propere Floths and<br>Safty plin         206         41/34         428/34         1           Propere Floths and<br>Safty plin         306         41/34         5/3/34         10.11.1.2.1.3           Develop remediation         306         5/2/34         6/1/34         5/3/34         10.11.1.2.1.3           Develop remediation         306         6/2/34         6/1/34         5/3/34         10.11.1.2.1.3           Develop remediation         306         6/2/34         6/1/34         5/3/34         10.11.1.2.1.3           MacCellun AFB         3066         6/2/34         7/2/34         11         1           MacCellun AFB         3061         6/2/34         11/2/34         12/2/34         1           MacCellun AFB         3066         1/2/294         1/2/2/34         1         1           MacCellun AFB         3061         1/2/294         1/2/2/34         1         1           MacCellun AFB         3061         1/2/294 <td< td=""><td>Prograte DQCs         204         4/15%         4/25%         1           Prograte DQCs         204         4/15%         4/25%         1           Prograte DQCs         204         4/15%         4/25%         1           Prograte SAF         204         4/15%         4/25%         1           Prograte SAF         30ed         4/15%         5/15%         1           Strip regrate SAF         30ed         6/15%         5/15%         1           McKellan AFB and         00ed         8/35%         1/15%         1           McKellan AFB and         00ed         8/35%         1/12%         1           McKellan AFB and         00ed         8/35%         1/12%</td><td>,<br/> </td><td>Collection<br/>System</td><td>30ed</td><td>4/1/94</td><td>5/1/94</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                    | Prograte DQCs         204         4/15%         4/25%         1           Prograte DQCs         204         4/15%         4/25%         1           Prograte DQCs         204         4/15%         4/25%         1           Prograte SAF         204         4/15%         4/25%         1           Prograte SAF         30ed         4/15%         5/15%         1           Strip regrate SAF         30ed         6/15%         5/15%         1           McKellan AFB and         00ed         8/35%         1/15%         1           McKellan AFB and         00ed         8/35%         1/12%         1           McKellan AFB and         00ed         8/35%         1/12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,<br> | Collection<br>System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30ed     | 4/1/94      | 5/1/94        |                       | ,                            |                           |                             |                        |                                  |                |                           |         |
| Prepare rationale         20d         4/194         4/2894         1           Prepare rationale         20d         4/194         4/2894         1           Prepare Health and         20d         4/194         4/2894         1           Prepare QAPP         20d         4/194         4/2894         1           Prepare QAPP         20d         4/194         4/2894         1           Prepare QAPP         30cd         4/194         5/194         1           Prepare QAPP         30cd         4/194         5/194         1           Monti RA         30cd         7/294         1         1           Monti RA         30cd         7/498         8/394         1         1           Monti RA         30cd         1/1294         1/294         1         1           Monti RA         30cd         1/1294         1/294         20         1           Materier and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prepare rationale         20d         4/194         4/2894         1           Prepare traitina ad<br>Safry plan         20d         4/194         4/2894         1           Prepare traitina ad<br>Safry plan         20d         4/194         5/2894         1           Prepare (Arith         20d         4/194         5/1894         1           Prepare (Arith         20d         4/194         5/1794         1           Prepare (Arith         20d         4/194         5/1794         1           Denoting Prepare         30ed         6/194         6/194         1           Denoting Prepare         1d         6/194         6/194         1           McCellin AFB         30ed         6/194         1/12         1           McCellin AFB         30ed         6/194         1/12         1           McCellin AFB         30ed         6/194         1/12         1           McCellin AFB         30ed         1/2094         1/2         1           McCellin AFB         30ed         1/2/94         1/2         1           McCellin AFB         30ed         1/2/94         1/2         1           McCellin AFB         30ed         1/2/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Prepare DQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 204      | 4/1/94      | 4/28/94       |                       | , <b>G</b>                   |                           |                             |                        |                                  |                |                           |         |
| Prepare thatth and 20d         21/94         4.28/94         20d         4/194         4.28/94         20d           Prepare (APP         20d         4/194         4.28/94         1         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <t< td=""><td>Prepare trath and<br/>Prepare (APP         20d         4/194         4.2894         1           Prepare (APP         20d         4/194         4.2894         1           Prepare (APP         20d         4/194         4.2894         1           Prepare (APP         30d         4/194         4.2894         1           Prevelop remediat         30d         4/194         5/194         1           Submit RAMere         1d         6/194         5/5.78.310.11.12.13         1           Submit RAMere         1d         6/194         5/5.78.510.11.12.13         1           Submit RAMere         1d         6/194         5/5.78.510.11.12.13         1           Submit RAMere         1d         6/194         1/3         1           Prepare dati Cory         30cd         6/294         1/3         1           McCiellan AFB         30cd         1/2034         1/17         1           McCiellan AFB         30cd         1/12/294         1/17         1           McCiellan AFB         30cd         1/12/294         1/2         1           Prepare dati final         30cd         1/12/294         1/2         1           Remotediat         30cd</td><td></td><td>Prepare rationale</td><td>204</td><td>4/1/94</td><td>4/28/94</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                 | Prepare trath and<br>Prepare (APP         20d         4/194         4.2894         1           Prepare (APP         20d         4/194         4.2894         1           Prepare (APP         20d         4/194         4.2894         1           Prepare (APP         30d         4/194         4.2894         1           Prevelop remediat         30d         4/194         5/194         1           Submit RAMere         1d         6/194         5/5.78.310.11.12.13         1           Submit RAMere         1d         6/194         5/5.78.510.11.12.13         1           Submit RAMere         1d         6/194         5/5.78.510.11.12.13         1           Submit RAMere         1d         6/194         1/3         1           Prepare dati Cory         30cd         6/294         1/3         1           McCiellan AFB         30cd         1/2034         1/17         1           McCiellan AFB         30cd         1/12/294         1/17         1           McCiellan AFB         30cd         1/12/294         1/2         1           Prepare dati final         30cd         1/12/294         1/2         1           Remotediat         30cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Prepare rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 204      | 4/1/94      | 4/28/94       |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Prepare QAPP         20d         4/194         4/2894         1           Prepare SAP         30ed         4/194         5/194         6/194         5/578,9/10,11,12,13           Develop methal         30ed         5/794         6/194         5/67,8,9,10,11,12,13         1           Develop methal         30ed         5/794         6/194         5/67,8,9,10,11,12,13         1           Develop methal         30ed         6/194         6/194         1/4         1         1           ModelMark Dis         30ed         6/294         7/294         1         1         1           Prepare draft copy         30ed         6/294         1/294         1         1         1           McCiellan AFB and         60ed         8/394         10/294         1         1         1           McCiellan AFB and         60ed         8/394         1/294         1         1         1           McCiellan AFB and         60ed         8/394         1/294         1         1         1           McCiellan AFB and         60ed         1/294         1         1         1         1           McCiellan AFB and         60ed         1/2094         1/2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepare QAPP         20d         41/94         47894         1           Prepare GAP         30ei         41/94         5//94         5//94           Prepare SAP         30ei         41/94         5//94         5//94           Previous work pindial         30ei         5//94         5//94         5//94           Extensions work pindial         30ei         5//94         5//94         1//1           Submit RA Master         1         6//94         5//18//1         1//1           Mucclellan Affast         1         6//94         5//18//1         1//1           Mucclellan AFB and         60ei         8//94         1//2         1//2           Prepare darf final         30ei         1//2/94         1//2         1//2           Prepare fandi         30ei         1//2/94         1//2         1//2           Prepare fandi         30ei         1//2/94         2//0         1//2           Prepare fandi         15ei         1//2/94         2//0         1//2           Affance         1//2         1//2/94         2//0         1//2           Amotiting         1//2         1//2         2//2         2//2           Prepare fandi         30ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Prepare Health and<br>Safety plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 204      | 4/1/94      | 4,28/94       |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Prepare SAP         30ed         4/194         5/194         5/17.8.9.10.11.12.13           Develop ermedial         30ed         5/294         6/194         5.5.7.8.9.10.11.12.13           Develop ermedial         30ed         5/294         6/194         5.6.7.8.9.10.11.12.13           Submit RA Maser         1d         6/194         6/194         5.6.7.8.9.10.11.12.13           Submit RA Maser         1d         6/194         6/194         5.6.7.8.9.10.11.12.13           MocCulum AFB         30ed         6/294         7/294         11           Prepare datit copy         30ed         17/494         8/394         11           MocCulum AFB         30ed         10/294         11         1           MocCulum AFB         30ed         11/294         11         1           MocCulum AFB         30ed         11/294         1         1           MocCulum AFB         30ed         11/294         1         1           MocCulum AFB         30ed         11/294         1         1           Macculum AFB         30ed         11/294         1         2           Prepare datifical         30ed         11/294         1         3           Prepare datitina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepare SAP         30ed         4/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         5/194         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104         1/104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Prepare QAPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 204      | 4/1/94      | 4/28/94       |                       |                              |                           |                             |                        |                                  |                |                           |         |
| Develop remodial         30cd         5/294         6/194         5.6.7.8.9.10.11.12.13         Develop remodial         30cd         5/294         6/194         5.6.7.8.9.10.11.12.13         Develop remodiant         Section work plan         Sectin work plan         Sectin work plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Develop remedial         30cd         5/2/94         6/1/94         5.6,7.8,9,10,11,12,13         Distribution work plan           Submit RA Master         1d         6/1/94         5.6,7.8,9,10,11,12,13         Distribution work plan           Submit RA Master         1d         6/1/94         5.6,7.8,9,10,11,12,13         Distribution work plan           Submit RA Master         1d         6/1/94         5/1/94         113           Plan/Work Plan         30ed         7/2/94         113           Prepare draft copy         30ed         7/2/94         113           McClellan AFB         30ed         102/94         113           McClellan AFB         30ed         10/2/94         18           McClellan AFB         30ed         11/2/94         18           McClellan AFB         30ed         11/2/94         18           McClellan AFB         30ed         11/2/94         18           Agency review draft final         30ed         11/2/94         18           Final         1/2/2/94         19         1           Prepare final         1/2/94         18         1           Prepare final         1/2/94         19         1           Final         1/2/2/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Prepare SAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30ed     | 4/1/94      | 5/1/94        |                       | , <u> </u>                   |                           |                             |                        |                                  |                |                           |         |
| Submit RA Master         1d         6/1/94         6/1/94         6/1/94         6/1/94         6/1/94         6/1/94         6/1/94         1/2           Plan/Work Plan         30ed         6/294         7/294         13         1         1           Review undring         30ed         7/494         8/394         16         1         1           Prepare daft copy         30ed         7/494         8/394         10         1         1           McCellan AFB and         60ed         8/394         10/294         11         1         1           Agencis review         30ed         10/394         11/294         18         1         1           Agency review daft final         30ed         11/294         18         1         1           Prepare final         156d         12/294         19         1         1         1           Prepare final         156d         12/294         12/794         20         1         1         1         1           Prepare final         156d         12/794         20         1         1         1         1           Prepare final         156d         12/794         20         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Submit RA Master         1d         6(1)94         6(1)94         6(1)94         6(1)94         6(1)94         13           Plan/Work Plan         30ed         7/2094         7/2094         13         1         1           Preview verting         30ed         7/4994         8/304         13         1         1         1           Prepare draft copy         30ed         7/4994         8/304         1         1         1         1           Prepare draft copy         30ed         11/2/94         1         1         1         1         1           Agency review draft         30ed         11/2/94         18         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Develop remedial<br>action work plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30ed     | 5/2/94      | 6/1/94        | 5,6,7,8,9,10,11,12,13 |                              |                           |                             |                        |                                  |                |                           |         |
| McClellan AFB         30cd         6/2/94         7/2/94         15         1           review working         7/4/94         8/3/94         1/6         1           Prepare draft copy         30cd         7/4/94         8/3/94         1/7           McClellan AFB and         60cd         8/3/94         1/7         1           McClellan AFB and         60cd         8/3/94         1/7/94         1           Prepare draft final         30cd         1/1/2/94         18         1           Agency review draft         30cd         1/1/2/94         19         1           Agency review draft         30cd         1/2/94         19         1           Prepare final         1/5cd         1/2/94         19         1           Prepare final         1/5cd         1/2/94         19         1           Prepare final         1/5cd         1/2/94         20         1           Prepare final         1/5cd         1/2/94         20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | McClellan AFB         30ed         62/94         7/2/94         15         1           review working         7/4/94         8/3/94         1/2/94         16         1           Prepare draft copy         30ed         7/4/94         8/3/94         10/2/94         1         1           McClellan AFB and         60ed         8/3/94         10/2/94         1         1         1           McClellan AFB and         60ed         8/3/94         10/2/94         18         1         1           McClellan AFB and         60ed         1/2/94         18         1         1         1         1           Agency review draft final         30ed         11/2/94         18         1         1         1           Agency review draft final         30ed         11/2/94         19         1         1         1           Prepare final         1/5cd         1/2/94         19         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     | Submit RA Master<br>Plan/Work Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PI       | 6/1/94      | 6/1/94        | 14                    |                              |                           |                             |                        |                                  |                |                           |         |
| Prepare draft copy         30ed         7/4/94         8/3/94         16         1           McClellan AFB and         60ed         8/3/94         10/2/94         17         1           Agencies review         30ed         10/3/94         11/2/94         18         1           Prepare draft final         30ed         11/2/94         18         1           Prepare final         30ed         11/2/94         19         1           Prepare final         15ed         12/2/94         19         1           Remedial Action         15ed         12/17/94         20         1           Remedial Action         15ed         12/17/94         20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prepare draft copy         30ed         7/4/94         8/3/94         16         1           MucClellan AFB and         60ed         8/3/94         10/2/94         17         1           Prepare draft final         30ed         10/3/94         11/2/94         18         1           Agencis: review draft         30ed         11/2/94         18         1         1           Agency review draft         30ed         11/2/94         19         1         1           Agency review draft         30ed         11/2/94         19         1         1           Remedial Action         15         12/1/94         20         1         2         1           Agency review draft         15         12/1/94         20         1         1         1           Remedial Action         15         20         1         2         1         1           Remedial Action         Critical         Milestone         Summary         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | McClellan AFB<br>review working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30ed     | 6/2/94      | 1/2/94        | 15                    |                              |                           |                             |                        |                                  |                |                           |         |
| McClellan AFB and         60ed         8/3/94         10/2/94         17         □           agencies review         30ed         10/3/94         11/2/94         18         □           Agency review draft         30ed         11/2/94         12/2/94         19         □           Agency review draft         30ed         11/2/94         12/1/94         19         □           Remedial Action         15ed         12/2/94         12/1/94         20         □           Remedial Action         Ortical         Milestone         Summary         Noncritical         □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | McClellan AFB and         60ed         8/3/94         10/2/94         17         1           agencies review         30ed         10/3/94         11/2/94         18         1           Agency review draft         30ed         11/2/94         19         1           Frepare final         30ed         11/2/94         19         1           Frepare final         15ed         12/1/94         20         1           Prepare final         15ed         12/1/94         20         1           Remedial Action         15ed         12/1/94         20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Prepare draft copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30ed     | 7/4/94      | 8/3/94        | 16                    |                              |                           |                             |                        |                                  |                |                           |         |
| Prepare draft final         30cd         10/3/94         11/2/94         18         1           Agency review draft         30ed         11/2/94         12/1/94         19         1           Agency review draft         30ed         11/2/94         12/1/94         19         1           Prepare final         15ed         12/1/94         19         1         1           Remedial Action         15/1/1/94         20         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prepare draft final         30cd         10/3/94         11/2/94         18         1           Agency review draft         30ed         11/2/94         12/2/94         19         1           Prepare final         15cd         12/2/94         12/17/94         20         1           Prepare final         15cd         12/17/94         20         1         1           Remedial Action         15cd         12/17/94         20         1         1           94         Critical         Milestone         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | McClellan AFB and<br>agencies review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60ed     | 8/3/94      | 1 10/2/94     | 17                    |                              |                           |                             |                        |                                  |                |                           |         |
| Agency review draft         30ed         11/2/94         12/2/94         19           Repare final         15ed         12/2/94         12/17/94         20         1           Remedial Action         15ed         12/17/94         20         1         1         1           Remedial Action         Critical         Milestone         Summary         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Agency review draft         30ed         11/2/94         12/2/94         19         1           Prepare final         15ed         12/2/94         12/17/94         20         1           Remedial Action         15ed         12/17/94         20         1         1           Prepare final         15ed         12/17/94         20         1         1           Remedial Action         Critical         Milestone         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Prepare draft final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30ed     | 10/3/94     | 11/2/94       | 18                    |                              |                           |                             |                        |                                  |                |                           |         |
| Prepare final     15cd     12/17/94     20     ]       Remedial Action     Critical     Milestone     Summary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prepare final     15cd     12/17/94     20     ]       Remedial Action     Image: Summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary market of the summary mary market of the summary market of the summary market of the summa                                                                                                                                                                                                                                                                                                                                                                    |       | Agency review draft<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30ed     | 11/2/94     | 12/2/94       | 61                    |                              |                           |                             |                        |                                  |                |                           |         |
| 194 Critical Milestone Summary Moncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 094 Critical Critical Milestone ♦ Summary Voncritical Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected Oncorrected                                                                                                                                                                                                                                                                                 |       | Prepare final<br>Remedial Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Sed    | 12/2/94     | 1 12/17/94    | 20                    |                              |                           |                             |                        |                                  |                |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        | (tical      |               | Milestone 🔶           |                              | Summa                     | ~                           | Nonc                   | critical                         |                |                           |         |

l

|        |                                        |         |              |               | McClellan A  | AFB GWOU RUFS Alternative 6                                                                                                              |
|--------|----------------------------------------|---------|--------------|---------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                        |         |              |               |              | 1994         1995         1996         1998         1998         2000                                                                    |
| 9 2    | Name                                   | uration | Sched. Start | Sched. Finish | Predecessors | ça 2 Qa 3 Qa 4 Qa 1 Qa 2 Qa 3 Qa 4 Q |
| a      | Utility Mapping                        | ł       | 10/3/94      | 2/9/95        |              |                                                                                                                                          |
| 24     | Map Utilities<br>(utilmap)             | 94d     | 10/3/94      | 2/9/95        | 18           |                                                                                                                                          |
| 2      |                                        |         |              |               |              |                                                                                                                                          |
| 2      | On-base/Off-base<br>arediaction wells  | 224     | 10/3/94      | 11/2/94       |              | Đ                                                                                                                                        |
| 5      | Prepare Base Well<br>18 abandomment    | 15ed    | 10/3/94      | 10/18/94      | 18           |                                                                                                                                          |
| 58     | Prepare production<br>well contingency | 30ed    | 10/3/94      | 11/2/94       | 18           |                                                                                                                                          |
| 8      |                                        |         |              |               |              |                                                                                                                                          |
| 2      | Extraction System                      | 12514   | 10/3/94      | 7/20/99       |              |                                                                                                                                          |
| Ξ      | Salacoutractor<br>procurement          | 1164    | 10/3/94      | 3/13/95       |              |                                                                                                                                          |
| 2      | Specify system<br>requirements         | 15ed    | 10/3/94      | 10/18/94      | 18           |                                                                                                                                          |
| 5      | Identify<br>performance                | 1 Sed   | 10/18/94     | 11/2/94       | 32           |                                                                                                                                          |
| 4      | Procure BOAs<br>w/ 3 subs for          | 94d     | 11/2/94      | 3/13/95       | 33           |                                                                                                                                          |
| 5      | Phase 1                                | 488d    | 10/3/94      | 8/15/96       |              |                                                                                                                                          |
| 2      | Off base<br>monitoring                 | Id      | 10/3/94      | 10/3/94       | 18           |                                                                                                                                          |
| 5      | Off base<br>extraction                 | PI      | 10/3/94      | 10/3/94       | 18           |                                                                                                                                          |
|        | Hot Spot<br>extraction                 | PI      | 10/3/94      | 10/3/94       | 18           |                                                                                                                                          |
| 0      | Final layout of<br>wells               | 62d     | 10/4/94      | 12/28/94      | 36,37,38     |                                                                                                                                          |
| 9      | Prepare for<br>installation            | 22d     | 12/29/94     | 1/27/95       | 39           |                                                                                                                                          |
| =      | Installation/Int<br>Data               | 1804    | 3/14/95      | 11/20/95      | 34,40        |                                                                                                                                          |
| 5      | Abandon Base<br>well 18                | 15ed    | 11/21/95     | 12/6/95       | 27,28,41     |                                                                                                                                          |
| ite: ] | 3/26/94                                | 5       | tical        |               | Milestone 🔶  | Summary Noncritical                                                                                                                      |
|        |                                        |         |              |               |              | Page 2                                                                                                                                   |
|        |                                        |         |              |               |              |                                                                                                                                          |

|               |                            | -          |              |               |              | 1994                      | 1905 1 1906               | 1007                               | 1006                      | 0061                       | 0000               |
|---------------|----------------------------|------------|--------------|---------------|--------------|---------------------------|---------------------------|------------------------------------|---------------------------|----------------------------|--------------------|
| Name          | -                          | Duration S | sched. Start | Sched. Finish | Predecessors | Qer 2 Qer 3 Qer 4 Qer 1 ( | w 2 Qw 3 Qw 4 Qw 1 Qw 2 Q | tr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 | 1 Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qer 1 Qer 2 Qer 3 Qer 4 Qe | t 1 Qt 2 Qt 3 Qt 4 |
| Red           | <b>luce</b><br>ertainty in | PI         | 12/6/95      | 12/6/95       | 42           |                           | _                         |                                    |                           |                            |                    |
| Red           | lice<br>Lice               | PI         | 12/7/95      | 12/7/95       | 43           |                           |                           |                                    |                           |                            |                    |
|               |                            | PI         | 12/8/95      | 12/8/95       | 4            |                           |                           |                                    |                           |                            |                    |
| Red           | buce<br>antainty in        | PI         | 12/11/95     | 12/11/95      | 45           |                           |                           |                                    |                           |                            |                    |
| Red           | bice<br>arteintv           | 2          | 12/12/95     | 12/12/95      | 46           |                           |                           |                                    |                           |                            |                    |
|               | dement<br>tineency         | 8          | 12/12/95     | 12/12/95      | 47           |                           |                           |                                    |                           |                            |                    |
| Fa -          | pare Phase                 | 45ed       | 12/13/95     | 1/27/96       | 48           |                           | [_]                       |                                    |                           |                            |                    |
| dun2          | mit Phase                  | PI         | 1/29/96      | 1/29/96       | 49           |                           |                           |                                    |                           |                            |                    |
| MG            | Cleilan<br>B review        | 30ed       | 1/30/96      | 2/29/96       | 50           |                           |                           |                                    |                           |                            |                    |
| Press<br>1990 | pare draft<br>v            | 30ed       | 2/29/96      | 3/30/96       | 51           |                           |                           |                                    |                           |                            | =                  |
| Mo            | Cleillan<br>B and          | 60ed       | 4/1/96       | 5/31/96       | 52           |                           |                           |                                    |                           |                            |                    |
| Pre           | pare draft                 | 30ed       | 5/31/96      | 6/30/96       | 53           |                           |                           |                                    |                           |                            |                    |
| Age           | ncy review                 | 30ed       | 96/1/L       | 7/31/96       | 5            |                           |                           |                                    |                           |                            |                    |
| E.            | pare final<br>se 1         | 15ed       | 7/31/96      | 8/15/96       | 55           |                           |                           |                                    | ·····                     |                            |                    |
| Phase 2       |                            | 3854       | 36/1/L       | 12/20/97      |              |                           |                           |                                    |                           |                            | ·                  |
| Off           | base<br>bitoring           | PI         | 2/1/96       | 2/1/96        | 54           |                           |                           |                                    |                           |                            |                    |
| Off           | base<br>action             | PI         | 7/1/96       | 96/1/L        | 54           |                           |                           |                                    |                           |                            |                    |
| Hot           | Spot<br>action             | PI         | 2/1/26       | 7/1/96        | 54           |                           |                           |                                    |                           |                            |                    |
| Fin           | al layout of<br>Is         | 62d        | 7/2/96       | 9/25/96       | 58,59,60     |                           |                           |                                    |                           |                            |                    |
| Prej          | pare for<br>allation       | 22d        | 9/26/96      | 10/25/96      | 61           | ···                       |                           |                                    | - <i>a</i>                |                            |                    |
| Linst         | allation/Int<br>a          | 1204       | 10/28/96     | 4/11/97       | 62           | to                        |                           | -[]                                |                           |                            |                    |
| 126/94        |                            | - P        |              |               | Milestone    |                           | Summary                   | Nor                                | scritical                 |                            |                    |
|               |                            |            |              |               |              |                           |                           |                                    |                           |                            |                    |

-----

(

۰.

ſ



)



¢

٩,

ţ



. . . . . .....

. 1

'

| Critical Milestone | Critical Miletione  Summary  Noncritical |
|--------------------|------------------------------------------|
|                    |                                          |

ſ

'

|       |                                            |             | -            |               | McClellan Al        | FB GWOU                       | RI/FS Alter                     | native 2                      |                               |                           |                                           |                           |  |
|-------|--------------------------------------------|-------------|--------------|---------------|---------------------|-------------------------------|---------------------------------|-------------------------------|-------------------------------|---------------------------|-------------------------------------------|---------------------------|--|
| 9     | Name                                       | Duration    | Sched. Start | Sched. Finish | Predecessors        | 1994<br>Ott 2 Ott 3 Ott 4 Ott | 1995<br>Det 1 Oet 2 Oet 3 Oet 4 | 1996<br>10t 10t 20t 30t 40t 1 | 1997<br>Dir 210tr 310tr 410tr | 1998<br>110h 210h 310h 44 | 1999<br>0tr 1   Otr 2   Otr 3   Otr 4   ( | 2000<br>2000 2000 3000 40 |  |
| -     | Alternative 2 (CANCER<br>RISK, AS/CATOX,   | 17614       | 11/14        | 12/30/00      |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| 2     |                                            | <b> </b>    |              |               |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| -     | Master PlanWork Plan<br>of Remothel Action | ž           | 4014         | 12/17/94      |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| -     | Develop Remodial<br>Action Master          | 214         | 40/14        | 5/1/94        |                     | ħ                             |                                 |                               |                               |                           |                                           |                           |  |
| ~     | Extraction<br>Svitem                       | 30ed        | 4/1/94       | 5/1/94        |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| •     | Trontment<br>Svätem                        | 30ed        | 4/1/94       | 5/1/94        |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| ~     | End Use<br>System                          | 30ed        | 4/1/94       | 5/1/94        |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| *     | Collection<br>System                       | 30ed        | 4/1/94       | 5/1/94        |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| م     | Prepare DQOs                               | 204         | 4/1/94       | 4/28/94       |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| 2     | Prepare rationale                          | 204         | 4/1/94       | 4/28/94       |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| =     | Prepare Health and<br>Safety plan          | 204         | 4/1/94       | 4/28/94       |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| 12    | Prepare QAPP                               | 204         | 4/1/94       | 4/28/94       |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| 13    | Prepare SAP                                | 30ed        | 4/1/94       | 5/1/94        |                     |                               |                                 |                               |                               |                           |                                           |                           |  |
| 4     | Develop remodial<br>action work plan       | 30ed        | 5/2/94       | 6/1/94        | 6,7,8,9,10,11,12,13 | 0                             |                                 |                               |                               |                           |                                           |                           |  |
| 2     | Submit RA Master<br>Plan/Work Plan         | PI          | 6/1/94       | 6/1/94        | 14                  |                               |                                 |                               |                               |                           |                                           | ••••                      |  |
| 16    | McClellan AFB<br>review working            | 30ed        | 6/2/94       | 7/2/94        | 15                  |                               |                                 |                               |                               |                           |                                           |                           |  |
| 17    | Prepare draft copy                         | 30ed        | 7/4/94       | 8/3/94        | 16                  |                               |                                 |                               |                               |                           |                                           |                           |  |
| 18    | McClellan AFB and<br>agencies review       | 60ed        | 8/3/94       | 10/2/94       | 17                  |                               |                                 |                               |                               |                           |                                           |                           |  |
| 61    | Prepare draft final                        | 30ed        | 10/3/94      | 11/2/94       | 18                  |                               |                                 |                               | × 100                         |                           |                                           |                           |  |
| 50    | Agency review draft final                  | 30ed        | 11/2/94      | 12/2/94       | 19                  |                               |                                 |                               |                               |                           |                                           |                           |  |
| 51    | Prepare final<br>Remedial Action           | 1 Sed       | 12/2/94      | 12/17/94      | 20                  | <u> </u>                      |                                 |                               |                               |                           |                                           |                           |  |
| Date: | 3/26/94                                    | T<br>C<br>U |              |               | Millestone          |                               | Summa                           |                               | Noncri                        | ttical                    |                                           |                           |  |
|       |                                            |             |              |               |                     | Page                          |                                 |                               |                               |                           |                                           |                           |  |

ł

ыч.

:

1

|       |                                        |         |              |               | McClellan A  | LFB GWOU RLFS Alternative 2                                                                                      |             |
|-------|----------------------------------------|---------|--------------|---------------|--------------|------------------------------------------------------------------------------------------------------------------|-------------|
|       |                                        |         |              |               |              | 1994 1995 1996 1997 1998 1999 2000                                                                               | H           |
| ₽     | Name                                   | Auntion | Sched. Start | Sched. Finish | Predecessors | ٢٠٠٥ (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢٠٠٥) (٢ | Qet 4 Qer 1 |
| 22    |                                        |         |              |               |              |                                                                                                                  |             |
| ล     | Utility Mapping                        | 1001    | 10/3/94      | 3/2/95        |              |                                                                                                                  |             |
| 24    | Map Utilities<br>(utilmap)             | P601    | 10/3/94      | 3/2/95        | 18           |                                                                                                                  |             |
| 25    |                                        |         |              |               |              |                                                                                                                  |             |
| 26    | On-hune/Off-hune<br>production wells   | 77      | 10/3/94      | 11/2/94       |              | Đ                                                                                                                |             |
| 27    | Prepare Base Well<br>18 abendomment    | 15ed    | 10/3/94      | 4 10/18/94    | 18           |                                                                                                                  |             |
| 28    | Prepare production<br>well contingency | 30ed    | 76/E/01      | 4 11/2/94     | 18           |                                                                                                                  |             |
| 52    |                                        |         |              |               |              |                                                                                                                  |             |
| 8     | Extraction System                      | 13534   | 10/3/94      | 1 12/9/99     |              |                                                                                                                  |             |
| E     | Subcontractor<br>procerement           | 1164    | 10/3/94      | 1 3/13/95     |              |                                                                                                                  |             |
| 32    | Specify system<br>requirements         | 15ed    | 10/2/01      | 4 10/18/94    | 18           |                                                                                                                  |             |
| 33    | Identify<br>performance                | 15ed    | 10/18/94     | 4 11/2/94     | 32           | 2                                                                                                                |             |
| 34    | Procure BOAs<br>w/ 3 subs for          | 94d     | 11/2/94      | 4 3/13/95     | 33           |                                                                                                                  |             |
| 35    | Place 1                                | 5334    | 10/3/94      | 1 10/17/96    |              |                                                                                                                  |             |
| 36    | Off base<br>monitoring                 | PI      | 10/3/94      | 4 10/3/94     | 18           |                                                                                                                  |             |
| 37    | Off base<br>extraction                 | PI      | 10/3/94      | 1 10/3/94     | 18           |                                                                                                                  |             |
| 38    | Hot Spot<br>extraction                 | PI      | 10/3/94      | 4 10/3/94     | 18           |                                                                                                                  |             |
| 39    | Final layout of wells                  | 62d     | 10/4/94      | 4 12/28/94    | 36,37,38     |                                                                                                                  | n           |
| 40    | Prepare for<br>installation            | 22d     | 12/29/94     | 4 1/27/95     | 39           |                                                                                                                  |             |
| 4     | Installation/Int<br>Data               | 225d    | 3/14/9       | 5 1/22/96     | 34,40        |                                                                                                                  |             |
| 42    | Abandon Base<br>well 18                | 15ed    | 1/23/96      | 5 2/7/96      | 27,28,41     |                                                                                                                  |             |
| Date: | 3/26/94                                | 5       | dcal         |               | Milestone 🔶  | Summary Noncritical                                                                                              |             |
|       |                                        |         |              |               |              | Page 2                                                                                                           |             |

ī

)

| A REAL   |                              | Duration | Sched Start | Sched Finish | Predecessors |        | 1990<br>• 4 One 1 One 3 One 4 One 1 | 137/<br>04-3104-3104-404-104 | + 2 OF 2 OF 4 OF | a lor slor slor s |   | T |
|----------|------------------------------|----------|-------------|--------------|--------------|--------|-------------------------------------|------------------------------|------------------|-------------------|---|---|
| <br>     | Reduce                       | PI       | 2/7/96      | 2/7/96       | 42           |        |                                     |                              |                  |                   |   |   |
|          | Reduce                       | PI       | 2/8/96      | 2/8/96       | 43           |        |                                     |                              |                  | • -               |   |   |
| -        | Reduce<br>uncertainty of     | PI       | 2/9/96      | 2/9/96       | 4            |        |                                     |                              |                  |                   | • |   |
|          | Reduce<br>uncertainty in     | PI       | 2/12/96     | 2/12/96      | 45           |        |                                     | 100 B - 1 89                 |                  |                   |   |   |
|          | Reduce<br>uncertainty        | PI       | 2/13/96     | 2/13/96      | 46           |        |                                     |                              |                  |                   |   |   |
|          | Implement<br>contineency     | 8        | 2/13/96     | 2/13/96      | 47           |        |                                     |                              |                  |                   |   |   |
|          | Prepare Phase<br>1           | 45ed     | 2/14/96     | 3/30/96      | 48           |        |                                     |                              |                  |                   |   |   |
|          | Submit Phase<br>1            | PI       | 4/1/96      | 4/1/96       | 49           |        |                                     |                              |                  |                   |   |   |
|          | McClellan<br>AFB review      | 30ed     | 4/2/96      | 5/2/96       | 50           |        |                                     |                              |                  |                   |   |   |
|          | Prepare draft<br>conv        | 30ed     | 5/2/96      | 96/1/9       | 51           |        |                                     |                              |                  |                   |   |   |
| <u> </u> | McClellan<br>AFB and         | 60ed     | 6/3/96      | 8/2/96       | 32           |        | ٥                                   |                              |                  |                   |   |   |
|          | Prepare draft<br>final       | 30ed     | 8/2/96      | 96/1/6       | 23           |        |                                     |                              |                  |                   |   |   |
|          | Agency review<br>draft final | 30ed     | 9/2/96      | 10/2/96      | 54           |        |                                     |                              |                  |                   |   |   |
|          | Prepare final<br>Phase 1     | 1 Sed    | 10/2/96     | 10/17/96     | 55           |        | •                                   |                              |                  |                   |   |   |
|          | Plane 2                      | 3984     | 96/2/6      | 3/12/98      |              |        |                                     |                              |                  |                   |   |   |
|          | Off base<br>monitoring       | PI       | 9/2/96      | 9/7/6        | 54           |        |                                     |                              |                  |                   |   |   |
|          | Off base<br>extraction       | pl       | 9/2/96      | 9/2/96       | 54           |        |                                     |                              |                  |                   |   |   |
| <br>     | Hot Spot<br>extraction       | PI       | 9/2/96      | 9/2/6        | 54           |        |                                     | -                            |                  |                   |   |   |
|          | Final layout of<br>wells     | 62d      | 9/3/96      | 11/27/96     | 58,59,60     |        |                                     |                              | -                |                   |   |   |
|          | Prepare for<br>installation  | 22d      | 11/28/96    | 12/27/96     | 61           |        |                                     |                              |                  |                   |   |   |
|          | Installation/Int<br>Data     | 133d     | 12/30/96    | 16/2/L       | 62           |        |                                     |                              |                  |                   |   |   |
| 3/26/94  | _                            | 5        | tical       |              | Milestone 🔶  | Sumn   | A la                                | Noncritica                   |                  |                   |   |   |
|          |                              |          |             |              |              | Page 3 |                                     |                              |                  |                   |   | l |

يراب سارد السابين بدالا درارد

(

and the second

.....

Ì

|                           |               |          |              |               | McClellan A  | FB GWOU                   | <b>RUFS Altern</b>                 | ative 2                       |                               | :                               |                         |                                 |     |
|---------------------------|---------------|----------|--------------|---------------|--------------|---------------------------|------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------|---------------------------------|-----|
|                           |               | Duration | Sched. Start | Sched. Finish | Predecessors | 1994<br>Ott 2 Ott 3 Ott 4 | 1995<br>Otr 11 Otr 21 Otr 31 Otr 4 | 0tr 1   0tr 2   0tr 3   0tr 4 | 0tr 1   0tr 2   0tr 3   0tr 4 | 1998<br>Ott 1 Ott 2 Ott 3 Ott 4 | Ott 1 Ott 2 Ott 3 Ott 4 | 2000<br>Ott 1 Ott 2 Ott 3 Ott 4 | 8   |
| Resolve                   |               | pi       | 76/E/L       | 76/E/L        | 63           |                           |                                    |                               |                               |                                 |                         |                                 | y . |
| Further re                | duce<br>vince | pi       | 7/4/97       | 7/4/97        | 64           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Resolve<br>uncertain      |               | pi       | 16171        | 16/L/L        | 63           |                           |                                    |                               |                               |                                 |                         | •                               |     |
| Resolve<br>uncertaint     | .E            | pr       | 76/8/L       | 1/8/1         | 66           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Resolve<br>uncertaint     |               | PI       | L6/6/L       | L6/6/L        | 67           |                           |                                    |                               | _                             |                                 |                         |                                 |     |
| Implement<br>contingent   |               | 8        | 16/6/L       | L6/6/L        | 68           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Prepare Pl                | -             | 45ed     | 7/10/97      | 8/24/97       | 69           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Submit Ph<br>2            | 3             | PI       | 8/25/97      | 8/25/97       | 70           |                           |                                    |                               | -                             |                                 |                         |                                 |     |
| McClellan<br>AFB revie    |               | 30ed     | 8/26/97      | 9/25/97       | 11           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Prepare de<br>conv        | ų             | 30ed     | 9/25/97      | 10/25/97      | 2            |                           |                                    |                               |                               |                                 |                         |                                 |     |
| McClellan<br>AFB and      |               | 60ed     | 10/27/97     | 12/26/97      | 13           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Prepare dr<br>final       | ų             | 30ed     | 12/26/97     | 1/25/98       | 74           |                           |                                    |                               |                               |                                 | -                       |                                 |     |
| Agency re<br>draft final  | view          | 30ed     | 1/26/98      | 2/25/98       | 75           |                           |                                    |                               |                               |                                 | -                       |                                 |     |
| Prepare fir<br>Phase 2    | 4             | 1 Sed    | 2/25/98      | 3/12/98       | 76           |                           |                                    |                               | , - •                         | 1                               |                         |                                 | ,   |
| Phase 3                   |               | 4884     | 1/26/98      | 12/9/99       |              |                           |                                    |                               |                               |                                 |                         |                                 |     |
| On base<br>monitoring     | ~             | pl       | 1/26/98      | 1/26/98       | 75           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| On base<br>extraction     |               | pi       | 1/26/98      | 1/26/98       | 73           |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Final layo<br>wells       | ut of         | 62d      | 1/27/98      | 4/22/98       | 79,80        |                           |                                    |                               |                               |                                 |                         |                                 |     |
| Prepare fo<br>installatio | * =           | 22d      | 4/23/98      | \$/22/98      | 81           | , <u> </u>                |                                    |                               |                               | 0                               |                         |                                 |     |
| Installatio<br>Data       | a/Int         | 225d     | 5/25/98      | 4/2/99        | 82           |                           |                                    |                               |                               |                                 | Π                       |                                 |     |
| Resolve<br>uncertaint     | ,<br>E        | PI       | 4/5/99       | 4/5/99        | 83           |                           |                                    |                               |                               |                                 |                         |                                 |     |
|                           |               | 5        | tical        |               | Milestone 🔶  |                           | Summar                             |                               | Nor                           | critical                        |                         |                                 |     |
|                           | 1             |          |              |               |              | Page                      | -                                  |                               |                               |                                 |                         |                                 |     |
|                           |               |          |              |               |              |                           |                                    |                               |                               |                                 |                         |                                 |     |

. ....

the state of the second states in the

)

| eternin         14         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         4739         47399         47399         47399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Resolve<br>uncertainty in                | Duration | Sched. Start<br>4/6/99 | Sched. Finish<br>4/6/99 | Predecessors Qa | 1994 1995<br>2 Qir 3 Qir 4 Qir 1 Qir 2 Qir 3 ( | 1996<br>1 10 1 2 0 2 0 2 10 1 0 | 1997 1998<br>tr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr | 3 Qtt 4 Qtt 1 Qtt 2 Qtt 4 Qtt 1 | 2000<br>Qu 2 Qu 3 Qu 4 Qu 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|------------------------|-------------------------|-----------------|------------------------------------------------|---------------------------------|-----------------------------------------------|---------------------------------|-----------------------------|
| Alter         Lit         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029         4029 <th< td=""><td>Resolve<br/>uncertainty in</td><td>Id</td><td>4/1/96</td><td>4/7/99</td><td>85</td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Resolve<br>uncertainty in                | Id       | 4/1/96                 | 4/7/99                  | 85              |                                                |                                 |                                               |                                 |                             |
| Alternation         41al         4039         52439         82           Antimer         14         32439         52439         83           Antimer         14         32439         52439         83           Antimer         14         32439         52439         83           Antimer         16         32439         52439         83           Antimer         18         32439         52439         53           Antimer         3041         52439         52439         53           Antimer         3041         52439         102439         93           Antimer         3041         102439         12         12           Antimer         3041         102439         12         12           Antimer         3041         12         12         12           Antimer         3041         22398         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Resolve<br>uncertainty in<br>Implement   | 8        | 4/8/99                 | 4/8/99                  | 86              |                                                |                                 |                                               | • ••• •••                       |                             |
| mat         1         5.2459         5.2469         10           mat         Mai         5.2459         6.2499         72           Chain         Mai         5.2499         6.2499         72           Chain         Mai         5.2499         6.2499         72           Chain         Mai         5.2499         9.2499         92           Chain         Mai         5.2499         92         93           Chain         Mai         964         70.2499         102           Chain         Mai         112         112         12           Main         1346         112         12         12         12           Main         1346         12         24         12         12           Main         1346         12         24         12         12           Main         1346         12         24         12         12           Main         134         12         24         12         12           Main         134         12         12         12         12           Main         134         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | contingency<br>Prepare Phase<br>3 Report | 45ed     | 4/9/99                 | 5/24/99                 | 88              |                                                |                                 |                                               |                                 |                             |
| Culture         30ed         57.5/9         6.74.99         91           Reference         60ed         77.24.99         91         91           Allor         60ed         77.24.99         91         91           Allor         60ed         77.24.99         91         91           Allor         30ed         97.499         93         93           Budid         30ed         97.2499         91         93           Budid         30ed         97.3499         93         93           Budid         30ed         102.4999         112.4199         93           Budid         13ed         117.4199         81         93           Allor         72ad         42.398         112.4090         93           Budid         13ed         112.409         24.51         24.51           Budid         72ad         42.398         12.30000         24.51           Budid         2924         82.598         12.30000         102           Budid         203         82.598         10.499         92           Budid         206         82.598         10.499         92           Budid         103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Submit Phase<br>3 Report                 | PI       | 5/24/99                | 5/24/99                 | 80              |                                                |                                 |                                               |                                 |                             |
| mine dark         30d         6.2439         72439         91           Chain         66d         7269         92499         102499         92           Pisted         30ed         92499         102499         93           Pisted         30ed         92499         102499         93           Pisted         1964         102499         93           Pisted         112409         12919         93           Pisted         112499         12909         93           Pisted         112499         81448         12900           Miley         764         42398         123000           Pisted         8249         123000         93           Miley         764         42398         123000           Pisted         293         22400         103           Pisted         293         123000         1049           Pisted         103         10499         1049           Pisted         103         1049         102           Pisted         103         10499         102           Pisted         103         10499         102           Pisted         103         112900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | McClellan<br>AFB review                  | 30ed     | 5/25/99                | 6/24/99                 | 8               |                                                |                                 |                                               |                                 |                             |
| Cultan         60el         77.56%         97.49%         92           Breacht         30el         97.49%         93         93           Breacht         30el         97.49%         103         93           Breacht         30el         97.49%         112.49%         194           Breacht         15el         117.34%         117.34%         12.30%           Breacht         70al         47.39%         87.34%         23.48%           Breacht         70al         47.39%         87.34%         24.48%           Breacht         70al         47.39%         87.34%         24.38%           Breacht         290         87.34%         17.30%         98           Autor         51a         87.35%         11.30%         98           Autor         51a         10.49%         24.48%         98           Autor         51a         10.49%         24.48%         98           Autor         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepare draft<br>copy                    | 30ed     | 6/24/99                | 7/24/99                 | 16              |                                                |                                 |                                               |                                 |                             |
| mare dark         30el         97.479         10.2499         93           may review         30el         10.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499         11.2499 <td>McCkellan<br/>AFB and</td> <td>60ed</td> <td>7/26/99</td> <td>9/24/99</td> <td>92</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | McCkellan<br>AFB and                     | 60ed     | 7/26/99                | 9/24/99                 | 92              |                                                |                                 |                                               |                                 |                             |
| matrix         30d         1024/39         1124/39         124/39         94           Affinal         15d         1124/39         129/39         93           Affinal         15d         1124/39         129/39         93           Autori         7024         423/38         123/090         93           Autori         7024         423/38         123/000         24.81           Autori         7024         423/38         123/000         24.81           Autori         514         825/39         123/000         24.81           Autori         502         823/39         123/000         93           Autori         502         823/39         10/4/30         93           Autori         2004         82/3         10/2/30         93           Autori         2006         823/39         10/2/30         93           Autori         2006         823/39         10/2/30         93           Autori         103d         10/4/39         3/2/40         102           Autori         103d         10/5/39         3/2/40         102           Autori         103d         10/5/39         3/2/40         102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prepare draft<br>final                   | 30ed     | 9/24/99                | 10/24/99                | 93              |                                                |                                 |                                               |                                 |                             |
| mer final       15cd       11/24.99       129/99       93         mer final       16       11/24.99       129/99       93         mer final       702a       4/23.98       12/3000       93         mer final       614       6/23.98       12/3000       343         mer final       614       6/23.98       12/3000       343         mer final       5924       8/24.98       2/4.81       1         mer final       1034       103/99       2/24.00       102         Mer final       1034       103/59       2/24.00       102         Final       1034       103/59       2/24.00       102         Mer final       1034       103/59       3/2100       88.103.104         Constant       194       3/300       88.103.104       Notriki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Agency review<br>draft final             | 30ed     | 10/25/99               | 11/24/99                | 94              |                                                |                                 |                                               |                                 |                             |
| M User         7024         473/96         12/30/00           Atres         8/4         4/3/96         12/30/00           Atres         6/14         8/2/5/96         12/30/00           Atres         6/14         8/2/5/96         12/30/00           Atres         5/14         8/2/5/96         11/2/9/00           Atres         5/14         8/2/5/96         11/2/9/00           Atres         5/14         8/2/5/96         11/2/9/00           Atres         5/14         8/2/5/96         11/2/9/00           Atres         103d         10/5/99         2/2/4/00           Atres         103d         10/5/99         2/2/4/00           Atres         103d         10/5/99         2/2/4/00           Atres         103d         10/5/99         2/2/4/00           Atres         103d         10/5/99         3/2/00           Atres         103d         11/2/9/00         8/8.103.104           Construct         19/4         3/3/00         11/2/9/00           Atres         19/4         3/3/00         11/2/9/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prepare final<br>Phase 3                 | 15ed     | 11/24/99               | 12/9/99                 | 95              |                                                |                                 |                                               | 0                               |                             |
| M User         7024         473/98         12/30/0           Mares         6144         82/3/98         12/30/0           Mares         6144         82/3/98         12/30/0           Arres         6144         82/3/98         11/29/00           Mares         5924         82/3/98         11/29/00           Mares         5924         82/3/98         11/29/00           Mares         5924         82/3/98         11/29/00           Medianin         290d         82/3/98         11/29/00           Medianin         103d         10/3/99         2/24/00           Medianic         103d         10/3/99         3/2/00           Medianic         103d         10/3/99         3/2/00           Merianic         108d         10/3/99         3/2/00           Merianic         194d         3/3/00         11/2/9/00           Construe         194d         3/3/00         11/2/9/00           Construe         194d         3/3/00         11/2/9/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |          |                        |                         |                 |                                                |                                 |                                               |                                 |                             |
| unifey       88d       4/23/98       8/24/98       24,81         numbery       614a       8/25/98       11/29/00       24,81         Area       614a       8/25/98       11/29/00       99         Median       290d       8/25/98       11/29/00       99         Median       103d       10/5/99       2/24/00       102         Final       103d       10/5/99       2/24/00       102         Negation       103d       10/5/99       2/24/00       102         Construct       194d       3/3/00       11/29/00       88,103,104         Construct       194d       3/3/00       11/29/00       88,103,104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vent/End Use/<br>lon Systems             | 7024     | 4/23/98                | 12/30/00                |                 |                                                |                                 |                                               |                                 |                             |
| Area         614         8/25/98         12/30/00           Ection         5924         8/25/98         11/29/00           Mainin         290d         8/25/98         10/4/99         99           Mainin         290d         8/25/98         10/4/99         99           Mainin         103d         10/5/99         2/24/00         102           Prejanin         103d         10/5/99         2/24/00         102           Prepare         103d         10/5/99         3/2/00         102           Prepare         108d         10/5/99         3/2/00         102           Construc         194d         3/3/00         11/29/00         88,103,104           Critical         Milestone         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ocure turnikey<br>ntractor               | 884      | 4/23/98                | 8/24/98                 | 24,81           |                                                |                                 |                                               |                                 |                             |
| Ection         592.4         82.5/98         11/29/00           Melimin         290d         8/25/98         10/4/99         99           Prelimin         290d         8/25/98         2/24/00         102           Prepare         108d         10/5/99         3/2/00         102           Prepare         108d         10/2/93         3/2/00         88,103,104           Construct         194d         3/3/00         11/29/00         88,103,104           Critical         Mileatone         Summary         Noncritical         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | catern Area                              | 6144     | 8/25/98                | 12/30/00                |                 |                                                | · · · ·                         |                                               |                                 |                             |
| Prelimin         290d         8/25/98         10/4/99         99           Design         103d         10/5/99         2/24/00         102           Final         103d         10/5/99         3/2/00         102           Prepare         108d         10/5/99         3/2/00         102           Construct         194d         3/3/00         11/29/00         88,103,104           Critical         Milestone         Summary         Noncritical         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collection                               | 5924     | 8/25/98                | 11/29/00                |                 |                                                |                                 |                                               |                                 |                             |
| Final         103d         10/5/99         2/24/00         102           design         103d         10/5/99         2/24/00         102           Prepare         108d         10/5/99         3/2/00         102           Construct         194d         3/3/00         11/29/00         88,103,104           Construct         194d         3/3/00         11/29/00         88,103,104           Critical         Millestone         Summary         Noncritical         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prelimin<br>Desian                       | 2904     | 8/22/98                | 10/4/99                 | 66              |                                                |                                 |                                               |                                 |                             |
| Prepare         108d         10/5/99         3/2/00         102           for         194d         3/3/00         11/29/00         88,103,104           Construct         194d         3/3/00         11/29/00         88,103,104           Construct         194d         3/3/00         11/29/00         88,103,104           Construct         194d         3/3/00         11/29/00         88,103,104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Final<br>design                          | 1034     | 10/5/99                | 2/24/00                 | 102             |                                                |                                 |                                               |                                 |                             |
| Construc         194d         3/3/00         11/29/00         88,103,104           Critical         Milestone         Summary         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prepare<br>for                           | 1084     | 10/5/99                | 3/2/00                  | 102             |                                                |                                 |                                               |                                 |                             |
| Critical Milestone  Numary  Noncritical  Noncri  Noncri  Noncritical  Noncritical  Noncritical | Construc                                 | 1944     | 3/3/00                 | 11/29/00                | 88,103,104      |                                                |                                 |                                               |                                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 1 5<br>— | tical                  |                         | Milestone       | Sunu                                           | lary                            | Noncritical                                   |                                 |                             |

.....

....

ł

1-1-1
|          |                      |          |             |              | <b>McClellan Al</b> | FB GWOU               | <b>RI/FS Alter</b>     | native 2 |      |                             |      |      |          |
|----------|----------------------|----------|-------------|--------------|---------------------|-----------------------|------------------------|----------|------|-----------------------------|------|------|----------|
|          | Name                 | Auration | Sched Start | Sched Finish | Predecessors        | 1994<br>Der 310er 410 | 1995<br>101-301-301-30 | 1996<br> | 1997 | 1998<br>101-101-101-101-101 | 1999 | 2000 | <b>T</b> |
| 8        | Treatment            | 6144     | 8/25/98     | 12/30/00     |                     | N + 1 N + 1 N         |                        |          |      |                             |      |      |          |
| 5        | Prelimin<br>Denien   | 67d      | 8/25/98     | 11/25/98     | 66                  |                       |                        |          |      |                             |      |      |          |
| 8        | Final<br>Detign      | 666d     | 11/26/98    | 2/25/99      | 107                 | ·                     |                        |          |      |                             |      |      |          |
| 8        | Propere              | 1304     | 11/26/98    | \$26,99      | 107                 |                       |                        |          | <br> |                             |      |      |          |
| 9        | Constru              | 804      | \$27/99     | 9/23/99      | 108,109             | +                     |                        |          |      |                             |      |      |          |
| =        | Start-ap             | 224      | 11/30/00    | 12/30/00     |                     | ·····=                |                        |          |      |                             |      | •    |          |
| 2        | Star                 | 30ed     | 11/30/00    | 12/30/00     | 105,110             |                       |                        |          |      |                             |      | 63   |          |
| <u>د</u> | er<br>Pros           | 3        | 12/30/00    | 12/30/00     | 112                 |                       |                        |          |      |                             |      |      | • • • •  |
| 4        | Cap<br>con           | 8        | 12/30/00    | 12/30/00     | 113                 |                       |                        |          |      |                             |      |      |          |
| 5        | End Use<br>Pistne    | 3114     | 8/25/98     | 11/2/99      |                     |                       |                        |          |      |                             |      |      |          |
| 9        | Prelimin<br>Design   | 1084     | 8/25/98     | 1/21/99      | 66                  |                       |                        |          |      |                             |      |      |          |
| 5        | Final<br>Design      | P\$6     | 1/22/99     | 6/3/99       | 116                 |                       |                        |          |      |                             |      |      |          |
| 20       | Prepare<br>for       | 864      | 1/22/99     | 5/21/99      | 116                 |                       |                        |          |      |                             |      |      |          |
| 6        | Construc             | 1084     | 6/4/99      | 11/2/99      | 117,118             |                       |                        |          |      |                             |      |      |          |
| 02       | Eastern Area         | 614d     | 8/22/98     | 12/30/00     |                     |                       |                        |          |      |                             |      |      |          |
| 12       | Collection<br>piping | 5924     | 8/25/98     | 11/29/00     |                     | ···                   |                        |          |      |                             |      |      |          |
| ដ        | Prelimin<br>Design   | 290d     | 8/25/98     | 10/4/99      | 66                  |                       |                        |          |      |                             |      |      |          |
| n        | Final<br>design      | PE01     | 10/5/99     | 2/24/00      | 122                 |                       |                        |          |      |                             | -    |      |          |
| 4        | Prepare<br>for       | 1084     | 10/5/99     | 3/2/00       | 122                 |                       |                        |          |      |                             |      |      |          |
| 2        | Construc             | 194d     | 3/3/00      | 11/29/00     | 88,123,124          |                       |                        |          |      |                             |      |      |          |
| 2        | Treatment            | 6144     | 8/25/98     | 12/30/00     |                     |                       |                        |          |      |                             |      |      |          |
| tte: 3   | 3/26/94              | 5        | tical       |              | Milestone 🔶         |                       | Summa                  | ۲.       | Nonc | ritical                     |      |      | 11       |
|          |                      |          |             |              |                     | Page 6                |                        |          |      |                             |      |      | ·7       |

~ ~

a - Farina da anterioren de la composition de la composition de la composition de la composition de la composi

|          |                                 |          |             |                  | McClellan Al | FB GWOU RUFS Alternative 2              |
|----------|---------------------------------|----------|-------------|------------------|--------------|-----------------------------------------|
| Q        | Name                            | Duration | Sched. Star | rt Sched. Finish | Predecessors | 1994 1994 1995 1995 1995 1995 1995 1995 |
| 127      | Prelimin<br>Design              | 724      | 8/25/9      | 8 12/2/98        | 66           |                                         |
| 128      | Final<br>Design                 | 999      | 12/3/9      | 3/4/99           | 127          |                                         |
| 129      | Prepare<br>for                  | 1284     | 12/3/9      | 8 5/31/99        | 127          |                                         |
| 130      | Construc<br>(etreacon           | 87d      | 6/1/9       | 9/29/99          | 128,129      |                                         |
| 131      | da-trag                         | 224      | 11/30/0     | 0 12/30/00       |              |                                         |
| 132      | Star                            | r 30ed   | 11/30/0     | 0 12/30/00       | 125,130      |                                         |
| 133      | 24 83                           | 8        | 12/30/0     | 0 12/30/00       | 132          |                                         |
| 134      | S Car                           | 3        | 12/30/0     | 00/05/21         | 133          |                                         |
| 135      | Ead Use<br>Plates               | 2784     | 8/25/8      | 9/16/99          |              |                                         |
| 136      | Prelimin<br>Design              | 1064     | 8/25/9      | 8 1/19/99        | 66           |                                         |
| 137      | Final<br>Design                 | P02      | 1/20/9      | 9 4/27/99        | 136          |                                         |
| 138      | Prepare<br>for                  | 864      | 1/20/9      | 9 5/19/99        | 136          |                                         |
| 139      | Construc                        | 864      | 5/20/9      | 9/16/99          | 137,138      |                                         |
| <b>1</b> |                                 |          |             |                  |              |                                         |
| 141      | Operation of Remedial<br>Action | 3        | 12/30/0     | 0 12/30/00       |              |                                         |
| 142      | Containment of<br>Containinated | 3        | 12/30/0     | 0 12/30/00       |              |                                         |
| 143      | West Base                       | 04       | 12/30/0     | 10 12/30/00      | 105,114      | •                                       |
| Ŧ        | East Base                       | PO       | 12/36/0     | 00 12/30/00      | 125,134,139  |                                         |
|          |                                 | -        |             |                  |              |                                         |
| Date:    | 3/26/94                         |          | ritical     |                  | Milestone 🔶  | Summary Noncritical                     |
|          |                                 |          |             |                  | 7            | Page 7                                  |

ł

.

**.** . . <del>. . .</del>

| I3         Prepare SAP         30ed         4/1/94         5/1/94         5/6/7,8,9,10,11,12,13           14         Develop remodial         30ed         5/2/94         6/1/94         5/6,7,8,9,10,11,12,13         3           15         Submit RA Master         1d         6/1/94         6/1/94         6/1/94         14         1           15         Plan/Work Plan         1d         6/1/94         6/1/94         11,12,13         1           16         McClellan AFB         30ed         6/2/94         7/2/94         15         1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| review working         30ed         7/4/94         8/3/94         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18         McClellan AFB and<br>agencies review         60ed         8/3/94         10/2/94         17         1           19         Prepare draft final         30ed         10/3/94         11/2/94         18         1                                                                                                                                                                                                                                                                                                                            |
| 20         Agency review draft         30ed         11/2/94         12/2/94         19         1           21         Frepare final         1 5ed         1 2/2/94         1 2/1/94         20         1                                                                                                                                                                                                                                                                                                                                               |
| Date: 37694 Critical Milestone I Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Noncritical McClellan AFB GWOU RI/FS Alternative 3 Summary Page 2 D \_ 18 18 18 36,37,38 8 18 81 34,40 <u>18</u> 32 33 39 27,28,41 Predecessors Milestone 4/13/95 4/22/00 3/13/95 1/27/95 3/7/96 11/2/94 3/13/95 10/3/94 10/3/94 10/3/94 12/28/94 3/23/96 4/13/95 11/2/94 10/18/94 10/18/94 Finish 11/2/94 11/30/96 Sched. 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/3/94 10/18/94 11/2/94 10/3/94 10/3/94 10/3/94 10/3/94 10/4/94 12/29/94 3/14/95 3/8/96 Sched. Start Critical 15ed 1394 MEI 15ed 30ed 14504 15ed Jd ld 62d 22d **258d** Duration 224 1164 15ed **94d** 5654 P Subcontractor procurement Specify system requirements Identify performance Procure BOAs w/ 3 subs for Off base monitoring Off base extraction Hot Spot Final layout of Prepare for installation Installation/Int Abandon Base well 18 On-base/Off-base production wells Prepare Base Well 18 abandorment Prepare production well contingency Extraction System Map Utilities (utilmap) wells Utility Mapping Data Place 1 Name Date: 3/26/94 ล 4 4 52 2 5 28 8 33 38 \$ 4 3 Ε 32 33 3 36 37 39

۰.

. . .

------

----

Noncritical 111 -/// McClellan AFB GWOU RI/FS Alternative 3 Summary Page 3 4 43 45 46 47 48 2 55 54 58,59,60 4 <del>6</del> 8 33 \$ 5 54 62 5 5 ۰ Predecessors Milestone 3/25/96 3/26/96 3/27/96 3/28/96 3/29/96 3/29/96 5/16/96 5/16/96 6/16/96 96/L1/L 10/16/96 11/30/96 86/6/9 10/16/96 10/16/96 10/16/96 1/10/97 9/12/96 9/29/97 Sched. Finish 2/11/97 11/15/96 Sched. Start 3/25/96 3/26/96 3/27/96 3/28/96 3/29/96 4/1/96 10/16/96 10/16/96 3/29/96 5/16/96 5/17/96 96/11/9 36/L1/L 96/91/6 10/16/96 11/15/96 10/16/96 10/16/96 10/17/96 1/13/97 2/12/97 Critical Ыd ld 45ed **30ed** 30ed 30ed 30ed 164d Р Pl PI 3 Ы 60ed 4294 PI PI μ 22d 1Sed 62d Duration uncertainty in Reduce uncertainty of Agency review draft final Prepare for installation Installation/Int Reduce uncertainty in Final layout of Prepare draft copy uncertainty in Prepare Phase Prepare draft final Submit Phase Prepare final Phase 1 McClellan AFB review McClellan AFB and **montainty** contingency Off base monitoring Off base extraction Implement Hot Spot extraction Reduce Reduce Reduce welk Data Pare 2 Date: 3,26,94 Name 9 4 4 \$ 4 \$ \$ \$ 3 5 \$ 3 3 3 53 36 51 8 \$ 3 61 62

I

4 6

1

ŧ

| Prepare for<br>installation         22d         7/21/98         8/19/98         81           Installation/Int         258d         8/20/98         8/1         1           Data         0xta         8/17/99         8/17/99         8/1           Uncertainty in         1d         8/17/99         8/17/99         8/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prepare for         22d         7/21/98         8/19/98         81           Installation/Int         238d         8/20/98         81           Data         8/20/98         8/15/99         82           Data         1d         8/17/99         8/3           Uncertainty in         1d         8/17/99         8/3 | final         Agency review         30cd         4/23/98         5/23/98         7/5           Agency review         30cd         4/23/98         5/23/98         7/5           Prepare final         115cd         5/23/98         5/23/98         7/6           Prepare final         115cd         5/23/98         7/6           Phase 2         4/23/98         4/23/98         4/23/98           Phase         1d         4/23/98         4/23/98           On base         1d         4/23/98         4/23/98           Con base         1d         4/23/98         4/23/98           Final layout of         62d         4/24/98         7/20/98           Wells         70,80         79,80 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Data Id 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/17/99 8/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data Data Resolve 1d 8/17/99 8/3                                                                                                                                                                                                                                                                                      | Prepare for         22d         7/21/98         8/19/98         81           installation         22d         7/21/98         8/19/98         81           Installation         254d         8/16/99         87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       | Installation/Int         258d         8/20/98         8/16/99         82           Data         Resolve         1d         8/17/99         8/17/99         83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2694 Critical Miletone I Summary Contribution Noncritical Control Cont | Not crucal miletone Summary Crucal concruction                                                                                                                                                                                                                                                                        | 2694 Critical Milectone ♦ Summary Voncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

. .

. . . . .

**Y** 



)

٠ 99 ٠ R Noncritical McClellan AFB GWOU RI/FS Alternative 3 Summary Page 7 137,138 8 127 127 128,129 125,130 132 133 136 136 105,114 8 125,134,139 Predecessors Milestone Sched Finish 3/1/99 12/14/99 66/1/9 8/26/99 12/24/99 4/16/99 12/14/99 7/23/99 8/16/99 8/15/01 10/51/8 8/15/01 8/15/01 8/15/01 8/15/01 8/15/01 8/15/01 Sched. Start 11/20/98 3/2/99 3/2/99 8/27/99 4/19/59 8/17/99 11/20/98 11/20/98 4/19/99 8/15/01 10/31// 10/51/8 10/21/8 10/91// 8/15/01 8/15/01 8/15/01 Critical 1284 106d 30ed 8 3 2784 864 864 2 38 **B6d** 224 204 3 8 3 3 Duration Prelimi Design Preside Franklin Construction Start-ap Prelimin Design Final Design Prepare for Construc 2 5 3 3 5 3 Operation of Remedial Action Containant of West Base East Base Contaminated Date: 3/26/94 Z 9 2 128 129 8 132 135 Ŧ 131 133 134 138 3 Ξ 5 136 137 140 133

.....

. ...

í

1

(

| Duration         School Start         School Finish         Prodeo           194.24         41/94         911/01         Prodeo           194.24         41/94         911/01         Prodeo           21d         41/94         51/94         911/01           21d         41/94         51/94         91/94           30od         41/94         4/28/94         91/94           20d         4/194         4/28/94         91/94           30od         4/194         4/28/94         91/94           30od         4/194         4/28/94         91/94           30od         5/2/94         6/1/94         5/6/7.8/91(           30od         5/2/94         91/94         91/94           30od         5/2/94         91/94         91/94           30od         5/2/94         6/1/94         5/6/7.8/91(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Niteen         Alternantives 1, 4,<br>Numerotives 1, OutCla,<br>Alternatives 2, 19434         Prodeco           Alternatives 1, OutCla,<br>Alternatives 1, OutCla,<br>Alternatives 3, 19434         4/1,944         5/1,944           Automative 1, OutCla,<br>Alternatives 3, 30ed         4/1,944         5/1,944           Antise Network<br>Automatives 3, 0ed         4/1,944         5/1,944           Antise Network<br>Automatives 3, 0ed         4/1,944         5/1,944           Propere Lise 3, 0ed         4/1,944         5/1,944           Propere Lise 3, 0ed         4/1,944         4/2,8944           Propere Vorter 4, 0, 0ed         5/1,944         5/1,944           Propere Alta and<br>System         200d         4/1,944         4/2,8944           Propere Alta and<br>System         200d         4/1,944         4/2,8944           Propere Alta ALTB         30ed         5/2,944         5/5,7,8,9,10           Propere |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Duration         School Start         S           19434         4/1/94           214         4/1/94           30ed         5/2/94           30ed         5/2/94           30ed         5/2/94           30ed         5/2/94           30ed         1/1/2/94           30ed         1/2/94           30ed         1/2/94           30ed         1/2/94           30ed         1/2/94           30ed         1/2/94           30ed         1/2/94           30ed         1/2/94 <td>Name         Durnsion         Scheel Start         S           Alk-manthes         1 (AlCs,<br/>Alk-mattes         194.14         4/1/94           Alk-mattes         1 (Alcs,<br/>Alk-Articles         194.14         4/1/94           Alk-mattes         1 (Alcs,<br/>Alk-Articles         1 (Alcs,<br/>Also, Alcs, UTILLTES,<br/>Alk-Articles         1 (Alcs,<br/>Alfore         4/1/94           Articles         30od         4/1/94         4/1/94           Extinction         30od         4/1/94           System         30od         4/1/94</td> | Name         Durnsion         Scheel Start         S           Alk-manthes         1 (AlCs,<br>Alk-mattes         194.14         4/1/94           Alk-mattes         1 (Alcs,<br>Alk-Articles         194.14         4/1/94           Alk-mattes         1 (Alcs,<br>Alk-Articles         1 (Alcs,<br>Also, Alcs, UTILLTES,<br>Alk-Articles         1 (Alcs,<br>Alfore         4/1/94           Articles         30od         4/1/94         4/1/94           Extinction         30od         4/1/94           System         30od         4/1/94                                                                                                                                                                                                                                                                                  |
| Duration         Duration           19434         19434           19434         30ed           30ed         30ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nume     Duration       Nume     Duration       ASACATOX, UTILATTES)     19424       ASACATOX, UTILATTES)     19424       ASACATOX, UTILATTES)     1944       Astronom     1044       Astronom     214       Astronom     214       Astronom     214       Astronom     204       Symme     30x6       Syme     30x6 <tr< td=""></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Name<br>Name<br>Alkerntolive 1 (AKCI,<br>ASICATOX, UTILLITTES)<br>ASICATOX, UTILLITTES)<br>ASICATOX, UTILLITTES)<br>ASICATOX, UTILLITTES)<br>ASICATOX, UTILLITTES)<br>Symm<br>Collection<br>Extraction<br>Symm<br>Freemer Planwork Plan<br>Prepare Haukh and<br>Symm<br>Prepare Haukh and<br>Symm<br>Prepare Haukh and<br>Symm<br>Prepare SAP<br>Prepare SAP<br>Prepare SAP<br>Prepare SAP<br>Prepare SAP<br>Prepare draft faul<br>Agency review draft faul<br>Prepare draft faul<br>Repected and review draft<br>final<br>Remedial Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

-----

. ....

(

1

ł

سبود ، یوم . . . .

|    |                                        |              |             | Alternativ    | cs 1, 4, 5, and 6 | 6 With Implementation of Contingency Plans                                                                                                                 |
|----|----------------------------------------|--------------|-------------|---------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                        |              |             |               |                   | 1994         1995         1996         1997         1998         1000                                                                                      |
| 92 | Name D                                 | Duration     | Sched Start | Sched. Finish | Predecessors      | દય ગેદય કોદય કોદય કોદય ગેદય ગેદય કેદય 10થ ગેદય ગેદય કોદય કોદય કોદય કોદય કોદય ગેદય ગેદય કોદય ગેદય કોદય કોદય ગેદય ગેદય કોદય કોદય કોદય કોદય કોદય કોદય કોદય કો |
| 2  | Utility Mapping                        | Ŧ            | 10/3/94     | 2/9/95        |                   |                                                                                                                                                            |
| *  | Map Utilities<br>(utilmap)             | 944          | 10/3/94     | 2/9/95        | 18                |                                                                                                                                                            |
| 2  |                                        |              |             |               |                   |                                                                                                                                                            |
|    | On-base/Off-base<br>production wells   | 7.74         | 10/3/94     | 11/2/94       |                   | Đ                                                                                                                                                          |
| -  | Prepare Base Well<br>18 absorberment   | 15ed         | 10/3/94     | 10/18/94      | 18                |                                                                                                                                                            |
| 80 | Prepare production<br>well contingency | 30 <b>ed</b> | 10/3/94     | 11/2/94       | 18                |                                                                                                                                                            |
| 6  |                                        |              |             |               |                   |                                                                                                                                                            |
|    | Extraction System                      | 15814        | 10/3/94     | 10/24/00      |                   |                                                                                                                                                            |
|    | Subcontractor<br>arocurement           | 1164         | 10/3/94     | 3/13/95       |                   |                                                                                                                                                            |
|    | Specify system<br>requirements         | 15ed         | 10/3/94     | 10/18/94      | 18                |                                                                                                                                                            |
|    | ldentify<br>performance                | 15ed         | 10/18/94    | 11/2/94       | 32                | 2                                                                                                                                                          |
|    | Procure BOAs<br>w/ 3 subs for          | 94d          | 11/2/94     | 3/13/95       | 33                |                                                                                                                                                            |
| -  | Taak Order 1                           | 5534         | 10/3/94     | 11/14/96      |                   |                                                                                                                                                            |
| 5  | Off base<br>monitoring                 | PI           | 10/3/94     | 10/3/94       | 18                |                                                                                                                                                            |
| -  | Off base<br>extraction                 | PI           | 10/3/94     | 10/3/94       | 18                |                                                                                                                                                            |
|    | Hot Spot<br>extraction                 | PI           | 10/3/94     | 10/3/94       | 18                |                                                                                                                                                            |
|    | Prepare final<br>layout of wells       | 62d          | 10/4/94     | 12/28/94      | 36,37,38          |                                                                                                                                                            |
|    | Prepare for<br>installation            | 22d          | 12/29/94    | 1/27/95       | 39                |                                                                                                                                                            |
|    | Install<br>weils/Interpret             | 1134         | 3/14/95     | 8/17/95       | 34,40             |                                                                                                                                                            |
|    | Abandon Base<br>well 18                | 1 Sed        | 8/18/95     | 9/2/95        | 27,28,41          |                                                                                                                                                            |
| ë  | 1/26/94                                | CH C         |             |               | Milestone 🔶       | Summary Noncritical                                                                                                                                        |
|    |                                        |              |             |               |                   | Page 2                                                                                                                                                     |
|    |                                        |              |             |               |                   |                                                                                                                                                            |

| 1         2         3         3         2         2         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 | Name Reduce uncertainty in uncertainty in uncertainty in uncertainty in uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in Reduce uncertainty in R | Duration         Duration           1d         1d           1d         1d           132d         1d           132d         30ed           30ed         30ed           30ed         30ed           1d         1d | School Start<br>9(4/95<br>9/4/95<br>9/6/95<br>9/6/95<br>9/11/95<br>9/11/95<br>9/11/95<br>9/11/95<br>8/13/96<br>8/13/96<br>8/13/96<br>8/13/96<br>8/13/96<br>9/10/96<br>9/10/96<br>9/10/96<br>9/10/96<br>9/10/96 | Alternativ<br>Sched Finish<br>9(4/95<br>9(4/95<br>9/5/95<br>9/5/95<br>9/5/95<br>9/2/95<br>3/12/96<br>4/29/96<br>5/30/96<br>5/30/96<br>6/29/96<br>6/29/96<br>9/29/96<br>11/14/96<br>9/30/96<br>9/30/96<br>9/30/96 | <b>a 1, 4, 5, and 6</b> Prodecessors         43           43         43           44         43           45         44           46         45           47         47           48         49           49         49           40         49           41         41           42         43           43         43           44         43           45         43           46         43           47         43           48         43           49         43           40         44           41         43           42         43           43         44           44         44           45         54           54         54           54         54           54         54           54         54 | With Imp<br>1994<br>200 200 300 4 | Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual         Annual< | Plans<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002 | 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2011/2013/2013/2013/2013/2014 | 2000<br>2000 | 2001<br>2001 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|--------------|--|
| 61 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prepare final<br>layout of wells<br>Prepare for<br>installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62d<br>22d                                                                                                                                                                                                      | 10/1/96<br>12/26/96                                                                                                                                                                                            | 12/25/96                                                                                                                                                                                                         | 58,59,60<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |                               |              |              |  |
| 63<br>Date: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Install<br>wells/Interpret<br>766/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120d                                                                                                                                                                                                            | 1/27/97<br>Itical                                                                                                                                                                                              | 16/11/2                                                                                                                                                                                                          | 62<br>Milestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uncritical                                                                                                                    |                               |              |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |                               |              |              |  |

ł

(

1 m / 1 m / 1 m

| Resc<br>Lunce<br>Resc<br>Rest |                           | Duration | Sched. Start | Sched. Finish | Predecessors | Ott 20th 30th 40th 1 | 1995 1996<br>Otr 21Otr 31Otr 41Otr 11Otr 21Otr 3 | 1997<br>10tr 40tr 10tr 210tr | 30tt 40tt 10tt 20tt 30 | tr 40tr 10tr 20tr 30tr | 10t 10t 20t 30 | 18 |
|-------------------------------|---------------------------|----------|--------------|---------------|--------------|----------------------|--------------------------------------------------|------------------------------|------------------------|------------------------|----------------|----|
| Fund<br>Rex                   | olve<br>staintv in        | PI       | 7/14/97      | 7/14/97       | 63           |                      |                                                  |                              |                        |                        |                | 4  |
| Rex                           | ther reduce               | PI       | 7/15/97      | 7/15/97       | 64           |                      | -                                                |                              |                        |                        |                |    |
|                               | olve<br>stainty in        | PI       | 7/16/97      | 7/16/97       | 65           |                      | •                                                |                              |                        |                        |                |    |
| Rek<br>unce                   | olve<br>rtainty in        | pi       | 16/L1/L      | 16/11/1       | 99           |                      |                                                  |                              |                        |                        |                |    |
| Rek                           | olve<br>staintv           | PI       | 7/18/97      | 7/18/97       | 67           |                      |                                                  |                              |                        |                        |                |    |
| Imp                           | lement<br>ingency         | 132d     | 7/21/97      | 1/20/98       | 68           |                      |                                                  | <u></u>                      | - <b>∏</b> -           | 10                     |                |    |
| Prep<br>Prep                  | are Phase                 | 45ed     | 1/21/98      | 3/1/98        | 69           |                      |                                                  |                              |                        |                        |                |    |
| Subr<br>Subr                  | mit Phase                 | PI       | 3/9/98       | 3/9/98        | 70           |                      | -~-                                              | ·                            |                        |                        |                |    |
| MGC                           | Ciellian<br>1 review      | 30ed     | 3/10/98      | 4/9/98        | 11           |                      |                                                  |                              | 0                      |                        |                |    |
| Prep                          | are draft                 | 30ed     | 4/9/98       | 5/9/98        | 72           |                      |                                                  |                              |                        |                        | 2.             |    |
| McC                           | <b>Ciellan</b><br>Land    | 60ed     | 5/11/98      | 86/01/2       | 13           |                      |                                                  |                              |                        |                        |                |    |
| Prep                          | are draft                 | 30ed     | 86/01/L      | 86/6/8        | 74           |                      |                                                  |                              |                        |                        |                |    |
| Age<br>Age                    | ncy review                | 3Ced     | 86/01/8      | 86/6/6        | 75           |                      |                                                  |                              |                        | •                      |                |    |
| Prep<br>Phas                  | vare final<br>ve 2        | 1 Sed    | 86/6/6       | 9/24/98       | 76           |                      |                                                  |                              | <u> </u>               |                        |                |    |
| Tank Ord                      | ter 3                     | 5764     | 8/10/98      | 10/24/00      |              |                      |                                                  |                              | L                      |                        |                |    |
| On b                          | ase<br>itoring            | Id       | 8/10/98      | 8/10/98       | 75           |                      |                                                  |                              |                        |                        |                |    |
| On t                          | base<br>Action            | PI       | 86/01/8      | 8/10/98       | 75           |                      |                                                  |                              |                        |                        |                |    |
| Prep                          | ware final<br>ut of wells | 62d      | 8/11/98      | 11/4/98       | 79,80        |                      |                                                  |                              |                        |                        |                |    |
| Prep                          | ware for<br>ullation      | 22d      | 11/5/98      | 12/4/98       | 81           |                      |                                                  |                              |                        | 0                      |                |    |
| Data<br>Data                  | all/Interpre              | 1804     | 12/7/98      | 8/13/99       | 82           |                      |                                                  |                              |                        |                        |                |    |
| Rex<br>unce                   | olve<br>srtainty in       | PI       | 8/16/99      | 8/16/99       | 83           |                      |                                                  |                              | -                      |                        |                |    |
| 5                             |                           | C T      | itcal        |               | Milestone 🔶  |                      | Summary                                          |                              | Noncritikal            |                        |                | 1  |
|                               |                           |          |              |               |              | Page 4               |                                                  |                              |                        |                        |                |    |

to Craning in the manipulation of the

)

\_\_\_\_\_

1

**]** 1



. . .

)

| [ |                                 |            |             | Alternati        | ves 1, 4, 5, and o |                         | plementation o                   | Contingency Pla                         | 88                                   |                             |                                |                   |
|---|---------------------------------|------------|-------------|------------------|--------------------|-------------------------|----------------------------------|-----------------------------------------|--------------------------------------|-----------------------------|--------------------------------|-------------------|
|   | Name                            | Duration   | Sched. Star | rt Sched. Finish | Predecessors       | 1994<br>Qir 2 Qir 3 Qir | 1995<br>1Qtr 1Qtr 2Qtr 3Qtr 4Qtr | 1996 1996 1996 1995 1995 1995 1995 1995 | 7 1998<br>20 3/20 4/20 1/20 2/20 3/2 | ta 4Qta 1Qta 2Qta 3Qta 4Qta | 2000<br>1 Qiu 2 Qiu 3 Qiu 4 Qi | 2001<br>2001 2001 |
|   | Prepare<br>prelimina            | 724        | 3/6/5       | 66/91/9 66       | 66                 |                         |                                  |                                         |                                      |                             |                                |                   |
|   | Prepare                         | 999        | 5/1/9       | 9/16/99          | 127                |                         |                                  |                                         |                                      |                             |                                |                   |
|   | Prepare<br>for                  | 1284       | 9/11/9      | 99 12/13/99      | 127                |                         |                                  |                                         |                                      |                             |                                |                   |
|   | Construct<br>treatment          | 874        | 12/14/5     | 99 4/12/00       | 128,129            |                         |                                  |                                         |                                      | <u> </u>                    | <u> </u>                       |                   |
|   | Start-up                        | 1284       | 7/16/0      | 91 8/14/01       |                    |                         |                                  |                                         |                                      |                             |                                |                   |
|   | S S                             | 30ed       | 2/16/6      | 10/8/01          | 125,130            | <b>.</b>                |                                  |                                         |                                      |                             |                                |                   |
| 1 | diug<br>oud                     | 1074       | 3/19/0      | 8/14/01          | 132                |                         |                                  | <b>~</b>                                |                                      |                             |                                |                   |
| 1 | <u><u></u><br/><u></u></u>      | <b>P96</b> | 3/61/6      | 10/001           | 132                |                         |                                  |                                         |                                      |                             |                                |                   |
| 1 | End Une<br>Plates               | 2784       | 31915       | 3/30/00          |                    | <b>.</b>                |                                  |                                         |                                      |                             | •                              |                   |
| T | Prepare                         | 1064       | 3/6/2       | 99 8/3/99        | 66                 |                         |                                  |                                         |                                      |                             |                                |                   |
| r | Prepare<br>final                | POL        | 8/4/5       | 66/6/11 66       | 136                |                         |                                  |                                         | <b>-</b> .                           |                             |                                |                   |
| 1 | Prepare<br>for                  | 86d        | 8/4/9       | 99 12/1/99       | 136                | <b>T</b>                |                                  |                                         |                                      |                             | -                              |                   |
| 1 | Construc<br>end use             | P98        | 12/2/5      | 3/30/00          | 137,138            |                         |                                  |                                         |                                      | - <b>[</b> ]                | _                              |                   |
| 1 |                                 |            |             |                  |                    |                         |                                  |                                         |                                      |                             | -                              |                   |
| 1 | Operation of Remedial<br>Action | 204        | 8/14/0      | 10/11/01         |                    | ,                       |                                  |                                         |                                      |                             |                                | ₽                 |
|   | Containment of<br>Containing of | 204        | 8/14/0      | 9/11/01          |                    |                         |                                  |                                         |                                      |                             |                                | •                 |
| 1 | West Bare                       | po         | N/11/6      | 10/11/6 16       | 105,113,114        | ·                       |                                  |                                         |                                      |                             |                                | •                 |
| 1 | East Base                       | po         | 8/14/0      | 10/71/8 10       | 125,133,134,139    | <b>T</b>                |                                  |                                         |                                      |                             |                                | •                 |
| 7 |                                 |            |             | -                |                    |                         |                                  |                                         |                                      |                             |                                |                   |
| 1 | 1/26/94                         | 5          | ttical      |                  | Milestone          |                         | Summar                           |                                         | Noncritical                          |                             |                                |                   |
| 1 |                                 |            |             |                  |                    | Pag                     | e 7                              |                                         |                                      |                             |                                |                   |
| 1 |                                 |            |             |                  |                    |                         |                                  |                                         |                                      |                             |                                |                   |

ł

1

|         |                                                             |          |             | G            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ואווטם טו כעונווקיוו                 |                            |                                |                            |              |                              |                     |
|---------|-------------------------------------------------------------|----------|-------------|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|--------------------------------|----------------------------|--------------|------------------------------|---------------------|
| 9       | Name                                                        | D        | ration 5    | Sched. Start | Sched. Finish | Predecessors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1994 1995<br>02 03 04 01 02 03 04 01 | 1996<br>[Q2 [Q3 [Q4 [Q1 [0 | 1997 1997 19<br>22 Q3 Q4 Q1 Q2 | 996 1999<br>03 04 01 02 03 | 2000<br>2000 | 2001<br>2001<br>2001<br>2001 | 2002<br>Q1 Q2 Q3 Q4 |
| -       | Akernetive 2 (CANCER RISK,<br>ASICATOX, UTHLITIES) Drug for |          | 21714       | 40/1/4       | 7/26/02       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                            |                                |                            |              | -                            |                     |
| ~       |                                                             |          |             |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| ~       | Master Plan/Work Plan of Re-<br>Action                      |          | 1864        | 4/1/94       | 12/17/94      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| +       | Develop Remodial Action<br>Master Plan                      |          | 214         | 4/1/94       | 5/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| ~       | Extraction System                                           |          | 30ed        | 4/1/94       | 5/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| ¢       | Treatment System                                            |          | 30ed        | 4/1/94       | 5/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| ~       | End Use System                                              | -        | 30ed        | 4/1/94       | 5/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| *       | Collection System                                           |          | 30ed        | 4/1/94       | 5/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| ٥       | Prepare DQOs                                                |          | 20d         | 4/1/94       | 4/28/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 10      | Prepare rationale                                           |          | 204         | 4/1/94       | 4/28/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| =       | Prepare Health and Safety F                                 | hand     | 204         | 4/1/94       | 4/28/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            | • in .       |                              |                     |
| 12      | Prepare QAPP                                                |          | 204         | 4/1/94       | 4/28/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 13      | Prepare SAP                                                 |          | 30ed        | 4/1/94       | 5/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 14      | Develop remedial action we                                  | Ť        | 30ed        | 5/2/94       | 6/1/94        | 5,6,7,8,9,10,11,12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                            |                                |                            |              |                              | -                   |
| 5       | Submit RA Master Plan/W<br>Plan Working Copy                | ork      | Id          | 6/1/94       | 6/1/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 91      | McClellan AFB review wo                                     | rking    | 30ed        | 6/2/94       | 7/2/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                    |                            |                                |                            |              |                              |                     |
| 17      | Prepare draft copy                                          |          | 30ed        | 7/4/94       | 8/3/94        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              | -                            |                     |
| 18      | McClellan AFB and agenci<br>review draft document           | 3        | 60ed        | 8/3/94       | 10/2/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 61      | Prepare draft final                                         |          | <b>30ed</b> | 10/3/94      | 11/2/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 20      | Agency review draft final                                   |          | 30ed        | 11/2/94      | 12/2/94       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| 21      | Prepare final Remedial Act<br>Master Plan and Work Pla      | u u      | 1 Sed       | 12/2/94      | 12/17/94      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                            |                                |                            |              |                              |                     |
| Date: 1 | 376/94                                                      | Critical |             |              | Milesto       | <ul> <li>٢</li> /ul> | Summary                              |                            | Nonc                           | ritical                    |              |                              |                     |
|         |                                                             |          |             |              |               | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |                            |                                |                            |              |                              |                     |

|       |                                              |             | ┝     | 2              | ternative 2 | With Implemer | Itation of Contingency Plans |
|-------|----------------------------------------------|-------------|-------|----------------|-------------|---------------|------------------------------|
| ₽     | Name                                         | Dura        | tion  | ched. Start Si | hed. Finish | Predecessors  | $\frac{1}{2}$                |
| 52    |                                              |             |       |                |             |               |                              |
| ล     | Utility Mapping                              |             | 76    | 10/3/94        | 3/2/95      |               |                              |
| 77    | Map withics (witmap)                         | -           | 7601  | 10/3/94        | 3/2/95      | 1             |                              |
| 25    |                                              |             |       |                |             |               |                              |
| 26    | On-base/Off-base production                  | vella       | 224   | 10/3/94        | 11/2/94     |               | <b>D</b>                     |
| 27    | Prepare Base Well 18<br>abandoennent program |             | 1 Sed | 10/3/94        | 10/18/94    |               |                              |
| 28    | Prepare production well<br>contingency plans |             | 30ed  | 10/3/94        | 11/2/94     | -             |                              |
| 53    |                                              |             |       |                |             |               |                              |
| 8     | Extraction System                            | 11          | 134   | 10/3/94        | 1/16/01     |               |                              |
| 31    | Salicontractor procurens                     |             | 164   | 10/3/94        | 3/13/95     |               |                              |
| 32    | Specify system require                       | iments 1    | 1 Sed | 10/3/94        | 10/18/94    | 1             |                              |
| 33    | Identify performance (                       | riteria 1   | 1 Sed | 10/18/94       | 11/2/94     | 3             |                              |
| 34    | Procure BOAs w/ 3 su<br>Basewide EW/MW       | ths for     | 94d   | 11/2/94        | 3/13/95     | Э́с           |                              |
| 35    | Taalk Order 1                                | •           | 134   | 10/3/94        | 2011/97     |               |                              |
| 36    | Off base monitoring w<br>19                  | ells(       | PI    | 10/3/94        | 10/3/94     |               | -                            |
| 37    | Off base extraction we well head treatme     | ils(8<br>mt | PI    | 10/3/94        | 10/3/94     |               |                              |
| 38    | Hot Spot extraction w                        | ells(15     | ld    | 10/3/94        | 10/3/94     |               |                              |
| 39    | Final layout of wells<br>(wellfides)         |             | 62d   | 10/4/94        | 12/28/94    | 36,37,3       |                              |
| 40    | Prepare for installation<br>(wellprep)       | -           | 22d   | 12/29/94       | 1/27/95     | Ř             |                              |
| 41    | Installation/Interpret I<br>(wellins I)      | Data 2      | 125d  | 3/14/95        | 1/22/96     | 34,4          |                              |
| 42    | Abandon Base well 14                         | ~           | 1 Sed | 1/23/96        | 2/7/96      | 27,28,4       |                              |
| Date: | 3/26/94                                      | Critical    |       |                | Mileston    | •             | Summary                      |
|       |                                              |             |       |                |             |               |                              |
|       |                                              |             |       |                |             | Са<br>Са      | 53                           |

•

|              |                                                  |                  |       | -            | -             |              | 1994   1005   1006   1007   1008   1000   7000   7000                                              |
|--------------|--------------------------------------------------|------------------|-------|--------------|---------------|--------------|----------------------------------------------------------------------------------------------------|
| ₽            | Name                                             | Dur              | ation | Sched. Start | Sched. Finish | Predecessors | 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 |
| 43           | Reduce uncertainty in<br>of contamination off ba | extent<br>se/hot | PI    | 2/7/96       | 2/1/96        | 4            |                                                                                                    |
| 4            | Reduce uncertainty in<br>off-base/hot spot flows | 3                | PI    | 2/8/96       | 2/8/96        | <b>T</b>     |                                                                                                    |
| 45           | Reduce uncertainty of location and number of     | weils            | PI    | 2/9/96       | 2/9/96        |              | ·                                                                                                  |
| \$           | Reduce uncertainty in acuitier remome            |                  | PI    | 2/12/96      | 2/12/96       | 4            |                                                                                                    |
| 4            | Reduce uncertainty<br>concerning potential       |                  | PI    | 2/13/96      | 2/13/96       | 4            |                                                                                                    |
| <del>8</del> | Implement contingency<br>(if necessary)revise my | plan<br>del      | 1404  | 2/14/96      | 8/27/96       | 4            |                                                                                                    |
| <del>6</del> | Prepare Phase 1<br>Report/Phase 2 Plan           |                  | 4Sed  | 8/28/96      | 10/12/96      | 4            |                                                                                                    |
| 20           | Submit Phase 1 Report<br>2 Plan Working Copy     | Phase            | P     | 10/14/96     | 10/14/96      | 4            |                                                                                                    |
| 51           | McClellan AFB review<br>working copy             |                  | 30ed  | 10/15/96     | 11/14/96      |              |                                                                                                    |
| 52           | Prepare draft copy                               |                  | 30ed  | 11/14/96     | 12/14/96      |              |                                                                                                    |
| ŝ            | McClellan AFB and as<br>review draft document    | encies           | 60ed  | 12/16/96     | 2/14/97       | 5            |                                                                                                    |
| ¥            | Prepare draft final                              |                  | 30ed  | 2/14/97      | 3/16/97       | 5            |                                                                                                    |
| s            | Agency review draft fu                           | 3                | 30ed  | 3/17/97      | 4/16/97       |              |                                                                                                    |
| 8            | Prepare final Phase 1<br>Report/Phase 2 Plan     |                  | 1Sed  | 4/16/97      | 5/1/97        | 5            |                                                                                                    |
| 57           | Taak Order 2                                     |                  | 5384  | 3/17/97      | 4/8/99        |              |                                                                                                    |
| 8            | Off base monitoring w                            | )ali             | P     | 3/17/97      | 3/17/97       | 5            |                                                                                                    |
| 59           | Off base extraction well well well well          | ls(22)<br>at     | PI    | 3/17/97      | 3/17/97       | ~            |                                                                                                    |
| 98           | Hot Spot extraction we                           | lls( 14          | PI    | 3/17/97      | 3/17/97       |              |                                                                                                    |
| 61           | Final layout of wells<br>(wellfides)             |                  | 62d   | 3/18/97      | 6/11/97       | 58,59,6      |                                                                                                    |
| 62           | Prepare for installation<br>(weliprep)           |                  | 22d   | 6/12/97      | 7/11/97       | 9            |                                                                                                    |
| 63           | Installation/Interpret D<br>(wellins I)          | al a             | 133d  | 7/14/97      | 1/14/98       | 9            |                                                                                                    |
| Date: ]      | 3/26/94                                          | Critical         |       |              | Milestor      | •            | Summary Noncritical                                                                                |
|              |                                                  |                  |       |              |               | Pag          | 63                                                                                                 |

.

ţ

(

! +

•

|         |                                                   |                     |          | A              | Iternative 2 | With Impleme | tation of Continge                       | ency Plans                 |                       |                          |                     |                     |                   |                     |
|---------|---------------------------------------------------|---------------------|----------|----------------|--------------|--------------|------------------------------------------|----------------------------|-----------------------|--------------------------|---------------------|---------------------|-------------------|---------------------|
| g       | Name                                              | Dur                 | ation    | Sched. Start S | ched. Finish | Predecessors | <u>1994</u> 1995<br>Q2 Q3 Q4 Q1 Q2 Q3 Q4 | 1996<br>[Q1 [Q2 [Q3 [Q4 [G | 1997<br>21 Q2 Q3 Q4 6 | 1998<br>21 [Q2 ]Q3 [Q4 ] | 1999<br>01 02 03 04 | 2000<br>Q1 Q2 Q3 Q4 | 2001<br>200120104 | 2002<br>QI Q2 Q3 Q4 |
| 2       | Resolve uncertainty in<br>of contamination off b  | s extent<br>mae/hot | PI       | 86/51/1        | 1/15/98      | v            | -                                        |                            |                       |                          |                     |                     |                   |                     |
| 65      | Further reduce uncerts<br>aquifer response        | ainty in            | PI       | 1/16/98        | 1/16/98      | •            |                                          |                            |                       |                          | · · · ·             |                     |                   |                     |
| \$      | Resolve uncertainty in<br>location and number o   |                     | PI       | 86/61/1        | 86/61/1      | v            | •<br>                                    |                            |                       |                          |                     |                     |                   | •                   |
| 67      | Resolve uncertainty in<br>off-base/hot spot flows | 2                   | P        | 1/20/98        | 1/20/98      |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| 68      | Resolve uncertainty<br>concerning potential       |                     | PI       | 1/21/98        | 1/21/98      |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| 69      | Implement contingenc<br>(if necessary)/revise m   | y plan<br>odel      | 140d     | 1/22/98        | 8/2/98       |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| ۶<br>۶  | Prepare Phase 2<br>Report/Phase 3 Plan            |                     | 4Sed     | 8/9/8          | 9/20/98      |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| ц       | Submit Phase 2 Repor<br>3 Plan Working Copy       | (VPhase             | PI       | 36/12/4        | 9/21/98      |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| 2       | McClettan AFB revier<br>working copy              | 3                   | 30ed     | 9/22/98        | 10/22/98     |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| 2       | Prepare draft copy                                |                     | 30ed     | 10/22/98       | 11/21/98     |              |                                          |                            |                       | 0                        |                     |                     |                   |                     |
| 74      | McClellan AFB and a review draft document         | gencies             | 60ed     | 11/23/98       | 1/22/99      |              |                                          |                            |                       | -[]                      |                     |                     |                   |                     |
| 52      | Prepare draft final                               |                     | 30ed     | 1/22/99        | 2/21/99      |              |                                          |                            |                       |                          | _                   |                     |                   |                     |
| 76      | Agency review draft fi                            | len                 | 30ed     | 2/22/99        | 3/24/99      | 6            |                                          |                            |                       |                          | 0                   |                     |                   |                     |
| F       | Prepare final Phase 2<br>Report/Phase 3 Plan      |                     | 15ed     | 3/24/99        | 4/8/99       | 2            |                                          |                            |                       |                          |                     |                     |                   |                     |
| 8/      | Task Order 3                                      |                     | 6284     | 2/22/99        | 10/61/2      |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| \$      | On base monitoring w<br>68 )                      | ells(               | PI       | 2/22/99        | 2/22/99      |              |                                          |                            |                       |                          |                     |                     |                   |                     |
| 8       | On base extraction we                             | tia( 94             | P        | 2/22/99        | 2/22/99      | C            | <br>•                                    |                            |                       |                          |                     |                     |                   |                     |
| 18      | Final layout of wells<br>(wellfides)              |                     | 62d      | 2/23/99        | 5/19/99      | 79,8         | -                                        | · · · - · · · · - ·        |                       |                          |                     |                     |                   |                     |
| 82      | Prepare for installation<br>(wellprep)            |                     | 22d      | 5/20/99        | 6/18/99      | 3            |                                          |                            |                       |                          |                     |                     |                   |                     |
| <b></b> | Installation/Interpret I<br>(wellins3)            | Data                | 225d     | 6/11/99        | 4/28/00      | 8            |                                          |                            | -                     |                          |                     | П                   |                   |                     |
| 84      | Resolve uncertainty in<br>of contamination off b  | i extent<br>ase/hot | <u>P</u> | 5/1/00         | 5/1/00       |              | -                                        |                            |                       |                          |                     |                     |                   |                     |
| Date:   | 3/26/94                                           | Critical            |          |                | Mileston     | •            | Summary                                  |                            |                       | Voncritical              |                     |                     |                   |                     |
|         |                                                   |                     |          |                |              | Pa           | +                                        |                            |                       |                          |                     |                     |                   |                     |

· • • • • • · • • • • •

|                 |                                                         | Durat     | tion Sci | hed. Start S | ched. Finish | Predecessors | 201040102 | 95 194 01 02 03 05 | M Q1 Q2 Q3 (     | 210101010  | 24 Q1 Q2 Q3 Q4 | 0101010 | 0 0 00 00 00 | 102030 |
|-----------------|---------------------------------------------------------|-----------|----------|--------------|--------------|--------------|-----------|--------------------|------------------|------------|----------------|---------|--------------|--------|
|                 | Resolve uncertainty in                                  |           | PI       | 5/2/00       | 5/2/00       | Š            |           |                    |                  |            |                |         |              |        |
|                 | Resolve uncertainty in<br>location and number of        |           | PI       | 5/3/00       | 5/3/00       | - <b>3</b> 8 |           |                    |                  |            |                | <b></b> |              |        |
|                 | Resolve uncertainty in on<br>base flow to treatment pla | 1         | Id       | 5/4/00       | 5/4/00       | 8            |           |                    |                  |            |                |         |              |        |
|                 | implement contingency p<br>(if necemary)/revise mode    |           | P0+1     | 5/5/00       | 11/16/00     | 60           | 1         |                    |                  |            |                |         |              |        |
|                 | Propare Phase 3 Report                                  |           | 45ed     | 11/17/00     | 10/1/1       | 88           |           |                    | · <del>-</del> · |            |                |         |              |        |
|                 | Submit Phase 3 Report<br>Working Conv                   |           | Pl       | 10/1/1       | 10/1/1       | 85           |           | F                  |                  |            |                |         |              |        |
|                 | McCletten AFB review<br>working copy                    |           | 30ed     | 1/2/01       | 2/1/01       | 8            |           |                    |                  | _          |                |         | <b>a</b> .   |        |
|                 | Prepare draft copy                                      |           | 30ed     | 10/1/2       | 3/3/01       | 16           |           |                    |                  |            |                |         |              |        |
|                 | McClellan AFB and agen<br>review draft document         |           | 50ed     | 3/5/01       | 5/4/01       | 67           |           |                    |                  |            |                |         |              |        |
|                 | Prepare draft final                                     |           | 30ed     | 5/4/01       | 6/3/01       | 6            |           |                    |                  |            |                |         |              |        |
|                 | Agency review draft final                               |           | 30ed     | 6/4/01       | 7/4/01       | 8            |           |                    |                  |            |                |         | -            |        |
|                 | Prepare final Phase 3 Rep                               | Tex       | 1 Sed    | 7/4/01       | 10/61/L      | 6            |           |                    |                  |            | ·              |         |              |        |
|                 |                                                         |           |          |              |              |              |           |                    |                  |            |                |         |              |        |
| Treatmen        | nt/Earl Use/ Collection                                 | <b>30</b> | 324      | \$/20/99     | 7/26/02      |              |           |                    |                  |            |                | -       |              | 1      |
| Proce<br>(contr | ure turnkey contractor<br>(proc)                        |           | P88      | 5/20/99      | 9/20/99      | 24,81        |           |                    |                  |            |                |         |              |        |
| West            | tern Area                                               |           | 1444     | 66/12/6      | 7/26/02      |              |           |                    |                  |            | •              |         |              | 1      |
|                 | Collection piping                                       | <b>•</b>  | 592d     | 9/21/99      | 12/26/01     |              |           |                    |                  |            | U              |         |              |        |
|                 | Preliminary Design<br>(wcolde60)                        | <b>7</b>  | 290d     | 9/21/99      | 10/30/00     | 8            |           |                    |                  | _          | Ц              |         |              |        |
|                 | Final design<br>(wcolde95)                              | -         | PE01     | 00/16/01     | 3/22/01      | 102          |           |                    |                  | -          |                | <br>    | ,<br>L       |        |
|                 | Prepare for construc<br>(wcolprep)                      | l         | 1084     | 10/31/00     | 3/29/01      | 101          |           |                    |                  |            |                |         | Π            |        |
|                 | Construction<br>(weallcon)                              |           | 194d     | 3/30/01      | 12/26/01     | 88,103,10    |           |                    | =                |            |                |         |              |        |
| 3/26/94         |                                                         | Critical  |          |              | Mileston     | •            | Summ      | L.                 |                  | Noncritics |                |         |              |        |
|                 |                                                         |           |          |              |              | Page         | S.        |                    |                  |            |                |         |              |        |

ł,

| Turnus Jama         Desite         State State         State State <t< th=""><th>. I.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>  194   1995   1997   1998   1999   2000   2001   2002  </th><th></th></t<> | . I. |                                |           |          |              |               |              | 194   1995   1997   1998   1999   2000   2001   2002 |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------|-----------|----------|--------------|---------------|--------------|------------------------------------------------------|---|
| Transmit Inter         244         92139         73463           Presson         61         92139         72309         191           Presson         1         22339         123209         191           Presson         4         12329         123209         191           Presson         4         12329         123209         191           Presson         4         12329         123209         191           Presson         101         12320         101         1260         101           Reversion         131         121         12701         1260         101           Reversion         130         122701         1260         101         1260         101           Reversion         101         1260         101         1260         101         1260         101           Reversion         101         1260         101         1260         101         1260         111         101         1260         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                |           | Duration | Sched. Start | Sched. Finish | Predecessors | ପାଡ଼ାପାହାହାହାହାହାହାହାହାହାହାହାହାହାହାହାହାହାହା          | _ |
| Prime         Community Theory         Cold         Status         Status <ths< td=""><td></td><td>Tructured place</td><td></td><td>7444</td><td>9/11/99</td><td>7/26/02</td><td></td><td></td><td></td></ths<>                                                                                                                                                        |      | Tructured place                |           | 7444     | 9/11/99      | 7/26/02       |              |                                                      |   |
| Frait Nation<br>Frait Nation         564         123.295         223.09         100           Creation<br>Free Nation         H         223.29         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291         123.291                                                                                                                                                                                                                                                          |      | Preliminary Der<br>(wtrea60)   | 5         | 67d      | 6/11/6       | 12/22/99      | 6            |                                                      |   |
| Chemerica         La         122289         122289         122289         122289         122289         122289         122280         122280         122280         122280         122280         122280         122280         122280         122280         122280         122280         122280         122280         122280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         12280         1                                                                                                                                                                                                                                                                                                                | ł    | Final Design<br>(wtrea95)      |           | 9999     | 12/23/99     | 3/23/00       | 01           |                                                      |   |
| Contention         old         22304         22304         22304         22304           RetrayShateds         163         127701         174602         105110           RetrayShateds         364         122701         175602         105110           RetrayShateds         364         122701         175602         105110           RetrayShateds         364         122702         1002         112           RetrayShateds         364         12802         61002         112           RetrayShated         314         97109         112600         19           RetrayDate         1084         92190         51600         116           RetrayDate         1084         92190         51600         116           RetrayDate         1084         92190         117118         116           RetrainExcentrice         846         21600         117118         117118           RetrainExcentrice         1084         92000         117118         117118           RetrainExcentrice         1084         92199         92000         122101           RetrainExcentrice         1084         92199         120000         122101           RetrerAres <t< td=""><td>1</td><td>Prepare for<br/>Construction</td><td> </td><td>3</td><td>12/22/99</td><td>12/22/99</td><td>01</td><td>•</td><td></td></t<>                                                                                                                                                                                                                                                                           | 1    | Prepare for<br>Construction    |           | 3        | 12/22/99     | 12/22/99      | 01           | •                                                    |   |
| Barray Takateon         124         127-01         736-02         105/110           Barray Shakatoo         360         122701         126/02         105/110           Barray Shakatoo         360         122701         126/02         105/110           Renues yaka         360         128/02         105/110         128/02         105/110           Renues yaka         301         128/02         112         112         112           Renues yaka         311         92/15         11/12/00         99           Renues y Taking         954         21/160         116           Physic         108         6/10/00         116           Renues y Taking         954         21/160         116           Renues y and the physic         1084         6/10/00         116           Renues y and the physic         1084         6/10/00         116           Renues y and         7240         9/11/9         11/1/118           Renues y and         1084         6/10/00         11/1           Renues y and         1094         10/10         11/1           Renues y and         11/2         11/2         11/1           Renues y and         11/2                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Construction                   |           | 3        | 3/23/00      | 3/23/00       | 108,10       | •                                                    |   |
| Remunication         304         127701         17.602         105.110           Remunication         Theorem         1304         17.602         105.110           Remunication         Theorem         1304         17.602         11.2           Conscription         964         17.802         610.02         11.1           Earl University Internet         304         17.802         610.02         11.1           Faul University Internet         304         17.802         610.02         11.2           Philinternet/Desige         21.16         52.199         52.090         11.6           Primation         1064         57.100         17.800         11.7         11.8           Primation         21.6         61.600         11.6         11.6         11.6           Constrained         1064         57.100         17.800         11.7         11.6           Constration         1064         57.000         117.118         11.7         11.6         11.7           Constration         1064         57.000         117.200         11.0         11.7         11.6         11.7           Constration         1064         57.000         117.200         11.7         11.2 </td <td></td> <td>Start-ap/Shake</td> <td>Ę</td> <td>1524</td> <td>12/27/01</td> <td>7/26/02</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                               |      | Start-ap/Shake                 | Ę         | 1524     | 12/27/01     | 7/26/02       |              |                                                      |   |
| Process<br>outsidency plan         130d         172602         77502         112           Capacity<br>Capacity         96d         172602         113         97139         117600         113           End Les Plans         311         27139         117600         193           Find Internery Denics         106d         72802         113         77139         1175000         113           Find Internery Denics         106d         271300         116         111         116         116         116         116         116         117         118         116         117         118         116         117         118         116         117         118         116         117         118         116         117         118         116         117         118         116         117         118         116         117         118         117         117         118         116         117         118         111         117         118         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111                                                                                                                                                                                                                                                                                                                                                                                   |      | Start-up/S                     | thakedo   | 30ed     | 12/27/01     | 1/26/02       | 105,11       |                                                      |   |
| Conserve         Sed         17.800         61.03         11.13           Conserve         31.4         92.179         11.7800         93           End Use Plans         31.4         92.179         11.7800         93           Final Iberia         934         21.180         67.900         116           Prefinamery Datis         934         21.800         67.900         116           Prevention         864         21.800         67.900         116           Prevention         864         21.800         67.900         116           Construction         864         21.800         67.900         112.800           Construction         864         21.800         67.900         112.800           Construction         864         21.800         67.900         112.800           Construction         1064         67.900         112.800         117.118           Construction         203         97.199         57.801         126.801           Construction         1064         67.900         127.801         127.801           East         203         97.199         57.801         127.801           Final design         1034         03.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    | Process<br>contingenc          | cy plan   | 1304     | 1/28/02      | 7/26/02       | =            |                                                      |   |
| Ext Use Pigned         3114         921/95         11/2606           Findimenty Design         934         21/100         93           Find Design         934         21/100         62900         116           Find Design         934         21/1800         62900         116           Find Design         934         21/1800         62900         116           Find Design         934         21/1800         61/130         117,118           Construction         1864         97.199         12.2601         117,118           Construction         1084         97.00         117,118         117,118           Construction         1084         97.199         12.2601         117,118           Construction         1034         003000         99         12.2161         112           Fieldening         1034         103100         372201         112           Fieldening         1034         103100         372201         112           Conduction         1944         33001         122601         88,12,114           Construction         1944         33001         122601         88,12,114           Construction         1944         7001                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Capacity<br>continuenc         | cy plan   | 964      | 1/28/02      | 6/10/02       | =            |                                                      |   |
| Preliminary Design         1084         9.21/90         2/1700         991           Final Design         934         2/1800         6/2900         116           Final Design         934         2/1800         6/3900         117           Prevent/dors         864         2/1800         6/3900         11/3/18           Prevent/dors         1084         6/3000         11/2800         11/3/18           Contractions         1086         6/3000         11/3/18         11           Prevent/dors         7204         9/21/99         12/2601         11/3/18           Contractions         1086         9/21/99         12/2601         11/3/18           Preferences         372.00         11/28.00         11/3/18           Preferences         372.199         12/2601         11/3/18           Preferences         392.10         11/3/18         11/3/18           Preferences         392.11/9         12/2601         3/21/9           Final design         1003100         3/2201         11/2           Prevences         10/3100         3/2201         11/2           Prevences         3/3001         12/2         3/3001           Prevences         3/3001<                                                                                                                                                                                                                                                                                                                                                                                                             |      | End Use Pipting                |           | 3114     | 9(21/99      | 11/28/00      |              |                                                      |   |
| Final Design<br>(wendlight)         93d         21800         67300         116           Proper for construction         86d         21800         61600         116           Proper for construction         86d         21800         61600         117,118           Construction         86d         21800         61600         117,118           Construction         86d         21800         61600         117,118           Construction         108d         63000         112800         117,118           Eatern Avas         720d         921/99         123601         103           Construction         108d         63000         122601         103           Fatern Avas         290d         921/99         1033000         93           Fatern Avas         290d         921/99         1033000         93           Fatern Avas         290d         921/99         103300         122           Fatern Avas         290d         921/99         122601         88,133,134           Fatern Avas         730d         122601         88,133,134         122           Construction         194d         330001         122601         88,133,134           Consofforetoj                                                                                                                                                                                                                                                                                                                                                                                                       |      | Preliminary Der<br>(wendw60)   | sign      | 108d     | 9/21/99      | 2/17/00       | 6            |                                                      |   |
| Prepare for construction         864         218.00         616.00         116           Constrations         1084         6.3000         1128.00         117,118           Constrations         1084         6.3000         1128.00         117,118           Constrations         1084         6.3000         1128.00         117,118           Extern Area         7204         921/95         62402         1           Finite (workdown)         931/95         62402         1         1           Preliminary Design         5924         921/95         103000         99           Preliminary Design         2904         921/95         103000         99           Preliminary Design         2904         971/96         122         1           Present des construction         1944         372001         122           Present for construction         1944         37001         122           Consoluction         1944         37001         122           Consoluction         1944         37001         122           Consoluction         1944         37001         122.560           Consoluction         1944         371/96         62402           Consoluct                                                                                                                                                                                                                                                                                                                                                                                                             |      | Final Design<br>(wendu95)      |           | 954      | 2/18/00      | 6/29/00       | 1            |                                                      |   |
| Construction<br>(verticions)         108d         6:30:00         117,118           Extern Area         7.204         921/99         6:30:00         117,118           Extern Area         7.204         921/99         6:30:00         117,118           Extern Area         7.204         921/99         6:30:00         197           Collection plane         992d         921/99         10:30:00         99           Priminary Design         290d         921/99         10:30:00         99           Final design         103d         10:31:00         372:01         1122           Prepare for construction         108d         10:31:00         372:01         1122           Construction         108d         10:31:00         372:01         1122           Prepare for construction         108d         10:31:00         372:01         1122           Construction         108d         10:31:00         372:01         1123           Construction         108d         10:31:00         372:01         1123           Construction         108d         10:31:00         372:01         123           Construction         108d         10:31:00         372:01         123           Co                                                                                                                                                                                                                                                                                                                                                                                         |      | Prepare for cons<br>(wendurre) | struction | 86d      | 2/18/00      | 6/16/00       | 1            |                                                      |   |
| Eastern Area         720a         9721/95         6/24/02           Callectore plate         592a         9721/95         12/26/01           Preliminary Design         592a         9721/95         12/26/01           Preliminary Design         290d         9/21/95         10/30/00           (coolde60)         1034         10/31/00         3/22/01         11/2           (coolde60)         1034         10/31/00         3/23/01         11/2           (coolde75)         10/31/00         3/23/01         11/2           (coolde70)         194d         3/30/01         12/26/01         88,123,1124           Construction         194d         3/31/99         6/34/02         1           Trestnest jast         720d         9/21/99         6/34/02         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Construction<br>(wendcons)     |           | 1084     | 6/30/00      | 11/28/00      | 117,11       |                                                      |   |
| Collection pights         592.4         97.1/99         12.2601         99           Primmary Design         290d         97.1/99         10/30/00         99           (coolddo60)         3/22/01         1122         10/31/00         3/22/01         1122           Final design         103d         10/31/00         3/22/01         1122         10/31/00         1/2/26/01         1/2/26/01           Prepare for construction         194d         3/30/01         1/2/26/01         88,123,124         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         88,123,124           Construction         194d         3/30/01         1/2/26/01         88,123,124         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01         1/2/26/01                                                                                                                                                                                                                                                                      |      | Eastern Area                   |           | 7204     | 66/12/6      | 6/24/02       |              |                                                      |   |
| Preliminary Design         290d         9/21/99         10/30/00         99           (coolde60)         (coolde60)         3/29/01         122           (coolde60)         3/29/01         122           Prepare for construction         108d         10/31/00         3/29/01           Prepare for construction         194d         3/30/01         12/26/01         88,123,124           Construction         194d         3/30/01         12/26/01         88,123,124           (coollocon)         194d         3/30/01         12/26/01         88,123,124           Construction         194d         9/31/99         6/24/02         Sa,123,124           Construction         194d         9/31/99         6/24/02         Sa,123,124           Construction         194d         9/31/99         6/24/02         Sa,123,124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Collection piping              | <b> </b>  | 5924     | 9/11/99      | 12/26/01      |              |                                                      |   |
| Final design<br>(coolde95)         103d         1031/00         3/22/01         122           Prepare for construction         108d         10/31/00         3/29/01         122           Prepare for construction         108d         10/31/00         3/29/01         122           (coolde95)         (coolde95)         3/30/01         122         (coolde95)           (coolde01)         194d         3/30/01         12/26/01         88,123,124           (cooldcon)         194d         3/30/01         12/26/01         88,123,124           Treatment plant         720d         9/21/99         6/24/02         Summary           Intertone         Milentone         Summary         Noncritical         Image: Sumary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Preliminary Der<br>(ecolde60)  | 5         | 290d     | 66/12/6      | 10/30/00      | 6            |                                                      |   |
| Prepare for construction         108d         10/31/00         3/29/01         122           (ecolprep)         (ecolprep)         3/30/01         12/26/01         88,123,124           Construction         194d         3/30/01         12/26/01         88,123,124           Treatment plant         720d         9/21/99         6/24/02         88,123,124           Construction         194d         3/30/01         12/26/01         88,123,124           Treatment plant         720d         9/21/99         6/24/02         Noncritical           Anticol         Critical         Milestone         Summary         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Final design<br>(ecolde95)     |           | 103d     | 00/16/01     | 3/22/01       | 12           |                                                      |   |
| Construction         194d         3/30/01         12/26/01         88,123,124           (ecollecon)         (ecollecon)         6/24/02         88,123,124           Treatment plant         720d         9/21/99         6/24/02           Critical         Milestone         Summary         Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ    | Prepare for cons<br>(ecoloren) | struction | 1084     | 10/31/00     | 3/29/01       | 12           |                                                      |   |
| Treatment plant     720d     971/99     6/24/02       Critical     Milestone     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Construction<br>(ecollcon)     |           | 194d     | 3/30/01      | 12/26/01      | 88,123,12    |                                                      |   |
| Critical Milestone  Noncritical Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Treatment plant                |           | 7204     | 9/21/399     | 6/24/02       |              |                                                      |   |
| Page 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                | Critica   |          |              | Mileston      | •            | Summary Noncritical                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                |           |          |              |               | Pag          | je 6                                                 |   |

|       |                                          |           | ŀ            | 2               | ternative 2  | With Implemen   | tation of Co        | ntingency                 | Plans         |                    |                          |                     |                  |                    |                     |
|-------|------------------------------------------|-----------|--------------|-----------------|--------------|-----------------|---------------------|---------------------------|---------------|--------------------|--------------------------|---------------------|------------------|--------------------|---------------------|
| 9     | Name                                     | Dun       | ation 5      | Sched. Start S. | ched. Finish | Predecessors    | 1994<br>Q2 Q3 Q4 Q1 | 1995 19<br>22 Q3 Q4 Q1 Q2 | %<br>Q3 Q4 Q1 | 1997<br>02 03 04 0 | 1998<br>1   Q2   Q3   Q4 | 1999<br>QI Q2 Q3 Q2 | 1 Q1 Q2 Q3 Q4 Q1 | 2001<br>1 Q2 Q3 Q4 | 2002<br>Q1 Q2 Q3 Q4 |
| 127   | Preliminary Dea<br>(strea60)             | us,       | 724          | 9/21/99         | 66/67/21     | \$              |                     |                           |               | <u> </u>           |                          |                     |                  | <b>-</b>           |                     |
| 128   | Final Design (e                          | trea95)   | <b>P</b> 999 | 12/30/99        | 3/30/00      | 12              |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 129   | Prepare for<br>Construction              |           | 128d         | 12/30/99        | 6/26/00      | 12              |                     |                           |               |                    |                          |                     |                  | = =                |                     |
| 130   | Construction (et                         | (ucora    | 87d          | 6/27/00         | 10/25/00     | 128,125         |                     |                           |               |                    |                          |                     |                  |                    |                     |
| IEI   | Start-ap/Shake                           | low       | 1284         | 12/27/01        | 6/24/02      |                 |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 132   | Start-up/Sh                              | akedo     | 30ed         | 12/27/01        | 1/26/02      | 125,130         |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 133   | Process                                  | mild      | 106d         | 1/28/02         | 6/24/02      | 132             |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 134   | Capacity<br>contingency                  | , plan    | <b>2</b> 8   | 1/28/02         | 6/10/02      | 13              |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 135   | East Use Preise                          |           | 2784         | 9/21/99         | 10/12/00     |                 | <br>                |                           |               |                    |                          | U                   |                  |                    |                     |
| 136   | Preliminary Deal<br>(cerndus60)          | 5         | 1066         | 9/21/99         | 2/15/00      | 8               |                     |                           |               |                    |                          | U                   |                  |                    |                     |
| 137   | Final Design<br>(cendu95)                |           | 706          | 2/16/00         | 5/23/00      | 130             |                     |                           | • •           |                    |                          |                     |                  |                    |                     |
| 138   | Prepare for const<br>(cendupre)          | ruction   | <b>86d</b>   | 2/16/00         | 6/14/00      | 13              |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 139   | Construction<br>(cendcons)               | <br> <br> | <b>9</b> 98  | 6/15/00         | 10/12/00     | 137,138         |                     |                           |               |                    |                          |                     |                  |                    |                     |
| 140   |                                          |           |              |                 |              |                 |                     |                           |               |                    |                          |                     | ,                |                    |                     |
| 141   | Operation of Remedial Action             |           | 74           | 6/24/02         | 7/26/02      |                 | ·                   |                           | -             |                    |                          |                     |                  | -                  | ₽                   |
| 12    | Containment of Contamit<br>Target Volume |           | ž            | 6/24/02         | 7/26/02      |                 |                     |                           | · •• ·        |                    |                          |                     |                  |                    | ₽                   |
| 3     | West Base                                |           | 3            | 7/26/02         | 7/26/02      | 105,113,114     |                     |                           |               | -                  |                          |                     |                  |                    | •                   |
| Ŧ     | East Base                                |           | 3            | 6/24/02         | 6/24/02      | 125,133,134,139 |                     |                           |               |                    |                          |                     |                  |                    | ٠                   |
|       |                                          |           |              |                 |              |                 |                     |                           |               |                    |                          |                     |                  |                    |                     |
| Date: | 3/2694                                   | Critical  |              |                 | Mileston     | •               | Sum                 | (Init                     |               |                    | oncritical               |                     |                  |                    |                     |
|       |                                          |           |              |                 |              | Page            | 7                   |                           |               |                    |                          |                     |                  |                    |                     |

| Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrimination         Discrestrimination         Discrimination         Dis | <u>_</u>   | Name                                                   |          |        |              |              | Destangeneration     |                     |                                           |                                      | ×. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------|----------|--------|--------------|--------------|----------------------|---------------------|-------------------------------------------|--------------------------------------|----|
| 1         Americano Activity         1434         11743         7159           3         Accounty UTULINE         1434         11734         21644           3         Accounty UTULINE         1644         11734         21644           4         Donge plane         246         11734         21644         0           5         Enclose System         266         11734         21644         0           1         Theorem System         266         11734         21644         0           1         Theorem System         266         11734         21644         0           1         Proper RQA         266         11734         21644         0           1         Proper RQA         266         11734         21644         0           1         Proper RQA         266         11734         21144         0           1         Proper RQA         266         11734         21144         0           1         Proper RQA         2664         11734         21154         0           1         Proper RQA         2664         11734         21154         0           1         Proper RQA         2664 <t< th=""><th>•</th><th></th><th></th><th>nation</th><th>Sched Star 3</th><th>ched. Finish</th><th>LICOCCERNIS</th><th>Qu 1 Qu 2 Qu 3 Qu 4</th><th>Qu 1 Qu 2 Qu 3 Qu 4 Qu 1 Qu 2 Qu 3 Qu 4 Q</th><th>u 1 Qu 2 Qu 3 Qu 4 Qu 1 Qu 2 Qu 3 Qu</th><th>8</th></t<>                                                                                                              | •          |                                                        |          | nation | Sched Star 3 | ched. Finish | LICOCCERNIS          | Qu 1 Qu 2 Qu 3 Qu 4 | Qu 1 Qu 2 Qu 3 Qu 4 Qu 1 Qu 2 Qu 3 Qu 4 Q | u 1 Qu 2 Qu 3 Qu 4 Qu 1 Qu 2 Qu 3 Qu | 8  |
| 2     Muse Ten With The of Reached     136     1/173     1004       3     Muse Ten With The of Reached     136     1/173     1004       4     Density Reached     136     1/173     2164       5     Exercise System     304     1/173     2164       6     Trained Spinen     304     1/173     2164       7     Editice System     304     1/173     2164       8     Calleice System     304     1/173     2164       9     Physice DQA     200     1/174     21164       10     Physice DQA     200     1/174     21164       11     Physice DQA     200     1/1744     21164       11     Physice DQA     200     1/1744     21164       11     Physice DQA     200     1/1744     21164       11     Physice DQA     200     1/1746     21164       11     Physice DQA     2104     21164     21164       11     Physice DQA     21164     21164       11<                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          | ARCATOX, UTILITIES)                                    | -        | 14334  | 1/17/94      | 1/15/99      |                      |                     |                                           |                                      |    |
| 3     Numer     Numer     Numer     Number     Number     Number       4     Demons     244     1/1794     2/1694     D       5     Demons     304     1/1794     2/1694     D       6     Tententes System     304     1/1794     2/1694     D       7     Edition System     304     1/1794     2/1694     D       8     Collection System     304     1/1794     2/1694     D       9     Prepres DOLo     200     1/1794     2/1694     D       10     Prepres DOLo     200     1/1794     2/1694     D       11     Prepres DOLo     200     1/1794     2/1694     D       11     Prepres DOLo     200     1/1794     2/1164     D       12     Prepres DOLo     200     1/1794     2/1164     D       13     Prepres DOLo     200     1/1794     2/1164     D       14     Demons     200     1/1794     2/1164 <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                   | 2          |                                                        |          |        |              |              |                      |                     |                                           |                                      |    |
| •         Decision System         244         1/1794         2/1694         0           3         Estimulation System         300         1/1794         2/1694         1           7         Estimulation System         300         1/1794         2/1694         1           9         Pressment System         300         1/1794         2/1694         1           10         Pressment System         300         1/1794         2/1694         1           10         Pressment System         200         1/1794         2/1694         1           11         Pressment System         200         1/1794         2/1694         1           11         Pressment Statisty System         200         1/1794         2/1694         1           12         Pressment Statisty System         200         1/1794         2/1694         1         1           13         Pressment Statisty System         200         1/1794         2/1694         1         1         1           14         Decision Flautu and Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty Statisty                                                                                                                                                                                     | -          | Master Plan/Work Plan of Re-<br>Action                 | 1        | 3      | 1/17/94      | 10/4/94      |                      |                     |                                           |                                      |    |
| 3     Extension System     306     117734     21654     0       7     Tacklians System     306     117734     21654     0       8     Collection System     306     117734     21654     0       9     Prepare DQCs     306     117734     21164     0       10     Prepare rutication System     306     117734     21194     0       11     Prepare rutication System     306     117734     21194     0       12     Prepare rutication Softem     306     117734     21194     0       13     Prepare rutication work     306     177734     211344       14     Derestep remodula scient work     306     211634     1       15     Prepare rutication work     306     211634     1       16     Derestep remodula scient work     306     211634     1       17     Prepare rutication work     306     211634     55.7.3.0.10.11.1.1.1.1       16     Derestep removersitie     306     211634     35.7.3.0.10.11.1.1.1.1       17     Prepare rutication work     306     211634     35.7.3.0.10.11.1.1.1.1.1       16     Derestep removersitie     306     211934     1       17     Prepare rutication SUL                                                                                                                                                                                                                                                                                                                                                                                           | •          | Develop Remedial Action<br>Manter Plan                 |          | 759    | 1/17/94      | 2/16/94      |                      | D                   |                                           |                                      |    |
| 6         Trentment System         30ei         1/1794         2/1674         0           7         Eak Use System         30ei         1/1794         2/1674         0           8         — Collection System         30ei         1/1794         2/1674         0           9         Prepare DACA         20ei         1/1794         2/1674         0           10         Prepare Indication System         20ei         1/1794         2/1174         0           11         Prepare DACA         20ei         1/1794         2/1174         0         0           11         Prepare OACP         20ei         1/1794         2/1164         0         0           11         Prepare OACP         20ei         1/1794         2/1164         0         0           11         Prepare OACP         20ei         1/1794         2/1164         0         0           12         Prepare OACP         20ei         1/1794         2/1164         0         0           13         Prepare OACP         20ei         1/1794         2/1644         1         0           14         Presare Marker FlaurWork         1         2/1644         1         0         0                                                                                                                                                                                                                                                                                                                                        | 5          | Extraction System                                      |          | 30ed   | 1/17/94      | 2/16/94      |                      |                     |                                           |                                      |    |
| 7         Earl Lue System         30ed         1/1794         2/1694         0           8         Collection System         30ed         1/1794         2/1694         1           9         Prepare EQO.         20d         1/1794         2/1194         1           10         Prepare thesh and staticy plane         20d         1/1794         2/1194         1           11         Prepare thesh and staticy plane         20d         1/1794         2/1194         1           12         Prepare thesh and staticy plane         20d         1/1794         2/1194         1           13         Prepare CAUP         20d         1/1794         2/1194         1         1           14         Demonstree CAUP         30ed         1/1794         2/1194         1         1           15         Prepare CAUP         30ed         1/1794         2/1194         1         1           16         Demonstree         30ed         1/1794         2/1194         1         1           16         Demonstree         30ed         2/1994         8/6/78/10.1112.13         1         1           17         Prepare CAUP         30ed         2/1994         8/6/78/10.1112.13                                                                                                                                                                                                                                                                                                                  | 5          | Treatment System                                       |          | 30ed   | 1/17/94      | 2/16/94      |                      |                     |                                           |                                      |    |
| c         Collections System         30ed         1/1794         216.94         1           9         Propres Trainade         204         1/1794         211.94         1           10         Propres Trainade         204         1/1794         211.94         1           11         Propres Trainade         204         1/1794         211.94         1           11         Propres Health and Safey plan         204         1/1794         211.94         1           12         Propres (APP         204         1/1794         211.94         1           13         Propres SAP         30ed         1/1794         211.94         1           14         Develop remedial action work         30ed         211.694         318.94         5.6.7.8.9.10.11.1.1.2.1.3         1           15         Submu RA Mater Plan Work         1         318.94         5.6.7.8.9.10.11.1.2.1.3         1           16         Modeling Corr         30ed         312.194         47.094         1         1           15         Submu RA Mater Plan Work         1         312.194         47.094         1         1           16         Modeling Corr         30ed         312.194         1         1 <td>-</td> <td>End Use System</td> <td></td> <td>30ed</td> <td>1/17/94</td> <td>2/16/94</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                    | -          | End Use System                                         |          | 30ed   | 1/17/94      | 2/16/94      |                      |                     |                                           |                                      |    |
| 9     Prepare DQCs     20d     1/1794     2/1194     D       10     Prepare rationals     20d     1/1794     2/1194     D       11     Prepare rationals     20d     1/1794     2/1194     D       12     Prepare flamth and Safety plan     20d     1/1794     2/1194     D       13     Prepare SAP     30ed     1/1794     2/1194     D       14     Dame Partentian work     30ed     1/1794     2/1694     H       15     Stahmal RA Maser Plan/Work     1d     3/1894     3/1894     H       15     Palama RA Maser Plan/Work     1d     3/1894     3/1894     H       16     McCollina ATB     30ed     2/1994     4/2094     11       17     Prepare flam/Work     1d     3/1894     1/1994     11       18     McCollina ATB     30ed     3/1994     4/2094     11       19     Prepare flam ATB     30ed     3/1994     1994     199       10     Prepare flam ATB     30ed     3/1994     1999     199       11     Prepare flam ATB     30ed     3/1994     1999     199       12     Prepare flam ATB     30ed     3/1994     1999     199       1                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>200</b> | Collection System                                      |          | 30ed   | 1/17/94      | 2/16/94      |                      |                     |                                           |                                      |    |
| 10         Prepare rationals         20d         1/1794         2/1/94         0           11         Prepare Health and Safety plans         20d         1/1794         2/1/94         1           12         Prepare Realth and Safety plans         20d         1/1794         2/1/94         1           13         Prepare GAPF         2/0d         1/1794         2/1/94         2/1/94         1           14         Develop remedial action work         30ed         2/1/94         3/1894         5/5/78.910.11.12.13         1           15         Stahma RA, Manter Plann Work         1d         3/1894         3/1894         1/19           16         MACHIMI AFIB review working         30ed         2/1944         4/20/94         1/1           17         Prepare Plan         30ed         3/1944         4/20/94         1/1           17         Prepare of and Remedial Action         30ed         3/1994         1/1         1           18         MACHIMA AFIB and Sentices         6/0d         3/1994         9/1994         1/1           20         7/1994         8/1894         1/1         1         1           20         7/1994         1/1         1         1         1                                                                                                                                                                                                                                                                                              | 6          | Prepare DQOs                                           |          | 200    | 1/17/94      | 2/11/94      |                      |                     |                                           |                                      |    |
| 11     Prograe (Heath and Safety plan     201     1/1794     2/1194     1       12     Prograe (AVP     204     1/1794     2/1194     1       13     Prograe (AVP     3064     1/1794     2/1694     3/1894     3/1894       14     Develop remedial action work     3064     1/1794     2/1694     3/1894     3/1894       15     Submit RA Matter Plan/Work     1d     3/1894     3/1894     4/2094     1/3       15     Prograe (action work)     30ed     3/1994     4/2094     1/3       16     MCClellan AVB review working     30ed     3/1994     4/2094     1/3       17     Prograe (actif document     30ed     3/1994     1/3     1/3       18     MCClellan AVB and agencies     60ed     5/2094     7/1994     1/3       18     MCClellan AVB and agencies     60ed     5/1994     1/3     1       20     Approver daft final     30ed     7/1994     1/3     1       21     Prograe faith document     30ed     7/1994     1/3     1       20     Approver daft final     30ed     7/1994     1/3     1       21     Prograe     1/3     3/1994     1/3     1       21     Progr                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | Prepare rationale                                      |          | 50     | 1/17/94      | 2/11/94      |                      |                     |                                           |                                      |    |
| 12     Prepare QAP     20d     1/1794     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94     2/16/94 <t< td=""><td>=</td><td>Prepare Health and Safety J</td><td>neis</td><td>204</td><td>1/17/94</td><td>2/11/94</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                            | =          | Prepare Health and Safety J                            | neis     | 204    | 1/17/94      | 2/11/94      |                      |                     |                                           |                                      |    |
| 13     Propue SAP     30cd     1/1794     21(694     1       14     Develop remedial action work     30cd     21(694     3/1894     5/6,7,8,9,10,11,12,13       15     Submit RA Matter Plan/Work     1d     3/1894     3/1894     3/1894     3/1894       15     Submit RA Matter Plan/Work     1d     3/1894     3/1894     3/1894     1/1       16     McCellina AFB review working     30cd     3/21/94     1/15     1/1       17     Proper death copy     30cd     3/20/94     7/19/94     1/1       18     McCellina AFB and agencies     60cd     3/20/94     7/19/94     1/1       18     McCellina AFB and agencies     60cd     3/19/94     1/1     1/1       19     Proper death final     30cd     3/19/94     1/1     1/1       20     Agency review draft final     30cd     3/19/94     1/1     1/1       20     Agency review draft final     30cd     3/19/94     1/1     1/1       20     Agency review draft final     30cd     3/19/94     1/1     1/1       20     Agency review draft final     30cd     3/19/94     1/1     1/1       20     Agency review draft final     30cd     3/19/94     1/1    2                                                                                                                                                                                                                                                                                                                                                                                 | 2          | Prepare QAPP                                           |          | 20d    | 1/17/94      | 2/11/94      |                      |                     |                                           |                                      |    |
| 14     Develop remedial action work     30d     2/16/94     3/18/94     5,6,7,8,9,10,11,12,13       15     Plau Muster<br>Plau Working Carp     30d     3/18/94     3/18/94     3/18/94     3/18/94       16     McCrellan AFB review working     30d     3/21/94     4/20/94     1/3       17     Propare draft copy     30d     4/20/94     5/20/94     1/3       18     McCrellan AFB review working     30d     4/20/94     1/19       18     McCrellan AFB review working     30d     3/21/94     1/3       19     Propare draft foord     30d     7/19/94     1/3       20     Agency review draft final     30d     8/18/94     9/17/94       20     Agency review draft final     30d     8/18/94     1/3       21     Propare final Remedial Retrieved working Matchine     20     9/19/94     1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6          | Prepare SAP                                            |          | 30ed   | 1/17/94      | 2/16/94      |                      |                     |                                           |                                      |    |
| 15     Submair RA Mater PharWork     1d     3/18/94     3/18/94     3/18/94     14       16     Working Copy     30ed     3/21/94     4/20/94     1/3       17     Prepare draft copy     30ed     3/21/94     1/3       18     McClellan AFB review working     30ed     3/20/94     7/19/94     1/3       18     McClellan AFB and agencies     60ed     5/20/94     7/19/94     1/3       19     Prepare draft final     30ed     7/19/94     1/8       20     Agency review draft final     30ed     8/18/94     1/9       21     Prepare final Remedial Action     15ed     9/19/94     10/4/94       21     Prepare final Remedial Action     15ed     9/19/94     10/4/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4          | Develop remedial action w                              | ž        | 30ed   | 2/16/94      | 3/18/94      | 5,6,7,8,9,10,11,12,1 |                     |                                           |                                      |    |
| 16     McClellan AFB review working     30cd     3/21/94     4/20/94     1/5       17     Prepare draft copy     30cd     4/20/94     5/20/94     1/6       18     McClellan AFB and agencies     60cd     5/20/94     7/19/94     1/7       18     McClellan AFB and agencies     60cd     5/20/94     7/19/94     1/7       19     Prepare draft final     30cd     7/19/94     8/18/94     1/8       20     Agency review draft final     30cd     8/18/94     1/9       21     Prepare final Remedial Action     15cd     9/19/94     10/4/94       21     Master Plan and Work Plan     15cd     9/19/94     10/4/94       Date:     37.654     Cretcal     Miseatone ♦     Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5          | Submit RA Master Plan/Wi<br>Plan Working Conv          | ž        | 2      | 3/18/94      | 3/18/94      |                      | ······              |                                           |                                      |    |
| 17     Prepare draft copy     30cd     4/20/94     5/20/94     16       18     McClellan AFB and agencies     60ed     5/20/94     7/19/94     17       19     Prepare draft final     30ed     7/19/94     8/18/94     18       20     Agency review draft final     30ed     9/17/94     18       21     Prepare final Remedial Action     15ed     9/19/94     10/4/94       21     Prepare final Remedial Action     15ed     9/19/94     10/4/94       21     Prepare final and Work Plan     15ed     9/19/94     10/4/94       21     Master Plan and Work Plan     15ed     9/19/94     10/4/94       Date: 37.694     Critical     Mileatone     Summary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16         | McClellan AFB review wo                                | rking    | 30ed   | 3/21/94      | 4/20/94      | -                    |                     |                                           |                                      |    |
| 18         McClellan AFB and agencies         60ed         5/20/94         7/19/94         1/1         1           19         Prepare draft final         30ed         7/19/94         8/18/94         1/1         1           20         Agency review draft final         30ed         8/18/94         9/17/94         19         1           21         Prepare final Remedial Action         15ed         9/19/94         10/4/94         20         1           21         Prepare final Remedial Action         15ed         9/19/94         10/4/94         20         1           Date: 3/2694         Critical         Milectone         Summary         Noncritical         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17         | Prepare draft copy                                     |          | 30ed   | 4/20/94      | 5/20/94      | -                    |                     |                                           |                                      |    |
| 19     Prepare draft final     30ed     7/19/94     8/18/94     18     1       20     Agency review draft final     30ed     8/18/94     9/17/94     19       21     Prepare final Remedial Action     15ed     9/19/94     10/4/94     20       Date: 3/2694     Critical     Milestone     Milestone     Summary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8          | McChellan AFB and agenci<br>review draft document      | 8        | 60ed   | 5/20/94      | 7/19/94      | -                    |                     |                                           | ·•••                                 |    |
| 20     Agency review draft final     30ed     8/18/94     9/17/94     19     19       21     Prepare final Remedial Action     15ed     9/19/94     10/4/94     20     1       21     Master Plan and Work Plan     15ed     9/19/94     10/4/94     20     1       Date: 3/26/94     Critical     Milectone     Summary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61         | Prepare draft final                                    |          | 30ed   | 7/19/94      | 8/18/94      | -                    |                     | -                                         |                                      |    |
| 21     Prepare final Remedial Action     15ed     9/19/94     10/4/94     20     []       Master Plan and Work Plan     Work Plan     Milestone ◆     Summary     Noncritical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2          | Agency review draft final                              |          | 30ed   | 8/18/94      | 9/17/94      |                      |                     |                                           |                                      |    |
| Date: 3/26/94 Critical Milestone 🔶 Summary V Noncritical C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~          | Prepare final Remedial Act<br>Master Plan and Work Pla |          | 1 Sed  | 9/19/94      | 10/4/94      | 2                    |                     |                                           |                                      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ate: 3     | /26/94                                                 | Critical |        |              | Mileston     | •                    | Summar              | Noncri                                    | ttcal                                |    |

- . . . . . <u>.</u>

- ----

l

1 -

l

|       |                                              |              |              | •          | Iternative 3   | With Impleme | tation of Contingency Plans             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------------------------|--------------|--------------|------------|----------------|--------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9     | Nime                                         |              |              |            |                |              |                                         | 100 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - |
| 2     |                                              | Š            |              | Clack Dual | School Filling | LIGOCCESSOIS | مراح مراح مراح مراح مراح مراح مراح مراح |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ຸຊ    | Utility Mapping                              |              | 1024         | 1/19/94    | 12/7/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24    | Map utilities (utilmap)                      |              | 102d         | 7/19/94    | 12/7/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 52    |                                              |              |              |            |                |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56    | On-base/Off-base preduction v                |              | 224          | 7/19/94    | 8/18/94        |              | Þ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27    | Prepare Base Well 18<br>abandomicat program  |              | 15ed         | 7/19/94    | 8/3/94         |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28    | Prepare production well<br>contineency plans |              | 30ed         | 7/19/94    | 8/18/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 62    |                                              |              | <u>}</u>     |            |                |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8     | Estraction System                            |              | 17.98        | 1/19/94    | 11/10/97       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31    | Subcontractor procurem                       | 1            | 1164         | 7/19/94    | 12/27/94       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32    | Specify system require                       | ments        | 15ed         | 7/19/94    | 8/3/94         |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33    | Identify performance (                       | riteria      | 15ed         | 8/3/94     | 8/18/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34    | Procure BOAs w/ 3 su<br>Basewide EW/MW       | bs for       | 944          | 8/18/94    | 12/27/94       | 3            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35    | Task Order 1                                 |              | <b>P66</b> 5 | 7/19/94    | 11/4/96        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36    | Off base monitoring w<br>28 )                | cils         | ld           | 7/19/94    | 7/19/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37    | Off base extraction we well head treatments  | lls(22<br>st | Jđ           | 7/19/94    | 7/19/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 38    | Hot Spot extraction w                        | ells(15      | PI           | 7/19/94    | 7/19/94        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 66    | Final layout of wells<br>(wellfides)         |              | 62d          | 7/20/94    | 10/13/94       | 36,37,3      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40    | Prepare for installation<br>(wellprep)       |              | 22d          | 10/14/94   | 11/14/94       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4     | Installation/Interpret [<br>(wellins l)      | Data         | 258d         | 12/28/94   | 12/22/95       | 34,4         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 42    | Abandon Base well 11                         |              | 1 Sed        | 12/25/95   | 96/6/1         | 27,28,4      |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date: | 3/26/94                                      | Critical     |              |            | Milestor       | •            | Summary Noncritical                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                              |              |              |            |                | Pag          | ~                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|         |                                                        |                  | -       |              |               |              | 1994 1995                             | 1996                  | 1997                      | 8661                  | 6661               |
|---------|--------------------------------------------------------|------------------|---------|--------------|---------------|--------------|---------------------------------------|-----------------------|---------------------------|-----------------------|--------------------|
| Name    |                                                        |                  | uration | Sched. Start | Sched. Finish | Predecessors | Qu 1 Qu 2 Qu 3 Qu 4 Qu 1 Qu 2 Qu 3 Qu | 4 Qu 1 Qu 2 Qu 3 Qu 4 | 1 Que 1 Que 2 Que 3 Que 4 | Qu 1 Qu 2 Qu 3 Qu 4 Q | 21  Qu 2 Qu 3 Qu 4 |
|         | Reduce uncertainty in er<br>of contamination off bas   | xtent<br>e/hot   | PI      | 1/9/96       | 96/6/1        | 4            |                                       |                       |                           |                       |                    |
|         | Reduce uncertainty in<br>off-base/hot snot flows to    |                  | 14      | 1/10/96      | 1/10/96       | 4            |                                       |                       |                           |                       |                    |
|         | Reduce uncertainty of location and number of v         | wells            | P       | 96/11/1      | 96/11/1       | 4            | •                                     |                       |                           |                       | •                  |
|         | Reduce uncertainty in<br>aguiter response              |                  | PI      | 1/12/96      | 1/12/96       | 4            |                                       |                       |                           |                       |                    |
|         | Reduce uncertainty<br>concerning potential             |                  | PI      | 1/15/96      | 1/15/96       | 4            |                                       |                       |                           |                       |                    |
|         | Implement contingency  <br>(if necessary)/revise mod   | te nu            | 209d    | 1/16/96      | 11/4/96       | 4            |                                       |                       |                           |                       |                    |
| <br>    | Tank Order 2                                           |                  | 54      | 3/28/95      | 1/3/97        |              |                                       |                       |                           |                       |                    |
| <br>    | Off base monitoring weil                               | Ă                | P       | 3/28/95      | 3/28/95       | 41SS+90e     |                                       |                       |                           |                       |                    |
| <br>    | Off base extraction wells<br>) w/ well head treatmen   | 4 <del>4</del> 3 | PI      | 3/28/95      | 3/28/95       | 41SS+90e     | -                                     |                       |                           |                       |                    |
|         | Hot Spot extraction well                               | la( 14           | PI      | 3/28/95      | 3/28/95       | 41SS+90e     |                                       |                       |                           |                       |                    |
|         | Final layout of wells<br>(wellfides)                   |                  | 62d     | 3/29/95      | . 6/22/95     | 50,51,5      |                                       |                       |                           |                       |                    |
|         | Prepare for installation<br>(welkness)                 |                  | 22d     | 6/23/95      | 7/24/95       | 8            | -                                     |                       |                           |                       |                    |
|         | Installation/Interpret Dat<br>(wellins1)               | 4                | 164d    | 7/25/95      | 3/8/96        | <b>v</b>     |                                       | -∏                    |                           |                       |                    |
|         | Resolve uncertainty in ex<br>of contamination off base | xtent<br>e/hot   | PI      | 3/11/96      | 3/11/96       | <b>S</b> .   |                                       |                       |                           |                       |                    |
|         | Further reduce uncertain<br>aquifer response           | xty in           | PI      | 3/12/96      | 3/12/96       | 5            |                                       | _                     |                           | -                     |                    |
|         | Resolve uncertainty in<br>location and number of       |                  | PI      | 3/13/96      | 3/13/96       | <b>5</b> .   |                                       | <b>.</b>              |                           |                       |                    |
|         | Resolve uncertainty in<br>off-base/hot spot flows to   |                  | PI      | 3/14/96      | 3/14/96       | 5            |                                       |                       |                           |                       |                    |
|         | Resolve uncertainty<br>concerning potential            |                  | PI      | 3/15/96      | 3/15/96       | 5            |                                       | _                     |                           |                       |                    |
|         | Implement contingency [<br>(if necessary)/revise mod   |                  | 209d    | 3/18/96      | 1/3/97        | 30           |                                       |                       |                           |                       |                    |
|         | Task Order 3                                           |                  | 5554    | 9/25/95      | 11/10/97      |              |                                       |                       |                           |                       |                    |
|         | On base monitoring well<br>72 )                        | 3                | PI      | 9/25/95      | 9/25/95       | 55SS+60e     |                                       |                       |                           |                       |                    |
| 3/26/94 |                                                        | Critical         |         |              | Milesto       | بد<br>بد     | Summary                               | Non                   | critical                  |                       |                    |
|         |                                                        |                  |         |              |               | Pag          | .3                                    |                       |                           |                       |                    |

. . . . . . .....

.

ŧ

ĺ

!

| 10         Image: Second constrained (Constrained (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lame |                                                              | Durati  | on Sched Start | Sched Finish | Predecessors          | 1994         1995         1996         1997         1998           Dw. JDw. JDw. JDw. JDw. JDw. JDw. JDw. J | 1999<br>1999         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------|---------|----------------|--------------|-----------------------|-------------------------------------------------------------------------------------------------------------|----------------------|
| main         fait         main         fait         main         main <th< td=""><td></td><td>On base extraction wells(</td><td></td><td>1d 9/25/95</td><td>9/25/95</td><td>55SS+60ed</td><td></td><td>· BAIC BAIT BAIT BAI</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | On base extraction wells(                                    |         | 1d 9/25/95     | 9/25/95      | 55SS+60ed             |                                                                                                             | · BAIC BAIT BAIT BAI |
| Proper for analysis         224         122005         11956         61645           Relation/arcpert loan         226         11956         61545           Relation/arcpert loan         226         11956         11957         61545           Relation/arcpert loan         226         11956         11957         11977           Relation/arcpert loan         14         11777         11977         11           Relation         14         12007         12007         12007         12           Relation         14         12107         12107         12         11         12           Relation         14         12107         12         11         12         11         12         11         12         12         11         12         11         12         11         12         11         12         11         12         11         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Final layout of wells<br>(wellfides)                         |         | 52d 9/25/95    | 12/19/95     | 55SS+60ed             |                                                                                                             |                      |
| (million)         234         (1936)         (1937)         66           Relevance         (1930)         (1937)         (1937)         (1937)           Relevance         (1931)         (1937)         (1937)         (1937)           Relevance         (1107)         (1107)         (1107)         (1107)           Relevance         (1117)         (1107)         (1107)         (1107)           Relevance         (1117)         (1107)         (1107)         (1107)           Relevance         (1117)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Prepare for installation<br>(wellprep)                       |         | 12/20/95       | 1/18/96      | 63,64,65              |                                                                                                             | •                    |
| Resolution         Id         11.677         11.677         11.677         11.677         11.677         11.677         11.677         11.677         11.677         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.777         11.7776         11.777         11.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Installation/Interpret Data<br>(wellian3)                    | 8       | 96/61/1 985    | 1/15/97      | <b>\$</b>             |                                                                                                             |                      |
| Relevance         14         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1707         1/1         1/1707         1/1         1/1707         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Resolve uncertainty in exten<br>of contamination off base/ho | ਜ਼ ਨ    | 1/16/91/1 p1   | 1/16/97      | 67                    |                                                                                                             |                      |
| Releve unsidentic in<br>Releve  in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven in<br>Releven |      | Resolve uncertainty in<br>aquifer response                   |         | 14/11/10       | 16/11/1      | 68                    |                                                                                                             |                      |
| Resolve         Id         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107         12107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Resolve uncertainty in location and number of                |         | 1d 1/20/97     | 1/20/97      | 69                    | -                                                                                                           |                      |
| Implement contigency plan         204         12.297         11/1097         11           Implement contigency plan         204         12.2095         7/15/99         1           Trement/Fiel Us/ Collection         3914         12.2005         7/15/96         24,65           Stream         884         12.2005         4/19/96         24,65           Stream         814         4.2206         12,15         1           Weatern Atva         814         4.2206         8.2997         7           Presentation         814         4.2206         8.2997         7           Presentation         124         9/197         1/17/86         7           Presentation         124         9/197         1/17/86         7           Construction         124         9/197         1/28/8         7           Presentation         108         9/197         1/28/8         7           Construction         2146         7/198         7         7           Construction         2146         7/198         7         1           Presentation         1084         9/197         1/29/8         1           Construction         2146         7/29/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Resolve uncertainty in on<br>base flow to treatment plants   | 2       | 1/21/97        | 1/21/97      | 70                    |                                                                                                             |                      |
| Trensmer/Fail         User         Collections         3314         122095         71539           System         Process         843         122095         71539         2465           Process         843         422095         71539         2465           Vesters         843         422095         71539         71           Vesters         843         422095         71         71           Vesters         843         422095         73         71           Vesters         1224         91/97         21/1988         72           Vesters         1224         91/97         21/1988         72           Vesters         1224         91/97         12/1988         72           Vesters         1224         91/97         12/1988         72           Vesters         1224         21/19         72         91           Vesters         1224         21/1598         72         91           Vesters         1234         422/96         71/1598         72           Vesters         1234         21/1598         72         91           Vesters         1234         21/1598         72         91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Implement contingency plan<br>(if necessary)revise model     | 7.<br>1 | 1/22/97        | 11/10/97     | 17                    |                                                                                                             |                      |
| Transmer/Flav Liva/ Cubriction         931a         127005         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715095         715096         715096         715096         715016         715         717086         717096         715         717086         717096         717096         717096         717096         717096         717096         717         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         717096         7170960         717096         7170960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                              | <br>    | -              |              |                       |                                                                                                             |                      |
| Fround cy<br>(contractor)         84d         12/20/95         4/19/96         24,65           Vectore turnidery<br>(contractor)         82d         4/22/96         7/15/99         24,65           Vectore turnidery<br>(contractor)         82d         4/22/96         12/15/96         12/15/96           Preliminary Design         33d         4/22/96         8/23/97         17           Final design         1/22         9/197         2/17/98         7/3           Preliminary Design         1/22         9/197         2/17/98         7/3           Preliminary Design         1/23         1/23/98         7/3         7/3           Preliminary Design         68d         4/22/96         7/3         7/3           Preliminary Design         68d         4/22/96         7/3         7/3           Preliminary Design         66d         7/25/96         7/3         7/3           Preliminary Design         66d         7/25/96         7/3         7/3         7/3           Rind Design         66d         7/25/96         7/3         7/3         7/3         7/3           Miteriori         Gonderesion         83d         4/20/96         7/3         7/3         7/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trea | timent/End Use/ Collection                                   | 6       | 12/20/95       | 1/15/99      |                       |                                                                                                             | ľ                    |
| Western Arsa         843a         472.956         71.15.99         71.15.99           Collection plues         691a         472.956         12.15.98         12.15.98           Preliminary Design         334d         472.96         82.3997         73           Final design         132d         91.997         217.98         73           Preliminary Design         132d         91.997         12.15.98         73           Prepare for construction         108d         91.197         12.28.98         73           Ownolderop         132d         91.197         12.28.98         73           Evaluation         211d         2.17.98         73           Ownolderop         213d         2.13.998         72.79.80           Construction         213d         2.13.998         72.79.80           Construction         213d         2.13.998         72.79.80           Construction         213d         72.79.80         72.79.80           Preliminary Design         66d         72.296         73.596         73           Final Design         66d         72.596         83         73           Outcrea00         66d         72.596         73           Outcre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Procure turnkey contractor<br>(contoroc)                     |         | 38d 12/20/95   | 4/19/96      | 24,65                 |                                                                                                             |                      |
| Collection plping         691a         472196         121598         121598         121598         121598         121598         121598         121598         121598         121598         121598         121598         121798         121598         121798         121798         121798         121798         121798         121798         121798         121798         121798         121798         121798         121798         121798         121798         121798         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         1217998         121799         1217998         121799         121799         121799         121799         1217998         1217998         121799         1217998         121799         121799         121799         121799         121799         121799         121799         121799         121799         121799         121799         121799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Western Area                                                 | <b></b> | 134 4/22/96    | 66/51/1      |                       |                                                                                                             | ľ                    |
| Preliminary Design         354d         472796         82997         73           (woolde60)         122d         91/97         21798         78           (woolde60)         122d         91/97         21798         78           (woolde60)         123d         91/97         1/2898         78           (woolde61)         108d         9/197         1/2898         78           (woolde61)         108d         9/197         1/2898         78           (woolde61)         213d         2/1898         12/1598         72,79,80           (woolde61)         843d         422796         71,599         73           (woolde61)         68d         472296         73         58           (wotel60)         66d         7/2596         83         10/2596         83           (wotee0)         66d         7/2596         83         10/2596         83           (wotee0)         66d         7/2596         83         10/2596         10/2596         10/2596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Collection piping                                            | 3       | 11d 4/22/96    | 12/15/98     |                       |                                                                                                             |                      |
| Final design<br>(woolde95)         122d         9/197         2/1798         78           (woolde95)         108d         9/197         1/2898         78           (woolde70)         108d         9/197         1/2898         78           (woolde70)         215d         2/1898         12/1598         72           (woollcon)         215d         2/1898         12/1598         72,79,80           (woollcon)         215d         4/22/96         715,998         72,79,80           (woollcon)         83d         4/22/96         715         8           (wores00)         68d         4/22/96         73         5           (wree60)         66d         7/26/96         83         1           (wree60)         66d         7/26/96         83         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Preliminary Design<br>(wcolde60)                             | ř.      | 54d 4/22/96    | 8/29/97      | 75                    |                                                                                                             |                      |
| Prepare for construction         108d         9/1/97         1/28/98         78           (woolprey)         (woolprey)         2/18/98         12/15/98         72,79,80           Construction         215d         2/18/98         12/15/98         72,79,80           (woolborn)         215d         2/18/98         12/15/98         72,79,80           Treatment plant         843d         4/22/96         7125/96         73           (woredoo)         68d         4/22/96         73           (woredoo)         66d         7/26/96         83           (woredoo)         (woredoo)         83         10/25/96         83           (woredoo)         (woredoo)         1/26/96         10/25/96         83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Final design<br>(wcolde95)                                   | I<br>I  | 79/1/97 b21    | 2/17/98      | 78                    |                                                                                                             |                      |
| Construction         215d         2/18/98         12/15/98         72,79,80         72,79,80         72,79,80           Treatment plant         843d         4/22/96         7/15/96         73         72,79,80         72         72,79,80         72         72,79,80         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         73         72         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74 <th< td=""><td></td><td>Prepare for constructio<br/>(wcolprep)</td><td>-T<br/>W</td><td>16/1/6 P80</td><td>1/28/98</td><td>78</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Prepare for constructio<br>(wcolprep)                        | -T<br>W | 16/1/6 P80     | 1/28/98      | 78                    |                                                                                                             |                      |
| Treatment plant         843d         4/21/96         7/15/99           Preliminary Design         68d         4/22/96         75           (wtrea60)         68d         7/25/96         83           (wtrea93)         66d         7/25/96         83           Attal         Milestone         83         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Construction<br>(wcollcon)                                   | 8       | 15d 2/18/98    | 12/15/98     | 72,79,80              |                                                                                                             |                      |
| Preliminary Design         68d         4/22/96         75           (wtrea60)         (wtrea60)         7/26/96         83           Final Design         66d         7/26/96         83           (wtrea95)         Milestone         83         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Treatment plant                                              | ab      | 13d 4/22/96    | 66/51/2      |                       |                                                                                                             | ľ                    |
| Final Design<br>(wtrea95)     66d     7/26/96     83       (wtrea95)     (wtrea95)       (wtrea95)     Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Preliminary Design<br>(wtrea60)                              |         | 58d 4/22/96    | 7/25/96      | 75                    |                                                                                                             |                      |
| 04 Critical Milestone   Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncritical Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae Nuncriticae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Final Design<br>(wtrea95)                                    |         | 56d 7/26/96    | 10/25/96     | 83                    |                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35   | 5                                                            | ritical |                | Mllesto      | <ul> <li>¥</li> </ul> | Summary Concritical Concritical                                                                             |                      |

. ....

.

.....



١,

