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I I Introduction

I Many of the envisioned future Army missions will involve high performance feedback control
of uncertain nonlinear systems. For example, control and stabilization of helicopter based
weapons platforms, precision gun stabilization and pointing, and the use of lightweight robots
for munitions loading all pose difficult nonlinear control problems. In general, nonlinearities
in mechanical systems arise from a number of sources, such as, actuator saturation, friction in
bearings or gear trains, backlash due to gear spacing or slippage, kinematic transformations,
and aerodynamic forces. Additionally, many of these systems are also flexible, with nonlinear
damping mechanisms. In many cases the type of nonlinearity as well as their parameter
values are not very well known and prior knowledge is too coarse to guarantee acceptable
closed-loop performance. Under these conditions, it is necessary to adapt the controller by
estimating the uncertain model parameters from on-line data.I
1.1 Research Objectives

I The objective of this work is the development of adaptive control methods which can signif-
icantly improve closed-loop performance for a broad class of nonlinear flexible systems.

Towards this end, the goals were as follows:

1. Form a parametric model representing a broad class of nonlinear flexible systems.

2. Design a nonlinear controller based on the parametric model which provides desired
closed-loop performance if the parameters were known.

3. Identify the parameters of the system using measured data and use these estimates in
the controller.

4. Analyze the stability and performance properties of the complete adaptive system using
the method of averaging.

We concentrated most of our effort on items 1 and 2 as these turned out to be the most
difficult and challenging tasks. These must first be resolved in order to proceed to adaptation
(items 3 and 4).

In general, the final adaptive system described above fits into the generic adaptive scheme
depicted in Figure 1.1.

In this traditional adaptive control system, often referred to as the self-tuning-regulator
(STR), [2], the identified model is usually selected out of a model set with unknown pa-
rameters. The controller is designed as if the parameter estimates were in fact the correct
parameters for describing the plant. In the ideal case it is assumed that there exist parame-
ters, which if known, would precisely account for the measured data. Even in this ideal case,
the transient errors between the identified model and the true system can be so large as to
completely disrupt performance. In the usual (non-ideal) case - the true system is not in
the model set - both unacceptable transient or asymptotic behavior can occur e.g., (1].
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Figure 1.1: Adaptive control system with parameter estimator. I
The above cited problems are well documented in the case of adaptive linear control, 3

i.e., when the adaptive parameters are held fixed the closed-loop system is linear. However,
the case considered here is adaptive nonlinear control, i.e., when the adaptive parameters
are held fixed the closed-loop system is nonlinear. Naturally the same problems will arise I
in this case as in the adaptive linear case. Unfortunately many of the controller design and
parameter estimator issues have not been developed sufficiently as yet. In consequence, the
first step has been to resolve some of these issues.

1.2 Publications I
The following is a list of publications during the reporting period. Items 2,3 and 4 are
included as Appendices.

1. "On sensitivity of adaptive feedback linearization: a case study," Robert L. Kosut and I
M. Giintekin Kabuli, Proceedings of the 7th Yale Workshop on Adaptive and Learning
Systems,New Haven, Connecticut, May 20-22, 1992. 3

2. "Adaptive feedback linearization: implementability and robustness," M. Giintekin
Kabuli and Robert L. Kosut, Proceedings of the 31st IEEE Conference on Decision
and Control, pp. 251-256, Tucson, Arizona, December 1992.

3. "On feedback linearizable plants," M. Gfintekin Kabuli and Robert L. Kosut, Pro-
ceedings of the American Control Conference, pp. 1186-1190, San Francisco, June I
1993.

4. "Real-time implementation issues in nonlinear model inversion," M. Giintekin Kab- I
uli, Sudarshan P. Bhat and Robert L. Kosut, Proceedings of the American Control
Conference, pp. 547-551, San Francisco, June 1993. 3
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1.3 Personnel

Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on the project during the reporting
period 1 February 1991 through 30 April 1994.

1.4 Interactions

We have had several interactions with Norm Coleman's group at ARDEC. As a proof-of-
concept, the proposed model-follower based feedforward-feedback control design was applied
to the analytical model of the Advanced Weapons Testbed at ARDEC, which is a central
topic of the ARO Workshops on Real-Time Control. The findings were presented at the 2nd
ARO Workshop on Real-Time Control at ARDEC, 17-18 June 1992.

Some of the work reported here was jointly supported by the AFOSR Directorate of
Aerospace Sciences, under contract F49620-90-C-0064
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2 Technical Discussion

2.1 Overview

With few exceptions, practically all of recent research in adaptive control is for the case of
parameter adaptive linear systems, i.e., when the adaptive parameters are held fixed, the
resulting system is linear-time-invariant (LTI), e.g., [1, 2]. In our current effort, we have
examined parameter adaptive nonlinear systems, that is, when the adaptive parameters are
held fixed, the resulting closed-loop system is nonlinear. Although this is an active field of
research, (see, e.g. [10, 14]) our efforts to date have convinced us that parameter adaptation
cannot be introduced unless there is an adequate nonlinear control design. Specifically, a
necessary first step to realizing a practical adaptive nonlinear control is to design a nonlinear
control system which is robust to parameter variations. Because of this, in our most recent
efforts we have concentrated exclusively on the design of a (non-adaptive) nonlinear robust
control system.

r I r .. . . . . . . .. . . . . . . .

Cl P

L--- J L-------------------------- J

Feedforward Feedback
System System

Figure 2.1: Model-follower nonlinear feedback system.

Our current research in this direction has led us to the configuration shown in Figure 2.1,
which we refer to as a model-following feedback system. We have discovered that this scheme
is very well suited for both tracking and regulation of nonlinear systems [7].- In addition, it is
easily extensible to parameter adaptation as explained below. The structure in Figure 2.1 is
actually quite generic, e.g., the major elements appear in most flight control systems. Such
a structure has been successfully used in nonlinear models involving jet engine/propulsion
control systems [151 . Many simulation studies as well as preliminary theoretical results show
that the configuration has some very nice properties. Specifically :

"* The controller design can be conveniently separated into two design steps: (1) design
a feedforward signal generator Rl, and (2) design a feedback regulator C. These steps
are not entirely uncoupled and the issues involved are discussed in Section 2.4 .

"* The feedforward signal, fi, is designed using an idealization or model of the plant.
Hence, the feedforward system signal j, is the ideal output. The innovative idea for
the feedforward design, is to use feedback linearization techniques 15, 10] to design the

!5
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map from the reference command r to • , the ideal output.1 Hence, the feedforward I
system globally and directly accounts for the plant nonlinearities. No linearization and
subsequent elaborate schemes for "scheduling" linear models is required. There are a
number of important unresolved issues. For example, input to output feedback lin-
earization based design is limited to minimum phase plants. In addition, a feedforward
design based on an ideal model may result in too demanding a control. Hence, by
accounting for plant perturbations, the feedforward signal can be made more cautious.
Suggestions for resolving these issues are proposed herein. I

"* The feedback regulator C is designed to correct for (hopefully) small deviations between
the actual sensed output y and the ideal output j. These deviations are caused by
disturbances as well as modeling errors between the actual nonlinear plant P and the I
model used to design W and C. Currently, we have investigated a number of methods
for designing C. In particular:

- Linearization about equilibria results in a collection of LTI designs for C for which
standard gain-scheduling approaches can be used to link the designs. In numerous I
simulation studies we have noted excellent robust behavior even for a single LTI
regulator design, e.g., see [8] which is included in Appendix A .

- We have examined linearization about the model-follower non-equilibrium state,
resulting in linear-time-varying (LTV) control design. A specific idea is put forth
in (see Section 2.4.1) . I

- The regulator can also be designed as a nonlinear controller whose local prop-
erties may be significantly more robust than either the LTI or LTV designs (see
Section 2.3.3) .

"* Adaptation can take place in either 7R and/or C. Adaptation in Wf only affects the I
tracking performance, whereas adaptation in C affects principally regulation, but also
affects tracking.

In summary, the key feature of the proposed scheme in Figure 2.1 is that the controller
R,C is implementable, i.e., it depends only on the available signals r,y. This is unlike
designs based solely on feedback linearization methods which rely on state availability, and
hence, are not implementable. The innovation here uses the power of feedback linearization
to generate feedforward signals which render harmless the dominant negative effects of the
plant nonlinearity. We have also studied parameter adaptation and some of the results are
contained in Appendix A . In this case, if the underlying nonlinear control scheme is not
robust, then what happens is precisely the same as in the case of parameter adaptive linear
systems. The instantaneous plant and estimated model mismatch can induce an unacceptable
transient, even if there is asymptotic convergence, e.g., [1, 21

'A brief review of feedback linearization is provided in Section 2.2

6
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2.2 Review of Feedback Linearization

A major element in our effort is the use of feedback linearization methods for designing 7"H,
the feedforward system in Figure 2.1 . To appreciate the issues, and why we chose this
configuration, we will first provide a brief review of feedback linearization.

The underlying theory shows that a large class of nonlinear control systems can be made
to have linear input-output behaviour by virtue of nonlinear state feedback. In the course
of tracking controller design using feedback linearization, the terms zero-dynamics and rel-
ative degree (see e.g., [5] and references therein) are used to describe the limitations of the
approach. Loosely speaking, the relative degree is the number of differentiations one has to
perform at the output to reach the control input. The zero-dynamics is the dynamics that
is rendered unobservable when feedback linearization is performed to obtain an LTI input-
output description whose transfer function has the associated relative degree. A nonlinear
input-output map that exhibits stable zero dynamics is also referred to as minimum-phase.
As an illustration, consider the disturbance-free plant system:

i = Ax+f(z)+Bu x E R
y = CX y,uE R7, m<n

Suppose that CB is invertible, and for simplicity let

CB=I

Then,
= C(Ax + f(x))+u

Since u affects all elements of y after one differentiation, the system is said to have relative
degree one . Moreover, applying the nonlinear state feedback

u = v- C(Ax + f(x))

renders linear the input-output system from v to y . That is,

Choosing
v= A(r- y)

gives
= A(r -y)

Hence, if A is strictly Hurwitz, then r to y is a stable LTI system.

Note that, in the above process, n - m states are rendered unobservable. Hence, even if
y is bounded, the remaining states of the closed-loop system (the zero dynamics) need not
be. Thus, feedback linearization is a plant inversion based control design approach, and is
stabilizing provided that the associated zero dynamics are stable.

7



I
The feedback linearization procedure can be applied to more general disturbance-free 3

systems of the form
S= f(X) + G(z)u X E : n
y = h(x) Yu• ER Mi

Under certain conditions involving f and G (controllability and involutivity [5]) there exists
an invertible coordinate transformation

S= 4i(•) , z = €'•

such that I
= Aý + B(a(ý) + 3ý()u)

S= h(4-1(•))

and fl(.) is invertible. Then,

renders linear v to . That is U

= Aý+Bv
y = h(4- 1(4)) .I

Since the system from v to ý is now LTI, standard LTI control designs for v are easily
accomplished. In addition if 41 can be chosen such that h(4-'(Q)) = Cý, for some matrix
C , then the map from v to y is also LTI. Note that for this case, the LTI system (A, B, C)
need not be minimum-phase.

Despite the ease of control design in the transformed coordinates, feedback linearization 3
based approaches have some serious drawbacks:

" control laws are state dependent and usually the states are not completely available i
as sensed variables. Hence, the motivation to use feedback linearization only in 7W as
in Figure 2.2 .

" the effect of disturbances on the transformations and designed control laws cannot be
guaranteed unless certain matching conditions hold [5] . I

" the nonlinear transformations may not be valid if plant parameters change or are
uncertain.

"* in the control of flexible systems, plant models are often non-minimum phase.

"* even when linear parametric models are used in one state-space description, switching i
to another state-space description by nonlinear transformations results in multilinear
parametric dependencies. Hence, in order to apply adaptation laws for linear paramet-
ric models, overparametrization is required, i.e., the number of adapted parameters i
increases.

Clearly, the power of feedback linearization is in directly handling the system nonlinear- i
ities. However, the unavailability of a full-state measurement hinders the applicability. For
this reason, we chose the configuration of Figure 2.1 .

8



I 2.3 Feedforward System Design

We use feedback linearization methods in the design of the feedforward system Ni (see Fig-
I ure 2.2) , such that:

" the feedforward system 7W achieves some desired specifications when disturbances are
zero (nominal design) ,

"" the feedforward system exhibits satisfactory performance for preset bounded but un-
known disturbances (perturbation study of the nominal design) .

"" the performance of the nominal design is robust under model variations in a specified
model set.

In the above scenario, the disturbances and/or model variations do not ezist in W*t
because it is a feedforward signal generator. However, the resulting signal pairs (it, ý) can
be. designed in anticipation of such scenarios, thereby reducing the task of the regulator to
be robust.

I 2.3.1 Nominal Design

For the tracking controller design in 7W (Figure 2.1) , consider the interconnection in Fig-
ure 2.2 . Note that the internal signals associated with the copy of the model is available
by construction (e.g., states &) . For the nominal design part, assume that the disturbances
d4 , d- and d. are all zero.

Ir K A

Figure 2.2: Feedforward system

Apart from the issues mentioned in Section 2.2 regarding zero dynamics and coordinate
transformations, there are also some inherent limitations due to the nonlinear nature of the
control design problem.

Unlike linear systems, nonlinear systems (or operators) are not right distributive, i.e.,
.F(x + y) 5 Fx + F'y . The impact of this restriction can be seen by examining the effect of
disturbances. Consider a bounded input disturbance d. and a stable nonlinear F , where

y = (u+ )

TThe out pupt ycan also be expressed as

9
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where 3
4w = F(u +4d) - u

If F is linear, d. is also a bounded disturbance, with a bound depending only on the bound
of du and independent of the input signal u . This property of linear stable maps can
be generalized to what is called as incrementally stable nonlinear maps, where bounded
deviations about input signals result in bounded deviations at the output signals ; moreover,
an output deviation bound can be chosen in terms of the input deviation alone. In other
words, the uniform Lipschitz property in the algebraic Lionlinearities is extended to include
nonlinear dynamic systems. Such an assumption on the subsystems in a feedback system I
may indeed be quite conservative. We now illustrate the conservatism of imposing Lipschitz
conditions in equivalent state-space descriptions.

Typically, the plant model is expressed in terms of states that have physical meaning
(e.g., position, rate, etc.) . In the process of control design using feedback linearization,
nonlinear coordinate transformations are used to obtain a state-space description where the
control is easier to express. Such transformations can drastically change the nature of the
nonlinearities in different state-space descriptions. As an illustrative example, consider the
map ? from u to y described by

:i = X2 + f(Xi)
i2 = X3

i'3 = .1

S= X1

where the algebraic nonlinearity f is Lipschitz, i.e., there exists a k > 0 such that
If(x +y)- f(x)l _< klyl, for all x and y in IR. Provided that f is at least twice differentiable,
consider the coordinate transformation from z to 4, where

X= [ +f(XI)
X3 + X2f(1 )(XI) + f(XI)f()(XI) ]

In terms of the state-c , the same input-output map can be expressed as

41 = 2 2

6 = 43

Clearly, unless f(P) vanishes, the nonlinearities in the t• coordinates will not be Lipschitz
Hence, when determining a stabilizing law of the form

S= ) _ •/f(')(6) 2

the choice of v can make a considerable difference when a bounded perturbation of ý2 is used
instead of 62 (see Section 2.3.3) .

With these generic limitations at hand, the following subsections propose methods to
cope with unstable zero-dynamics and design stabilizing control laws subject to bounded 1
disturbances. Again, all the proposed controllers are state dependent which is permissible
only in the design of 7N , the feedforward signal generator.

10
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2.3.2 Coping with Unstable Zero-dynamics

As mentioned before, a design technique based on plant inversion will be stabilizing provided
that the zero dynamics are stable. When the zero-dynamics is not stable, regardless of the
relative degree, a control law based on plant inversion cannot be designed. There are two

* possible ways to avoid explicit plant inversion:

* Construct an output different from the original output with a relative degree of one
and with stable zero-dynamics. Hence, asymptotic tracking of the original output can
be achieved through the control of this constructed output. Promising results based on
this two step procedure have been reported in aerospace applications where unstable
zero-dynamics are associated with the acceleration outputs. Feedback linearization
was successfully applied to the control of wind angle components (angle-of-attack and
sideslip angle). Normal and lateral accelerations were then controlled via integral
feedback built upon the wind-angle controller [16, 17] .

* For certain classes of input-output maps with unstable zero dynamics, a nonlinear
tracking controller can be designed without going through transformations involving
higher order derivatives. In the following, we describe two such classes. These methods
can be considered as approximate plant inversion.

Consider the class of plants as shown in Figure 2.3 . In this case, the nonlinear system

from u to y can be decomposed as

P = P2T ,

where P, is a nonlinear system but has minimum-phase zero dynamics. The map P2 from z
to y is an LTI map with unstable transmission zeros. Hence, the zeros of P2 are the source
of the unstable zero dynamics.

- - - - - - - - - - - I
i~~r P2I__1,

Figure 2.3:

By applying standard input-output linearization to P, in terms of z and its state xz , a
control v can be constructed such that the map from v to z is LTI and stable (recall that in
the feedforward system design, all signals are available by construction). Denote this stable
transfer function by HI,, . Now the tracking problem reduces to that of designing a tracking
controller for the linear system from v to y (not necessarily stable), where

y = P2H.,v

Clearly, this LTI problem is easy to solve.

11



I

As a second example, consider the nonlinear system P shown in Figure 2.4 , where the i
subsystem P1 is LTI but possibly unstable and nonminimum-phase. The subsystem P 2 is
nonlinear and stable (not necessarily algebraic) .

-------- -------------------

a a

IPI
Figure 2.4:

For the interconnection in Figure 2.4 , since P2 is stable, the zero dynamics is completely i
determined by that of the LTI subsystem zeros. Due to perfect information in the feedforward
system, the control I

IS= P2 y±+C(r- y),

renders the map from r to y LTI, for any LTI C that stabilizes . in the unity-feedback
configuration.

2.3.3 Incorporating Disturbance Models in the Nominal Design i
Once a nominal design is obtained for the disturbance-free case, the interconnection in
Figure 2.2 is guaranteed to be only locally stable. From an analysis point of view, such local
results may be satisfactory. However, when the goal is control design, subject to a preset
bounded but unknown disturbance, the design procedure must be suitably modified. In fact,
it may be necessary to resort to nonlinear control design in the transformed coordinates as
well.

The following points emphasize some of the reasons why the feedforward system design i
is posed as in Figure 2.2 :

"* The feedforward system is in fact a benchmark design, since its performance is that of
the ideal case where the inner-loop controller is operating on zero errors.

" During the implementation of the controller, errors will be introduced in subsystem
computations; hence necessarily, the feedforward system performance should be guar-
anteed for disturbances as shown in Figure 2.2 .

" By guaranteeing a stable system in Figure 2.2 that exhibits desired properties for the
class of disturbances under consideration, one can construct a family of input-output I
pairs (il, j) , consistent with the model, rather than a single one. Such a capability
establishes the first steps towards robustness uider model uncertainty.

12 I



In the following, we emphasize the need for nonlinear control in the transformed coor-
dinates when the design has to accommodate possibly persistently exciting bounded dis-
turbances. First, the class of plants is described with motivating cases that lead to the
associated structure. Second, the approach is described and illustrated by an example. Fi-
nally, the extension of the particular approach to incorporate time-variations in the plant as
well as the feedback law is discussed.

Consider the stabilization of a perturbed controllable canonical form description:
I = Aý+ Ba + di) +,( + d)u+ d3)) + d,
3 =

I with (A, B) a controllable pair, ý available, but the disturbance d unknown, ex, ,= that
it is bounded with a known bound, independent of ý . As emphasized before, even if the
nonlinearities in the original states is Lipschitz, the transformed state-descriptions will almost
always have non-Lipschitz nonlinearities. This problem will arise when

1. the states are available, but there are measurement and actuation disturbances duri..g
implementation, or

2. there is a state-e estimator which supplies an estimate 4 with up to first order bounded
state estimation error. Although the separation principle does not hold in general for
nonlinear systems, such an estimator can be used in a robust state-feedback (hence, a
coupled design) to yield implementable stabilizing controllers.

In the following, 11. -1 will denote the sup norm on signals, thus allowing persistently
exciting finite average power signals. In the above setup, 4 will be available; however,
d = [dT , d3 d•T]T is not known, except that Ildil _ -f , for some positive known -y
This particular plant description is motivated by the controllable canonical form within the
context of feedback linerizable plants [5] , i.e.:

I = A+ B[a(Cx)+ (x)u]

where (A, B) is a controllable pair; the algebraic functions a and P denote the transformed
nonlinear system, / is nonsingular for zE W R. When state-: is available, the control law u =

-(-Kx-a(x)) steers any initial condition in W1 to zero asymptotically, provided (A-BK)
is strictly Hurwitz. However, such a control law will not be robustly stabilizing when the
closed-loop system is subject to unknown but bounded additive disturbances (unless the
extremely restrictive case where a and P are Lipschitz). In order to account for the bounded
disturbances, the above feedback linearization based control law needs to be significantly
modified.

Approach

To illustrate the approach, consider a single input system in the model set described
above (the following ideas can be extended to a multi-input version with a diagonal structure
assumption on the function /) .

13I
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Due to controllability on WR" #(ý) 96 0 for any . Apply the control I
Us = _j61(Q)a(f) + Kf) + v

where K is chosen such that (A - BK) is strictly Hurwitz ; v is to be determined. In fact, in
the above control law decomposition, a can be replaced with any function & provided that

II'&- a)(0)l <- 71

for all • ; i.e., 61 is in a 7yi tube about the function a. Rearranging terms, one obtains I
S= (A - BK)f + d4 + Bp(f + d2 )(A(f,d) + v)

where d is unknown but A is a known function determined in terms of a , d and K . Let
0& be such that

for all f and unknown d. Note that such a bounding function 4, can be easily constructed
from the known A and the bound y . Recall also that the sign of P6 is f independent. Now I
choose the term v in the control as

v = -sgn#(O)sgn(f TPB)OA( ie11,iy) I
where the Lyapunov matrix P satisfies 3

(A - BK)TP + P(A- BK) + Q = 0

for some symmetric positive definite Q . I
Consider the Lyapunov function candidate V = e"5P ; for the above control law, one

obtains

The simplified upper bound on V is due to the fact that the choice of v renders

4TPBO(f + d2)(A(f,d)+v) < 0

for all f and unknown d . Hence, the nonlinear damping terms in v compensate for the I
nonlinearity mismatches. It is interesting to note that at any time instant, the cost V(C) is
not greater than V(77) , where 3

il= (A- BK) + d4 ,

provided that f(0) = 7(0). (

Example

Consider the single-input single-output plant

u= + (y + di) 2 + d2
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where y is supposed to track a step reference input r subject to unknown disturbances d,
and d2 . Apply the control

u = -y 2 -(y-r)+v

Clearly, without the v term to be determined, u is not stabilizing unless d, = 0 ; any nonzero
mismatch will cause a finite-escape time. Now choose

v = -6sgn(y - r)(al + a 2 IYI)

where

Id +d2l _< al
21d1 .5 a2

The results guarantee asymptotic tracking for 6 > 1

Remarks

The above approach is a semi-global stabilization based design; first determine a worst-
case bound on the disturbances, and then a design is guaranteed for the specified bounds.

The approach is not limited to the particular model set; in fact, it can be modified
to include terms of the form a(t, 4, G, d) where the time-variation and paramet.c depen-
dence to 0 are no longer lumped all in one disturbance term d . Hence, the approach can
be made less conservative by e.g., choosing a time-varying bounding function of the form
Oa (t, It)1, 1e(t)j, , -y) . Clearly, tighter upper bounds will yield less demand on the actuator.

2.4 Feedback System Design

We investigated the following methods:

e designing C based on linearization about equilibria, thereby resulting in an LTI con-
troller.

I designing C based on linearization about the ideal trajectories fi, g , i from ?i . This
will result in an LTV controller (see Section 2.4.1) .

e designing C based on a Lyapunov approach. This will result in a nonlinear controller
(see Section 2.3.3) .

Note that all of these methods can be used in the design of ?i as well. But the full-state
methods used to design 'H cannot be used to design C. It is important to emphasize that all
the signals in Wt are constructed , whereas C must be only constructed on sensed variables.
Thus, the state of P is not available to design C. But the states of a model of P are available
to design W4 (and also C)

One of the advantages of the proposed feedback linearization based design of the feedfor-
ward system is that the scheduling signal i is completely known. It is constructed, on line,
in W4 , the feedforward system (see Figure 2.2) .
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As an illustration, consider a nonlinear system of the form

S= f(:) + Bu
Y C= ,I

where f(.) is a nonlinear algebraic function and B and C are constant matrices. Following
the approaches in Section 2.3 , suppose that the associated tracking problem is solved. In
other words, the feedforward system in Figure 2.1 is designed so that

X= f(i) + Bi
V = Ci

where g exhibits the desired tracking properties. Note that, all of the variables associated
with the feedforward system (i.e., the - versions) are available by construction.

Now consider a first order approximation to the error system described in terms of
e, = z - i , e. = - and e, = u - i! . The resulting linear time-varying system I
can be expressed as

S= A(i)e. + Be.
e.= Ce.,

where A(i) = fL(i) is the Jacobian of f evaluated at i. Because i is constructed in the
feedforward block 7 , A(i) is a known time-varying matrix. By construction i is bounded. I
Typically, i will have the decomposition

X = ZXt + X°°

where £t, and i,, denote the transient and steady-state components. If the steady-state
component is constant, one can design an LTI controller for the equilibrium LTI description.
If the steady-state component is periodic and slowly-varying, averaging can be applied to de-
sign time-invariant controllers. In the following section, we propose a time-varying controller
design approach.

2.4.1 Time-varying Controller Design

Consider the unity-feedback configuration in Figure 2.5 . In the rest of this section we
will focus on the case where P is linear-time varying (LTV) . An LTV controller C will be 3
designed so that the closed-loop is stable. Moreover, the controller can be modified (adapted)
online to improve the nominal performance.

Suppose that there exists an LTI controller Co that stabilizes the unknown LTV plant
P . Using stable factor factorizations [18], let C0

Co = ND- = 3
with the associated Bezout identity
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I where all of the eight maps are LTI and stable. Under these conditions, all LTV plants that
are stabilized by Co admit a special factorization:

i =

where Qp is an unknown but stable LTV system. Now, choose an LTV controller C = NCDc 1,
i where

u -ui = Nt= (N +VQc)f

j -y= D.4 = (D - UQ.)t

Qc is an LTV stable map to be chosen, and t is an available signal by construction of C.

,a

IC " PI

Figure 2.5:

Now, for the specified C and P , the system in Figure 2.5 is stable if and only if the
closed-loop map from (is, j) to t is stable. Equivalently,

DfDp + "NN. -= I + QpQ.

has a stable inverse. Now suppose that the unknown Qp has a known gain bound (e.g., an
L2-gain) denoted by IIQpjj < -y. Choose k LTI stable Q,'s such that,

IIQII < 1

I=s

I =l
I'X 1/-y

By construction, the gain of QpQc is less than unity. Hence, by the small gain theorem,
(I+QpQ,) has a stable inverse. In other words, for any choice of A that satisfies the inequality
constraint above, the resulting controller will stabilize the unknown P.

The unity-feedback system interconnection also constrains the set of admissible A values.
Writing the summing node equations in Figure 2.5 , we obtain

I (V•-Uf-U-) = Q,(N• +is++Qo)
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Note that, the above consistency equation is of the form i/l = QP172 , where 17 is known, Qp is I
unknown but a bound on its gain is available. In the case of predetermined L2-gain bound
on Qp , the consistency equation translates into inequality constraints on truncated norms
of 17 [131 . Since the controller parameter Q, is linear in A ,this in turn translates into a I
quadratic constraint on A . This quadratic constraint, together with the constraint I A, S
1/-y ensure that the choice of A realizes a stabilizing controller and is consistent with the
interconnection equations. Now an additional performance criterion, e.g., the tracking error
Dc• can be monitored for improvement (the tracking error Dct is affine in the parameter
A) . 1

2.5 Adaptation

Consider the generic nonlinear plant model shown in Figure 2.6 , where G denotes the known
linear part and F denotes the algebraic nonlinearity (e.g., friction, saturation) which depends I
on an unknown parameter 0. The signals z and u at the input and output of the nonlinearity
are unavailable as measurements. However, for the design of %l in Figure 2.1 , all signals
will be available by construction, except that 0 will be replaced by the estimate 6

uv G 1/ I'%7
F I

Figure 2.6: A parametric nonlinear plant model P : (u, 6) " y . I
Once the design of Wf is based on i , the interconnection in Figure 2.1 can be modified

to that shown in Figure 2.7. The motivation behind the closed-loop system in Figure 2.7 is
that for sufficiently slow adaptation, the performance of the inherent model follower tracking
design will be recovered (e.g., [1]). 1

2.5.1 Application to Adaptive Testbed 1
The Adaptive Testbed apparatus at ARDEC poses a particularly interesting nonlinear con-
trol design problem suitable for the cascade implementation in Figure 2.1, where: I

1. the states are not available as measurements,

2. the model exhibits non-minimum phase zero dynamics

3. the goal is tracking performance improvement I
4. an analytical model is available as in Figure 2.6, 3
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Figure 2.7: Adaptation of the cascade system in Figure 2.1

5. candidate designs can be easily tested out in real-time.

Except for the discrete-controller implementation stage, all of these points coincide with the
issues addressed in this research. For the preliminary studies on the analytical model of the
testbed, see Appendix C.

2.6 Towards a Nonlinear Control Design Based on Measured
Variables

Within the context of finite-dimensional linear time-invariant (LTI) feedback interconnec-
tions and LTI plants, full-order estimated state-feedback based design approaches are widely
used in control design problems. After suitable augmentations, the design problem is reduced

to the stabilization of [A B ](can be taken as strictly proper, without any loss of gen-

erality) subject to a particular cost criterion (e.g., ?W2 and/or R..). The analytical and/or
numerical solutions to the associated optimization problem yields a state-feedback gain K
and an output-injection gain L, where the matrices (A-BK) and (A- LC) are both strictly

Hurwitz. The resulting controller is given by [A-BK-LC The relative ease ofI -K 0 .Terltv aeo

solutions associated with such design problems stems from the inherent decomposition into
two sub-problems which can be dealt with separately. The estimation of the state and the
control law based on the ideal state are solved separately, and then the estimated state is
used instead of the true plant states in the control law. This two-step approach is referred
to as the separation principle.

Before proceeding with nonlinear control design methods and why the separation principle
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I
fails in general, it is useful to observe the inherent properties that make the separation
principle work in the LTI setting. Consider the plant P : u '-4 y ,

S= A x + B u
y = C:

with a stabilizable pair (A, B) and a detectable pair (C, A) . If the plant state x were
available, a control of the form u = -Kx would solve the stabilization problem. Since
x is not available, an estimate i is constructed using (u,y) or perturbed versions thereof.
Consider the estimator E : (u., y.) I

where 
= (A-LC)i + Bu + Ly ,

U.+ d. --u
U6+4 = Y.

where the exogenous inputs d4 and d4 denote the unmeasured but bounded actuator and
sensor disturbances, respectively. Letting e. := x- , and using the estimates in the control,
i.e., u. = -KF, the closed-loop system is described by

S= (A - B K ): + B K e. + B 4
i. = (A-LC)e. + B4 - Ldv

The properties that make the separation principle work, can be listed as follows: I
1. For bounded (du, d4), e. is bounded. When (d, d4) = 0, e. --+ 0.

2. For bounded estimation error e. , x is bounded. As e. -- 0 , x -- 0.

Due to possibly persistently exciting disturbance (d., d4) ; e, is not expected to go to I
zero. Hence, the state-feedback (in terms of :) must be robust to perturbations e. which
does not necessarily correspond to initial conditions mismatches in P and E.

For the sake of argument, suppose that one indeed has an asymptotic observer and a
"globally" asymptotically stabilizing full-state feedback law. Intuitively, for "small" errors
in the state-estimate, the separation principle based control design will be stabilizing. Thus, U
after waiting "sufficiently long" for reliably reconstructing the states, one can use the esti-
mated states instead of the true states in the control. Apart from the nontrivial assumption
that such an asymptotic observer is available, another pitfall in such an argument is that U
one may not be able to wait without a nominal bounded-input bounded-output (BIBO)-
stabilizing loop, since the plant may blow up before estimation errors are sufficiently small.
(e.g., i = x + u, u = 0, x(0) = 2o > 0, z(t) = '-E ) . The existence of such a nominal
stabilizing loop is the same as requiring a control that robustly BIBO-stabilizes the plant,
although the desired performance may not be achieved.

Imposing the algebraic nonlinearities in the ordinary differential equations to be globally
Lipschitz in order to extend the appealing properties of linear vector fields, may be quite

20 I



restrictive. Nonlinearities in one coordinate system may be Lipschitz, whereas in an another
coordinate system they may not be (recall the discussion on page 10) .

For a given nonlinear plant P : u i-4 y , consider the tracking problem: for a particular
class of reference signals r , determine a control

U = X(r,y)

such that y --+ r and for a reasonable class of bounded disturbances, under the perturbed
control

U = 4 + X(riy+4)

the closed-loop signals remain bounded. In other words, the closed-loop (see Figure 2.8) is
BIBO-stable (in the sense of a particular extended space) and achieves the desired tracking
when disturbances are zero.

Figure 2.8: Desired dynamic controller IC

We will focus on a particular class of single-input nonlinear plants which admit a finite-
dimensional state-space description of the form

S= f(Z) + g(z)u

for which the State-Space Exact Linearization Problem [5] is solvable over IRW, i.e., control-
lability and involutivity conditions hold in WRn . For such plants, when states are available,
the origin can be rendered globally asymptotically stable. Moreover, when z is available for
feedback, the asymptotic tracking problem can be solved for any output that does not intro-
duce a nonminimum-phase zero dynamics. In the case where the output y to track r does
introduce a nonminimum-phase zero dynamics, one may be required to introduce dynamic
augmentation prior to full-state feedback. Such strong global results do rely on perfect state
measurement and render controller candidates as shown in Figure 2.9.

Figure 2.9: Solvable design problem, dynamic controller Co; d. = 0, d4 = 0

Taking into account the control law in Figure 2.8 and the fact that one typically encoun-
ters number of sensors much less than the number of states, one might dismiss the plant
state based control laws on the grounds that they are not implementable. As it is motivated
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by the separation principle based control design, for classes of plants that admit asymptotic I
observers or in the case of bounded state-estimation errors, the stability properties of the
control law with y = x in Figure 2.8 is of major importance (see also Figure 2.11). 3

Motivated by the separation principle based control design, a design approach can be
taken as follows:

" Assumption : Imposing stability properties on (u, Y) is equivalent to imposing them
on x . The plant P : u ý-* y does not have any "hidden modes". The input output pair

(u, y) completely characterizes the internal dynamics. I
" Problem I : An estimator that allows the decoupling of the design problem (see

Figure 2.10). Recall from the motivating LTI setting, that the role of the estimator I
is to guarantee that for all bounded d4, bounded d4 and possibly unbounded ue , the
error (x - i) is bounded. Moreover, when d4 = 0 and d4 = 0 , e -- 0. In other words,
for the interconnection in Figure 2.10 , the error e. must be uncontrollable from u and
the bound on e. must depend only on the bound on the exogenous variable d4 . This
property is the crux of the separation principle, since it simplifies the design problem
to Problem II.

Uy

IdI
Figure 2.10: Problem I; estimator with (x - X-) E L-, for all u in L.,. and d4 in L.

"* Problem II : A stabilizing state-feedback law. For bounded d=, 4 and d4, determine
a controller C, for which the closed-loop signals remain bounded. Moreover, when
du = 0 and d. = 0 , as d. --* 0 , y --- r . Note that this step is nontrivial since
the controller Co in Figure 2.9 is typically based on d4 = 0 and dv = 0 . The local
stability properties of the design in Figure 2.9 may not suffice for the specified bound
on d4 obtained from Problem I. With a slight abuse of notation, from now on we will
refer to C1 in Figure 2.11 as a robust controller, since its design does take into account
the predetermined bounds on d4 and dv . The abuse is due to the fact that in the
LTI setting, robustness is attributed to closed-loop signal dependent perturbations, I
since exogenous additive disturbances cannot drive a stable LTI loop unstable. Since
local and global stability results merge in the LTI setting and global stability results
are too restrictive in the nonlinear setting, perhaps a better suited description for the
controller C1 in Figure 2.11 is semi-global ; i.e., for the given bounds on d,4, and d4
the closed-loop signals remain bounded. 3

" Merging Solutions to Problems I and II : Recall that the solution to Problem I
guarantees that bounded deviations about possibly unbounded input output pairs of 3
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I
I

I Figure 2.11: Problem II; dynamic controller C1 , possibly different from Co

I P result in bounded e . Hence one can incorporate Figure 2.10 in Figure 2.11 as the
bounded disturbance d. generator to obtain Figure 2.12.I

Id
1 I

I Figure 2.12: Candidate controller K:

Note that, in the case that the estimator in Problem I satisfies the property that e. -- 0
for d. = 0 and d. = 0 , that is when x is asymptotically reconstructed, the choice of the
robust controller Ci in Problem II guarantees that the closed-loop signals remain bounded
due to bounded d. ; in addition, the nominal design constraint on C1 ensures that y -- r as
d. -- 0.

3 As a preliminary step towards control design based on state-estimates, the following two
studies show the importance of the choice of the nominal globally stabilizing (or tracking)
control law based on perfect state measurements.

In the first study, set-point asymptotic tracking problem is solved for an output that
exhibits nonminimum-phase zero dynamics. Using dynamic augmentation and then applying
state-feedback asymptotic tracking problem is solved. In other words, the controller Co in
Figure 2.9 is obtained. The derivations emphasize that the standard Lipschitz constraints,
for ease of Lyapunov based derivations, on the resulting vector fields after possible changes3 in coordinates is too restrictive.

In the second study, stability properties of the origin is investigated when the feedback law
is based on estimates from an asymptotic observer. It is shown that the globally stabilizing
exact feedback linearization based controller Co in Figure 2.9 is no longer globally stabilizing
in Figure 2.10 . A globally stabilizing controller C1 that solves the Problem II is constructed.3 Using the asymptotic observer, the controller K in Figure 2.12 is obtained.
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2.6.1 Example 1: Tracking and Nonminimum-Phase Zero Dynamics I
In order to illustrate a strictly causal plant with a one-dimensional possibly nonminimum-
phase zero dynamics, consider the following two-state u to y map. I

i1 = X2 + f(Xi)
i2 =4(X2 - XI) + U

= X22-X

Note that when f = 0, the transfer function from u to y is . I
It is easy to see that a tracking control based on the coordinate transformation using

derivatives of y will not be stabilizing. Note that

S= 4y+U--22-f(X1)
For , =0, 1

u = -4y + X 2 +f(xi) + a(r -y)

results in I
(y-r) = -aCzg-r)

hence for any a > 0 , y -- r . However, the asymptotic tracking constraint

X2 = 21 + Y(0)e-a t

renders I
x= , + f(xi) +r + ((0)-r)e-a

Take for example, r = 0, f(.) = (.)a. Clearly, in the limit

3

and the states are unbounded. 
I

When f is zero, it is well known that step inputs can be asymptotically tracked if and
only if plant and/or the compensator have at least one pole at zero. Since ('-) does notI
have a pole at zero, the standard LTI design procedure would involve augmentation with

an integrator. Proceed with the same augmentation for the nonlinear plant at hand (see
Figure 2.13) . I

r I

Figure 2.13: Augmented plant 3
If x were available, since 77 is part of the controller, the augmented plant states are avail-

able. If one can find a relative degree three output, i.e., solve the state-feedback linearization 3
24
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problem, then ' -- 0 would imply that y --, r . This requires that the augmented plant
dynamics 3' = r-X2+Zl

z1 = X2+ f(I)
i2 = 4(X2-:1)+U

satisfies the controllability and involutivity conditions. Both conditions are satisfied provided
that

f(i)(zX) -1

which we will assume for global results. It is interesting to note that this condition is in fact
a generalization to the hidden mode concept in the LTI setting, i.e., if f(xi) = -x1 , the
linear plant from u to y would have a hidden unstable mode.

Now consider the relative degree three output

z = 7 + xi

motivated by the f = 0 case. Note that

Pz() = r- +x,+/(i)

Z(2) = (1 + f(1)(X1))(X2 + f(:i))

and recall that the (global) controllability condition is equivalent to f(xi) 0 0 for all
mx E JR. Hence, under the coordinate transformation

m e= z(1)I [IZ(2)

m the augmented plant dynamics can be put into the controllable canonical form

m1 = 2

I f(2) - (x 2 + f)2 + P(xi)(u + 4(X2 - XI) + f(') . (X2 + f))

where dependencies on x, are suppressed in the f terms, for the sake of brevity. For any 01,
U'02 and 03 such that the polynomial

a3 + IiS2 + 12S + b3

m is strictly Hurwitz, the control u determined by

3a(X) + i3(X)U = 03ý - 026 - 0162
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renders • = 0 globally asymptotically stable (recall that the transformation to f coordinates
is one-to-one and onto) . Hence

0 = r+xi+f(mi) I
o = •(Zl)(X2 + f-TO)

and f(xi) # 0 imply that 3
r + Z - X2 -- + 0

i.e., y --+ r . Note that the above exact cancellation based scheme is not the only way to 3
stabilize the augmented plant in the f coordinates. In fact, as we will see later on, such
an exact cancellation may make the global nature of the nominal result not robust, i.e.,
perturbations in the states (other than initial conditions) may render the result only locally I
stable. Hence, it is crucial that one studies the sensitivity of the full-state based control
design and modify it if possible so that for the class of anticipated disturbances, the local
nature of the control law is satisfactory.

2.6.2 Making the Separation Principle Work 3
Consider the plant

:, = Az + Bu + F(y)
y=Cz

with (A, B, C) a minimal triple. Suppose that there exists a nonlinear coordinate transfor-
mation I
such that the plant can be equivalently represented as

S= A + B(u + c(C))

For such a system, asymptotic state construction is easier in the z-coordinates, since 3
X = Ai+Bu+F(y)+L(y-g)
g = C2 iIB

yields an estimation error e. := x - i , where

,i. = (A- LC)e. I
The stabilizing control is easier to express in the C-coordinates since

U = -KC- a(C)

renders C =0 globally asymptotically stable since the above control yields

= (A- BK)C i
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I The heuristic step of replacing ý by t(i) can only guarantee local results. For "sufficiently"
small e., the estimated-state feedback will be locally stabilizing. The crucial points are how
large the basin-of-attraction is and if it is possible to enlarge it to yield a satisfactory design.

Let t 4'(i) . The closed-loop dynamics under the feedback law

u u = - a)

3 can be expressed as
84'

(A - K) + _ We. + F(Ct-'(f + e.)) -

G(f, e,.)M v)
], = (A- LC)e,

Even if F is Lipschitz (hence IIG(', eJ)I depends only on 11e.1i), M(f) need not be Lips-U chitz. Hence establishing and modifying the basin-of-attraction are nontrivial design tasks.
However, the crucial observation is that the stabilization problem is in fact the robustness

I of the full-state feedback law subject to L2 disturbances.

The following example illustrates the need for a robust state-feedback law and the sensi-
i tivity of the exact-linearization based control law.

2.6.3 Example 2

I Consider the following one state plant model P : u F-+ y

il = Y3+u

where the goal is to render y = 0 globally asymptotically stable. The perfect state (namely
the plant output) is not available due to an unknown output disturbance d, where d E L2

and d E L . The fact that d --+ 0 motivates the control law candidate

U = -g.3 -a

with a > 0 . We show that such an exact cancellation based control law yields only locally
stable results, whereas choosing a nonlinear control law for the linearized plant significantly
improves the results.

The motivation behind the choice of d above is possible asymptotic estimation error
subject to initial condition mismatches. The over-simplicity of this one-state plant should
not be misleading, since even if y(O) is known perfectly, the estimator built for plants of the3 form i = Az+Bu+F(y) with y available, will not necessarily guarantee zero state-estimation
error. In fact, if one were to build an estimator

3 37+ +(Y-9)
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C(a, 0) U 1P I

Figure 2.14: Control under perturbed state measurement

and base the control law on g, by setting d = - y , one obtains 3
d= -d (2.1)

which implies the L2 disturbance in the plant states (see Figure 2.14).

Consider the controller of the form

for a > 0 and/3 > 1 and the disturbance d as in (2.1). The dynamics of the resulting 3
closed-loop system in Figure 2.14 is described by

= -a(y + d) + Y3 _/3(y + d)3  (2.2) 3
d= -d (2.1) I

Without getting into extensive simulations to obtain the phase-portraits for different a
and P3 values, it is useful to derive some qualitative properties of (2.2) and (2.1) analytically. 3

For a > 0 and/3 P 1, (y, d) = (0,0) is the only equilibrium point. The Jacobian at (0,0)
has eigenvalues -a and -1 , with associated eigenvectors (y, 0) and (y, -y) , respectively.
Since d(t) cannot change sign, the phase portrait can be decomposed into three invariant
sets: d > 0 , d = 0 and d < 0 ; i.e., the trajectories remain exclusively in the set that the
initial condition belongs to. There is an odd symmetry in the flows since (y, d) and (-y, -d)
satisfy the same differential equations. Hence, it suffices to consider the flow for d > 0 since
d = 0 case is asymptotically stable for all y(O) .

The purpose of the exercise is the choice of the nonlinear control determined by/3 ; 3
although the basin-of-attraction will be affected by the choice of a, the qualitative properties
for /3 = 1 and /3 > 1 are generic. In the following, we will consider the case where a = 1,
(i.e., the eigenvectors are colinear). Let the Lyapunov function candidate be V = 1(y 2 + d2)

Evaluating Vý along the solutions of (2.2) and (2.1) , we obtain

"V = (1 -/3)y 4 - y 2 -(1+3/3y 2 )d2 - yd(l + 3/3Y 2 +/3d2 ) (2.3) I
From (2.3), one can easily deduce the following: 3

P /3> 1 V' is eventually negative, due to the dominating first term in (2.3) . Hence, y
remains bounded for any (y(O), d(O)) . Once d gets sufficiently small , y --+ 0.
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1 I The first term on the right hand side in (2.3) is zero. The last term changes
sign according to (y, d) in the first or second quadrant. Clearly, for any (y(O), d(O)) in
the first quadrant, the volume V decreases, however, the trajectories might continue
into the second quadrant, where the last term becomes positive. In fact, for sufficiently
large d(O) , the system exhibits finite escape-time.
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Appendix A

Appendix A includes a regular paper presented at the 31st IEEE Conference on Decision and
Control. An abridged version of the preliminary stages of this work has also been published
in the Proceedings of the 1992 Yale Workshop on Adaptive and Learning Systems.

"Adaptive Feedback Linearization: Implementability and Robustness,"
M. Giintekin Kabuli and Robert L. Kosut,
Proceedings of the 31st IEEE Conference on Decision and Control,
pp. 251-256, Tucson, Arizona, December 1992.
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I Adaptive Feedback Linearization: Implementability and

Robustness

M. Giintekin Kabuli Robert L. Kosut

Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054-3309

Abstract A solution to the implementability problem is to
The robustness to parameter mismatch in feedback use an estimate of the state in the controller. Un-

linearization based nonlinear tracking systems is inves- fortunately, there is no dual theory of observer design
tigated. The certainty-equivalence principle gives rise for feedback linearizable systems. Adaptive controllers
to four possible feedback configurations: One is the based on observers have been obtained in the litera-I widely used case, where the states are assumed to be ture for specific classes of nonlinear plants (e.g., under
available; two others are observer-based; the last one output-matching conditions in [Kanl]).
is a model-follower based on a feedforward/feedback Addressing the second problem requires designing a
implementation using a signal generator. It is noted robust nonlinear tracking controller efore any adap-
that the unacceptable transient behaviour of the adap- tation is introduced. Hence, prior information on the
tive tracking scheme is closely related to the sensitivity plant description and the parameter uncertainty are
of the underlying certainty-equivalence based control, crucial to improve the transient behaviour.
which is analyzed through a perturbation approach. In this paper we consider a special class of nonlin-
Simulations are performed on an example to illustrate ear plants. A direct interpretation of the certainty-
the points. equivalence principle gives rise to four possible feed-I I ntroduction back configurations.

Consider the following nonlinear tracking problem: The first one is the widely used case, where the
states are assumed to be available. Despite the un-

For a given nonlinear plant with state-space de- derlying implementability problem, we address the is-
sZription ( U, 0) sue of sensitivity through a perturbation analysis of

6= 0 the approach. Simulations are performed on an ex-
y= h(, u, 6) ample to illustrate the points. Based on this track-

S and a given constant reference signal r , deter- ing scheme, we derive an adaptive tracking controller.
mine a feedback law u = C('y, r) such that Performance of the tracking scheme is illustrated in
the closed-loop system is internally stable and the an example. Although the responses are bounded, theotpu close p asysempicyterakste ad ttransients are very large. This unacceptable transientoutput y asymptotically tracks r. behaviour is closely related to the sensitivity of the un-

The parameter 0 is clearly uncontrollable. The de- derlying (non-adaptive frozen parameter 6) certainty-
sired control law has to be expressed in terms of the equivalence based controller.
measured plant variables ; such control laws will be The other three approaches are all implementable.
classified as implementable. The goal is in fact a ro- The state availability assumption is dropped at the
bust tracking controller, since performance is achieved expense of global results. Two of the schemes use the
despite the uncertainty in the uncontrollable variable state-estimate in two different coordinates. The third
6 . is a new model-follower scheme. An example systemI When 0 is exactly known, the tracking problem has is used throughout to illustrate the system behaviour
been solved for special classes of plants that can be ren- using the four schemes.
dered linear under algebraic state-feedback and change 2 Plat Description
of coordinates (e.g., [lsil] and Section II of [Sasl]) . We consider a class of single-input single-output

When 0 is unknown, the widely used approach to nonlinear plants which can be exactly input-output
* design an adaptive tracking scheme is the certainty- linearizd ande aeic sate-eeack anduchangeeqiaec pricpe th trckn prbe •ssle linearized under algebraic state-feedback and change

sequivalence principle: the tracking problem is solved of coordinates. The class under consideration has no
"as if 6 is know~n and then the above control is based on zero dynamics. Specifically, we assume the following:
the estimate 0 (see [Sasl] and the references therein) .SThere are two problems with the above approaches. 1. The plant dynamics has the state-space descrip-
First, the states must all be sensed variables, which is tion
often not the case; hence the controllers are not imple- = Ax + Bu + fo(z) + Fl(x)O
mentable in our sense. Secondly, certainty-equivalence (I)I based designs are not guaranteed to be robust, and
hence, the adaptive tracking performance may be un- where x E IR" is the state, u E IR is the scalar
acceptable due to poor transient behaviour, a plie- control input, y E IR is the scalar sensed output.
nomenon well known in the adaptive linear control
(e.g., [Andl]) . 2. The matrices A and B are in the BrunowskyIcanonical form. cT := [10 0 ... 0] .

"*Research supported by AFOSR, Directorate of

Aerospace Sciences under contract F49620-90-C-0064 3. The smooth nonlinear functions XP
and ARO, Engineering Sciences Division under contract fo : 111" - W and F, : 1W. --
Di,.AL03-91-C-0011. are known and have the lower-triangular forms
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fo()(Z) = o(i)(Zl, z 2 , ... , a,) and Fi(.j)(z) = 2 f(z) =- , following the benchmark problem

Fa()j)(zV 2,...,X0 for i = n,...,n , j = in [Kan2j.
l,...,p . • f(z,) = -Z?/(,• 2 + 1)

4. 0 E RP is a vector of unknown constant parame- The function f used in a particular simulation will be 1
ters. emphasized. We introduce the following, for future

2.1 Remarks reference.
For the above plant description, there exists a possi- P : s 2I

bly parameter dependent, coordinate transformation,f = *,(x, 19) , where 4,(.-, 0) is a diffeomnorphism for all X
0 . Under the coordinate transformation 4,, (1) can F 1
be equivalently described by () z+ Of(zO)

S= At+B[u+9o(x)+Gi(z)4] (2)1
y = CT• 1 3

where the over-parametrization tP consists of entries of 6 :-)
appropriate tensor products of B . 1 6

The class of plants under consideration are trans-
formable to y(") = u + 90(z) + Gi(z)4, ; hence, they 90(z) 0
are state-dependent perturbations of a string of n-
integrators. I2f'(l +I~('(l

For notational convenience, we will refer to the lin- Ga(:):= 221(Z3 •f(2)(zI) + -2(f()(z_))2

ear part in (2), i.e., the triple (I,A,B) as the linear f(zi)( f1)(zT))2 + f2(za)f(2)(Z1)
plant P. Let : e (2 03 ITJlC-) := g0(x)+ ,,•(x)O (3) :=[ ]•

This class of plants satisfies the parametric strict- N

feedback condition in [Kan2] ; hence, provided that Note that for this example,
the state x is availablc for feedback, one can obtain a Gl(a),p - (2)(t1) +)
globally adaptive tracking system for the plant in (1) G(4 = ( 2)~) + f()(06)0a9 5
using the procedure in [Kan2] . . : G(,) ,(5)

The class of plants under consideration include the which emphasizes the issue of overparametrization in
so-called benchmark example, where n = 3, p = 1, different coordinates.
fo(z) = 0 and Fx(z) = [f(Zs) 0 0]T , where f(.) is not Another observation which beconrjes useful in the
necessarily Lipschitz in ax . perturbation description is the map (4$,-1_- 1) , where U

We will denote "state-z is available for feedback"
rather than "state is available for feedback" , in order $4,_,(•) = - 9f(•,)
to emphasize the specific coordinate the dynamics is f Of( I)
described in. Note that even if state-z in (1) is avail-
able, state-C is not available, since it depends on a 0
0-dependent transformation where 0 is unknown. = 1(•) + ("-9) f(0x) J

Whenever we refer to a stable map, the map is 6.fP)(6) + im( V)(
causal and bounded-input bounded-output stable (de- (6)
fined over an appropriate extended space). With a I
slight abuse of notation, a stable proper transfer func- 3 State-x Available
tion h(s) will be denoted as h in the input-output 3.1 On Sensitivity of State-x Based Sta-
description where hG(z) will denote the time-domain bilization
waveform obtained by convolving the impulse response The contents of this particular subsection focuses on
corresponding to h(s) and the signal G(z). Paranthe- a slight generalization of the class in Section 2 , where
ses will be used where ambiguity arises. Unless specif- the input u need not be scalar.
ically emphasized, factorizations denote proper stable Consider the input u to state-z map described by (1)
factorizations. or equivalently, by (2). Under a change of coordinates I
2.2 Example (4) , the input u to state-c map can be rendered linear

A simple third-order example, satisfying the condi- under an algebraic state-feedback Y (see (3)) . Hence
tions in Section 2, is used to illustrate certain points u to state-z map can be realized as in the dashed-box
throughout the paper. Consider in Figure I .

The map from v to * is linear (time-invariant fi-
il = X2 + Of(PX) nite dimensional). Let • = Pv . Since P admits
i2 = z3 (4) coprime factorizations, P = ND-1 

- D- 1  with
_X1 . [ i/ ] ] = I , where all eight maps

Since we are interested in an input-output approach, in th a i

all initial conditions ;n the simulations are assigned as in the above identity are stable. a
zero. The nonlinear map , is stable and its inverse is

Candidates for the function f(.) that we have used stable.
are: The algebraic map " is stable. In fact, for the sub-

sequent derivations in this subsection, 4' and 7 need
* f(zi) = -tanh(oar) , motivated by a simple sat- not be algebraic.

urating friction nonlinearity. Note that although Note that, the input to state-z map in Figure 1 canf is Lipschitz, the corresponding G, is not. be expressed as
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K i:N i
................ IPZ

Figure 2: Perturbation of P :v - • under 0 mis-
*Figure 1: Stabilizing scheme based on the estimates match
Y and

as the feedback law from " to 6 is chosen as a lin-
P. 1N(D - F$-t1 N)-' (7) ear time-invariant K stabilizing P = ND-1 , one ob-

tains the precise conditioi:e under which the certainty-
= ($ )-(8) equivalence based control jaw can withstand 0 pertur-

bations. Before stating the conditions, we will adopt
where the following definition.

(U.+ Vri)(4,-N) + (V)(D-Y4'ý- 1 N) = 1 (9) 9 Let K stabilize P (i.e., K = V-1 U and P =

(bs -N )(-IV) + (N)(U+ýF4o-V) = 1 (10) ND-I , where UN + V'D = I) . K is said to
stabilize the perturbed plant in Figure 2 iff the

Note 'hat, (9)-(10) imply that (7)-(8) are in fact control law ; = u2 + K(uI - ý) yields a stable
nonlinear right- and left-coprime factorizations of e T, (ul, Ui2 ) "- z , where z denotes the pseudo-state

*respectively. The equiations (9) and (10) also describeinFgr2(seaoFgue1.
a stabilizati u, sicheme based on undoing the.nonlin- in Figure 2 (see also Figure 1).
earities, since a stabiillirg C : z 1 u is given With this definition, one can work out the pseudo-
by state equation to derive the necessary and sufficient

C = - - Y , condition for K to robustly stabilize the perturbed v

where v = -Kt stabilizes P. to t map, i e.,
In order to incorporate the 0 dependence in the u to r ] [ .2_Y)- N(

z map, consider 0 and Y both functions of 0 whereas (I+ N U (12)U P is independent of 0. Note that such an assumption is s-I_ I
not restrictive, since typically the: choice of coordinates has a stable inverse. Note that P can be stabilized
and algebraic state-feedback , constructed to render P using only its first output, i.e., there exist U
as a string of integrators (in each channel). From now rU 00 ... 0 J , such that UN + VD - I . Hence
on, P and its associated terms in the Bezout-identity usi dn c foat of tHence
will be considered as 0-independent. The 0 dependence using a dynamic feedback compensator of the form
in 4$ and•Y will be emphasized by introducing the - K [COO... 0J, C stabilizes P ; moreover, the
versions when they're determined by the parameter map in (12) further simplifies to ( I + V(I-.)$-N)
estimate i". since cT($-1 - I) = 0 .

We now can express the standard stabilization Typical robustness results (small-gain, passivity
scheme based on certainty-equivalence approach in based sufficient conditions) can be utilized together
terms of the maps introduced so far. Since 0 is not with assumptions on the nonlinear post-multiplicativeexactly known, the control law from x to u is realized and feedback perturbations in (12) (such as sector
as bounded nonlinearities, linear or multilinear 9 depen-

u = K(&-, - $(X)) - (x) , (11) dence etc.) to generate classes of systems for which
(12) can be justified. However, we are not interested in

where ',. denotes the desired reference in terms of the further restricting the set of plants under investigation
state-" (see Figure 1) . In other words, when 0 for the sake of forcing some sufficient conditions. For
the tracking performance is determined by simple example in Section 2.2 , even if the nonlin-

earity f(-) is chosen to be globally Lipschitz, the same

Pv is no longer true for Y".
=3.2 Sensitivity to ee : SimulationThe example in Section 2.2 with f(z 1 ) = -z2 isused for the following simulation.

Note that the tracking scheme in (11) can be equiv- Recall that, since fi = z, = y , from (6)alently represented by the control law, cT(&O-l - I) = 0 . Hence, by choosing a dynamic

compensator C from y to i , the error introduced by
= K(• -') , the output multiplicative term in Figure 2 is avoided.

The compensator C : y - 6 is chosen as an N2-
where K is a ý,-tracking compensator for P : -. • , optimal compensator for l/s 3 for a particular choice
and i, " are as shown in Figure 2 . of weights. Throughout the simulations, C(s) -

Note that the stable feedback perturbation in Fig- 7°292s2+3A5* 4.°10°Note .t.9.52i!9. +÷35.3333j+÷66.6297•

ure 2 can be expressed as (Y - Y)O- 1 , since z = The sensitivity of the closed-loop to e. := 0 - 9 is
-1 (ý) is available, although 40 and t are not. As long illustrated as follows: The parameter 0 is chosen as
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I
0 = 1 For a unit-step reference input the parame- dpz = u + go(z) + Gi(z)4
ter estimate 0 is perturbed about the nominal value' Nz =
1 . When 0 = 0, the closed-loop system exhibits the Oz =
desired tracking response of a linear system. When 9 Y = (I
is perturbed to 1.0025 and 1.005, the tracking perfor-
mance of the loop is shown in Figure 3. where N and dp are stable; cTN =: n. and (nrp,dp)

is a right coprime factorization of 11s" . Since ni is
minimum-phase, npd;' is strongly stabilizable. Hence

25 there exist n,,d, with d,-' stable, satisfying nonp +
d,,dp = I

2• 7 Since N is strictly proper, 9 is strictly causal, where

.. .5 . . = go + (C10) I
9 0 z = goX (15)
.iz = Giz (16)

2 4 6 6 10 12 14 16 Is U Hence,
t dpz = u + Cz

Figure 3: Sensitivity of certainty-equivalence based describes a well-posed u to z map. Since 4 and 0-1 are
design using state-z for 0 = 1 , I = 1 , 1.0025, 1.005. stable maps and (np,,d.) is a right-coprime pair, the

plant can be equivalently represented by the following

Clearly, within 0.5% relative error, the asymptotic pseudo-state equation

tracking property is lost and the system goes unstable. dpz = u + gz
An adaptation law based on this sensitive closed-loop
is bound to exhibit unsatisfactory transient behaviour nPZ = Y
even if asymptotic tracking is achieved by parameter N
adaptation. Note that, Figure 3 shows the closed-loop Note that although z is not available, ( 1z and 1) z areavailable since state-z is available ((15),(16)) . ... I
responses for frozen 0 values. Hence, one should defi- Hence the plant description from u to y can be ex-
nitely avoid very slow adaptation. pressed as
3.3 Adaptation y = n. (d4- 9)-' u

For the plant description in Section 2 , provided
that the state-z is also available for exact linearization, Now apply the certainty equivalence based control
one can bring an input-output approach to a particu- law
lar case of certainty-equivalence based adaptive control U = U+ (u-Y)-oZ -(Cz4ý
design. 2 d.=u (

We now outline the design procedure:
where ul and u2 denote the exogenous additive inputs

1. For the class of plants in Section 2 , determine g at the plant input and output in the standard unity-
and Gc , reducing zero columns of Gi (if any) to feedback system, respectively.
cut down on unnecessary overparametrization in For u2 = 0 ul = r , where r denotes the desired
0,. reference, we obtain

2. Design a stable stabilizing compensator C(s) for I
1/sn ; i.e., C =: n,/d,, Il/s" =: np/dp and npn,+ y-npner dnp((9iz)ep)
dde = 1 . Since denp is minimum-phase, one can utilize an aug-

3. An adaptive tracking control law candidate is de- mented error scheme to update ep .
termined by applying the control In order to cut down on the number of states intro-

duced by the filters in the augmented error scheme, we
u = C(r - y) - go(z) - (Giz)O , (13) use the filtered error e. I

where the parameter estimate 4 is updated using ey := dc' 1 (y - nrncr) (17)
the error equation

y - npncr = dcnp((Gix)ep) , (14) Since nr is minimum-phase, one can adapt 4 using the

so that y --+ npncr . (ep• = 4 - and r denotes error form lI
a reference signal that tracks a step input.) e) 0 , (when . (18)Since (dedr)(O) = 0 , when cancellation is exact,

Note that (y - nnjr) in (14) denotes the error be- step inputs can be asymptotically tracked.
tween the plant output and the ideal tracking perfor- We now derive the update law, based on the error I
mance (if the nonlinear cancellations were exact) . equation in (18) . Since it utilizes the standard aug-

Consider the nonlinear plant described in Section 2 mented error scheme, we briefly outline the steps.
shown in Figure 1. For the scalar input case, let D = Since np is minimum-phase and strictly proper, it
dp . can always be expressed as nP =: hih 2 , where h, is

The pseudo-state equations can be written as strictly positive real, strictly proper and h2 is proper
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II
able. Note that h, = and h 2 = (s + l)np will

always work, since nP is strictly proper. However, to
cut down on the number of states introduced by filter-

Ing by h2 in the augmented error implementation, it 2
fs advisable to factor out a strictly positive real factor

ofnp, instead. , Ao

For ease of notation, let W := glz . Then (18)I an be written as e = hlah 2(Wep) . After adding,
Rubtracting terms and using the fact that = 0 , we4

obtain
17 = h,((h2W)e) M tw

here r := e - hi((h2 W)t - h2(Wý)) . Since h, is
strictly positive real, the update law Figure 5: Asymptotic tracking of r = 0.1 from zero

. ->initial conditions
= , 7>0

guarantees that 17 E £f2 n L. and eo E C.. . Provided or, in terms of the state z, the control
that the closed-loop signals are bounded, W E C,,,,tence, r --+ 0 , -- 0and e. - 0 . This concludes uv-Gi(z)tk (20)
hat set point tracking is achieved in the limit provided provides exact input-output linearization. That is, the

that the closed-loop signals remain bounded. system v -* y is linear time-invariant, where
3.3.1 Adaptive Tracking: Simulation

The adaptation scheme above is applied to the
* ample in Section 2.2 for two choices of f . In At+Bv

both adaptive schemes, the closed-loop signals remain Y =
bounded; hence asymptotic tracking is achieved. How-

ver, the transient responses are unacceptable. Note Let C(s) be the same stabilizing compensator (for
that in both cases, even without adaptation, state- (CT, A, B)) as in Section 3.2 . Hence v = C(r -
based certainty-equivalence control performance was where r denotes the desired reference, achieves the de-
extremely sensitive to constant parameter errors. sired tracking performance when -= .

"* fAzX) = -z?/(azc 2 + 1) , i = 0.05 , -Y = 10, Since the parameter vector 0 and neither state x nor
reference r 1 , = 1. This function approxi- t are known, it is natural to replace them in (19) and
mates f(zx) = -x4 reasonably for lx I < 2. The (20) with estimates O, i, and •. This is the certainty

* tracking performance is shown in Figur- 4. equivalence principle. As it does make a difference
"* f(zx) =-tanh(azx), 9 = -1 , a = 4 , 7 - 1 which observer state is used, we consider them sepa-

S reference r = 0.1 . The tracking performance is rately. As in Section 3.2 , the following simulations
shown in Figure 5. are based on f(zi) = -_2

* 4.1 Observer in the State-x
0 ~.The control law is

= -- (A-LcT)i+Bu+ F(.i)0+Ly (21)
u = v-Gi(&)0, (

-10 where (A - LcT) is strictly Hurwitz. Since all simula-
tions are performed with zero initial conditions, pro-
vided thaot i = 0 , the nominal performance is identical

sto that of the linear equivalent.
The sensitivity of the closed-loop to e# := 0 - 9 is

.i.. . ....... ..... . illustrated as follows: The parameter B is chosen asU a so IGO in 10 IN IN nom 0 = .1 For a unit-step reference input the parame-
ter estimate 0 is perturbed about the nominal value

Figure 4: Asymptotic tracking of r = 1 from zero I . When 0 is perturbed to 1.1 and 1.2 , the tracking
Kinitial conditions performance or the loop is shown in Figure 6.

4.2 Observer in the State-i
4 On Implementable Certainty- The control law is
E uivalence Based ControllersI call that the example in Section 2.2 can be ex- = (A - LcT
pressed in z or t coordinates as in (1) and (2), respec- u 4 + B[u + 9OG(t] + Ly (22)
tively. Note also that, due to (5), there is no need for vGI(t)
overparametrization in the t coordinates.

If the parameter vector 9 and either the state z or where (A - LcT) is strictly Hurwitz. Since all simula-
! are known, then either the control tions are performed with zero initial conditions, pro-

vided that 0 = 0 , the nominal performance is identical
u = v -OGI(f) (19) to that of the linear equivalent.
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Figure 8: Model-follower described by (23), where I
" £f(V,&,,,,) := V.,, - •GV. I

43- 2 Q 4 6 S 10 12 14 IS 15 3

Figure 6: Sensitivity of certainty-equivalence based

sign using the estimate of state-z = ,1 2

1, 1.1, 1.2 .

,£ I
1 ... . .... ... . .. . ..0•

-0 2 4 6 Si 1 2 IS 14 16 a 0

A 1

0 Figure 9: Sensitivity of the model-follower based

certainty-equivalence design for 0 = 1 , 9 =
1 , 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3. .

-2 2 4 $ 6 10 12 14 is to 20

2 5 Concluding Remarks
An input-output approach has yielded some insight

Figure 7: Sensitivity of certainty-equivalence based into robustness of feedback linearizable schemes un-
design using the estimate of state-( for 6 = I ," = der parameter mismatch. Our simulations of adap- U
1 ,1.25, 1.5 ,1.75, 2 . tive nonlinear systems show a phenomenon familiar

in adaptive linear systems. Namely even though the
system is theoretically globally stable, the transient

For a unit-step reference, 6 is perturbed 1.25, 1.5, can be quite large. The problem is inherent in the Iparameter sensitivity of the system when the adapta-1.75 and 2 ; the tracking performance of the loop is tion is frozen. The observer-based and model-follower
shown in Figure 7. schemes are most likely more robust to parameter

changes then the full-state available scheme, which
4.3 Model-Follower in general, is not implementable unless the states are i

This feedback-feedforward control scheme is based measured.
on a locally stable unity-feedback system. For the
given nonlinear plant P : u --+ y , let C•p(s) locally References
stabilize the plant in the unity-feedback system about [Andl] B. D. 0. Anderson, R. R. Bitmead, C. R.
the reference r. A model is used to generate the feed- Johnson, Jr., P. V. Kokotovic, R. L. Kosut,
forward signals. The model is a coy of the plant de- I. M. Y. Mareels, L. Praly and B. D. Riedle

si ne y 9 te alsat des Stability of Adaptive Systems: Passivity an4scription, where 0 is replaced by 0 . Since all states Averaging Analysis, MIT Press, 1986.
are available for this model, exact linearization can be A
performed. Let C(s) be the compensator that is being [Isill A. Isidori, Nonlinear Control Systems
used so far in the previous three certainty-equivalence Springer-Verlag, 1989.
based designs. Subscript-m denotes the model vari- [Kan 1] I. Kanellakopoulos and P. V. Kokotovic,
ables. "Observer-based Adaptive Control of Non- I

The control law is (see Figure 8): linear Systems Under Matching Conditions,"
Proceedings of the American Control Confer-

tm = Atm + BVm ence, pp. 549-555, San Diego, CA, May 1990.
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that this scheme exhibits the least sensitive tracking actions on Automatic Control, vol. 34, pp.
design. 1123-1131, November 1989.
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I Appendix B

Appendix B includes a regular paper presented at the 1993 Automatic Control Conference.
"On Feedback Linearizable Plants,"

E M. Giintekin Kabuli and Robert L. Kosut,
Proceedings of the American Control Conference,
pp. 1186-1190, San Francisco, June 1993.
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On Feedback Linearizable Plants

M. GGintekin Kabuli Robert L. Kosut "

Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054-3309

Abstract transformed LTI counterpart are derived; the fact that
the bounded input-output pairs of the two maps are re-

An input-output approach is used to investigate sta- lated by stable maps motivates the generally adopted
bilisation of a class of nonlinear plants that can be t en- design procedure based on undoing the nonlinearities,E dered linear time-invariant under nonlinear stable dy- whM h consists of the following steps:
namic feedback. Results are obtained for the standard 1. transform the nonlinear plant to an LTI one,
unity-feedback configuration subject to bounded dis-
turbances. It is shown that the design method based 2. desi*n a stabilising controller (possibly nonlinear)
on applying the inverse transformation on say stabilis- for the LTI plant and
ing controller for the transformed linear time-invariant 3. n th inverse transformation and the destgedplant, does not necessarily yield a stabilizing controller contre forte t pand ermine thetrs-
or the nonlinear plant. Conditions under which the controller for the LTI nlant determine

method is justified are derived. formed controller for C nonlinear plant.

1 Introduction It is shown that this straightforward three step proce-
dure is not a unified stabtising control design method

Due to the relative ease of solving control problems as- for the class of plants at hand when the plant ie at-
sociated with finite-dimensional linear time-invariant ject to bo" sctstr/senor dieftsraces. In other
(LTI) plants, the class of nonlinear plants that can words, given any memoer of the particular class of
be rendered LTI by algebraic state-feedback has re- plants under study, taking the three steps mentioned
ceived considerable attention in the literature (e.g., above does not necessarily guarantee a stabilizing con-
[Isil, SasI, Kanl] and references therein). This trans- troller. As might be expected, the problem arises due
ormation based a tprovides one of the few s the second step of the design procedure, since it in-

formatic meanse o oagnhng nonlinear control laws and herently assumes that the design for the transformed
has beeans of d nito numerous chntrolems in- LTI plant and the nonlinear plant are separte prob-has beng sabiliedation takn gme daptivestar rblization- leas. In other words, any stabgilising controliler for the

v taisation, plant may not yield a stabilizing controller in the
and adaptive tracking. While most of these appis- thistep. Subsequent res s t andtions might be valid nominal design approaces, the tidsttep Subiiosequentdesut 'foraliz thsisueh a ei n dsp _r
stability of resulting acosed-loop system sub'et to wsoate jus dtif W se undetrw icihn oc iforad atheignapr

plant uncertainties and/or disturbance models C not is justified. While the notion of incremental stability,
received comparable attention. which generalizes the roperties of linear stable naps,

Towards the goal of establishing robust control de- can be easily imposed to guarantee sufficient condi-
sign methodologies for classes of nonlinear plants, a tions for the method to work in general, the extreme
crucial step is guaranteeing stability when the sys- conservatism in expecting any controller in the second
tem is subject to persistently exciting bounded distur- design step to work is shown by establishing that incre-mental stability has to be necessara eLUls

bances and determining bounds on such disturbances meta restailtyn hase to be ea as well. Unless
for which stability is guaranteed. In other words, de- such restrictions happen to be satLied for the spa-
sign methods and the subsequent analyses must be cific problem at hand, all of these cautionary results

"able to justify stability (be it local or global) in the imply the following: The design problem for the trans-
resene tojutfy sensorit nbi oise, evelba)n befoe formed LTI plant need not be decoupled from the orig-

presence of sensor and/or actuator noise, even before inal nonlinear design problem; hence, one should not
bringing in more demanding robustness to plant un- rule out intentionally nonlinear controller design for
certainties, the transformed LTI plant. Although this might seem-

In this paper, motivated by the class of nonlin- ingly defy the purpose of the transformation, since
ear plants that can be rendered LTI under nonlin- the transformed design problem is yet another non-
ear algebraic state-feedback, we focus on a particular linear control design problem, it also emphasizes the
class of nonlinear plants that can be rendered LTI un- need for more results in nonlinear control design for
der nonlinear stable, possibly dynamic, feedback. We LTI plants, before nonlinear plants are transformed to
study the stabilization of this particular claws of non- linear ones. Moreover, despite the global linearizing
linear plants. The study is based on an input-output transformation, one might end up with only a locally
framework, where the closed-loop results are stated stable interconnection. Simple examples with analyti-
for the standard unity-feedback configuration subject cal derivations are used to emphasize the points.
to bounded actuator and sensor disturbances [Deal].

The results are organized as follows. The relation- 1.1 Notation and Preliminaries
ships between the graphs of the nonlinear plant and its

______________ All nonlinear maps in this study are causal, multi-

*Research supported by ARO, Engineering Sciences Di- input multi-output and defined over appropriate prod-
vision under contract DAAL03-91--C-011 and AFOSR, ucts of extended L,,[0, co) spaces. For a thorough
Directorate of Aerospace Sciences under contract F49620- treatment of general extended spaces within the input-
90-C-0064. output approach to ronlinear systems, see e.g., [Desl] .
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For notational convenience, for functions from IR+ to In the bounded and unbounded partitioning of I
I" , the associated set of bounded signals and the 9(P) , Ca7(P) denotes the desired i/o pairs, 9Bu(*P)
extended space will ve denoted by L:, and L", , re- describes the instabilites of the plant (unstablespectively. poles') and gUr(P) describes the instabilites in theWhile most of the observations in this study do inverse relation (Ounstable seros?) . Clearly a feed-
generalize to other extended spaces, the particular back system stabilises V subject to boundei; distur-
choice of sup bounded functions on RR÷ is motivated by bances if and only if the closed-loop generates plantstudying the stability properties of nonlinear intercon- i/o pairs in 9BB(P>) . In other words, !98B(P>) must
nections subject to persistently exciting disturbances. be nonempty. For example, for the particular map m tAn ni-input n.-output causal nonlinear map P will from u to y where i = 1 + us2 , has 9BB(P) = 0,be considered ase.. "hence there cannot exist any stabilizing scheme.

L", -. * Unless specifically emhasised, naps are not con-Goe ace sidered to be stable or algebraic.

where U denotes the domain. The extended space Definition 2 (stable)
is a means of incorporating unbounded signals in the A causal map X- LR. -. L", is said to be stable Mif
study; however, one must note that although Le. C there exists a continuous nonecreaing #x : .R+ U
La.., (Leo)c \Leo. 0, where (.)c denotes the com- cc+ such that ll ull < (ll II) for o
plement of the set with respect to the set of all func-
tions on IR+ . The nonempty intersection arises due For a stable map 7( , CB(7i) = L"g x 7((L"4)
to discontinuities which are not jump-discontinuities. gau(7i) = 0 ; guB(7i) may or may not be empty.
The scope of the extended spaces does not cover signals Definition 3 (unimodular)
which exhibit "finite escape time*- hence the plant de- A causal map 7 : L".. --, L.. is said to be un-scription over a strictly proper suIset of the input ex- "dl u -" " " a
tended space might be necessary. Hence, L. describes modular if0 'Xis stable, bijective 1ad 7(-I is stable.
the set of bounded signals and Le.. \L.. denotes the For a uninodular map 71 ,BB(7i) = L: x L"'
set of unbounded signals (unbounded at infinity), .aBU.) = 0 ; 9UB(7) = 0 ; gUVQ0 = Mt

* Calligraphic capital letters will be used to denotenonlinear maps. Italic capital letters will denote lin- Iear time-invariant maps that admit finite-dimensional Definition 4 (incrementally stable)
state-space descriptions; for this class, with a slight A causal map 7 L : L16. --# L"- is said to be in-abuse of notation, the map and its associated transfer crementally stable iff 9 is stable and there exists a
function representation will be used interchangeably, continuous nondecreasing # : R.. -.- IR+ such that I
In the case that italic letters are used for nonlinear
algebraic maps, parentheses will be included to em- for all u E L" 6, ,I71(u + v) - 7iull ( X(I~uII) for
phasise the evaluation (i.e., Az vs. F(m)) . For two all vE L . o-
nonlinear causal maps " and 9 the map .Tg will de- For an incrementally stable mkap, bounded deviations I
note the composition of the two maps. in the input result in bounded deviations at the out-

* In an input-output approach to the analysis and put. The bound on the output deviation is indepen-design of nonlinear interconnections the notions of dent of the nominal input signal u .boundedness and stability are crucial for subsequent In the case of an algebriic incrementally stable map
results. Unlike the finite-dimensional linear time- .i where the boundi function x Iinvriatcae, os o tes prpetis eped n he 7/her te oudig fucio is l/sear, the al-
invariant case, most of these ropertiesgebraic nonlinearity V is also referred to as Lipschitsparticular framework. The following four definitions continuous.
set up the particular framework in this paper. For c From now on the words bounded and stable will
a treatment of related topics in fractional representa- be interpreted in tihe sense of La..tions of nonlinear casual maps and stability of nonlin-
ear interconnections see e.g., Haml, Verl, Vidl, Kabl] e The nonlinear unity-feedecck istem o(n, C) de-and eferncestherin.notes the interconnectionand references therein.

* The set of all input output pairs of a given map Idoes admit a special partitioning which exhibits par- =ticular properties. U = Ul - C(U2 + Y)
Definition 1 (graph of 7P, 9(P)) where s, and Us2 denote the exogenous inputs perturb-
For a given map 7P U /c L -. L-, th ing the actuator and sensor signals u and y , respec-of P is denoted by G.P) , where tively (see Figure 1).
g(P>)= {(u, Pu) I u E U ) C U x P(U). o 0 The feedback system S(P, C) is said to be stable

iff the map from (us, us2 ) to (u, y) is stable.
Note that, 9(?) admits the following unique parti- Note that the stability of S(P, C) requires that thetioning closed-loop map exists and it is stable. The well-

g(ilsn(p) U €6(P) U UB(P) U 9 ( , posedness condition that ensures the existence of thewhere the subscripts B and U denote the bounded ma is almost always satisfied in practice, since V
and unbounded components, respectively. The com- anT/or C are strictly causal.
ponents are given by 2 A Class of Feedback Lineariz-
QBB(P) = Pu ,,VuEL" able Plants
GBU(P fsPu) iEUnQL,PuELM-\L-ý}gull7) I u, Pu) u E UfLnQ,\Ln, VuE L:o} Definition 5 (,C)

) {(u, Pul u E U nQ,\LeO, A causal nonlinear plant 7P is said to belong to the= (u E Ln.z\Le}. class £ iff there exist a unimodular map M, a linear
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time-invariant map P with a finite-dimensional state- 2. Gus('P) = TGua(P).
space representation, and a stable map ." such that Proof- See Appendiv. o

7>---P = -tp(I- -tP)-1 )Note that Fact d establishes that the desired i/o
pairs and the unstable dynamics of the inverse rel-

In order to emphasise the particular triple (M, P, 7r) tions are related in the graphs of P and 'P . Such &
used, equation (1) will be denoted by V - simple description between the rest of graph partitions
C(M'PYr). cannot be established in general.

We now consider the stabilization of plants in r-
i.e., determining a causal nonlinear map C such that

Note that if V = £(M, P, T) (see Figure 1) , the the feedback system 5(1', C) (see Figure 1) is stable.
map from u to y can be expressed as

7>: ,, mAy = PW

Applying the stable output-feedback 7 -- I - -

the map from 9 to Mi is rendered linear. Clearly, fora given V> E Z , the triple M•, P, Jg snot uniquey 'T

determined. The well-pose s of the feedback t
in the description of 'P is inherently assumed by the.. . .. ......................... "-
existence of the map fromu to y;in general, strict
causality of P and/or 7 suffice or we-poedne of Figure 1: Feedback system S(P,C).
the feedback loop in C(M, P, )).

This particular class of nonlinear plants in Defini-
tion 5 is in fact motivated by the special class of nonlin- The existence of & transormation of V to a line&
ear plants that can be put in the controllable canonical P, and Fact 6 suggests stabilization schemes based on
form designing controllers for P. The following conjectures

emphasise this design approach.
S= f(z) + Bu Conjecture?

Cfi = fz) BForagiven'P = £(M, P,7 ) , if S(P, Cp) is stable then¢ =¢(fi)s(V, (Cp + 7)is stable. *
whr iA + B(u + F(z)) Conjecture 7 is based on the design method of un-doing the nonlinear maps • and Ma , which consists
where -t is an algebraic change o f coordinates and F in of the following steps:
an algebraic stable map. Note that for this particular 1. transform the nonlinear plant to an LTI one
case, V = , My = 0(y), Ty = P(y) ad P = (&I - 2. design a stabilizing controller (possibly nolnw)
A)- 1 B. for the LTI plant and

For plants in f , the linear part P admits coprime 3. using the inverse transformation and the designed
factorizations; let controller for the LTI plant, determine the transformed

controller for the nonlinear plant.
P = ND- (2) Conjecture 8

For a given P = £(M, P, .) ,if S(7',C) is stable then
with the Bezout identity S(P, (C - Y)M'-) is stable. o

If Conjectures 7 and 8 were in fact true, one would[N V 1 -3 end up with a necessary and sufficient condition for_• • U ]tions and- nonlinear controller design methods based1 D Istabilising plants in G by merely using the transforma-

where all of the eight maps are stable. By linearity, on linear plants. We now investigate these conjes-
s t- le rnaps are also incrementally stable. Note also tures and state conditions (other than trivial caes like
that for the description in (2) for a full rank P, the P = P = 4(, P 0)) under which related results can
numerators drop rank at the zeros and the denomina- be establishe.
tors drop rank at the poles. Since P is not necessar-
ily single-input single-output, poles and seros (except 3 Stabilizing Feedback
blocking zeros) may coincide. Since it is easier to de- Linearizable Plants
scribe the '.rstable zeros and unstable poles of P due
to the transform algebra, one can easily describe the The following fact (see e.g., [Kab1)) describes the set of
partitions gul(P) and Gau(P) . The followingre- all nonlinear stabilizing compensators C, in S(P, Cp).
sult establishes the connection between the graphs of
P and EC. Fact 9 (S(P))

Let the causal linear map P satisfy equations (2) and
Fact 6 (on graphs of P and P) (3) . Under these assumptions, the feedback system
If P = (u , P, t ) ), then there exists a unimodular S(P, Cp) is stable if and only if Cp E S(P) , where

p ) 7"suhha(P) = {(U + DQ)(V - NQ)-i I Q is stable and
1.88s(p) = T9,9,(P) , (V - NQ)is bijective with a causal inverse)
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The following Lemma justifies the design approach Fact 12 (Conjectures 7 and 8 under no mea-

in Conjecture 7 for a special subset of plants in £. surement noise)
For a given V = C(M, P, F) , S(P, Cp) 1,,--o is stable

Lemma 10 (A Sufficient Condition for Stabilis- if and only if S('P, CM + F) I.=--o is stable. o
ing £(M, P,.r)) The instability mechanism in Example 11 can alsoLet V> = £(M , P T) , where the maps 7" and M1 are be used to establish the lack of performance robust-
both incrementally stable. Under these assumptions, esudrfnteet itrbcswreuadLef (P•) is stabl hee then ma>,( ps4 + and) M sare, be usedtoestabishithe-ee latuuckf p herfomne roust Un
if S(P Cp) is stbe then S(P, (CpM + r)) is stable. u3 - 0 . Given any bound on the amplitude of y
Proof: See Appendix. o there exists a finite-duration disturbance (hence finite-

The existence of a unimodular map that relates the energy) such that the closed-loop output exceeds this
desired input output pairs of P and V (see Fact 6.1), bound before asymptotically reaching sero.
is the main motivator for Conjectures 7 and 8 . T We now state the main result that shown the con-
second part of Fact 6 relates the "unstable sero dy- servatism of basing the stabilization of V on the stabi-
namics" of P and P . For a precise description of the lisation of P. The following theorem establishes that
notion of zero dynamics in nonlinear systems that ex- Conjecture 7 is not true in general and that incremen-
tend the well-known case in finite-dimensional linear tal stability is of paramount importance.
time-invariant maps, see [Isil] . Unlike the motivat- Theorem 13 (Conservatism of Conjecture 7)
ing controllable canonical form derivation, the clam of Let VP = (C(M, P, Y) with M incrementally stable.
nonlinear plants in C can have "unstable zero dynam- Under these assumptions
ics" In fact Lemma 10 does apply to such cases since S('P,Cp. + 11) is stakle for all Cp E S(P), if and
one can easily stabilize P with unstable zeros. The only i. T is incrementally stable.
advantage of the class C is to take the stabilization Proof: See Appendix. o
concept of algebraic-feedback linearisable systems un- Note that Theorem 13 emphasizes that the design
der full-state feedback (which relies on constructing an rocedure is no longer decoupled (namely first stabl-
output that has the sufficient relative degree to avoid Eise d then apply the transformed controller to
'zero dynamics') to a larger class where the input out- P) if the incremental stability of Y fails. When incre-
put map already has 'unstable sero dynamics' . The mental stability fails, Theorem 13 does not imply that
virtue of Fact 6-2 is that one does not need to deter- there does not exist a compensator for P for which
mine the stability properties of the "zero dynamics' Conjecture 7 is valid. On the contrary, the selection of
of the nonlinear map *P , which is a highly nontrivial Cp is crucial as emphasized in the following example.
task. Example 14

We now present a counterexample to Conjecture 7. Consider the plant 4 in Example 11 . Choose CP

Example 11 1 + (.)3 . Note that Cp E S(I1s) (see Appendix) .
Consider the single state plant model P from u to y Apply the heuristic design procedure in Conjecture 7,
described by i.e., choose C = CpM + F . The closed-loop system

2= + U S(p. I + (.)2 + (.)3 ) is stable (see Appendix) . o
In order to show how restrictive it is to impose M

Note that 'P = C(I, 1/s, (.)2) . Choose Cp = I E and " are both incrementally stable, consider the fol-
S(P). For C = CpM + F = I + (.)3, the closedloop lowing example.
system S(P, C) is described by Example 15

Consider the map 'P from u to y described by

= -(y+u 2 )+Y 2 -(Y+U 2 )2 +u+ = Z2 + f(MI)

Clearly, for u2 = 0 , the closed-loop map from ui to i2 = 2

(usy) in S(P, C) is stable. However, for u2 $ 0 , the i(:) = 0

closed-loop system S(P, C) is not stable. To see this, Z /0 = 0

consider ul = 61 andu 2 = 62 where 6- = 0 i = 1, 2 .
In other words, under constant sensor and actuator where the algebraic nonlinearity f is bounded, i.e.,
bias, the closed-loop system is described by there exists a k >0 such that If(m) : k for all: E R.

Clearly, f(.), is stable and incrementally stable. More-
S= -(1 + 262)y + 6i - 63 - . over, for any linear time-invariant finite-dimensional C

such that S(1/.([l & *3 ]7, C) is stable, the intercon-

Hence, for 62 < -0.5 the output y is not bounded. o nection S(P, C) is stable. Now consider the plant P
in terms of the canonical form Z . Provided that f
is at least twice differentiable, under the coordinate

Example II emphasizes the importance of checking transformation

the closed-loop map from (ui, U2) to (u, y) , rather [Zt +
than just u1 to (u, y) . The same example also illus- M : Z- + f(Z])
trates the effect of estimated state feedback and how 23 + :Wu()(zI) + f(Zi)f(i)(zI)
the lack of a separation principle for nonlinear systems
renders the design procedure heuristic, which happens and algebraic feedback Fz = X22)(Z1)+Zf•)(Z1)+

to fail for this particular case. When an estimator with 2Z2f(Zi)f( 2 )(z1) + X2(f(')(Z:))2 + f(Z)(f(I)(zi))a +
steady-state bounded bias is introduced in the ideal [!1]
state-feedback, the closed-loop is no longer stable. (A () , ,

The problems with Conjectures 7 and 8 are mainly a] 8 2
due to ignoring the exogenous input u3 , and relying Clearly, M is unimodular and F is stable. However,
on the following fact. unless f(2) vanishes, 7 is not incrementally stable. o
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4 Conclusion Adding bM(u2 + y) to both sides of (4), substituting
(5) and (3) and using the linearity of FV and D , we

In the course of bounded-input bounded-ouput stabi- obtain
lisation of nonlinear plants, those that can be trans-
formed into an LTI one are of particular interest due to = - +U2 )- Y)+D(M(y+u 2)-My)
a vast pool of theoretical and computational tools asso-
ciated with LTI design problems. The exilting trans- Clearly, if 7 &ad M are incrementally stable, ( is
formation immediately suggests a simple design ap- bounded for all bounded ul and u2 . 0

roach: design a stabilising control law for the trans-
Formed LTI plant and then use the transformed control "if Follows by Lemma 10.
law for the nonlinear plant. As it is shown in the study, "only if" Follows by Example 11, by setting M =
such an approach is not a sure design procedure unless
more restrictions are imposed on the transformation. 1. P=1/&, -(.)2andCp=1. 0

The design for the transformed LTI plant is really not Proof of the claim in Example 14

decoupled from the original nonlinear design problem; The closed loop system S(1/S, I + (.)3) is described
hence, one should not rule out intentionally nonlinear by
controller design for the transformed LTI plant. Al- : = U, - (z + Us) - (z + u3)3

though this might seemingly defy the purpose of the
transformation, since the transformed design problem The closed-loop system S(7P, I+(-)2 +(.)3) is described

is yet another nonlinear control design probl.em, it also by
emphasises the need for more results in nonlinear con-
trodesign for LTI plants. Along this line, for & given =UI + z' - (Z + u2) - (z + u2)' - (Z + U2).
LTI jplant, one has a complete parametrization of allnonlinear stabilizing controllers ; however, the choice For u sand u2 in L.. , using the Lyapunov function

of the parameter subject to a particular cost is not candidate V(z) = z' , in both cases for i sufficiently
straightforward. Another approach is based on opti- ladde V o th in thasestoriesuiiently

real control with non-quadratic integrand cost criteria large V along the solution trajectories is eventually

from which nonlinear state-feedback laws are derived. negative. Hence the closed-loop map from (us, u2) to

5 Appendix (s, 2) is stable in both case.

Proof of Fact 6 References

Let 'P = C(M, P, F). From Figure I, the equations [Desl] C. A. Desoer and M. Vidyasagar, Feedback
relating the (u, y) pair and (v, Pv) pair define the map Systems: Input-Output Properties, Aca-
T as follows: demic Press, 1975.

T(v, Pv) = (u, yJ = (V-T -.- Pv,, l-Pv) [Harll J. Hammer, 'Fraction Representations of

T(v, Pv) = T-(u, y)~ = -(u + Y 1 P, Myam) Non-Linear Systems: A Simplified Ap-U (ii,,Pu) -rT (u,v,) = -.(u-l-YVM/) .proach," International Journal of Control,
vol. 46, no. 2, pp. 455--472, February 1987.

Since F is stable and M is unimodular, T defined

above is also unimodular. By unimodularity of T, "-[Isill A. Isidori, Nonlinear Conteol Systems
Springer-Verlag, 1989.

(u,ty) E 9a,(P) * (v, Pv) E 9BB(P) , (Kabl] M. G. Kabuli Factorization Approach to
Nonlinear Feedback Systems , Ph.D. Disser-

which establishes Fact 6 1) tation, University of California, Berkeley,
Let (U, y) E uB('P) - Since M is stable, Pw - My 1989.

is bounded. Since u is unbounded and .FM-MP is [Kanl] I. Kanellakopoulos, P. V. Kokotovic and
bounded, v = u + Y+ '-Pv is unbounded. Hence A. S. Morse, *Systematic Design of Adap-
(vPv) E QuB(P) Similarly, v unbounded, Pv tive Controllers for Feedback Linearizable
bounded imply y bounded and u + Ty unbounded, Systems,* IBEE Transactions on Automatic
hence u is unbounded. This establishes part 2). 0 Control, vol. 36, pp. 1241-1253, November
Proof of Lemma 10 1991.

By Fact 9 , the stability of S(P, Cp) implies that
Cp = (U + DQ)(V - NQ)- 1 , for some stable Q. Any [Sashl S. S. Sastry and A. Isidori, 'Adaptive Con-
input output pair corresponding to the map Cp tan trol of Linearizable Systems," IEEE Trans-
be expressed as the pair ((V - NQ)_, (U + DQ) c, actions on Automatic Control, vol. 34, pp.
where f denotes the pseudo-state of this particuar 1123-1131, November 1989.
factorization. For this particular factorisation, the in- [Verl) M.S. Verma uCoprime Fractional Repre-
put output pair of Cp, is bounded if and only if f in sentations and Stability of Nonlinear Feed-
bounded. Moreover, since Y, M and M- 1 are stable, back Systems," International Journal of
the closed-loop system $(7P, (CpM + 7)) is stable if Contro/, vol. 48, pp. 897-918, 1988.
and only if the closed-loop map from (u1 ,u) to ( is
stable. Writing the equations describing th 1 feed back tVidli M. Vidynar ad N. Viswanadham, uSta-
system S(7, ( PM + 7)) in terms of f, we obtain (see bilisation of Linear and Nonlinear Dynam-

Figure I and equation (2)) ical Systems using an Observer-Controller
Configuration," Systems and Control Let-

DMY = Nf ( U1 + TY 77T(U2 + Y) - (U + DQ)ý ters, vol. 1, no. 2, pp. 87-91, 1981.

(4)
(V - NQ)C = M(Us+ Y) (5)
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Appendix C

Appendix C includes a regular invited paper presented at the 1993 Automatic Control Con-
ference.

"Real-Time Implementation Issues in Nonlinear Model Inversion,"
M. Giintekin Kabuli, Sudarshan P. Bhat and Robert L. Kosut,
Proceedings of the American Control Conference,
pp. 547-551, San Francisco, June 1993.

49



I
I
U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U

50

I



* ftW.CdVWWJM l W M13 - 12:20

Real-Time Implementation Issues in Nonlinear Model
Inversion

M. Giintekin Kabuli Sudarshan P. Bhat Robert L. C.-: at

Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054-3309

Abstract loaded to the real-time controller processor and the
A real-time control problem associated with a flex- continuous-time versus discrete-time simulation com-

ible testbed fixture is considered. The regulated vari- parison proved to be satisfactory. The disturbance
able is the deflection at the tip of a flexible beam at- rejection part is a baseline design which is currently
tached to an inertia wheel base which is subject to unimplementable unless the disturbance can be mea-
a disturbance torque. The control torque affects the sured; however, the current discrete-time control law
base wheel through a coupling which has both com- is an implementable candidate for real-time slewing
pliance and variable backlash. The performance spec- tests.
ifications include disturbance attenuation and rapid Design Approach 1
slewing at the tip. The designs are based on an analyt- An adaptive controller was designed for rejecting
ically derived continuous-time model which is tuned in single tone sinusoidal disturbance in a prespecified fre-
accordance with the measured data. The model con- quency range. The controller consists of an inner-
sists of an interconnection of a linear time-invariant loop, robustly stabilizing component and an outer-
part and piecewise-linear algebraic nonlinearities mod- loop, adaptive error rejection component. The control
cling friction and backlash. The candidate designs design was accomplished in three steps (see Figure 1).
must be based on available measurements only; more-
over, the final discrete-time control law must be exe-
cutable with the real-time controller hardware limits- sinuid
tions at hand. distusivice

Introduction
The first design approach is based on the linear + =

model where the nonlinearities due to friction and

backlash are set to zero. A single tone additive actua-U tion disturbance is attenuated at the regulated output
by incorporating the disturbance model in the feed- 1 hi

back loop. Designs are based on a discretized plant I ]G_ T 2_
model and implemented on an Integrated Systems AC- co Tt+

o00 real-time control processor.
The second approach is a case study based on tunablefilter

feedback linearization where a single parametric non-
linearity is included in the design model. Due to 3 •G.TR r4

the nonminimum-phase zero dynamics characteristics controllr U
from the actuation to the tip of the flexible beam, the
study focuses on the base wheel position and slewing
performance. We study the sensitivity of two certainty frequency
equivalence based control laws for the frozen parame- estimator
ter case. Based on the least sensitive non-adaptive de-
sign, an adaptive slewing controller is designed. This
approach for slewing design is later modified to obtain
a 6--seline design for attenuating a measured multi- Figure 1:

* tone disturbance. The disturbance model is based on a
periodic torque waveform affecting the wheel base after The first step was the design of the inner loop con-
the coupling driven by the actuator motor. The result- troller. A 10 hi low pass filter was included in the loop
ing continuous time control law was simulated to verify to avoid any destabilizing loopgain in excess of 10 hz.
e the performance enhancement due to the signal gen- This underscores the objective of actively controlling
erator in the proposed feedforward/feedback scheme. the rigid body slew mode and the first flexible mode

Ote was to obtain a discrete-time approximation to the (around 4.7 hi frequency range). This will also result
continuous-time simulations of the nonlinear control in the flexible modes in excess of 10 hz to be unregu-
law subject to the sampling rate and computational lated. The stabilizing 'LQG/LTR controller I' in the
load limitations imposed by the real-time controller innerloop was designed using the LQG/LTR design ap-
hardware. The approximate discretization was down- proach based on the input/output relation from '1' to

'2' (see Figure 1) in the inner-loop in the absence of
S "Research supported by ARO, Engineering Sciences Di- the outer loop; note that this requires an LQG/LTR

* sion under contract DAAL03-91-C-0011 and AFOSR, design for an augmented plant which includes the ac-
Directorate of Aerospace Sciences under contract F49620- tual plant cascaded by the 10 hz low pass filter at the
40-C-0064. input.
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The second step was the design of the outer loop estimated frequency of disturbance. When the esti-

controller for rejection of a nominal single tone sinu- mated frequency is equal to the actual frequency of
soid disturbance frequency of 4 hs on plant. The outer a sinusoid disturbance and the resulting outer-loop is
error rejection loop contains a frequency shaping block stable, a perfect disturbance rejection is guaranteed.
that contains an undamped pole at 4 hz. This un- The frequency of disturbance was estimated using an
damped pole provides an infinite gain at 4 hz which in extended Kalman filter based on a notch filter. It is I
a stabilizing loop assures perfect rejection of a single emphasized again that the only change from the two

tone, 4 hz, sinusoid disturbance on the plant. A 20 stage controller designed above is the adaptive tuning
dB attenuation on both directions from the 4 hz fre- of the shaping filter in the outer loop. The entire inner
quency assures the retaining of inner-loop characteris- loop and the 'LQG/LTR controller IW' in the outer loop I
tics outside the 4 hz range. The stabilizing 'LQG/LTR remain unchanged. Such an adaptive tuning was facil-
controller II' in the outerloop was designed using the itated by the fact that the two stage loop was found
LQG/LTR design approach, just like in the inner-loop, analytically stable for the filter peak placed anywhere
based on the input/output relation from '3' to '4' (see in the range 2 to 7.hz.
Figure 1) in the presence of the inner-loop. Figure 2 Figures 4 and 5 are plots generated- from the data

shows the LQG/LTR loop gain through the plant with captured during a real-time implementation of the

two stages of control (solid line) and with only the adaptive controller on the testbed fixture. A step
the tresponse of the adaptive controller is shown in Fig-
inner stage of control (dotted line). The corresponding ure 4. The top seven strip charts plot the sensor mea- Isensitivities are shown in Figure 3. surement data from motor encoder, backlash encoder,

iwheel encoder, strain gage 1, strain gage 2, motor ve-

strip chart refers to the actuation voltage data to the
- Ilocity and tip accelerometer respectively. The bottom

motor. Figure 5 shows the same sensor measurements
17t (top seven strip charts) for a steady 0.6 V sinusoid

disturbance at the actuator with the disturbance fre-
1 1 i quency undergoing step changes (in hs) from from 4

to 3.75, 4 and 4.25 (8th strip). The 9th strip shows
the real time estimate of the disturbance frequency.
The strip data shows a disturbance buildup immedi-

* iately following the step change in the distutbance fre-
quency. This is followed by disturbance attenuation
which occurs as the frequency of disturbance estimator

"r.7 7 7 ."locks on to the true frequency of the sinusoid distur-
bance. Adaptation and complete disturbance rejection
is accomplished within 5 to 10 seconds following a step
change in'the disturbance frequency.
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Figure 4:

"The adaptive controller presented here was not able
to handle disturbance rejection on the testbed fixture
in the range 4.6 to 4.8 hz (also confirmed from analyt-

S__-ical simulations). This behavior can be attributed to
"the presence of a lightly damped flexible mode around
4.7 hz. The adaptation mechanism could lock on the
disturbance frequency only if the sensor measurements

Figure 3: were dominated by the single tone of the disturbance.
With the disturbance frequency in the 4.6 to 4.8 bs

The third step was the adaptive relocation of the range, the sensor measurements also contained a sig-

undamped poic in the outer-loop shaping filt-r to the nificant contribution from the lightly damped mode.
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One " :-_ ig'- • need not be a tracking compensator. This approach
-- -F timproves the "performance bandwidth" without in-

creasing the "control bandwidth" of the feedback sys-
.- tern. Hence it has the potential of improving existing
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* The plant model is of the form
This situation resulted in the frequency estimator flip- i = Az + b,,s + b.,(w - Of(3j))
flop:ing between the two dominant frequencies, result- Y = IZ
ing in ringing, where the 10 state, relative degree 3 SISO system

* Design Approach 2 (c., A, bu) is minimum-phase with a lightly damped
Consider the nonlinear plant model shown in Fig- zero at 3.25 Hs . The algebraic nonlinearity f(-) =

ure 6 , where G denotes the known linear part and 7" sati(40.) , where sat, is the odd symmetric piecewise-
denotes the algebraic nonlinearity (e.g., friction, satu- linear saturation function with unity slope and ±1

* ration) which depends on an unknown parameter 0 .
The signals vi and v. at the input and output of the saturation limits. In the rest of this study 1(.) =

nonlinearity are unavailable as measurements. The tanh(40-) will denote the smooth approximation to.1
disturbances and regulated variables are denoted by wo The periodic disturbance torque is denoted by w us-

and z , respectively. The goal is to determine a con- ing y', y y( 2) , the control u determined by
* trol input u such that using only the measurement at 32 u = Ut - 02z - A(W - Of(O))

y, the output y asymptotically tracks a desired refer- +#I(9f(i) + qf(i)(i)y( 2 ) - tb)
ence signal. It for appropriate coefficients c and 3, renders y(3) - u,.

1.] Let 4 denote the associated map (i.e., from :, t, eo, O,
G o 0 f to u. Note that £ can only be realized in the ideal

case where :, t, ,b , 0 and f are all known. Although
such is not the case, it still is interesting to note that

VI the steady-state actuation demand to decouple y from
Figure 6: ,w is given by -(t3w + #I tb) . For the particular pe-

The adaptive scheme we are investigating is based riodic w and actuation limits at hand, this translates
on a feedforward-feedback configuration (see Figure 7). into disturbance rejection of up to 7 harmonics of w .
This configuration gives rise to two nontrivial sub- Similarly let Z denote the map depending on the avail-
problems: 1) Sensitivity of the non-adaptive design,
i.e., the stability and tracking robustness of the closed- able signals :i, i , w-, 0 and the smooth approximation

loop subject to perturbations of 6 about the nominal f3 and 2) Parameter estimation. Without closing the r y
loop via the parameter estimator in Figure 7, we first
design a tracking controller based on a known signal d.
The motivation behind the sensitivity study is that for Figure 8:
Ssufficiently slow adaptation, one recovers the perfor-
mance of the inherent tracking design. Hence, the goal Sensitivity of the nominal design
is to determine the least-sensitive non-adaptive design. Consider the interconnection in Figure 8 , and a 10
So far, our studies have shown that among other track- mrad slew with the desired tracking performance for

* ing designs based on the certainty-equivalence princi-
ple (use the parameter estimate as if it were correct), n = d as shown in Figure 9 (lower curvesen The solidthe underlying design in Figure 7 is consistently the and dashed lines denote the base and tpositions,respectively. The periodic disturbances w and wb are
,fast sensitive. For a known parameter estimate d , exactly canceled. Note that the feedback linearisa-3 a candidate input-output pair (fi,ý) is generated us- tion results in the inversion which causes the lightly
:.-g the model in Figure 6 with 0 replaced by B . The damped 3.25 Hz mode. In the upper curves the mis-

-racking controller CT achieves the desired tracking of match is only f vs f ; i.e, x, w, it, 0 are exactly used in
'he reference signal r in the loop with the model 75 . the feedback linearizer except that the algebraic non-I his input-output pair (ft, ý) is injected to a feedback linearities are not identical. Performance degradation
S1.'stem where CR stabilizes the actual plant; Cf. alone is self-explanatory.
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on 6 which is not constant ( depends on the parame-
- / ter estimator output waveform ). Moreover, unlike the

case in Figure 10, when the parameter estimator loop
is closed, 6 is no longer an exogenous signal for the
signal generator, hence for slow adaptation (over the
6 second window), § also exhibits transient response

(N ,, (see dashed lines over the first 4 seconds in Figure 11).
V When 6 is an exogenous signal, the signal generator is

designed so that ýj tracks r in less than a second. 2)
due to f and 1 mismatch, even with 0 = i , the ideal
tracking performance in the lower solid line in Figure 8
degrades to 1 mrad off at 2 seconds ; hence the offset

. .. .... emphasised by parallel lines in Figure K -. The param-
eter estimator output (i.e., 0) is shown in Figure 12.

A _ __A. .

Figure 9:

Due to the sensitivity of the one-loop implementa- / i
tion of the certainty-equivalence principle in Figure 8,
we resorted to the certainty-equivalence based control -

scheme as shown in Figure 10 (redrawn from Figure 7
for ease of comparison with Figure 8). A simple con-
troller C = 10 stabilized the inner loop. The perfor-
mance, on the other hand, depends on the generated
signals (fi, 9). Our design studies have shown that the 4.
model-follower scheme in Figure 10 consistently proves Ito be the least sensitive to mismatches. These obser-
vations are mainly due to the fact that the inner-loop
is inherently stable and the performance depends on
the caiscade structure. However, in Figure 8, both sta-bility and tracking performance have to be achieved in
one loop.

.. Figure 11:

Figure 10: J.

Adaptive Slewing with wu =0
A parameter estimation block is introduced in the

certainty-equivalence based tracking control design. . ................ ..................-
scheme in Figure 10 , to complete the interconnec-
tion as shown in Figure 7 . The disturbance w and . .. ........----------
the initial conditions z(0) = i(0) are assumed to be
zero ; however, 0 6 0 and f $ f . Moreover, the AS.
state x is not being used in the control law and the
parameter estimator solely depends on available sig-
nals u and y . In other words, for the disturbance free Icase, the interconnections in Figure 10 and Figure 7
are candidates for implementable designs since they as
depend on available signals only. However, real-time
implementation requires the extra step of control law ._._._._._.
discretisation, which proves to be a nontrivial task as
it will be emphasized later on.

Consider Figure 11 . The dashed line denotes the
the signal generator output trajectory (i.e., g) and the Figure 12:
solid line denotes the basewheel yaw (i.e., y) . The ref-
erence signal r is a smooth ±20 mrad periodic wave- Baseline disturbance rejection design and dis-
form which g tracks after 4 seconds. Note that the cretization issues
output y tracks r within I mrad after approximately 6 In order to illustrate the approach, consider the caseseconds. There are two important points to be made where the interconnection in Figure 10 is LTI and mod-about these responses: 1) the signal generator depends ified to incorporate the disturbance w ; the disturbance
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estimate used in the signal generator will be denoted .

by b- The LTI plant from (w, u) to y is denoted by
[Pi ,. Pu"] and C denotes an LTI stabilizing compen-
sator- Let 3

3 = P~,+C ) ,.
= PiVUCL+ Pvibwi

where § denotes the desired plant output. Let ey and -"
e., denote the errors (y - 9) and (w - lt) , respectively.
Then* e% = (I + P,,)-'Pe,,e

Clearly, there are two options: 1) relying on the poles
of Py C at the disturbance poles or 2) choosing C to
be any stabilizingcontroller and trying to set e, --o 0.
In the following baseline design, we will make the as-
sumption that the disturbance w is periodic with a ' " ' '
known period and can be measured. Even with these
stringent assumptions deriving a discrete-time imple- Figure 13:
mentation of the feedback linearization based model-
follower scheme turned out to be a nontrivial task.
In fact, even if w is assumed to be measured, the
disturbance does not come in additive at the plant 1 second, the base is at -3 mrad and the tip has ap-I input; canceling the effect of w at V requires higher proximately 4-1 mrad deviation (see lower strip, Fig-
order derivatives of w . Since the performance de- ure 13).
pends on the success of cancellation, the derivatives
are not constructed by filtered/delayed versions of w ;I instead, an identifier is built to determine the Fourier ., -
coefficients of the harmonics of interest and the sig-
nal generator outputs (O, •) are derived accordingly.
Throughout this process, the inner-loop controller isE chosen as a simple gain C =10 ; the inner-loop is in-
herently stable, and the w identifier generates the iv
information used in the signal generator. Through- / !
out the following, there is a nonlinearity mismatch 9
the plant model in the inner-loop uses f , whereas A J -v
the signal generator uses the smooth version f " The 6
parameters satisfy 0 = 0 = 0.3 . A continuous- -d
time design was completed ; the next step was to re-
cover the continuous-time simulation results using a\I- discrete-time controller. A maximum sampling rate
of 400 Hz is dictated by hardware limitations. The
minimum step-size of 2.5 ms was not small enoughI- to reasonable replicate the nonlinear ordinary differ-
ential equation solution with any fixed step-size inte- n..
gration algorithm. The final successful discretization on " " "

was based on the 4th order Runge-Kutta algorithm,I which requires intersample point evaluation. In order Figure 14:
to avoid oversampling, the controller was decomposed
into an LTI system in feedback with algebraic nonlin-
earities and the LTI subsystem was discretized using Since the performance plots in Figure 13 do not cor-
the 4th order Runge-Kutta algorithm, introducing ad- respond to an LTI system, one cannot represent theSditional states as many as the inputs, to avoid inter- reduction of the harmonic term contributions directly.
sampling. Using this particular discretization at 400 Although a transfer function description does not ex-
Hz, the continuous-time performance was sufficiently ist, we can still compare the frequency contents of each
reproduced (see Figures 13 and 14) . signal to substantiate the reduction of the harmonics

The two strip plots in Figure 13 correspond to the at the tip. Using the discrete Fourier transforms of
tip position before and after the model-follower is in- the two signals in Figure 13 , we obtain Figure 14.

eluded ; the base is commanded a -3 mrad slew. The The dashed and solid lines, respectively denote before
top strip is the tip position for the inner-loop controller and after the model-follower is introduced. The dis-I C = 10 , -= 0 , g = -3 mrad (see Figure 10) . The turbance is 4 Hz periodic, and the identifier was built
disturbance w is periodic. The lower strip corresponds for the first seven harmonics. Hence the improvements
to the case where ib is identified up to the first 7 har- are apparent up to 28 Hz , with reductions 26, 26, 26,
monics and the ib information is used in the signal 16, 16, 16 and 10 dB at 4, 8, 12, 16, 20, 24 and 28 Hz,
generator to command the basewhecl a -3 mrad slew respectively.
and to cancel the effect of the 7 harmonics . Initially,
the identifier coefficients are all zero ; it takes approxi-
niatcly I second for the parameters to converge. After
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