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CHAPTER 1

1.1 Introduction

Development of intelligent material systems and structures bps been followed by various

government agencies and private corporations in the last decade. Intelligent structures are

defined as the ones which incorporate actuators and sensors that are highly integrated into

the structure and have structural functionality, as well as highly integrated control logic,

signal conditioning, and power amplification electronics. Such actuating, sensing, and

signal processing elements are incorporated into a structure for the purpose of influencing

its mechanical, thermal, optical, chemical, electrical or magnetic characteristics.

Several technical developments have been combined to establish the potential feasibility

of intelligent structures. The first is a transition to laminate materials. In the past,

structures were built from large pieces of monolithic materials which were machined, forged,

or formed to a final structural shape, making it difficult to incorporate any active element

inside the structure. However, in the past thirty years a transition to laminated material

technology has occurred. Laminated materials allow for the easy incorporation of active

elements within the build up of structural forms.

Exploitation of the off diagonal terms in the material constitutive relations is a second

J trend which makes the development of intelligent structures promising. The full consti-

tutive relations of a material which include characterizations of its mechanical, optical,

electromagnetic, chemical, physical, and thermal properties. Normally, researchers have

focused only on block diagonal terms. For example, those interested in exploiting a ma-

terial for its structural benefits have focused only on the mechanical characterization, and

those interested in exploiting its electrical properties have focused on the electrical charac-

terization. However, much gain can be made by exploiting the off block diagonal terms in
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the constitutive relations, which for example, couple the mechanical and electrical proper-

ties or couple mechanical and thermal properties. The characterization and exploitation

of these off diagonal material relations had led to much of the progress in the creation of

intelligent structures.

The third and perhaps most obvious advance has been in the electrical engineering

and computer science disciplines. These include the development of microelectronics, bus

architectures, switching circuitry, and fiber optic technology. Also central to the emergence

of intelligent structures is the development of information processing, artificial intelligence,

and control disciplines. The sum of these three developing technologies (the transition to

laminated materials, the exploitation of the off-diagonal terms in material constitutive

relations, and the advances in microelectronics) has created the enabling infrastructure

based on which intelligent structures can develop.

A wide variety of applications exist for intelligent structure technologies. These include

aeroelastic, control and maneuver enhancement, reduction of vibrations and structure

borne noise, jitter reduction in precision pointing systems, shape control of plates, trusses

and lifting surfaces, isolation of offending machinery and sensitive instruments, and robotic

control.

For a review of the status of smart structures and technology overview, the following ref-

erences may be consulted: Agnes & Silva [1992], "Aircraft Smart Structures Research in the

USAF Wright Laboratory"; Crawly [1992], "Intelligent Structures, a Technology Overview

and Assessment"; Lazarus & Napolitano [1993], "Smart Structures, an Overview."

Three main development areas that require further research are: (1) basic materials,

(2) component devices, and (3) modeling techniques. There is a need to develop basic

smart materials with improved properties and characteristics. Some of the more impor-

tant features to be improved include fatigue life, fracture toughness, structural weight,

required voltage, linearity, and anisotropy. These materials should be developed in order

2
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to create improved intelligent structure component devices such as actuators and sensors.

An emphasis should be placed on the use of actuator and sensor components for structural

control. Accurate models need to be developed so that smart material components may

be utilized effectively. Work is needed in developing constitutive relations as well as full

non-linear models to meet these needs. This research is directed toward addressing some

of these needs as discussed in the following sections.

In an intelligent structure, the presence of active elements (actuators, sensors, and

processors) impact the host structure by increasing the mass of the system and interfer-

ing with the load path and potentially introducing new structural discontinuities which

must be accommodated. This may potentially change the fatigue and fracture toughness

characteristics of the host material.

The complex microscale interactions between sensors, actuators, and the host materi-

als, and in particular the inherent material and geometric nonlinearities within intelligent

material systems, must be characterized before the technology can reach its full potential.

Initial experimental investigations have indicated high strain concentration at interface

between sensors and host materials. Czarnek et al. [1988] at Virginia Tech have used

interference imaging for a cross-ply graphite/epoxy laminate, fabricated with a jacketed

glass fiber waveguide embedded between and perpendicular to the center two plies. Strains

of approximately 0.05 were indicated at the fiber-matrix boundary for an applied load equal

to half the failure load of specimens tested. They concluded that these large interface strain

concentrations may pose significant limits on the long term structural integrity of materials

containing embedded sensor fibers.

Singh H. et al. [1991] combined Moire interferometry and the Fourier transform fringe

interpretation method to produce high resolution displacement measurement system for

laminated composites with embedded sensors. Their findings show stress concentrations

factors as much as 8.8 in the vicinity of fiber-host material interface. The largest character-

3
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istic length of the influence was found to be about 11.5 times fiber diameter. These strain

concentrations at sensor-host material interface warrant concern regarding micro-cracking

due to various in-use loading conditions.

Other studies, Jenson [1992], have measured reduction in compression strength due to

embedment, for the worst orientation, of up to 70 % . This reduction would seem to be

due to the bending of load-bearing longitudinal fibers around a transverse sensory fiber,

creating a prebuckled site.

These experimental results indicate the need for research work to address the mechanics

that govern the complex interactions between sensors, actuators, and the host materials

for smart structures. The research should consider the inherent material and geometric

nonlinearities at micro and macro-scales. Fundamental understanding of these interactions

will provide opportunities for further developments of intelligent materials and structures.

Shape Memory Alloys (SMA) are among candidate materials suitable for wide applica-

tion in smart structures. They have the unusual material property of being able to sustain

and recover large strains (of the order of 10 % ) without inducing irreversible plastic defor-

mation and to "remember" a previous configuration and return to it with a temperature

change. These interesting material characteristics arise due to distinctive internal crys-

talline transformations with temperature and applic-l stress (Delaey et al. [1974]; Perkins

et al. [1976]; Funakubo [1987]; Wayman and Duerig [1990]).

The growing global interest in smart material and smart structure technology in partic-

ular has prompted an increasing number of investigations of SMAs in the past decade. The

result of the research has been increasingly detailed information regarding the crystalline

structure of SMA materials, a greater understanding of macroscopic SMA material behav-

ior, the development of new alloys and processing techniques, and a dramatic increase in

the number of applications studied, which now span a wide range of products and devices.

The most established commercial application of SMAs, that of connectors for hydraulic

4
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tubing in air:raft, is currently being overshadowed by the incorporation of SMAs into

critical roles in a large array of applications including active vibration control of structures,

heat engines, orthodontic wire and automatic switches in household appliances (Banks &

Weres [1976]; Funakubo [1987]; Rogers et al. [1989]; Falcioni [1992]).

Since Nitinol's discovery in the late 1950's, a great deal of research has been reported on

the behavior of shape memory alloys, possible application and the physics associated with

shape memory effect. Rodgers & Robershaw [1988] have demonstrated that SMA materials

can be embedded in composite structures to actively control and modify the dynamic

and structural behavior of SMA hybrid composite laminates. Wayman [1990,1992,1993]

discusses various practical applications. There have been several attempts to construct

phenomenological models capable of representing the SMA macrobehavior. Representative

works are by: Abeyaratne and Knowles [1993], Brandon and Rogers [1992], Brinson [1993],

Cory and McNichols Jr. [1985], Falk and Konopka [1990], Ivshin and Pence [1993a, 1993b],

Liang and Rogers [1990,1992], Muller and Xu (1991], Patoor, Eberhardt and Berveiller

[1988], Tanaka et al. [1982,1985,1986,1992], Tobushi et al. [1991], Wilmanski [1993].

In a recent review article Huo and Muller [1993] discussed the nonequilibrium thermo-

dynamics of pseudoelasticity. Finite element analysis of SMA behavior for one-dimensional

applications was discussed by Brinson & Lammering [1993].

One advantage of shape memory alloys over other types of mechraical or electrical

devices is that their physical configuration can be easily, precisely and repeatedly controlled

by often small temperature changes. In some applications, where temperature change is in

itself the motivation for movement of a mechanical device, the SMAs can be des;gned such

that no power source is needed to activate their motion. In other cases, a single or series

of SMA wires can easily and inexpensively be given a small temperature change which

initiates a phase transformation and consequently results in the desired motion and/or

stress. Their ability to achieve large strains near instantaneously enables the design of

5
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structures capable of extremely large, recoverable deflections. In addition, shape memory

alloys are relatively lightweight, biocompatible, easy to manufacture and have a high force

to weight ratio (Wayman [1980)).

Given the variety of potential uses for SMAs and the high interest in developing new

applications, the ability to accurately model and analyze structures containing SMA com-

ponents via a finite element procedure is extremely attractive, and we are unaware of any

existing numerical package capable of addressing 3-D thermomechanical behavior of shape

memory alloys. The incorporation of the SMA numerical simulation procedu.-e into the

design stages of new products could reduce development times and costs dramatically.

Since the properties of a particular alloy can be easily and drastically altered in the man-

ufacturing process, the properties of the SMA component in a given design can be varied

systematically in an automated analysis before production. This optimization procedure

will enable use of shape memory alloy components with specifically tailored properties that

will realize2 their full potential in each individual application.

1.2 A brief account of thermomechanical behavior of Shape Memory Alloys

(Huo, Muller [1993])

Shape memory alloys in uniaxial tensile tests exhibit a strongly temperature-dependent

behavior. At high temperatures a typical load-deformation curve is schematically shown

in Figure 1.1. The behavior characterized by this (P,d) curve is called pseudoelasticity. It

is elastic, because the tensile specimen returns to the origin after unloading, but it is only

"pseudo" elastic, because there is a hysteresis loop.

A hysteresis loop indicates energy dissipation or entropy proiition, in the loading-

unloading process, and therefore - from the thermodynamic point of view - the process

is irreversible. In other words, during the process the specimen does not remain in equi-

librium; rather it runs through non-equilibrium states for part of the process.

In the well-developed non-equilibrium thermodynamic theory, four "mechanisms" of

6
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P

d

Fig. 1.1 (P,d) diagram of shape memory alloy (schematic picture)

energy dissipation are commonly investigated: heat conduction, viscosity, diffusion and

chemical reaction. None of these is present here to a significant degree, but there is a

phase transition, the so-called martenistic transformation. In the unloaded body at high

temperature the crystal structure is cubic and the phase is called austenite (A). The low

temperature phase has less symmetry, and it is called martensite (M). A load can force a

specimen to become martensitic even at high temperatures and Figure 1.1 demonstrates

this phenomenon: The specimen is in the A-phase on the elastic branch through the origin

and in the M-phase on the straight steep branch on the right. The energy dissipation,

or entropy production, indicated by the hysteresis occurs during the transition from one

3 phase to the other.

Most of the works on phase transitions have been concerned with equilibrium conditions

I of the phase mixture. Therefore hysteresis is not considered.

3 Close observation of the phase transition indicates that a specimen consisting of a

mixture of phases is composed of several regions of pure phase. Figure 1.2 shows a typical

schematic picture of a single crystal sample of shape memory alloy in a tensile test. During

the transitio-i from one phase to the other, more and more regions of the new phase are

being created and grow. At the same time the regions of the old phase decrease in number

B7
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I
I

Fig. 1.2 Single crystal sample of shape memory alloy composed of regions

of different phases (schematic picture)

I and size and eventually they disappear completely. Therefore the transition proceeds by

nucleation and growth of the new phase within the old one. Since the crystal structures

and the macroscopic shapes of the two phases are different, adjacent regions of two phases

do not fit each other well. Therefore additional energy is required for the coexistence of

phases, similar to the surface tension of a droplet surrounded by its vapor.

In the stage of nucleation, this energy may be calculated approximately by the use

of Eshelby's solution of inclusions [1957], if the shape of the nucleus is known, see e.g.

the works of Ling & Owen [1981] and of Deng and Ansell [1990] for the case of a shape

memory alloy and the work of Liu [1992] for a general discussion. Grujicic [1983], Olson

& Cohen [1986] studied the motion of a single interface in a load controlled experiment

and determined the influence of the defects at the interface and inside the specimen on the

* motion of such an interface.

However, during the transition process the places of nucleation are many, typically

of order 10', and they are rather randomly distributed in the sample. Therefore it is

extremely difficult to obtain relevant results for the macroscopic behavior directly from

* the study of a single nucleus or interface and approximations are unavoidable.

Load-deformation diagrams of pseudoelasticity reported in the literature are quite dif-

ferent, even for single crystals of the same composition. Different authors obtain very

B8
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I different results, possibly because of dfferen t methods of preparation of the specimen es-

pecially concerning the heat treatment. Therefore it seems that at the present state, it is

not realistic to expect a good model which can cover all experimental results.

I For an ideal pseudoelastic behavior the elastic branches of the two pure phases are

parallel linear functions of the deformation and the hysteresis loop is composed of horizontal

yield and recovery lines. Figure 1.3 shows a typical experimental plot of hysteresis and its

idealized form.

We believe that ideal pseudoelasticity should be studied first, and that its study should

help us to understand the essential features of pseudoelasticity. A similar situation has

occurred in the field of plasticity; the linearly elastic, perfectly plastic material has the

simplest plastic behavior and its study was the first step for a satisfactory description of

plasticity.

I ~105 P

95-

I 85"
a.

S65-

55

1.5 
W 0-- fuoo6 6_____________

S1.0 2.0 3.0 4.0 5U0 6.0 7.0 8.0 9.0 d
Strain M)

Fig. 1.3 Pseudoelasticity, left: experimental, right: ideal

I 1.2 The Phenomena in Ideal Pseudoelasticity

In order to fix ideas about the problems we want to investigate, we give a brief summary

of the experimental results obtained by Fu and Xu [1992].

I 9
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I A SMA single crystal specimen (Cu Zn AO) undergoes phase transitions from austenite

to martensite by cooling and from martensite to austenite by heating. Let A1 (austenite

finish) denote the temperature above which the unloaded body is in the A-phase. An

3 isothermal uniaxial deformation-controlled tensile test at T , Af exhibits ideal pseudoe-

lastic behavior in (P,d), (d,T) and (P,T) diagrams. We proceed to discuss all three of

3 them.

3 First the (P,d) diagram: In this diagram the loading-unloading curve consists of two

parallel, linearly elastic branches and horizontal yield and recovery lines in-between. If we

3 interrupt the yield before it arrives at the second elastic branch and proceed to decrease

deformation, the state of the specimen first moves down steeply into the hysteresis loop

I along a line parallel to the two elastic branches, and then begins to recover at a constant

3 load as shown in Figures 1.4.a and 1.4.c. Similarly Figures 1.4.b and 1.4.d show the internal

yield after the recovery process was interrupted. It seems that there exists a diagonal line

3 inside the hysteresis loop, as indicated by the dashed lines in Figures 1.4.c and 1.4.d which

determines the turning points of the internal loading-unloading process. We shall call this

I line the diagonal.

I If we interrupt the yield or the internal yield and unload, but reload before we arrive at

the diagonal, the reloading line is identical to the unloading line. The specimen will resume

the yield however when it returns to the load where the yield was interrupted before, as

if it had remembered that load. A similar behavior is recorded when we interrupt the

recovery process. We call the steep lines inside the hysteresis loop the internal elastic lines

and the fact that the specimen yields or recovers only at the load at which it previously

crossed the diagonal we shall refer to as history dependence. Figure 1.5 illustrates this

complex behavior inside the hysteresis loop.

When the temperature is increased both the yield and recovery loads, Py and Pr,

respectively, increase linearly with temperature. However, the difference, P. - P, and

10
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Fig. 1.4 Internal recovery and yield. The diagonal. Top: experimental, bottom: ideal

the transformation strain CL, which is the horizontal distance of the two elastic branches,

remain constant. Thus the size of the hysteresis, i.e., (P. - P,)CL, is independent of the

temperature, see Figure 1.6.

Figure 1.7 illustrates how the history dependence is influenced by a change of temper-

ature. The state of the specimen has first arrived at the point X 3 by yield and elastic

unloading at temperature T1 , through X, - > X 2 - > X 3 . Then the specimen is heated

to T2 at fixed deformation and it remains at X 3 . Now upon increasing the deformation

the state moves first elastically to X4 and then begins to yield at a load higher than the

previous one. The dashed lines indicate the yield and recovery lines of the body at T2.

Second the (d,T) diagram: This diagram is taken by changing the temperature

of the specimen which is under a fixed load. We neglect thermal expansion, so that the

11
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Fig. 1.5 Internal elasticity and history dependence. Top: experimental, bottom: ideal.

(d,T) diagram exhibits two horizontal lines, of which the higher one is for the M-phase

and the lower one for the A-phase, and two vertical jumps where the phase transitions

occur. Similar to the (P,d) diagram, internal jumps are observed as shown in Figures 1.8.a

and 1.8.c, and they determine a line, the dashed line in the figure, inside the hysteresis

loop, which corresponds to the diagonal in Figure 1.4. Figures 1.8.b and 1.8.d show the

thermal path which is obtained by interrupting the jump from the A-phase to the M-phase,

then heating and re-cooling the sample before it arrives at the diagonal. The state of the

specimen moves back and forth along the same horizontal path.

12
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Fig. 1.6 Temperature dependence of the hysteresis, left: experimental, right: ideal
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Fig. 1.7 History dependence of a temperature change, left: experiment, right: ideal
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Fig. 1.8 Internal jumps and thermal path. Top: experiment, bottom: ideal

Third, the (P,t) diagram: Here we keep d constant and monitor the load as the

temperature is changed. Again, ignoring the tendency for thermal expansion we obtain two

horizontal lines; the lower one is for the M-phase, while the higher one is for the A-phase.

The transition from M to A with increasing temperature is a straight line inclined to the

T-axis, and there is a higher parallel line for the reverse transition, see Figure 1.9.

By interrupting the A - > M transition and increasing temperatures the state of the

specimen moves horizontally into the hysteresis loop on a reversible path as indicated in

Figures 1.9.b and 1.9.d. When the temperature is lowered, interrupting the M - > A

transition, and the lowering proceeds far enough, there is again evidence of a line dashed

14
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in Figures 1.9.c and 1.9.d, which corresponds to the diagonal of Figure 1.4. On that line

the specimen begins the phase transition inside the hysteresis loop and parallel to the outer

transition lines as shown in Figures 1.9.a and 1.9.c.

The word pseudoelasticity often refers only to the behavior in the (P,d)-diagrams ob-

tained by T - > Af. However, if the load is reasonably big, the M-phase obtained in

a (d,T) experiment is of only one variant, and we may treat (d,T)-diagrams and (P,T)-

diagrams by using the same approach as for the (P,d)-diagrams. We may even construct

the (d,T)- and (P,t)-diagrams directly from a series of (P,d)-diagrams obtained at different

temperatures.
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CHAPTER 2

A CONSTITUTIVE MODEL OF SHAPE MEMORY ALLOYS:

PSEUDOELASTIC BEHAVIOR

AND ITS ALGORITHMIC IMPLEMENTATION

2.1 Introduction

The purpose of the present development is to model the so-called pseudo-elastic behav-

ior, represented in Figures 1.3 and 1.4 which occurs in shape memory alloys (SMA) under

stress loading-unloading pattern at constant temperature. In particular we will present a

constitutive model able to predict the stress-induced phase transformation from austenite

to martensite during loading and the reverse transformation from martensite to austenite

under unloading. We are also concerned with an appropriate description of the mate-

rial behavior when incomplete transformations occur. These incomplete transformations

usually induce internal loops, as qualitatively represented in Figures 1.4 and 1.5.

Since the present discussion is limited only to the pseudo-elastic behavior of shape

memory alloys, we consider only iso-thermal processes.

The present section is organized as follow: we start discussing the basic assumptions and

describing the continuous model, with the appropriate phase transitions. We present the

corresponding discrete time model and discuss the relative algorithmic implementation,

based on the use of a radial return map scheme for the integration of the constitutive

equations. We also present the form the algorithmic tangent consistent with the discrete

model. We conclude the paper with some numerical examples.

2.2 Basic Assumptions and Continuous Time Model

Limiting the discussion to the realm of small deformations, we may split the total strain
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c into an elastic component €el , and an inelastic component e':

C = Cel + Ci (2.1)

The inelastic component c' is assumed to be induced by possible phase transformations

the material may undergo. To simplify the notation, the dependency of the variables on

the time t is not explicitly stated. As usual, we may also split the stress u and the strain

c in the volumetric and the deviatoric components:

ff = a + p1 (2.2)

c = e + 01 (2.3)

33where: p = •tr(oa)l is the pressure and e = tr(e) is the volume change. In particu-

lar, recalling equation 2.1 we may split both the elastic and the inelastic strain into the

volumetric and the deviatoric components:

c = (eel+ e') + 1 + 8') 1 (2.4)

Basic assumptions under which we develop the model are:

"* the phase transformations depend only on the deviatoric part of the stress and affect

only the deviatoric part of the strain,

"• in the absence of phase transformations the material has a linear elastic behavior.

Accordingly, 0' = 0 and the elastic relations may be written as:

p = K0 (2.5)

s = 2 Ge" = 2G(e - ei) (2.6)

where K is the bulk modulus and G is the shear modulus. To be consistent with the

notation usually adopted in the development of uniaxial model for SMA (Liang &, Rogers

[1990], Brinson[1993]), we rescale the inelastic contribution:

e eLZ (2.7)
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where e' is a material parameter, measurable experimentally and related to the so-called

maximum residual strain under uniaxial state CL through the relation:

EL 2 CL (2.8)

The evolutionary equation for z is assumed in the form:

i= n (2.9)

where:

n 8 (2.10)

is a unit vector in the stress direction. In plasticity literature, n is a unit vector perpen-

dicular to the yield function. ý is a scalar internal variable representing the martensite

fraction. A super-posed dot indicates time derivative. Due to the interpretation of ý, we

require that 0 _ < < 1 and

= 0 €* the material is all austenite, (2.11){ = 1 € the material is all martensite,

We are now left with the need of describing the kinetics of the phase transformations, i.e.

we have to specify the rules for the activation and evolution of the phase transformations.

Clearly, we have two different transformations to consider:

1. production of martensite, which means conversion of austenite into

martensite (A --+ M),

2. production of austenite, which means conversion of martensite into

austenite (A --* A).

It has been shown experimentally that under uniaxial loading conditions, each phase trans-

formation occurs within an appropriate range of stresses; in particular, indicating with c

the uniaxial stress, we have:

M,<_ <6aM., a>0 A.4- M
(2.12)

CAI U ( aAo, 6 <0 = M -- A
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where it is clearly stated that the conversion of austenite into martensite (A -+ M) occurs

during loading, while the conversion of martensite into austenite (M --+ A) occurs under

unloading.

Recalling that the transformation: are assumed to be only function of the deviatoric

part of the stress, we may generalize the concept of uniaxial stress range using a J2-type

norm where J 2 is the second invariant of the deviatoric part of the stress. In particular,

we set:

S =1'11= . 2= T2 (2.13)

and as conditions for the phase transformations we require:

SM. _S SM,, S>O > A -- M
(2.14)

_SS<SA., S<0 = M -*A

The three-dimensional S-bounds are related to the uniaxial ai-bounds through the relations:

SM1 = a/M1 , SM. = /rM(2 3: 2(2.15)

SAf = / SA, - A,

2.3 Austenite-Martensite Phase Transformation

We assume a linear variation of the martensite fraction ý from 0 to 1 within the stress

range [SMo, SM,], under loading conditions. Accordingly, the following equation must be

identically satisfied:

1-- [2S-KAM 1 + 1 p
AM 2 HAM J 2 =0 (2.16)

where:
KAM =SM, + SM,

HAAm = SM, - Sm,

and ýP is the maximum value obtained by the martensite fraction during the previous

(reverse) martensite-austenite transformation.
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2.4 Martensite-Austenite Phase Transformation

We assume a linear variation of the martensite fraction C from 1 to 0 within the stress

range ISA,, SA,], under unloading conditions. Accordingly, the following equation must be

identically satisfied:

S-2S+KMAl
.FMA(C) = C L-1 + 1 +1= 0 (2.17)

where;where 
KMA = S A, + SA,

HMA = SA, - SA,

and ýP is the maximum value obtained by the martensite fraction during the previous

austenite-martensite transformation:

2.5 Internal Loop Descriptions

In order to have a correct description of the internal loops for the case in which incom-

plete transformations occur, we modify the range of the transformation depending on the

value of the martensite fraction during the previous transformation.

For example (referring to Figures 2.5.1 and 2.5.2) for the case of conversion of austenite

into martensite, we set the range within which the transformation occurs as:

VM. = CPSA. + (1- Cp)SM.
(2.18)

VM, = V'SA, + (1- C))SM(

where ýP is the value attained by the martensite fraction during the previous reverse

transformation (i.e., during the conversion of martensite into austenite). For the case of

conversion of martensite into austenite we similarly set:

VA, = CP S.4, + (1 - Cp) SM.
(2.19)

VAf = LPSA, + (1 - Cp)SA1,

where ýP is the value attained by the martensite fraction during the previous reverse

transformation (i.e. during the conversion of austenite into martensite).
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2.6 The Kuhn-Tucker Conditions

Let functions .FAM(C) and FMA(W) be the criteria for (A -+ M) and (M -+ A) phase

transformations, respectively, similar to yield function in plasticity. In the rate independent

constitutive relations for SMA, the requirement that < < oo necessitates:

.J*(0) = 0 -+-,*+ 1 = 0 (2.20)

where .{.WYMA(W) 
€ forM -- A, (S>0) 

(2.21)

A 'm (C) forA--M, (S<0)

and S = 11sll = Ii = V2_2. This is the transformation criteria of rate-independent

SMA. The transformation criteria and the loading/unloading conditions can be expressed

in Kuhn-Tucker form as follows.

CASE 1. Austenite --+ Martensite transformation

-YAM(C) 5 O, ý ý!O; iff a > 0 and a < a* (2.22)

where a* = aM, (complete transformation)

a* = VMj (incomplete transformation)

aM, and VM, are critical stresses for austenite to martensite transformations corresponding

to outer and inner hysteresis loops respectively.

CASE 2. Martensite -- Austenite transformation

.7MA() - O, 0; iff 6, < 0 and a >& (2.23)

where

= 0 A1  (complete transformation)

& = VA, (incomplete transformation)
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I oA1 and VA, are critical stresses for martensite to austenite transformations corresponding

to outer and inner hysteresis loops respectively.

Combining the above expressions, we have

SY* (C)•I) > 0 = 0 (2.24)

* and

| I•>0 *() = 0 (2.25)

These two conditions (as in plasticity) express the physical requirements that the stress

I must be admissible and the phase transformation, in the sense of a non-zero martensite

fraction rate ý # 0 can take place only on the phase transformation surfaces Oy"(C).

Within the context of plasticity, these conditions are classical in the convex mathemat-

ical programming literature and go by the name of Kuhn-Tucker conditions. These two

equations, (2.24, 2.25) result in

I F*(o ý = 0 (2.26)

In computational plasticity literature, this equation is referred to as the "consistency con-

dition."

I We can define the phase transformation surface (known as the yield surface in plasticity)

as {o' E Zj1 (C(s)) = 0} (2.27)

I For the case when the state lies on the phase transformation surface

I• > 0 only if )"(*(s)) = 0 (2.28)

and set

{•AM (•) < 0

I1 > 0 if{ >0 or (2.29)
J'M A(W > 0
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I
3 We have an additional condition.

)k, = 0 (2.30)

I This condition is referred to as the "persistency condition," and corresponds to the physical

requirement that in order for ý to be non-zero (i.e., 1ý[ > 0), the stress state a E .Y((s))

must "persist" on O.F*(ý(s)) so that .'*(•) = 0.

2.7 Discrete Time Model and Algorithmic Implementation

We now present the discrete time counterpart for the model discussed above, paying

particular attention to an implementation within a radial return map algorithm. The form

3 of the tangent tensor consistent with the discrete model is also addressed.

2.7.1 Discrete Equations and Integration Algorithm

From a computational standpoint we treat the non-linear behavior of a material as

I a strain driven problem, since in a finite element implementation the stress history isu computed from the strain history by an integration technique, such as a return mapping

algorithm. Accordingly, we now introduce a discrete counterpart of the equations presented

I earlier and review the integration algorithm.

Let [0, T] C R. be the time interval of interest and consider two time values within it,

say t,, and t,+1 > t,, such that t,,+ is the first time value of interest after t,. To minimize

the appearance of subscripts (aid to make the equations more readable), we introduce the

convention:

an = a(t.), a = a(t.+i)

where a is any generic quantity. Accordingly, in the discrete time setting the subscript n

indicates a quantity evaluated at time t,, while no subscript indicates a quantity evaluated

at time tn+I.

We assume that the solution is known at time t,, and given by the state:

Io{sn, en, 2n} (2.31)
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We wish to compute the solution at time t,+,, given the strain e. Using a backward Euler

integration formula for the scaled inelastic strain, we obtain:

Z.+1 = zn+An (2.32)

I where

A=j: dt =• = •+A (2.33)

Substitution of equations (2.29) and (2.30) into equation (2.5) yields:

1 = 2G[e - e4zn] - 2Ge' \An (2.34)

In the above, A is an unknown quantity and is computed by means of an integration

algorithm, such as a return mapping. Initially suggested by Maenchen and Sack [1964],

the return mapping algorithm provides an efficient and robust integration scheme, based

on a discrete enforcement of the limit equation. It belongs to the family of elastic-predictor

inelastic-corrector algorithms and, hence, is a two part algorithm. In the first part, a purely

elastic trial state is computed; in the second, if the trial state violates the material model

constitutive equation, a correction is computed using the trial state as initial condition and

applied such that the final state is fully consistent with the discrete model. The algorithm

has been widely studied (Nagtegal [1982], Simo & Taylor [1985], Simo & Hughes [1993]) as

has its stability (Krieg & Krieg [1977], Simo & Govindjee [1991]). Additional discussion

of the algorithm and its theoretical implication can be found in the literature.

We shall now discuss the two steps of the algorithm in more details.

e Trial state: we assume that in the interval [t,, tn+ I] no phase transformation occurs

I (i.e. z = z,, which implies: A = 0). As a result, we have as trial values:

3 Atr = 0 (2.35)

,fr = = (2.36)

st= 2G [e - e ,z] (2.37)

25

B BASE



I

If the elastic trial state is admissible, i.e. it does not satisfy the conditions for a phase

transformation, then it represents the new solution at t,+, and the second part of

the algorithm is skipped. If the elastic trial state is not admissible, a correction

has to be performed, i.e. the phase transformation must be taken into account to

determine the real solution state.

I Inelastic correction: enforcing the satisfaction of the phase transformation model,

I the parameter A may be computed, as shown for both transformations (A --+ M

and M -+ A) later. Equations (2.32) and (2.34) can be now rewritten in terms of

the trial state and A:

Xz = Ztr+Afn (2.38)

t= ir-2Ge t An (2.39)

which allow us to compute the inelastic solution. Since the phase transformations

occur within specific upper and lower bound, before updating the solution with the

inelastic one described in equations (2.31) and (2.32), it is important to test that

i such solution is still in the range of the phase transformation.

For both transformations considered in this work, the parameter A may be computed

solving only a scalar equation. In fact, we observe that s is by definition in the n-direction,

i.e., s = 11as[n. Consequently, a scalar relation between the norms of a and a" may be

I generated:

Ss = 11s1 = Ilf"lle- 2G4 A = S'" - 2e G, A (2.40)

2.7.2 Discrete Phase Transformations

Substitution of equations 2.30 and 2.34 into the constitutive equations for both the

transformations returns the corresponding discrete models in the form:
.T'M=,+•_AM~'r 2GtLk) RANKAM 1+Q' -I AM = + A-RAM (S t - 2GeA) + 2 2 =0 (2.41)

YFMA = , + A - RMA (SIr - 2G4A) + RMASA, ="0 (2.42)
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I where: 1 -

RAM.= , RMA = (2.43)
HAM HMA

Due to the linearity of such equations, the parameter A may be computed in closed form

I for both the transformations and it is given by:

RAMS t r + -+ - -" (2.4KAm 4)
2 (2.44)

1 + 2GeL RAM

M .A => A = KMA(Sir _ SA,) _ (2.45)S1 + 2Ge' RMA

1 2.7.3 Conditions for the Activations of the Phase Transformations in the Dis-

crete Model

The conditions for the activations of the phase transformations described in Section 2.5

for the continuous time model must now be rewritten for the corresponding discrete time

1 model. The first test we perform is a check on the loading-unloading condition, which in

a discrete model can be rewritten as:I
St" > S , loading * possible A -+ M transformation

(2.46)
SIr < S. • unloading • possible M --+ A transformation

After checking which transformation is possibly active, we compute the corresponding

A parameter (accordingly to equations 2.38 or 2.39) and cneck that the final inelastic

candidate state still satisfied, it means that the final state is still in a phase transition

range and we can update the solution.

2.7.4 Discrete Tangent Tensor

We address the form of the tangent tensor, consistent with the discrete model. The use

of a consistent tangent tensor preserves the quadratic convergence of a Newton method,

which we adopt for the incremental solution of a finite element scheme. We start from the
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linear elastic relation between s and e:

3e - 2G [e-t] - 2Ge An (2.47)

and by linearization we obtain:

ds = 2Gde - 2Ge' dAn - 2Ge4LAdn (2.48)

Keeping in mind that:

1l = (2.49)

we can compute its variation:

dn [I - (non)]da = N-d (2.50)

FhSll 11811
where the fourth order tensor N is the orthogonal projection operator on the plane with

unit normal n, such that:

3 Nn=O, NN=N (2.51)

Accordingly, equations 2.41 can be rewritten as:

[I +aNlds = 2Gde - 2Ge' dAn (2.52)

where:3 2Ge4A
a 11-511

The equation can be solved for ds:

ds = 2G[I+bN]de - 2Ge'dAn (2.53)

where:

b= a
l+a

Assuming that from the linearization of the phase transformation equation we obtain a

relation of the type dA = A[n : de] (as we will prove in the next section), we can get the
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I incremental relation between the total stress a and the total strain e, consistent with the

discrete model:

do" = Ddi,c de (2.54)

I where the algorithmic tangent tensor is given by:

1Ddi,, = K(1 0 1) + 2G(1 - C)Idev + 2G(C - A)( (9 n)

where

I dev, = 1 (101) (2.55)

We recall that A comes from the linearized limit equation for the specific material model,

while:
2G4A

C= Str

1 2.7.5 Linearization of the Phase Transition Equations

We start form the discrete equation for the austenite-martensite phase transformation:

FAM(ý) + A - RAMS + A K 0 (2.56)
2 2

and by linearization we get:

d.FAM = dA - RAM dS = 0 (2.57)

Since:

dS = 2Gn:de - 2GeLdA (2.58)

S~we get:
w ge:dA = 2 GRAM n:de (2.59)

1+2Ge' RAM

Similarly, starting from:

I .FMA - •n + A - RMA - S = 0 (2.60)

by linearization we get:

d 2GRMAdI = 1 + 2GeIL RMAnde (2.61)
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3 2.8 Numerical Examples

To test the integration algorithra for our model, we run some uniaxial test under dis-

placement control. The material properties are:

n E = 10kPa, v = 0.3 (2.62)

I while the transformation range are:

3 aM1 = 10, OM, = 15, aA, = 20, 0 A1 = 25 (2.63)

3 with:

CM =1, CA= 1, CL =3 (2.64)

The test are organized as follow:

3 * Test 1: we run a loading-unloading test with incomplete A - M transformation and

complete M --+ A transformation (see Figure 2.8.1);

I Test 2: we run a loading-unloading test with complete A - M transformation and

3 incomplete M --- A transformation (see Figure 2.8.2);

9 Test 3: we run a loading-unloading test with incomplete A -- M transformation and

i incomplete M --* A transformation (see Figure 2.8.3);

i
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SFigure 2.5.1 Pseudo-elastic behavior: modification of the Figure 2.5.2 Pseudo-elastic behavior: modification of the
a-range for the conversion of austenite into martenite. u-range for the conversion of marueite into austenite.
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Fig. 2.8.1 Stress Vs strain plot. Complete M -- A and incomplete A - M transformation.
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Fig. 2.8.2 Stress Vs strain plot. Incomplete M -* A and complete A - M transformation.
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Fig. 2.8.3 Stress Vs strain plot. Incomplete M -- A and incomplete A - M transformations.
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CHAPTER 3

FINITE DEFORMATION FORMULATION

FOR SHAPE MEMORY ALLOYS

3.1 Introduction

This chapter presents a finite deformation formulation for shape memory alloys. Let

F- 0#(Xt)_ 0-Vt (3.1)ox ax

be the deformation gradient, where X is the reference configuration and Ot is the mapping

from reference to current configuration, i.e., z = O(X,t) = Ot(X). F is assumed to be

sufficiently smooth, orientation preserving, invertible and subject to the constraint

J = detF > 0 (3.2)

to ensure that the material volume element remains positive, and

dv = detFdV = J dV (3.3)

where dV is a volume element in the reference or the material configuration and dv is the

corresponding form in the current or the spatial configuration.

In the present formulation a multiplicative decomposition of the deformation gradient

into elastic and inelastic parts is assumed

F = FC•F (3.4)

where the superscripts e and i represent elastic and inelastic parts of the deformation

gradient, respectively. The inelastic part is associated with pnase transformation. See

Simo [1988] for details. The inelastic part of the deformation gradient defines an additional

configuration B1 , or intermediate configuration. The discretized form of (3.4) is

F.+ ,= F.e+, Fn+1  (3.5)
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3.2 Phase Transformation Flow Rule

We can derive the flow rule for inelastic or phase transformation strain by taking the

time derivative of the inelastic deformation gradient.

F'(x,t) = ( (X" t))

= GRADV'(X, t)

= gradv'(a, t) F'

d
= 7-gradut(z, t)F'

= eLN(S)F' (3.6)

where V' is the inelastic material velocity, v' and u' are the inelastic spatial velocity and

displacement fields, respectively. In the above equation GRAD V' is the ine'astic material

velocity gradient, while grad v' is the inelastic spatial velocity gradient. Furthermore we

have used the finite strain counterpart of the small deformation inelastic strain (2.7) to

arrive at eq. (3.6). We can write (3.6) as

F'-' = e L N(S)

dlnF' = •eLN(S)

Integrating both sides from t,, to ti+ we get

dlnF' = eL N(S)dt

InFn'+, - InF,, = A*tN(9) (3.7)

where we have used eq. (2.33) on the right hand side for A*. Equation (3.7) can be written

as
Ini F.+ -1Fn' = A*N(S)

Fi,+, Fn' = exp (A* et 4M(.))
Consequently,

F,'+, = exp(Ae'e N(S))Fn" (3.S)
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U where A* is the increment in the martensite fraction C and is obtained through a return

mapping algorithm via satisfaction of the corresponding phase transformation criteria, i.e.,

AAM =:: enforcing FAM(C) = 0 (3.9)AMA => enforcing .FMA(C) (90

The manner in which the flow-rule is discretized is an essential part of the method of

extension, and consists of taking the inelastic flow direction R to be constant throughout

3 the increment and equal to its final value N,,+,. This reduces the phase transformation

flow rule to a system of linear equations for the inelastic deformation gradient F' with

initial condition F,, with an exact solution given by the exponential mapping (3.8).

Remark: By expressing the "phase transformation" flow rule and the elastic response on

the intermediate configuration, the formulation automatically satisfies material frame

3 indifference. See Cuitino et al. [1992].

3 3.3 Constitutive Relations

Direct use of deformation gradient F complicates the development of constitutive equa-

I tions and it is common to introduce deformation measures which are related completely

to either the reference or the current cinfiguration. Accordingly, for the reference configu-

ration the right Cauchy-Green deformation tensor, C is introduced as

I C = FTF = U 2  (3.10)

3 In the reference configuration, we define the Green strain tensor E as

E= 1(C -1) (3.11)

where 1 is the rank two identity tensor with respect to the reference configuration.

We can write the elastic right Cauchy-Green transformation tensor in the intermediate

configuration as

Cc7 = F' T- CF'-' (3.12)
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where C is the full, right Cauchy-Green deformation tensor defined over the intermedi-

ate configuration. Accordingly, we define the Green strain tensor on the intermediate

configuration

E = (O- 1) (3.13)

Since
1 - 1(• -( -)C 1) +**(3.14)

-logC = -(o- 1)- - - +...
2 2 2

So we define another strain measure on the intermediate configuration, called the Henky

strain

E(Henky) = •logC (3.15)

The second Piola-Kirchhoff stress tensor corresponding to the Henky strain measure defined

over the intermediate configuration can be expressed as

s = s ( j1 ogo) (3.16)

3 Equations (3.5), (3.8) and (3.16) define a system of nonlinear equations which, for given

F,,+ can be solved for the updated state variables S,,+1 , F,•'+ and A. (Note A - Ac). As

3 in the small strain case, it is possible to reduce the system to a single equation for A, which

can be solved by using the return mapping algorithm embedded in the Newton-Raphson

iteration scheme.

Remark: The generalized strain measures intorduced by Seth (1964a, 1964b) have

successfully been applied to the development of material constitutive equations for

plasticity, nonlinear viscoelasticity and rubber-like elasticity. In the material descrip-

3 tion, these strain measures are related to the right Cauchy-Green deformation tensor

C through the expression

I ~(Cm/ 2 J) m O
E(-) = j logC = (3.17)
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3 where I is the identity tensor and the exponent m may take on noninteger as well as

integer values. For integer values of m these equations reduce to strain measures of

Cauchy and Henky In fact the validity of these equations (3.17) for nonintegral real

3 values of m is assumed if ±(Cm/2 - I) is defined to be coaxial with the right stretch
tensor U = C"/ 2 and having principal value ( 1), (a = 1,2,3),A,, being the

eigenvalues corresponding to U. As pointed out by Seth [1964a, 1964b], by introducing

a degree of freedom in the exponent m, it is possible to condense the nonlinear effects of

I deformation into the definition of strain, and thus rely less on representing the nonlinear

behaviour in the constitutive equations.

3.4 Radial Return Algorithm

Within the context of radial return algorithm, the right Cauchy-Green deformation

3 tensor for elastic predictor, i.e., the step in which the phase transformation is frozen and

a purely elastic deformation is assumed is defined as

" , T =F F+IF ,I (3.18)

while F' is defined in equation (3.4). Using (3.5) and (3.8) with A = 0 and substuting in

I (3.18)

I+' = F,•-r T C'O+ Fn-1  (3.19)

This is the large strain counterpart of the elastic predictor as can be derived from (2.37).

3 We can write the Henky strain (3.15) for the elastic trial state as

2(Heko,,+ -llogo 1, (3.20)

3 The corresponding second Piola-Kirchhoff stress tensor defined on the intermediate con-

figuration is

I = S(,ogo ) (3.21)
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-- We use a J2 type norm for the elastic trial state defined as

3 tS'r - Il S- + , (3.22)

At this stage it is checked if the state is in the phase transformation range, i.e., if

S t'r {SM.,SM,} for all 5>0 (3.23)

and

Str" {SA.,SAI} for all 5 < 0 (3.24)

then we have the solution at time t,+, and the second part of the algorithm is skipped.

However if

SSM, <St" < SM, for 5>0 (3.25)

or

SSA.5 <Str5SA, for 5<0 (3.26)

3 then phase transformation conditions have to be satisfied to find the solution at time t,+,.

After checking which transformation is possibly active, the parameter A* is obtained by

3 enforcing the satisfaction of the corresponding phase transformation model. The elastic

right Cauchy-Green deformation tensor can now be written using equation (3.8).

64+= exp(-N" e', - T e', (3.27)
?~1= x(A*N7+i ) C?+i x( " N+)

where

NVn+l_ S§+ 1  (3.28)U ~iI.n+ ill

However, if /gn+l commutes with CO'+ 1 , taking logarithms in (3.27) we get

•logC,+ 1 = logC+ - A*sym -rn+i (3.29)

which is identical to the small-strain kinematic relation that can be derived from (2.39).

It is important to note that the steps proceeding and following the small-strain update

are purely kinematic in nature, and hence, material independent. Thus, when it applies,
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I this procedure provides a material independent prescription for extending small-strain

updates into the finite deformation range within the framework of multiplicative plasticity.

The main underlying assumption in arriving at (3.29) is that the phase transformation

flow direction 1Vr,+, commutes with the elastic predictor for large deformation as described

in (3.19). Because of the symmetry of Oe+ I, this immediately requires that IV,,+, be

I likewise symmetric, i.e., that the inelastic spin vanish, and that I,.r+, have the same

3 principal directions as C - Correspondingly, nn+l must commute with c as ran be

derived from (2.37), for the small strain formulation. Using (2.32) in (2.39) implies that

3 nnl commutes with ct if and only if n,,+, commutes with CnI. By substituting elastic

relations ff+l = 0'(Ce+ 1 ) in the phase transformation flow direction nn+l(ou), it can be

I thought of as a function of n(Cel) of the elastic strain £e". Then the required condition

is that the function n(eCl) have the same principal directions as e", for all values of its

arguments. A general representation of a tensor-valued function satisfying this requirement
* is

_ n(ee) = AI(c•J)I + A2(cel)eel + A3(cel)ee1 2  
(3.30)

where the scalar functions {A1, A2 , A3 ), of te" need not be isotropic (Cuitino et al. [1992]).

SThus the direction of the phase transformation flow n regarded as a function of (eel), while

restricted to be of the form (3.30), can still possess some measure of anisotropy (Cuitino et

I al. [19921). It bears emphasis that these requirements place no restrictions on the elastic

3 relation ',,n+ = o&(eeln+), which can be specified arbitrarily. In particular, the elastic

response can be anisotropic.

3.5 Boundary Value Problem

In order to formulate a well-defined problem, in addition to the constitutive relations

we need to consider the momentum balance equation and suitable boundary and initial

conditions.
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1 3.5.1 Strong form of the problem

Let SI0 be an open set in V3 representing the image of a body B at time to. The

study of the motion and deformation of the physical body B then reduces to the study

3 of mappings O(X,t) : 11o C IR3 --+ VZ. We assume a constitutive relation on R0 so that

the first Piola-Kirchhoff stress tensor P is a function of P of Ot(X). Let the deformation

I mapping O be prescribed on the Dirichlet boundary 9,110 as OtIno = , . The space of

cconfigurations is defined as

C = {1 : Qox]O,T[- R 3 I=p, on 0n0 } (3.31)

As usual we require that

a.,Qo U 0,!0 = Mo (3.32)

a .110 n a110 = 0 (3.33)

where 0JI 0 corresponds to the portion of Che boundary with prescribed essential boundary

conditions, while where 0alo corresponds to the portion of the boundary with prescribed

I natural boundary conditions.

3m The formal statement of the strong form of the problem is: Given a set a boundary

conditions, find the motion O(X,t) : 1o x]0, T[--- RZ, such that

DIV(P) + pf = pU in Slox]O,T[ (3.34)

S=4 on a.jox]0,T[ (3.35)

P.A = t on 82ox]0,T[ (3.36)

O(X,0) = O0(X) all x E Qo (3.37)

V(X,O) = Vo(X) all x E Qo (3.38)

where P is the first Piola Kirchhoff stress tensor, f is the body force per unit mass, p is

the mass density, IV is the unit normal to the boundary, t is the kirchhoff stress vector,
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and fo(X) and Vo(X) are the prescribed initial displacement and velocity conditions,

respectively.

3.5.2 Weak form of the problem

The space of admissible variations is defined as

V = {f1: O-. _ 317 =0 on O.S0} (3.39)

I Let 9(0, q) = C x V --+ R be definedas

9(0 q) f pA -q no+f P : Voq dlJ; f. dVo -Jt - qdSo =0(.0

Q v /0 .n0 0  ,034

3 where A - U. Since the treatment of the transient dynamic problem plays no role in the

present discussion, we shall ignore inertia effects and confine our attention to the static

case.

Consider a solid initially occupying a reference configuration fl 0 , and a process of

incrementally loading whereby the deformation mapping over Slo changes from Ot,, at

time ti, to Ot•+l = f. + u, at time t,,l = t, + At. We enforce equilibrium at time t,,+,

weakly by recourse to the principal of virtual work. The formal statement of the weak

form of the boundary value problem is: Find 0 E C such that 9(0, 17) = 0 for all 'i E V.

0 Pn+I :Vo9d1A L f,+, . dVo-j t, 1 dSo = 0 (3.41)

where

P,,+,: denotes the first Piola-Kirchhoff stress field at time t,,+,.

Uf,,+,: is the body force,

t,,+,: are the boundary tractions,

n: is an admissible virtual displacement field,

V0 : denotes the material gradient.
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i Assuming for now that we have determined a rule to update the stress field of the
i general form

P,+, = P(Fn+1 ; state at ti, At) 
(3.42)

where the deformation gradient

F.I= V0n](3.43)

is assumed 
given.

The "consistent tangents"/kn+ 1 follow by linearization of the stress updates (3.42) as

+ -- OF+ (Fn+1;state at tn, At) (3.44)

The corresponding "spatial consistent tangents" kn+l are obtained by push forward to the

current configuration

kijkl = KiJkLFjJFIL (3.45)

It is important to note that the use of consistent tangent matrices can be computa-

I tionally advantageous because of their symmetry, and that they also have superior local

approximation properties. For small strains the computation of the consistent tangents

reduces to a straigntforward exercise for many commonly used models. However in the

3 finite deformation range the calculations are considerably more cumbersome. So in the

remaining of this chapter we extend small-strain updates and consistent tangents to the

finite deformation range by operating strictly at the level of the kinematics.

3.6 Stress update strategy

Within the context of finite element analysis the solution of problem (3.40) is accom-

plished by an iterative scheme such as the Newton's method. Typically one solves a

sequence of linearized problems defined as

Dg(Pn+1 ,'I).u"+ - [tr(Vi1Tr Vu) + Vi: Vu(')]dVo

'o+iO ) (3.46)
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(until the residual (0,,+, #1) vanishes to within a prescribed tolerance.

The convergence rate of iterative scheme is essentially governed by the choice of tangent

moduli j(') which depends in turn on the iteration scheme adopted. In a typical iteration

within a time step [t,,,t,,+ ], the variables (.)•+) may be obtained from either

(i) the values (-)(') corresponding to the previous non-converged iteration, or

(ii) the converged values (.),, from the previous time step.

Both procedures define algorithms which are consistent with the field equations. However,

scheme (i) introduces a 'history dependence' of the converged values on intermediate non-

converged iterates. This may pose difficulties due to the strong path dependence of shape

memory models. Spurious unloadings at some Gauss points may also occur as a result

of this procedure. By contrast, history dependence on intermediate non-converged values

is eliminated with the use of scheme (ii), and fictitious numerical unloading is therefore

prevented. For a detailed account of these issues see Simo et al. [1985].

3.7 Derivation of the Consistent Tangent

I A lengthy but straightforward calculation of the finite deformation spatial tangents,

Cuitino & Ortiz [1992], gives the following expression.

ICijkl = dikl - TniAinkl - *,niAjnk + bikrT, (3.47)

I where r is the Kirchhoff stress tensor. The various terms in (3.47) are defined as below.

I kI= Fj= FeJ -bbJJMMNLMNKL(F¶L F,'.K + FkL rF1 ,) (3.48)

IFI F 1 OFIBD
= FtF-' EIBRsHRsMNLMNKL(F[ FR* + LFRF1 ) (3.49)

where D represents the saml]-strain tangent defined as

Ib =90 (3.50)oFc
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which is the only material dependent quantity in eq (3.47). Fl° may be thought of as an

elastic predictor for Fe, and

cc = a-c (3.51)

are the tangent elastic compliances.

In component form

FS = FA(F,-)AJ (3.52)

LMNKL = (ogVre)MN (3.53)

EIBRS = OF;B
O(A el )Rs

= 8[eXP(A 4 RA]1 (Fi)jB (3.54)
O(A* etl N)R

-~~ O( )RS
HRSMN = O(A* e4 NV)RS

&MN

= (ORM 6SN + ""RN '5SM) - CRSAB DABMN (3.55)
C•_B= A 2l •A6¢)(3.56)

CSAB =J (6bRA 6 SB) 3 A+ 2P(BA6 RS)

where A and p in the last equation are the Laime's constants.

3.7.1 Derivation of LMNKL

O (logV'•)
L=e (3.57)

By the spectral theorem for symmetric positive definite tensors we have

3Ie = Z: AaN(a) 9 N(a) (a = 1,2,3) (3.58)
a=13 The invarients of C' are related to the coefficients in the characteristic polynomial p(M2 )

of C• as follows,

I p(A2) := -A_ + J1A4 - I 2 A• + 13 = 0 (a = 1,2,3) (3.59)
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where A' > 0 are the roots of the characteristic polynomial. Therefore

3

a=1

3

logV'• = Elog®.N(°) 9 N(a) (3.60)
a=1

Note: If N(A) is a proper vector of 0', it is also a proper vector of logV/'e. The principal

invarients of Ce E S.3 are denoted by

Iw :-tr[Cel; 12 [If - tr(Ce); 13 :=det[CeI= (3.61)

where

I = {C'S,3M3.IC ~T} (3.62)

Following standard usage, we denote by C(jZ3, 'Z 3 ) the vector space of linear transformation

in jZ 3 ,M M 3 is defined as

M3 = {FE (jZ 3,1- 3 )Idet[F] > 0} (3.63)

By the chain rule

01ogvrc- _ 0logvt-'; OI +1ogv-C 012 0logv' 0(133 OC a0I + 01 + 013 C (3.64)

In order to evaluate the above expression we need the following results.

S01ogvr = 01 +l1ov A + logV'0A 2 01og \3 (3.65)
iO 8 ,\ IA 2  01 OAA3 (.5

3.7.1.1 Proposition: Assume that A, $ A2 j A3. By (3.59) A. is a function of the invariants

I of 0e, denoted by

Aa = A.( 1 ,1 2 ,1 3) (a = 1,2,3) (3.66)

Then the following relations hold:
SO~o A3 OA A A A-2

I- DA 3 D- a - - (3.67)
OhI- 2D,,' O1h 2D8 ' 0l3 D-
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where D. - (A] - AC)(A] - A•). See proof in Simo et al. [1991], p. 227.

Consequently, we can derive the following relations as follows

Oil = logA N(")
1

a=1

Similarly, for the second term we get

Il/g2 3 1 -Aa) (a) (a)

512 a=]A a /D

-1N() N(') (3.69)

2

and

g N ) ® (3.70)

Using the chain rule for the second term in equ (3.64)

aI, _I 8,\ A1  81, OA2  oil OA3ace - =A 1 Cc + A2 8c- + A3  - (3.71)

where
wai = 2A6 -ý- (A= 1,2,3) 

(3.72)

3.7.1.2 Proposition: Let the spectral decomposition of 0e be defined by eq. (3.58) So A,

is a function of 0' and we write Aa = Aa(C'). Upon defining

M(a) : 2= A( 2 i a)) ® N

= F- 1 [N(a) ® N(a)]F-T (3.73)

we have the basic relations
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(1) OA 1 (a = 1,2,3) iff A1 9 A2 9 A3  (3.74)
ace

(2) = I'\ - M(3)] iff Al = A2 0 A3  (3.75)

A3 = 1AM() (3.76)

(3) OA = 1A10'_1 iff A, 1 A2 =A 3  (3.77)

Consequently, using these relations in (3.71), we get

ace 2A4  AbM)
b=1

3

A Z 2 (A-2 N(b) ®~b
b=1

3

= N (b) 9 N(b) (3.78)
b=1

Similarly, for the second term we get

012 3-- 012 O-A a

b=1

- : 2A b (II - A'). (2&~)
b=1

3

4=1(Yi - AI) N(b) ® N~4 ) (3.79)

and

Oh3 3 Oh3 O~b

b=1

30213 1A4 M b

EC -0A Oc

3

= I 3 AB2N(B) 9 N(B) (3.80)

B=I

Remark: For a general framework see Marsden & Hughes [1983], pp. 220-222.
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Substituting the corresponding expressions in (3.64)

I N (a()) (a N ()) ( I, _Aa2 N(b) N (b)

I 3.7.1.3 First Order Approximation

A first order approximation for v/• can be expressed as
a= (I(+ )) (3.83)

Consequently, a first order approximation for 1ogv/"7 can be written as

I lg\/ lo (( +. C)N') = N( b NI) ~( 9 - N) (3.84)

Therefore

OCK"L - OCKLN

The losed/fo m N exrsso fo {'(ce -N i)M i)

IN 6 MA" 6 NL -0 (6M" CLN + 6 NL CNK) (3.85)
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3.7.2 Derivation of HRSMN

H - 0(exp(" 4 N(s))) F.' (3.86)
(A* 'N(S~))

I Let (A , N(S)) = K. Employing the spectral theorem for symmetric positive A4finite

tensors, (3.58), we can write

3

exp(K) = Zexp(A\2)N(a) ® N(a) (3.87)
4=I

A8's in (3.88) should not be confused with previously defined Aa's. The principal invarients

of K E S•. are denoted by

I= tr[K]; 1 : [12 - tr(K2)] 13 det[K] = j2 (3.88)

I where S+. = {K E M'.IK = KT} We denote by C(1Z3,1Z3 ) the vector space of linear

transformation in R'3, M 3 is defined in eq. (3.63). Therefore

Oexp(K) 9 exp(K) W,1 Oexp(K) 012 Oexp(K) 013
+- + 8x()a(-93 OK - j1 OK 012 OK 013 8K (3.89)

Once again, in order to evaluate the above expression we need the following results.

I 0exp(K) _ oexp(K) 8,0 oexp(K) 0A 2  oexp(K) a39

0-I ,, 0I\ 0A2 01 0a 3  0I849

Assuming that A, # A2 # A3. By (3.59) Aa is a function of the invariants of K, denoted

I by
\A = A (11,12,13 ) (a = 1,2,3) (3.91)

Then the following relations hold:

N0I DA! 0a _ -j D 01_3 1

where Da is defined earlier. For proof see Simo et al. [1991], p. 227.
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I Consequently,

a 8 = K) exp(A2.)N (a) (9N a~~exp(K)-- 0,=1

3

= exp~)(~ N a)N~ (3.92)

I Similarly,

3 2
ex(Aexp(K) = ex D N(a) ® () (3.93)

•/• ' exp(K E(Da)

! exp(K) = 3Zexp(Aa)(-)N(a) O (3.94)Ih a=1 )
Employing the chain rule for the second term in (3.90),

6ai _ 8 a9 aA I a6 8A2 8ý A
OK =A28K +5A2 2K OA2 3 (3.95)

where

I A = Oa:,a-
aK eA,6 OK

A6 OA (3.96)

Substituting in (3.90), we get

49(expK) 3 /\ (a~)' (a) 3 (b)\3 O - exp( AD)1\ N (2) 0N~)~ N(' (9N)

3 ~+ 3x(~ f )Na N (a 3 ZI ~Nb

3e + exp(A2) (() N(a) ® N(N) (13Ab) N(b) 0 N(b) (397)

a=1 ( ) ) b=l

3 where D,, = (A2 - A2)(AI - A2) Using (97) in (86) we get the desired result.
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1 3.7.2.1 First Order Approximation

5 In component form, we can write exp(Kj) as follows
1 1 .

exp(K,,) 25 6b + K,, + 1.KjkKkj + 1.K kKklKl +"" (3.98)

Retaining up to quadratic terms in (3.99) we get

il(expK)ij -
6,k' + 1 (+ i K( + KikK, i) (3.99)

OKki

1 3.7.3 Finite Deformation Update

Once all terms in eq. (3.48) and (3.49) are calculated, the full finite deformation update

comprises three steps:

1. Preprocessor step. Compute the predictor logarithmic elastic strains !logCo,+, from

the given updated deformation gradients Fn+, as in (3.19). Set e"+ equal to ½log6,(ý,.

5 Identify O'n with 9..

2. Small strain update. Effect a small-strain update driven by e•'+ with initial condi-

I tions o,., to compute Orn+l and A*.

3. Postprocessor step. Identify S,,+, with 0fn+l and compute F.'+, by the exponential

mapping (3.8).

It is important to note that the steps preceding and following the small-strain update

are purely kinematic in nature, and hence, material independent.

I
I
I

I51

I BASE



I

3.8 Numerical Results

In order to test the integration algorithm in the finite deformation range, we performed

a series of uniaxial simulations under displacement control. The material properties are

E = 7500kPa, v = 0.3 (3.100)

while the transformation ranges are:

I 0aM = 50, oM, = 70, aA. = 75, aAf = 90 (3.101)

I with

CM = 1,CA = 1, CL = 0.6 (3.102)

The tests are organized as follows:

* Test 1: we run a loading-unloading test with complete A -- M transformation and

3 complete M --+ A transformation (see Figures 3.8.1 - 3.8.5).

* Test 2: we run a loading-unloading test with incomplete A -- M transformation and

I complete M --+ A transformation (see Figures 3.8.6 - 3.8.10).

o Test 3: we run a loading-unloading test with complete A --+ M transformation and

incomplete M --* A transformation (see Figures 3.8.11 - 3.8.15).

e Test 4: we run a loading-unloading test with incomplete A .-- M transformation and

incomplete M -+ A transformation (see Figures 3.8.16 - 3.8.20).
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1 3.8.1 Test 1: Complete A --+ M and M --ý A transformations

Figure 3.8.1 presents the stress-strain plot for complete phase transformations in either

case. The applied strain as a function of the time parameter is presented next. Variable

loading increments can be applied under the present technique. The specimen is loaded to

a certain strain and unloaded to zero stress condition in each loading cycle. Figure 3.8.3

presents the stress variation at a Gauss point as a function of t. Figures 3.8.4-5 show the

variation in the internal phase transformation parameter C as a function of strain e at the

Gauss point and of time (t), respectively.iI

| Pseudo-elastic Behavior
* Complete M--> A, Complete A--> M

160

I 140

3 120-

10012

I80
M 60

40

* 20-

0 0.01 0.62 0.03 0.04 0.05 0.06 0.07 0.08

Strain (.)

I
Fig. 3.8.1 Stress Vs strain plot. Complete M --+ A and complete A -- M transformations.
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I Fig. 3.8.2 Strain Vs time plot. Complete M -- A and complete A -- M transformations.
160

I 140
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S1100
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Time (t)

Fig. 3.8.3 Stress Vs time plot. Complete M -- A and complete A -- M transformations.
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I 0.91

j0.8

4 j

0o.4-

I 0.3-
I ~ 0.2-

0.1-

f0I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Strain (%)

I Fig. 3.8.4 Internal parameter Vs strain. Complete M -. A and complete A -- M transformations.

0.9-
mv• 0.8-

S0.7

0.5-
• ="0.4-
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- 0.1

0
0 10 15 20 25 30 35 40

_ Time (t)

Fig. 3.8.5 Internal parameter Vs time. Complete M - A and complete A --4 M transformations.
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I 3.8.2 Test 2: Incomplete A -• M and complete M --- A transformations

3 Figure 3.8.6 presents the stress-strain plot for incomplete A -- M and complete M --+ A

transformation. The applied strain as a function of the time parameter is presented next.

m The strain is increased gradually and the specimen is unloaded to zero stress condition in

each cycle. Figure 3.8.8 presents the stress variation at a Gauss point as a function of t.

Figures 3.8.9-10 show the variation in the internal phase transformation parameter C as a

function of strain c at the Gauss point and of time (t), respectively.

* Pseudo-elastic Behavior
Complete M -- > A, Incomplete A -- > M

160-

3 140

120

I •100

.80-

60-

U
3 ~ 40-

20

-20 1 1 1 I30 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Strain (.)

I
Fig. 3.8.6 Stress Vs strain plot. Complete M -+ A and incomplete A --+ M transformations.
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Fig. 3.8.7 Strain Vs time plot. Complete M -+ A and incomplete A -- M transformations.
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Fig. 3.8.8 Stress Vs time plot. Complete M --+ A and incomplete A --+ M transformations.
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Fig. 3.8.9 Internal parameter Vs strain. Complete M -* A and incomplete A - M transformations.
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Fig. 3.8.10 Internal parameter Vs time. Complete M -+ A and incomplete A -- M transformations.
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3.8.3 Test 3: Complete A --+ M and incomplete M -- A transformations

l Figure 3.8.11 presents the stress-strain plot for complete A --+ M and incomplete

M -# A transformation. The applied strain as a function of the time parameter is presented

next. The specimen is unloaded to zero stress condition at the end of the final loading

cycle. Figure 3.8.13 presents the stress variation at a Gauss point as a function of t.

Figures 3.8.14-15 show the variation in the internal phase transformation parameter • as

a function of strain t at the Gauss point and of time (t), respectively.

U
1

Pseudo-elastic BehaviorI Incomplete M--> A, Complete A--> M
160

3 140

120

la 100-

80* I600
240

20

0 0.01 0.62 0.03 0.04 0.05 0.06 0.07 0.08S st ra (7.)

Fig. 3.8.11 Stress Vs strain plot. Incomplete M --+ A and complete A --+ M transformations.
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Fig. 3.8.12 Strain Vs time plot. Incomplete M -- A and complete A -- M transformations.
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Fig. 3.8.13 Stress Vs time plot. Incomplete M --+ A and complete A --+ M transformations.
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Fig. 3.8.14 Internal parameter Vs strain. Incomplete M -- A and complete A -- M transformations.
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Fig. 3.8.15 Internal parameter Vs time. Incomplete M --+ A and complete A -- M transformations.
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I 3.8.4 Test 4: Incomplete A -- M and incomplete M -+ A transformations

I Figure 3.8.16 presents the stress-strain plot for incomplete A --+ M and incomplete

M --+A transformations. A random strain loading is applied as a function of the time

I parameter and the specimen shows a strong path dependence, depicted in Fig. 3.8.16. Figure

3.8.18 presents the stress variation at a Gauss point as a function of t. Figures 3.8.14-15

show the variation in the internal phase transformation parameter ý as a function of strain

c at the Gauss point and of time (t), respectively.

Pseudo-elastic Behavior

160 Incomplete M -- > A, Incomplete A--> M

140-

120

I100
I 80- ...

I60-
40-

20

0 0.01 0.02 0.03 0.04 0.05 0.66 0.67 0.08
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Fig. 3.8.16 Stress Vs strain plot. Incomplete M -- A and incomplete A -- + M transformations.
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Fig. 3.8.17 Strain Vs time plot. Incomplete M - A and incomplete A - M transformations.
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Fig. 3.8.18 Stress Vs time plot. Incomplete AM -- A and incomplete A -- M transformations.
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Fig. 3.8.19 Internal parameter Vs strain. Incomplete M - A and incomplete A - M transformations.
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Fig. 3.8.20 Internal parameter Vs time. Incomplete M --+ A and incomplete A Al transformations.
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CHAPTER 4

A FINITE ELEMENT THEORY FOR COMPOSITE LAMINATES

SPECIALIZED TO FLAT GEOMETRIESI
4.1 Introduction

In the last two decades, composites have found increasing application in many engineer-

ing structures. Recent advances in the technologies of manufacturing and materials have

enhanced the current application of composite materials from being used as secondary

structural elements to becoming primary load-carrying structural components. Due to

the inherent inhomogeniety and anisotropy of the materials, analysis of these composite

structures imposes new challenges to engineers (Noor & Burton [1989,1990]).

Plate and shell structures made of laminated composite materials are often modeled

as an equivalent single layer using classical laminated theory (C.L.T) (Christensen [1979],

Jones [1975], Pagano [1989], Pipes & Pagano [1970]) in which the thickness stress com-

ponents are ignored. The classical laminate theory is a direct extension of classical plate

theory in which the well known Kirchhoff-Love kinematic hypothesis is assumed enforced.

This theory is adequate when the thickness (to side or radius ratio) is small. However,

laminated plates and shells made of advanced filamentry composite materials are succep-

tible to thickness effects because their effective transverse moduli are significantly smaller

than the effective elastic modulus along the fiber direction. Furthermore, the classical

theory of plates which assumes that the normals to the midplane before deformation re-

main ,traight and normal to the plane after deformation, underpredicts deflections and

overpredicts natural frequencies and buckling loads. These discrepencies are due to the

neglect of transverse shear strains. The errors in deflection, stresses, natural frequencies,

and buckling loads are even higher for plates made of advanced composites. The range
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of applicability of the C.L.T. solution has been well established for laminated flat plates

(Noor [1989], Pagano [1989], Reddy 11993]). These analyses have indicated that a theory

which accounts for the transverse shear deformation effects would be adequate to predict

the gross behavior of the laminate.

In order to overcome these deficiencies in C.L.T., refined laminate theories have been

proposed (Byun & Kapania [1992], Noor & Burton [1989], Reddy [1984, 1993], Robbins

et al. [1991], Whitney [1970]). These are single layer theories in which the transverse

shear stresses are taken into account. They provide improved global response estimates

3 for deflections, vibration frequencies and buckling loads of moderately thick composites

when compared to the classical laminate theory. A Mindlin type first-order transverse

shear deformation theory (S.D.T.) was first developed by Whitney and Pagano [1970] for

multilayered anisotropic plates, and by Dong and Tso [1972] for multilayered anisotropic

shells. Both approaches (C.L.T. and S.D.T.) consider all layers as one equivalent single

anisotropic layer; thus they are inadequate to model the warping of cross-sections, that

is, the distortion of the deformed normal due to transverse shear stresses. Furthermore,

I the assumption of nondeformable normal results in incompatible shearing stresses between

adjacent layers. The later approach also requires the introduction of an arbitrary shear

correction factor which is dependent on the lamination parametrs for obtaining accurate

* results.

The exact analyses performed by Pagano [1970,1973,1989] on the composite flat plates

have indicated that the distortion of the deformed normal is dependent not only on the

laminate thickness, but also on the orientation and the degree of orthotropy of the indi-

vidual layers. Therefore the hypothesis of nondeformable normals, while acceptable for

U isotropic plates and shells is often quite unacceptable for multilayered anisotropic plates

and shells with very large ratio of Young's modulus to shear modulus, even if they are

relatively thin (Chang et al. [1990], Reddy [1989, 1993]). Thus a transverse shear defor.
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mation theory which also accounts for the distortion of the deformed normal is required for

accurate prediction of the elastic linear behavior (deflections, thickness distribution of the

in-plane displacements, natural frequencies, etc.) of multilayered anisotropic plates and

I shells.

In view of these issues a variationally sound theory that accounts for the 3-D effects,

I allows thickness variation, and permits the warping of the deformed normal is required for

refined and accurate analysis of thick and thin composites. Embedding of shape memory

alloys and study of its interaction with composite laminates only in the context of such a

theory will be feasible.

4.2 New Ideas Proposed in the Present Theory

This section presents the noteworthy attributes of the proposed theory that directly

address some of the technical drawbacks present in most of the finite element theories that

have been proposed for composite analysis.

(i) The displacement field is continuous through the thickness of the composite while the

3 rotation field is layer-wise continuous (in 2-D) and can be discontinuous across the

finite element layers through the thickness direction. This displacement field fulfills a

priori the geometric continuity conditions between contiguous layers.

(ii) The assumed displacement field is capable of modeling the distortion of the deformed

normal, without increasing the order of the partial differential equations with respect

to the first-order transverse shear deformation theory.

(iii) The assumed displacement field has a 3-D feature, thereby modeling accurately the

interlaminar conditions and predicting the 3-D edge effects.

(iv) Like the shear deformable theory the proposed composite shell theory provides flexi-

bility in the spacification of the boundary conditions, Hughes [1987).

(v) In this theory, at most, only first derivatives of displacement and rotation fields appear
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I in the variational equations. The practical consequence of this fact is that only C'

continuity of finite element functions is required which is readily satisfied by the family

of Lagrange elements, Hughes [1987].

i (vi) It is feasible to employ this formulation for constructing plate and shell finite elements

via the finite element displacement method, Hughes [1987].

4.3 Assumptions of the Layer-wise Shear Deformable Shell Theory

1. The domain Ql is of the following special form

R3{G(z~yz) E e Zz(Y), (z,y)(1) E A(') C 1Z2 (4.1)

where AM1 ) is the area of the reference surface for layer 'T' and T is the total thickness

of the composite shell.

2. The displacement field is assumed to take the following form

II ,)(X, Y, z) = U(X, Y, z) + z(')(O(z, Y) (4.2)

I where uP)(x, y, z) are the translations and 0,)(x, y) are the out of plane director rota-

tions for the 1th layer reference surface, and C E 10, 1[ is a parameter that establishes

the position of a point from the reference surface.

3 3. The displacement field in the thickness direction is assumed to be a function of z, i.e.,

U3() = u3(x, Y,z) (4.3)

and by virtue of this assumption the transverse displacement, U3 , does vary through

the thickness, thereby producing through the thickness strains which result in thickness

variation in the shell.

4. As a consequence of the above relaxation

o&33 $ 0 (4.4)
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U i.e., we do not invoke the plane stress hypothesis.

5. We know from the elasticity theory that the displacements and stresses at the interface

between I" and (I + 1)11 bounded layers must satisfy the following contact conditions.

-U(,) =-•r('+I) (4.5)3•3 = U3 (4.6)

In addition, the following stress conditions need to be satisfied

(1) (1+1)
TG3 = "r3 (4.7)

T3(31) = '331+ 1) (4.8)

where -rý(0 denotes the interlaminar stress for layer 1.

A consequence of the second assumption is that each finite element layer is associated

with non-normal cross-sectional rotations in accordance with the Mindlin kinematic as-

sumption. Another consequence of the second assumption is that it results in independent

shear deformation of the director in each layer and allows the warping of the composite

cross-section. It also results in discontinuous strain fields across the different material sets,

thereby creating the provision of stress continuity across the material interfaces. Conse-

quently, equations (4.7) and (4.8) are inherently satisfied.

4.4 Kinematic Description of Multi-layered Sh'Hs

Figure 4.1 shows a composite laminate with 'm' number of material layers. (In Fig. 4.1,

m = 3). Consequently, the total thickness T is divided into 'm' finite elements through

i the thickness. Each layer of finite elements is associated with a reference surface which,

for ease of discussion, is assumed to be coincident with the lower surface of that layer.

It is important to note that the director rotation (i.e., 0,,) and the slope (i.e., u3 ,,) are

not necessarily the same and thus transverse shear strains are accommodated. This is to

be contrasted with the classical lamination theories (C.L.T.) in which 0,, = u3 ,,, and
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therefore the transverse shear strains are zero. Within each layer (of finite elements),

the director rotates by 0(), generating shear strain ~(l) Consequently, in the deformed

-- configuration, node 2 (see Fig. 4.1) moves to location 2'. Now, the director in the second

layer rotates by an angle 0.+"), generating shear strain (1+1) This kinematics repeats in

the successive layers and due to the continuity of the displacement field in the thickness

3 direction we obtain the new locations of finite element nodal points as 1', 2', 3' and 4'.

This new location of points produces a higher order variation of displacement field through

U the thickness direction, and thus precludes the need for introducing arbitrary polynomial

expressions to model the higher order variation of displacement field through the thickness.

I

I

I
U

U Figure 4.1 SheUl kinematics. Variation of transverse shear strains through the thickness.I 70
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4.4.1 Kinematics in the context of finite element method

The displacement of the shell is defined by the following relations

U"' (ý,,17,) = a(') (C,,7) + U(') (C,,7,) (4.9)

"o~n
s(t)(C 77)= E N,.(., v) fs-() (4.10)

nen

U(')(C' ,) = ZN"(C,77) Ua')(() (4.11)

ug(') Z- z.' (C)U•) ' (no sum) (4.12)

where

U(O is .he displacement of a generic point in the shell layer 1,

ft") is the displacement of a point on the reference surface of the shell layer 1,

U(3 is the 'director displacement' for the shell layer 1, and

V) :is the thickness function.

The director nodal displacement vector is constructed so that the director can rotate

and stretch, shown by an additive decomposition as follows

& -) (')+ (J') (4.13)

The through thickness stretch component can be expressed as

Ut) = (fia 3 - "(.+e,n)3) 3 (4.14)

where u. 3 and f(a+n.,)3 are the translations in the thickness direction of the lower and

upper surfaces belonging to layer '1'. The out of plane rotation component of the director

is constructed such that it may rotate, viz.,

ae(]~ (I) e f)! (4.15)
-- ."2 a -- •al ea2
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The quantities 0() and 0") represent the rotations of the director about the basis

vectors e(a') and e-(s)!, for shell layer 1, respectively.

4.5 Geometric Description of Multi-layered Shells

3 Figure 4.2 shows a typical configuration of a doubly curved composite shell. It can

be made of numerous plies with variable material properties, ply orientations and ply

thicknesses. In the proposed modeling of the mechanics of shell, no such assumption

has been made which would limit the number of individual plies, ply thicknesses, their

orientation or their stacking sequence.I
II

I
I

Figure 4.2 Micro and macro structure of the composite.

i Let us concentrate our attention to the case in which the composite is composed of four

laminates (see Fig. 4.3), each being modeled via a finite element layer. Figure 4.3 shows a

schematic diagram of the geometry of an individual layer
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Figure 4.3 Geometric description of an individual layer.

4.5.1 Geometric description in the context of the finite element method

The geometry of a typical laminate of the composite shell element is defined by the

3 following relations

2M7,0= EZN. (ý, 7)~ (4.17)

nt.,

7,0= ZN.(Co7?)X(')() (4.18)

x~ (C =Z.(' () (no sum) (4.19)

the position vector of a generic point of the shell for layer 1,

.5(1) the position vector of a point in the reference surface for layer 1,

X ge a position vector of a generic point relative to s(l) which defines the director

through the point for layer 1. (In computational shell literature, XV') is referred to as

fiber direction),
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I V1), the position vector of nodal point 'a' in layer 1,

-- N: two-dimensional shape function associated with node 'a',

nra : the number of element nodes in the reference surface of layer 1,

I V) a unit vector emanating from node 'a' in the director direction,

IZa : a 'thickness function' associated with node 'a', which is defined by the location

of the reference surface.

I The above relations represent a smooth mapping of the biunit cube into the physical

I shell domain. For 'C' fixed, the surface defined by (4.16) is called a lamina and for {f, 77}

fixed, the line described by (4.16) is called the director. The dire' tor is, in general, not

perpendicular to the laminae. Sometimes the director is referred to as the 'pseudonormal'.

For a particular choice of two-dimensional shape functions, eqs. (4.16)-(4.19) are pre-

I cisely defined upon specification of il), Z .()+ and Z(")- (a = 1,2,...nen). It is

3 convenient in practice to take as input the coordinates of the top and bottom surfaces of

the shell layer along each nodal director (z+ and r - respectively) and a parameter

3E [-1, l], which defines the location of the reference surface. For example if ý =

-1,0,+1 (respectively), then the reference surface is taken to be the bottom, middle, top

I (respectively) of the shell layer 1. From these data we may calculate

1 31 = (-z + (4.20)

(M+ (1)-
a 7 (4.21)

a a
Z(1 )(c) - (1 + )ZG' + •(1-()ZM't (4.22)

where fl fl denotes the Euclidean norm (i.e., ]mll = (x, + x2 +

4.5.2 Lamina coordinate system

At each integration point in the element a Cartesian reference frame is erected so

that two axes are tangent to the lamina through the point. The frame is defined by its
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orthonormal basis vectors J, C4, 4L in which eL is pe endicular to the lamina. The basis

vectors are calculated as follows n

t ~n - w Cmtalt

LC

I • mconstant

L€

Figure 4.4 Typical lamina coordinate system (C = constant surface)

Construct unit tangent vectors to the •- and 77- coordinate directions:

-~l (4.23)

eem- (4.24)

Consequently

e Ie") x e(01

The vectors tangent to the lamina are selected so that the angle between J and e(') is the

same as the angle between e11 and eJ and so that the J, e-basis is as 'close' as possible

to the e4), e() basis. Thus

L (e2= + 1 (1)

eL = -F- (el e) (4.27)

where

I (e(l) + e(1)
(Im = 2 '

(I) + e( ' ) (4.28)
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I
eL -X e(I) ( .

I
L 1 )

Figure 4.5 'r = constant surface.

Furthermore, we also define the orthogonal matrix to transform quantities from the

global coordinate system to tie lamina system3q = i = [eJ e4 eL4 (4.30)

For the present case
e1 = A,, e4 = e3 =Dn (4.31)

4.6 Constitutive Relations X3

3213

Figure 4.6 Schematic diagram of a composite and its constituent laminates.
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3 Suppose the composite is made of two laminates of the saine material but oriented

at +8 and -0 degrees with respect to the extension direction. Let C(.) represent the C

I matrix (constitutive matrix) for the laminate with regard to its mutually perpendicular

planes of elastic symmetry. In general it can be written as

"C11  C12 C13  0 0 C16
C 1 2 C 2 2 C 2 3  0 0 C 2 6C() C13 C23 C33 0 0 C36 (.2

0 0 0 C44 C45  0
0 0 0 C45 C55  0

C16 C26 C36  0 0 C66

where a represents the laminate in the composite.

Let X 1 represent the direction along the loading for the composite element and let X 3

represent its thickness direction. This axis is assumed to be perpendicular to the plane of

elastic symmetry. The C(a) for a laminate can be projected from its mutually perpendic-

I ular planes of elastic symrmetry onto the composite coordinate system (X 1 , X 2 , X 3 ) about

the X3 axis via the following transformation matrix.

C2  S2  0 0 0 CS
S2 C 2  0 0 0 -CS

Q 0 0 1 0 0 0
0 0 0 C -S 0 (4.33)
0 0 0 S C 0-2CS 2Ca 0 o o (C2-_5S)j

where C = cos 0, S = sin 9. The transformed constitutive matrix is obtained as

c(o) = Q(.)C(o)Q(.)

Irh general, C' will have the following form

C1, C 21 C; 3  0 0 C; 6

C;2 C2  C23  0 0 C26

3 Cel° C;3  C23 C33 0 0 C36  (4-3
0 0 0 C'44 C4 5  0

0 0 0 C45 C55  0

C[16 C26 C36  0 0 C66
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3 We evaluate the C(m.cro -lem.), i.e., the constitutive relation for the composite via the

i expression

e sC(macro elem.) = MC' 1) + (1 - m) C(2 )

3 where m = .1/C2 < 1, (6 = z(l), 62 = z(1) + z(2)).

4.7 Finite Element Formulation

1 4.7.1 Strong form of the problem

The governing field equations of composite laminates are discussed in detail in Pana-

handeh, Masud and Ghanimati [1993]. To the general equilibrium equations we add the

boundary conditions

I Ua= t on Fu (4.35)

U3 = Uý 3  on r., (4.36)

I8 = 60 on re (4.37)

I In addition

Troons = fo on r, (4.38)

-qzn, = q on rq (4.39)

S[Ino = so on r. (4.40)

I where ru r 3 represents the boundary where translation boundary conditions are applied;

3- U Fq represents to the boundary where traction boundary conditions are applied; Fr

corresponds to the boundary with prescribed rotation, and Fr corresponds to the portion

of boundary with applied moments.

As usual

n = n .E . n= A c (4 .4 1 )
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I denotes the unit outward normal to the boundary M of domain II.

Ir
,

n

1!2

Figure 4.7 Schematic diagram of the domain of computation.

3 4.7.2 Weak form of the problem

Multiplying the strong form of the problem with the admissible variations, integrating

by parts and using the prescribed essential and the natural boundary conditions we arrive

at the weak form of the problem. The spaces relevant to the problem are

s = (u, u3 ,e)I(u,,u3 , ) E H 1(02), (U,u3,e) : S --.+ x R x (:I 
(4.42)

s.t. u = it on Fu, U3 = fi3 on rF•, 00 = 6c on F17}

| and
an V = (fts,53,O)i! 3, 6) E H'(Q), (fi, i!3 ,e S--+ IRx IZxl? (4430 (4.43)

I s.t.fi=0onru, ii23=0onF 3, =Oon er

where S is the space of trial displacements and trial rotations, and V is the associated

I space of weighting functions, respectively. H'(f!) denotes the space of square-integrable

functions along with their generalized derivatives defined over Q, and H.(SI) is the subset

of H1 (Q2) whose members satisfy zero essential boundary conditions.

I 79

I BASE



I

1 4.7.3 Finite element matrices and vectors

The finite element stiffness matrix and load vector may be obtained directly from the

matrix form of the variational equation. The finite element approximations for u, ft, 0 and

I 6 are denoted by uh,tlh,0h and 0', respectively. In a typical element, possessing nn

nodes,

no,'

U=N. a (4.44)

"h E- N.-- (4.45)

net'

E" = a Z NG (4.46)

6h Z Na Oah (4.47)

I 6=---

where Na is the shape function associated with node 'a', uh -h 0, andSh are the a'.

nodal values of uh,ish, Oh, and Oh respectively. It is not necessary to assume that 8t and

uh be defined in terms of the same shape functions and nodal patterns.

4.7.3.1 Stress vectors

The resultant stress vectors for an element which has the 3D-effects of an elasticity

element and 2D effects of a shell like element are!
(|(1 '"ITI lI

÷ = _(I) I,
2 (inplane) (4.48)

I It (II2

q = (shear) (4.49)
q2
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S•all

a= () (bending) (4.50)"22

"{12

r3 1) { 1~3  (through-thickness) (4.51)

I 4.7.3.2 Strain vectors

3 The strain vectors corresponding to the stress vectors are

Iii(1) (inplane) (4.52)""722

= 13 (shear) (4.53)
* 723(J

(1)
K11

Km.2 2  (bending) (4.54)

2KI2

3y3(I)}I (through-thickness) (4.55)

We can combine equ. (7.3.2.1) and (7.3.2.4) to yield a vector that incorporates 3D

effects

(1)

"722 (4.56)

(1)

2-y12
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I 4.7.3.3 Matrix Differential Operators

*The strain vectors can be written in terms of differential operators as follows

JA a/ax'
1 ~ATa0/aX,

I C = j U (4.57)

1AfT/8X 2 + A~a/0X'

For the case of flat geometry and linear analysis, the matrix differential form for the

U modified membrane effect becomes

B/m a/ax2 (4.58)
Bm = O/aX3

II/alX 2 + aiaX'

Similarly, for the shear operator
1

or = Na3 = 1(U3,c, - (4.59)

= [DTa/a•,X AT] {U} (4.60)

I Therefore transverse shear strain vector for flat geometries can be specialized to

I =- [Br Bb] {1}
1~~~ ~~ U /x r/*[a/ax 1  A Tj (4.61)

a/1ax 2  AT

Following along the same lines, the bending strain vector can be written in terms of

matrix differential operators

I=[Bb", Bbb] {0 (4.62)

where

( fa/aX, J Ta/axI1b =.DTo/o X2 ; Bbb = AT/ X (4.63)

DTa/aX2 + DTo/OX' ATo/8X 2 + ATa/aX"
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Since for flat geometries D,, = 0

I [ o/ox,
bbm = [0]; Bbb - 8/iX 2  (4.64)

a/OXC2 + a/ax'

Finally, a total matrix differential operator B can be defined which produces the total

strain vector i when applied to the displacement field u and the rotation field 0:

i =B 0

I where
Bm 0

B = Bam B.b

Bbm Bbb

I
I
I
I

I
I
I
I
I s
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4.8 Numerical Examples

4.8.1 Free edge boundary-value problem. [45,-451s

The first numerical simulation is a prismatic symmetric laminate having traction-free

I edges at Y = ±a and surfaces Z = ±h, and loaded by strain applied only on its ends at

X = constant. Each layer is composed of unidirectional fiber-reinforced material such that

the fiber direction is defined by its angle 0 with the X-axis.

The elastic properties of various composite materials used in this numerical simulation

have been taken from Pagano [1989], p. 4. In this example a laminate consisting of four

I unidirectional fiberous composite layers, two with their axis of elastic symmetry (fiber

I direction) at +45 and two at -45 to the longitudinal laminate axis is considered. Figure 4.8

shows the laminate geometry and the coordinate system. 1% strain in opposite directions

is applied at X = -L and X = L respectively, while it is restrained to move in the axial,

lateral and thickness directions at X = 0. In order to solve this problem a finite element

mesh comprising 1920 composite shell elements with 2665 nodes is generated. The physical

dimensions for the numerical simulation are X = 60, Y = 20, Z = 2.5, with 12 elements

in X direction, 40 elements in the Y direction and 4 elements through the thickness. For

each finite element layer through the thickness, the reference surface is assumed to be

associated with the bottom surface of the composite shell. We will be looking at a section

cut at X = 0 for the displacement and the stress fields.

Figure 4.9 shows the axial displacement distribution at the top free surface of the

section cut at X = 0, and the results are compared with Moires et al. and Pagano et

al. [1989]. Figure 4.10 presents the interlaminar shear stress at material interface and

their corresponding values from J.N. Reddy [1993]. Figure 4.11 shows the major stress

components all. O"2, Of13, and their corresponding values from the numerical simulations

of Pipes et al. [1970]. In order to complete the discussion, we have also presented the

minor stress components in Fig. 4.12.
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4.8.2 Free edge boundary-value problem with a cylindrical hole. [45,-45]s

The composite laminate considered in this numerical simulation has the same physical

dimensions, material properties and loading conditions as in the previous case. However

the present laminate has a unit diameter cylindrical hole at (0,0,0) with the axis of the

cylinder coincident with the Z axis (see Fig. 4.13). The ratio of the diameter of the hole to

the width of the laminate iE 0.1. To solve this problem a mesh containing 720 composite

elements per finite element layer and with four layers through the thickness was generated.

Total number of nodes in this problem are 3780. Traction-free boundary conditions are

applied on the cylindrical surface of the hole. The laminate is contrained to move in the

axial, lateral and transverse directions by appropriately constraining the nodes along the

symmetry lines at X = 0.

Figure 4.14 presents the major stress components I , ff 1 2 , r13 at a section cut at X = 0

in the top layer with +45 degrees ply orientation. These results have been compared

with the 3D anisotropic calculations done with a mesh which is twice as refined as the

composite mesh. It can be seen that close to the hole there is a sudden increase in the

values of the stresses. In a region away from the free edge effects of the traction free

boundary and the hole, the ratio of aI and 012 agrees closely with that of the preceeding

I numerical simulation. Figure 4.15 shows the minor stress components which also show a

good agreement with the results of the anisotropic 3D simulation.

I
I
I
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Figure 4.8 Lamninate geometry and the coordinate system.
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1 4.9. Conclusions

I- In this chapter we have presented a finite element formulation which is suitable for the

analysis of multi-director/multi-layered, shear-deformable flat composite laminates. The

geometric description employed for the composite shells finds its roots in the so-called

degenerated shell approach. A set of kinematic hypothesis is then introduced to accommo-

date the effects of transversal warping of the cross section due to shear deformation as well

I as fiber compressibility resulting from transverse normal stresses. The kinematics are in-

dividually and independently represented for each layer, and are coupled by the conditions

of displacement continuity between the layers. The rotation field is layer-wise continuous

and is discontinuous across the layers in the thickness direction. Transversal warping of

the composite cross-section is described by individual layer directors which simultaneously

rotate and stretch. This results in discontinuous strain fields across the different mate-

rial sets, thereby creating the provision of stress continuity across the material interfaces.

Since the formulation resolves all strains, all stresses are computed through the three-

dimensional constitutive equations and the usual 'zero normal stress' shell hypothesis is

not employed. The different material layers with arbitrary fiber orientations may occupy

arbitrary layer locations in the composite. In this theory, at most, only first derivatives of

displacement and rotation fields appear in the variational equations. The practical conse-

quence of this fact is that only C' continuity of finite element functions is required which

is readily satisfied by the family of Lagrange elements (Hughes [1987]). In displacement

formulation of plates and shells, special attention needs to be given to transverse shear and

membrane terms to prevent the occurance of 'mesh locking'. We have employed the selec-

tive reduced integration technique on membrane and transverse-shear terms to avoid this

problem. Numerical results are presented to demonstrate the performance of the proposed

theory.

The present theory is suited for the study of smart plate and shell structures with
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I embedded sensors and actuators. In particular the use of shape memory alloys in smart

systems can be modeled through the present theory and the developments presented in

Chapters 2 and 3.I

I
I
[
I
I
I
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* CHAPTER 5

3 FUTURE RESEARCH AND POTENTIAL POST APPLICATIONS

It is expected that wide spread application of the intelligent materials technology using

the present generation of actuators, sensors, processors, and control methods will occur.

3 The breadth of application of this technology is expected to not only include the aerospace

industry but to become widespread in the home construction, automotive, and machine

I tool industries as well.

3 At the present time, all of the technologies needed for cost-effective application of

intelligent structures have not been sufficiently developed. There are a number of difficult

_ problem, which remain to be solved. In this section some for the more important of these

problems are briefly discussed.

Actuation Materials: In order to truly achieve the desirable level of control for many struc-

3 tural applications, actuation materials which have 3 to 10 times larger strain than those

currently commercially available must be developed, Crawley [1992], or materials should

be developed similar to shape memory alloys, but with much higher bandwidth than those

currently available. The proposed research work will provide a powerful analysis tool to

study the optimum characteristics of these actuation materials.

Development of optimization algorithms in order to compute the most efficient sensor

and actuators positions is another objective for the mathematical modeling of adaptive

structures. Some of these optimal placement strategies can be based on finite element

analysis output such as Independent Modal Space Control which utilizes the eigenvectors

from a finite element modal analysis. The proposed work has the potential to be extended

to study the optimal position of active elements in intelligent structures.

Many structural components in aerospace industry have curved geometries. The cou-
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1 pling of in-plane and out-of-plane strain measures in these structures will affect the in-

3 teraction between sensors/actuators and the host materials. In particular for the case of

shape memory alloys with large actuation strains, the results of this research could be used

3 to investigate the effect of curved geometries.

Further investigation on constitutive modeling of shape memory alloys under cyclic

thermomechanical loadings with various preload conditions is needed for evaluation of the

3 integrity of smart structural systems in the long term.

* 5.1 Potential Applications

3 Incorporating active materials into the structure of various aerospace vehicles will al-

low designers new flexibility with which to increase the vehicle performance. These perfor-

mance enhancements will allow future aircraft systems to outperform their adversaries and

better accomplish their missions. Potential applications for active structures span many

U disciplines including aerodynamics, propulsion, aeroelasticity, vibration and acoustics as

3 discussed in Agnes & Silva [1992].

Aerodynamics applications for active structures technologies require changing struc-

I tural contours of the aircraft to influence the airflow. Studies have shown that only small

changes in airfoil shape can result in significant drag reduction. This application is sim-

ilar to the Mission Adaptive Wing. Actuation requirements are for quasi-static control

3 therefore shape memory alloys may prove best for this application.

Another possible aerodynamic application is the control of unsteady aerodynamics seen

in either high angle of attack flight or in turbulent boundary layers. This application would

require local changes in the airfoil skin that would interact with the unsteady airflow, reduce

drag, and increase performance.

Another set of aerodynamic applications are in propulsion. Active flow field control

could be used to keep combustion optimal in future engine designs. Active materials could
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also be utilized in thrust vectoring nozzles to provide higher frequency control capability

and lighter weight. Materials development will have to proceed these applications due to

the high temperatures found in aircraft engines. The externals of engines, however, have

3 lower temperatures, on the order to 300-4O0o F, and suffer from many vibration problems,

particularly in the region of turbine rotor frequencies (30-100 Hz). Active damping of the

external components could provide life cycle cost savings for propulsion systems.

3 Solution of the engine externals vibration environment would be similar to other struc-

tural dynamics applications in vibration, acoustics and aerrelasticity. The high vibratory

environment of aircraft systems presents a range of challenges to the designer. Possible

applications would include active isolation of stores, equipment, sensors, or pods; skin

panel fatigue life extension; tail buffeting reduction, active landing gear and gun-fire vi-

bration reduction. These and other vibration applications vary in frequency, bandwidth,

temperature and control authority requirements. Solutions could involve active isolation,

damping, control, or any combination of the three.

Another class of structural dynamics applications is aeroelastic. Coupling between the

aerodynamic flow and structural dynamics can result in flutter. Active structures may

3 be able to attack this problem from both directions: aerodynamic and structural. Novel

control surfaces or active wing twisting may be possible. Direct active flutter control

3 through wing twisting will require an increase in the control authority currently available

from piezoceramics or an increase in the bandwidth of shape memory alloys.

I Acoustic applications comprise the last subset of structural dynamic applications. Two

3 areas which have been demonstrated are cabin noise reduction and cavity resonance prob-

lems. In summation, a wide array of aircraft applications for active structures technology

3 exist; albeit at the conceptual stage. Further study in this area is therefore required, and

this research is a step toward this direction.I
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