
CComputer Science ti

AD-A281 2561

The Impact of Software Structure and Policy on
CPU and Memory System Performance

• :i ... -J. Bradley C hen
May 1994

CMU-CS-94-145

jUL 081994

94-.20656•. • ,.. ,

t"4

94 7 6 102

The Impact of Software Structure and Policy on
CPU and Memory System Performance

J. Bradley Chen
May 1994

CMU-CS-94-145

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3890

Submitted in partialfL. - Ilment of the requirements
for the degree of Doctor of Philosopy.

Copyright © 1994 by J. Bradley Chen. All Rights Reserved.

Sommitte DTIC
SDouglas Tygar, Chair ELECTE E

Brian N. BershadM
Danel P. Siewiorek JUL 0 81994

Thomas R. GrossAnita Borg. Digital Equipment Corporation S1 G

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center. Aeronauti-

cal Systems Division (AFSC). U. S. Air Force, Wright-Paterson AFB, OH 45433-6543 under Contract F33615-90-
C-1465, Arpa Order No. 7597, the Advanced Research Projects Agency under contract number F19628-93-C-0193. the
National Science Foundation under Presidential Young Investigator Grant CCR-8858087, Digital Equipment Corpora-
don. Motorola, and TRW.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DEC, Motorola, TRW, NSF, ARPA, or the U.S.
Government.

Keywords: operating systems, memory systems, performance, address tracing

Legi School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

The Impact of Software Structure and Policy on
CPU and Memory System Performance

J. BRADLEY CHEN AccS FR
NTIS CRA&I t

DTIC TAB
Unannounced
Justification

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy By_____________

Distribution I
Availability Codes

Avail and I or
Dist Special

ACCEPTED:1

/ THESIS COMrIT'EE CHAIR DATE

DEPARTMENT HEAD DATE

APPROVED:

14DEAN DATE

Abstract

Operating systems, when compared to application programs, have received disappoint-
ingly little benefit from the performance improvements of the most recent generation of
microprocessors. This thesis used complete traces of software activity from a RISC-
based uniprocessor to expose the dynamic behavior of operating system execution and
explore the sources of poor performance. Traces from both Mach 3.0 and Ultrix im-
plementations of UNIX permitted a study of performance differences between microker-
nel and monolithic implementations of the same operating system interface. The com-
parison showed that both system structure and policy implemented in the system have a
significant impact on performance.

Measurements of XII workloads showed that memory system behavior for these large
workloads differs significantly from the kinds of workloads traditionally used for perfor-
mance analysis. Structural and behavioral similarities between large Xl I workloads and
the operating system are reflected in their overall performance.

These experiments represent the first application of address tracing with software in-
strumentation to the study of behavior in a popular operating system. The development
of the tools and their application in this research demonstrates that such methods are a
powerful tool for understanding behavior and interactions in complex software systems.
Overall, the experiments demonstrate that system level effects must be measured for a
complete understanding of overall performance.

Acknowledgements

In the few words that this acknowledgement permits, there is no way to adequately

recognize the contributions of all the people who have helped me in my thesis work.

Here I briefly mention a few of the names. The true evidence of their contributions

should be sought not here but in the document that follows.

Doug Tygar, as my advisor, has shown great wisdom, judgement, and patience in

guiding me through the Ph.D. program at Carnegie Mellon.

Anita Borg has been my mentor since my first internship in at the DEC Western

Research Laboratory in the summer of 1986. Without her involvement this project would

never have happened.

Brian Bershad taught me invaluable lessons on the meaning of quality research.

Thanks to David Wall for providing the epoxie tool, and for his continued support

throughout this project. I'd also like to thank the entire staff of the DEC Western

Research Laboratory, past and present, for showing me how fun and exciting computer

systems research can be.

Thanks to the School of Computer Science of Carnegie Mellon University, under the

leadership of Raj Reddy, Jim Morris, and the late Nico Haberman. I am honored to have

had the opportunity to be a part of the long tradition of excellence in systems research for

which this department is renowned. I look forward to seeing this tradition continue.

I'd like to acknowledge some of the other members of the CMU SCS community for

putting up with me and helping me along the way. From the Mach group: Bob Baron,

Sandro Forin, Dan Stodolsky, Mary Thompson, and Terri Watson. From the Coda group:

Satya, David Steere, Brian Noble, and Josh Raiff. From SCS Facilities: Mark Puskar,

Dave Livingston, and Gary Wallace. Also thanks to Anna Marie Mackuliak, Marian

D'Amico, Laura Forsyth, Maggie Muller, Angie Brookins, Jim Skees, Sharon Burks, and

Catherine Copetas.

This thesis is dedicated to my parents.

DEC, DECstation, Ultrix, VAX, and VMS are trademarks of Digital
Equipment Corporation.
Ethernet is a registered trademark of Xerox Corporation.
Gnu C Compiler is a registered trademark of Free Software
Foundation.
Intel is a registered trademark of Intel Corporation.
MIPS is a registered trademark of Stanford University.
PostScript is a trademark of Adobe Systems Incorporated.
R3000, R3010, and R4000 are trademarks of MIPS Computer Company.
Sun3 and SPARC are registered trademarks of Sun Microsystems,
Incorporated
UNIX is a trademark of UNIX Systems Laboratories.
Microsoft and Windows NT is a trademark of Microsoft Corporation.

Table of Contents

1. Introduction 1
2. Background 7

2.1. Related Work 7
2.2. Mach 3.0 and Ultrix 17

2.2.1. Similarities between Mach 3.0 and Ultrix 19
2.3. Workloads 20
2.4. Conclusions 20

3. The Tracing System 23
3.1. The Address Tracing System 23

3.1.1. Epoxie 25
3.2. Tracing the Kernel 28

32.1. Implementation details for the two systems 29
3.3. The DECstation 5000/200 Memory System 31
3.4. Ensuring Trace Quality 32

3.4.1. Avoiding Trace Distortion 33
3.4.2. Defensive Tracing 35

3.5. Validation of Methods 36
3.5.1. Program Execution Time 36
3.5.2. User TLB Miss Count 40
3.5.3. Explaining Anomalous Behavior 41

3.6. Experience with Mach 3.0 and Ultrix 43
4. Mach 3.0 and Ultrix: The Impact of Structure 47

4.1. Isolating the Effects of Structure 47
4.2. Comparative System Behavior 48

4.2.1. Breakdown of System Activity 50
4.3. Memory System Behavior: Seven Assertions 56

4.3.1. System and user locality 57
4.3.2. System instruction locality 58
4.3.3. Competition between user and system activity 59
4.3A. System self-interference 62
4.3.5. Block operations 64
4.3.6. Streaming writes 66
4.3.7. Page mapping policy 68

4.4. Conclusions 69
5. Mach 3.0 and Ultrix: The Impact of Policy 73

5.1. The Impact of Structure on Execution Time 73
5.2. Disk Policy 75
5.3. Page Mapping Policy 76
5.4. Conclusions 80

6. XI1 Workloads 81
6.1. Background 81

6.1.1. Related Work in Measuring Xl Performance 83
6.2. Workloads 84
6.3. Experiments and Analysis 85

6.3.1. Memory Cycles Per Instruction 85
63.2. Cache Effects 87

63.2.1. Inter-Context Competition 87
6.3.2.2. Self-Interference misses 89
63.23. Summary 90

633. TLB Behavior 91
6.4. Conclusions 92

7. TLB Behavior 95
7.1. Introduction 95

7.1.1. Workloads and Methodology 98
7.2. Instruction TLB results 99

7.2.1. Micro-TLBs 100
7.2.1.1. The Impact of System Activity 107

7.2.2. Instruction TLBs 108
7.2.2.1. The Impact of System Activity 112

7.3. Data and Shared TLB Results 113
7.3.1. The Impact of System Activity 118

7.4. Variable Size TLB Entries 121
7.5. Conclusions 125

8. Conclusions 127
8.1. Summary 127

8.1.1. Making generalizations from this work 129
8.2. Evaluation 131

8.2.1. Mach 3.0 and Ultrix 131
8.22. The DECstation 5000/200 Memory System 132

8.3. Implications for Current and Future Work 133
8.3.1. Software 133
8.3.2. Hardware 134

8.4. Conclusion 135
References 137
Appendix A. Hardware Specifications 145
Appendix B. Software Specifications 147
Appendix C. List of Abbreviations 155

List of Figures

Figure 3-1: Overview of the tracing system. 24
Figure 3-2: Instrumentation by epoxie 26
Figure 3-3: Error in predicted execution times for Ultrix. 39
Figure 4-1: Baseline MCPI for Ultrix and Mach. 51
Figure 4-2: Relative system overheads for programs running on 53

Ultrix and Mach.
Figure 4-3: System instruction cache misses for Ultrix and Mach. 55
Figure 44: System data cache misses for Ultrix and Mach. 56
Figure 4-5: User/system interference. 60
Figure 4-6: System self-interference. 63
Figure 4-7: MCPI for random page mapping. 67
Figure 5-1: Ultrix and Mach 3.0 Execution Time: The Impact of 74

Structure
Figure 5-2: Page Mapping Policy and Mach 3.0 Execution times. 77
Figure 5-3: Ultrix and Mach 3.0 Execution Time; Page mapping 79

policy as implemented.
Figure 6-1: Baseline MCPI for Xll Workloads. 86
Figure 6-2: MCPI with and without inter-context competition. 88
Figure 6-3: Inter-Context Competition, Associativity, and MCPI. 90
Figure 7-1: Eqntott micro-TLB behavior 100
Figure 7-2: Micro-TLB Behavior, 4K byte page 102
Figure 7-3: SPECmark micro-TLB Behavior, 16K byte pages 104
Figure 7-4: LRU vs. FIFO Replacement 105
Figure 7-5: Estimating micro-TLB CPI Contribution for gcc 106
Figure 7-6: Gcc Instruction TLB Behavior 110
Figure 7-7: Multi-task instruction TLB behavior 111
Figure 7-8: Mat300 Shared TLB Behavior 114
Figure 7-9: Tree Shared TLB Behavior 115
Figure 7-10: Multiprocess Mix TLB Behavior 116
Figure 7-11: Shared vs. Split TLBs 119
Figure 7-12: mat300 Data Memory Access Patterns 122
Figure 7-13: tree Data Memory Access Patterns 123
Figure 7-14: gcc Instruction Memory Access Patterns 124

iii

iv

List of Tables

Table 1-1: Seven assertions about the memory behavior of operat- 3
ing systems.

Table 2-1: Experimental workloads with execution times for a 21
DECstation 5000/200.

Table 3-1: Memory system simulation parameters. 32
Table 3-2: Run Times, measured and predicted, in seconds. 37
Table 3-3: TLB misses, measured and predicted. 41
Table 4-1: Summary of trace results. 49
Table 4-2: Summary penalty cycles (per instruction). 49
Table 4-3: MCPI contributions from the cache. 59
Table 4-4: MCPI contributions from cache competition. 61
Table 4-5: TLB activity. 62
Table 4-6: MCPI from block memory operations. 65
Table 4-7: Block memory operations and memory reads. 65
Table 4-8: Write buffer stall cycles per instruction. 66
Table 6-1: Experimental workloads. 84
Table 6-2: Instruction and Data Reference Counts 85
Table 6-3: TLB Misses per 1000 instructions. 91
Table 7-1: SPECmark FIFO micro-TLB Miss Rates 106
Table 7-2: Micro-TLB Miss Rates for Mach 3.0 108
Table 7-3: Micro-TLB Miss Rates for DEC Ultrix 108
Table 7-4: Instruction TLB Miss Rates 112
Table 7-5: Instruction TLB Miss Rates for Mach 3.0 112
Table 7-6: Instruction TLB Miss Rates for DEC Ultrix 113
Table 7-7: Shared TLB Miss Rates. 117
Table 7-8: Data TLB Miss Rates. 118
Table 7-9: Data Miss Rates for Mach 3.0 119
Table 7-10: Data Miss Rates for DEC Ultrix 120
Table 7-11: Shared Miss Rates for Mach 3.0 120
Table 7-12: Shared TLB Miss Rates for DEC Ultrix 120

v

Chapter 1

Introduction

Operating systems, when compared to application programs, have received dis-

appointingly little benefit from the performance improvements of the most recent genera-

tion of microprocessors [6, 63]. This reflects a lack of understanding among operating

system designers and computer architects as to the behavior of operating system execu-

tion on machines with hierarchical memory systems. System execution differs in impor-

tant ways from user execution, leading to worse-than-expected performance for system-

intensive workloads on current machines. As CPU performance improves and the ratio

of processor speed to memory access time increases, system performance becomes in-

creasingly sensitive to system organization and policy.

The goal of this thesis is to address some present shortcomings in our understanding

of system behavior. This thesis will show that, for a RISC-based UNIX workstation, the

structure of software systems and policy implemented in the systems have a large impact

on performance at the level of the hardware-software interface, both in terms of memory

system behavior and raw instruction counts. It also shows that these low-level system

effects must be measured for a complete understanding of overall performance.

The four main contributions of this thesis are:
9 An evaluation of the impact of operating system structure on overall perfor-

mance, founded on the comparison of two popular contemporary operating
systems: one with monolithic structure and one structured as a microkernel.

* An evaluation of the impact of some system policy issues on overall perfor-
mance.

e An evaluation of memory system behavior for an important class of
workloads that is often neglected in performance evaluations.

* A demonstration of new tools and methodologies for making complete and
accurate measurements of hardware/software interaction, using traces of
memory reference behavior.

In this research we consider microkernel operating systems, where significant operat-

ing system functionality is moved out of the kernel address space and into a user-level

server process. We also consider program execution on a RISC-based uniprocessor.

Measurements for RISC uniprocessors and microkernel systems are lacking in prior

research. Overall, system activity has been neglected in many recent studies because of

the inadequacy of prior techniques for making measurements on new machines, and be-

cause of the complexity involved in applying more recent methods. The measurement

systems developed for this thesis use novel software-based techniques that scale with

changes in hardware technology.

Because of the lack of quantitative measurements, operating system designers have

often relied on beliefs and intuitions when evaluating the performance impact of system

design choices. One of the original goals of this research was to investigate some of

these beliefs in the context of the two operating systems. We have collected some of the

beliefs in Table 1-1, and will use them as a basis of our comparison of memory system

performance in two implementations of the UNIX operating system: Ultrix from Digital

Equipment Corporation [79], and Mach 3.0 from Carnegie Mellon University [1, 10].

The beliefs in Table 1-4 are stated as assertions along with their impact for system desig-

ners. These assertions are derived from the computer systems literature and are based on

past experiences [31], measurements of microbenchmarks [15, 63], and extensive

measurements of real systems [3, 4, 6, 24, 26, 57, 78, 82]. This thesis will explore be-

havior related to the beliefs in Table 1-1, for truth as well as performance impact. This

exploration will demonstrate that system designers have an inadequate and sometimes

incorrect understanding of the performance impact of system structure for a current

uniprocessor-based computer.

The cross-system comparison built around the assertions in Table 1-1 focuses

primarily on system structure and its impact on execution time. However, overall perfor-

mance depends not only on system structure but also on policy implemented in the

operating system. To complete a comprehensive investigation of overall performance,

this thesis includes a discussion of two system policy issues - disk management and

virtual-to-physical page map policy - which are different for Ultrix and Mach 3.0 and

which significantly impact performance.

2

Assertion Implication

1. The operating system has less instruction and The operating system isn't getting faster as fast
data locality than user programs [24, 26]. as user programs.

2. System execution is more dependent on A balanced cache system for user programs may
instruction cache behavior than is user not be balanced for the system.
execution [78].

3. Collisions between user and system references A split user/system cache could improve
lead to significant performance degradation in the performance.
memory system (cache and TLB) [60, 78, 82].

4. Self-interference is a problem in system Increased cache associativity and/or the use of
instruction reference streams [57, 78]. text placement tools could improve performance.

5. System block memory operations are Programs that incur many block memory
responsible for a large percentage of memory operations will run more slowly than expected.
system reference costs [63, 78].

6. Write buffers are less effective for system A write buffer adequate for user code may not be
(as opposed to user) reference streams (6, 34]. adequate for system code.

7. Virtual page mapping strategies can have Systems should support a flexible page mapping
significant impact on cache performance [47, 59]. interface, and should avoid default strategies

that are prone to pathological behavior.

Table 1-1: Seven assertions about the memory behavior of operating systems.

The workloads used in the comparison of Mach 3.0 and Ultrix were selected from the

benchmarks commonly used to evaluate computer system performance. Although these

workloads have been selected and developed to identify strengths and weaknesses of

computer systems, they are not necessarily representative of the kind of applications for

which these machines are typically used [58]. To investigate the behavior of some more

popular applications, we measured the activity of workloads that use the X11 windowing

system. This thesis shows that XII workloads differ in important ways from traditional

benchmarks, that these differences impact overall performance, and that these differences

have implications for memory system design.

The measurements presented in this thesis were made using trace-based simulation.

The tracing system was developed for this thesis and made it possible to collect detailed

measurements of software behavior as a complete trace of memory references for both

user and system activity. These traces drove simulations of performance-critical

hardware structures such as caches whose behavior can't be measured directly.

The development of the tracing system was a significant part of this thesis research.

The tracing system uses software methods to collect complete address trace data on a

DECstation 5000/200 workstation. It is novel in that it is the first time such methods

3

have been applied to a commercial RISC-based uniprocessor computer or a widely used

operating system. Another novel aspect of the tracing system is the methods developed

and applied to establish the quality of the trace data it generates. The traces facilitated

detailed measurements of system activity not previously available for RISC uniproces-

sors or for microkernel-based systems. In particular, they provided data about system

instruction counts, memory system penalties, and system policy effects that are necessary

for a complete understanding of overall performance.

Both the comparative study of Mach 3.0 and Ultrix and the exploration of behavior of

X II workloads used a simulator for the DECstation 5000/200 memory system. Simula-

tion of a complete memory system made it possible to measure all system-induced

memory delays, rather than limiting measurements to delays from some isolated memory

system component. The tracing methods were also used in a study of translation

lookaside buffer (TLB) behavior, which is included in this thesis. Unlike the rest of the

thesis, which concentrates on software structure, the TLB study focuses on hardware

structure, and demonstrates how the tracing systems can be applied to problems in

hardware design.

An important contribution of this research has been in dermonstrating the strength of

the methods for revealing and explaining counter-intuitive system behavior. In this docu-

ment we discuss a number of examples. In Chapter 7 we show that higher system in-

struction counts in Mach 3.0 as compared to Ultrix can lead to better data TLB miss rates

Mach 3.0, contradicting a popular intuition than microkernel systems have worse TLB

behavior. In Chapter 4 we show that the microkemel structure of Mach 3.0 does not

induce significant competition between user and system contexts, contradicting another

long-standing assertion. Although user/system interaction across a UNIX interface has a

small impact on performance, the impact for client/server interaction across an Xl I inter-

face can be much larger, as will be seen in Chapter 6. In Section 4.3.7 we show that the

deterministic page mapping policy used by Ultrix will frequently induce worse cache per-

formance than a random policy.

This research differs significantly from prior work in the following:
* RISC processor architecture: Earlier trace-based studies of operating sys-

tems are founded on microcoded and multi-cycle per instruction architec-
tures [2, 3, 4, 24, 26, 82]. RISC computer architecture is substantially dif-
ferent from earlier design, and mandates an update of prior work.

4

"* Uniprocessor systems and workloads: This study focuses entirely on
uniprocessor systems and workloads. Despite the performance potential of
multiprocessor systems, uniprocessors continue to dominate computing, a
situation which appears likely to continue. Several earlier studies [78, 82]
emphasize multiprocessor specific systems and workloads.

"* Multiple Operating Systems: Working with Ultrix and Mach 3.0 made it pos-
sible to extend analysis beyond what is possible in a study of a single system.
It enabled a comparison of the dynamic behavior of microkernel and
monolithic systems. More generally, it made it possible to identify and com-
pare issues that differentiate the two systems and compare their effect on
performance. Finally, it allowed us to identify performance problems com-
mon to both systems, an indication of how current memory system designs
are ill-suited for operating system execution.

Previous studies that consider operating system activity concentrate -n varia-
tions in memory system structure [2, 3, 4, 16, 23, 57, 66]. ough
several [2, 3, 4, 66] used address traces of both DEC Ultrix and L VMS
operating systems, the data from the two systems was used primarly as a
basis for identifying common behavior in both operating systems without
drawing distinctions between them.

" Simulation of complete memory systems: Previous studies have concentrated
on memory system components such as caches or TLBs in isolation, varying
parameters such as cache size in an attempt to optimize behavior over a
given workload set [3, 23, 38, 60]. Simulating a complete memory system
has two important advantages. First, it permits an objective evaluation and
comparison of operating system memory performance, considering the
delays from all memory system components and not just one. Second, it
permits a comparison of the relative importance of various memory system
components in overall performance.

"* Diverse workloads: Many prior studies hide differences in behavior between
workloads by averaging measurements or only reporting partial results. This
can be misleading as activity in the operating system varies significantly
with different user workloads. In this study we have tried to expose and
explain measured differences between workloads.

In the next chapter we discuss related work, and describe in detail the systems to be

measured. Chapter Three gives more detail on the address tracing system, including a

discussion of the methods used to measure and improve the quality of the address trace

data.

The introductory material is followed by four chapters of analysis. Chapter Four con-

tains a broad comparison of DEC Ultrix and Mach 3.0, exploring how the differences in

structure between the two systems have impact on performance, both in terms of instruc-

tion counts and memory system latencies. Chapter Five completes the discussion of

Mach 3.0 vs. Ultrix performance, using execution time as a metric of overall perfor-

5

mance, and focusing on the impact of system policy. In Chapter Six we look at XII

applications running under Ultrix, to explore how the differences in activity and structure

affect the behavior of these workloads relative to the workloads that are more tradition-

ally studied. Chapter Seven explores issues in TLB design, both in terms of user-level

activity and performance variations induced by the structural differences between Ultrix

and Mach 3.0. It is an example application of the tracing methodology to a hardware

design problem. Chapter Eight closes with a final summary and conclusions.

6

Chapter 2

Background

This chapter places the work for this thesis in the context of current and prior

research. The first section discusses related work in tracing and measurement systems.

This is followed by background information on the software systems measured for this

study - first comparing Mach 3.0 and Ultrix, then giving details on the workloads used

in the cross-system comparison.

2.1. Related Work

In this section we discuss some of the prior work that has influenced the experiments

and measurement systems developed for this thesis. We start by giving an overview of

earlier work in understanding operating system behavior. This is followed by a discus-

sion of tradeoffs between hardware and software measurement techniques. We consider

current and previous measurement systems to explore some of the issues that influenced

the choice of software methods for these experiments. Next we look at some recent

hardware and software tracing projects and systems that explore memory system be-

havior with measurements other than address traces.

Comparing System and User Behavior

System execution and user execution differ in important ways. Some of the dif-

ferences, such as exception handling and the absence of floating point activity, are easy

to recognize. Others, such as the differences in locality patterns between operating sys-

tem activity and user workloads, are more subtle. Active code in the operating system is

spread throughout sparse program text, inducing locality patterns that differentiate refer-

ence patterns in the kernel from typical user behavior. As an example, consider an

operating system with one megabyte of kernel text running on a uniprocessor computer

7

with a 64K byte direct-mapped virtual instruction cache. In this situation, each kernel

instruction overlaps with sixteen other kernel instructions in the cache. In contrast, many

of the SPEC workloads [76] have less than 64K bytes of text. User text for such a

workload will fit into the direct-mapped virtual cache with no collisions. The probability

of user instruction collisions is zero, but the probability of collisions between system in-

structions is much higher. Such observations are consistent with our measurements (and

those of others [3, 24, 78]) which indicate that cache behavior for system code is substan-

tially worse than for user code. System data is also sparse as compared to user data.

Control and data reference patterns for the operating system are generally more complex

than those of user execution, and this is reflected in cache behavior.

Time spent in the operating system serving application requests is often an important

component of overall performance. This observation is substantiated by the measure-

ments made for this thesis and also by prior work. In the DEC Ultrix workloads

measured by Agarwal et al., system references account for up to 50% of total memory

activity [3]. Recent studies [6, 57, 63] document poor system performance, asserting that

the penalties from system effects have been underestimated. Despite the well known

differences between system and user execution, and the significant amount of overall

time spent in the system, many studies of memory behavior disregard system

effects [9, 20, 38, 48, 57, 74, 75]. These studies can be misleading because for many

workloads system activity is the principal source of memory delays for modern machines.

Differences between system and user memory behavior are documented in prior

research. Clark and Emer [26] identified three differences between system and user ex-

ecution:

"* System code and data is bigger than user code and data.

"* System data structures are more complex and pointer rich.

"* System loops have fewer iterations.

A later study [3] offered evidence that the first and third items apply to caches but that

the second does not.

The coding style and functionality of operating systems has not changed significantly

since these earlier studies, so the poor cache and TLB behavior they document can be

expected to continue. However, the size and complexity of non-system code has in-

creased significantly. An example is server-based systems, such as the X 1 workloads

discussed in Chapter 6, which often have complexity and text size comparable to an

operating system, and event-driven activation patterns, as in the operating system. Other

examples are PC-based interactive applications, such as spreadsheets and document

preparation systems, and object-based systems. Such workloads can have code and data

of size and complexity comparable to the operating system. As bigger and more demand-

ing applications come into common use, the behavioral differences between system ex-

ecution and user execution become less distinct. This suggests that the memory reference

behavior of large user-level systems should become more like that of the operating sys-

tem, a conclusion that finds support among the results of this thesis. Unfortunately, com-

puter performance evaluation is currently dominated by such workloads as the SPEC-

marks, which, in structure and code complexity, are often difficult to distinguish from the

workloads common on an earlier generation of machines.

Tradeoffs in Hardware and Software tracing

In their study of VAX 11/780 TLB behavior [26], Clark and Emer used both software

simulation and direct hardware measurement. Their contributions include several in-

sightful observations about the tradeoffs between hardware measurements and software

simulation. These tradeoffs are repeated here, stated in terms of advantages and dis-

advantages of software-based methods:
1. Advantage: No special hardware is required. Hardware measurement re-

quires "some sort of instrument" that makes an electronic connection to the
physical machine.

2. Advantage: Flexibility. Data from software methods can be used to drive
an arbitrary simulator, permitting more flexibility in the systems that can be
studied. Direc# measurement is limited by the hardware of the measured
machine.

3. Advantage: Repeatability. It is possible with software methods to repeat a
simulation with the same data set, or use a given data set as input for mul-
tiple experiments. Repeatability in direct measurement is precluded by
non-determinism in hardware and software.

4. Disadvantage: Can be inaccurate. Simulators can become complicated and
difficult to debug, particularly as they attempt to closely model the behavior
of real hardware.

5. Disadvantage: Big data. Modeling of certain hardware components may
require an amount of data that makes software methods impractical.

6. Disadvantage: Workload. It may be difficult to create simulator input rep-
resentative of a realistic or even interesting workload.

9

7. Disadvantage: Computational resources. Simulated hardware typically

runs an order of magnitude slower than real hardware.

Computer architecture has evolved significantly since these observations were

originally presented. The essence of the observations remains valid: that hardware and

software methods have strengths and weaknesses, and that they tend to complement each

other. However, as methods evolve and computational and storage capacities of

machines change, some observations need revision.

A number of properties of modem computer architectures create new, substantial

obstacles for hardware methods. This tends to complicate methodologies that rely on

hardware support and increase the importance of the advantage for software methods in

the first observation. One such property is shrinking cycle time. A hardware monitor is

ultimately limited by the speed at which events can be measured and recorded. For the

machine that Clark and Emer studied, memory was faster than the processor, and it was

straightforward to build a device that could write several words of trace for every

machine cycle. CPU speed has grown much more quickly than memory speed since the

time of their study, so building such a measurement instrument is no longer straightfor-

ward. Hardware monitoring systems do not scale with CPU speed. As machine cycle

times decreases they become increasingly difficult to implement. This disadvantage of

hardware methods translates to an advantage for software methods, as they tend to scale

with the execution speed of the subject machine. They benefit fully from the perfor-

mance of the memory hierarchy of the traced machine, while avoiding the engineering

effort required to build such a memory system.

The development of special-purpose hardware measuring devices is also discouraged

by the shrinking time between generations of new machines. This tends to decrease the

useful lifetime of such a device, and consequently time available for its development.

Another aspect of modem architectures that poses an obstacle to hardware measure-

ment is the movement of more functionality inside of sealed chip packages. This limits

the signals that are realistically available for measurement to those appearing as output

pins on the chip package. A straightforward example is on-chip caches. Normally an

on-chip cache will prevent the majority of memory references from ever appearing on

chip output pins. On-chip caches must be disabled if a complete address trace is to be

collected by a hardware monitor. This results in a slowdown of ten or more cycles per

10

memory reference [5, 56], which is of similar magnitude to the time penalty for software

methods.

Architectural features such as pipelining complicate the situation further. To il-

lustrate, consider the problem of determining when an instruction address appearing on

the chip output pins corresponds to an instruction fetch. Often the signal on the pins will

not correspond to an instruction fetch. This occurs during a memory system stall or when

the pipeline is being cleared to handle an exception. Thus, it is necessary to trace and

interpret additional output signals to know when an instruction fetch has occurred. Even

after an instruction fetch has been identified, it can be difficult to determine if the instruc-

tion was executed, or if it was aborted for some reason before reaching the end of the

pipe. Note that hardware monitors detect hardware events such as bus cycles, while

software methods record executed instructions. Hardware event monitors are most useful

for precisely characterizing a specific machine. Software methods provide traces at a

level of abstraction and generality appropriate for modeling hypothetical memory sys-

tems.

Due to the need of large traces [16], most recent software tracing systems, including

the system developed for this dissertation, use the trace as it is generated, rather than

storing it to stable media. In this way, the problem of big data (Observation 5 above) has

been partially overcome. It also follows that the desirable property of repeatability (Ob-

servation 3) does not apply to these recent software tracing systems.

Repeatability is useful for debugging and can be useful when comparing different

simulated hardware, but it does not reflect an accurate system model. Real computer

systems have non-determinism, and hence are not perfectly repeatable. For the experi-

ments discussed in this dissertation, the variation between runs was minimized by making

experiments sufficiently long, such that overall trends in behavior dominate the variations

due to non-determinism.

The impact of Observation 7, relating to the computation requirements of hardware

simulation, is subject to three trends that are somewhat interrelated: the increasing speed

of computer systems, the increasing size of structures (caches etc.) to be simulated, and

increasing resource requirements of workloads of interest. Two remarks are in order.

First, with address trace data, it takes much longer to analyze a word of data than it does

11

to generate it, so the speed of hardware data-generation is of little benefit when software

methods must be used to analyze the data. Second, with current technology and current

workloads a simulation-based study is feasible, as demonstrated by the present work. In

the systems used for the present research, the scaling factor for real time to simulated

time (trace generation+analysis) is about 100.

New Tradeoffs for Hardware/Software Systems

The seven observations by Clark and Emer are based on measurement systems avail-

able in 1985. More recent developments in software methods suggest several new obser-

vations on the tradeoffs between hardware and software methods for address tracing.

C0,mpactness of trace is a useful property of many recent software address tracing

systems that is difficult to achieve with hardware tracing. Most software tracing systems

generate only one instruction address per basic block executed, significantly reducing the

amount of instruction trace generated. An example is the QPT system from the Univer-

sity of Wisconsin, which analyzes the control-flow graph of a program for optimal place-

ment of instrumentation, reducing slow-down for traced code and the size of trace that is

generated. [9] Although compact trace might be possible for a hardware system, no such

system is known, and the additional expense involved in building such hardware may

make it impractical.

Another advantage of software methods is the ease of integrating useful supplemental

information into the trace as it is recorded. An example is virtual-to-physical page map-

ping information. Ideally, both physical and virtual addresses should be available in ad-

dress trace data. Physical addresses are needed to model the behavior of data in physi-

cally addressed memory structures. Virtual addresses and address space identifiers are

needed to determine for a given address the precise instruction or data item being

referenced. Virtual addresses are sufficient when the algorithm that creates the virtual to

physical mapping of interest can be simulated. Although this information can be ob-

tained in hardware tracing systems, it generally requires either software support or ad-

ditional hardware complexity. The information is available in a relatively straightfor-

ward way when software methods are used.

Software methods provide both physical and virtual addresses. In the system

developed for this thesis, a trace of virtual addresses is augmented with page map and

12

context switch information so that physical page mappings and physical addresses can

also be determined.

With a hardware tracing system, obtaining both physical and virtual addresses will

generally be more difficult. Depending on hardware and monitoring equipment, an ad-

dress trace may include virtual or physical addresses, but will generally not include both.

This means that page mappings must be extracted by some other method. There are two

possibilities: use software support or trace another bus. Either method will complicate

hardware trace collection.

A final advantage of software tracing systems is the relatively low cost of duplicating

the system. Software tracing does not require custom hardware or special-purpose

measurement devices, so the cost of duplicating a software tracing system is potentially

much lower than the cost for duplicating a hardware system. An example is the tracing

system developed for this thesis, which is currently being used for several different

projects both within and outside of Carnegie Mellon University.

Hardware Address Tracing

A review of recent hardware tracing projects demonstrates how the obstacles of

hardware tracing have limited its applicability in current research.

In ATUM, the microcode of a DEC VAX 8200 was modified to record an address

trace of system and user execution1 [3]. ATUM was demonstrated to be a valid tech-

nique for producing trace on microcoded machines. The system was used to study both

VMS and Ultrix systems and a broad range of cache configurations.

ATUM has several limitations. The foremost is that it can only be used on

microcoded processors. Recent trends towards RISC processor design suggest that

microcode has little application in future processor designs. Another limitation of the

system is that long contiguous trace was not possible. The ATUM designers proposed

trace stitching to address this limitation.

Researchers at Stanford University used a hardware monitor to trace cache misses on

a Silicon Graphics multiprocessor based on the MIPS R3000 microprocessor [78]. With

Iln as much as microcode can be considered a part of computer hardware, and the software running on

the traced system was unmodified, we classify this as a hardware method.

13

their system they determined that a relatively small amount of system code and data were

responsible for a large proportion of system cache misses. They also investigated issues

related to multiprocessors. An important advantage of their technique is that tracing

events are infrequent as compared to full reference traces, making the application of

hardware monitors less difficult. A limitation of the technique is that only misses, not

references, are recorded. This hides much interesting information, such as cache miss

rates, TLB/write buffer behavior, and dynamic instruction frequency. It also makes it

impossible to study behavior of caches smaller than those of the traced machine.

The Monste- system from the University of Michigan uses a logic analyzer to capture

signals from the CPU chip of a DECstation 3100 [59]. They have used their system for

extensive studies of system TLB behavior (60]. A limitation for this system is the

amount of contiguous trace that can be collected in the logic analyzer, and also the dif-

ficulty in interpreting signals on chip output pins in real time.

The BACH system, developed at Brigham-Young University, has been used to collect

address trace on both Intel 80486 and Motorola 68030 based machines [36]. They use

very fast hardware to record signals from processor output pins at full clock speed. A

high-priority interrupt is used to suspend the traced system while address trace is being

processed. Their system is designed to work for processors with a clock rate of up to 25

MHz. They have used measurements from their system to argue that system behavior

must be measured to achieve accurate results for some workloads. They have made a

number of short traces of an Intel 80486 system publicly available. They are reported to

be working on a tracing system for a SPARC based Sun workstation. To date they have

not demonstrated their system for RISC-based machines or machines with faster clock

rates.

Software Address Tracing

For our research, a tool called epoxie from DEC Western Research Laboratory was

used to instrument executables so that address trace is generated as a side effect of

program execution. Epoxie borrows from a previous DEC WRL tracing system that ran

on the DEC WRL Titan computer [61]. It was based on load-time modifications in an

intermediate language called Mahler [16, 84]. The WRL systems and the system used in

this research both use the operating system to control the tracing experiment and manage

14

trace data. This makes it possible to handle trace activity from multiple concurrent con-

texts, and to use arbitrarily long trace experiments by analyzing address trace as it is

generated.

Epoxie instrumentation is similar to that of the pixie tool from MIPS Computer Sys-

tems [75]. Both use register stealing to allocate registers for the tracing system after

compilation and program loading. There are several differences between the two tools.

When code is instrumented for tracing, jump and branch offsets must be adjusted for the

new binary. With epoxie, relocation information is required, and the loader is used after

instrumentation to adjust the offsets. Pixie avoids the relocation step by using a jump

table the size of the original executable. The jump table is used to look up corrections to

jump offsets made necessary by instrumentation. In using a jump table, Pixie doesn't

need relocation information.

Another difference between epoxie and pixie is that pixie uses a file descriptor for

trace output, while code instrumented with epoxie writes trace into special pages reserved

in user memory. The epoxie mechanism is better suited for a system in which the operat-

ing system kernel will be used to manage trace from multiple user processes.

A final difference between epoxie and pixie is that epoxie includes support for traced

Mach 3.0 threads and for differentiating between instrumented and uninstrumented code.

Pixie is limited to single-threaded users programs.

A number of tracing tools have followed these two early systems. Epoxie instruments

and records trace for every basic block and every data reference. In QPT [9, 48] the fre-

quency of such trace events is reduced through an analysis of program flow which allows

some of the instrumentation sites to be eliminated. The analysis used in QPT reduces

overhead due to tracing by 20-40%. In Shade [27] execution time for tracing experi-

ments is improved by executing both the simulator and the workload in the same address

space.

Epoxie was modified for this project to minimize the expansion of traced text. The

text growth factor for epoxie is observed to range between 1.9 and 2.3, although actual

growth depends on the length of basic blocks and the density of memory instructions.

This compares very favorably with other instrumentation tools. Text commonly grows

by a factor of five with the original epoxie. When used for address tracing, pixie com-

15

monly increases text size by a factor of six2 . The text growth factor for QPT ranges from

four to six [49]. It should be noted that, excepting the modified epoxie, minimal text

growth was not a design objective for any of the these tools, and is only of importance

when the additional virtual memory activity caused by text growth is an issue, as when

monitoring system activity.

Other Measurement Systems

Researchers at Carnegie Mellon University used a combination of hardware and

software support to implement event collection tools for analysis and tuning of parallel

programs on the Digital Equipment Corporation M31 VAX multiprocessor [68]. This

system used a hardware apparatus to collect and filter low-level events, modified

microcode to monitor event sensors, and software tools for further analysis. They also

explored tradeoffs for hardware, software, and hybrid methods for event collection and

analysis.

Several other systems have used event counts or end-to-end measurements of execu-

tion time to detect and isolate performance problems in the memory system. These sys-

tems typically work at a level of abstraction familiar to the programmer, such as proce-

dure boundaries and source-code lines. Although these tools are designed for detecting

performance problems in user level code, they are haven't been adapted for use with

operating system performance issues.

MTOOL [39] compares execution time of program segments to predicted time for a

perfect memory system. A large difference between the predicted and the measured

times implies a possible memory system performance problem. MTOOL was applied

primarily to detecting memory bottlenecks in FORTRAN programs, and is not ap-

propriate for understanding operating system behavior. MTOOL was adapted to work

with shared-memory multiprocessor programs [40]. Another project, MemSpy [52], is

based on the Tango [30] simulation and tracing system. Tango is designed for use with

parallel applications and multiprocessor systems, and has not been applied to mul-

tiprogrammed uniprocessor workloads or measurements of operating system activity.

2 The original gcc binary has 688128 bytes of text. Pixie -t gcc grows program text to 4131968
bytes. Epoxie -t gcc grows text to 3780608 bytes. QPT expands gcc text by a factor of 5.5 [491.
The modified epoxie grows gcc text to 1515520 bytes.

16

The measurements for this thesis concentrate on aggregate user and system behavior. In

contrast, both MTOOL and MemSpy identify performance problems as specific segments

of code (also data for MemSpy) within a user workload, as would be useful for tuning.

The PSpec system [64] allows the programmer to augment program source code with

assertions about program performance. A runtime system then measures the validity of

performance assertions, and provides notification when a performance assertion is vio-

lated.

2.2. Mach 3.0 and Ultrix

In this section we describe Mach 3.0 and Ultrix, to provide background for under-

standing the kernel tracing system as well as the cross-system comparisons in Chapters 4,

5, and 7.

The fundamental difference between Ultrix and Mach 3.0 is that Ultrix is a monolithic

or integrated system, and Mach 3.0 is a microkernel or kernelized system. In a

monolithic system, all system services are implemented in a single system context, the

monolithic kernel. In a microkernel system such as Mach 3.0, primitive abstractions such

as address spaces, task creation and destruction, and communication are implemented in

the kernel, with higher-level systems services implemented in a separate protection

domain as a server. Many current operating system text books discuss microkernel and

monolithic kernel design. (See [17, 73, 77].)

The Mach 3.0 microkernel exports a small number of orthogonal abstractions includ-

ing interprocess communication (IPC), threads, and virtual memory. Higher-level operat-

ing system services are implemented in a user-level process called the UNIX server. A

program running on Mach 3.0 contacts the UNIX server through the Mach kernel's IPC

interface [35], together with a user-level transparent emulation library, which is a shared

library that is loaded into the address space of every process. The microkernel reflects

UNIX system calls back to the calling program's emulation library, which converts the

calls into RPCs to the UNIX server. Simple UNIX services such as getpido and signal

masking are handled within the emulation library.

Another difference between Ultrix and Mach .;.) is in their UNIX implementations.

Both Mach 3.0 and Ultrix support the 4.3 BSD Unix application programer interface

17

(API). This makes it possible to do a cross-system comparison using the same user ex-

ecutables. Although both systems support the same API, the implementation of UNIX

primitives is not the same. Ultrix implements UNIX directly, while Mach 3.0 imple-

ments UNIX in terms of Mach 3.0 primitives. This extra layer of software abstraction

leads to increased system overhead in Mach 3.0.

Mach 3.0 and Ultrix are furthcr distinguished by differences in functionality between

the systems. An example is in the virtual memory implementations. Ultrix virtual

memory is derived from the original BSD abstractions [7], and is relatively machine-

dependent. Mach 3.0 uses a more flexible and aggressive virtual memory system which

exports a user-level interface and which is partitioned into a machine-dependent and a

machine-independent layer [67]. This extended functionality is not required by standard

UNIX workloads such as those used in the cross-system comparison.

Mach 3.0 is written to be largely machine-independent and portable. It runs on a

large variety of current uniprocessor and multiprocessor platforms. This distinguishes it

from Ultrix, which runs on DEC VAX computers and DECstation computers only. In

Mach 3.0, all machine-dependent code is isolated by files and accessed through a

procedure-call or constant-definition interface. In Ultrix, machine-dependent and

machine-independent code is mixed within files, with the C preprocessor used exten-

sively to isolate machine-dependent sequences.

For the cross-system comparisons, we have attempted to eliminate obvious superficial

differences between the two systems. Both systems are compiled with the same compiler

and at the same optimization level3 . Both systems use a large file buffer cache (12

megabytes). Experiments on both systems were run in single user mode. The same

scripts were used on both systems to run traced workloads.

3See Appendix B for details on software configuration.

18

2±.1. Similarities between Mach 3.0 and Ultrix

Although the cross-system comparison between Mach 3.0 and Ultrix is motivated by

the structural differences between the two systems, there are also substantial similarities

between the two systems, and these similarities are the foundation for the comparison.

To understand these similarities, we consider system activity in terms of the two external

interfaces the operating system presents: the UNIX API, and the machine interface

presented by the computer hardware. We will argue that activity which implements these

external system interfaces is largely similar for Mach 3.0 and Ultrix. The remainder of

activity, that which supports the linkage between these two external interfaces, is dif-

ferent between the two systems, and these differences are due to system structure.

The code base for the UNIX API is the same in both systems. Both UNIX implemen-

tations are derived from the BSD implementation of UNIX. This shared code base ac-

counts for approximately 125000 lines of source code and 500K bytes of object code.

This common code is in the UNIX server in Mach 3.0 and in the kernel in Ultrix. As

both UNIX implementations are based on the same code, the activity to support this inter-

face is comparable.

Three kinds of interactions dominate the operating system activity across the

hardware interface: device management, trap handling, and virtual memory. Activity in-

duced by device management and trap handling is similar for the two systems. Although

VM related activity is different for the two systems, the differences are given considera-

tion in the cross-system comparison.

The device drivers were redesigned for Mach 3.0 and are not the same as those for

Ultrix. The I/O system in Mach 3.0 was designed to minimize machine and device de-

pendent code, support user level device drivers, and to support location independence

(i.e., devices located on another node of a hypercube), but without sacrificing

performance [37]. The Ultrix and Mach 3.0 1/0 implementations are different but their

performance is comparable, as activity is determined largely by the requirements of

device interaction and 110 related copy overhead, so this activity is comparable for the

two systems.

The trap handlers were rewritten for Mach 3.0 and have slightly shorter code paths.

Again, system behavior for this activity is largely determined by requirements of the

hardware interface, and is comparable for the two systems.

19

Finally, the differences between the two VM implementations have already been

noted, and their effects are isolated in our analysis. Some variations in VM activity (such

as TLB faults) are due to system structure rather than VM implementation, and will also

be considered in our analysis.

Overall, the similarities between Mach 3.0 and Ultrix establish that the observed dif-

ferences in behavior for the two systems are due to structurally imposed activity and not

arbitrary differences between the two systems. These similarities provide the foundation

for the cross-system comparison.

2.3. Workloads

The comparison of Mach 3.0 and Ultrix in Chapters 4, 5, and 7 used a set of thirteen

workloads, including workloads from the industry-standard SPEC benchmark suite and

other well known UNIX utilities. Table 2-1 gives a brief description of the workloads

used for the cross-system comparison. These workloads were selected to be repre-

sentative of the kinds of workloads typically used for performance analysis on UNIX

workstations. The shortest workload executes approximately ten million instructions.

The longest workload executes over two billion instructions. Other workloads, specific

to the X 1I or TLB experiments and not used as a part of the cross-system comparison,

are discussed in the related chapters in the context of those sets of experiments.

2.4. Condusions

This work was motivated by two fundamental changes in computer systems: changing

performance characteristics for uniprocessor computers, and changes in the structure of

operating system implementations. The applicability of related prior work is limited by

these two fundamental changes. This chapter has given an overview of prior work in

system address tracing, and also of the changes in operating system structure that

motivate the project. The information in this chapter provides the required historical

background for the cross system comparison which appears in later chapters and is the

main content of this research.

20

Workload Description Mach Ultrix
time time

sed The UNIX stream editor run three times over the 0.58 0.57
same 17K input file.

egrep The UNIX pattern search program run three times 2.05 1.94
over a 27K input file.

yacc The LR(I) parser-generator run on an I I K grammar. 1.75 1.82

gcc The GNU C compiler (Scc) translating a 17K 3.70 4.20
(preprocessed) source file into optimized Sun-3
assembly code.

compress Data compression using Lempel-Ziv encoding. A 1.38 1.33
lOOK file is compressed then uncompressed.

ab The Andrew Benchmark with gcc. The assembler 112.18 98.96

was not traced.

espresso A program that minimizes boolean function run on 6.23 6.46
a 30K input file.

lisp The 8-queens problem solved in LISP. 56.46 54.97

eqnmott A program that converts boolean equations to truth 66.05 65.85
tables using a 1390 byte input file.

fpppp A program that does quantum chemistry analysis. 25.20 16.78
This program is written in Fortran.

doduc Monte-Carlo simulation of the time evolution of a 22.94 24.56
nuclear reactor component described by 8K input file.
This program is written in Fortran.

liv The Livermore Loops benchmark. 1.24 1.22

tomcatv A program that generates a vectorized mesh. 139.42 155.44
This program is written in Fortran.

Table 2-1: Experimental workloads with execution times for a DECstation 5000/200.

Except where indicated, all programs are written in C. Execution times are in seconds,
for runs with an uninstrumented binary and uninstrumented system. The bottom four
workloads are floating-point intensive. None of the programs have been reordered or
tuned for the underlying memory system.

21

22

Chapter 3

The Tracing System

The research for this thesis involved creating address tracing systems that allow com-

plete and accurate measurements of activity on a computer system, then applying the

tracing systems in three sets of experiments. This chapter explains the address tracing

methodology, as well as some implementation details related to the experimental system.

The first section describes some fundamentals of the software instrumentation technique

used in this research. Section 3.2 discusses complexities involved in collecting address

traces of operating system activity. Section 3.3 gives details about the memory system

simulator used for the experiments. Section 3.4 describes techniques used to maintain the

quality of trace data. Section 3.5 discusses methods used to evaluate and improve the

quality of the address trace data. The chapter closes with a subjective evaluation of Mach

3.0 and Ultrix, based on experience from implementing the tracing system.

3.1. The Address Tracing System

The design of the tracing systems used in this study is based on earlier work at DEC

Western Research Laboratory [16]. Important properties of the WRL design include:

* Instrumented binaries: Object code is rewritten such that address trace is
generated as a side effect of program execution.

* System Trace: The ability to collect system trace was an original criteria in
the design of the tracing system, and impacts many aspects of system design.

* Multi-task traces: By coordinating trace collection through the kernel, ac-
curate interleaving of trace from multiple user and system contexts is pos-
sible.

* Very Long Traces: Trace is consumed on the fly, rather than being stored
to permanent media. In this way arbitrarily long traces can be analyzed.

Figure 3-1 shows a high-level diagram of the tracing system. The system involves

three kinds of entities: traced user processes, the traced kernel, and an analysis program

23

which consumes the trace. In addition to supporting user-level activity, the kernel is also

involved in controlling the tracing system. Kernel activity that occurs on behalf of the

tracing system is not traced.

Ox1O01f2ec I•.
OxlO01f2fO

0x40202c Traced

0:i.........

0x80032014
system x80300120
trace oxsoo3o124

0x80030128
0x80032060
Ox8OO45cfc
0L x80300200

Traced System Ox8OO3O2Oc
(Kernel + System Servers)

Figure 3-1: Overview of the tracing system.

At any instant during a tracing experiment the system is operating in one of two

modes: trace-generation or trace-analysis. During trace-generation, trace from user-

processes goes first into a per-process buffer. When that buffer becomes full, a kernel

trap occurs and the per-process trace is copied into the large in-kernel buffer. When the

in-kernel buffer becomes full, the system switches from trace-generation to trace-

analysis, during which an analysis program (such as a memory system simulator) digests

the trace. Analysis continues until all pending trace has been analyzed and the in-kernel

buffer is empty.

In addition to copying user trace from per-process buffers when they become full, the

kernel copies available user trace into the in-kernel buffer each time the kernel is ac-

tivated. As every user-level context switch requires an invocation of the kernel to

manage process state, the interleaving of trace from multiple user-level processes and the

kernel is preserved.

24

A certain number of kernel modifications were required to support user tracing. Al-

though required by the design of the tracing system they are independent of the genera-

tion of kernel trace. We modified the kernel memory initialization to allocate an in-

kernel trace buffer statically at boot time. We modified exception handlers to copy trace

from per-process buffers into the in-kernel buffer whenever traced user processes are in-

terrupted. We added a mechanism for the analysis program to extract trace from the

in-kernel buffer. In Ultrix, memory is accessed through a file abstraction, which is im-

plemented similarly to the /dev/kmem abstraction of BSD UNIX4 . In Mach 3.0, the

in-kernel buffer is mapped into the virtual address space of the analysis program.

We added a kernel call in both systems to provide a mechanism for user-level analysis

programs to control tracing. We modified process creation to initialize tracing data struc-

tures. We modified the scheduler to ensure that traced processes are inactive during trace

analysis.

3.1.1. Epoxie

The tracing system uses the epoxie instrumentation tool [85]. Epoxie rewrites ex-

ecutable files, augmenting the original program text with instrumentation instructions. 5

We extended the original epoxie tool for this project to support kernel tracing, tracing of

threaded address spaces, and to reduce the growth of instrumented program text.

Epoxie inserts trace-collecting code at the beginning of each basic block and before

every memory instruction of the original program text. Figure 3-1 shows an example of a

code sequence before and after instrumentation.

Each basic block is preceded by a three instruction sequence, as in instruction

i ' +0..i' +2. The jal instruction at iI +1 is a call to a basic block trace routine, which

will store the basic block address into the trace buffer. In actuality, bbtrace records

the return address saved by the j al instruction, that is, the address of instruction iI +3.

When the time comes for the trace to be fed to a simulator, the trace parsing library will

4 /dev/]amem is used by UNIX utilities such as ps [80] to access kernel data.

5Address tracing is one of several types of instrumentation that tools like epoxie can do. Any reference
in this document to instrumentation or instrumented binaries implies instrumentation for address tracing.

25

ffe n:

f open:
i+O: addiu spsp,-24-----------1 W+: a S S
i+1: SW ra, 20 (sp),ý * adus -4

i+2: sw aO, 24 (sp) O
i+3: jal _findiop S
i+4: sw al, 28 (sp)

:w al, 2(sp)
i' +11: "al I f "i'd

a) Before Instrumentation b) After Instrumentation

Figure 3-2: Instrumentation by epoxie

use static information recorded by epoxie to map this address to an address from the

original (uninstrumented) binary.

The j al instruction destroys the return address register (ra), so it must be saved in

the trace bookkeeping area (by instruction i' +0) before bbtrace is called. bbtrace

and memtrace restore the contents of ra before they return. The delay slot of the j al

bbtrace (instruction i '+2) contains a special no-op (a load-immediate to the read-

only register zero) with the number of words of trace generated by the basic block in

the immediate field. A basic block generates one word of trace for the basic block ad-

dress, and one word of trace for the address referenced by each memory instruction in the

basic block. bbtrace uses the immediate field of this no-op to determine if there is

enough room in the trace buffer for trace from this basic block to be stored.

The tracing system reserves three registers for its own use, which are referred to sym-

bolically as xregl, xreg2, and xreg3. The real values of these stolen registers are

kept in a trace bookkeeping area, with xreg3 used to store the address of the book-

keeping area. When a stolen register is used in the original code:

i: addlu xregX, xregX, -28384

the relevant instruction is replaced with a code sequence to use the shadowed value:

1+0 : lW xregl, XREGX(zrog3)
4+1: noa
1+2: addiu xzegl, cregl, -28384
1+3: aw xregl, XRZGX(xreg3)

26

In the instrumentation process, memory instructions are typically expanded into a two

instruction sequence: a j al memtrace with the memory instruction in the delay slot.

For example, instruction i + 2 from Figure 3-1:

1+2: [fopen.c: 511 sw a0,24(up)

becomes, after instrumentation

'•+7: [fopen.c: 511 Jal insutrace
1'+8: [fopen.c: 511 sw aO,24(sp)
1'+9: . . .

When memtrace is called, the register ra contains the address of instruction i' + 9.

memtrace partially decodes the instruction at i' +8, using the base register and im-

mediate field to compute the address to be recorded in the trace.

In the presence of certain hazard conditions, it is not possible to put the actual

memory instruction in the branch delay slot. For example, instruction i + 0, below, over-

writes its own base register:

i+O: 1W ti, 84(t1) /* reads and writes ti1/

If the load instruction at i+O were in the delay slot of a call to memtrace, the value in

ti would be destroyed by the load before memtrace had a chance to compute the ad-

dress for the trace. In such a case, a no-op (add to register zero) is inserted as instruction

i + 1, with register and immediate fields identical to those of the corresponding memory

instruction. In this way memtrace can record the trace address before the load. The

memory instruction is executed when memtrace returns. Similar hazard conditions oc-

cur when ra is a base or destination register in a memory instruction, or when a memory

instruction uses a stolen register, and are handled similarly.

Recall that the shadow copy of ra is updated at the beginning of each basic block.

When ra is modified within a basic block, the new value must be saved before the next

jal memtrace. If this were the case for instruction i+0 above, it would be expanded

after instrumentation into the following sequence:

£"+0: sw ra, RADZSP(xreg3)
V"+1: Jal imitrace
1'+2: addiu zero, t1, 84 /* nop */
i"+3: lV ti, 84(t1) /* reads and writes tl */

The addition of instrumentation code increases text segment size. We made two

major modifications to epoxie to reduce text expansion:

27

" Using a jump to a pc-relative address (a j al instruction) rather than a jump
to an address contained in a register (a j alr instruction) reduced the num-
ber of instructions required for subroutine call sequence to a tracing routine.

" Data reference address extraction was made more compact. The original
epoxie generated a sequence of instructions at the site of each load and store,
computing the address to be traced before the call to the data reference trac-
ing routine. In the modified epoxie, the address to be traced is computed by
the data trace routine, which partially decodes the corresponding memory in-
struction and reads register contents to compute the data address. The new
method executes more instructions for each data address traced, but the
locality of those instructions is far better, with tens of instructions in a sub-
routine rather than several instructions inline for every memory reference.
Because of this improvement in locality, the time to execute instrumented
code improved, even though more instructions are executed.

With the original epoxie, the expansion factor for traced program text was approximately

five. In the modified epoxie the expansion factor is about two. Note that the expansion

of traced text does not affect the trace addresses generated, as text addresses that appear

in the trace correspond to the original (as opposed to the instrumented) binary. The

motivation for these modifications was to minimize the additional 1/O and VM behavior

tha: occurs as a result of text growth. I/O effects, VM effects, and other side-effects of

tracing are discussed in Section 34.

3.2. Tracing the Kernel

The tracing system was conceived with complete system tracing as a goal, and fea-

tures to facilitate such tracing are fundamental to its design. An example is the trace

format. A trace entry for a basic block or memory reference is a single machine word.

This means that a single machine instruction records a complete trace entry. In this way,

trace entries remain contiguous, with no locks or other protection mechanisms required.

Another feature that helps accommodate system tracing is that control of the tracing sys-

tem resides in the kernel. This makes it possible to preserve the interleaving of trace

from various sources. For tracing tools such as pixie that manage trace at user level,

preserving this interleaving is much more complicated.

Several peculiarities of operating system kernels make instrumentation a substantially

different problem from instrumenting user level code. The foremost is the presence of

uninstrumented code. Certain parts of the kernel are not instrumented by epoxie, either

because they are part of the tracing system and should not be traced, or because they are

28

too delicate to be rewritten by a mechanical tool. This is a problem because in general

this code will use (and hence destroy the contents of) the registers reserved for epoxie.

For this reason, stolen registers must be saved and restored during transfers of control

between instrumented and uninstrumented code. Aside from kernel activity on behalf of

the tracing system, all kernel activity is traced. Routines which are too delicate to be

instrumented by epoxie were instrumented manually. Some code which is only executed

at system boot time or after an unrecoverable system error is not instrumented.

A second problem is the need to manage the tracing system. Traced applications are

serviced by the operating system kernel when their per-process trace buffers become full.

The kernel itself generates trace, which is merged with user trace into a large in-kernel

buffer. When the in-kernel buffer becomes full, the kernel must service itself. It must

turn off kernel tracing, suspend traced user processes, and schedule the trace analysis

program. Implementation of the software kernel tracing system required that this

functionality be implemented in the kernel so as not to disturb the trace generated by

normal system activity.

A third problem is that of the concurrency introduced by interrupts and exceptions.

With traced user activity, activity from concurrent traced user-level activities is always

isolated by an invocation of the kernel. This provides an occasion for the kernel to main-

tain trace system state. There is no such opportunity for a traced kernel, as no inter-

mediate party is available to maintain the kernel's tracing state when the kernel itself is

suspended for an interrupt or exception. To address this problem, the exception handling

mechanism in the kernel must be modified to correctly handle trace state, and the trace-

analysis system must correctly handle situations when arbitrary kernel activity is inter-

rupted by an exception.

3.2.1. Implementation details for the two systems

We used epoxie to instrument both Ultrix and Mach 3.0. Epoxie operates on binaries

after compilation, so registers reserved for tracing had to be "stolen," as described above.

The necessity of register stealing complicated the implementation of the tracing system,

creating additional overhead in trace-system state maintenance.

29

Epoxie generates static information describing each basic block (number of instruc-

tions, position of loads and stores). This information is used during trace analysis to

determine the correct interleaving of instruction and data memory references. The han-

dling of basic block records by epoxie was modified in preparation for system tracing. In

prior versions of epoxie, basic block records were written into the trace along with the

traced addresses. In the tool used for this project, only the basic block address is written.

A lookup table is then used in the trace parsing library to find static information for a

given basic block address. One advantage of this technique is that it makes the trace

more concise, so the trace takes less space and less time to write. Another advantage is

that the basic block lookup creates an opportunity for implementing special-case behavior

for a specific basic block address. An example is hand-traced code. The trace-parsing

system can recognize the basic block record of a hand-traced routine as special, and call a

procedure which implements special-case handling of data in the trace. Another example

is instruction counting, with flags in basic block records to start and stop counters. An

example application of these counters is measuring activity of the idle-loop.

The Mach 3.0 virtual memory interface [67] permitted a number of improvements in

the implementation of the tracing system. In the analysis program, trace was extracted

from the kernel by mapping the in-kernel buffer into the analysis program's address

space, eliminating copying and buffering of trace data.

Another use of Mach 3.0 virtual memory primitives is the dynamic allocation of per-

process trace pages. In the Ultrix system, a flag is set in the executable image to indicate

that a program is traced. This flag is used to identify traced binaries when a program is

loaded. Processes flagged as traced get per-process trace pages and are scheduled ac-

cording to the state of the tracing system. The Mach 3.0 system identifies traced

programs by detecting user references to the per-process trace pages. This feature in

Mach 3.0 is particularly important for tracing of multiple threads in a single address

space, as independent trace pages are allocated for each thread. Context switching code

in the kernel maps the correct per-thread pages when a new thread is activated.

Mach 3.0 supports two kinds of threads: Mach threads, implemented in the kernel,

and user-level threads [28], implemented by a user-level library. User-level threads do

not require special handing by the tracing system. Voluntary transfers of control between

30

user-level threads occur at basic block boundaries and use standard mechanisms that do

not require special support. Involuntary transfers of control imply an invocation of the

kernel and a change of Mach threads, so trace state is managed by the mechanisms for

Mach threads.

3.3. The DECstation 5000/200 Memory System

For many of the experimental results in this thesis, traces from the Mach 3.0 and

Ultrix tracing systems were fed into a program that simulated the complete DECstation

5000/200 memory system. Many previous trace-based studies concentrate on the impact

of cache performance in isolation from the rest of the memory system. They vary cache

parameters such as associativity and cache size, while ignoring the impact of interactions

between memory system components. Simulation of a cache in isolation can be useful

for a memory system designer, but, as the cache is only one of several components in

modern memory systems, it gives limited insight into memory system behavior as a

whole, or the impact of memory system behavior on overall performance.

Parameters for the DECstation 5000/200 memory system simulation appear in Table

3-1. There are two main reasons for selecting this memory system. First, it is fairly

conventional, with no unusual features (such as a very small TLB or virtually indexed

cache) that would reduce the generality of the results. Second, Mach 3.0 and Ultrix both

run on the DECstation 5000/200, permitting a comparison of simulation results with ob-

served system behavior.

Of the memory system parameters listed in Table 3-1, one of them, virtual to physical

page mapping, is determined not by hardware implementation but by policy implemented

in the operating system. An address trace obtained through software methods contains

virtual addresses, so a trace-based simulation of a large physical cache must use some

policy for virtual-to-physical address translation. As the page mapping policy determines

how pages overlap in the physical cache, it can have significant impact on cache

behavior [22,47]. Because this policy is orthogonal to operating system structure and

because it has a negligible impact on the implementation, we have chosen to isolate it

from other aspects of system design by implementing page mapping policy in the

memory system simulator, and by using the same policy for both operating systems. As

31

instruction cache: 64 KB, direct-mapped, physical, 16
byte line, 13 cycle miss penalty.

data cache: 64 KB, direct-mapped, physical, 4 byte line,
write allocate, 15 cycle read miss penalty, read miss fetches
16 aligned bytes.

write buffer: six entries, writes complete in five
cycles; page-mode writes can be issued one per cycle.
CPU reads have priority for memory access, but wait for
writes that have already been issued. 4 KB page size for
page-mode writes. Partial writes complete in 11 cycles.

translation buffer: 64 entries, 56 random/8 wired
entries, trap to software on TLB miss. Each TLB entry
maps a 4 KB page.

page mapping: Deterministic. The physical page used
to back a given virtual page is determined by the virtual
page number and its address space identifier. The
deterministic strategy prevents conflicts within any 64 KB
(cache size) range of virtual addresses.

kernel memory: All kernel text and most kernel data
is in unmapped, cached physical memory.

Table 3-1: Memory system simulation parameters.

an alternative to page mapping policies implemented in the simulator, the Ultrix and

Mach 3.0 tracing systems also provide a mechanism for dynamically extracting the page-

map from the running system. The impact of page mapping policy is investigated in

Chapters 4 and 5.

3.4. Ensuring Trace Quality

Instrumenting the system involves substantial modifications to all active system code.

As such, one of the original goals in the design of the tracing system was to control the

impact of instrumentation on system behavior.

32

3.4.1. Avoiding Trace Distortion

Tracing with software methods induces two kinds of distortion on system behavior,

memory dilation and time dilation.

Memory Dilation

Program text instrumented with epoxie is about a factor of two larger than its untraced

counterpart. This can affect paging and TLB miss behavior. We avoid perturbations due

to paging behavior by collecting our traces on a machine with a large physical memory,

such that pageouts do not occur. We avoid paging as a simplification of memory system

behavior, as this research is meant to focus on components in the memory hierarchy be-

tween the CPU and memory caches. The behavior of these parts of the memory hierar-

chy becomes irrelevant when significant paging activity is present.

Memory dilation also affects TLB behavior. The model for TLB miss handling in

these experiments is based on that of the MIPS R3000 processor used in the DECstation

[46]. The address space of the DECstation is divided into four segments, two mapped

and two unmapped. All kernel text and most kernel data is referenced through the un-

mapped segments, so these references do not affect the TLB. The two mapped segments

do require translations from the TLB, and each handles TLB misses differently. A miss

to the user segment is called a UTLB miss and is handled in software via a dedicated

exception vector and a nine-instruction miss handler routine. A miss to the mapped ker-

nel segment is called a KTLB miss. These are handled through the general exception

mechanism, which is much slower (several hundred instructions). Fortunately, KTLB

misses are less frequent.

Instrumentation tends to double the number of active user text pages. With twice as

many text pages, UTLB miss behavior can differ substantially between traced and un-

traced workloads. Because of the different behavior, trace from the actual user TLB miss

handler would not be representative of the untraced system. Rather than tracing the

UTLB miss handler, we simulate the TLB and use simulator-generated misses to syn-

thesize the activity of the UTLB miss handler.

The mapped kernel segment is used primarily to map page table pages. If instrumen-

tation changed the number of page table pages required to map user text, then KTLB

33

miss behavior could be affected. Fortunately, each page table page can map 4 megabytes

of contiguous memory. The largest user binary (the Mach Unix server) has less than two

megabytes of text after instrumentation, the number of page table pages it requires does

not change, and the behavior of the KTLB miss handler is not affected.

Time Dilation

The instructions added by software instrumentation cause traced programs to execute

about fifteen times more slowly than their untraced counterparts. Temporal relationships

for activity that depends on the speed of CPU instruction execution are unaffected, as the

slowdown for all instrumented code is roughly the same. Time dilation occurs because

activities independent of CPU speed appear to occur about fifteen times faster for the

traced system. For the workloads we have considered, time dilation affects clock inter-

rupts and the latency of 1/O operations. Adjusting for clock interrupts was straightfor-

ward: we configured the system clock to interrupt at 1/15th the standard rate.

Asynchronous I/O events do not cause user programs to wait, so they have minimal

impact on execution time for user programs. Synchronous 1/0 operations have a greater

effect on running time, as they cause the user program to wait for the completion of a

disk request. We have not modified I/O behavior to account for time dilation as this

would require subtle system changes that might themselves introduce other distortions.

Instead, we estimate the latencies of synchronous disk operations using a count of the

number of instructions executed while waiting in the system idle-loop. We estimate the

corresponding latency for an untraced system by scaling idle activity in the traced system

by a factor of fifteen. This approximation is rough but adequate for our purposes. I/O

delays are of little importance in memory system behavior, as the memory system be-

havior of the idle loop is uninteresting and has little impact on other activity in the

machine.

Scheduler policy is also affected by time dilation, as scheduler behavior for multitask-

ing workloads depends on the dynamic patterns of overlap between 1/0 latencies and

clock events. Scheduler policy is an issue we have chosen not to address. Instead, we

concentrate on single-process and client-server workloads. For these workloads, all con-

text switches are determined by client-server relationships, and scheduler policy is ir-

relevant. Accurate traces of timesharing workloads would require accurate scaling of I/O

34

delays and adjustment of scheduler policy to replicate untraced behavior. It should be

possible to reduce the distortion of scheduler behavior in the traced system, although per-

fect reproduction of behavior is not a practical goal. Given current trends away from

multi-user timesharing, the restriction of client-server workloads does not significantly

limit this research.

3.4.2. Defensive Tracing

The correctness of trace generated by epoxie instrumentation was validated by com-

paring epoxie trace for deterministic user programs to trace from an independently

developed CPU simulator. This establishes the correctness of epoxie instrumentation

with a high degree of certainty.

The tracing system was further tuned and corrected by looking for anomalies in

measured behavior. In this section we discuss redundancy and error modes in the tracing

system which are used to detect certain types of errors. In the next section we discuss the

end-to-end measurements used to evaluate the quality of address trace data, in which

trace driven simulation was used to predict behavior of an uninstrumented system.

In the operating system kernel, code rewritten by epoxie co-exists with hand-

instrumented code, as well as the uninstrumented code that implements certain parts of

the tracing system. Unlike user code, the kernel has an important role in controlling the

state of the tracing system. In implementing the tracing system, it was important to

manage transitions between these different types of code to avoid omissions or distor-

tions that would cause the address trace to differ from behavior in the untraced system.

Several approaches were used to ascertain that tracing the kernel did not introduce errors

or unexpected trace distortion.
"* The format of trace contains a significant degree of redundancy, such that

missing words of trace or erroneous writes into the trace are detected with a
very high probability. Conditions checked include (i) that each instruction
basic block address is valid for the address space in question, and (ii) that in
each basic block the expected number of memory operations occurs.

"• A large number of sanity checks were used to verify that trace was not being
misinterpreted. For example, the simulator checks that all references to ker-
nel segment addresses are from the kernel.

"* Reference counting tools were used to make a dynamic count of the number
of times each instruction in the kernel was executed. In this way it was pos-

35

sible to identify and eliminate anomalous activity such as trace generated by

code specific to the tracing system.

Each transition in the tracing system from trace-generation to trace-analysis creates a

situation in which distortion can be introduced into the address trace, as some amount of

system activity can be ignored or distorted. As an example, an 1/O request might be

made during trace-generation mode, but complete during trace-analysis mode. The trace

from the completion of the I/O request would then be lost. The approach taken to avoid

such loss of trace was to be sure that such events are rare by making the in-kernel trace

buffer large. The current system uses a 64 megabyte buffer. A buffer of this size permits

approximately 32 million instructions of continuous execution between trace analysis

phases. For an untraced system, this corresponds to about two seconds of continuous

execution, long enough so that the distortion from trace phase transitions is not sig-

nificant.

3.5. Validation of Methods

This section discusses some measurements and observations that demonstrate the

quality of the behavioral model provided by the tracing/simulation system. First we dis-

cuss two end-to-end measures [71] used to evaluate the quality of measurements from the

experimental system to real system behavior: prediction of execution time and prediction

of TLB miss behavior. Then we give some examples of unexpected behavior revealed by

the experiments, as evidence of the power of the measurement system for revealing

counter-intuitive behavior. Overall, these measurements demonstrate that the experimen-

tal system provides an accurate and detailed model of system behavior.

3.5.1. Program Execution Time

Latency in program execution can be reduced to the sum of latencies of low-level

events such as instruction execute cycles and cache misses. The experimental system can

be used to obtain counts of these events. The event counts and associated latencies can

be used to predict the execution time of a given workload. We compare the execution

time as predicted by the experimental system to the execution time as measured with an

accurate timer, as an indication of the ability of the experimental system to model the

behavior of the uninstrumented system.

36

Table 3-2 compares program execution time as measured by an accurate timer with

execution times predicted from by the experimental system for trace-driven simulation of

the DECstation 5000/200 memory system.

Mach 3.0 Ulrix
workload measured predicted measured predicted

sed 0.58 0.48 0.48 0.54
egrep 2.05 2.02 1.94 1.90

yacc 1.70 1.68 1.80 1.79
gcc 2.26 3.21 4.10 4.16

compress 1.38 1.17 1.26 1.11
espresso 6.03 6.21 6.43 6.40

lisp 62.0 56.6 53.3 53.6
eqntott 66.1 65.7 65.6 65.8

fpppp 15.9 16.7 15.9 15.7
doduc 20.7 21.4 21.7 21.2

liv 1.29 1.29 1.17 1.26
tomcatv 139.2 137.0 155.4 153.5

Table 3-2: Run Times, measured and predicted, in seconds.

The predicted times are the sum of machine cycles from four different sources: in-
struction execution, memory system stalls, 1/0 time, and arithmetic stalls. The first
three values are measured by the tracing system. Estimates for arithmetic stalls are as
measured by pixie [75].

The measured times in this table are different from those in Table 2-1. For the runs in
this table, the buffer cache was warmed by reading the program executable from disk
before running the workload, to minimize the activity associated with the loading of
program text. Also, a revision 3.0 of the floating point unit was used. This causes
significant variation in running times for fpppp and doduc. Page mapping policy also
contributes to large variations in execution times between runs on Mach 3.0.

The predicted times in Figure 3-2 include contributions from four different sources:

"* CPU cycles

"* memory system stalls

"* arithmetic stalls

"* /O stalls

Each instruction executed contributes one CPU cycle to the total execution time.

Memory system stall cycles are calculated by multiplying counts of penalty events (cache

read misses, uncached reads, and write-buffer stalls) by the number of stall cycles per

event. Pixie [75] was used to estimate arithmetic stalls, as the tracing system does not

measure these events.

The estimate of I/O stalls is derived from a count of idle-loop instruction references

made from the memory reference trace. Information on idle-loop activity from the trace

must be adjusted to compensate for the effects of time-dilation on the execution of idle

37

loop. As an example, consider a workload that executes 15 million instructions in the

idle loop while waiting for completion of synchronous disk 1/0. This corresponds to

some amount of real time required for 1/0 operations by the disk. Address tracing does

not change the latency of disk operations, but time dilation changes the execution rate of

the idle-loop. Suppose that instrumented code is slower than uninstrumented code by a

factor of fifteen; then only 1/15th as many or 1 million idle-loop instructions will be

recorded in the trace. Idle-loop instruction counts from the trace must be scaled to com-

pensate for the slowdown in idle-loop execution. For the predictions of program execu-

tion time from trace data, 15 is used as an estimate of the effect of instrumentation on the

idle loop.

The running times from simulator data are coarse estimates, and are subject to error

from a number of sources:
"* Disk Latency and Idle time. The simulator's model of disk delays is only an

approximation of real behavior. This approximation introduces distortions to
time estimates in two ways.

"* Some system activity is missed when tracing is interrupted during a
disk request.

"* Tracing changes the behavior of disk read-ahead. Some read-ahead
requests complete in the traced system but do not complete in the stan-
dard system. This results in idle time for the standard system that does
not occur in the traced system.

"* Lack of pipeline model. The simulation system does not model the CPU
pipeline. Although there is a mechanism to model the correct sequencing of
instruction reads and data reads and writes, two other behaviors are not
modeled:

"* Floating point latency can overlap with cache misses and write buffer
cycles in the DECstation 5000/200. This overlapping is not modeled
in the simulator.

"* The simulator does not account for cycles required to enter and exit
exception handlers.

"* Page mapping policy. Cache performance can vary significantly depending
on the virtual to physical page mapping in use. This affects the repeatability
of workload behavior, particularly for the random page mapping policy used
in Mach 3.0.

"* Clock interrupt frequency on both systems was scaled by a factor of fifteen
to compensate for time dilation. This is a coarse approximation.

Figure 3-3 shows percent error for predictions of execution time for twelve workloads

38

10
Percent
Error

5

0- I-L

Figure 3-3: Error in predicted execution times for Ultrix.
Three of the workloads, sed, compress, and liv show large errors in predicted execu-

tion time, due to known inaccuracies in the tracing system. See the text for a complete
discussion.

running under Ultrix 6. Predictions for most of the workloads are quite good. Three of

the workloads have errors greater than five percent. The explanation for these errors

gives interesting insights into the behavior of the tracing system:

" Sed has the shortest execution time of all the workloads, under 0.5 seconds
for three runs. The 12% error corresponds to 0.06 seconds. Such a short
execution time exaggerates the distortion introduced by disk latency ap-
proximations.

"* Compress has the largest input file of all the workloads, 150K bytes, but its
execution time is only 1.32 seconds. The prediction error is mostly due to
disk read-ahead phenomena, where read-ahead requests to disk complete in
the traced system but induce idle time in the untraced system. A comparison
of idle time predicted by the trace/simulation system and idle time measured
by the timing facility in the c-shell [81] confirms that the simulator does
under-estimate idle activity.

6Because of the large variability of running time induced by the Mach 3.0 random page mapping policy
[47], we do not present error figures for Mach 3.0.

39

* Liv has the worst write-buffer behavior of all the workloads, and also has
significant floating point activity. The prediction error is caused by the over-
lapping of write buffer and floating point activity that is not modeled in the
simulator.

Considering the known sources of error, the estimated execution times correlate well

with measurements of execution time made with an accurate timer. Estimates of idle

time are one of the dominant sources of error. As idle time has a negligible effect on

cache performance, this source of error in execution-time predictions does not cause a

significant distortion for simulations of memory system behavior for the restricted class

of workloads considered in this study. Similarly, the simulation does not model the over-

lap of floating point delays with memory delays, but this has no impact on cache activity,

as floating point delay has no impact on the sequence of cache misses that occur. Page

mapping is another source of error, and the random policy used by Mach 3.0 causes much

greater variation in execution times, with a subsequent loss of precision in time predic-

tions. Overall, the good estimates of running time for most of the workloads

demonstrates that the address trace collection is accurate. The measurements provide

strong empirical evidence that errors in predicted execution time are due to limitations in

the system model and not errors in the address traces.

3.5.2. User TLB Miss Count

User segment TLB miss activity provides another opportunity for comparing activity

predicted by the experimental system to activity measured in an uninstrumented system,

again as an indication of the ability of the experimental system for predicting program

behavior. The DECstation handles user-segment TLB misses using a small miss han-

dling routine in software. This miss-handling routine can be modified to collect user-

segment TLB miss counts without otherwise disturbing activity on the machine. In Table

3-3 we compare miss counts from the modified miss handling routine to the miss counts

predicted by the memory system simulation.

Although the miss rates predicted by the simulator correlate within an order of mag-

nitude, the percent error is sometimes large. One source of error in the TLB miss predic-

tions is the random TLB management policy used in the DECstation, which introduces

variability in miss activity for different executions of the same workload. Another source

40

Mach 3.0 Ultrix
workload predicted measured predicted measured

sed 7493 6438 131 190
egrep 6430 6122 164 191

yacc 9270 7494 270 318
gcc 53389 48355 29057 29948

compress 91706 89966 79682 79692
espresso 10351 7252 838 1006

lisp 28605 37919 110 179
eqntott 717428 706915 675166 674579

fpppp 22816 21893 3256 1894
doduc 48859 39129 6023 3510

liv 2753 2423 70 63
tomcatv 340968 359976 317872 314950

Table 3-3: TLB misses, measured and predicted.

of error is explicit TLB writes from the kernel. The kernel sometimes avoids a user TLB

miss by writing the TLB explicitly, using tlbdropin () in Ultrix or

tib_maprrandom () in Mach. The simulator doesn't know about these writes, so the

corresponding TLB fills are caused by TLB misses. Kernel instruction reference counts

for gcc showed about 1800 calls to tlbdropin () for Ultrix, and 3700 calls to

t ib_maprandom () for Mach 3.0.

Given the type of activity and its impact on performance, the error in predicted TLB

behavior does not detract significantly from the quality of overall measurements. These

measurements demonstrate another end-to-end method that was used to evaluate and im-

prove the correlation between simulated and real behavior.

3.5.3. Explaining Anomalous Behavior

In debugging the tracing system, a procedure used repeatedly was to identify

anomalous behavior indicated by simulator output, and use it to find bugs in the simulator

or simulation model. Eventually, these investigations stopped revealing problems in the

experimental system, and began to expose unexpected behavior from the actual hardware

and operating system implementation. This section documents some of the more inter-

esting findings.

Uncached Instructions in Mach 3.0

Early experiments showed that, for a given workload, Mach 3.0 executed many more

uncached memory reads than Ultrix. Uncached reads normally correspond to 1/0 opera-

41

tions. 1/0 devices write directly to memory, so the system must read through uncached

memory in order to avoid stale data that might still be in the cache. As both systems

were running identical workloads, it was expected that the amount of 1/0 for both sys-

tems, and hence the number of uncached memory reads, would be the same. A more

careful look at output from the simulator revealed that the uncached reads were due to

instruction reads, not data reads as 1/0 operations would have generated. The precise

addresses of the uncached instruction reads revealed a performance bug in Mach 3.0.

The Mach instruction cache flush routine was executing an inner loop from uncached

memory when it should have been reading instructions through the cache.

Data Cache Behavior in tomcatv

Table 2-1 shows that tomcatv, a scientific computation written in Fortran, runs faster

on Mach than on Ultrix by fourteen seconds, a difference of about ten percent. As the

simulator indicated that only 1% or less of total execution time was spent in the system, it

seemed impossible that system activity could account for a ten percent change in running

time.

The first hypothesis was that the experimental system was failing to record some

Ultrix instructions, but no such bug could be found. Then we looked at data cache be-

havior. Using the page table information recorded in the address trace, we discovered

that Ultrix was assigning virtual pages to physical pages in a very regular way, and in

such a way that various matrices used in the computation were aligned in the cache. For

tomcatv, the deterministic policy used in Ultrix to assign virtual to physical pages causes

many more conflict misses than the policy used in Mach. Hence system policy and not

system structure was the cause of the difference in execution time. See Section 4.3.7 for

more discussion on virtual to physical page mappings.

I/O time in Ultrix

As can be seen from Table 2-1, many of the workloads run faster under Mach 3.0 than

under Ultrix - even system intensive workloads such as gcc. This seemed counter-

intuitive, as system overhead from instruction execution and memory system penalties is

higher in the microkernel system than in the monolithic system (as shown in Chapter 4).

Some of the performance penalty is due to page mapping policy, as described for tomcatv

above. 1/0 intensive workloads get a further advantage under Mach 3.0 due to the con-

42

servative disk management policy in Ultrix. Ultrix writes file system meta-data (such as

last-access times) synchronously, whereas Mach 3.0 uses asynchronous updates. Another

difference is that Ultrix preloads complete program text when a program is executed, but

Mach 3.0 brings in text pages as needed using the page fault mechanism. Consequently,

for I/O intensive programs, the Ultrix policies result in more synchronous 1/0 activity

hence more time in the idle loop. This difference in 1O behavior is important in explain-

ing observed performance differences between Ultrix and Mach.

Floating Point Traps infpppp

Measurements of the frppp workload showed that most system activity was due to

floating point exceptions. This behavior was unexpected, as no floating point exceptions

were thought to occur.7 After re-checking the experimental system and trying a different

Fortran compiler, we eventually discovered that the exceptions were dependent on the

version number of the floating point hardware. The FPU hardware in the traced machine

generated software traps for certain conditions that were handled without a trap by later

versions of the chip.

3.6. Experience with Mach 3.0 and Ultrix

Much of this document concerns a quantitative comparisons of Ultrix and Mach 3.0.

As this project involved functionally similar modifications in both systems, a qualitative

comparison is also possible.

Work on the traced Ultrix system began in the summer of 1992 and the tracing system

was largely completed by December of 1993. Implementation of user-level tracing was

the first step in this process, and was completed by August of 1992. Development of the

traced Ultrix system required approximately eight man-months of work, and occurred

concurrently with development of other parts of the tracing system.

The tracing system for Mach 3.0 was implemented during a two month effort, from

mid-January to mid-March 1993. Support for user-level tracing was implemented first.

Next the Mach kernel was instrumented, then the UNIX server, then the emulation

library.

7Engineers at Digital Equipment Corporation claimed that no such exceptions occurred when they ran
the workload on their systems [721.

43

There are several reasons why development of the instrumented system took sig-

nificantly longer for Ultrix than for Mach. The tracing system for Ultrix was the first to

be implemented. Experience gained during the Ultrix implementation helped to avoid

problems when instrumenting Mach 3.0, and made bugs in Mach 3.0 easier find and cor-

rect. Additionally, the debugging of epoxie and other tools occurred during the in-

strumentation of the Ultrix system. Finally, the traced Mach system was developed at

Carnegie Mellon University, and Mach expertise was readily available to aid in the

design and debugging of the tracing system. This is in contrast to Ultrix, for which no

expertise was available. Information about specific aspects of Ultrix was much more

difficult to obtain.

The above considerations are independent of actual differences between the two sys-

tems. In the following we describe some of the differences between Ultrix and Mach 3.0

that were relevant to the creation of the tracing systems.

Additional system contexts

The structure of the two systems, monolithic vs. micro-kernel, influenced the ease

with which modifications could be made to the two systems. Having three traced system

contexts in Mach 3.0 (kernel, UNIX server and emulator) as compared to one in Ultrix

(the kernel) added new problems and complexity to the development process due to the

additional configuration files and executable images involved in the creation of the sys-

tem. The decomposition of Mach 3.0 had minimal impact on the design of the tracing

system.

Debugging

Overall, Mach 3.0 provides superior support for system debugging, with an inter-

active debugger built into the kernel. The Mach kernel debugger was useful for debug-

ging the traced UNIX server and traced emulation library. It was less useful for the

traced Mach kernel, for several reasons. First, many of the difficult bugs occurred early

in the boot sequence, too early for the debugger to be used. Secondly, the traced Ultrix

kernel was developed without a kernel debugger, so debugging techniques developed for

Ultrix did not make use of the interactive debugger. Lastly, tracing the kernel had the

potential to interfere in significant ways with the debugger, and the expected benefits did

not justify the potential extra effort required to debug the debugger. In the end, the

44

debugger did work, and the code modifications required to make it work were straightfor-

ward.

Virtual Memory and Address Space Considerations

In Ultrix, the allocation of per-process trace pages was among the most difficult new

system functionality to implement, and was the source of a number of difficult bugs.

This implementation was less difficult in Mach 3.0, due in part to the carefully designed

Mach virtual-memory interface. In Ultrix, the VM code was mostly undocumented, uses

short identifier names that are meaningless to someone unfamiliar with the code, and is

difficult to isolate from the rest of the system. With the Mach VM interface, it was pos-

sible to manage user trace pages using a small number of existing VM primitives, and

with minimal changes to existing code. In Ultrix, new low-level operations were re-

quired to allocate and deallocate user trace pages. Overall, these differences made the

Ultrix code harder to understand and harder to debug.

The refinement of the Mach VM system made it possible to support threaded user

address spaces with minimal and highly localized modifications. Ultrix does not support

multiple threads in a single address space, so Ultrix support for traced threads was not

required. Similar changes in Ultrix would probably have been much more difficult.

Additional functionality in the Mach 3.0 VM interface made it possible to improve

the implementation of the tracing system in several ways. The memory mapped device

interface in Mach made it possible to map the shared kernel buffer into the address space

of a user process. This eliminated the need to copy trace from the kernel into user space,

as was necessary in Ultrix, and simplified the coding of performance-critical components

of the tracing system.

45

46

Chapter 4

Mach 3.0 and Ultrix: The Impact of Structure

In this chapter we evaluate and compare the impact of structural differences between

DEC Ultrix and Mach 3.0, with emphasis on memory system behavior. In Section 4.1 we

discuss how the effects of the structural differences between Ultrix and Mach 3.0 were

isolated from effects due to policy. In Section 4.2 we discuss the measured differences in

system behavior and performance between Mach 3.0 and Ultrix. In Section 4.3 we

evaluate the monolithic and microkernel implementations in the context of the assertions

in Table 1-1. Finally, in Section 4.4 we summarize our results.

4.1. Isolating the Effects of Structure

The principle differences between the two systems were reviewed in Section 2.2.

Here we summarize that section, stating differences as they relate to the results presented

later in this chapter.

The most important distinction is that Ultrix has a monolithic structure and Mach 3.0

is implemented as a microkernel, with the UNIX API implemented as a user level UNIX

server. This has impact on many aspects of system behavior, including traps, context

switches, and TLB miss activity. Another relevant distinction is that Ultrix implements

the abstractions such as UNIX process management directly with low level primitives,

while Mach 3.0 implements these abstractions in a user-level server in terms of Mach

primitives. A third relevant distinction is the VM implementation. The functionality of

Mach 3.0 VM differs in several ways from that of Ultrix, and these differences impact the

performance of the VM system.

For our comparison of Mach 3.0 and Ultrix structure we exclude two kinds of system

policy. These policy differences were discussed in terms of specific workloads in Sec-

tion 3.5.3. One is disk I/O policy. Disk write policy is different in the two systems, and

47

this has significant impact on overall behavior. Ultrix attempts to maintain the disk in a

consistent state, using synchronous, blocking writes when updating file-system meta-

data. In Mach 3.0 disk consistency is compromised for improved performance by leaving

meta-data in memory in the disk cache rather than writing it immediately to disk. The

result is that for a given workload, Ultrix issues more synchronous disk requests than

Mach, resulting in greater idle instruction counts and more disk delays. Further, program

text under Mach is demand-paged, whereas under Ultrix it is loaded entirely at program

startup, and this sometime leads to unnecessary disk reads in Ultrix. These differences

are reflected primarily as time spent in the idle loop, waiting on the completion of

synchronous I/O requests. As 1/O policy is orthogonal to kernel architecture and to

memory system behavior, we exclude idle-loop activity from the measurements and con-

sider only non-idle events.

Another policy difference which we have isolated for our cross-system comparison is

virtual-to-physical page mapping policy. Ultrix uses a deterministic page mapping policy

similar to that used for our base memory system simulation (see Table 3-1). The page

mapping policy used by Mach 3.0 is essentially random. These differences can have

significant impact on memory system behavior. However, as the code implementing

page mapping policy is concise and isolated, it is irrelevant to other aspects of system

implementation and behavior. We use the same deterministic page mapping policy for

both our Mach 3.0 and Ultrix simulations. We explore the impact of page mapping

policy on memory system performance in Section 4.3.7. In Chapter 5 we consider the

relative impacts of policy and structure on overall performance.

4.2. Comparative System Behavior

A summary of the trace results for each program is shown in Table 4-1, with ag-

gregate results shown in Table 4-2. For Ultrix, all system activity is due to the kernel.

For Mach, system behavior includes the kernel, the UNIX server, and the emulation

library. For workloads that rely heavily on UNIX services, the combined Mach system

components (microkernel, UNIX server, and emulation library) execute more instructions

and generally require more data references than Ultrix.

48

non-idle idle instruction data data cache
insructions instructions cache misses cache reads read misses

Ultrix Ss Mach Ss Utrmix Mach Utix %s Mach %s Ulx %s Mach SsUltrix s Mac *s
sed 5704 24 7763 44 5876 1270 51 96 149 98 1834 32 2693 53 16 97 70 98

egrep 43277 4 45029 7 2495 914 43 93 140 98 9363 7 10057 14 32 91 71 97
yacc 32799 6 34539 10 13220 2809 69 89 166 96 73221 8027 19 48 50 93 71

gcc 29318 22 35939 36 63684 27027 485 42 999 71 9646 25 12754 43 120 44 318 71
compress 16896 19 19926 31 5555 2225 70 96 215 97 5459 23 6596 36 166 28 271 50

ab 869732 33 1198172 51 689324 247969 15612 52 28619 73 283994 42 398954 58 6658 79 11262 86
espresso 135385 2 137806 4 21601 8069 187 45 344 70 32568 3 33651 6 93 32 168 58

lisp 1288027 3 1276619 2 1005 0 222 61 2004 54 475185 3 473281 3 655 45 734 68
eqntott 1414369 1 1417868 1 10632 0 126 88 254 97 298601 2 300299 2 14328 3 14489 4

fpppp 265457 8 26299" 7 17102 5667 4135 21 3735 19 141178 3 141485 4 131 27 177 47
doduc 321325 1 325351 2 18474 4983 6239 5 6292 7 122630 1 124410 3 550 9 612 21

liv 23008 3 23778 6 1585 639 21 93 72 98 8134 4 8458 7 17 88 30 96
tomcatv 2005703 1 2005590 1 10823 134 138 82 326 84 970227 0 971055 0 85451 0 85522 0

Table 4-1: Summary of trace results.

This table shows the number of non-idle memory system events, and the percentage
due to system behavior for each program on both operating systems. Additionally, the
table gives the number of idle instructions executed. All counts are in thousands.

i-cache d-cache tib wbuffer
cycles cycles cycles cycles

Ultrix user 0.07 0.08 0.00 0.02
Mach user 0.07 0.08 0.00 0.02

Ultrix system 0.43 0.23 0.00 0.05
Mach system 0.57 0.29 0.01 0.07

Table 4-2: Summary penalty cycles (per instruction).

These aggregate measurements are the average over the workloads from Table 2-1.
They show system cycles per system instruction and user cycles per user instruction,
and are intended to emphasize the difference between dynamic execution of system
versus user code. This is in contrast to calculations of MCPJ (Figure 4-1), for which
total (system + user) instruction counts are used.

Memory cycles per instruction

We use our simulation results to calculate memory cycles per instruction (MCPI),

which is the number of CPU stall cycles due to the memory system divided by the num-

ber of instructions executed. MCPI is one of several components of cycles per instruc-

tion (CPI), which is a metric commonly used to evaluate computer systems [42]. Other

components of CPI (such as one cycle per instruction for instruction execution, interlocks

during multiply, divide, and floating point operations, and no-ops inserted by the com-

piler for load and branch delays) remain relatively constant even as processor cycle time

decreases. In contrast, MCPI is a function of the ratio of memory speed to processor

speed, is less dependent on processor architecture, and will dominate overall CPI if cur-

rent trends in processor and memory speed continue. As mentioned, we have excluded

idle-loop activity from our MCPI calculations. The idle loop rarely misses in the cache so

49

a system could achieve an artificially low MCPI by executing an arbitrarily large number

of idle instructions.

The MCPI for each workload under Ultrix and Mach 3.0 is shown in Figure 4-1.

Each bar is shaded to denote different MCPI components. System and user contributions

are separated by a vertical bar. The figure shows that data and instruction cache misses

in user and system mode are only partially responsible for the total MCPI. Other com-

ponents include CPU write-stalls and kernel uncached memory reads. CPU write-stalls

are reflected in Figure 4-1 in the wbuffer component, which shows the average per-

instruction penalty from writes to a full write buffer as well as reads that stall pending the

completion of a five-cycle write. A system uncached memory read occurs when the ker-

nel accesses memory through the uncached segment [46] such as for I/O or device con-

trol. TLB misses do not appear explicitly in Figure 4- 1. Their cost appears as additional

instructions and data references, which are included in the total counts.

The MCPI components of the various programs reflect their internal behavior. The

programs se4 egrep, yacc, gcc, and compress all have relatively high system MCPI com-

ponents due to their greater reliance on the operating system, especially the file system.

The gcc compiler, while run on a relatively small input file, has a large program text and

requires more system activity during program loading. The scientific workloads (fpppp,

liv, doduc, tomcatv) are dominated by user activity, as shown by their small system MCPI

component.

4.2.1. Breakdown of System Activity

As shown by Table 4-1 and Figure 4-1, the most significant difference between Mach

3.0 and Ultrix is the number and cost of non-idle system instructions required to run an

application. In this section we consider how different kinds of system activity contribute

to dynamic instruction counts for both system.

In Figure 4-2 we separate system overheads by 11 major activities to facilitate the

comparison of Ultrix and Mach 3.0. The components are:
strap (system call, interrupt, and exception trap handling), UTLB (user TLB

miss), KTLB (kernel TLB miss), VM-md (machine-dependent virtual
memory), VM-mi (the Mach machine independent virtual memory layer),
Block Ops (block memory moves and zeroes), UNIX service (the remaining
routines in the Ultrix kernel and Mach UNIX server), Microkernel (the Mach

50

sed+U '
+M - - 0.495

eCp+U 5
+M 0.081

yacc+U
+M 0.129

gcc+U--.,- 043
+M .-.434 0.690

compress+U 0.451
+M " -. . -.-" •0.418

+M -"i047 0.534

+M 0.068 system i-cache misses
+M _stem d-cache misses

lisp+U 0-0"103 sstem wbuffer stalls
+M 00stem readsS • L-cache misses

eqntott+U 0.154 d-cache misses

+M 0.157 r stalls
fP~+ I• i • 1 0.262 J3MCPI

fpp+U 1 0.243

doduc+U 1 0.338+M "0.341

liv+U 0.117
+M , •7 0.158

tomcatv+U 0.674+M W 30.675

Figure 4-1: Baseline MCPI for Ultrix and Mach.

The top horizontal bar of each pair is for Ultrix (+U) and the bottom is for Mach
(+M). Components to the left of the vertical line are due to system activity and those to
the right are due to user activity. The number at the right of each bar is the MCPJ for
that workload. Idle-loop activity is excluded from these measurements.

microkernel, including device management and scheduling), IPC (Mach
inter-process communication), Emulator (the Mach transparent emulation
library), and S-MCPI (system memory cycles per system instruction).

S-MCPI is an indication of the memory-system overhead of system activity8 . Note that

SS-MCPJ is computed as system cycles/system insructions. It differs from MCPI due to the system (as
in Figure 4-1) in that MCPI shows overhead per instruction for total (user+system) instructions.

51

four of the activities (Microkernel, Emulator, IPC, VM-mi) occur only in Mach. Block

Ops for Mach includes operations from both the Mach kernel and the UNIX server. The

Ultrix instruction counts have been normalized to one for all workloads. The heights of

the bars reflect system, but not total execution, overheads. The number at the top of each

bar is system activity as a percentage of total non-idle cycles. The workload doduc

demonstrates the importance of this number; although each system instruction is rela-

tively expensive (about 2.6 cycles per instruction for Ultrix), the system is not very active

(only 2.2% of total machine cycles). Therefore the overall impact of system activity is

small.

Several characteristics of system behavior are worth noting from Figure 4-2. The

overhead of Mach 3.0 IPC is responsible for a small portion of overall system overhead

in terms of instructions executed. This suggests that microkernel optimizations focusing

exclusively on optimizing critical paths in IPC [13, 34] could have a limited impact on

overall system performance, confirming an earlier result [12]. The UNIX service cate-

gory between Ultrix and Mach 3.0 cannot be compared directly. For Ultrix, UNIX

service includes many machine-dependent services such as device management that are

counted as part of the Microkernel category in Mach. The combined size of Microkernel

and UNIX service components for Mach indicates the cost of providing UNIX services

with a user-level server through Mach 3.0 kernel interfaces.

UNIX service in Ultrix also includes some activity appearing under the Emulator cate-

gory for Mach 3.0. For example, lisp has a relatively high UNIX service component

under Ultrix, but almost none under Mach. This is because lisp frequently modifies

UNIX signal state to support garbage collection, and signal state is manipulated from

within the Mach emulation library. Overall, the cost of microkernel (as opposed to

monolithic) system structure is reflected in Figure 4-2 as higher instruction counts for

Mach 3.0, with impact on all components of system activity.

The implementation of the UNIX API as a user-level server creates a memory-

mapped system context in Mach 3.0. In Ultrix, the corresponding functionality is im-

plemented in the unmapped kernel context. As seen in Figure 4-2, the mapped system

context in Mach 3.0 induces increased UTLB and KTLB activity for Mach 3.0.

52

6

5 o.-

.C

S 4 m7

"C -- 0 S-MCPI

UEmulator

U UNIX service
S2 C4°- [Block Ops

o A VM-mi
E

1 -

mUTLB

o Trap

0
+A +, +A + I + ~ +. +

Figure 4-2: Relative system overheads for programs running on Ultrix and Mach.

See page 71 for a color version of this figure. This figure shows the relative system
instruction and system memory overheads for programs running on Ultrix (+U) and
Mach 3.0 (+M). Ultrix instruction counts are normalized to one. The top component of
each bar is S-MCPI, which is an indication of the memory system overhead induced by
system instructions. The number at the top of each bar is the percentage of total (in-
struction and memory) cycles that are due to the system. For programs where the
system is responsible for a small percentage of total cycles, system overheads are rela-
tively unimportant.

A further change introduced by the Mach 3.0 microkernel decomposition is that the

buffer cache of disk data was moved from the kernel into the user-level UNIX server.

Also, certain Block Ops routines in the UNIX server were implemented in C, rather than

hand-coded assembler as is used in the Ultrix implementation. These changes are

reflected in Figure 4-2 as the increased instruction counts for Block Ops and Mach 3.0

UNIX service.

53

The Mach virtual memory system executes more instructions than that of Ultrix.

Ultrix VM is implemented as a single machine-dependent layer. The machine-

independent VM layer in Mach 3.0 is generally more costly than either systems'

machine-dependent layer. This comparison reflects in part the overhead required to sup-

port the additional functionality and portability of Mach virtual memory. Other dif-

ferences in VM performance are due to differences in functionality. For example, Mach

maintains dirty bits for all user data pages, whereas Ultrix assumes all data pages are

dirty.

Overall, Figure 4-2 demonstrates two important points. First, there is no obvious flaw

or glaring deficiency that explains the larger instruction counts for Mach 3.0 as compared

to Ultrix. Mach 3.0 executes more instructions, and these instructions are distributed

across many types of system activity. Second, system behavior varies widely depending

on workload. Attempts to characterize user behavior with a single number or with a

small number of workloads hide an enormous amount of information and are misleading.

There are two workloads for which system instruction counts are actually lower for

Mach 3.0 than for Ultrix. For lisp, system activity is dominated by signal handling and

maintaining signal state. Lower instruction counts for Mach 3.0 reflect the shorter code

path in Mach for these activities. Similarly, system activity in fpppp is dominated by

traps for floating point operations not implemented in hardware 9 The code path in Mach

3.0 for handling these traps is shorter. Lastly, system activity in workloads such as

tomcatv is dominated by clock interrupts and TLB faults, with roughly equal overhead

for both systems.

The memory system penalty for system instructions, reflected in Figure 4-2 as the

S-MCPI category, is from one to three times greater for Mach than for Ultrix. The dif-

ference in the system MCPI, while sometimes small (Figure 4-1), can contribute substan-

tially to overall system performance because of the large number of system instructions

executed. We break down the memory system overheads for instruction and data caches

by activity in Figures 4-3 and 4-4. Overall, memory system penalties from the different

classes of activity are as would be expected given the dynamic instruction counts from

9This behavior is dependent on the version number of the floating point chip. Later versions of the chip
implemented this functionality in hardware.

54

Figure 4-2 and the activities involved. For example, we expect the instruction cache

penalties from Block Ops to be very low, as this code is written as a tight loop and so has

good instruction locality. In contrast, the data cache penalties from Block Ops are high.

This is not a surprise; the bad data locality of these routines is well documented

[6, 63, 78].

7

4

Cis

U Emulator

f Microkemel
• - -•, • UNIX service

E
0 Z [Block Ops

0 VM-mi
- VM-md

d. _ -- I KTLB

*UTLB

0 Trap

00

Figure 4-3: System instruction cache misses for Ultrix and Mach.

This figure shows the system instruction-cache overheads for programs running on
Ultrix and Mach 3.0. Ultrix penalties are normalized to one. The number at the top of
each bar is the percentage of total cycles that are due to the system instruction-cache
misses.

55

4

*Emulatr

U Microkemel

e UNIX service

2 n _ EM Block Ops
] - [VM-nu

>U VM-md

*UTLB

0 .j . 4= + .== =++ =.+ +4 + +4 t= =+÷ + . =+ .= •=+
+ +

Figure 4-4: System data cache misses for Ultrix and Mach.

This figure shows the system data-cache overheads for programs running on Ultrix
and Mach 3.0. Ultrix penalties are normalized to one. The number at the top of each
bar is the percentage of total cycles that are due to the system data-cache misses.

4.3. Memory System Behavior: Seven Assertions

In this section we evaluate Ultrix and Mach 3.0 memory system behavior in terms of

the seven assertions from Table 1-1. Our basic strategy is to consider each assertion in

the context of the behavior measured in simulation experiments. In several cases we

have used additional simulations, with variations in the base memory system that reveal

the sensitivity of system performance to the assertion in question.

56

Assertion Implication

1. The operating system has less instruction and The operating system isn't getting faster as fast
data locality than user programs [24, 26]. as user programs.

2. System execution is more dependent on A balanced cache system for user programs may
instruction cache behavior than is user not be balanced for the system.
execution [78].

3. Collisions between user and system references A split user/system cache could improve
lead to significant performance degradation in the performance.
memory system (cache and TLB) [60, 78, 82].

4. Self-interference is a problem in system Increased cache associativity and/or the use of
instruction reference streams [57, 78]. text placement tools could improve performance.

5. System block memory operations are Programs that incur many block memory
responsible for a large percentage of memory operations will run more slowly than expected.
system reference costs [63, 78).

6. Write buffers are less effective for system A write buffer adequate for user code may not be
(as opposed to user) reference streams [6, 34]. adequate for system code.

7. Virtual page mapping strategies can have Systems should support a flexible page mapping
significant impact on cache performance [47, 59]. interface, and should avoid default strategies

that are prone to pathological behavior.

Table 1-1: Seven assertions about the memory behavior of
operating systems, repeated from page 3.

4.3.1. System and user locality

As cache behavior is an indication of locality, Table 4-1 supports the first assertion:

The operating system has less instruction and data locality than user programs. The

system can contribute up to 51% of non-idle instruction cache references, but in most

cases (17 of 26) the system contribution is less than 10%. Given this observation, a dis-

proportionately large number of instruction cache misses are due to the system (greater

than 70% for two-thirds of the workload/system pairs).

In terms of data references, the system contributes a larger percentage of misses than

references, again supporting the assertion that system data locality is worse than that of

user activity. Even so, in only five of the workload/system combinations does the system

contribute more than 90% of data misses, and only twelve if the threshold is lowered to

50%. Although the system's contribution of instruction and data references are com-

parable, the percentage of misses is not. Instruction references miss more often than data

references for both Mach and Ultrix. From this we conclude that instruction locality is

worse than data locality during system execution.

57

The percentage of instruction and data misses due to the system is generally larger

under Mach than Ultrix. Figure 4-1 and Table 4-2 together show that the difference in

user cache behavior between Ultrix and Mach is small. As Mach incurs a larger number

of cache misses than Ultrix, and as nearly every additional cache miss is due to the sys-

tem, the percentage of misses due to the system is larger.

4.3.2. System instruction locality

Percentages are useful for comparing system and user behavior but they cloud overall

performance effects. For example, although 97% of instruction cache misses for eqntott

under Mach are due to the system, the system instruction cache miss rate is

insignificant. 10

A better indicator of the performance impact of locality is the cache's contribution to

MCPI. In Table 4-3 we combine our baseline data from Table 4-1 with cache miss

penalties for the simulated memory system to yield the MCPI contributions from the

cache. The component of MCPI due to system instruction cache references dominates

that due to the user in 20 of 26 cases. In contrast, the system data cache component

dominates in only thirteen cases. Furthermore, the majority of system (as opposed to

user) cache penalties are due to poor instruction cache behavior; only five runs show

greater penalties for data than instructions, and in these runs the system contribution to

MCPI is small. This behavior supports the second assertion: System execution is more

dependent on instruction cache behavior than is user execution. However, many of the

programs in our workload have small working sets that fit entirely in the instruction

cache. Larger programs which do not fit well in the cache, such as gcc and the realistic

X 11 workloads discussed in Chapter 6, have instruction cache penalties comparable to

that of the system.

Table 4-3 quantifies the difference in MCPI between Mach and Ultrix that was

represented visually in Figure 4-1. Memory penalties due to system instruction and sys-

l(The system instruction cache miss rates can be calculated with data from Table 4-1 as the number of
system instruction cache misses / number of system instruction cache references. For example, for eqntott

254 x 0.97
1417868 x 0.01 = 0.017

Similarly, the user instruction cache miss rate is nearly zero (0.0005%).

58

instruction cache data cache
Ultrix Mach Ultrix Mach

workload sys user sys user sys user sys user
sed 0.129 0.005 0.283 0.005 0.041 0.001 0.132 0.003

egrep 0.014 0.001 0.046 0.001 0.010 0.000 0.023 0.000
yacc 0.028 0.004 0.069 0.003 0.011 0.011 0.029 0.012
gcc 0.103 0.145 0.294 0.123 0.027 0.034 0.094 0.039

compress 0.060 0.002 0.157 0.005 0.042 0.106 0.101 0.102
ab 0.139 0.130 0.261 0.098 0.091 0.024 0.121 0.020

espresso 0.009 0.012 0.026 0.011 0.003 0.007 0.011 0.008
lisp 0.002 0.001 0.013 0.011 0.003 0.004 0.006 0.003

eqntott 0.001 0.000 0.003 0.000 0.005 0.147 0.006 0.147
fpppp 0.050 0.184 0.040 0.173 0.002 0.005 0.005 0.005
doduc 0.014 0.277 0.020 0.270 0.002 0.023 0.006 0.022

liv 0.013 0.000 0.045 0.000 0.010 0.001 0.018 0.000
tomcatv 0.000 0.000 0.002 0.000 0.005 0.634 0.005 0.634

Table 4-3: MCPI contributions from the cache.

For each workload/system pair, this table shows the MCP1 component due to the
instruction and data caches. Runs for which the system contribution to MCPJ
dominates that of the user are shown in boldface.

tern data references are larger for Mach than for Ultrix, while user memory penalties are

similar. Increased system activity in Mach, as is shown in Figure 4-2, results in a larger

cache contribution to MCPI.

4.3.3. Competition between user and system activity

The increased cache activity for Mach 3.0 suggests that workloads may have worse

memory system behavior for Mach 3.0 than for Ultrix due to increased competition in the

cache between active system and user contexts. To evaluate this, we modeled a

hypothetical memory system where this competition was eliminated. We eliminated

competition by duplicating the memory system, with one instance used for user activity

and one for system activity. Apart from the elimination of competition the private

memory systems were identical to that of the base simulation.

The effects of user/system competition on cache behavior are shown in Figure 4-5.

Instruction and data cache behavior are each shown separately. Pairs of bars correspond-

ing to Ultrix (+U) and Mach (+M) are aligned to emphasize the comparison between the

two operating system implementations. Each instruction and data bar has four com-

ponents. The two leftmost components correspond to the case of separate system and user

caches, and represent the fraction of misses that remain with the independent memory

systems. The two rightmost components show the additional fraction of system and user

misses that occur when the cache is unified.

59

Instruction Data
sed+U___________________

egrep+U
+M1

yacc+Ul

+M1I

icc+U

compress+U+
+M1

ab+U______________1 __

espresso.+Ul

lisp+U

+M1

fpppp+U

doduc+U

liv+U__________________ _________________
+M1

tomcatv+U_____________________
+M1

Without corn ttion With cornmit~ion
system user system user

Figure 4-5: User/system interference.

For each workload/s:, stem pair, this figure shows effects of competition between sys-
tem and user activity under Ultrix (+U) and Mach (+M). Instruction and data activity
are shown separately. Each bar is composed of four regions. The two rightmost
regions represent the fraction of misses that are due to competition. The two leftmost
regions represent the fraction of misses that remain when user/system competition is
eliminated.

Although our separate user and system caches double the effective cache size, the

general dominance of the two leftmost components in Figure 4-5 indicates that the iso-

lated caches do not significantly reduce miss rates relative to the unified cache. The

largest interference effects (for example, those that occur for lisp) occur when the cache

miss rate is low, such that a few interference misses can result in a large relative change.

60

The absolute contribution of competition misses to MCPI is shown in Table 4-4. These

points imply that the third assertion: Collisions between user and system references lead

to significant performance degradation in the memory system, is not true for these

workloads with the simulated memory system.

Ultrix Mach
workload inst data total inst data total

sed 0.010 -0.006 0.004 0.009 0.004 0.013
egrep 0.003 0.000 0.003 0.002 0.002 0.004

yacc 0.005 0.002 0.007 0.004 0.005 0.009
gcc 0.050 0.007 0.057 0.047 0.018 0.065

compress 0.004 0.018 0.022 0.010 0.034 0.044
ab 0.038 0.006 0.044 0.029 0.000 0.029

espresso 0.005 0.002 0.007 0.004 0.004 0.008
lisp 0.002 0.006 0.008 0.022 0.004 0.026

eqntott 0.000 0.004 0.005 0.000 0.005 0.005
fpppp 0.072 0.002 0.074 0.047 0.002 0.049
doduc 0.023 0.002 0.025 0.016 0.002 0.018

liv 0.001 0.004 0.005 0.000 0.001 0.002
tomcatv 0.000 0.005 0.006 0.000 0.005 0.006

Table 4.4: MCPI contributions from cache competition.

This table shows MCPI contributions from additional system misses occurring when
cache competition with user references is present. The negative value for sed running
on Ultrix is because user references can actually reduce the number of system misses
due to data that is shared between the user and system.

For user/system interaction in a Unix system, a voluntary context switch oncurs for

every system call. Table 4-4 shows that, for the workloads we consider, the additional

competition cache misses following a voluntary context switch do not have significant

impact on overall performance."I On the user side, where the instruction cache miss

rates are generally low but data cache miss rates are high, the cost of reloading the cache

after a context switch is amortized over a large number of instructions. On the system

side, instruction and data locality are already poor, limiting the impact of interleaved user

references. This behavior is consistent with earlier results on competition in client-server

systems [57]. However, the penalty from competition clearly depends on the client-

server system in question. In Chapter 6 we show that competition between kernel, server,

and client contexts can have a significant impact on performance for XII clier~t/server

workloads.

I 1 We distinguish between competition from voluntary context switches, as occurs in a client-server
system, and competition from involuntary context switches, as occurs in a multitasking workload.

61

TLB behavior

The Ultrix kernel binary runs in unmapped kernel memory, largely isolating it from

the TLB. In contrast, only the Mach microkernel component runs unmapped; the UNIX

server and emulator run in mapped memory. This induces user/system competition for

TLB resources. Earlier research has shown that this competition can cause a significant

increase in TLB activity [6, 60]. Table 4-5 confirms this, showing an order of magnitude

increase in the number of system TLB misses for Mach as compared to Ultrix.

In terms of MCPI, though, the absolute contribution of system TLB misses to perfor-

mance is generally not large, as shown by the last four columns of Table 4-5. Moreover,

high TLB MCPI is an indication of poor locality, which is also reflected in more severe

cache penalties. Even in runs with the most extreme behavior, TLB penalties are consis-

tently dominated by cache penalties (Table 4-3) for both Ultrix and Mach.

TLB refs (xi000) UTLB misses lOOO) KTLB misses (xl) UTLB MCPI KTLB MCPI
workload user Ultrix Mach U-user M-user Ultrix Mach Ultrix Mach Ultrix Mach Ultrix Mach

sed 5596 423 1079 0.08 0.49 0.05 6.67 427 2132 0.000 0.012 0.021 0.063
egrep 50399 546 1116 0.06 0.39 0.10 6.41 447 1847 0.000 0.002 0.003 0.009

yacc 37460 571 1323 0.22 1.26 0.05 7.89 373 2280 0.000 0.003 0.003 0.015
gcc 30093 1582 2951 28.78 35.87 0.10 17.87 1491 3305 0.011 0.018 0.016 0.022

compress 17892 986 2085 78.92 82.06 0.13 10.24 690 3982 0.045 0.045 0.011 0.045
ab 755092 90958 195492 1072.61 1208.04 12.50 1457.98 94635 578598 0.013 0.025 0.030 0.108

espresso 164313 660 1281 0.74 2.64 0.05 7.67 441 3111 0.000 0.001 0.001 0.005
lisp 1706833 12974 26783 0.07 12.69 0.04 15.68 392 8063 0.000 0.000 0.000 0.002

eqntott 1690678 3579 3697 675.05 692.57 0.11 24.03 1317 9760 0.005 0.007 0.000 0.002
fpppp 380307 3632 1169 3.00 13.54 0.25 9.02 361 2273 0.000 0.001 0.000 0.003
doduc 438563 899 2162 6.54 30.53 0.04 18.26 391 5811 0.000 0.002 0.000 0.005

liv 30123 232 417 0.03 0.11 0.04 2.62 184 701 0.000 0.002 0.002 0.007
tomcatv 2949614 4480 2684 317.74 321.79 0.13 25.69 1557 8135 1 0.002 0.003 0.000 0.001

Table 4-5: TLB activity.

This table shows TLB references (x 1000), UTLB misses (x 1000), KTLB misses
(x 1), UTLB MCPI, and KTLB MCPI for system and user across the various
workloads. The number of user UTLB references is the same for both systems, as the
same user code is executed. UTLB miss counts depend on competition from the sys-
tem, so the table shows separate numbers for Ultrix and Mach. KTLB misses do not
occur in user code.

4.3.4. System self-interference

Self-interference occurs when insufficient cache associativity results in cache misses.

The impact of self-interference in user-code is well-understood [43]. To evaluate the im-

pact of system self-interference, we simulated a two-way LRU set associative cache of

the same size as our direct-mapped cache. As in the previous section, user references are

62

isolated from the system-only cache, although they continue to generate TLB misses and

subsequent system activity.

Instruction Data
sed+U .10-11___________

+MO.4 .11

egrep+U O.01 0.00

yacc+U 10.0 0. 01
+M10.06 10.0

gcc+U 10.07 0.02
+M 0. .08

compress+U 0.05
+M 0.13 0.08

ab+U .10 0.08
+M 0.21 0.11

espresso+U 0.000 0.0
+M10.02 10.00

~isp+U 1-0 0+MlU.O- 0

eqntott+U 0.0 .00
+M 1.0-

fpppp+U~I I 01 F -000
+M100 I O.

doduc+U 1000
+M10.00 0.00

1iv+U[jE0.ZZ 000EIE
+M 10.04

tomcatv+U 000 10.
+M10-00 r-!100

Figure 4-6: System self-interference.

For each workload/system pair this figure shows system self-interference effects, as
indicated by miss rates from direct-mapped and two-way associative caches of the same
size. Each bar is composed of two regions. The darker region represents misses
eliminated by associativity (those due to self-interference). The lighter region
represents misses that associativity does not eliminate. The number on the left end of
the bar is MCPI for the system-only direct-mapped cache.

Figure 4-6 illustrates the effect of the increased system associativity on instruction

and data cache miss rates. In each bar, the light region represents the fraction of system

misses that associativity does not eliminate, while the dark region represents that fraction

63

eliminated by associativity. This representation emphasizes variations in the relative

benefit of associativity between workloads. The number at the left side of each bar is the

absolute MCPI contribution of cache misses for a system-only direct-mapped cache.

Figure 4-6 shows that the increased associativity eliminates a significant fraction of

misses, and is more effective for instruction than data references. This confirms the

fourth assertion: Self-interference is a problem in system instruction reference streams.

Self-interference has the largest relative impact when MCPI is low, and the smallest

relative impact when MCPI is high. Associativity helps to eliminate collision misses but

is of no benefit for capacity misses. A high MCPI occurs when the cache capacity is

inadequate, a situation where increased associativity does not help. Examples are sed,

egrep, and liv, which have high MCPIs, a large amount of system activity, and gain rela-

tively little from associativity. In contrast, associativity helps most with lisp and tomcatv,

where system activity is limited. Associativity is generally less beneficial for Mach than

for Ultrix because the working set of system code and data tends to be larger for Mach.

4.3.5. Block operations

Operating systems perform block memory operations to transfer data between I/O

devices and memory, and to copy data between address spaces. Table 4-6 shows that

block memory operations and their subsequent interference can be responsible for a sub-

stantial fraction of total MCPI, especially for programs that perform significant I/O.

Espresso, while not I/O intensive, pays a high relative penalty for block operations be-

cause program loading overheads dominate its cache behavior. From the measurements

we conclude that assertion five: System block memory operations are responsible for a

large percentage of memory system reference costs is true, and most important in I/O

intensive applications.

In terms of MCPI, Table 4-6 shows that block operations incur a larger absolute over-

head for programs running on Mach than on Ultrix. Table 4-7 shows that Mach generally

references more data than Ultrix in block operations and that more of those references go

through to memory. Block operations in Mach occur within the kernel as part of the VM

and IPC systems, and within the UNIX server as part of the file system. In contrast,

Ultrix block operations, which occur entirely within the kernel, are due mostly to VM

and file system operations.

64

Ultrix Mach
workload MCPI %total MCPI %otal

sed 0.066 29.2 0.131 26.6
egrep 0.014 39.3 0.017 20.9

yacc 0.017 25.6 0.027 20.9
gcc 0.116 26.8 0.159 23.0

compress 0.055 22.1 0.071 17.0
ab 0.100 23.4 0.057 10.7

espresso 0.009 21.3 0.013 19.9
lisp 0.000 0.3 0.000 0.0

eqntou 0.000 0.4 0.001 0.6
fpppp 0.003 1.2 0.005 2.2
doduc 0.003 0.9 0.006 1.9

liv 0.008 7.1 0.013 7.9
tomcatv 0.000 0.0 0.000 0.0

Table 4-6: MCPI from block memory operations.

For each system, this table shows the MCPI contribution of block moves (and sub-
sequent interference), and also the percentage of total MCPI due to block moves.

Utrix Mach
MCPI data reads memory reads MCPI data reads memory reads

workload B-Ops %total cacheable uncacheable total % B-Ops %ctotal cacheable uncacheable total %
sed 0.066 29.2 57 17 28 37.7 0.131 26.6 132 26 70 44.2

egrep 0.014 39.3 88 19 42 40.0 0.017 20.9 126 15 51 36.6
yacc 0.017 25.6 105 27 42 32.3 0.027 20.9 136 27 64 39.6

gcc 0.116 26.8 53 253 277 90.3 0.159 23.0 237 289 414 78.6
compress 0.055 22.1 168 35 68 33.5 0.071 17.0 180 45 98 43.5

ab 0.100 23.4 16729 1897 6118 32.9 0.057 10.7 10311 609 4442 40.7
espresso 0.009 21.3 43 80 93 75.7 0.013 19.9 143 87 133 57.8

lisp 0.000 0.3 1 2 3 100.0 0.000 0.0 76 0 0 1.0
eqntott 0.000 0.4 258 23 56 20.0 0.001 0.6 232 0 94 40.4

fpppp 0.003 1.2 19 63 71 84.8 0.005 2.2 125 69 99 51.1
doduc 0.003 0.9 36 62 75 76.5 0.006 1.9 115 85 147 73.2

fly 0.008 7.1 19 8 14 51.1 0.013 7.9 52 8 20 34.2
tomcatv 0.000 0.0 113 23 60 44.5 0.000 0.0 297 4 76 25.3

Table 4-7: Block memory operations and memory reads.

For each system, this table shows the MCPI due to block memory operations and
subsequent interference, and its percentage of total MCPI (Figure 4-1). The table also
shows the number of data reads from cacheable and uncacheable memory that are due
to block operations, the number of those reads that go to memory resulting in a CPU
read stall, and the percentage of overall CPU memory stalls due to block operations.
Reads from uncacheable memory are due primarily to 1/0 operations and always go
through to memory. All counts are in thousands.

65

43.6. Streaming writes

Operating systems stream data to memory during block transfers, such as for I/O and

IPC, and during context switches and exception handling. Write buffers expedite stream-

ing writes by retiring writes more quickly and by allowing the CPU to run ahead of

memory. The effect of streaming write operations on system performance can be

measured by counting stall cycles due to writes. The number of write stall cycles per

instruction for user and system code under Ultrix and Mach is shown in Table 4-8. In

most cases system behavior is worse than user behavior, supporting the sixth assertion:

Write buffers are less effective for system references.
Ultrix Mach

workload system usrr system user
sed 0.061 0.000 0.076 0.000

egrep 0.050 0.002 0.065 0.002
yacc 0.062 0.000 0.076 0.000
gcc 0.106 0.012 0.129 0.012

compress 0.043 0.011 0.063 0.013
ab 0.040 0.009 0.043 0.010

espresso 0.093 0.001 0.111 0.001
lisp 0.007 0.004 0.064 0.005

eqntott 0.014 0.000 0.024 0.000
fpppp 0.030 0.017 0.037 0.015
doduc 0.101 0.018 0.095 0.018

liv 0.052 0.090 0.075 0.090
tomcatv 0.023 0.033 0.044 0.033

Table 4-8: Write buffer stall cycles per instruction.
This table shows write buffer stall cycles per user instruction and write buffer stall

cycles per system instruction. Runs in which system behavior is worse than user be-
havior are shown in bold face.

User write buffer stalls per instruction are generally higher for Mach than for Ultrix.

This might seem anomalous, as both systems use the same user application with the same

input. The difference is due to interactions between the cache and the write buffer.

Overall cache miss rates are higher with Mach, and the DECstation 5000/200 memory

system gives CPU reads priority over outstanding writes. Consequently, fewer memory

cycles are available for the write buffer to retire outstanding writes, resulting in a larger

number of stalls. Additionally, the interleaved read misses decrease the frequency of

low-latency page-mode writes.

66

+M 4 3. I0.04 j 0.423

egrep +UU 0.204 0.3

yac:c+U 7
+M 0. 103

gcc+U 0.194
+M •0.470

compress+U I nq~n 0120+M 1 0.237

ab+U M-1 0.177
+M 10.350

espresso+U 018
+ML= 0.0 4 1 system i-cache misses

lisp+U 0.157 system d-cache misses
lsU0 7system wbuffer stalls

+M system uncached reads
- user i-cache misses

eqntott+U 0.003 r d-cache misses
+M 0.006 r wbuffer stalls

fpppp+U 0 .029 MCPI
"+M 0.0571.Y

doduc+U).012
+M 0.036

liv+U 0400
+M .0.487

tomcatv+U 1 0.002
+M 10.004

Figure 4-7: MCPI for random page mapping.

This figure shows MCPI for Mach and Ultrix, as in Figure 4-1, but for a system that
uses random page mapping. The elimination of user cache misses reduces memory
contention, so write buffer stalls are virtually eliminated for many workloads. This
figure shows the results of a single run. As the page-mappings are random, behavior
can vary significantly between runs.

67

4.3.7. Page mapping policy

The system's virtual page mapping policy can affect the performance of a physical

cache because it determines the placement and overlap of virtual pages in the cache. As

an example, consider a deterministic policy which selects mappings such that pages con-

tiguous in the virtual address space are also contiguous in the physical cache. Such a

policy can eliminate self-conflict misses for applications that are smaller than the cache.

It also improves the effectiveness of program reordering tools that rearrange the layout of

text and data in memory to improve cache performance [32, 55].

In our simulations to compare the memory behavior induced by Ultrix and Mach 3.0

system structure, we have used the same deterministic page-mapping policy for both the

Ultrix and Mach experiments. As mentioned earlier, Ultrix uses a deterministic strategy

while the Mach 3.0 strategy is essentially random (a virtual page is assigned to the next

physical page on the free list). To isolate the effect of the page mapping strategy, we

modified our simulator to use a random mapping policy. The simulator maintains a page

table so that when a mapping is created for a virtual page it does not change. Figure 4-7

shows MCPJ for a run of the workloads with random page mapping. When compared to

Figure 4-1 (both are on the same scale), most of the workload/system pairs perform better

with random page mapping, and gcc, compress, eqntott, fpppp, doduc and tomcatv show

the greatest improvement. The program tomcatv offers a good example of the effect that

mapping strategy can have on program performance. This program uses several matrices

that are rough multiples of the cache size, and are allocated contiguously in virtual

memory. The virtual-to-physical mapping induced by the deterministic strategy causes

frequent collisions between corresponding matrix elements during computation.

In some cases the deterministic strategy yields a page mapping with low user cache

miss rates. Specific examples are sed and lisp under Ultrix, and egrep and liv for both

systems. Note that with the small instruction text of these programs, the mapping chosen

by the deterministic policy is optimal for the instruction cache. In these cases the deter-

ministic strategy leads to good overall behavior, while the random strategy can perform

significantly worse. Our results suggest that such cases are infrequent for the memory

system we simulated, and the deterministic policy frequently causes worse behavior than

a random policy.

68

Overall, these observations confirm the seventh assertion: Virtual to physical page

mapping strategy can have significant impact on cache performance. Moreover, a deter-

ministic strategy can have a negative impact on performance for a direct-mapped cache

when program reordering tools are not used. In such cases a random strategy is less

likely to induce consistently poor behavior.

4.4. Conclusions

For the majority of workloads we consider, the number and cost of non-idle instruc-

tions executed is substantially higher for Mach than for Ultrix. Six of the assertions

about operating systems and memory system behavior are true, although two have little

or no impact on system performance. One is false. Several are sensitive to the operating

system architecture. Specifically:

"* System and user locality. System locality is measurably worse than user
locality, and the performance impact can be significant. The Mach
microkemel-based system has poorer system locality than Ultrix.

"* System instruction locality. Relative to user behavior, system text shows
less locality than system data. However, user workloads such as gcc with
large text can have instruction cache penalties that rival that of the operating
system.

"* User/system competition. User/system competition is a measurable com-
ponent of cache and TLB miss rates. For these workloads, though, system
performance is not affected by user/system competition. The impact of the
Mach 3.0 microkernel structure on competition is not significant.

" System self-interference. Self-interference accounts for a significant num-
ber of system misses, particularly in system text. However, the cases with
the worst overall behavior are also those that benefit least from associativity.
Compared to Ultrix, associativity eliminates a lower percentage of Mach's
cache misses because of its greater demand for cache resources.

"* Block operations. Block operations can be responsible for a large com-
ponent of overall MCPI, particularly for applications that perform 110. Mach
moves more data with block operations and has a larger MCPI due to block
operations than Ultrix.

" Streaming writes. System code presents a higher load to the write buffer
than user code. Mach's increased cache MCPI results in a larger number of
system and user write buffer stalls due to competition between memory reads
and writes.

"* Page mapping strategy. Page mapping strategies can have a large effect on
cache performance. The page mapping strategy is independent of operating
system structure.

69

The performance of the operating system, either monolithic or microkernel-based, is

more sensitive to memory system latency than that of applications. The locality of sys-

tem code and data is inherently poor, and changes to memory systems that help applica-

tion performance by taking advantage of locality are unlikely to bring proportional im-

provements to the system.

70

34,. S-MCPI

vm-mcp

-4~ Emulaoar

S' .,• l'.FC
U Microkemel

3 UN- -- Ice

(.. ~ -~ UBlock Ops

125

S -* + 0 O- "IiVM-md

1.00

*KThB

Figure 4-2. Relative System Overheads for programs running on Ultrix and Mach.

1.25

+ + • -+ '. C vi -+ '0 ,- -+ -++++ ,

1.007
- larditmetic

a U system memory
S0.75 user memory

S*system CPU

UW seCPU

*~0.50

0.25

0.00

Figure 5-3. Ultrix and Mach 3.0 Execution Time; Page mapping policy as implemented.

71

72

Chapter 5

Mach 3.0 and Ultrix: The Impact of Policy

In this research we have categorized the principle differences between Mach 3.0 and

Ultrix as either differences in structure or in policy. A difference is structural when it

significantly impacts the sequence of instructions issued during (non-idle) operating sys-

tem activity. Such differences affect system functionality, where functionality is im-

plemented, or how different parts of the system interact at the software level. Structural

differences have significant and broad-reaching impact on system implementation.

When a difference is not structural we say it is a difference in policy. Differences in

policy cause no changes or only local changes in non-idle system activity. Ideally, policy

is determined by code that is localized and isolated in the system, such that policy can be

changed without changing other parts of the system.

In Chapter 4 we saw how structural differences between Ultrix and Mach 3.0 induce

significantly higher instruction counts and memory penalties for system activity under

Mach 3.0. In this chapter we place structural effects in the context of overall behavior

and show the impact of system policy. We will explore two specific policy issues

relevant in the comparison of Mach 3.0 and Ultrix: disk management policy and page

mapping policy.

5.1. The Impact of Structure on Execution Time

Figure 5-1 shows simulator estimates of execution time for the experimental

workloads 12 broken down into six classes of activity. For each workload there are two

bars, one for Ultrix and one for Mach 3.0. For each workload, the bars are normalized to

12The Andrew Benchmark is not included. As we do not tace the assembler, simulator predictions of

execution time are not possible.

73

1.25

C r4 ~ . 4 V1 4a ~
1.00

0.0

FNT eh SuctureToos im for a c

Bo10.50 adUti imltosue tesm eeriitcpg mapingalo

Fealigues 5-1 Ultri andw Mah30Eeutotiehe impact of StrunevtieUtrxdskplcywturei
Thisfigutlmre ompaes simulator eimtsoeecintmefrUltrix and Mach 3.0.

execution time isde broken down intomsixsourceso offlaency, corrsonig toauseradtiea

sysdictem by Cpu lsmuserar

Boathn Mach 3.0 andoUtro smula tion usehd thersame determ nstc page mapptgagoreco-

rstructure both fromes incratsoed system e instruction consanonr eaed memrcory sysctem b
phenaltiesso. Itr alsnhwh impgnractin ofithe cnservative Utixss eraec diskplcwt sig-

executionmetime unders Ulrx Thces noumdbera the topy ofmeanhnbariselapsod time. ase

first class of activity is user CPU cycles, that is, the one cycle for each user instruction

executed on the CPU. Next is system CPU cycles, corresponding to system instructions

74

executed. For a given workload, user CPU cycles are the same for Ultrix and MacL 3.0.

User instruction counts are the same for both systems because each used the same user

binary with the same input. For system intensive workloads such as sed and egrep, sys-

tem CPU cycles for Mach 3.0 are generally about twice that of Ultrix. This means that

Mach 3.0 executes about twice as many system instructions as Ultrix, an indication of the

impact of system structure. Note that Mach 3.0 requires less system instructions for lisp

andfpppp. See Section 4.2.1 for more details on this behavior.

The next two categories correspond to memory delays, including cache misses, write

buffer stalls, and (for the system) uncached memory reads. In general, user memory

delays are comparable for Ultrix and Mach 3.0. However, system memory delays are

much higher for Mach 3.0, particularly for system-intensive workloads such as sed, gcc,

and compress. This reflects the combined effect of poorer system locality and higher

instruction counts for Mach 3.0, and again is an indication of the impact of system struc-

ture. For Figure 5-1, the same deterministic virtual-to-physical page mapping policy was

simulated for both systems. Later in this chapter we will see that the different page map-

ping policies implemented in the two systems have a significant impact on cache be-

havior.

The next category corresponds to arithmetic stalls. These occur in user-mode only, as

the operating system makes no use of floating point and rare use of multiply and divide

instructions. The contribution to execution time is significant for floating point intensive

workloads such as tomcatv and doduc. For integer workloads such as gcc, arithmetic

stalls are not a significant source of latency as arithmetic instructions are rare.

Overall, Figure 5-1 shows that the structural differences between Mach 3.0 and Ultrix

have a significant impact on overall behavior for many of the experimental workloads,

both in terms of system instructions executed and system-induced memory delays.

5.2. Disk Policy

The last source of latency in Figure 5-1 corresponds to idle time, time spent in the

system iai- loop. For the workloads we consider, all idle loop activity corresponds to

time spent waiting for synchronous disk operations to complete. Disk policy for Ultrix is

different from that of Mach 3.0, causing Ultrix to spend more time in the idle loop. (Dif-

75

ferences between disk management policy in the two systems were described in Section

3.5.3.) We classify disk management as a policy issue rather than a structural difference

because it has little impact on non-idle operating system activity. It is straightforward in

either system to implement either the Ultrix or Mach 3.0 policy. For example, Ultrix

could be modified to use the Mach 3.0 policy by changing less than ten lines of code.

Figure 5-1 shows that synchronous disk activity, as reflected by time spent in the idle

loop waiting for synchronous disk requests to complete, represents a significant com-

ponent of execution time for workloads such as sed and gcc. Further, disk policy has a

significant impact on this activity and on overall execution time.

5.3. Page Mapping Policy

Figure 5-1 reflects the impact of system structure and of disk policy on overall be-

havior. However, it does not reflect behavior and latencies in the real system, as can be

seen by comparing times from Figure 5-1 and Table 3-2. The Mach 3.0 simulations in

Figure 5-1 use a deterministic page mapping policy. This facilitates a comparison of the

structural differences between Mach 3.0 and Ultrix in isolation from differences in

policy. However, the page mapping policy implemented in Mach 3.0 is not deterministic.

Mach 3.0 selects a physical page to back a given virtual page by taking the next page off

the free list. The Mach 3.0 policy starts out as sequential, as pages on the free list are in

order at boot time. As processes are created and destroyed and the free list becomes

shuffled, the page mapping policy becomes random.

In Section 4.3.7 we saw that a random page mapping policy can sometimes give bet-

ter memory system performance than the mapping induced by a deterministic policy as

used in Ultrix. This occurs when the deterministic policy causes frequently referenced

data to conflict in the cache. Figure 5-2 shows the effect of page mapping policy on

execution times for Mach 3.0. For each workload, the bar on the left shows Mach 3.0

simulation results for a deterministic policy and the bar on the right shows the results for

a random policy. The effect of page mapping policy on system cache behavior is rela-

tively small, as many system memory references are unmapped and the proportion of

capacity to compulsory misses is high. In contrast, many workloads have better user

cache behavior for the program execution using a random policy than for the run with the

76

1.25

Ch'C

"1.00 .

g0.75 0 k] ei

W I use~r memorxy

sye CPU

S0.25

0.00

Figure 6-2: Page Mapping Policy and Mach 3.0 Execution times.

T7his figure shows the impact of page mapping policy in the context of Mach 3.0,
comparig program execution with a deterministic page mapping policy to execution
where page mappings are assigned by a random number generator. Execution time is
broken down into six sources of latency. T7his figure illustrates the significant impact of
page mapping policy on memory system delays. For many workloads, the performance

of the deterministic policy is worse than that of a random page assignment policy, due
to induced cache effects. Each bar shows activity during a single program execution.

deterministic policy. There are also cases where the random policy is worse, as in the
experimental runs for egrep and lIN.

For an intuition as to why the deterministic policy frequently gives worse cache be-
havior, it is useful to consider a combinatorial analysis of the page mapping policies.

Suppose a program uses n pages that are consecutive in the virtual address space, and that

each page can be mapped into one of k pages in the cache. Then there are/L- possible

page mappings. With the random policy, each mapping has probability 1//• of being

chosen. The k- mappings can be partitioned into classes such that mappings in the same

class cause the same pages to overlap in the cache, and hence have the same cache be-

77

havior. Because mappings in the same class have the same cache behavior, they can be

said to be equivalent.

The deterministic policy determines a single class of equivalent mappings that will

always be used. Note that with the deterministic policy, the placement of the first page

determines the placement of all other pages. As there are k ways of placing the first page

in the cache, the deterministic policy determines k possible mappings. Note that the ran-

dom policy will choose a mapping equivalent to that of the deterministic policy with

probability

Behavior with the random policy can vary widely across different runs, but the ex-

pected behavior corresponds to "average" behavior over the probability density function

determined by all possible page mappings.

For certain workloads, the mapping determined by the deterministic policy gives

worse-than-average behavior. In this case, the random policy will usually give better

performance than the deterministic policy. The experimental results given in Figure 5-2

suggest that the deterministic policy frequently makes a worse-than-average choice.

Note from Figure 5-2 that neither the random nor the deterministic policy are consis-

tently better across all the workloads. These policies are static in that the page mapping,

once determined, cannot change in response to cache miss activity. Recent work in

dynamic page mapping policies that update the virtual-to-physical page mapping in

response to cache miss activity [14] shows promise in addressing this problem.

Figure 5-3 compares Ultrix and Mach 3.0 behavior using page mapping policies cor-

responding to those implemented in the actual systems. The Ultrix simulations use the

deterministic page mapping policy and the Mach 3.0 simulations use a random policy.

Figure 5-3 shows that the mapping has substantial impact on execution time. For many

workloads the combined effects of page mapping and disk policy more than compensate

for the performance penalties induced by system structure. As an example, system in-

struction overhead for the compress run on Mach 3.0 is twice that of the Ultrix run, but

the Mach 3.0 run makes up for the difference through reductions in user cache cycles

(page mapping policy) and idle time (disk policy). The breakdown in Figure 5-3 more

accurately reflects the observed difference in execution time between Ultrix and Mach

3.0. The execution times in Figure 5-3 are still simulated, and are subject to variation and

error from several sources. See Section 3.5.1 for details.

78

1.25

1.00

0.75 0[mbmenc

* ;Esyszemmem--v

9 1 user memory

931 sys•m CPU
S0.50 use aCU

E
F 0.25

0.00
4+ 5+ + + + ++ +~ ;+~+ .I I • -

Figure 5-3: Ultrix and Mach 3.0 Execution Time; Page mapping policy as implemented.

See page 71 for a color version of this figure. This figure shows simulator estimates
of execution time broken down into six sources of latency. The simulations used paged
mapping policies as implemented in the system, deterministic for Ultrix and random for
Mach 3.0. This figure shows how performance penalties induced by Mach 3.0 structure
are countered in part by the effects of the Mach 3.0 disk and page mapping policy.
Each bar shows activity during a single program execution.

As with disk policy, we have distinguished page mapping policy from structural dif-

ferences between the two systems because of its minimal influence on the actual operat-

ing system implementation. Ultrix can be made to use the Mach 3.0 page mapping policy

by modifying one line of source code.

79

5.4. Conclusions

In this chapter we have considered the impact of system structure and of system

policy in the context of overall behavior, as reflected by execution time. We have seen

that system structure has a large impact on overall behavior, both in terms of memory

penalties and system instruction counts. As compared to Ultrix, the structural differences

in Mach 3.0 induce substantial penalties. We completed the performance picture by con-

sidering the impact of system policy. Disk and page mapping policy for Mach 3.0 is

different than that of Ultrix. These differences tend to improve Mach 3.0 performance

and compensate for the penalties imposed by Mach 3.0 structure.

80

Chapter 6

X11 Workloads

The workloads used in the comparison of Mach 3.0 and Ultrix in the previous chap-

ters are typical of those used for performance comparisons between different computer

systems. In this chapter we look at workloads that use the XII windowing system to

understand how XII workloads differ from those more traditionally used in performance

evaluation. We used memory reference traces from DEC Ultrix, the XII window system

from MIT Project Athena, and freely available Xl applications to explore several

aspects of memory system behavior and performance. The tracing system permits us to

consider not only behavior within the XII server but also interaction in the memory sys-

tem between operating system, window server, and client.

Our analysis shows that memory behavior for X1I workloads differs substantially

from that of traditional workloads, particularly in the instruction cache and TLB. Com-

petition within and between contexts in the instruction cache has significant performance

impact. This cache competition appears difficult to avoid in a direct mapped cache, sug-

gesting that higher associativity may be required. TLB designs that do not accommodate

the demands of large interactive systems may also become performance problems.

6.1. Background

XII workloads, as compared to the SPECmarks [76] and other more traditional

workloads for system performance comparison and analysis, differ in several fundamen-

tal ways:

Large program text. Even the largest SPECmarks are small compared to
X 11. At 688K bytes, gcc stands out among the SPECmarks for its large text

81

segment1 3 . X11 servers commonly have as much as 1.8 megabytes of text,
more than twice that of gcc. XII clients also tend to have large code. The
two real-world XII clients used in this study, gs and splot, have text sizes of
946K bytes and 278K bytes respectively. User text size for gs with the X1I
server is over four times that of gcc.

" Three interacting contexts. Typically, batch-oriented workloads involve
two contexts: the user application and the kernel. For many of these
workloads kernel activity is negligible. Scientific workloads are the most
common examples. In contrast, activity in most Xl 1 workloads is split
among three contexts: the client, the X11 server, and the operating system,
with significant activity occurring in all three contexts. The result is ad-
ditional resource competition that does not happen in the two-context and
single-context case.

"* Mandatory and potentially frequent context switches. When multi-task
workloads are used in memory system studies, they are usually created by
taking unrelated batch-oriented workloads and running them simultaneously.
Context switches for these multi-task workloads can often be scheduled ar-
bitrarily. An intelligent scheduler may try to make switches infrequent as a
strategy for minimizing cache competition. In contrast, scheduler policy is
irrelevant in client-server systems. Context switches are largely determined
by client behavior and inter-process communication implementations.
Depending on the client, context switches may be frequent.

Additionally, the X II server and clients are used daily and repeatedly by a large contin-

gent of the workstation computing community. Many of these users make rare use of

programs such as those in the SPECmarks.

Performance for benchmarks is typically measured in terms of throughput, with

program execution times reduced to units such as MIPS or MEFLOPS. A key distinction

between interactive workloads and more traditional benchmarks is thei .. nsitivity to

latency, which is the time required for the system to respond to a give. Iput event.

Analysis of memory system components such as caches and write buffers is common

practice for throughput benchmarks [22, 23, 38]. However, interactive programs and

client-server systems have received relatively little attention in recent research [15, 58].

13Text sizes are given for Ultrix DECstation executables. gcc is as built from the SPECmark distribu-
tion. The XlI server size is for /usr/bin/Xws on an Ultrix workstation, which includes a number of
DEC extensions. The tracing experiments used a smaller server (958K bytes). See Section 6.2 for details
on the server used in the tracing experiments.

82

This is unfortunate in that, for many computer users, quick response time for latency-

critical interactive applications is more important than the throughput of batch jobs. Be-

cause of the size and complexity of server-based systems such as X11, few detailed

measurements of their behavior have been made. We think the problem deserves more

attention, as memory system delays can have a significant impact on latency for inter-

active workloads.

6.1.1. Related Work in Measuring Xll Performance

This research focuses primarily on measuring the behavior and performance of realis-

tic X1 1 client workloads from the perspective of the memory system. Several prior

studies measured X11 behavior, although they differ substantially in that they considered

behavior at higher levels of abstraction. Researchers at the Microelectronics Computa-

tion and Technology Corporation built a tool called XSCOPE to measu e XII perfor-

mance and localize performance problems [65]. XSCOPE provides information about

XII request, reply, error, and event packets. Their experience in designing XSCOPE

indicated some problems with the syntax of the X11 protocol.

Simple measures of performance, such as operations per second, are often used when

characterizing new graphics hardware. Researchers at DEC WRL have done significant

work in achieving good X11 performance, both with simple bit-mapped framebuffers

[53] and more complicated hardware [54]. They also demonstrate software algorithms

that permit effective use of' the hardware. They consider memory reference behavior, but

strictly as related to frame buffer references; application performance is beyond the scope

their work. Researchers at Hewlett Packard used a technique called Direct Hardware

Accesses (DHA) in their Starbase/X 1I Merge system to enable high performance when

Starbase applications access the display [19, 18].

The remainder of the chapter is organized as follows. Section 6.2 gives a qualitative

characterization of the workloads. Next, in Section 6.3, we analyze memory delays for

X11 workload from three points of view: memory penalties by subsystem, cache effects,

and TLB behavior. The chapter closes with a brief review of our major conclusions.

83

6.2. Workloads

We used the standard X I I R5 distribution from MIT Athena. The XII server was

compiled with the default configuration, except that the PEX extension 14 was omitted.

Table 6-1 describes the X11 clients used in this study. All X11 clients are written in C.

workload Description time

micro
benchmarks

destroy window destruction, using 2.6
xllperf-repeat 5 -reps 10-subs 10 100 -destroy

resize window resize, using 2.5
xllperf -repeat 2 -reps 5 -subs 10 100 -resize

circulate window circulate operations, using 2.8
xllperf -repeat 2 reps 5 subs 10 100 -circulate

ftext text painting, using 2.4
xl] perf -repeat 5 reps 500 -ftext

copy bitmap copy, using 11.4
xliperf -repeat 5 reps 250 -copywinwinl00

scroll window scrolling, using 23.3
xl lperf -repeat 2 reps 250 -scrollS00

X1I clients

splot Splot is run four times on four different input flies. 12.4
Total size of splot input is 94K bytes.

gs Ghostscript is used to preview a twenty page 25.9
conference paper. Input file size is 251K bytes.

Other workloads

gcc The GNU C compiler converts a 17K (preprocessed) source 3.7
file into optimized Sun3 assembly code. Not an X 11 client.

compress Data compression using Lempel-Ziv encoding. A IOOK 1.3
file is compressed then uncompressed.

Table 6-1: Experimental workloads.

Execution times are in seconds.

Xllperf is distributed as a client program in Xl 1R5. It is commonly used as a gauge

of X 11 server performance, measuring the time to repeat a given server operation some

number of times. All the microbenchmarks for this chapter are runs of x11perf with dif-

ferent input parameters. Splot is a program for generating plots for PostScript and X 11.

14PEX is the PHIGS extension to Xl 1 used for three-dimensional graphics.

84

Ghostscnipt is an Xl I previewer for the PostScript language from Adobe Systems. Ver-

sion 2.6.1 of gs was used.

Two non-X1 1 clients from Chapter 4, gcc and compress, are included for com-

parisons between X11 clients and other workloads.

instruction reads data reads data writes
workload idle non-idle %sys %Xs %Xc non-idle %sys %Xs %Xc non-idle %sys %Xs %Xc

destroy 0 33999 5.2 91.7 3.1 7128 5.5 91.1 3.4 4529 7.1 87.9 5.1
resize 0 35999 2.6 96.9 0.5 7382 2.2 97.2 0.6 2759 2.8 96.1 1.1

circulate 0 45999 2.9 96.7 0.4 9958 2.2 97.4 0.4 4284 3.4 95.9 0.6
ftext 0 62000 2.3 96.1 1.7 7921 4.2 92.5 3.3 4827 4.9 92.0 3.1
copy 0 92000 3.8 95.6 0.6 15912 3.4 95.5 1.1 14457 1.4 97.7 1.0

scroll 0 105999 2.0 97.9 0.1 32528 1.2 98.7 0.0 31740 0.5 99.5 0.0
splot 6910 148619 33.4 36.0 30.6 30852 32.2 34.9 32.9 16346 41.6 32.7 25.7

gs 3992 448018 10.0 30.8 59.2 93584 11.0 24.6 64.3 50994 14.6 33.4 52.0
gcc 63684 28899 21.0 0.0 79.0 5716 20.5 0.0 79.5 3810 28.6 0.0 71.4

compress 5555 16934 19.2 0.0 80.8 3249 18.9 0.0 81.1 2225 29.2 0.0 70.8

Table 6-2: Instruction and Data Reference Counts

This table shows event counts for each workload, along with the percentage contribu-
tion from the system (%sys), Xl server (%Xs), and Xl1 client (%Xc). The first
column for each workload shows the number of idle instructions executed during that
workload. All other counts and percentages are for non-idle events. All counts are in
thousands.

Table 6-2 gives reference counts for the experimental workloads. The low percentage

of kernel instructions for the microbenchmarks demonstrates that many types of XlI

operations require relatively little kernel activity. Higher levels of kernel activity in splot

and gs are attributed (at least partially) to the file I/O that these workloads require.

6.3. Experiments and Analysis

6.3.1. Memory Cycles Per Instruction

Figure 6-1 illustrates MCPl for the experimental workloads, as in figure 4-1. Con-

tributions from different memory system components are indicated by shading, and sys-

tem and user contributions are separated by a vertical bar.

For comparison, MCPI measurements for gcc and compress are also shown. Note

that, unlike Figure 4-1, Figure 6-1 includes contributions from user uncached memory

reads, as frame buffer reads and writes by the X1I server bypass the cache.

85

03system i-cache misses
destroy 0.35 system d-cache misses

- --- ystem wbuffer waits
resize 0.11 system uncached reads

rz 0r i-cache misses
ser d-cache misses

circulate 1 0.08 ser wbuffer waits= -ser uncached reads

ftext 0.04 MCPI

copy 1.06

scroll

splot 0.43

gs Z 0.26

gcc I0.48
compress j 0.31

Figure 6-1: Baseline MCPI for X11 Workloads.

Each horizontal bar represents total MCPI fc," a given experimental workload, broken
down between system/user and various comp,.nents of the memory system. Contribu-
tion from system and user activity are separated by a vertical line. User activity in-
cludes X1I server and XII client. The number at the right of each bar is the MCPI for
that workload. Startup and shutdown effects were excluded by omitting several million
instructions at the beginning and end of each simulation experiment. MCPI for gcc and
compress are included for comparison with workloads that are not X1I clients.

As can be seen from Table 6-2, operating system overhead is low for the six

nmcrobenchmarks. This is reflected in Figure 6-1 as low system MCPI. With the X 11

server accessing the frame buffer directly, kernel activity during the microbenchmarks is

dominated by TLB faults and socket communication, both of which are relatively in-

expensive as compared to the activity of disk I/O intensive workloads. In contrast, user-

level MCPI varies significantly across the microbenchmarks, and is dependent on server

activity. The worst behavior occurs for copy and scroll, which incur substantial write-

buffer and uncached-read penalties due to a high density of frame-buffer references.

Comparing system behavior for the microbenchmarks to that of splot and gs shows

that there is substantial additional system overhead for the realistic benchmarks. This

reflects greater variation in system activity due to the addition of file I/O and is consistent

with behavior observed for system-intensive and I/O intensive applications such as gcc.

86

Turning to user-level overhead, Figure 6-1 shows that many X I I clients have sig-

nificant user instruction cache MCPI contributions, sometimes higher than system i-cache

MCPJ contributions. This is unusual for integer workloads 15. In the next section we

discuss how competition within and between address spaces contributes to poor instruc-

tion cache behavior for both system and user.

Penalties from the write-buffer and uncached memory reads appear problematic in

microbenchmarks but aren't significant in more realistic workloads. For frame-buffer

writes, the X 11 server benefits from the combination of write-buffer and writes through

the uncached segment. Together they permit frame buffer writes to proceed at top speed

without disturbing the contents of the data cache.

6.3.2. Cache Effects

We consider two types of cache misses:
"* Inter-Context Competition occurs when references from two or more active

address spaces displace each other in the cache. Client-server systems such
as X 1I introduce a user level server context in addition to the application and
system context of a workload such as gcc. The additional server context
could induce more competition in the cache.

" Self-Interference misses occur when two active instructions in the same ad-
dress space collide in the cache. The Ultrix page-mapping algorithm ensures
that self-interference misses will not occur within an address space if a
program's text is smaller than the cache size. Many of the SPECmarks have
text smaller than the cache, but the text of X II server, gs and splot are all
much larger. With localities spread throughout large text, self-interference
misses are more likely to occur.

We discuss inter-context competition first.

6.3.2.1. Inter-Context Competition

An X 11 workload is composed of three contexts: X 11 client, X 11 server, and the

operating system. Inter-context competition occurs when two or more contexts compete

for memory resources (such as cache lines), causing degraded performance. To simulate

a system without competition, we ran experiments with memory reference trace from

only one source (eg. use trace from the kernel only), then summed events over all three

15gcc is exceptional in this respect; see Chapter 4.

87

runs. The sum represents the behavior of a hypothetical machine where each context has

its own private memory system, hence a system where all competition has been

eliminated. Figure 6-2 compares MCPl for several workloads with and without competi-

tion.

splot-base 0.43

splot-nocomp 0.2

gs-base 0.26 •ystem i-cache misses
gs-nocomp 0.22 ;ystem d-cache misses

_system wbuffer waits
destroy-base 0.35 system uncached reads

r i-cache misses
destroy-nocomp 0.33 d-cache missesSI [--userwbuffer waits

compress-base 0.31 7-user uncached reads

compress-nocomp 0.30 MCPI

Figure 6-2: MCPI with and without inter-context competition.

This figure shows the effect of inter-context competition on memory system perfor-
mance. Each horizontal bar represents total MCPI for a given experimental run, as in
Figure 6-1. We show two bars for each workload, the upper corresponding to the base
system, and the lower representing a system in which competition between address
spaces has been eliminated by giving each address space a private memory system.
This figure shows that inter-context competition has major impact on instruction cache
behavior for realistic XI I workloads.

Figure 6-2 shows that, for realistic XII workloads, inter-context competition has sig-

nificant impact on overall MCPI. For both splot and gs, competition is responsible for a

large proportion of system i-cache misses. Additionally, eliminating competition from

splot causes a drastic reduction in user i-cache miss rates. The instruction cache require-

ments of destroy microbenchmark are modest, so eliminating competition has little effect.

Similarly, compress shows little benefit when competition is eliminated.

We compared missing instruction addresses in the XII server to counts of kernel in-

struction references for a run of splot to identify probable inter-context conflicts. An

example of such a conflict was between the Ultrix general exception handler,

exception(), and the XlI server memory allocation routine, malloc(). Both

88

routines are called frequently and are located in such a way that they overlap on a 4K

byte memory page. Kernel text pages are not mapped, so exception () will always be

located in the same place in the cache. User text is mapped, so the location of

malloc () in the cache will depend on the virtual-to-physical page assignment. In

Ultrix the page assignment is a function of virtual page number and process ID. Given

that the address space identifier for the XII server is random, that the cache is direct-

mapped, and that the cache size is sixteen pages, the probability that the above conflict

will occur is 1/16. Many such conflicts were identified for the splot run. The large work-

ing sets of Xl1 workloads combined with frequent mandatory context switches makes

competition misses more likely.

These results confirm earlier research on cache competition which demonstrated sig-

nificant penalties for warming up the cache after a context switch [57]. The earlier study

found competition to be important in multitasking and compute-bound workloads, but a

non-issue in the client-server workload they tested. However, the earlier study did not

include system behavior and used a synthetic client-server workload dominated by com-

munication, a workload more similar to the microbenchmarks used for this study than the

realistic workloads. Our work complements the prior study by including system effects

in the memory reference stream, and by demonstrating that inter-context competition can

also have impact for client-server workloads.

6.3.2.2. Self-Interference misses

We measured the impact of self-interference misses by replacing the direct-mapped

caches in the simulator with two-way set associative caches of the same size. Figure 6-3

illustrates the combined effects of competition and associativity on MCPI for splot and

gs. To isolate the impact of self-interference misses from that of competition misses,

compare runs where all competition misses are eliminated (bench-nocomp and

bench-a+nocomp). In this comparison, all misses eliminated by associativity are from

conflicts within an address space. For both gs and splot, associativity eliminates a sig-

nificant number of self-interference misses.

Figure 6-3 also shows the effect of associativity on inter-context competition. The

two-way set associative caches eliminate some inter-context competition, but not all

(compare bench-assoc and bench-a+nocomp).

89

splot-base ~A0.43

splot-nocomp 0
ystem i-cache misses

splot-a+nocomp .11 ystem d-cache misses

splot-assoc 0.24 s stem wbuffer waits
ystem uncached reads

user i-cache misses
gs-base 0.26 d-cache misses

gs-nocomp 0.22 - wbuffer waits

IIgs-a+nocomp 0.14

Figure 6-3: Inter-Context Competition, Associativity, and MCPJ.

This figure shows the effect competition and self-interference misses on memory sys-
tem performance. Each horizontal bar represents total MCPJ for a given experimental
run, as in Figure 6-1. We show four bars for each workload: the base system
(bench-base), without competition (bench-nocomp), with associativity and without
competition (bench-a+nocomp), and with associativity (oench-assoc). This figure
shows that both competition and self-interference misses have significant impact on
memory system behavior for realistic XlI workloads, particularly in the instruction
cache.

6.3.23. Summary

For the two realistic X1I workloads we consider, both inter-context competition and

self-interference misses have significant impact on memory system behavior, with the

most significant effects occurring in the instruction cache. Strategies have been

described [55] for avoiding text conflicts within an address space, but it is difficult to

envision a practical software system to avoid competition between address spaces. The

problem could potentially be addressed in hardware with cache associativity, although

this could increase machine cycle time or hardware cost. Many current systems rely on

good luck to avoid inter-context competition. As the gap between CPU and memory

speed grows, and as users demand improved performance for interactive and multi-

address space systems, more aggressive cache designs may be required. The lack of

client/server workloads in standard benchmark suites could lead hardware developers to

believe that competition between user-level contexts is a non-issue. Our measurements

suggest it deserves more attention. Recent work on dynamic page mapping policies

[14] shows promise in addressing this problem.

90

6.3.3. TLB Behavior

workload user system
splot 1.58 0.28

gs 1.49 0.14
Rcc 1.11 0.07

Table 6-3: TLB Misses per 1000 instructions.

System TLB misses include misses to both user and system segments.

Table 6-3 shows TLB miss data for splot, gs, and gcc. Compared to other integer
workloads, X1I applications have poor TLB behavior. Both splot and gs show sig-

nificantly higher miss rates than gcc, which is relatively demanding among integer

workloads [22]. Three phenomena contribute to increased TLB miss rates:
"* The X11 server needs over 200 page mappings to address the entire frame

buffer. Any operation that paints a significant part of the screen will tend to
flush the TLB.

"* The X I I server, gs, and splot all have relatively large program text. This
increases the likelihood that localities will be spread across multiple text
pages, which in turn increases the demand on TLB resources.

"* XI1 applications involve two interacting user contexts, as opposed to one
context for gcc. Multiple contexts mean more fragmentation and increased
competition for limited TLB resources.

During the run of splot, 280000 user TLB misses occurred. There were about 680000

during gs. Estimating 20 cycles to service a TLB miss [60], the penalty for TLB faults is

less than 0.04 CPI for both workloads. Thus, the impact on overall performance is not

significant for the memory system we simulated.

The impact of the TLB on overall performance is dependent on the performance

balance of memory system components. Processors such as the DEC Alpha 21064

[5] rely on fewer TLB entries with larger and oversized pages to achieve good TLB

behavior. If software systems such as X11 don't make good use of these new features,

miss rates will go up, increasing the impact of the TLB on overall performance. Also, the

penalty for a single TLB miss could increase. An earlier study used 100 cycles as an

estimate of the TLB miss penalty for a futuristic machine [23]. As the balance of TLB to

cache resources changes, TLB performance could become an important issue. X1I

workloads require more TLB resources than popular benchmarks such as gcc. If com-

91

puter systems are designed to optimize the performance of the popular benchmarks, sys-

tems such as X II can be expected to suffer.

Our measurements show degraded TLB behavior for XII workloads as compared to

other integer codes. Researchers at the University of Michigan [60] measured similar

TLB behavior for the Mach 3.0 operating system [1, 41]. The two independent studies

suggest a broader conclusion - that page behavior for user-level client/server systems

induces substantially elevated TLB miss rates.

As a final note, competition also affects TLB behavior. In our measurements, com-

petition accounted for 60% of user TLB misses in splot and 30% of user TLB misses in

gs. Note that additional associativity cannot help here, as the DECstation 5000/200 TLB

is already fully associative.

6.4. Conclusions

Memory system behavior for Xl 1 workloads differs significantly from the batch-

mode programs typically used in memory system studies. With large program text, a

large mapped frame buffer, and multiple competing contexts, X 11 workloads can present
a far greater load on instruction caches and TLBs than typical throughput benchmarks.

Cache associativity and TLB size are sensitive issues for hardware designers. For

many machines, increasing these parameters would have direct impact on machine cycle
time, the principle metric driving performance improvements in microprocessors. As
machine cycle time dominates performance for many current benchmarks, there is a

potential conflict between high throughput for benchmarks and low latency for large

client/server systems. Optimal throughput and optimal latency may not be possible in the

same machine.

Our measurements are specific to X 11 clients and server, but similar behavior can be

expected in other client/server systems. Instruction cache and TLB behavior is ag-

gravated by large user text, frequent and mandatory context switches, and multiple active

contexts. Any system with these characteristic will probably have similar behavior. In

systems with multiple heavy-weight servers, contention for memory system resources

will be even more intense.

92

X11 workloads are larger and more complex than the standard workloads used in

computer performance evaluation. These distinctions suggest similarities between X lI

workloads and operating system activity. This similarity is also reflected in the memory

system behavior of Xl I workloads. Workloads as complex as X11 applications are rare

in workstation performance evaluation. However, popular consumer software systems

like spreadsheets and document processing tools are even larger and more complex. If

the performance of these workloads is important then they ought to be the standard case

for performance evaluation and not something extreme or unusual. If such workloads

were used as benchmarks, hardware designers could focus their attention on the require-

ments of these workloads for efficient execution. As computer hardware and program-

ming methodologies adapt to improve the performance of large complex user code, sys-

tem code should also benefit.

93

94

Chapter 7

TLB Behavior

As an example of how the address tracing system can be applied to problems in

hardware design, this chapter presents the results of a simulation-based study of various

translation lookaside buffer (TLB) architectures in the context of a modem RISC proces-

sor. We studied the performance of two-level and fully associative TLBs. We found that

the dominant factor in determining behavior was the amount of memory mapped by the

TLB. A small first-level FIFO instruction TLBs can be effective in two-level TLB con-

figurations. In a machine model where most operating system text and data is referenced

with little TLB overhead, system effects generally cause a reduction in the TLB miss

rate, as user-level miss activity is amortized over a larger number of instructions.

This is an extended version of an earlier study [23] which used similar analysis of

TLB behavior but excluded system behavior; the following includes system behavior.

Both Mach 3.0 and Ultrix traces were used for this study. An independent study con-

ducted at the University of Michigan also considers the impact of system references on

TLB behavior for Ultrix and Mach 3.0, although with a different simulation environment

and different user workloads [60]. The results of our experiments are consistent with the

earlier results.

7.1. Introduction

In computer systems with virtual memory, a TLB is typically used to provide fast

translation of virtual addresses generated by instruction execution to physical addresses

needed for cache tag comparisons. Both physically and virtually addressed caches re-

quire address translation. With physically addressed caches, the TLB lookup is in the

critical path of cache access, so low latency and miss rates are crucial for memory system

performance. The TLB is a cache, speeding up access to entries in the page table, where

95

complete information on virtual to physical memory mappings is maintained. Most

modem machines use split instruction and data caches, and this configuration is assumed

(unless stated otherwise) in the remainder of this chapter. Given this context, we con-

sider several possibilities for the TLB implementation:
"* A single TLB shared between instruction and data caches. To reduce

contention, the TLB can be dual-ported. This introduces complex circuitry,
doubling the size of the TLB without increasing its capacity.

"* Independent TLBs for instruction and data caches. The instruction TLB
should be made smaller than the data TLB, as instruction reference streams
exhibit greater locality than those for data. The appropriate size tradeoff is
difficult to determine and once made is fixed. If the instruction TLB is too
small, performance will suffer. If it is too large, the space available for the
data TLB is compromised and again performance suffers.

"* Two-level TLB architectures. A small instruction TLB (i.e., micro-TLB)
can be refilled from a larger single-ported shared TLB, primarily used for
data references. This option is described in more detail below.

A micro-TLB is a fully associative TLB with a very small number of entries (prob-

ably less than eight) which is reloaded in hardware from a larger shared TLB. A number

of recent machines use micro-TLBs, including the MIPS R4000 [56], though they are

invisible at the architecture level. A micro-TLB is accessed in parallel with the instruc-

tion cache. On a miss, the micro-TLB is reloaded from the shared TLB. As the larger

TLB is single ported, the CPU may stall for a few cycles with data references suspended

while the TLB is busy, but this penalty is much less expensive than that of a full TLB

miss. We assume 3 cycles as the micro-TLB miss penalty in this chapter. Because of the

high locality in instruction reference streams, and the relatively small miss penalty, ac-

ceptable miss rates can be achieved with a small micro-TLB. The balance of instruction

and data entries in the shared TLB is determined dynamically, unlike in the second option

above. In addition the shared TLB need not be dual-ported, so the extra space can be

used to increase its capacity.

Because the TLB can be in the critical path of memory access, good TLB perfor-

mance is essential to good overall performance of a machine. TLB design has been com-

plicated in several recent architectures with split instruction and data TLBs. To date,

such designs have received negligible attention in the research literature. We present

experimental results to characterize the behavior of split as well as shared TLBs.

96

Another feature found in several recent architectures is TLB entries that can map vari-

able size pages. When such a TLB entry is loaded with a new mapping, it is also loaded

with the size of the page to be mapped. Typically, the size is restricted to a power of two

and may range from 4K bytes to a gigabyte [33, 56]. Although there are several obvious

applications of variable size pages, such as mapping operating system text and graphics

frame buffers, it is not yet understood to what degree they can be used to improve the

execution rate of application code. Applications performance for contiguous references

could improve by accessing the segment as a single large page mapped by a single TLB

entry. Applications which scatter refxrences across a sparse address space have little

hope of benefiting from large pages without significantly increased memory usage. Ad-

dress traces and reference counting tools are useful for recording dynamic patterns of

memory access to aid in understanding the applicability of these structures.

The many recent studies of memory system behavior and performance concentrate

almost exclusively on cache design [74, 66]. Less attention has been given to TLB per-

formance. Early studies showed that TLB miss penalties can consume as much as 6% of

all machine cycles [25] and 4% of execution time [26], and hence can have a significant

impact on machine performance. However, these results were for VAX computers with

512 byte page sizes - an order of magnitude smaller than is typical today - and main

memory sizes two orders of magnitude smaller than those considered in this study.

Wood [87, 86] proposed in-cache address translation as an alternative to a TLB. His

work has shown that such methods are effective for programs such as Lisp applications

and operating systems, where the working set is spread over a large address space. They

are less useful for behavior such as is seen with typical C programs, where memory ac-

tivity is concentrated in the bottom of several segments. His methods also become less

applicable when memory access times become large with respect to processor speed.

Finally, previous TLB studies [26, 86] have considered set-associative or direct-

mapped organizations. These were common when TLBs were made from discrete MSI

and LSI RAMs. Recently, however, VLSI RISC microprocessors (e.g., [33, 56]) typi-

cally make use of fully-associative TLBs, since these require about the same area as set-

associative TLBs when implemented within a VLSI chip. Thus the TLB implemen-

tations studied in this chapter are all fully-associative designs.

97

This chapter is concerned with TLB performance. Understanding the relation be-

tween TLB performance and overall machine performance is a different question, involv-

ing the balance of compulsory to capacity misses and the relative ability of caches and

TLBs to map multiple localities. The first access to a page results in a Compulsory TLB

miss. In this situation, cache misses also occur, the cost of which might overshadow the

TLB penalties. Other TLB misses are capacity misses, when a program returns to a

locality that has been replaced out of the TLB even though it might still be present in the

cache. This phenomena becomes more common as cache sizes increase. In this chapter,

CPI effects of TLB performance are discussed assuming no delay for memory system

components other than the TLB. This can be deceptive, as such a treatment trivializes the

question of cache performance. More exact results require simulation of a complete

memory system.

The remainder of the chapter is structured as follows. First we give some brief details

on our experimental workloads and methodology. This is followed by a discussion of

instruction TLB behavior, both for micro-TLBs and for independent instruction TLBs.

Data and shared TLB results are presented next, followed by a discussion of variable size

pages, and finally some concluding notes.

7.1.1. Workloads and Methodology

We used a variety of workloads in simulating the various TLB configurations, includ-

ing several SPECmarks, plus other workloads meant to anticipate more demanding

workloads. Tree is a recursive, data intensive benchmark written in C-Scheme [11].

Magic [62] is a VLSI layout tool. In this run it was extracting the MultiTitan CPU chip

[44]. We also used a multi-tasking workload, running the following programs:

*gcc

S magic extracting the MultiTitan CPU chip

*Id loading magic

* tree with a 10 megabyte heap

• a loop running the shell programs cp, cat, sed, is, ps, and rm.

Short running programs were put in loops, so that their execution would continue

throughout the entire run. This mix is is meant to be comparable to the mix used in

previous trace-based studies by Borg et al. [16].

98

Experimental runs from the original set of experiments do not include traces of sys-

tem activity. These runs were supplemented with runs that include system traces, using

the same set of workloads as the Ultrix vs Mach 3.0 comparison. In the presentation of

material for each type of TLB, we start by discussing experiments with user behavior

only. This provides the best context for distinguishing between the different behaviors

seen in user activity. After discussing user activity we consider system activity and its

influence on overall performance. The experiments which include system activity are

presented in separate tables to permit a comparison of behavior with and without system

activity.

Our model of system interaction with the TLB is based roughly on the

DECstation/MIPS system architecture. We assume that kernel text and most kernel data

is unmapped. This assumption is also appropriate for machines where kernel memory is

mapped but without significant TLB miss activity, as would occur with large TLB

entries. For Ultrix, this means that almost all system activity is isolated from the TLB.

For Mach 3.0, most kernel activity is isolated from the TLB. We assume that the UNIX

server and emulation library are mapped and do induce TLB misses.

7.2. Instruction TLB results

Instruction reference streams place lesser demands on TLB resources than data refer-

ence streams. Instruction references generally exhibit higher locality, both spatial and

temporal. Also there is generally less memory involved. The largest text segment of the

SPECmarks, when compiled for the DECstation, is the Gnu C compiler gcc with 688K

bytes. The average text segment size is around 200K bytes. Data segments are fre-

quently much larger. Data references for nasa7, a benchmark for numeric computation,

range over a space of over three megabytes.

Because of the different performance characteristics of TLBs and micro-TLBs, they

are discussed separately.

99

7.2.1. Micro-TLBs

Micro-TLBs were simulated with sizes varying from one to eight entries and Least

Recently Used (LRU) or Least Recently Replaced (FIFO) replacement algorithms. Page

sizes of 4K and 16K bytes were used for the simulations. We first discuss behavior with

system activity excluded. This simplifies the discussion of behavior and emphasizes dif-

ferences between workloads. At the end of the section we extend these results for the

impact of system effects on Mach 3.0 and Ultrix.

$0 1

0 1 2 3 4 5 6 7 8
micro-TLB size

Figure 7-1: Eqntott micro-TLB behavior

This figure illustrates micro-TLB behavior for the eqntott workload across a range of
micro-TLB sizes. System activity is not included. The micro-TLBs use FIFO replace-
ment and 4K byte pages. Three domains of behavior can be identified in this figure,
thrashing with the smaller micro-TLBs, improvement as the number of entries ap-
proaches working set size, and stable good performance when the working set size has
been reached.

100

Figure 7-1 is a plot of the simulation results for the eqntott benchmark, illustrative of

micro-TLB behavior. The number of entries in the micro-TLB varies along the x axis.

The y axis is scaled in instructions per miss, the reciprocal of the miss rate. We use plots

of instructions per miss because they illustrate interesting behavior more clearly than

plots of miss rate. Data points corresponding to good performance are towards the top of

the graph, those for poor performance are toward the bottom, and the points are spaced in

a meaningful way rather than disappearing along the X axis.

There are three general regimes of behavior to be observed. Notice the flatness of the

curve on the left side of the graph. In this region, thrashing is occurr -he number of

micro-TLB entries is well under the number of instruction pages in the king set of the

program. Consequently, micro-TLB performance is relatively poor: 442 instructions per

miss with two micro-TLB lines, 1490 instructions per miss with three.

After the flat part of the curve comes a region where performance improves rapidly.

For eqntott this occurs between three and four micro-TLB entries. Lastly comes another

relatively flat region, where the micro-TLB has enough entries to map the entire working

set of the program. In this region, additional micro-TLB entries do little to improve per-

formance.

One issue which turned out to be uninteresting is the effect of context switches on the

micro-TLB. We considered two possible models of behavior, a pessimistic model in

which the contents of the micro-TLB is flushed after every context switch, and an

optimistic model where the contents of the micro-TLB is preserved across context

switches. Our experiments showed that the overall impact of the pessimistic model is not

important. It has measurable impact for workloads where TLB behavior is very good,

increasing the number of compulsory misses, but even with this increase behavior

remains very good. When TLB behavior is bad, most misses are due to capacity

problems. These misses are much more frequent than compulsory misses, and dominate

behavior for both the pessimistic and optimistic model. This is consistent with the results

in Section 4.3.3, which showed that context switches were not frequent enough to have a

significant performance impact. The simulations used to generate data for this chapter

use the pessimistic model.

101

100000

10000

10000

100A doduc

100 o
0 eSPnMSS

0" gCCl
0 li

X nsm7

+ toincay

10 I I I I
1 2 3 4 5 6 7 8

micro-TLB size
Figure 7-2: Micro-TLB Behavior, 4K byte page

This figure shows experimental results for micro-TLB simulations using FIFO re-
placement. System activity is not included. Note that the y axis uses a log scale. For a
given workload, the micro-TLB working set size can be identified by noting where the
corresponding plot reaches a plateau.

Figure 7-2 illustrates micro-TLB performance for the SPECmarks. Notice a log scale

is used for the y axis of this graph, while the y axis in Figure 7-1 used a linear scale.

Although the log scale tends to obscure the different domains of behavior, it makes it

possible to compare all the SPECmarks on the same graph. If a micro-TLB miss penalty

102

of 3 cycles is assumed and the average number of instructions per miss is 333 or less,

then about one machine cycle per one hundred instructions (i.e. 0.01 cycles per instruc-

tion - CPI) is lost to micro-TLB misses. With one micro-TLB entry, more than half the

SPECmarks have this much of a penalty. With a two entry micro-TLB, 40% are at this

penalty level.

Four of the SPECmarks have mediocre micro-TLB performance. Fpppp and doduc

are both floating-point benchmarks. Both of them are noted for their poor instruction

cache performance, predictive of the observed micro-TLB behavior. The miss rate for

frppp for a simulated 4K byte instruction cache with 16 byte lines is 23%, due to its long

basic blocks (an average of 130 instructions per branch for the entire run). Computation

in doduc is spread over a large number of procedures. Simulations show it has an miss

rate of 11% for a 4K byte cache instruction cache.

Two language processing programs, gcc (the Gnu C compiler) and lisp (a lisp inter-

preter), have bad micro-TLB behavior. The I-cache miss rates for gcc and lisp are 10%

and 2%, respectively. Their micro-TLB behavior is explained in considering the struc-

ture of the programs. For example, Gcc has a large amount of code and it tends to make

many nested procedure calls. We believe that the observed behavior results from there

being eight or more procedures involved in most of gcc's localities, and that these

procedures tend to be spread over more than eight pages.

The SPECmarks were also simulated for micro-TLBs using a 16K byte instruction

page size. The results are shown in Figure 7-3. At this page size, with 7 micro-TLB

entries, the working set of virtually all the programs appears to have been reached, with

the exception of gcc. The amount of memory fragmentation induced by the change to

16K byte pages can be inferred from the change in TLB resource demands of the

programs. For example, eqntott uses 4 x 4K = 16K bytes of instruction memory with 4K

pages, and 48K bytes with 16k pages. Spice grows from 28K to 64K bytes. Fragmen-

tation for 16K byte pages could be reduced with compilers and loaders that used heuris-

tics or feedback information to relocate the most active code to make it adjacent in

memory.

Another micro-TLB design parameter that was considered is replacement policy. For

two entries, LRU is easily implemented in hardware. For more than two entries,

103

S100000

10000

1000

A eqntmt

100 0 fspWs

[] gCC]
0 Ii
0 =m300
X n=s7
K spice

+ tonmcatv

10 I I I I I I
1 2 3 4 5 6 7 8

micro-TLB size

Figure 7-3: SPECmark micro-TLB Behavior, 16K byte pages

These experiments are similar to those of Figure 7-2, except that 16K byte pages
rather than 4K byte pages were used. System activity is not included. Note that several
workloads reach their working set sizes with 16K byte pages that did not with 4K byte
pages.

hardware LRU becomes more difficult. An interesting alternative for micro-TLBs is

least recently replaced. This has the advantage of a relatively straightforward hardware

implementation as a first-in first-out queue. FIFO is used in this exposition to refer to

this replacement policy.

104

"•- " l LRU

(100000 FIFO

1000•

100

10

cc U

Figure 7-4: LRU vs. FIFO Replacement

This figure shows the effect of micro-TLB replacement policy, for LRU and FIFO
replacement. The experiments used a 4 entry micro-TLB and 4K byte pages. System
activity is not inciuded. This figure shows that a FIFO replacement policy has com-
parable performance to an LRU policy. FIFO has the advantage of a straightforward
hardware implementation.

Figure 7-4 shows relative performance of LRU and FIFO replacement policies for ten

SPECmarks. LRU is uniformly better, but not by a large amount. Again, the log scale

makes it possible to compare all the benchmarks in the same graph, although it tends to

obscure the real difference in performance, which is sometimes as much as a factor of

two. Nonetheless, FIFO performance is always comparable with LRU performance when

the overall affect on CPI is considered. This means FIFO is an interesting replacement

policy for micro-TL-Bs of size greater than two.

Simulations were also run to compare LRU, FIFO and Random replacement policies

in full size data TLBs. It was found that FIFO performs uniformly better than Random,

105

failing only in pathological worst case situations. For most machines with hardware to

support Random replacement, FIFO can be easily implemented, although it is expected

that Random replacement will be used to avoid pathologic behavior.

Ix4KB pg 2x4KB pg 4x4KB pg 8x4KB pg IxI6KB pg2xl6KB pg4xl6KB pg8xl6KB pg
doduc 0.015415 0.006433 0.003552 0.000953 0.008111 0.478 0.001416 0.000047
eqntott 0.007415 0.002951 0.000016 0.000014 0.005647 0.000661 0.000006 0.000006
espTess 0.009610 0.003687 0.001089 0.000099 0.007"0 0.001966 0.000202 0.000012
fpppp 0.002936 0.002085 0.001727 0.000988 0.001723 0.001022 0.000309 0.000018
gcc 0.021989 0.013269 0.00628M 0.005010 0.01239 0.006648 0.003042 0.000844
lisp 0.031792 0.015781 0.007661 0.001097 0.02S473 0.010456 0.000012 0.000012
mat300 0.000005 0.000004 C.000004 0.000004 0.000002 0.000002 0.000002 0.000002
nasa7 0.003544 0.002037 0.000005 0.000005 0.003180 0.001788 0.000003 0.000003
spice 0.003199 0.001407 0.000399 0.000026 0.002598 0.000326 0.000014 0.000007
tomcatv 0.000025 0.000013 0.000009 0.000005 0.000017 0.000006 0.000002 0.000002

ccom 0.030306 0.016114 0.007844 0.004098 0.017705 0.006653 0.001761 0.000174
sed 0.033778 0.000355 0.000070 0.000064 0.009710 0.000031 0.000031 0.000031
t'ee 0.074999 0.034553 0.017515 0.001264 0.062228 0.021160 0.002427 0.000215
magic 0.014811 0.007654 0.002853 0.000606 0.0130M0 0.006197 0.001599 0.000287

Table 7-1: SPECmark FIFO micro-TLB Miss Rates

Experiments for this table exclude system references.

Table 7-1 shows miss rates for a selection of workloads. The experiments for Table

7-1 used user references only. Under the assumption of a 3 cycle miss penalty, figures in

bold-face indicate where the micro-TLB penalty is greater than 0.01 CPI. Again, with

4K byte pages, most of the SPECmarks achieve reasonable performance with a two entry

micro-TLB, and the others show improvement for larger micro-TLB sizes. Figure 7-5

shows how data from Table 7-1 can be used to estimate CPI contribution for a given

SPECmark, micro-TLB configuration, and miss penalty.

2 entry FIFO micro-TLB with 4K byte page
3 cycle miss penalty

CPI Contribution = 3 * 0.0133 = 0.0399 CPI

Figure 7-5: Estimating micro-TLB CPI Contribution for gcc

Note that micro-TLB performance for tree is poor. With 4K byte pages, a two entry

micro-TLB absorbs about 0.10 CPI. Micro-TLB performance for tree begins to improve

rapidly beyond four micro-TLB entries. There are two effects that could conceivably

contribute to the degraded performance: the working set size of the computation, and

conflicts between the garbage collector and the rest of the computation. The garbage

collector and the program behave as independent co-routines or threads in the single ad-

dress space. In the case of tree, most of the observed miss rate is due to locality

106

properties of the compiled Scheme code, as co-routine exchanges between the garbage

collector and the program execution are much too infrequent 16 to account for the ob-

served miss rates.

Although multi-thread effects were not important with tree, it is worth noting that in

as much as threads tend to execute in independent code localities, tightly coupled threads

executing in a single address space will lead to degraded micro-TLB performance. This

effect will be exaggerated with a very small micro-TLB. The importance of this effect on

a uniprocessor depends on usage patterns for threads. If tightly coupled threads were a

common programming paradigm, these effects could potentially have an impact.

However, it is not clear that fine grain threads on a uniprocessor as a paradigm merits

special support, as coarse grain threads may dominate actual usage. The UNIX server in

Mach 3.0 is another example from our workloads of a threaded address space. Its multi-

threaded structure has little impact on TLB behavior, as the threads are relatively heavy-

weight. Furthermore, fine grained threads introduce other performance problems such as

cache interference and processor state management overhead, which tend to make micro-

TLB performance irrelevant. Overall, threaded programs are not common enough for a

meaningful analysis of their impact on micro-TLB performance to be made at this time.

7.2.1.1. The Impact of System Activity

For our model of system activity, we assume all Ultrix instruction references and all

Mach 3.0 kernel instruction references are unmapped and isolated from the micro-TLB.

The result is that for system intensive programs, system activity has little or no impact on

the total number of micro-TLB misses, and because of the increase in the instruction ref-

erence count, the overall miss rate (ratio of misses per instruction) is significantly lower.

Tables 7-2 and 7-3 show micro-TLB miss rates for Mach 3.0 and Ultrix, respectively.

Tables 7-2 and 7-3 show that due to the addition of unmapped references, system

effects induce improved micro-TLB performance for both systems and across the entire

range of workloads. The behavior of Mach 3.0 is uniformly worse than Ultrix due to the

mapped system references from the UNIX server and the emulation library. Behavior for

Mach is still consistently better than for experiments which exclude system activity.

16the tree execution takes about 147 seconds, of which 2 seconds are spent collecting garbage. Garbage
collections were observed to occur every 8-15 seconds.

107

Ix4KB 2x4KB 4x4KB 8x4KB lx16KB 2xI6KB 4xl6KB 8xI6KB
sed 0.030069 0.006671 0.000546 0.000193 0.010200 0.000752 0.000265 0.000045

egrep 0.001886 0.000166 0.000064 0.000022 0.000412 0.000086 0.000031 0.000006
yacc 0.011419 0.002265 0.000499 0.000031 0.004603 0.000439 0.000036 0.000006
gcc 0.015848 0.007420 0.003581 0.001496 0.010293 0.003670 0.001101 0.000122

compress 0.003199 0.001404 0.000269 0.000095 0.001638 0.000341 0.000122 0.000018
ab 0.016548 0.006459 0.003045 0.0011% 0.011509 0.003328 0.001190 0.000215

espresso 0.007852 0.002447 0.000706 0.000026 0.006937 0.001559 0.000113 0.000002
lisp 0.025192 0.010563 0.003484 0.000429 0.019772 0.007281 0.000092 0.000001

eqntott 0.005723 0.000713 0.000010 0.000003 0.005337 0.000484 0.000005 0.000001
fpppp 0.001055 0.000391 0.000170 0.000019 0.000637 0.000139 0.000047 0.000001
doduc 0.010767 0.002669 0.001230 0.000137 0.004752 0.001820 0.000352 0.000002

liv 0.009380 0.000164 0.000071 0.000026 0.000418 0.000092 0.000035 0.000006
tomcatv 0.000056 0.000024 0.000012 0.000003 0.000045 0.000012 0.000004 0.000000

Table 7-2: Micro-TLB Miss Rates for Mach 3.0

This table shows miss rates for a range FIFO micro-TLB configurations. System
references were included for these experiments.

Ix4KB 2x4KB 4x4KB 8x4KB 1x16KB 2x16KB 4x16KB 8x16KB
sed 0.029458 0.006154 0.000001 0.000000 0.007520 0.000000 0.000000 0.000000

egrep 0.001435 0.000009 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
yacc 0.010906 0.002064 0.000415 0.000000 0.004059 0.000349 0.000000 0.000000

gcc 0.013454 0.006867 0.003479 0.001551 0.007638 0.003299 0.001084 0.000123
compress 0.001387 0.000830 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000

ab 0.013578 0.005451 0.002637 0.001019 0.008320 0.002761 0.000853 0.000162
espresso 0.007661 0.002391 0.000682 0.000018 0.006773 0.001546 0.000106 0.000000

lisp 0.025343 0.010618 0.003466 0.000421 0.019836 0.007281 0.000000 0.000000
eqntott 0.005667 0.000691 0.000000 0.000000 0.005288 0.000481 0.000000 0.000000

fpppp 0.000910 0.000337 0.000148 0.000013 0.000508 0.000111 0.000028 0.000000
doduc 0.010653 0.002616 0.001211 0.000128 0.004620 0.001793 0.000338 0.000000

liv 0.008958 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
tomcatv 0.000018 0.000007 0.000004 0.000001 0.000013 0.000003 0.000000 0.000000

Table 7-3: Micro-TLB Miss Rates for DEC Ultrix

This table shows miss rates for a range FIFO micro-TLB configurations. System
references were included for these experiments.

7.2.2. Instruction TLBs

We simulated instruction TLBs with sizes in powers of two from 8 to 64 entries and

page sizes in powers two from 4K to 64K bytes. In examples used to illustrate TLB

performance, an approximation of 100 cycles is used for the TLB miss penalty. This

figure is based on a model where a TLB miss requires two memory references cor-

responding to a page table lookup, and where the latency of these memory references

dominates the TLB miss penalty. The penalty of 100 cycles corresponds to a futuristic

microprocessor with a cycle time of under five nanoseconds. It is meant to be somewhat

less than the time for two references to main memory and somewhat more than the time

for two references to an off-chip cache. Under these assumptions, with TLB performance

of 10000 instructions per miss, the contribution of the TLB to CPI is 0.01. This is our

108

(somewhat arbitrary) lower bound on reasonable TLB performance. Again we first dis-

cuss measurements of user activity only, then extend for system behavior.

The behavior of single-benchmark workloads in instruction-only TLBs is mostly

uninteresting, as most of the sample workloads have small text, well below the capacities

of the TLBs we tested. Gcc, with 688 K bytes of text, is one of the few SPEC workloads

that presents a significant demand on resources. Figure 7-6 illustrates the behavior for

gcc. Solid lines connect TLB configurations with the same page size. Dashed lines con-

nect TLBs that map the same amount of memory. The amount of memory mapped by a
TLB will be referred to as its mapping size, to discriminate between that measure of size

and others, such as the number of lines in a TLB.

As with the micro-TLB, there are three regimes of behavior to be observed. The

placement of data points is more compact in the lower portion of the graph, with rela-

tively little improvement for larger TLB configurations. This represents thrashing, where

TLB resources are well below the working set size of the program. In the next region,

performance improves quickly as working set size is approached. This figure shows that

gcc approaches the TLB resources to map its working set with an instruction TLB map-

ping size of 512K bytes. Once the working set size of the program has been reached,

increasing the mapping size has a reduced effect on performance, and the points again

become more closely spaced. Such behavior occurs at the top of the graph. These three

regimes of behavior become more pronounced for shared and data TLBs, as in Figure

7-8.

In the lower part of the graph, the dashed lines that connect TLBs with the same map-

ping size tend to slope upward slightly, while at the top of the graph they slope down.

An application that uses sparse, non-contiguous data tends to have better TLB perfor-

mance with more smaller pages of memory than with a few larger pages. Such behavior

occurs in the lower part of the graph. In the upper part of the graph, the dashed lines tend

to slope down, hence better performance with fewer larger pages. As a TLB becomes

large enough to map all of a program's working set, smaller pages mean that TLB misses

occur for each of several small pages, rather than once for a single large page. Similar

behavior occurs when a program accesses contiguous data, as in Figure 7-8.

109

64k
....... page

page

.2

-- = -page

1}00000 - "" "- . . . " -- j

•" "• •"8k

page

10000 U
page

1000

8 16 32 64
TLB entries

Figure 7-6: Gcc Instruction TLB Behavior

This figure illustrates instruction TLB behavior for the gcc workload. The TLBs used
Random Replacement and full associativity. System activity is not included. As in
Figure 7-1, three domains of behavior can be identified, corresponding configurations
that thrash, approach working set size, and configurations where working set size has
been reached.

Figure 7-7 illustrates instruction TLB performance for the multi-task mix. For this

workload, the flat dashed lines suggest that mapping size is entirely responsible for deter-

mining TLB performance, and that the configuration of page size and number of entries

has little effect. TLB performance crosses the 10000 instruction per miss performance

110

C :. 64k
page

.3
.• ipage

100000 16klOOOO : ..-- " page

8k

page

10000
4k
page

1000

100 II
8 16 32 64

TLB entries

Figure 7-7: Multi-task instruction TLB behavior

This figure illustrates instruction TLB behavior for the mixA multitasking workload.
System activity is not included. All TLBs are fully associative with random replace-
ment.

boundary at a mapping size of 512K bytes, and appears to have reached the working set

size for mapping sizes over 2 megabytes.

Table 7-4 gives miss rates for selected benchmarks for a number of instruction-only

TLB configurations. The benchmarks not included have very low miss rates.

111

16x4KB 32x4KB 64x4KB 16x16KB 32x16KB
gcc 0.001688 0.000516 0.000094 0.000151 0.000010
magic 0.000275 0.000059 0.000000 0.000041 0.000000
tree 0.000309 0.000000 0.000000 0.000000 0.000000
ccom 0.001969 0.000032 0.000003 0.000001 0.000001
mixA 0.000728 0.000331 0.000140 0.000163 0.000062

Table 7-4: Instruction TLB Miss Rates

This table shows instruction TLB behavior for the five workloads. Other workloads
had very low miss rates. These experiments use user references only. All TLBs are
fully associative with random replacement.

7.2.2.1. The Impact of System Activity

With our model of system memory, kernel activity is largely isolated from TLB be-

havior. So, as with the micro-TLB, system activity has little impact on the number of

instruction TLB misses, and the increase in instruction count makes the miss rate lower.

Tables 7-5 and 7-6 show instruction TLB miss rates for Mach 3.0 and Ultrix.

8x4KB 16x4KB 32x4KB 8x8KB 16x8KB 32x8KB 8x16KB 16xI6KB 32xI6KB
sed 0.000945 0.000500 0.000225 0.000596 0.000281 0.000087 0.000360 0.000123 0.000022

egrep 0.000153 0.000078 0.000031 0000101 0.000044 0.000012 0.000058 0.000020 0.000003
yacc 0.000234 0.000127 0.000060 0.000149 0.000075 0.000021 0.000089 0.000032 0.000003
gcc 0.003713 0.001394 0.000485 0.001861 0.000610 0.000154 0.000785 0.000190 0.000033

compress 0.000509 0.000279 0.000124 0.000330 0.000162 0.000036 0.000197 0.000068 0.000008
ab 0.003566 0.001681 0.000635 0.002144 0.000816 0.000265 0.001065 0.000354 0.000058

espresso 0.000127 0.000039 0.000013 0.000059 0.000020 0.000005 0.000029 0.000008 0.000001
lisp 0.001397 0.000022 0.000001 0.000303 0.000009 0.000000 0.000013 0.000002 0.000000

eqntott 0.000016 0.000003 0.000001 0.000010 0.000002 0.000000 0.000007 0.000001 0.000000
fpppp 0.000687 0.000196 0.000010 0.000186 0.000017 0.000002 0.000022 0.000004 0.000000
doduc 0.000648 0.000181 0.000029 0.000219 0.000057 0.000002 0.000079 0.000013 0.000000

liv 0.000145 0.000064 0.000026 0.000085 0.000035 0.000012 0.000045 0.000014 0.000004
tomcatv 0.000015 0.000003 0.000000 0.000009 0.000001 0.000000 0.000005 0.000000 0.000000

Table 7-5: Instruction TLB Miss Rates for Mach 3.0

This table shows miss rates for a instruction TLB configurations. All TLBs are fully
associative and use random replacement. System references were included for these
experiments. Idle loop activity is not included.

Tables 7-5 and 7-6 show that instruction TLB miss rates are worse for Mach 3.0 than

for Ultrix, due to the additional mapped instruction references from the Mach UNIX

server and emulation library. Considering micro-TLB and instruction TLB experiments

together, miss rates for Mach 3.0 and Ultrix are comparable during thrashing or after

working set size has been reached, but it often takes a larger TLB for Mach 3.0 to get out

of the thrashing region.

112

8x4KB 16x4KB 32x4KB 8x8KB 16x8KB 32x8KB 8x16KB 16xI6KB 32xI6KB
sed 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002

egrep 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
yacc 0.000000 0.000000 9.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
gcc 0.001014 0.000509 0.000196 0.000853 0.000315 0.000065 0.000589 0.000118 0.000009

compress 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ab 0.003117 0.001347 0.000497 0.001706 0.000575 0.000212 0.000732 0.000248 0.000026

espresso 0.000013 0.000001 0.000000 0.000007 0.000000 0.000000 0.000001 0.000000 0.000000
lisp 0.001171 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

eqntott 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
fpppp 0.000008 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
doduc 0.000083 0.000000 0.000000 0.000064 0.000000 0.000000 0.000032 0.000000 0.000000

liv 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
tomcatv 0.000002 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 7-6: Instruction TLB Miss Rates for DEC Ultrix

This table shows miss rates for a instruction TLB configurations. All TLBs are fully
associative and use random replacement. System references were included for these
experiments. Idle loop activity is not included.

7.3. Data and Shared TLB Results

Data-only TLBs and shared TLBs behave similarly. As most programs have well

behaved instruction reference patterns, behavior in the shared case is dominated by data

references. Although the following discussion is mostly in terms of shared TLBs, the

analysis can be applied to the data-only case as well.

We simulated shared TLBs with sizes in powers of two from 32 to 256 entries, page

sizes in powers of two from 4K to 64K bytes, and with LRU and Random replacement

policies. All TLBs simulated were fully associative.

Figure 7-8 shows the shared TLB behavior for mat300, one of the worst behaved

workloads. Note that the TLBs in this figure are a factor of four larger than those con-

sidered with instruction TLBs, ranging from 32 to 256 entries as opposed to 8 to 64

entries. With a miss penalty of 100 cycles and a 64 entry TLB with 4K byte pages,

mat300 spends 5 CPI on the TLB. Mat300 does matrix operations on three matrices with

a total size of approximately 2.5 megabytes. The contents of these three matrices are

accessed in regular patterns, sometimes sequentially and sometimes stepping by columns.

This explains the poor behavior when the TLB maps less than 2.5 megabytes, and rapid

improvement as that barrier is reached and suri , ýed. Observe that lines connecting

TLBs with the same mapping size always slope down, consistent with the observation

that mat300 accesses its data sequentially.

113

3kpage

t 10000000

1000000

10000

1000

100

.. --- 4k page..-

32 64 128 256
TLB entries

Figure 7-8: Mat300 Shared TLB Behavior

This figure illustrates shared TLB behavior for the mat300 workload. Miss behavior
for mat300 is dominated by data references. All TLBs are fully associative with ran-
dom replacement. System activity is not included.

Figure 7-9 shows the TLB behavior for tree running with a 10 megabyte heap.

Memory is allocated from 5 megabytes of the heap, while the other 5 megabytes is

reserved for garbage collection. As expected, performance improves steadily through a

mapping size of 5 megabytes (16k pages x 256 entries), after which the rate of improve-

ment begins to diminish, shown by the downward sloping lines connecting configurations

114

1I000000 - 3pg

pae

100000- - - - - - - - - - - - - -

10000

8kpage

1000

1001
32 64 128 256

TLB entries
Figure 7-9: Tree Shared TLB Behavior

This figure illustrates shared TLB behavior for the tree workload. All TLBs are fully
associative with random replacement. System activity is not included.

with equal mapping sizes. Note that below the 5 megabyte boundary, the lines connect-

ing TLBs with the same mapping size are nearly horizontal. This indicates that TLB

performance for this benchmark depends exclusively on the mapping size. Other TLB

parameters are unimportant.

115

64k page

1000W 32k page

10000 W...

1000 -... - - -- - -

1001
32 64 128 256

TLB entries

Figure 7-10: Multiprocess Mix TLB Behavior

This figure illustrates shared TLB behavior for the multitasking workload. All TLBs
are fully associative with random replacement. System activity is not included.

As a last illustration of shared TLB behavior, Figure 7-10 shows a plot for the multi-

task mix. Several conclusions are immediate. First, as for tree, the mapping size of the

TLBs is the dominant factor in performance. Only after a mapping size of eight

megabytes do the dashed lines stop looking horizontal. Also, most of the plot is fairly

compact. Data points become less compact beyond a mapping size of eight megabytes as

116

the working set size is approached. Lastly, for all TLBs with a mapping size of one

megabyte or less, assuming a 100 cycle miss penalty, at least 0.05 CPI is lost to the TLB

- a significant performance penalty. This suggests that if a machine with a TLB is to

execute such a workload efficiently, the TLB must have a significantly larger mapping

size.

64x4KB 128x4KB 256x4KB 64x16KB 64x32KB
doduc 0.000014 0.000000 0.000000 0.000000 0.000000
eqntott 0.000410 0.000162 0.000002 0.000020 0.000000
espress 0.000004 0.000001 0.000001 0.000000 0.000000
fpppp 0.000001 0.000000 0.000000 0.000000 0.000000
gcc 0.001143 0.000244 0.000132 0.000053 0.000013
lisp 0.000000 0.000000 0.000000 0.000000 0.000000
mat300 0.049097 0.036378 0.012669 0.003461 0.000006
nasa7 0.016526 0.011955 0.005183 0.002024 0.000000
spice 0.000052 0.000005 0.000000 0.000000 0.000000
tomcatv 0.000151 0.000138 0.000121 0.000033 0.000012

ccom 0.000283 0.000009 0.000006 0.000005 0.000002
sed 0.000017 0.000017 0.000015 0.000006 0.000005
tree 0.004683 0.002749 0.001015 0.000224 0.000069
magic 0.000644 0.000139 0.000003 0.000106 0.000086
mixA 0.001527 0.000937 0.000563 0.000620 0.000316

Table 7-7: Shared TLB Miss Rates.

This table shows miss rates for shared TLBs with user activity only. All TLBs use
Random Replacement and are, fully associative. Experiments for this table used user
references only.

Table 7-7 shows TLB miss rates for the ten SPECmarks and several other workloads

of interest. This table is highlighted to indicate where the TLB penalty is more than 0.01

CPI. With the exceptions of nasa7 and mat300, both of which are oriented towards

scientific/vector machines, the SPECmarks perform reach this performance limit with a

64x16k TLB, suggesting that such a configuration provides adequate TLB performance.

The smaller configurations don't perform as well. This suggests that sometime in the

near future, TLBs with larger mapping sizes are needed, especially for machines running

numeric programs.

Table 7-8 gives miss rates for a number of data-only TLB configurations.

Figure 7-11 compares miss rates for shared and split TLBs. All TLBs use 64 entries

and 4K byte pages. For all but gcc and the multi-task mix, the instruction miss rates are

inconsequential. Note that the sum of the split instruction and data miss rates is generally

less than the miss rate for the shared TLB. This difference represents competition for

TLB entries between instruction and data references. This comparison is not meant to

117

64x4KB 128x4KB 256x4KB 64x16KB 128x16KB
doduc 0.000000 0.000000 0.000000 0.000000 0.000000
eqntott 0.00035 0.000140 0.000002 0.000016 0.000000
espress 0.000001 0.000001 0.000000 0.000000 0.000000
fpppp 0.000000 0.000000 0.000000 0.000000 0.000000
gcc 0.000152 0.000104 0.000067 0.000022 0.000014
lisp 0.000000 0.000000 0.000000 0.000000 0.000000
mat300 0.045666 0.034275 0.012050 0.003460 0.000008
nasa7 0.016521 0.011947 0.005178 0.002022 0.000001
spice 0.000034 0.000000 0.000000 0.000000 0.000000
tomcatv 0.000149 0.000137 0.000120 0.000033 0.000021

ccom 0.000005 0.000004 0.000003 0.000001 0.000001
sed 0.000011 0.000010 0.000009 0.000005 0.000004
tree 0.001804 0.001002 0.000420 0.000288 0.000076
magic 0.000270 0.000038 0.000003 0.000059 0.000002
mixA 0.001358 0.000866 0.000511 0.000546 0.000258

Table 7-8: Data TLB Miss Rates.

This table shows miss rates for data-only TLBs, with user activity only. The simu-
lated TLBs use random replacement and are fully associative. Experiments for this
table used user references only.

suggest two specific implementation alternatives, as the split TLBs illustrated use twice

the resources of the shared TLB.

7.3.1. The Impact of System Activity

In our model of system activity, following the example of the DECstation system ar-

chitecture, three types of kernel data structures are accessed through mapped memory:

"• The buffer cache of disk data

"* Page table information

"* Per-process data (the user structure).

The impact of system activity on data and shared TLB behavior, with respect to user-only

behavior, depends on three considerations:
"* Kernel contribution to instruction count

"* Access patterns for mapped kernel data structures

"* Contributions from user-level system contexts (Mach 3.0).

The impact of system activity on the behavior of data and shared TLBs is dependent on

workload and determined by the level of activity and interactions, as per the above three

considerations. Tables 7-9 and 7-10 show Mach 3.0 and Ultrix miss rates for data TLBs.

Tables 7-11 and 7-12 show Mach 3.0 and Ultrix miss rates for shared TLBs.

118

0.1

DATA.1NSTRUCT10NU DATA oaly

0.01 INSTRUCTION oaly

0.001

0.0001

0.00001

0.0000011

it A

Figure 7-11: Shared vs. Split TLBs

This figure compares miss rates for shared and split TLBs, with 64 entries and 4K
byte pages. All TLBs were fully associative with random replacement. System activity
is not included.

16x4KB 32x4KB 64x4KB 16x8KB 32x8KB 64x8KB 16xI6KB 32x16KB 64x16KB
sed 0.001220 0.000679 0.000306 0.000985 0.000515 0.000180 0.000730 0.000314 0.000086

egrep 0.000232 0.000132 0.000058 0.000189 0.000102 0.000036 0.000140 0.000062 0.000019
yacc 0.000620 0.000223 0.000106 0.000332 0.000175 0.000069 0.000243 0.000116 0.000030

gcc 0.004011 0.001022 0.000335 0.002053 0.000624 0.000159 0.001016 0.000346 0.000052
compress 0.015519 0.008436 0.003479 0.009769 0.004073 0.000318 0.005235 0.000352 0.000106

ab 0.004742 0.001813 0.000721 0.003034 0.001224 0.000451 0.001782 0.000718 0.000218
espresso 0.000586 0.000078 0.000027 0.000118 0.000048 0.000015 0.000073 0.000028 0.000006

lisp 0.000331 0.000015 0.000000 0.000030 0.000004 0.000000 0.000013 0.000001 0.000000
eqntott 0.001569 0.000738 0.000415 0.001051 0.000409 0.000171 0.000554 0.000176 0.000032
fpppp 0.001657 0.000078 0.000008 0.000238 0.000025 0.000005 0.000041 0.000009 0.000002
doduc 0.001626 0.000116 0.000011 0.000227 0.0000"4 0.000006 0.000075 0.000016 0.000002

liv 0.000205 0.000111 0.000056 0.000161 0.000083 0.000037 0.000116 0.000053 0.000019
tomcatv 0.000263 0.000184 0.000158 0.000132 0.000095 0.000080 0.000070 0.000050 0.000039

Table 7-9: Data Miss Rates for Mach 3.0

This table shows miss rates for a range of data TLB configurations. All TLBs are
fully associative and use random replacement. System references were included for
these experiments. Idle-loop activity was excluded.

119

16x4KB 32x4KB 64x4KB 16x8KB 32x8KB 64x8KB 16x16KB 32x16KB 64x16KB
sed 0.000161 0.000076 0.000035 0.000086 0.000040 0.000018 0.000059 0.000021 0.000012

egrep 0.000023 0.00012 0.000007 0.000013 0.000006 0.000003 0.000009 0.000004 0.000002
yacc 0.000323 0.000026 0.000010 0.000037 0.000009 0.000005 0.000015 0.000006 0.000003

gcc 0.003627 0.000430 0.000086 0.001342 0.000105 0.000024 0.000310 0.000025 0.000010
compress 0.017285 0.009256 0.003662 0.010569 0.004255 0.000047 0.005510 0.000060 0.000013

ab 0.003344 0.000638 0.000131 0.001514 0.000219 0.000045 0.000406 0.000059 0.000022
espresso 0.000506 0.000013 0.000002 0.000028 0.000002 0.000001 0.000004 0.000001 0.000000

lisp 0.000149 0.000000 0.000000 0.000002 0.000000 0.000000 0.000000 0.000000 0.000000
eqntott 0.001591 0.000746 0.000410 0.001047 0.000399 0.000155 0.000552 0.000162 0.000015
fpppp 0.001663 0.000036 0.000001 0.000222 0.000000 0.000000 0.000002 0.000000 0.000000
doduc 0.001595 0.000057 0.000000 0.000144 0.000000 0.000000 0.000001 0.000000 0.000000

Hiv 0.000017 0.000010 0.000007 0.000009 0.000006 0.000004 0.000007 0.000004 0.000003
tomcatv 0.000273 0.000180 0.000153 0.000121 0.000086 0.000073 0.000059 0.000042 0.000034

Table 7.10: Data Miss Rates for DEC Ultrix

This table shows miss rates for a range data TLB configurations. All TLBs are fully
associative and use random replacement. System references were included for these
experiments. Idle-loop activity was excluded.

16x4KB 32x4KB 64x4KB 16x8KB 32x8KB 64x8KB 16x16KB 32x16KB 64xl6KB
sed 0.003119 0.001677 0.000850 0.002380 0.001209 0.000541 0.001728 0.000793 0.000246

egrep 0.000551 0.000298 0.000149 0.000426 0.000221 0.000093 0.000312 0.000144 0.000043
yacc 0.001933 0.000535 0.000273 0.001018 0.000375 0.000178 0.000518 0.000243 0.000083
gcc 0.015698 0.004646 0.001339 0.009441 0.002262 0.000613 0.004521 0.000941 0.000228

compress 0.019367 0.009492 0.003980 0.011993 0.004817 0.000558 0.006760 0.000640 0.000234
ab 0.013206 0.005970 0.002238 0.009309 0.003472 0.001257 0.005291 0.001924 0.000546

espresso 0.002306 0.000210 0.000072 0.000516 0.000114 0.000039 0.000178 0.000067 0.000018
lisp 0.006013 0.000305 0.000014 0.000856 0.000037 0.000002 0.000098 0.000016 0.000000

eqntott 0.002297 0.000858 0.000458 0.001604 0.000488 0.000200 0.000848 0.000222 0.000053
fpppp 0.004485 0.000921 0.000070 0.002058 0.000115 0.000021 0.000194 0.000043 0.000007
doduc 0.007365 0.000669 0.000094 0.002576 0.000194 0.000024 0.000286 0.000071 0.000007

liv 0.000573 0.000276 0.000134 0.000424 0.000194 0.000088 0.000303 0.000126 0.000045
tomcatv 0.000329 0.000205 0.000170 0.000171 0.000109 0.000088 0.000096 0.000060 0.000045

Table 7-11: Shared Miss Rates for Mach 3.0

This table shows miss rates for a range shared instruction and data TLB configura-
tions. All TLBs are fully associative and use random replacement. System references
were included for these experiments. Idle-loop activity was excluded.

16x4KB 32x4KB 64x4KB 16x8KB 32x8KB 64x8KB 16xl6KB 32x16KB 64x16KB
sed 0.000233 0.000096 0.000055 0.000110 0.000049 0.000032 0.000079 0.000035 0.000021

egrep 0.000031 0.000015 0.000009 0.000015 0.000008 0.000005 0.000010 0.000005 0.000003
yacc 0.001204 0.000061 0.000013 0.000383 0.000015 0.000006 0.000026 0.000006 0.000004
gcc 0.016511 0.004091 0.000788 0.009318 0.001458 0.000166 0.003821 0.000278 0.000032

compress 0.020510 0.009866 0.003848 0.012336 0.004677 0.000054 0.006655 0.000067 0.000017
,ab 0.011311 0.004221 0.001092 0.007213 0.001723 0.000411 0.003072 0.000591 0.000058

espresso 0.002152 0.000082 0.000006 0.000349 0.000009 0.000002 0.000037 0.000002 0.000000
lisp 0.005628 0.000014 0.000000 0.000542 0.000000 0.000000 0.000002 0.000000 0.000000

eqntott 0.002285 0.000841 0.000437 0.001573 0.000460 0.000170 0.000823 0.000193 0.000020
fpppp 0.004364 0.000935 0.000006 0.001956 0.000023 0.000000 0.000105 0.000001 0.000000
doduc 0.007255 0.000574 0.000004 0.002444 0.000065 0.00)000 0.000152 0.000000 0.000000

liv 0.000062 0.000010 0.000008 0.000010 0.000006 0.000004 0.000007 0.000005 0.000003
tomcatv 0.000317 0.000189 0.000157 0.000139 0.000090 0.000075 0.000067 0.000044 0.000035

Table 7-12: Shared TLB Miss Rates for DEC Ultrix

This table shows miss rates for a range shared instruction and data TLB configura-
tions. All TLBs are fully associative and use random replacement. System references
were included for these experiments. Idle-loop activity was excluded.

120

The workload sed is an example where the addition of system activity induces worse

TLB miss ratios. This is due in part to a relatively high ratio of buffer cache activity to

computation. The effect is exaggerated as sed is run three times, with the sed binary and

input files retrieved twice from the buffer cache. For gcc, system activity causes im-

proved TLB miss ratios. In this case, the ratio of buffer cache activity to computation is

lower, with the gcc binary loaded once directly from disk. Additional system instructions

make the ratio of misses to instructions lower. Lastly, workloads such as tomcatv require

little system activity so the impact of this activity is slight, contributing few TLB misses

and few system instructions.

In our comparisons of Mach 3.0 and Ultrix TLB behavior, we have seen consistently

higher miss rates for Mach 3.0 than for Ultrix, due to the mapped system contexts in

Mach 3.0. Although this general rule also applies to data-only and shared TLBs, the

workloads compress and eqntott are interesting exceptions. For these two workloads,

Ultrix and Mach 3.0 get comparable numbers of data-only TLB references and misses.

However, higher instruction counts for Mach 3.0 makes the miss ratio lower for Mach

3.0. Such behavior awso occurs for compress for smaller sizes of shared TLBs.

7.4. Variable Size TLB Entries

An interesting question for future work is how to make use of the variable size TLB

entries that have appeared in recent architectures [33, 56]. Maps of the dynamic patterns

of memory access are useful to understand this problem. Figure 7-12 shows the pattern

of data memory accesses for mat300. Page address varies in the x dimension, from

OxlO00000O on the left to OxlO2leOOO on the right; a range of about 2.2 megabytes. In-

struction count (i.e., time) varies along the y dimension, ranging from 0 at the top to 2.77

billion at the bottom. Each dark square represents one or more accesses to a 16K byte

page during an interval of 1 million instructions.

The three matrices used by mat300 are clearly visible from the usage patterns in the

address space. The compactness and predictability of the mat300 accesses show that the

use of larger pages could virtually eliminate TLB misses, provided that adequate cache

and memory resources were available.

121

Figure 7-12: mat300 Data Memory Access Patterns

This figure is a graphical representation of user data access patterns for mat300. The
x axis represents data addresses, ranging from OxlOOOOOOO on the left to
OxlO2leOOO on the right. The y axis represents time in terms of instructions, with
instruction 0 at the top and instruction 2770000000 at the bottom of the figure. Each
dark point in the figure represents one or more references to a memory page during a 10
million instruction interval. This figure shows that the memory access patterns of
mat300 are regular and predictable, such that large TLB pages could easily be applied.

Tree, the lisp benchmark, also shows interesting data reference patterns, illustrated in

Figure 7-13. Note that a page size of 64K bytes was used. The address space represented

in this figure is about 11 megabytes. The descending staircase pattern shows the be-

havior of the memory allocator as it walks across the heap. Solid vertical bands show

where garbage collection has compacted the heap into frequently accessed regions. The

pattern of memory references for tree is sparse relative to mat3CX). This behavior, along

with the size of the address space, suggests that lisp workloads such as tree are relatively

poor candidates for variable size pages.

122

Figure 7-13: tree Data Memory Access Patterns

This figure is a graphical representation of user data access patterns for tree. The x
axis represents data addresses, ranging from OxlOOOOOOO on the left to
OxlOa5cOOO on the right. The y axis represents time in terms of instructions, with
instruction 0 at the top and instruction 2410000000 at the bottom of the figure. Each
dark point in the figure represents one or more references to a memory page during a 10
million instruction interval. This figure shows that memory access patterns for tree are
spread sparsely across the data segment, making it difficult to apply large TLB pages
without substantial memory fragmentation.

Interesting patterns of reference are the exception rather than the rule in memory ac-

cess patterns. Most of the benchmarks concentrate on a small number of unclustered

pages, resulting in a few dark vertical bars from the top to the bottom of the map with

occasional horizontal excursions.

Figure 7-14 shows a map of instruction references for gcc. Each point represents one

or more references to a 4k byte page during an interval of 100000 instructions. The ad-

dress space spanned in this figure is 684K bytes, the largest text segment of any of the

123

U- iS i

- !

a I

iiI

-- -:r [' w
- A-O ---

Figure 7-14: gcc Instruction Memory Access Patterns

This figure is a graphical representation of user instruction reference patterns for gcc.
The x axis represents data addresses, ranging from 0x400000 on the left to
0x4a7000 on the right. The y axis represents time in terms of instructions, with
instruction 0 at the top and instruction 22700000 at the bottom of the figure. Each dark
point in the figure represents one or more references to a memory page during a 100000
instruction interval. This figure shows that instruction references for gcc are spread
sparsely across the text segment, making it difficult to apply large TLB pages without
substantial memory fragmentation.

SPECmarks. The large number of pages referenced during a single 100000 instruction

interval illustrates rlearly why gcc places high demands on the TLB. If variable size

memory pages were to be used to improve gcc performance, the only solution would be

to load the entire program text into a contiguous segment.

For instruction references, compilers might use feedback information for performance

critical applications to locate active text contiguously, making the use of a single larger

TLB entry a more attractive option. Such techniques are more difficult to apply to data

references, as heap allocated structures are allocated dynamically, and so their location is

124

not under the control of the compiler. With the relocatable nature of lisp data, it might be

possible to tune garbage collectors to improve the locality of reference, although research

indicates significant limitations to the benefit of such techniques [69]. For uncollected

memory allocation schemes, a tool using feedback information could make suggestions

of how to order heap data allocation to improve contiguity of data.

7.5. Conclusions

This chapter has investigated the performance of one and two-level instruction TLBs,

data TLBs, and shared TLBs, the impact of system activity on these structures, as well as

potential performance implications of variable-sized pages. This work has concentrated

on fully-associative TLB organizations and split instruction and data reference streams.

For instruction TLBs, programs such as gcc and lisp that make many nested calls to

small procedures are the hardest to satisfy. For most of the SPECmarks, 4K byte pages

and a two entry micro-TLB (whose misses are serviced in several cycles by a shared

TL.b) perform reasonably well. For example, with a 3 cycle micro-TLB miss penalty

(i.e., assuming that the reference hits in the 2nd-level TLB) all SPECmarks except gcc

and lisp incur a CPI of less than 0.03 due to microTLB misses. gcc and lisp can achieve

this level of performance with 4-entry micro-TLBs, but incur a CPI penalty of about 0.06

with a 2-entry micro-TLB. A FIFO replacement policy performs almost as well as LRU

for micro-TLBs.

In single-level instruction, data, and shared TLBs, TLB performance is usually

dominated by how much memory is mapped. Single-level fully-associative instruction

TLBs (or the second level of a two-level organization) with more that 32 entries, 4K byte

pages, and a 100 cycle miss penalties incur CPIs of under 0.1 even for gcc. Performance

for other benchmarks and with larger TLBs is better. With the larger capacities and miss

penalties of full size instruction TLBs, multi-tasking and system effects also become im-

portant.

A data or shared TLB mapping 256K bytes in 4K byte pages (i.e., 64 entries) with

100 cycle miss penalty incurs 0.1 CPI or less for all of the workloads except nasa7 and

mat300. Both of these are scientific/vector oriented programs with large data sets. Fur-

thermore, column access (i.e., non-unit stride) can result in successive data references to

125

successive pages, disastrous for TLB performance unless the entire data set is mapped at

the same time. nasa7 and mat300 incur a CPI of 1.7 and 4.9, respectively, for the TLB

parameters given above. This is not reduced to under 0.1 CPI for mat300 until the TLB

can map 2 megabytes (e.g., 256 entry TLB with 8K byte pages). Work with more

demanding workloads suggests that future TLBs must map significantly more memory.

Compilation techniques such as blocking can sometimes be applied to address this

problem. Unfortunately, blocking applies only to a restricted class of scientific computa-

tions, and similar techniques for pointer-based heap structures such as occur in C

programs are probably not possible.

In a model where most operating system text and data is referenced with little TLB

overhead, system effects generally cause a reduction in the TLB miss rate, by amortizing

user-level miss activity over a larger number of instructions.

One way to increase the amount of memory mapped without requiring an unreason-

ably large number of TLB entries is the use of variable-sized pages. Memory access

plots suggest that the use of very large pages (e.g., 256K byte or greater) for the data

space of mat300 and the instruction space of gcc could vastly reduce the size of the TLB

required for good performance while decreasing its miss rate.

126

Chapter 8

Conclusions

This thesis has explored issues in operating system structure and how structure affects

system behavior and overall performance at the level of the hardware-software interface.

Identifying and isolating these structural effects has required a comprehensive examina-

tion of software behavior as related to performance. This examination and the com-

parison of two operating systems revealed that system policy is also important and has

significant impact on overall performance.

This chapter is organized as three major sections. First is a high-level summary of the

major research results. This is followed by an evaluation which details some strengths

and limitations of this research work and of the systems that were studied. The chapter

closes with some implications for current and future work.

8.1. Summary

A major component of this research effort was the development of a set of tools for

collecting and analyzing traces of memory references, to permit complete and detailed

measurements of software behavior. This work has demonstrated that software in-

strumentation methods can be applied to collecting address traces of system behavior.

The experimental results from this thesis are evidence of the utility of the approach. End-

to-end measurements [71] using simulations to predict program execution time and TLB

miss counts demonstrate that the trace data and simulated behavior provides an accurate

models of behavior in uninstrumented systems.

Mach 3.0 and Ultrix structure differs in important ways. The comparative study of

the two systems has served to identify and organize the structural differences that have

the greatest impact on performance:

127

"* Microkernel vs. Monolithic system structure: The microkernel structure
of Mach 3.0 has significant performance impact both in terms of memory
behavior and raw system instruction counts. Prior studies identified a num-
ber of specific activities which induce increased overhead in Mach 3.0 and
are related to its microkernel structure. These include communication, sys-
tem call emulation, context switches, TLB behavior, and increased hardware
trap activity. This work has confirmed prior results, but it goes further by
placing these activities in the context of overall behavior and in demonstrat-
ing that no single activity dominates the performance difference between
Mach 3.0 and Ultrix. Performance penalties are distributed over a diverse
range of inter-related activities, and optimization of any single activity in
isolation will not have a significant impact on overall performance.

"* UNIX Implementation: In Mach 3.0, the UNIX API is implemented in
terms of Mach primitives rather than being implemented directly. This leads
to increased communication and higher instruction counts.

"* Functional Differences: Mach 3.0 provides significant additional
functionality beyond that of the UNIX interface, an example being the Mach
3.0 virtual memory system. These differences lead higher instruction counts
in Mach.

* Machine Independent Code: Mach 3.0 is a portable operating system.
Ultrix is largely machine dependent, with machine dependent and machine
independent code frequently mixed within procedures, and isolated by direc-
tives to the C macro preprocessor. Machine dependent code in Mach is iso-
lated in separate files and accessed through procedure call interfaces. Some
Mach functionality uses a machine-independent implementation when a
machine-dependent implementation might be more efficient. These dif-
ferences lead to higher instruction counts in Mach.

The structural differences between Mach 3.0 and Ultrix have a significant impact on

overall performance. Memory locality is worse for Mach 3.0, and this poor locality is

exaggerated by significantly higher system instruction counts. One phenomena which is

reflected throughout Mach 3.0 structure is the increased use of modular code. To under-

stand the impact of modularity, it helps to see that contiguous code has a compact

footprint in the cache, while the density of modular code can be much worse. Modular

code causes more procedure calls, deeper procedure call nesting, and, as a consequence,

less spatial locality. Programmers are taught to consider procedure calls free, but the

performance impact of this procedure call indirection can accumulate and become impor-

tant, particularly when a system with long inline procedures is compared to another that

is very modular and decomposed.

System policy also has a significant impact on overall performance. These policy

issues are orthogonal to system structure. In comparing Mach 3.0 and Ultrix, two aspects

128

of system policy have significant impact: disk policy and virtual to physical page map-

ping policy. Given their impact on performance it is no coincidence that significant prior

work can be applied to address these issues. Log structured file systems can reduce the

cost of conservative disk policies such as that of Ultrix [70]. Non-volatile memory could

be used to make aggressive disk policies as in Mach 3.0 more safe [8]. The problems

associated with page mapping policy can be addressed with cache associativity and im-

proved page mapping policy [47]. An important contribution of this research has been to

identify these issues and place them in the context of overall performance.

Memory system behavior for XI 1 workloads is frequently worse than that of more

traditional benchmarking workloads. Frequent client-server interactions can cause in-

creased competition misses between client, server, and system contexts. Sparse text and

large data induce elevated TLB miss rates. Instruction cache behavior of X1I workloads

has important similarities to that of operating system activity. Overall, these workloads

differ in important ways from traditional benchmarks. If hardware designers continue to

focus on traditional benchmarks, the performance of software systems such as X11 will

suffer.

8.1.1. Making generalizations from this work

This research has made a detailed comparison of Mach 3.0 and Ultrix. A natural but

incorrect inference one could make is that the conclusions drawn in the context of Mach

3.0 and Ultrix can be applied immediately to all microkernel and monolithic systems.

The meaning of terms like "microkernel" and "monolithic" are not precise enough to al-

low such inferences to be made. Generalizing the results for Ultrix and Mach 3.0 require

consideration of both the systems involved and the issue in question.

This work demonstrates that the structural decomposition of operating system im-

plementation creates the potential for a new class of performance problems that do not

exist for monolithic systems. This does not mean that efficient microkernel implemen-

tations are not possible. It does mean that system builders need to learn more about par-

titioning systems and how it affects performance. Towards this end, several recent

research projects propose new ways of partitioning systems implementations to achieve

some of the engineering advantages of microkernel structure without sacrificing

performance [21, 50, 51, 83].

129

It also means that the implementors of microkernel systems must give particular at-

tention to performance issues. System implementors have typically used elapsed time or

throughput to measure and compare system performance. This thesis has demonstrated

that address traces and trace-driven simulation can do much better. They go beyond tell-

ing you how long a given operation took by giving complete and detailed information

about everything that happened during the operation. Simple tools such as timing

devices will always be important, but for identifying and understanding the complex in-

teractions that occur in a multiple-address-space system these simple tools are not always

good enough.

Variations on the partitioning of Mach 3.0 have been proposed [21, 50, 51]. Figure

4-2 shows that if such changes are to be effective, they must reduce the dynamic instruc-

tion count for the system. Some of the behavior identified in Figure 4-2 can be attributed

to specific parts of the system. For example, the higher overhead of VM activity in Mach

3.0 is due to the extended functionality and machine independent code. Higher copy

overhead for Mach 3.0 is due to the need to copy file system data between address

spaces. This overhead could be reduced by moving the buffer cache of file system data

out of the UNIX server and into the kernel or application address space.

Other sources of instruction overhead are related in a more fundamental way to

microkernel structure. Examples are overheads from traps, IPC, and TLB faults. In these

cases there is potential for reducing instruction overheads through hardware support.

TLB miss rates could be reduced by using large TLB pages to map user-level system

contexts. Trap, copy and IPC overheads could potentially be reduced in a machine with a

single global address space.

Some structural changes will have little effect because the related code is not used

very often. For example, it might be possible to move UNIX process management primi-

tives from Mach's UNIX server to the emulation library, but this would have little impact

on performance, as process creation is not frequent in normal situations.

When making generalizations from this work, specific results need to be considered

individually. Positive results tend to be less generalizable. An example of a positive

result is "System execution has worse locality than user execution." Increasing the sizes

of caches will tend to have more of an effect on bad behavior as good behavior has less

130

potential for improvement. By this reasoning, the observed difference between system

and user locality will tend to diminish as cache sizes increase.

As an example of a negative result, this research has shown that the performance im-

pact of cache competition between user and system activity is not significant. This result

tends to generalize for changes in the memory system; if caches are made smaller and

system memory behavior becomes worse the impact of competition will become even

less of an issue. A larger cache would tend to decreases conflict misses, both from self-

interference and competition. At the same time, as the cache becomes larger the footprint

of system execution will tend to expand to fill the cache, and as a result some cache miss

activity will shift from self-interference to competition. At this point, cache behavior will

be relatively good. The good locality of user code and relatively infrequent system ac-

tivity will continue to limit the impact of competition.

8.2. Evaluation

8.2.1. Mach 3.0 and Ultrix

The two systems compared in this study were selected because they were two com-

mon workstation operating systems in academic environments at the time the study was

conceived, and because they permitted the microkernel vs. monolithic system comparison

which we felt to be an important and relevant distinction for present and future systems.

The movement of both of the Unix implementations towards obsolescence during the

course of this study demonstrates the fast pace of change in the operating systems com-

munity. It also demonstrates the importance of this kind of research, so that future sys-

tems can be created with a complete knowledge of the strengths and weaknesses of their

predecessors.

This work has shown that the structure of Mach 3.0 has a negative impact on perfor-

mance. Mach 3.0 was developed as a test bed for new concepts in system design, and has

been very successful in this respect. It was never a goal of Mach to give better perfor-

mance than other UNIX implementations, only comparable performance with new

functionality.

131

Furthermore, the results of this thesis confirm several important points about

microkemel performance:

"* Memory system overheads are not the dominant barrier in achieving
microkernel performance comparable to that of monolithic systems.

"* Binary compatibility through system call emulation is possible and perfor-
mance can be reasonable.

"* The poor performance in current microkernel systems such as Mach 3.0 can-
not be addressed by improving efficiency of communication primitives.

Care must be taken when applying conclusions drawn in the context of Mach 3.0 to other

microkernel systems. There are significant structural differences between Mach 3.0 and

other microkernels, so performance characteristics of the other systems may be different.

For example, the design decision in Mach 3.0 to put the disk buffer cache in the user

level UNIX server introduces extra complexity and extra copying of disk data. As a final

note on Mach 3.0 performance, when a performance critical system interface is im-

plemented using a user level server and in terms of a different set of system primitives in

a different address space, optimal performance should not be expected.

8.2.2. The DECstation 500/200 Memory System

A limitation of this study is that we based our simulations on the DECstation

5000/200 memory system. Our motive was to focus our attention on issues relating to

software structure, and avoid the temptation of becoming hardware designers. The base

memory system is somewhat ordinary with no glaring misfeatures, and has provided a

good platform for our software comparison.

The DECstation 5000/200 memory system has very good performance for writes.

This is one strength of the memory system which represents a possible limitation in our

results. The write buffer has the property that it can retire consecutive writes to the same

memory page with no write buffer stalls. Another important property is that the cache

line size and write width are the same, so that no memory read is required for a write-

miss. A memory system without these properties could have substantially higher

penalties for writes.

A possible weakness of the experimental base system as compared to other contem-

porary memory systems is the lack of cache associativity. Instruction cache associativity

132

could be more beneficial for system than for user code, particularly when user code is

smaller than the size of the cache, as is often the case with benchmarking workloads.

A third limitation of the experimental memory system is cache size. With two 64K

byte caches, the total cache size is smaller than what is available on some current

machines. An important issue to consider is how the results for 64K byte caches general-

ize to a larger cache or deeper cache hierarchy. Lower cache miss rates can be expected

for the larger caches. If cache miss penalties were constant, then the problems addressed

in this thesis would tend to become irrelevant when cache size is increased. However,

cache size cannot be considered independently of cache miss penalties. With faster

processor speeds the penalty for a single cache miss in terms of CPU stall cycles becomes

higher. This means that improved miss rates are required to maintain current memory

system performance levels, and that the issues discussed in this thesis will remain impor-

tant in future systems.

8.3. Implications for Current and Future Work

83.1. Software

Mach 3.0 demonstrates some performance pitfalls that are possible in microkernel

systems. It is important to understand that performance problems are not inherent in all

microkernel systems and can be separated from the fundamental elements of microkernel

design. Several current research projects are meant to address these problems. Resear-

chers at UC Berkeley have developed a technique called sandboxing to isolate untrusted

code when it is executed in a shared address space [83]. In another project at the Univer-

sity of Washington and Carnegie Mellon, system functionality is partitioned into perfor-

mance critical code (to be run in the user's address space) and security-sensitive code

(executed in a secure system address space) [51]. Work at the University of Utah seeks

to dynamically adapt functionality and migrate activities between address spaces to im-

prove performance [21]. Windows NT from Microsoft has support for layering and con-

figuration of functionality which is meant to addresses these issues [29]. These research

and commercial efforts show promise in resolving some of the problems of microkernel

performance.

133

Tools exist that can reorder executable program text to improve instruction cache

performance [32, 55]. Typically they use profiling information to rearrange active text so

that it is contiguous and more compact. These tools could be applied for making the

cache footprint of system code more compact. However, this could be counter-

productive without a means to prevent collisions between compacted blocks, both within

and between address spaces. Furthermore, there are a number of reasons why such tools

are almost never used.
"* They require profile information.

"* They are awkward to use.

"* They do not apply readily to data.

"* They are difficult to apply with dynamically loaded libraries.

"* The proliferation of memory architectures for current mass-market machines
makes it impractical for a software vendor to use such tools.

These problems suggest limitations for text reordering tools, and that the related problem

of cache conflict misses favors a hardware solution.

8.3.2. Hardware

Microkernel performance is only a part of the system performance problem. When

compared to user execution, even monolithic systems behave poorly, and as processor

speed and memory speed continue to diverge, the conditions for efficient execution of

system code continue to deteriorate. One traditional approach for improving cache per-

formance is brute force: simply use larger caches and more levels of cache hierarchy.

Another popular strategy is to increase cache associativity. These strategies are limited

by practical considerations such as processor cycle time, the cost of building cache

memory and logic, and the limited incremental improvements that larger caches can

provide.

System execution exemplifies the type of extreme software behavior that tests the

limitations of current memory system designs. Compulsory and collision misses make

the memory system the major bottleneck in overall performance. Compulsory misses can

be partially addressed with larger line sizes, but prefetch hardware [45] might eventually

be required. Collision misses can be reduced with associativity and with larger caches,

but as cache sizes grow, these techniques become more and more expensive.

134

User activity, when measured in isolation, gives a biased view of memory system

behavior. As compared to user execution, the locality of system code and data is in-

herently poor, and hardware changes that help application execution by taking advantage

of locality will not bring proportional improvements overall. Memory reference behavior

in large applications has many similarities to system execution. With growing demand

for good performance for these applications, hardware designers will be motivated to im-

prove support for memory reference patterns with poor locality.

8.4. Conclusion

This thesis has explored how the structure of software systems affects the overall per-

formance of uniprocessor computers. It has shown how interaction between the operat-

ing system and the memory system causes poor memory system performance. With the

measurement tools and the experimental results presented in this research, computer sys-

tems designers will be better equipped to address the performance issues of future com-

puter systems.

135

136

References

1. Michael J. Accetta, Robert V. Baron, William Bolosky, David B. Golub, Richard
F. Rashid, Avadis Tevanian, Jr., and Michael W. Young. Mach: A New Kernel Foun-
dation for Unix Development. Proceedings of the Summer 1986 USENIX Conference,
July, 1986, pp. 93-113.

2. Anant Agarwal, Richard L. Sites, and Mark Horowitz. ATUM: A New Technique for
Capturing Address Traces Using Microcode. The Proceedings of the 13th International
Symposium on Computer Architecture, June, 1986, pp. 119-127.

3. Anant Agarwal, John Hennessy, and Mark Horowitz. "Cache Performance of Operat-
ing System and Multiprogramming Workloads". ACM Transactions on Computer Sys-
tems 6, 4 (November 1988), pp 393-431.

4. Anant Agarwal. Analysis of Cache Performance for Operating Systems and
Multiprogramming. Kluwer Academic Publishers, Boston, MA, 1989.

5. Digital Equipment Corporation. Digital's 21064 Microprocessor. Data sheet.

6. Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. Lazowska.
The Interaction of Architecture and Operating System Design. The Proceedings of the
Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, April, 1991, pp. 108-120.

7. Ozalp Babaoglu and William Joy. Converting a Swap-Based System to do Paging in
an Architecture Lacking Page-Referenced Bits. The Proceedings of the 8th ACM Inter-
national Symposium on Operating System Principles, December, 1981, pp. 76-86.

8. Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhaut, Margo Seltzer. Non-
Volatile Memory for Fast, Reliable File Systems. The Proceedings of the Fifth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, October, 1992, pp. 10-22.

9. Thomas Ball and James R. Larus. Optimally Profiling and Tracing Programs. Prin-
ciples of Programming Languages, January, 1992.

10. Robert V. Baron, David Black, William Bolosky, Jonathan Chew, Richard P. Draves,
David B. Golub, Richard F. Rashid, Avadis Tevanian, Jr., and Michael Wayne Young.
Mach Kernel Interface Manual. Draft, Department of Computer Science, Carnegie Mel-
lon Univeristy.

137

11. Joel F. Bartlett. SCHEME->C: A Portable Scheme-to-C Compiler. WRL Research
Report 89/1, Digital Equipment Corporation Western Research Laboratory, 1989.

12. Brian N. Bershad. The Increasing Irrelevance of IPC Performance for Microkernel-
Based Operating Systems. The Proceedings of the First USENIX Microkernels and
Other Kernels Workshop, April, 1992, pp. 204-211.

13. Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska and Henry M. Levy.
"Lightweight Remote Procedure Call". ACM Transactions on Computer Systems 8, 1
(February 1990), pp. 37-55.

14. Brian N. Bershad, J. Bradley Chen, Dennis Lee, and Theodore H. Romer. Avoiding
Conflict Misses Dynamically in Large Direct-Mapped Caches. Submitted for publica-
tion.

15. Brian N. Bershad, Richard P. Draves, and Alessandro Forin. Using
Microbenchmarks to Evaluate System Performance. The Proceedings of the Third
Workshop on Workstation Operating Systems, April, 1992, pp. 148-153.

16. Anita Borg, R.E. Kessler, Georgia Lazana, and David Wall. Long Address Traces
from RISC Machines: Generation and Analysis. WRL Research Report 89/14, Digital
Equipment Corporation Western Research Laboratory, 1989.

17. Joseph Boykin. Programming under Mach. Addison-Wesley, Reading, MA, 1993.

18. J.R. Boyton, S.L. Chakrabarti, S.P. Hiebert, J.J. Lang, J.R. Owen, K.A. Marchington,
P.R. Robinson, M.H. Stroyan, J.A. Waitz. "Sharing Access to Display Resources in the
Starbase/Xl 1 Merge". Hewlett Packard Journal 40, 6 (December 1989), 20-32.

19. Kenneth H. Bronstein, David J. Sweetser, and William R. Yoder. "System Design
for Compatibility of a High-Performance Graphics Library and the X Window System.".
Hewlett Packard Journal 40, 6 (December 1989), 6-10..

20. David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching.
Proceedings of the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, April, 1991.

21. John B. Carter, Brian Ford, Mike Hibler, Ravindra Kuramkote, Jeffrey Lawy, Jay
Lepreau, Douglas B. Orr, Leigh Stoller, and Mark Swanson. FLEX: A Tool for Building
Efficient and Flexible Systems. The Proceedings of the Fourth Workshop on Worksta-
tion Operating Systems, October, 1993.

22. J. Bradley Chen and Brian N. Bershad. The Impact of Operating System Structure
on Memory System Performance. Proceedings of the 14th ACM Symposium on Operat-
ing System Principles, December, 1993.

23. J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A Simulation Based Study of
TLB Performance. The Proceedings of the 19th Annual International Symposium on
Computer Architecture, May, 1992, pp. 114-123.

24. Douglas W. Clark. "Cache Performance in the VAX-11/780". ACM Transactions
on Computer Systems 1, 1 (February 1983), pp. 24-37.

138

25. Douglas W. Clark, Peter J. Bannon, and James B. Keller. Measuring VAX 8800
Performance with a Histogram Hardware Monitor. Proceedings of the 15th Annual Inter-
national Symposium on Computer Architecture, June, 1988, pp. 176-185.

26. Douglas W. Clark and Joel S. Emer. "Performance of the VAX 11/780 Translation
Buffer: Simulation and Measurement". ACM Transactions on Computer Systems 3, 1
(February 1985), 270-301.

27. Robert F. Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for
Execution Profiling. The Proceedings of the 1994 ACM SIGMETRICS Conference on
the Measurement and Modeling of Computer Systems, May, 1994.
28. Eric C. Cooper and Richard P. Draves. C Threads. Tech. Rept. CMU-CS-88-154,

Carnegie-Mellon University, School of Computer Science, February, 1988.

29. Helen Custer. Inside Windows NT. Microsoft Press, Redmond, WA, 1993.

30. H. Davis, S.R. Goldschmidt, and J. Hennessy. Tango: A Multiprocessor Simulation
and Tracing System. Proceedings of the International Conference on Parallel Processing,
August, 1991, pp. 99-107.

31. M. DeMoney, J. Moore, and J. Mashey. Operating System Support on a RISC.
Proceedings of the 31 st Computer Society International Conference (Spring Compcon
'86), March, 1986, pp. 138-143.

32. Digital Equipment Corporation. cord(l). Ultrix manual page.

33. D.W. Dobberpuhl, R.T. Witek, R. Allmon, R. Anglin, D. Bertucci, S. Britton,
L. Chao, R.A. Conrad, D.E. Dever, B. Gieseke, S.M.N. Hassoun, G.W. Hoeppner,
K. Kuchler, M. Ladd, B.M. Leary, L. Madden, E.J. McLellan, D.R. Meyer, J. Montanaro,
D.A. Priore, V. Rajagopalan, S. Samudrala, S. Santhanam. "A 200Mhz 64 bit Dual-Issue
CMOS Microprocessor". IEEE Journal of Solid-State Circuits 27, 11 (November 1992),
1555-67.

34. Richard P. Draves, Brian N. Bershad, Richard F. Rashid and Randall W. Dean.
Using Continuations to Implement Thread Management and Communications in Operat-
ing Systems. Proceedings of the 13th ACM Symposium on Operating Systems Prin-
ciples, October, 1991, pp. 122-136.

35. Richard P. Draves. A Revised IPC Interface. Proceedings of the First Mach
USENIX Workshop, October, 1990, pp. 101-121.

36. J. K. Flanagan, B. Nelson, J. Archibald, and K. Grimsrud. BACH: BYU Address
Collection Hardware; The Collection of Complete Traces. Proceedings of the 6th Inter-
national Conference on Modeling Techniques and Tools for Computer Performance
Evaluation, 1992.

37. Alessandro Forin, David B. Golub, and Brian N. Bershad. An 1/0 System for Mach
3.0. Proceedings of the Usenix Mach Symposium, November, 1991.

38. Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos, and Alan Jay Smith.
Cache Performance of the SPEC Benchmark Suite. University of Wisconsin-Madison,
1991.

139

39. Aaron Goldberg and John Hennessy. MTOOL: A Method for Detecting Memory
Bottlenecks. WRL Technical Note TN- 17, Digital Equipment Corporation Western
Research Laboratory, 1990.

40. Aaron J. Goldberg and John L. Hennessy. "MTOOL: An Integrated System for Per-
formance Debugging Shared Memory Multiprocessor Applications". IEEE Transactions
on Parallel Processing 4, 1 (January 1993), 28-40.

41. David B. Golub, Randall W. Dean, Alessandro Forin and Richard F. Rashid. UNIX
as an Application Program. Proceedings of the Summer 1990 USENIX Conference,
June, 1990, pp. 87-95.

42. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, Palo Alto, CA, 1990.

43. Mark D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. Ph.D.
Thesis, University of California at Berkeley, Computer Sciences Division, November
1987. Number UCB/CSD 87/381.

44. Norman P. Jouppi. Architectural and Organizational Tradeoffs in the Design of the
MultiTitan CPU. Proceedings of the 16th Annual International Symposium on Computer
Architecture, May, 1989, pp. 281-289.

45. Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers. Proceedings of the 17th An-
nual International Symposium on Computer Architecture, May, 1990, pp. 364-373.

46. Gerry Kane. MIPS RISC Architecture. Prentice Hall, Englewood Cliffs, NJ, 1987.

47. R.E. Kessler and Mark D. Hill. "Page Placement Algorithms for Large Real-Indexed
Caches". ACM Transactions on Computer Systems 10, 4 (November 1992).

48. James R. Larus. "Abstract Execution: A Technique for Efficiently Tracing
Programs". Software Practices and Experience 20, 12 (December 1990), 1241-1258.

49. James R. Larus. personal communication.

50. Jay Lepreau, Mike Hibler, Bryan Ford, Jeffrey Law, and Douglas Orr. In-Kernel
Servers on Mach 3.0: Implementation and Performance. Proceedings of the Third
USENIX Mach Symposium, April, 1993, pp. 39-56.

51. Chris Maeda and Brian N. Bershad. Protocol Service Decomposition for High-
Performance Networking. Proceedings of the 14th ACM Symposium on Operating Sys-
tem Principles, December, 1993, pp. 244-255.

52. Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson. MemSpy, Analyzing
Memory System Bottlenecks in Programs. Proceedings of the 1992 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, June, 1992, pp. 1-12.

53. Joel McCormack. Writing Fast X Servers for Dumb Color Frame Buffers. WRL
Research Report 91/1, Digital Equipment Corporation Western Research Laboratory,
1991.

140

54. Joel McCormack and Bob McNamara. A Smart Frame Buffer. WRL Research
Report 93/1, Digital Equipment Corporation Western Research Laboratory, 1993.

55. Scott McFarling. Program Optimization for Instruction Caches. The Proceedings of
the Third International Conference on Architectural Support for Programming Languages
and Operating Systems, April, 1989, pp. 183-191.

56. Sunil Mirapuri, Michael Woodacre, and Nader Vasseghi. "The MIPS R4000 Proces-
sor". IEEE Micro 12, 2 (April 1992), 10-22.

57. Jeffrey C. Mogul and Anita Borg. The Effect of Context Switches on Cache Perfor-
mance. The Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, April, 1991, pp. 75-84.

58. Jeffrey C. Mogul. SPECmarks Are Leading Us Astray. The Third Workshop on
Workstation Operating Systems, April, 1992, pp. 160-161.

59. David Nagle, Richard Uhlig, and Trevor Mudge. Monster: A Tool for Analyzing the
Interaction Between Operating Systems and Computer Architectures. University of
Michigan, November, 1992. CSE-TR- 147-92.

60. David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge and
Richard Brown. Design Tradeoffs for Software-Managed TLBs. Proceedings of the 20th
Annual International Symposium on Computer Architecture, May, 1993, pp. 27-38.

61. Michael J. K. Nielsen. Titan Systems Manual. Research Report WRL Research
Report 86/1, Digital Equipment Corporation Western Research Laboratory, September,
1986.

62. John K. Ousterhout, G. Hamachi, Robert Mayo, W. Scott, and G.S. Taylor. "The
Magic VLSI Layout System". IEEE Design and Test of Computers 2, 1 (February 1985),
19-30.

63. John K. Ousterhout. Why Operating Systems Aren't Getting Faster As Fast As
Hardware. Proceedings of the Summer 1991 USENIX Conference, June, 1991, pp.
247-256.

64. Sharon E. Perl. Performance Assertion Checking. Ph.D. Thesis, Massachusetts In-
stitute of Technology, September 1992. MIT/LCSfTR-551.

65. J.L. Peterson. XSCOPE: A Debugging and Performance Tool for X 11. Proceedings
of the IFIP 11 th World Computer Congress, September, 1989, pp. 49-54.

66. Steven A. Przybylski. Cache Design: A Performance-DirectedApproach. Morgan-
Kaufmann, San Mateo, CA, 1990.

67. Richard F. Rashid, Avadis Tevanian, Jr., Michael Young, David B. Golub, Robert
V. Baron, David Black, William Bolosky and Jonathan Chew. Machine-Independent
Virtual Memory Management for Paged Uniprocessor and Multiprocessor Architectures.
Proceedings of the Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, April, 1987, pp. 31-39.

68. Matthew H. Reilly. Implementation and Evaluation of a Hardware/Software Perfor-
mance Monitor for Parallel Programs. Ph.D. Thesis, Carnegie Mellon University, 1989.
Department of Electrical and Computer Engineering.

141

69. Mark B. Reinhold. Cache Performance of Garbage-Collected Languages. Ph.D.
Thesis, Massachusetts Institute of Technology, June 1993.

70. Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a
Log-Structured File System. The Proceedings of the Thirteenth ACM Symposium on
Operating System Principles, October, 1991, pp. 1-15.

71. J.H. Saltzer, D.P. Reed, and D.D. Clark. "End-to-End Arguments in System
Design". ACM Transactions on Computer Systems 2 (November 1984), 277-278.

72. John Shakershober. personal communication.

73. Abraham Silberschatz, James L. Peterson, and Peter B. Galvin. Operating Systems
Concepts. Addison-Wesley, Reading, MA, 1991.

74. Alan Jay Smith. "Cache Memories". ACM Computer Surveys 14, 3 (September
1982), 473-530.

75. Micheal D. Smith. Tracing with Pixie. Stanford University, November, 1991.

76. SPEC Benchmark Suite Release 1.0. System Performance Evaluation Cooperative,
1989.

77. Andrew S. Tanenbaum. Modem Operating Systems. Prentice Hall, Englewood
Cliffs, NJ, 1992.

78. Josep Torellas, Anoop Gupta, and John Hennessy. Characterizing the Caching and
Synchronization Performance of a Multiprocessor Operating System. The Proceedings of
the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, October, 1992, pp. 162-174.

79. ULTRIX Documentation Overview for RISC Processors. ULTRIX Documentation
Group, Digital Equipment Corporation, 1989. Order number AA-NE13A-TE.

80. UNIX User's Manual, Reference Guide. USENIX Association, 1984. ps(1) manual
page.

81. UNIX User's Manual, Supplementary Documents. USENIX Association, 1984. An
Introduction to the C shell.

82. Bart C. Vashaw. Address Trace Collection and Trace Driven Simulation of Bus
Based, Shared Memory Multiprocessors. Ph.D. Thesis, Carnegie Mellon University,
1992. Department of Electrical and Computer Engineering.

83. Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. Proceedings of the Fourteenth Symposium on Operating
Systems Principles, December, 1993.

84. David W. Wall and Michael L. Powell. The Mahler Experience: Using an Inter-
mediate Language as the Machine Description. Second International Symposium on Ar-
chitectural Support for Programming Languages and Operating Systems, 1987, pp.
100-104. A more detailed version is available as WRL Technical Report 87/1.

142

85. David W. Wall. Systems for Late Code Modification. In Code Generation --- Con-
cepts, Tools, Techniques, Springer-Verlag, 1992, pp. 275-293.

86. David A. Wood, et. al. An In-Cache Address Translation Mechanism. The 13th
Annual Symposium on Computer Architecture, IEEE Computer Society Press, June,
1986, pp. 358-365.

87. David A. Wood. The Design and Evaluation of ln-Cache Address Translation.
Ph.D. Thesis, Department of Computer Science, UC Berkeley, March 1991. Report Num-
ber UCB/CSD 90/565.

143

144

Appendix A

Hardware Specifications

This appendix contains hardware specifications for the equipment used in this study.

DECstation 5000 Model 200 Workstation
KNO2 System Module

MIPS R3000 central processing unit
25 MHz, version 2.0, implementation 2

MIPS R3010 floating point unit
version 2.0, implementation 3

MIPS R3220 six-stage write/memory buffer
64 kilobyte physical instruction cache
64 kilobyte physical write-through data cache
Turbochannel options:

8 bit video (slot 0)
high resolution timer (slot 1)
DEC Lance thick wire Ethernet (slot 2)

192 megabytes of main memory in 32 megabyte SIMs

Mouse DEC VSXXX-AA

Keyboard DEC LK201

SCSI devices:
Disk drives: BoxHill TD1-BDH, HP 97549T100 9136

Two disks were used, one for Mach 3.0, one for Ultrix
Sizes and bases are in 512 byte sectors.

rz0: Ultrix
partition table:

pa•tition bass size mounted an
a 0 112640 /
b 112640 522240 (wap)
e 634680 1319936 /usr

145

rzl: Mach 3.0
partition table:

partition base size mounted an
a 0 102400 /
d 102400 81920 /ays

1 184320 1770496 /umz

Tape Drive: Transitional Technology Inc. CTS-8210

146

Appendix B

Software Specifications

This appendix contains software specifications for systems used in this study.

COMPILERS:
C: DEC Ultrix C compiler version 2.1
Fortran: DEC Ultrix Fortran version 2.1

TEXT SIZES:

text data boo dec hex
Mach 3.0

miach_kernel.M78.K]22LC
nozMal 540880 69904 64176 674960 a4c90
instrwmented 1210112 70992 64304 1345408 148780

vmunLiz.U39. SYDAF1IB+l8.e*po
normal 708608 53248 80400 842256 cd&10
instrumented 1605632 53248 76208 1735088 1a79b0

exulator.UZ39
norzal 57344 6192 0 65536 10000
instrumented 118784 8192 0 126976 1fOOO

Ultrix:
wMniX
nozMal 1323424 162928 1307632 2793984 2aa200
instrumented 2818096 162928 1847136 4828160 49ac00

Workloads:
sod
normal 36864 8192 33712 78768 133b0
instrumented 77824 8192 33712 119728 1d3bO

egrep
nozmal 24576 8192 42560 75328 12640
instrumented 53248 8192 42560 104000 19640

normal 49152 12288 153840 215280 348f0
instrumented 102400 12288 153840 268528 41Sf0

gCC
normal 688128 102400 21472 812000 c63e0
instrumented 1515520 102400 21472 1639392 1903e0
Comress
normal 24576 8192 414496 447264 6d320
instrumented 57344 8192 414496 480032 75320

espresso
nozaml 188416 20480 5600 214496 345*0

147

instrumented 413696 20480 5600 439776 6b5eO
lisp
normal 73728 16384 0 90112 16000
instrumented 172032 16384 0 188416 2e000

equtott
normal 40960 12288 270320 323568 4effO
instrumented 94208 12288 270320 376816 5bffO

f£p]p
normal 167936 16384 139408 323728 4f090
instrumented 323584 16384 139408 479376 75090
doduc
normal 192512 20480 78704 291696 47370
instrumented 372736 20480 78704 471920 73370

liv
normal 24576 8192 47040 79808 137c0
instrumented 49152 8192 47040 104384 197c0

tomeatv
normal 61440 12288 3704144 3777872 39&550
instrumented 139264 12288 3704144 3855696 3ad550

Andrew Bencbmark comqonents:

ar
normal 53248 12288 7728 73264 11e30
instrumented 110592 12288 7728 130608 1fe30

cP
normal 20480 8192 5984 34656 8760
instrumented 40960 8192 5984 55136 4760

du
normal 16384 8192 7664 32240 7dfO
instrumented 36864 8192 7664 52720 cdfO

find
normal 69632 12288 8416 90336 160e0
instrumented 163840 12288 8416 184544 2dOeO

gcc (col)
normal 1011712 155648 48496 1215856 128d70
instrumented 2203648 155648 48496 2407792 24bd70

gcc (cpp)
normal 114688 20480 17024 152192 25280
instrumented 237568 20480 17024 275072 43280

gcc (gcc)
normal 57344 16384 2240 75968 128c0
instz•rmnted 122880 16384 2240 141504 22860

gcc (1d)
normal 28672 8192 2560 39424 9a00
instrummeted 65536 8192 2560 76288 12a00

gcc (mips-tdump)
normal 28672 12288 3120 44080 ac30
instrumented 61440 12288 3120 76848 12c30

gcc (mips-tfile)
normal 49152 16384 12784 78320 131f0
instrumented 102400 16384 12784 131568 201f0

gnu-make
normal 204800 36864 14944 256608 3ea60
instrumented 471040 36864 14944 522848 7fa6O

1I
normal 69632 12288 56352 138272 21c20
instrumented 159744 12288 56352 228384 37c20

148

normal 12288 8192 2 20480 5000
instr mented 28672 8192 0 36864 9000

ZIM

normal 16384 8192 0 24576 6000
instrumented 36864 8192 0 45056 bOO0

sh
normal 40960 8192 112 49264 c070
instrumented 98304 8192 112 106608 1&070

vc
normal 16384 8192 0 24376 6000
instrumented 36864 8192 0 45056 bOOO

XlI Workload ccmponents:
1-server
normal 1798144 110592 52528 1961264 1dedL30
instrumented 2072576 49152 26448 2148176 20c750

xl1perf
normal 274432 69632 15856 359920 57dft0
instrumented 606208 69632 15856 691696 a8dtO

splot
normal 278528 61440 339040 679008 a5c60
instrumented 593920 61440 339040 994400 f2o60

ghostscript
normal 946176 131072 21632 1098880 10c480
instrumented 2113536 131072 21632 2266240 229480

149

SYSTEMS:
Both systems were compiled with the standard load order and
the standard optimizations and compiler flags. Some device
drivers in Ultrix are compiled without optrnization.

Ultrix: Version 4.2 Revision 96
compiler flag:

-EL -c -G 8 -02 -g3 -DKTRACE -DDS5000 -DDS3 100 -DUWS -DDLI
-DSYSTRACE -DRPC -DUFS -DNFS -DINET -DQUOTA -DMIPS -DKERNEL
-DTIMEZONE-=300 -DDST=1 -DMAXUSERS=-64 -DMAXUpRC=-64
-DPHYSMIEM=480 -DNCPU= 1 -DBUFCACHE=10o
-DKGDB -DATR_KTRACE -DATRFLAG

commsand line for Ibm/id:
/bin/ld -r -EL -N -G 8 -T 80030000 -e start -o vmumix.rr
entry.o param.o ioconf.o scb_vec.o gfs~data-o dli~bind-o dli-Plose.o
dli-data-o dli~etchbind.o dli~getopt.o diLif.o dli~init.o
dli-jnput.o dl-open.o dli -output.o dli~proto.o dlLsetopt.o
dILtimer.o dILusfreq.o dli~subr-o gfs-bio.o gfsdescrip.o
gfs.Adsort.o gfs...err.o gfsfio.o gfs...gnode.o gfs....godeops.o
gf~skernquota,.o gfsý.mount.o gfs...namecache.o gfs...namei.o gfs...quota~o
gfs...quotasubr-o gfsý..syscalls.o gfs, sysquota-o gfs,-xxx.o af.o
conf-net.o if.o ifUoop-o if..o..proto-o pfilt.o gw-screen.o
gw....screenjdata.o raws-b.o raw-usrreq-o route.o net~cornmon.o
if~ether.o in.o in~pcb.o in...proto.o ip icmp.o ipjf-o ip-input.o
ip-.Putput.o ip-screen.o raw_ip.o tcpdebug.o tcpjnput.o tcp....utput.o
tcp...subr.o tcpjtimer.o tcp...usrreq.o udp-ýusrreq.o nfs..gfsops.o
nfsý-server.o nfsý-subr.o nfs-vfsops.o nfs,_vnodeops.o nfs -xdr.o
vfs-dnlc-o vnodeops..gfs-o auth-kern.o auth-none.o authumixprot~o
clntjcudp.o klimlockmgr.o klmjcprot.o kudpjfastsend.o pmapjcgetport.o
pmap-prot-o rpc..prot.o subrJcudp.o svc.o svc...auth.o svc;-auth~unix.o
svc;_kudp.o xdr.o xdr....array.o xdr...mbuf.o xdýrnmem.o xdr~reference.o
mountxdr.o fifo-gnodeops.o spec...subr.o specv-nodeops.o
kern lock~data~o crashdurnp.o crash~data.o mitimain.o init-..sysent.o
auditdatao kern_acct.o kern-clock.o kerncpu.o kern-errlog.o
kern-exec.o kern~exit.o kern_fork.o kernjmf.o kern~lock.o
kern-mman.o kern...psubr.o kern...proc.o kerr...prot.o kern~resource.o
kern...sig.o kernsubr.o kern~synch.o kern-time.o kern~utctime.o
kern..tpath~data.o kern~xxx.o subrý-pff.o subr~rmap.o subrý-xxx.o
syscalls.o sys...generic.o sys,..process.o sys._.socket.o sys,..sysinfo.o
systrace.o tty.o ttyc-onf.o tty-pty.o tty-subr.o tty....b.o tty-pcm.o
tty~tty.o uipc-domain-o uipc_mbuf~o uipc...rsg-o uipc..pipe.o
uipc...proto.o uipc-sem.o uipc-smemn.o uipc-socket.o uipc-socket2.o
uipc-sysV.o uipc...syscalls.o uipc...usrreq.o vm-drum.o vm~kmalloc.o
vmx-mem.o vm~mon.o vm-page.o vm...proc.o vm~swalloc.o vmn-sched.o
vmsmem.o vm~subr.o vmX_sw.o vm~swap.o vmswp.o vmjext.o ws,_device.o
ufs,-alloc.o ufsjbrnap.o ufs,..flock.o ufs...gnode.o ufs-p.godeops.o
ufsý-mount.o ufs,-namnei.o ufs,-subr.o ufs~syscalls.o ufs-tables.o
ufsý-xxx.o pseudo...atao kgdb.o kgdbýstub.o sysxmps.o cpuconf~o
cons-charno autoconf.o cache.o checký_dbg.o conf~o cons,_sw.o
coproc...control.o debug.o emulate-instr.o fpjintr.o hwconf~o knOl .o

150

knO2.o kn230.sopy.o mcl46818clock.o clock.o mdc.o in-cksum.o kopt.o
locore.o machdep.o mem.o panic.o process.o softfp.o softfp..unusable.o
startup.o swtch.o sys,..machdep.o tlb.o trap.o ufs-niachdep.o usercopy.o
vec-intr.o vM_machdep.o smjnachdep.o pt-machdep.o if ln.o
if~ln-copy.o if~ne.o if-uba.o if fza.o scsi.o scsi-disk.o scsi-tape.o
scsi-sii.o scsi-Asc.o pdma..ds5000.o pdxna3min.o pdma--entry.o
pdma~func.o vba.o vbainit.o xviainit.o xvmeinit.o vbavar.o
vba-errors.o vine-routines.oautoconf data.o af-data.o coflsSW-data.o
gx-data.o ga~data.o dc-data.o ifinjdata.o if ne -data.o if fza -data.o
if to..proto-data.o tc_optionjlata.o scsi_data.o mdc-data.o
tty-conf data.o tty-ptyjdata.o uipc-domain_data.o vba~data.o
tc.odc7085.o scc.o gx.o gq.o ga.o qfont.o xcons.o fb.o bt459.o
bt455.o bt43 1.0 pmagaa.o pmvdac.o lk2Ol .o vfbO3.o fb-data.o
1k20l-data.o mmap-data.o ktrace.o atrace.o ktr_cprocs.o ktr-Sprocs.o
vers.o swapgeneric.o

151

Mach 3.0 keuel.
version: MK78
config: STD-iANY+chen-atrae+fixpri

compiler flags:
-c -02 -EL -G 32 -MD -DMACH -DMACH_KERNEL -DCHENATRACE
-DCHEN_KTRACE -DKERNEL

command line for/bin/d:
Ibin/id -r -o mach_kernel.MK78.KTRACE.rr -EL -G 32 -N -T 80030000
-e start start.o db-acccss.o db-aout-o db-break.o dbý-command.o
db-cond.o db_examine.o db-expr.o db -ext.-.symtab.o dbjinput.o
db-lex.o db-macro.o db__p.utput.o db-print.o db-run.o dbý-sym.o
db-task -thread.o dbjrap.o db_variables.o db-watch.o
db-write-cmd.o ipc-entry.o ipc-hash.o ipcjmnt.o ipcjcxnsg.o
ipc~marequest.o ipc-mqueue.o ipc-notify-o ipcopbject.o ipc...port.o
ipc-pset.o ipcjfight.o ipc space.o ipc-splay.o ipc-ýtable.o
ipcjthread~o mach~debug.o mach...msg.o mac&.port.o ast.o
bootstrap.o counters.o debug.o eventcount.o exception.o host.o
ipc-host.o ipcjcobject.o ipc rnig.o ipc-sched.o ipcjt.o kalloc.o
lock.o mach~clock.o mach~factor.o macbine.o printf.o pniority.o
processor.o queue.o schecdprim.o startup.o syscafllemulation.o
syscalLsubr.o syscalL~sw.o task.o tbread.o thread -swap.o
time-stamp.o timer.o xpr.o zalloc.o memory...bjectLdataprovided.o
memory object.Adata~unavailable.o memory-object-data-error.o
memory ob ject-set -attributes.o memory.object-data~supply.o

memiy..oject..jeady.o memory .. ojectshange-attributes.o
mach-host_server.o mach..port~server.o mach~server.o
memory..object-default~user.o memory-o.bjectýuser.o
mach debug-server.o memory o.bjetov~eu~ v extrao
vm-init.o vm-kern.o vmmap.o vm~object.o vm~pageout.o
vmn -resident.o vm~user.o blkio.o chario.o cirbuf.o dev-lookup.o
dev -name.o dev-pager.o device-reply-user.o device-server.o
device-init.o ds-routines.o net-io.o subrs.o ioconf.o vm-fault.o
autoconf~o conf.o context.o db-disasm.o db-interface.o
dbjni~ps...sym.o db..jrace.o locore.o mips,_cache.o mips-copyin~o
mipssppu.o mips-init.o m-ipsjinstruction.o mipsjnemops.o
mipsmiusc.o mips...startup.o narse-args.o pcb-o pmap.o
prom - nterface.o softfp.o swapgeneric.o tlb.o trap.o bt43 1Lo
bt455.o bt459.o bt478.o busses.o cfb-hdw.o cfbjnmisc.o dc503.o
dtop-...andlers.o dtopjibdw.o dz-hdw.o ecc.o tb-hdw.o fb_misc.o
fdc_-82077_hidw.o frc.o ims332.o isdn_79c30_hdw.o kernel_font.o
lance.o lance....apped.o 1k201.o mc_clock.o mouse.o pm-hdw.o
pm -.misc.o scc_8530_hdw.o screen.o screen -switch.o
serial-console.o xcfb-hdw.o xcfb-misc.o ga-hdw.o ga-misc.o
gq-hdw.o gq...misc.o gx..misc.o kmin.o kmin~cpu.o kmin_dma.o knOl.o
knO2.o knO2,_dma~o kn02ba.o maxine.o maxine-cpu.o mips-box.o
model~dep.o tc.o mapped-scsi.o rz.o rzscpu.o rzjlisk.o
i-z_disk_bbr.o rz_host.o rz_labels.o rz_tape.o scsi.o
scsi_53C94_hdw.o scsi_7061_hidw.o scsi~aldevs.o scsi-comm.o
scsi-cpu.o scsi~disk.o scsi-jukebox.o scsLoptical.o

152

scsi-printer.o scsi-rom.o scsi-scanner.o scsijtape.o scsi-worm.o
atrace.o ktrace.o atrmem~o vers.o

Mach 3.0 UNIX server:
version: UX39
config: STDAFS+WS

compiler flags:
-02 -Wf,-XNk 150 -EL -G 32 -MD -DCMU -DINET -DMACH
-DPMAX -DKERNBL

command line for Ibin/Id:
Id -o vmunix.UJX39.STD)AFS+WS.norrnaI -EL -G 32 -e_-start
crt0.o afs-bufferno afs,-cache.o afsý_call.o afsý_callback.o
afs,-daemons.o afs-dir.o afs-gateway.o afs-istuff.o afs-lock.o
afs,-osi.o afs-osifile.o afs-osinet-o afs,..physio.o afs,-pioctl.o
afs,_resource.o afs,_vfsops.o afs,..ynodeops.o fcrypt.o rxkadtchent.o
rxkad~conimon.o nfs-.gateway.o Kcallback.ss.o Kvice.cs.o Kvice.xdr.o
afsaux.o afsvlint.cs.o afsvlint.xdr.o cmu_syscalls.o init-sysent.o
kern-acct.o kern-descrip.o kernmrnan.o kern...proc.o kern...prot.o
kern -resource.o kern-time.o kern~xxx.o mach-init.o mac-h-clock.o
mach~core.o mach~exec.o mach~exit.o machjork.o mach...process.o
mach~signal.o mach~synch.o quota.sys.o subrjog~o subr...prf.o
subr~jrmap.o subr-xxx.o syscalls.o sys-..generic.o sys,-socket.o tty.o
ttysmprupty.o ttygonf~o tty-pty.o tty...subr.o ttyjtty.o uipc...omain.o
uipc..mbufto uipc-proto.o uipc-socket.o uipc-socket2.o uipc -.syscalls.o
uipcjlsrreq.o paramn.o af.o if o if-loop.o netisr.o raw-cb.o
rawjisrreq.o rotite.o if ether.o igmp.o mno un-pcb.o in-.proto.o
ipjcmp.o ip-input.o ipjnmroute.o ip~output.o rawjip.o tcp debug.o
tcpjnput.o tcp....utput.o tcp-subr.o tcp_tfimer.o tcpusrreq.o
udp_ýusrreq.o nfs,..server.o nfs-subr.o nfs,-vfsops.o nfs,.vnodeops.o
nfs-xdr.o ifs-control.o ifsdescrip.o ifsjinit.o ifsjkern.o
ifsý_socket.o ifs,_subr.o rfssyscalls.o ifs,_ticket.o auth_kern.o
authuix~prot.o cint-k-udp.o clnLperror.o kudpjfastsend.o
pmapjckgetport.o pmap-prot.o rpcscallmsg.o rpc prot.o subr.-kudp.o
svc.o svc_auth.o svc_auth~unix.o svc-kudp.o xdr.o xdr...array.o
xdrý_mbuf~o xdrý_mem.o rx.o rx-bcrypt.o rx_clock.o rx~event.o
rx~globals.o rx~kernel.o rx-null.o rx-vab.o xdr rx.o bdev-vnodeops-o
fifoý_vnodeops.o spec-subr.o spec _vnodeops.o ufs..alloc.o ufs-dsort.o
ufs_inode.o ufs-subr.o ufs,-tables.o block--io.o cons-o device-misc.o
devicej-eply-hdlr.o device-utils.o disk~io.o ether-io.o inittodr.o
misc.o port-hash.o proc_toý_task.o queue.o stubs.o syscall.o
syscafl~subr.o ttyjo.o useri-.copy.o user~reply..msg.o ux-exception-o
ux-serverjloop.o zalloc.o bsdtserver.o bsd~serverý_side.o xpr.o
ufs-.bmnap.o ufs-dir.o ufs...yfsops.o ufs -vnodeops.o vfs.o vfs,-bio-o
vfs,-conf.o vfs-dnlc.o vfs,.io.o vfsjookup.o vfspathname.o
vfs-..syscalls.o vfs-sysnames.o vfsý_vnode.o inode....pager.o bsdmachdep-o
conf~o in-cksumn.o mnappedether.o mips,..exception.o misc,.asm-o
mips...ptrace.o vers.o -lthreads -imach-sa

Mach 3.0 emulator: version UX39
compiler flags:

153

-IMD -Wf,-XNk 150 -02 -g3 -DMAPýUAREA -DMAP_-FILE
conanand line for /bim/Id:

Id -z -o emulator.UX39.out.rr -T fcOOOOO -D fdOOOOO -e __start
-r -nocount crt0.o -count bsd~user_side.o emuL~init.o
cmuiistacký_alloc.o emulgeneric.o allocator.o syscalL~table.o
cmuli machdep.o cmiii_vector.o emuLcache.o emuL~mapped.o
bsd_1_uscr.o -nocount -lthrcads -Imach~sa. btrace...emul.o

154

Appendix C

List of Abbreviations

API: application programmer interface
CPI: cycles per instruction

CPU: central processing unit
I/O: input / output
IPC: interprocess communication

KTLB: kernel TLB references/misses
LRU: least recently used

MCPI: memory cycles per instruction
RISC: reduced instruction set computer
RPC: remote procedure call
TLB: translation lookaside buffer

UTLB: user TLB references/misses
VM: virtual memory

155

156

_ 7__

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

.,..

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to
discriminate in admission, employment or administration of its programs on the basis of race, color,
national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal,
state or local laws, or executive orders.

In addition. Carnegie Mellon University does not discriminate in admission, employment or adminis-
tration of its programs on the basis of religion, creed, ancestry, belief, age, veteran status, sexual
orientation or in violation of federal, state or local laws, or executive orders.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University. 5000 Forbes Avenue. Pittsburgh. PA 15213. telephone (412) 268-6684 or the Vice
President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue. Pittsburgh, PA 15213.
telephone (412) 268-2056

