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Abstract

This paper describes and evaluates a new technique for measuring confidence in
word strings produced by ls:»gseech recognition systems. It detects misrecognized
and out-of-vocabulary words in spontaneous spoken dialogs. The system uses
multiple, diverse knowledge sources including acoustics, semantics, pragmatics
and discourse to determine if a word string is misrecognized. When Eke y mis-
recognitions are detected, a series of tests distinguishes out-of-vocabulary words
from other error sources. The work is part of a larger effort to automatically
recognize and understand new words when spoken in a spontaneous spoken
dialog.

We describe a system that combines newly developed acoustic confidence
measures with the semantic, pragmatic and discourse structure knowledge en-
bodied in the MINDS-II system. The newly developed acoustic confidence
metrics output independent probabilites that a word is recognized correctly along
with a measure of how reliably we can estimate if a word is wrong. The acoustic
confidence metrics are derived from normalized acoustic recognition scores. The
acoustic scores are normalized by estimates of the denomiator of Bayes equation.
To evaluate the utility of using the acoustic techniques together with higher-level
constraints, the preliminary system restricted component interaction. Words with
normalized acoustic scores that had a 95% or ﬁ\rjeater lprobability of bein% incor-
rect were ﬂagged prior to being input to the MINDS-II analysis module. For this
study, MINDS-II independently used its higher-level knowledge to detect recog-
nition errors that were semantically or contextuallxinappropriate. Misrecognized
word strings were then re-recognized using an RTN-based speech decoder guided
by a dynamically derived, highly constrained grammar that restricts the possible
words that can be matched, biasing the recognizer against illogical and highly im-
probable content. Speaker goals and plans, contextual appropriateness, discourse
and spontaneous speech structure are all considered in the derivation of gram-
mars. A grammar is dynamically derived for each string of misrecognized words
encountered within an utterance and essentially defines a set of semantic content
predictions for the word string.

Although a rudimentary procedure was employed to estimate the conjoined effect
of merging these two knowledge sources, the results indicate that the conjoined
usage of normalized acoustic confidence measures of accuracy and the higher-
level, semantic, pragmatic and discourse level constraints embodied in the
MINDS-II system enables the larger system to overcomes the weaknesses of each
individual technique. The techniques detect complementary phenomena. Sig-
nificantly more recognition errors and out-of-vocabulary words are detected when
both of these techniques are used together than when either is used alone. Alone,
the acoustic methods can only detect between 2/3 and 3/4 of the recognition er-
rors. Similarly, the higher-level constraint based methods cannot detect contex-
tually consistent misrecogntions. Together, however, the acoustic methods detect
the significant misrecognized content words that are missed by the higher-level,
knowledge-based techniques. Further, the knowledge-based techniques detect
most of the mid-utterance corrections and interjections as well as many of the
confusible and small words that are missed by the acoustic methods. Current
work focuses upon development of more sophisticated techniques for conjoining
these two knowledge sources.




1. Overview
Out-of-vocabulary words constitute a major source of error in recognizing spon-
taneously spoken utterances. The work reported here is part of a larger project to
automatically understand novel words when encountered in a limited domain,
‘sipontaneous spoken dialog. The project attemgts to detect likely misrecognitions,
etermine if they are caused by an out-of-vocabulary word string, and if so, deter-
mine the meaning and semantic cate%ory of the new word(s) and incrementally
add them to the system grammar, lexicon and semantics. Our approach to
automatic out-of-vocabulary word detection and acquisition relies heavily, al-
though not exclusively, upon being able to reliably detect misrecognized words.
This has a desiriable side effect, namely that recognition errors can be found
while processing input, yielding recognition confidence measures previously un-
available. Speech recognizers can output both the best matched string of words
matcgeg in an utterances and measure the probability that each is correctly
matched.

Our system attempts to detect misrecognitions and out-of-vocabulary words in
spontaneousl{nspoken utterances using acoustic, semantic, pragmatic and dis-
course level knowledge sources. In this paper, we overview our procedures for
acoustic normalization and acoustically-based, independent recognition con-
fidence measures along with our procedures for using semantics, pragmatics and
discourse analysis to detect misrecognitions. Then we describe our initial
methods for merging acoustic evidence with sKmbolically represented semantic,
pragmatic and discourse knowledge. Our methods are designed to take into ac-
count the differential reliability of each knowledge source and to arrive at an op-
timal decision based upon the relative power o% each knowledge source in tlge
context of the utterance. A major issue here is how to combine such knowledge
sources taking into account their differential reliability under a given set of con-
ditions. We extend the Bayesian techniques we used for estimating acoustic con-
fidence to other knowled%?l sources as well. This allows us to optimally weight
each knowledge source. We assign confidence measures to words (and phrases)
that take into account the power of each knowledge source under the specific set
of conditions.

This work extends our previous work on detecting misrecognized and out-of-
vocabulary words by normalizing word scores with an ail-phone representation of
the input {1, 2]. It also extends our work on using discourse [3], semantics and
pragmatic knowledge to detect misrecognitions and to generate predictions used
1n re-recognizing select substrings (4, 5]. It also extends the work of Asadi et.al.
[6] in detecting out-of-vocabulary words. The work illustrates how differential
knowledge source reliability can be assessed and how knowledge sources can be
merged to detect out-of-vocabulary words.

2. Acoustic Confidence Metrics

Current Hidden Markov Model (HMM) based speech recognizers use an evalua-
tion function based on Bayes’ equation to score hypotheses. They produce the
most probable word sequence given the acoustic input according to the formula:

P(WIA)= P(AIW) P(W) / P(A).
Here P(AIW) represents the probability of the acoustic sequence given a word




string. This probability is provided by the HMMs for the words in the lexicon.
P(W? represents the apriori probability of the word string and is usually provided
by a stochastic language model (bigrams or trigrams). P(A) represents the apriori
probability of the acoustic sequence.

Most speech recognition szstems do not attempt to estimate P(A). The rationale
for ignoring the apriori probabilities of acoustic sequences is that P(A) is the same
for all utterances in a time synchronous decoding. Hence, the estimation of P(A)
will not change the relative order of word string hypotheses output by a speech
recognizer, and therefore will not change which one is picked as best. This means
that the scores assigned by speech recognizers to word and sentence hypotheses
are not absolute measures of probability, but rather relative measures. We know
which utterance is most likely, but don’t really know how good of a match it is.
In other words, we have no true measure of goodness of match and have no real
means for evaluating accuracy of output word strings.

However, it is necessary to be able to evaluate confidence in recognition to be
able to detect new words and to know when to engage in a clarification dialog
with a user. Although it is possible to generate a "generic" novel word model
[6] and design the language model so that the generic word model competes with
other, known word hypotﬁeses, such models cFo not provide a measure of good-
ness of match and cannot be combined with other knowledge sources to optimize
match. There are many possible sources of information in a speech understanding
system to help estimate confidence in a hypothesis, including semantics, prag-
matics, discourse structure, acoustic ambiguity, syntax, structure of spontanecus
speech, etc. Each of these knowledge sources can reliably detect certain types of
information, yet each has its relative weaknesses.

In order to combine the information from various sources in an optimal manner,
we must be able to estimate the reliability of each piece of information in the
current context. In other words, we can develop differential reliability and dif-
ferential error models for each knowledge source used in a spoken language sys-
tem. Such models indicate, for each potential, modeled knowledge source, the
tyges of phenomena most reliably detected and the characteristics of phenomena
where the knowledge source is unreliable.

2.1. Word Score Normalization

To assess how well the system is able to reject misrecognitions using acoustic
information alone, we developed a technique for acoustic normalization and then
evaluated it on data to assess the differential reliability and detection power of our
acoustic knowledge source. We sought to characterize acoustic phenomena in
terms of both how well we can reject incorrect acoustic hypotheses and how reli-
ably we can match the phenomena.

Most speech recognizers produce a maximum likelihood word sequence using
acoustic models and word-level language models. They output either the single
best hypothesized word string or the n-%est word strings. Normally, only these
word strings are considered when performing later processing such as inferring
utterance meaning. The scores assigned by the recognizer are a weighted sum of
the log probabilities from the acoustic and language models. They work by max-




imizing the most likely word string path. Paths are extended by computing acous-
tic match scores for each potentia% word that can extend a path and merging this
information with the prior path score and the language mocf:l transition probabil-
ity for the individual word. Those path extensions that result in the best overall
score are retained for further extension, while those falling below a certain
threshold are pruned and not considered further. The scores produced are not
normalized. As discussed above, they do not represent any absolute measure of
the match, but are meaningful only in comparison to other hypotheses produced
for the same utterance. Tlgne score produced by the recognizer is therefore not
really useful directly for rejecting utterances or regions of utterances as misrecog-
nitions. It can only be used for selectininamong utterance hypotheses and can
only be used to compose hypotheses from known or directly modeled words.

We developed a method that enables us to directly assess the confidence of an
acoustic match. To do this, we begin by normalizing the scores output by the
recognizer, transforming the scores so that they take into account overall good-
ness of recognition. We use a phone-based decoding as a basis for normalizing
the word-based decoding.

To normalize the word score produced by the recognizer, we subtract the log-
probability score for an all-phone recognition from the log-probability word score
and normalize for length. The all-phone score is generated by running the speech
recognizer on the utterance allowing any triphone to follow any other triphone
with a trigram probability for triphone sequences. A triphone is a context depend-
ent phone model. Trigrams of the triphone sequences are computed from a large
corgus of English language text. We use Bayesian Updating to turn the normal-
ized word score into a confidence measure. For this, words can be grouped into
classes or estimated individually. For each word (class) we estimate when a word
is seen with a particular score, what is the percentage of time that the word was
correctly recognized. This estimate is made by running the recognition system on
a training set of data. This gives us a direct measure of the confidence with which
we can reject or accept a word based on acoustic measures.

A phone-based decoding search is run in parallel with the word-based search. The
phone decoding uses bigrams of phone transitions as a language model in the
same way that the word search uses bigrams of word transitions. In order to nor-
malize a word score, the score trom the phone path for the same set of frames is
subtracted from the word score. Since tﬁe scores are log-probabilities, this sub-
traction represents a division of probabilities. The result of the subtraction is then
divided by the length of the word in frames (10 msec increments). The acoustic
match scores in the word seuarch are constrained by word sequences from the lan-
guage model and phone sequences from word models. The phone search provides
an estimate of the acoustic match of phone models to the input unconstrained by
word or word-sequence models. The phone search is constrained only by phone
sequences characteristic of the language (English) without respect to the current
lexicon or language model.




2.2, Experiment 1

In order to determine if the normalization procedure provides a more useful score
that the relative sources normally output by a recognizer, we performed an experi-
ment using spontaneous speech from the ATIS training corpus. This experiment
assessed our ability to correctly reject misrecognized words for each of the 1800
words in the lexicon, ignoring the effects of word frequency.

We generated sentence hypotheses for 5000 ATIS utterances using the SPHINX-I
discrete HMM-based speech recognizer (7] with a word bigram language model.
SPHINX-I outputs a single best word string for each recognized utterance. The
test utterances were spontaneous spoken speech, and included noise such as filled
pauses, (uhmms, ahms), stutters and partial words, as well as ill-formed ut-
terances, mid-utterance corrections and restarts. Our system directly models
noise (filled pauses, stutters, partial words) [8, 9] and uses a semantically-based
phrase recognition algorithm for processing ill-formed and edited utterances [10].

To assess ability to correctly reject misrecognized words, we followed the follow-
ing procedure. For the words in the hypotheses output by the recognizer, we
saved the acoustic word scores and flags indicating whether the words were cor-
rect. Correctness was determined by aligning the words in the hypotheses with
transcripts for the utterances. From this data, we created signal (correct) and
noise (incorrect) distributions for each word. From these we estimated our ability
to reject words by looking at the overlap of the signal and noise distributions for
each of the 1800 words in the lexicon. We assessed the system’s ability to cor-
rectly reject misrecognitions looking at the measures of d-prime, D’, and power.
D’ measures the difference between the means of the signal and noise distribu-
tions. The larger the D’, the greater our ability to correctly reject misrecognitions.
Similarly, power assesses ability to correctly reject misrecognitions at a given
"miss level" where correctly recognized words are rejected. We defined the
measure power to be the percentage of incorrect hypotheses that will be rejected
for a cutoff that would only reject 3% of the correct hypotheses.

The averagc\e"})ower for the 1800 words in the lexicon using regular acoustic scores
was 55%. We then normalized the word scores according to the above procedure
and calculated the average power. For the normalized scores, the average power
increased from 65% to 74%. The results for the normalized scores are depicted in
Table 4-2. The results indicate that, in general, the normalization procedure
makes correct and incorrect words more separable.

However, we need to note that word recognition rates and power both vary widely
across words. Some words can be reliably discriminated. However, there are
words that can be correctly recognized most of the time but not reliably rejected
because misrecognitions occur (infrequently) throughout the range of normalized
scores. Further there are words whose baseline recognition rates are low but
where we can correctly reject misrecognitions almost all the time and words
which are neither correctly recognized or rejected, as illustrated in Table 2-1. By
and large, longer words and unique words are well discriminated while very short,
non-distinct words and function works cannot be reliably rejected when they are
incortcctly recognized. We found that this normalization was a good dis-
criminator for some words but not for others and in general still doesn’t provide a
good confidence measure. The correct and incorrect distributions for some words
were very distinct, while for others were highly overlapped. Also, this measure




Correct Acceptance and
Correct Rejection Rates for Words
Words C. Accept | I. Reject | Freq. | Words | C. Accept | I. Reject | Freq.
san_francisco 1.00 1.00| 282 hi 1.00 0.91 22
pittsburgh 1.00 1.00| 110} will 0.87 050 54
airport 1.00 1.00| 98 me 1.00 073 34
information 1.00 1.00( 68 the 1.00 0.00| 916
american 1.00 1.00] 60 on 1.00 0.00] 640
saturday 1.00 1.00| 26 a 1.00 0.00| 284
when 1.00 1.00| 22| have 0.96 031 132
price 1.00 1.00| 20| what 0.98 0.29| 308
sixty 1.00 1.00| 18 is 0.96 0.26| 236
delta 0.98 1.00| 98| and 1.00 0.11| 358
airlines 0.97 1.0G| 171 how 0.98 0.11} 138
i'm 1.00 095 188 to 1.00 000| 1114

Table 2-1: Accurate Acceptance and Rejection Performance Rates

doesn’t account for the frequency of correct vs incorrect words with a given score,
it only uses the percentage of the area under each of the two curves. So, while
these scores may be useful for rejection, they still don’t provide a direct measure
of confidence in the correctness of the word given its score. In order to turn the
normalized score into a confidence measure we use a Bayesian updating method
to estimate the probability that a word is correct when it has a given score.

2.3. Experiment 2: Acoustic Probabilities

We estimated the acoustic probability that a word is correct with a given normal-
ized score for each of the YSOO words in the lexicon, in spite of the fact that we
did not have enough data to make such estimates reliably for every word. None-
the-less, we conducted the following experiment without clustering words, relying
exclusively on the signal (correct recognition) and noise (incorrect) disctributions
computed above.

To compute grobabilities, for each word, we quantized the range of normalized
scores into 75 bins or score ranges. We then took normalized word scores from
5000 utterance recognition hypotheses (~30,000 words) taken from the ARPA
ATIS? training data Jescribed above, and accumulated histograms for each word.
For each bin associated with a word, we determined the percentage of the time
word was correct when its normalized score was in the bin. These histograms
were then smoothed. This gives us a direct measure of confidence that a word is
correct when it has a given acoustic score.




The test set contains words never seen in training and the results reflect our abilit
to correctly reject misrecognitions while taking into account word frequency ef-
fects in the test set. These word frequency effects are what distinguigh this ex-
ﬁeriment from Experiment 1. As described previously, the Sphinx-I discrete

MM speech recognizer was to generate the word hypotheses using a lexicon of
anroximately 1800 words, including ten non-verbal events, and used a word-
class bigram with a perplexity of 55. We set a rejection criteria to maintain 95%
correct accepts and determined the ability to reject misrecognitions. As a test set,
we used the ARPA Feb92 ATIS test set, containing %OOO utterances from
speakers not seen in training.

For this test set, the correct acceptance rate was 94% and the rejection of mis-
recognized words was 53%. In other words, we could accurately detect 53% of
all misrecognized words in the 1000 utterance test set while at the same time only
rejecting 6% of the correct words. These results are shown in Table 4-1 In look-
ing at the histograms for the word classes, some had almost perfect classification,
while others had only slightly better than chance. So for some word classes, we
cax_]dvery reliably accept correct words and reject misrecognitions on acoustic
evidence.

In summary, the evidence suggests that the acoustic normalization technique and
the acoustic confidence measures can reliably reject a significant number of mis-
recognized words. The set of words that are relliably rejected tend to be seman-
tically unique, as opposed to function words or very short, high frequency words.
Next, we wish to capitalize upon this ability to reliably reject some misrecognized
words and see if we can use it to augment the capabilities of the semantic, prag-
matic and discourse-level constraints on the recognition process. Specifically, we
hope that the discourse-based module will detect those recognition errors missed
bz the acoustic module and that the acoustic module will be able to detect
phenomena to which the semantic-pragmatic-discourse module is insensitive .

3. Semantic, Pragmatic and Discourse Based Discrimination

The various MINDS systems use higher-level, knowledge-based techniques to
constrain recognition. The systems operate by analyzing input and dynamically
generating constraints that define content that is reasonable, meaningtul or logical
given prior discourse. [11] These constraints are the translated into system gram-
mars that are used to guide the normal speech decoding process, in a manner
similar to a standard language model. In other words, the system applies meaning
and structure based constraints to restrict the possible words that can be matched
during the decoding process. The MINDS-II system [S] operates using the fol-
lowing loop:

e Spontaneously spoken input is digitized and recognized using a standard
statistical language model and an HMM-based recognizer.

e The recognized string is semantically parsed. [12]
e MINDS-II evaluates both the recognized string and its semantic parse.

* It corrects inaccurate or incomplete semantic representations.
* It detects inappropriate content or likely misrecognitions that violate
contextual constraints.




e Content predictions are generated for each misrecognized word string
within an utterance.

¢ Content predictions are translated into semantically-based RTN recognition
grammars,

e Each misrecognized word string (and competing start-end sequences of
word strings) within an utterance is re-recognized using an RTN-based
HMM decoder and the appropriate recognition grammar. [13]

The MINDS-II system analyzes all input and looks for both parse errors and
likely misrecognitions. Its analysis is based upon semantics, pragmatics and dis-
course structure constraints. Specifically, it first looks to see if the words within
an utterance make sense refative to one another. Here, the structure of spon-
taneous speech is considered. For example, the system has a set of heuristics for
recognizing restarted utterances and mid-utterance corrections. The system also
considers the meaningfulness of the utterance in terms of prior context and infor-
mation introduced by either the speaker or their partner or database backend. The
system looks to see whether a speaker references information that is available (vs.
unavailable) for reference. It also evaluates how the utterance furthers the
fgeakers goals and plans and determines the type of discourse plan embodied in

e utterance. The system has a set of heuristics and algorithms for traversing
both domain plans and discourse plans. [2] These heuristics constrain both the
tzpes of discourse plans available at each point in the dialog and the content of
these respective discourse plans. Should the system find any information that vio-
lates any of the above heuristics, it attempts to identify which words are most
likely to be restponsible for the violation using abductive reasoning. When one or
more strings of words within an utterance are flagged, the system works to define
the set of possible semantic contents that make sense given all of the context and
the structure of the discourse and of spontaneous spoken utterances. This process
is responsible for generating "predictions” that are used to constrain the re-
recognition process.

Predictions are generated by defining all possible semantic content that could
have been said and still make sense. In contrast to abductive reasoning, the sys-
tem does not attempt to define the best. Rather, its goal is to be inclusive, to
define the complete set of what is possible given each applicable discourse and
domain plan step. Usually, the initial analysis of the input utterance will result in
the identification of a single discourse (and if appropriate, a single domain plan)
step, although the system uses multiple, competing (Fiscourse and domain actions
to compute the set of possible content when necessary. The set of concepts in-
cluded in the final predictions satisfy all constraints for each possible "condition”.
For example, if a mid-utterance correction could have occurred in words 4-6, the
system will compute all concepts available for modification from words 1-3 and
contained in the last (embedded) constituent given the prevailing set of discourse
and domain plans and the constraints on what information is available for refer-
ence. If the prior constituent contains an embedded concept, either the entire con-
situtent or just the last embedded concept could be modified or refined in the mid-
utte.ance correction.

Predictions refardin content are translated into a grammar that is used to fuide
an RTN-based decoder that re-processes the misrecognized words identified ear-




lier. The grammars are highly constrained and restrict the possible words that can
be matched during the decoding process. In other words, the recognizer is biased
against illogical and hrifhly improbable content. There is a set of predictions
enerated for each wo strix:s within an utterance that could be misrecognized.
e predictions are dynamically generated and designed to apply all applicable
constraints upon semantic content.

3.1. Strengths and Weaknesses of Semantic Module

In order to determine how to use the acoustic evidence in conjunction with our
existing semantic, pragmatic and discourse based analysis system (MINDS,
MINDS-II) we needed to evaluate the relative strenghts and weaknesses of the
knowledge-based module. To do this, we evaluated the ability of the MINDS-II
system to detect recognition errors using the same recognizer, lexicon, phone
models, word-bigrams and test set used in the acoustic experiments. In addition,
we evaluated performance on two additional ARPA ATIS test sets that contained
1,000 spontaneous spoken utterances apiece.

Again, the MINDS-II semantic-pragmatic-discourse analysis system used a lex-
icon of approximately 1800 words, including ten non-verbal events, a word-class
bi%ram were trained on approximately 12000 utterances taken from the DARPA
ATIS?2 training set, and have a perplexity of approximately 55. There are 79 con-
cept nets. The results show the analysis system’s ability to detect recognition
errors and its ability to correctly predict the content or meaning of the misrecog-
nized word strings.

The system processed all of the dialogs in each of three ARPA ATIS test sets.
The parses from each spoken utterance were passed to our ATIS back end, which
parsed the string and produced a response from the database. The ARPA test sets
randomly assess performance on a subset of the input utterances, ensuring that
i‘Cllasg d" queries, or those queries for which there is no reference answer, are not
included.

Table 3-1 shows the performance results of the ARPA ATIS test set used in the
acoustc experiments> The results are representative of performance on all three
(3,000 utterances) test sets. As shown in Table 3-1, overall error rate can be

Error Initial Detected Correct Remaining
Type Error Errors Predictions Error
Inconsistent Context 11.81 10.46 10.01 1.8
All Errors 20.58 10.46 10.01 10.57

Table 3-1: Semantic, Pragmatic and Discourse Based Error Detection and Cor-
rection

divided into contextually consistent and contextually inappropriate word recog-
nition errors. The MINDS & MINDS-II systems (semantic/pragmatic/discourse
module) cannot detect contextually consistent word substitutions. Contextual ap-
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propriateness is defined in terms of the discourse plans that can be executed at a
specific point in time (e.g. clarify, confirm, correct, continue), the objects, at-
tributes and actions available for reference given prior dialog context, and the
goals and plan steps that are active or currently under discussion. For example, if
a flight number is misrecognized and substituted for another flight number that
filfills the same semantic constraints previously specified in the dialog (i.e. both
go to the same place / leave at the same time / serve a meal, etc.) it is considered
to be a semantically consistent recognition error and cannot be detected by the
semantic, pragmatic and discourse knowledge available in the current two-pass
recognition system. Overall, in the three ARPA test sets evaluated (ap-
proximately 3,000 utterances) roughly 39% of all errors are not detectable by the
semantic/discourse module. With the Sphinx-I recognition system, this cor-

responds to roughly a 9% error rate.” These contextually consistent errors can
only be detected using other knowledge sources.

The majority of errors are contextually inappropriate, and it is on these errors that
we can measure the sensitivity of the semantic, Fragmatic and discourse
knowledge and evaluate the strengths and weaknesses of the approach. As seen in
Table 3-1, the system can both detect (detected errors) and generate accurate
gredictions (correct predictions) for most of the semantically inconsistent errors.

pecifically, the system generated correct predictions for 88% of the contextually
inconsistent errors, correctly predicting semantic content and translating the
predictions into a recognition lexicon and grammar.

4. Combining Knowledge Sources: Interactions

The acoustic normalization and acoustic-based confidence measures as well as the
semantic-pragmatic-discpurse based analysis methods can each detect recognition
errors, regardless of their underlying cause. Each method has relative strengths
and weaknesses. In this section we discuss how to capitalize upon the relative
strengths of the two methods and combine them to enhance overall system pertor-
mance.

Acoustic Correct Incerrect
Decision | Recognition | Recognition
Accept 94 46
Reject .06 B 54

Table 4-1: D’ Results using Acoustic Confidence Measures on ARPA Test Set
N=1000 utterances, Experiment 2

Acoustic methods can detect misrecognized words [2, I]. A Bayesian Updating

*Different HMM based recognition systems have different overall error rates. However., we
expect that the percentage of errors that are semanticaily consistent to be roughly equal when
using any of todays state-of-the-art recognizers.




paradigm is used to estimate recognition confidence based on normalized acoustic
word scores. As seen in Table 4-2, for some words, namely 74%, correct
hypotheses can be reliably discriminated from incorrect ones using normalized
acoustic scores. For the remaining 26% of words, such a discrimination cannot be
made reliably. The acoustic confidence metric assesses when reliable decisions
can be made and when they cannot be made. For those words where misrecog-
nitions can’t be discriminated on acoustic evidence, some other form of evidence
must be used. Previous work shows that semantic, pragmatic and discourse level
constraints can detect many misrecognitions [4, 5]. owever, in these results,
roughly 39% of the recognition errors were consistent with all semantic, prag-
matic and dialog constraints.

Given the goal of this study was to evaluate whether the conjoined use of acoustic
confidence measures together with semantic-proagmatic-discourse based methods
would significantly improve a system’s ability to correctly reject misrecognized
input, we evaluated a test set consisting of 70 dialogs taken from an ARPA ATIS
test set. The evaluated dialogs contained 4,319 words.

To merge the acoustic and knowledge-based analysis techniques for this prelimi-
nary evaluation, we added the acoustic confidence metric into our existing dialog
system, MINDS-II, which detects misrecognitions and attempts to re-recognize
misrecognized input using a dynamically derived, limited lexicon and grammar.
Specifically, the MINDS-II system was input with the words flagged by the
acoustic confidence module. MINDS-II then performed its normal processing of
the input, flagging those recognition errors 1t detected, generating appropriate
predictions for the misrecognized regions and then performing a prediction-based
re-recognition of the flagged, misrecognized substrings. Finally, the misrecog-
nitions detected by both modules were summed. The MINDS-II system did not
receive the confidence measures associated with each of the recognized words
and use these in its processing of the input. Although the more sophisticated
method of reasoning using the acoustic confidence scores is advisable and should
enhance performance, the goal of this study was to sec whether the two
knowledge sources would detect complementary sets of misrecognitions.

Specifically, we wished to determine whether each of the modules would detect
misrecognized input missed by the other. To determine how to combine the
knowledge sources, we examine the relative strengths and weaknesses. or the
ty?es of errors associated with each approach. e know that the MINDS /
MINDS-II system can accurately detect semantically or contextually in-
appropriate misrecognitions using dialog-based and semantic knowledge-based
techniques. More importantly, these techniques do not inaccurately flag input.
However, they also do not detect a significant percent of misrecognitions. Hence,
we evaluated whether the acoustic methods can detect misrecognized input that is
semantically and contextually consistent. Further, we evaluated the areas where
both the semantic/pragmatic/discourse component and the acoustic measures both
indicated that the recognized input is erroneous.

The acoustic techniques are limited by the number of words that they can reliable
dscriminate (74%) and their tendency to incorrectly reject correctly recognized
words. The results from Experiments 1 and 2 ind){cate that the misrecognized
words that are not reliable detected with the acoustic methods are high frequency,
short words. The semantic and pragmatic techniques detect sequences of words




that do not make any sense and word sequences that form interjections, mid-
utterance corrections and restarts. Apriori, it appreared that the acoustic tech-
niques would be likely to detect the semantically consistent misrecognitions
missed by the semantic and pragmatic techniques. The acoustic error patterns are
illustrated in Tables 4-1 and 4-2. The same analysis is presented for the

Acoustic Correct Incorrect
Accept | Recognition | Recognition

Accept 95 26

Reject .05 74

Table 4-2: D’ Results for Acoustic Normalization for 1800 Words, Experiment 1

semantic/pragmatic/discourse knowledge source in Table 4-3.

Semantic Correct Incorrect
Decision | Recognition | Recognition
Accept 1.0 41
Reject .00 .59

Table 4-3: D’ Results for Semantic/Pragmatic/Discourse Component

What is important to note here is that we want the semantic/pragmatic/discourse
component in the merged system to decrease the false acceptance rate associated
with the acoustic knowledge without increasing the rate at which correctly recog-
nized input is rejected. Since the semantic/pragmatic componenent does not
falsely reject accurate input, it should not. Similarly, we want the acoustic com-
ponent to capture misrecognized input that is contextually consistent and is not
detectable by the knowledge-based analysis component and the knowledge-based
component to detect misrecognitions in the words that cannot be reliably rejected.

4.1. Decision Rules for Combining Knowledge Sources

Given these sets of results and the error patterns associated with each of the
modules, we decided to begin experimenting with the following decision rule for
combining the two knowledge sources. As illustrated in Table 4-4. our rule has
two parts. First, if the semantic/discourse module rejects a word string (or phrase)
and decides that it is misrecognized. we will reject the string regardiess ot its
probability correct. Second, if the acoustic module rejects a word string we will
reject it even if the semantic module says to accept it. In this way, we will not
increase nor decrease the false rejection rate (rejecting correctly recognized
words) Lut we do stand to significantly decrease the inaccurate acceptance rate.
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Semantic Semantic
Acoustic Decision Decision
Decision Accept Reject

Accept | ACCEPT x2 REJECT
Reject REJECT | REJECTx2

Table 4-4: Decision Rules for Combining Acoustic and Semantic/Discourse
Decisions on Accuracy of Recognized Word String

4.2. Results of Combined Knowledge Sources
We evaluated how well the acoustic normalization technique complemented the
semantic/pragmatic/discourse based methods and their conjoined effectiveness at
detecting misrecognized words. The test set was composed of 70 dialogs ran-
domly taken from the ARPA ATIS Oct. 92 test set. The test set contained 4,319
words including a number of words that were unknown to our system. Al' ~ut-of-
vocabulary words had never been seen or represented in the system. Wr ased a
modified version of the SPHINX-I recognizer to recognize, acoustically normal-
ize and re-recognize input using a prediction-based, constrained grammar. Of
course, all out-of-vocabulary words resulted in word substitution errors were se-
%lllences of known words are substituted for the correct (unknown) word strings.
| these cases, the system’s objective is to detect the misrecognized word sub-
stitutions.

Error Rate Anaysis
Tk Shanie Foline
11.0 8.3 3.9 2.7

Table 4-5: Error Rate Reductions Following Misrecognition Detection, 70
dialogs

The results of this preliminary analysis show that these two knowledge sources
can and do detect a complementary set of misrecognized input. Specifically, on
this set of 70 dialogs, comfposed of 4,319 words that were recognized by the
SPHNIX-I system, 73.1% of all misrecognitions or all but 2.7% of tﬁe errors were
detected by the conjoined use of the acoustic normalization / confidence measures
and the MINDS-II semantic-pragmatic-discourse module. This is a significant
improvement in performance relative to each of the individual systems (acoustic
normalization alone and MINDS-II semantic/pragmatic/discourse analysis and re-
recognition alone) abilities to detect misrecognized input. The conbined system
dctected 19% and 14% more misrecognitions than the acoustic and semantically
based systems respectively.

The two error detection methods did no: tend to detect the same errors. Specifi-




cally, only 15% of the misrecognized words were flagged by both modules. The
acoustic module detected semantically significant content words that were mis-
recognized. Many of these were sematically consistent with the surrounding ut-
terance and discourse context and therefore missed by the MINDS-II module.
The acoustic module was not able to detect many of the small words that made
composed interjections, mid-utterance corrections and restarts. As the MINDS-II
system was designed with knowledge of spontaneous speech patterns and is
equipped with algorithms to detect mid-utterance corrections and restarts, those
phenomena were readily flagged. Similarly, the MINDS-II module is designed to
evaluate the semantic content of a recognized utterance with respect to the
preceeding and surrounding semantic constraints, discourse plans, domain plans,
speaker goals and discourse structural constraints, it can identify misrecognied in-
put that 1s inconsistent. Both the MINDS-II system and the acoustic module had
difficulty with confusing contractions with their associated expansions as well as
with injections and insertions of small words such as ""a’" "'the’’ "me" "in"" ''do"’
!'willll I'aud" llon 114 Hallﬂ.

Joint Correct Incorrect
Decision | Recognition | Recognition
Accept .95 27
Reject | .05 73

Table 4-6: D’ Results for Combined Knowledge Sources, 70 dialogs

Given these results, and the success of this initial investigation, we now plan to %o
ahead and more thoroughly integrate the acoustic confidence module with the
MINDS-II system. To begin, we intend to feed the exact accoustic correct
probabilities associated with each recognized word into the MINDS-II system for
analysis. This gives the MINDS-II system more information to reason upon, may
enhance its ability to detect misrecognized words and may enable the MINDS-II
system to look more closely at those words the acoustic module scores as not-
very-probably correctly recognized. perhaps decreasing overall false rejection
scores. Second, we plan to investigate more sophisticated methods for merging
these two knowledge sources. The initial decision rule employed in this study can
be improved upon. We hope that future research will enable us to both maintain
the advantages of combining these two knowledge sources while providing us
with ways to decrease the false ref'ection rate of the acoustic module, without
decreasing the ability to acoustically identify misrecognized words. Third, we
intend to investigate the use of normalized acoustic scores during the highly con-
strained, re-recognition fproce:ss. Given that the grammars used to %uide decoding
during re-recognition of strings within an utterance are low in perplexity. it seems
likely that the acoustic normalization process will better discriminate incorrectly
recognized words. Finally, we are investigating methods for directly modelling
out-of-vocabulary words in the language model and the use ot a modified bigram-
semantic grammar to guide the re-recognition process.
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