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Abstract

We present a sequential factorization method for recovering the three-dimensional shape of an object and
the motion of the camera from a sequence of images, using tracked features. The factorization method
originally proposed by Tomasi and Kanade produces robust and accurate results incorporating the
singular value decomposition. However, it is still difficult to apply the method to real-time applications
since it is based on a batch-type operation and the cost of the singular value decomposition is large. We
develop the factorization method into a sequential method by regarding the feature positions as a vector
time series. The new method produces estimates of shape and motion at each frame. The singular value
decomposition is replaced with an updating computation of only three dominant eigenvectors, which can
be performed in time, while the complete singular value decomposition requires operations for a matrix.
Also, the method is able to handle infinite sequences since it does not store any increasingly large
matrices. Experiments using synthetic and real images illustrate that the method has nearly the same
accuracy and robustness as the original method.

This research is sooored by the Department of the Army, Army Research Office under Grant No.
DAAH04-94-G-0006. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the DOA or
the U.S. Government.
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1. Introduction

Recovering both the 3D shape of an object and the motion of the camera simultaneously
from a stream of images is an important task and has wide applicability in many tasks such
as navigation and robot manipulation. Tomasi and Kanade[l] first developed a factorization
method to recover shape and motion under an orthographic projection model, and obtained
robust and accurate results. Poelman and Kanade[2] have extended the factorization method
to scaled-orthographic projection and paraperspective projection. This method closely
approximates perspective projection in most practical situations so that it can deal with
image sequences which contain perspective distortions.

Although the factorization method is a useful technique, its applicability is so far limited to
off-line computations for the following reasons. First, the method is based on a batch-type
computation; that is, it recovers shape and motion after all the input images are given. Sec-
ond, the singular value decomposition, which is the most important procedure in the
method, requires 0 (FP 2) operations for P features in F frames. Finally, it needs to store a
large measurement matrix whose size increases with the number of frames. These draw-
backs make it difficult to apply the factorization method to real-time applications.

This report presents a sequential factorization method that considers the input to the system
as a vector time series of feature positions. The method produces estimates of shape and
motion at each input frame. A covariance-like matrix is stored instead of feature positions,
and its size remains constant as the number of frames increases. The singular value decom-
position is replaced with a computation, updating only three dominant eigenvectors, which
can be performed in 0 (p 2) time. Consequently, the method becomes recursive.

We first briefly review the factorization method by Tomasi and Kanade. We then present our
sequential factorization method in Section 3. The algorithm's performance is tested using
synthetic data and real images in Section 4.
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2. Theory of the Factorization Method: Review

2.1 Formalization

The input to the factorization method is a measurement matrix W, representing image posi-
tions of tracked features over multiple frames. Assuming that there are P features over F
frames, and letting (xf , yfp) be the image position of feature p at frame f, W is a 2F x P
matrix such that

Xll ... XIp

W= XF ... XF (1)
Y11 ... YIP

YFI "" YFP

Each column of W contains all the observations for a single point, while each row contains
all the observed x-coordinates or y-coordinates for a single frame.

Suppose that the camera orientation at frame f is represented by orthonormal vectors i. jP
and k., where if corresponds to the x-axis of the image plane and if to the y-axis. The vec-

tors if and if are collected over F frames into a motion matrix M e R2 FX3 such that

M = i(2)
1

Let s be the location of feature p in a fixed world coordinate system, whose origin is set at
the center-of-mass of all the feature points. These vectors are then collected into a shape
matrix S e R 3 xP such that

S- IsI ... SP]. (3)

Note that
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P

=sp 0 . (4)
P-I

With this notation, the following equation holds by assuming an orthographic projection.

W = MS (5)

Tomasi and Kanade[l] pointed out the simple fact that the rank of W is at most 3 since it is
the product of the 2F x 3 motion matrix M and the 3 x P shape matrix S. Based on this
rank theory, they developed a factorization method that robustly recovers the matrices M
and S from W.

2.2 Subspace Computation

The actual procedure of the factorization method consists of two steps. First, the measure-
ment matrix is factorized into two matrices of rank 3 using the singular value decomposi-
tion. Assume, without loss of generality, that 2F > P. By computing the singular value

decomposition of We RpFX , we can obtain orthogonal matrices U e RF and

V e R ×X3 such that

W = UZVr, (6)

where . = diag(a, a2, 203) and 01 > o2 > 03 > 0. In reality, the rank of W is not exactly 3,
but approximately 3. U is made from the first three columns of the left singular matrix of W.
Likewise, X consists of the first three singular values and V is made from the first three rows
of the right singular matrix. By setting

Af = U and =1VT (7)

we can factorize W into

W= ., (8)

where the product k&i is the best possible rank three approximation to W.

It is well known that the left singular vectors U span the column space of W while the right
singular vectors V span its row space. The span of U, namely motion space, determines the
motion, and the span of V, namely shape space, determines the shape. The rank theory
claims that the dimension of each subspace is at most three, and the first step of the factor-
ization method finds those subspaces in the high dimensional input spaces. Both spaces are
said to be dual in the sense that one of them can be computed from the other. This observa-
tion helps us to further develop the sequential factorization method.
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2.3 Metric Transformation

The decomposition of equation (8) is not completely unique: it is unique only up to an affine
transformation. The second step of the method is necessary to find a 3 x 3 non-singular
matrix A, which transforms ft and S into the true solutions M and S as follows.

M = fA (9)

S = A-•S (10)
Observing that rows if and If of M must satisfy the normalization constraints,

•fI = ff = landiWfJ=O. (=)

we obtain the system of 3F overdetermined equations such that

if Lif = 1

ifLjff 1 (12)
ATA

if Lj~f= 0
where L e R3X3 is a symmetric matrix

L = ATA (13)

and, I and ^ are the rows of ft. By denoting if = [ip, i*., in], if = [TflJflJJ3],and

[i 12 13

L = 1214 15, (14)

13 15 16J

the system (12) can be rewritten as

GI = c, (15)

where G e R3 ×6 , I : R6 , and c e R are defined by
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g Tyj" 1F)
T ri: 2F

G = : I= (16)
gT (JPjF) 16 1

g T(j 1 ,j) 0 ]
: F

gT (jiF)

and

gT(abf) = [aflbfl 2afjbfl 2afjb ajb2 2a2bj3  a,3b4. (17)

The simplest solution of the system is given by the pseudo-inverse method such that

1 = (GTG)-1GTc. (18)

The vector I determines the symmetric matrix L, whose eigendecomposition gives A. As a
result, the motion M and the shape S are derived according to equations (9) and (10).

The matrix A is an affine transform which transforms Af into M in the motion space, while
the matrix A-' transforms S into S in the shape space. Obtaining this transform is the main
purpose of the second step of the factorization method, which we call metric transformation.
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3. A Sequential Factorization Method

3.1 Overview

In the original factorization method, there was one measurement matrix W containing
tracked feature positions throughout the image sequence. After all the input images are
given and the feature positions are collected into the matrix W, the motion and shape are
then computed. In real-time applications, however, it is not feasible to use this batch-type
scheme. It is more desirable to obtain an estimate at each moment sequentially. The input to
the system must be viewed as a vector time series. At frame f, two vectors containing fea-
ture positions such that

xi = [xft,xfl,...,xfp] andyi = [yflyp,...,yfpl (19)

are given. Immediately after receiving these vectors, the system must compute the estimates
of the camera coordinates 1 , 4 and the shape S1 at that frame. At the next frame, new sam-
pies xf+ I and yf+ I arrive and new camera coordinates i+ I and if+ I are to be computed as
well as an updated shape estimate Sf+ 1.

The key to developing such a sequential method is to observe that the shape does not change
over time. The shape space is stationary, and thus, it should be possible to derive Sf from
Sf_ - without performing expensive computations.

More specifically, we store the feature vectors xf and yf in a covariance-type matrix
Zf e RP× P defined recursively by

T T (20)

As shown later, the rank of Z is at most three and its three dominant eigenvectors Qf span
the shape space. Once Qf is obtained, the camera coordinates at frame f can be computed
simply by multiplying the feature vectors and the eigenvectors as follows.

AIT T T T (21)
If Xi Q. Ji = y1 Q1

This framework makes it possible to estimate camera coordinates immediately after receiv-
ing feature vectors at each frame. All information obtained up to the frame is accumulated in
Qf and used to produce the estimates at that frame.

In equation (20), the size of Z is fixed to P x P, which only depends on the number of fea-
ture points. Therefore, the afgorithm does not need to store any matrices whose sizes
increase over time.

The computational effort in the original factorization method is dominated by the cost of the
singular value decomposition. In the framework above, we need to compute eigenvectors of
Zf. Note that, however, we only need the first three dominant eigenvectors. Fortunately, sev-
eral methods exist to compute only the dominant eigenvectors with much less computation
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necessary to compute all the eigenvectors. Before describing the details of our algorithm, we

briefly review these techniques in the following section.

3.2 Iterative Eigenvector Computation

Among the existing methods which can compute dominant eigenvectors of a square matrix,
we introduce two methods, the power method and orthogonal iteration[3]. The power
method is the simplest, which computes the most dominant eigenvector, i.e., an eigenvector
associated with the largest eigenvalue. It provides the starting point for most other tech-
niques, and is easy to understand. The method of orthogonal iteration, which we adopt in
our method, is able to compute several dominant eigenvectors.

3.2.1 Power Method

Assume that we want to compute the most dominant eigenvectors of an n x n matrix B.

Given a unit 2-norm q (0) r Rn, the power method iteratively computes a sequence of vec-

tors q (k)

fork = 1,2,...

y(k) = Bq(k- 1 )

q(k) _ (k)/Ily(k)l12

end

The second step of the iteration is simply a normalization that prevents q (k) from becoming
very large or very small. The vectors q (k) generated by the iteration converge to the most
dominant eigenvector of B. To examine the convergence property of the power method, sup-
pose that B is diagonalizable. That is, X-'BX = diag (X,, ... , 9Xn) with an orthogonal
matrix X = [x1, ... ,Xn], and 1'%l[ > 1'21 > ... > 1'%nl" If

q(O) = blxI +b 2x 2 + ... +bnxn (22)

and b1 •0, then it follows that

q (k) = cBkq(0) c(ibj~xj) = cbl +,xl 1 (23)"j~ ~ (X lI '- • b, l(X'I ) Xj)
jj=2

where c is a constant. Since I•,l> IX21 ..I . I, equation (23) shows that the vectors
q point more and more accurately toward the direction of the dominant eigenvector x1 ,
and the convergence factor is the ratio r = 2/X,1
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3.2.2 Orthogonal Iteration

A straightforward generalization of the power method can be used to compute several dom-
inant eigenvectors of a symmetric matrix. Assume that we want to compute p dominant
eigenvectors of a symmetric matrix B e Rl x ', where 1:< p5 <n. Starting with an n x p
matrix Q0 with orthonormal columns, the method of orthogonal iteration generates a
sequence of matrices Qk e R' xP:

fork = 1,2,...

Yk = BQk_ I

QkRk = Yk (QR factorization)

end

The second step of the above iteration is the QR factorization of Yk, where Qk is an orthog-
onal matrix and Rk is an upper triangular matrix. The QR factorization can be achieved by
the Gram-Schmidt process. This step is viewed as a normalization process that is similar to
the normalization used in the power method.

Suppose that XTBX = diag (%,, ... , X•) is the eigendecomposition of B with an orthogo-
nal matrix X = [x 1, . .. ,Xn] , and IN > IX21 t _. _ iXl. It has been shown in [3] that the
subspace range (Qk) generated by the iteration converges to span fxj, ... , xP1 at a rate
proportional to IXP 1/X , i.e.,

dist (range (Qk), range (XP)) _5c P+' (24)

where X = [x1, "" xp] and c is a constant. The function dist represents the subspace dis-
tance defned by

dist (range (Qk), range (XP)) = II Q( (25)

The method offers an attractive alternative to the singular value decomposition in situations
where B is a large matrix and a few of its largest eigenvalues are needed. In our case, these
conditions clearly hold. In addition, the rank theory of the factorization method[l] guaran-
tees that the ratio I4/X31 is very small, and as a result, we should achieve fast convergence
for computing the first three eigenvectors.

3.3 Sequential Factorization Algorithm

As in the original method, the sequential factorization method consists of two steps, sequen-
tial shape space computation and sequential metric transformation.
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3.3.1 A Sequential Shape Space Computation

In the sequential factorization method, we consider the feature vectors, xJ and yJ, as a vec-
tor time series. Let us denote the measurement matrix in the original factorization method at
frame f by Wf. Then, it grows in the following manner:

X1

X1

W,1,Ij w 2  .T --.. (26)
y Y yI

VY2 T
Yf

Now let us define a matrix time series Zf e e? x by

Zf = Zf 1 + Xfi + YYj. (27)

From the definition, it follows that

z T= wfw1. (28)

Since the rank of Wf is at most three, the rank of Zf is also at most three. If

W = U ZVT (29)

is the singular value decomposition of Wp where Uf1  R2f×3 and Vfe RPx 3 are orthogonal
matrices, and Xf = diag (af 1' , , 3) then

z = (UV T. T Tyv VVTv. (30)

This means the eigenvectors of Zf are equivalent to the right singular vectors V1 of W1 .
Hence, it is possible to obtain the shape space by computing the eigenvectors of Zf.

To compute V., we combine orthogonal iteration with updating by equation (27). Given a
P x 3 matrix Q0 with orthonormal columns and a null matrix Zo e RP x P,, the following
algorithm generates a sequence of matrices Qf r R ×x3

[Algorithm (1)]forf= 1, 2 ....

(I)z,= z.,_, I+ yT,.T

(2) Y =ZQf_ i

(3) QfJ = Y (QR factorization)
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end

The index f corresponds to the frame number and each iteration is performed frame by
frame. The matrix Qf generated by the algorithm is expected to converge to the eigenvectors
Vf of Zf. While the original orthogonal iteration works with a fixed matrix, the above algo-
rithm works with the matrix Z. which varies from iteration to iteration incorporating new
features. In other words, the sequential factorization method folds the update of Z! into the
orthogonal iteration. If the range (Vf) randomly changes over time, no convergence is
expected to appear. However, it can be shown that

range (Vf) = range (W') = range (ST), for all f. (31)

Therefore, range (V) is stationary and rarge (Qf) converges to range (Ve) as in the
orthogonal iteration. Even when noise exists, if the noise is uncorrelated or the noise space
is orthogonal to the signal space range (Vf), then range (Vf) is still equal to range (ST)
and the convergence can be shown. The following convergence rate of the algorithm is
deduced from the convergence rate of the orthogonal iteration.

dist (range(Q 1 ),range(Vf)) •c 11 (32)
k =I Ok, 3

3.3.2 Stationary Basis for the Shape Space

Algorithm (1) presented in the previous section produces the matrix Qf, which converges to
the matrix V1 that spans the shape space. The true shape and motion are determined from
the shape space by a metric transformation. It is not straightforward at this point, however,
to apply the metric transformation sequentially. The problem is that, even though
range (V1) is stationary, the matrix Vf itself changes as the number of frames increases.
This is due to the nature of singular vectors. They are the basis for the row and column sub-
spaces of a matrix, and the singular value decomposition chooses them in a special way.
They are more than just orthonormal. As a result, they rotate in the 3D subspace
range (Vf). Recall that the matrix A obtained in metric transformation (9) is a transform
from fi, (or U ) to M in the subspace range (Af1). Since V1 changes at each frame, Uf
also changes. C&onsequently, the matrix A also changes frame by frame.

For clarity, let us denote an A matrix at frame f as Af. The fact that A1 changes at each
frame makes it difficult to estimate A iteratively and efficiently. Thus we need to add an
additional process to obtain stationary basis for the shape space to update matrix Af.

Let us define a projection matrix Hf E RP×xP onto the range (Qf) by

H1 = QfQ, (33)

where Qf is the output from Algorithm (1). Needless to say, the rank of Hf is at most three.

Since range (Qf) (=range (/f 1) ) is stationary, the projection matrix Hf must be stationary.
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It is thus possible to obtain the stationary basis for the shape space by replacing Q1 with the

eigenvectors of H1.

An iterative method similar to Algorithm (1) can be used to reduce the amount of computa-
tion. Given a P x 3 matrix Q0 with orthonormal columns, the iterative method below gener-
ates a matrix Qfe RP ×, which provides the stationary basis for the shape space.

[Algorithm (2)]for f = 1, 2,.

Hf = Q
Y = Hpf -1

QfR = Y (QR factorization)

end

3.3.3 Sequential Metric Transformation

In the previous section, we derived the shape space in terms of Qf. Once Qf is obtained, it is
possible to compute camera coordinates if and if as

I = T T 7 (34)
if = X•Qf, if = Qf

These coordinates are used to solve the overdetermined equations (12) and the true camera
coordinates are recovered in the same way as in the original method. Doing so, however,
requires storing all the coordinates if and if, the number of which may be very large.
Instead, we use the following sequential algorithm.

[Algorithm (3)]forf = 1, 2 ....

fT T-- TT
- xQf, if = Yi "

i_ + g (if, ) gT (if ?f) + g iJf) gT (if, ) + g (ifif) gT (i.,f)

Ef= Ef (If+g ,i1f) +gOfjf)

end

Let G and c be the matrices G and c at frame f, where G and c are defined in Section 2.3
From the defnition, it follows that

Df= GT G (35)

Ef =GTC. (36)

Assigning equations (35) and (36) to equation (18), we have
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f = D'Ef (37)

which gives the symmetric matrix Lf. The eigendecomposition of L yields the affine trans-
form Af and, as a result, the camera coordinates and the shape are obtained as follows:

f=Ij iAf JT = JjAf (38)

Sf = Aj'Q1  (39)

Algorithm (3) followed by equations (37), (38), and (39) completes the sequential method.
The size of matrices Df and Ef are fixed to 6 x 6 and 6 x 1, and the method does not store
any matrices that grow, even in the sequential metric transformation.
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4. Experiments

4.1 Synthetic Data

In this section we compare the accuracy of our sequential factorization method with that of
the original factorization method. Since both methods are essentially based on the rank the-
ory, we do not expect any difference in the results. Our purpose here is to confirm that the
sequential method has the same accuracy of shape and motion recovery as the original
method.

4.1.1 Data Generation

The object in this experiment consists of 100 random feature points. The sequences are cre-
ated using a perspective projection of those points. The image coordinates of each point are
perturbed by adding Gaussian noise, which we assume to simulate tracking error and image
noise. The standard deviation of the Gaussian noise is set to two pixels of a 512 x 512 pixel
image. The distance of the object center from the camera is fixed to ten times the object size.
The focal length is chosen so that the projection of the object covers the whole 512 x 512
image. The camera is rotated as shown in Figure 1, while the object is translated to keep its
image at the image center. Quantization errors are not added since we assume that we are
able to track features with a subpixel resolution.

60 "
/

S- Roll
so . ..... .. ....... Pitch

40I *" ---- Yaw

C0 30go 0 .. ".............
20

10

0 20 40 60 80 100 120 140
Frame

Figure 1 True camera motion
The camera roll, pitch, and yaw are varied as shown in this figure. The
sequew:e consists of 150 frames.
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When discussing the accuracy of the sequential method, one needs to consider its dynamic
property regarding the 3D recovery. The accuracy of the recovery at a particular frame by
the sequential method depends on the total amount of motion up to that time, since the
recovery is made only from the information obtained up to that time. At the beginning of an
image sequence, for example, the motion is generally small, so high accuracy can not be
expected. The accuracy generally improves as the motion becomes larger. The original
method does not have this dynamic property, since it is based on a batch-type scheme and
uses all the information throughout the sequence.

In order to compare both methods under the same conditions, we perform the following
computations beforehand. First, we form a submatrix W, which only contains the feature
positions up to frame f. The original factorization is applied to the submatrix, then the
results are kept as solutions at frame f. They are the best estimates given e original
method. Repeating this process for each frame, we derive the best estimates, ovhich our
results are compared.

4.1.2 Accuracy of the Sequential Shape Space Computation

We first discuss the convergence property of the sequential shape space computation. The
sequential factorization method starts with Algorithm (1) in Section 3.3.1, iteratively 'ener-
ating the matrix Q~which is an estimate for the true shape space ST. Let us represent the
estimation error with respect to the true shape space by

E, = dist (span (Qf), span (S T)) (40)

Recall that the function dist provides a notion of difference between two spaces. On the
other hand, the original method produces the best estimate for the shape space by comput-
ing the right singular vectors V of the submatrix Wp and its error with respect to the true
shape space is also represented by

Eo = dist(span(Vf),span(S T )) (41)

Comparing both errors, Figure 2 shows that they are almost identical. That is, the errors
given by the sequential method are almost equal to those given by the original method.

At the beginning of the sequence, the amount of motion is small and both errors are rela-
tively large. The ratio of the 4th to 3rd singular values, shown in Figure 3, also indicates that
it is difficult to achieve good accuracy at the beginning. Both errors, however, quickly
become smaller as the camera motion becomes larger. After about the 20th frame, constant
errors of 3 x 10-2 are observed in this experiment.

The solutions given by the two methods are so close that the graphs are completely over-
lapped. Thus, we also plot their difference defined by

AE = dist (span (Qf), span (V)) (42)

in Figure 4. Although AE is relatively large at the beginning, it quickly becomes
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100 idI,' 1 ! I I

- Sequential factodzation (Es)
........ Original factodzation (Eo)

110.1

0 20 40 60 80 100 120 140
Frame

Figure 2 Shape space errors
Shape space estimation errors by the sequential method (solid line) and the
original method (dashed line) with respect to the true shape space. The
errors are defined by subspace distance and plotted logarithmically.

-1i
107

0

10"

0 20 40 60 80 100 120 140
Frame

Figure 3 Singular value ratio
The ratio of the 4th to 3rd singular values, that is q4/v3.
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1 .7 •

104

10'

0 20 40 60 80 100 120 140
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Figure 4 Difference of shape space errors
The difference of the estimates by the sequential and original methods,
versus the frame number. The difference is plotted logarithmically.

very small. In fact, after about the 30th frame, AE is less than 1 x 10-7, while E. and E,

are both 3 x 10-2.

4.1.3 Accuracy of the Motion and Shape Recovery

The three plots of Figure 5 show errors in roll, pitch, and yaw in the recovered motion: the
solid lines correspond to the sequential method, the dotted lines to the original method. The
difference in motion errors between the original and sequential methods is quite small.

Both results are unstable for a short period at the beginning of the sequence. After that, they
show two kinds of errors: random and structural. Random errors are due to Gaussian noise
added to the feature positions. Structural errors are due to perspective distortion, and relate
to the motion patterns. The structural errors show a negative peak at about the 60th frame
and are almost constant between the 90th and 120th frames. Note the pattern corresponds to
the motion pattern shown in Figure 1.

Of course, these intrinsic errors cannot be eliminated in the sequential method. The point to
observe is that the differences between the two solutions are sufficiently smaller than the
intrinsic errors.

Shape errors which are compared in Figure 6 also indicate the same results. Again, the dif-
ferences between the two methods are quite small compared to the intrinsic errors which the
original method possesses. Note that no Gaussian noise appears in the shape errors since

18



they are averaged over all the feature points.

We conclude from these results that the sequential method is nearly as accurate as the origi-
nal method except that some extra frames are required to converge.
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Frame
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Sequntal
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Figure S Motion errors
Errors of recovered camera roll (top), pitch (middle), and yaw (bottom). The
errors given by the sequentia method are plotted with solid lines, while the errors
given by the original method awe plotted with dotted lines.

20



101 Sequerdial

.....Original

0 20 40 60 80 100 120 140
Frame

Figure 6 Shape error
"This figure compares the shape errors given by the two method. The efrors given
by the sequential method are plotted with solid lines, while the errors given by the
original method are plotted with dotted lines. The errors ae computed as the root-
mean-square errors of the recovered shape with respect to the true shape, at each
frame.
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4.2 Real Images

Experiments were performed on two sets of real images. The first set is an image sequence
of a satellite rotating in space. Another experiment uses a long video recording (764 images)
of a house taken with a hand-held camera. These experiments demonstrate the applicability
of the sequential factorization method in real situations. In both experiments, features are
selected and tracked using the method presented by Tomasi and Kanade[l].

4.2.1 Satellite Images

Figure 7 shows an image of the satellite with selected features indicated by small squares.
The image sequence was digitized from a video recording[4] actually taken by a space shut-
tle astronaut. The feature tracker automatically selected and tracked 32 features throughout
the sequence of 101 images. Of these, five features on the astronaut maneuvering around the
satellite were manually eliminated because they had a different motion. Thus, the remaining
27 features were processed. Figure 8 shows the recovered motion in terms of roll, pitch, and
yaw. The side view of the recovered shape is displayed in Figure 9, where the features on the
solar panel are marked with opaque squares and others with filled squares. No ground-truth
is available for the shape or the motion in this experiment. Yet, it appears that the solutions
are satisfactory, since the features on the solar panel almost lie in a single line in the side
view.

4.2.2 House Images

Figure 10 shows the first image of the sequence used in the second experiment. Using a
hand-held camera, one of the authors took this sequence while walking. It consists of 764
images which correspond to about 25 seconds. The feature tracker detected and tracked 62
features. The recovered motion and shape are shown in Figures 11 and 12. It is clearly seen
that the shape is qualitatively correct. It is also reasonable to observe that only the camera
yaw is increasing, because the camera is moving parallel to the ground. In addition, note that
the computed roll motion reveals the pace of the recorder's steps, which is about 1 step per
second.

Further evaluation of accuracy in these experiments is difficult. However, this qualitative
analysis of the results with real images, and quantitative analysis of the results with syn-
thetic data essentially shows that the sequential method works as well with real images as
the original batch method.
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Figure 7 An image of a satellite
The first frame of the satellite image sequence. The superimposed squares
indicate the selected features.
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Figure 8 Recovered motion of satellite
Recovered camera roll (solid line), pitch (dashed line), and yaw (dotted
line) for the satellite image sequence.
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Figure 9 Side view of the recovered shape
A side view of the recovered shape of the satellite. The features on the
solar panel are shown with opaque squares and others with filled squares.
Notice that the features on the solar panel correctly lie in a single plane.
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Figure 10 An image of a house
The first frame of the house image sequence. The superimposed squares
indicate the selected features.
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Figure 11 Recovered motion of house
Recovered camnera roll (solid line), pitch (dashed line), and yaw (dotted
line) for the house image sequence.
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Figure 12 Top view of the recovered shape
A view of the recovered shape of the house from above. The features on
the two side walls are correctly recovered.

26



4.3 Computational Time

Finally, we compare the processing time of the sequential method with the original method.
The computational complexity of the original method is dominated by the cost of the singu-
lar value decomposition, which needs 14FP 2 + 11 p3/3 computations for a 2F x P mea-
surement matrix with 2F > P [5]. Note that F corresponds to the number of frames and P to
the number of features. On the other hand, the complexity of the sequential method is
22P 2 + 44P for computing dominant eigenvectors, plus 4P 2 for updating the Zmatrix.
Computing the solution for frame F, therefore, takes only 0 (P2 ) using the sequential
method, while the original method would require 0 (Fp2) operations.

Figure 13 shows the actual processing time of the sequential method on a Sun4/10 compared
together with that of the original method. The number of features varied from 10 to 500,
while the number of frames was fixed at 120. The processing time for selecting and tracking
features was not included. The singular value decomposition of the original method is based
on a routine found in [6]. The results sufficiently agree with our analysis above. In addition,
when the number of features is less than 40, the sequential method is possible to run within
1/30 ms, which means video-rate processing on a Sun4/10.
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Figure 13 Processing time
The processing time of the sequential method on a Sun4/10 (solid line)
compared with that of the original method (dotted line), as a function of
the number of features which is varied from 10 to 500. The number of
frames is fixed at 120.
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5. Conclusions

We have presented the sequential factorization method, which provides estimates of shape
and motion at each frame from a sequence of images. The method produces as accurate and
robust results as the original method, while significantly reducing the computational com-
plexity. The reduction in complexity is important for applying the factorization method to
real-time applications. Furthermore, the method does not require storing any growing matri-
ces so that its implementation in VLSI or DSP is feasible.

Faster convergence in the shape space computation could be achieved using more sophisti-
cated algorithms such as the orthogonal iteration with Ritz acceleration[3] instead of the
basic orthogonal iteration. Also, it is possible to use scaled orthographic projection or parap-
erspective projection[2] to improve the accuracy of the sequential factorization method.
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